CHAPTER 7

Packet-Switching Networks

Traditional telephone networks operate on the basis of circuit switching. A call
setup process reserves resources (time slots) along a path so that the stream of
voice samples can be transmitted with very low delay across the network. The
resources allocated to a call cannot be used by other users for the duration of the
call. This approach is inefficient when the amount of informtion transferred is
small or if information is produced in bursts, as is the case in many computer
applications. In this chapter we examine networks that transfer blocks of infor-
mation called packets. Packet-switching networks are better matched to computer
applications and can also be designed to support real-time applications such as
telephony.

We can view packet networks from two perspectives. One perspective
involves an external view of the network and is concerned with the services
that the network provides to the transport layer that operates above it at the
end systems. Here we are concerned with whether the network service requires
the setting up of a connection and whether the transfer of user data is provided
with quality-of-service guarantees. Ideally the definition of the network services
is independent of the underlying network and transmission technologies. This
approach allows the transport layer and the applications that operate above it to
be designed so that they can function over any network that provides the given
services.

A second perspective on packet networks is concerned with the internal
operation of a network. Here we look at the physical topology of a network,
the interconnection of links, switches, and routers. We are concerned with the
approach that is used to direct information across the network: datagrams, or
virtual circuits. We are also concerned with addressing and routing procedures,
as well as with dealing with congestion inside the network. We must also manage
traffic flows so that the network can deliver information with the quality of
service it has committed to.

460
4 | P | eTextMainMenu | Textbook Table of Contents

Chapter 7 Packet-Switching Networks 461

It is useful to compare these two perspectives in the case of broadcast net-
works and LANs from the previous chapter and the switched packet networks
considered here. The first perspective, involving the services provided to the layer
above, does not differ in a fundamental way between broadcast and switched
packet networks. The second perspective, however, is substantially different. In
the case of LANSs, the network is small, addressing is simple, and the frame is
transferred in one hop so no routing is required. In the case of packet-switching
networks, addressing must accommodate extremely large-scale networks and
must work in concert with appropriate routing algorithms. These two challenges,
addressing and routing, are the essence of the network layer.

In this chapter we deal with the general issues regarding packet-switching
networks. Later chapters deal with specific architectures, namely, Internet
Protocol (IP) packet networks and asynchronous transfer mode (ATM) packet
networks. The chapter is organized as follows:

1. Network services and internal network operation. We elaborate on the two
perspectives on networks, and we discuss the functions of the network
layer, including internetworking.

2. Physical view of networks. We examine typical configurations of packet-
switching networks. This section defines the role of multiplexers, LANSs,
switches, and routers in network and internetwork operation.

3. Datagrams and virtual circuits. We introduce the two basic approaches to
operating a packet network, and we use IP and ATM as examples of these
approaches.

4. Routing. We introduce the basic approaches for selecting routes across the
network.

5. Shortest path algorithms. We continue our discussion of routing, focusing on
two shortest-path routing algorithms: the Bellman-Ford algorithm and
Dijskstra’s algorithm.

6. ATM networks. We introduce ATM networks as an example of an advanced
virtual-circuit packet-switching network that can support many services.

7. Traffic management. We introduce traffic shaping, scheduling and call admis-
sion control as methods for providing Quality-of-Service.

8. Congestion control. We introduce techniques to deal with congestion due to
surges in traffic or equipment failures.

The material on ATM, traffic management, and congestion control is rela-
tively advanced. The corresponding sections (7.6, 7.7, and 7.8 respectively) can
be skipped and the reader may proceed to Chapter 8, depending on their back-
ground or interest.

4 | P | eTextMainMenu | Textbook Table of Contents

462 cHAPTER 7 Packet-Switching Networks

7.1 NETWORK SERVICES AND INTERNAL
NETWORK OPERATION

The essential function of a network is to transfer information among the users
that are attached to the network or internetwork. In Figure 7.1 we show that this
transfer may involve a single block of information or a sequence of blocks that
are temporally related. In the case of a single block of information, we are
interested in having the block delivered correctly to the destination, and we
may also be interested in the delay experienced in traversing the network. In
the case of a sequence of blocks, we may be interested not only in receiving the
blocks correctly and in the right sequence but also in delivering a relatively
unimpaired temporal relation.

Figure 7.2 shows a transport protocol that operates end to end across a
network. The transport layer peer processes at the end systems accept messages
from their higher layer and transfer these messages by exchanging segments end
to end across the network. The figure shows the interface at which the network
service is visible to the transport layer. The network service is all that matters to
the transport layer, and the manner in which the network operates to provide the
service is irrelevant.

The network service can be connection-oriented or connectionless. A con-
nectionless service is very simple, with only two basic interactions between the
transport layer and the network layer: a request to the network that it send a
packet and an indication from the network that a packet has arrived. The user
can request transmission of a packet at any time, and does not need to inform the
network layer that the user intends to transmit information ahead of time. A
connectionless service puts total responsibility for error control, sequencing, and
flow control on the end-system transport layer.

The network service can be connection-oriented. In this case the transport
layer cannot request transmission of information until a connection has been set
up. The essential points here are that the network layer must be informed about
the new flow that is about to be applied to the network and that the network
layer maintains state information about the flows it is handling. During call
setup, parameters related to usage and quality of service may be negotiated
and network resources may be allocated to ensure that the user flow can be
handled as required. A connection-release procedure may also be required to

1o < -

FIGURE 7.1 A network transfers information among users

4 | P | eTextMainMenu | Textbook Table of Contents

7.1 Network Services and Internal Network Operation 463

Messages Messages
Transport e o e _S_e_gr_n_e{lt_s ________________ Transport
layer layer
Network I | ____ Network
service service
Network Network Network Network
layer layer layer layer
End system | Data link Data link Data link Data link | End system
a layer layer layer layer B

¥ W

FIGURE 7.2 Peer-to-peer protocols operating end to end across a network—protocol stack
view

terminate the connection. It is clear that providing connection-oriented service
entails greater complexity than connectionless service in the network layer.

It is also possible for a network layer to provide a choice of services to the
user of the network. For example, the network layer could offer: (1) best-effort
connectionless service; (2) low-delay connectionless service; (3) connection-
oriented reliable stream service; and (4) connection-oriented transfer of packets
with delay and bandwidth guarantees. It is easy to come up with examples of
applications that can make use of each of these services. However, it does not
follow that all the services should be offered by the network layer. Two inter-
related reasons can be given for keeping the set of network services to a mini-
mum: the end-to-end argument and the need for network scalability.

When applied to the issue of choice of network services, the end-to-end
argument suggests that functions should be placed as close to the application
as possible, since it is the application that is in the best position to determine
whether a function is being carried out completely and correctly. This argument
suggests that as much functionality as possible should be located in the transport
layer or higher and that the network services should provide the minimum
functionality required to meet application performance.

Up to this point we have considered only the services offered by the network
layer. Let us now consider the internal operation of the network. Figure 7.3
shows the relation between the service offered by the network and the internal
operation. We say that the internal operation of a network is connectionless if
packets are transferred within the network as datagrams. Thus in the figure each
packet is routed independently. Consequently packets may follow different paths
from « to B and so may arrive out of order. We say that the internal operation of
a network is connection-oriented if packets follow virtual circuits that have been

4 | P | eTextMain Menu | Textbook Table of Contents

464 cHAPTER 7 Packet-Switching Networks

THE END-TO-END ARGUMENT FOR SYSTEM DESIGN

The end-to-end argument in system design articulated in [Saltzer 1984] states
that an end-to-end function is best implemented at a higher level than at a
lower level. The reason is that the correct end-to-end implementation requires
all intermediate low-level components to operate correctly. This feature is
difficult and sometimes impossible to ensure and is frequently too costly.
The higher-level components at the ends are in a better position to determine
that a function has been carried out correctly and in better position to take
corrective action if they have not. Low-level actions to support the end-to-end
function are justified only as performance enhancements.

We already encountered the end-to-end argument in the comparison of
end-to-end error control and hop-by-hop error control in Chapter 5. The
argument here is that the end system will have to implement error control
on an end-to-end basis regardless of lower-level error-control mechanisms that
may be in place because the individual low-level mechanisms cannot cover all
sources of errors, for example, errors introduced within a node. Consequently,
lower-level mechanisms are not essential and should be introduced only to
enhance performance. Thus the transmission of a long file over a sequence of
nearly error-free links does not require per link error control. On the other
hand, the transmission of such files over a sequence of error-prone links does
argue for per link error control.

established from a source to a destination. Thus to provide communications
between « and g, routing to set up a virtual circuit is done once, and thereafter
packets are simply forwarded along the established path. If resources are
reserved during connection setup, then bandwidth, delay, and loss guarantees
can be provided.

The fact that a network offers connection-oriented service, connectionless
service, or both does not dictate how the network must operate internally. In
discussing TCP and IP, we have already seen that a connectionless packet net-
work (e.g., IP) can support connectionless service (UDP) as well as connection-
oriented service (TCP). We will also see that a connection-oriented network (e.g.,
ATM) can provide connectionless service as well as connection-oriented service.
We discuss virtual-circuit and datagram network operation in more detail in a
later section. However, it is worthwhile to compare the two at this point at a high
level.

The approach suggested by the end-to-end argument keeps the network
service (and the network layer that provides the service) as simple as possible
while adding complexity at the edge only as required. This strategy fits very well
with the need to grow networks to very large scale. We have seen that the value
of a network grows with the community of users that can be reached and with
the range of applications that can be supported. Keeping the core of the network
simple and adding the necessary complexity at the edge enhances the scalability
of the network to larger size and scope.

4 | P | eTextMainMenu | Textbook Table of Contents

7.1 Network Services and Internal Network Operation 465

End system

[0}

. Physical layer entity 3 | Network layer entity

@ Network layer entity

Data link layer entity 4 | Transport layer entity

FIGURE 7.3 Layer 3 entities work together to provide network service to layer 4 entities

This reasoning suggests a preference for a connectionless network, which has
much lower complexity than a connection-oriented network. The reasoning does
allow the possibility for some degree of “‘connection orientation’ as a means to
ensure that applications can receive the proper level of performance. Indeed
current research and standardization efforts (discussed in Chapter 10) can be
viewed as an attempt in this direction to determine an appropriate set of network
services and an appropriate mode of internal network operation.

We have concentrated on high-level arguments up to this point. What do
these arguments imply about the functions that should be in the network layer?
Clearly, functions that need to be carried out at every node in the network must
be in the network layer. Thus functions that route and forward packets need to
be done in the network layer. Priority and scheduling functions that direct how
packets are forwarded so that quality of service is provided also need to be in the
network layer. Functions that belong in the edge should, if possible, be imple-
mented in the transport layer or higher. A third category of functions can be
implemented either at the edge or inside the network. For example, while con-
gestion takes place inside the network, the remedy involves reducing input flows
at the edge of the network. We will see that congestion control has been imple-
mented in the transport layer and in the network layer.

Another set of functions is concerned with making the network service
independent of the underlying transmission systems. For example, different

4 | P | eTextMainMenu | Textbook Table of Contents

466 cHAPTER 7 Packet-Switching Networks

transmissions sytems (e.g., optical versus wireless) may have different limits on
the frame size they can handle. The network layer may therefore be called upon
to carry out segmentation inside the network and reasssembly at the edge.
Alternatively, the network could send error messages to the sending edge,
requesting that the packet size be reduced. A more challenging set of functions
arises when the “network” itself may actually be an internetwork. In this case the
network layer must also be concerned not only about differences in the size of the
units that the component networks can transfer but also about differences in
addressing and in the services that the component networks provide.

In the remainder of the chapter we deal with the general aspects of internal
network operation. In Chapters 8 and 9 we discuss the specific details of IP and
ATM networks.

7.2 PACKET NETWORK TOPOLOGY

This section considers existing packet-switching networks. We present an end-to-
end view of existing networks from a personal computer, workstation, or server
through LANs and the Internet and back.

First let us consider the way in which users access packet networks. Figure
7.4 shows an access multiplexer where the packets from a number of users share a
transmission line. This system arises for example, in X.25, frame relay, and ATM
networks, where a single transmission line is shared in the access to a wide area
packet-switching network. The multiplexer combines the typically bursty flows
of the individual computers into aggregated flows that make efficient use of the
transmission line. Note that different applications within a single computer can
generate multiple simultaneous flows to different destinations. From a logical
point of view, the link can be viewed as carrying either a single aggregated flow
or a number of separate packet flows. The network access node forwards packets
into a backbone packet network.

Network access

MUX

—u
Node

(i i [

FIGURE 7.4 Access multiplexer

4 | P | eTextMainMenu | Textbook Table of Contents

7.2 Packet Network Topology 467

Local area networks (LANs) provide the access to packet-switching networks
in many environments. As shown in Figure 7.5a, computers are connected to a
shared transmission medium. Transmissions are broadcast to all computers in
the network. Each computer is identified by a unique physical address, and so
each station listens for its address to receive transmissions. Broadcast and multi-
cast transmissions are easily provided in this environment.

LANSs allow the sharing of resources such as printers, databases, and soft-
ware among a small community of users. LANs can be extended through the use
of bridges or LAN switches, as shown in Figure 7.5b. Here the LAN switch
forwards inter-LAN traffic based on the physical address of the frames.
Traffic local to each LAN stays local, and broadcast transmissions are forwarded
to the other attached LANSs. Switches can interconnect more than two LANSs.

Multiple LANSs in an organization, in turn, are interconnected into campus
networks with a structure such as that shown in Figure 7.6. LANs for a large
group of users such as a department are interconnected in an extended LAN
through the use of LAN switches, identified by lowercase s in the figure.
Resources such as servers and databases that are primarily of use to this depart-
ment are kept within the subnetwork. This approach reduces delays in accessing
the resources and contains the level of traffic that leaves the subnetwork. Each
subnetwork has access to the rest of the organization through a router R that
accesses the campus backbone network. A subnetwork also uses the campus
backbone to reach the “outside world™ such as the Internet or other sites belong-
ing to the organization through a gateway router. Depending on the type of
organization, the gateway may implement firewall functions to control the traffic
that is allowed into and out of the campus network.

Servers containing critical resources that are required by the entire organiza-
tion are usually located in a data center where they can be easily maintained and

() (b)

LAN LAN 1

Bridge

LAN?2

FIGURE 7.5 Local area networks

4 | P | eTextMainMenu | Textbook Table of Contents

468 cHAPTER 7 Packet-Switching Networks

| Organization

servers

To internet /

or wide area
network

///
-
/
/

Departmental \

FIGURE 7.6 Campus network

where security can be enforced. As shown in Figure 7.6, the critical servers may
be provided with redundant paths to the campus backbone network. These
servers are usually placed near the backbone network to minimize the number
of hops required to access them from the rest of the organization.

The traffic within an extended LAN is delivered based on the physical LAN
addresses. However, applications in host computers operate on the basis of
logical TP addresses. Therefore, the physical address corresponding to an IP
address needs to be determined every time an IP packet is to be transmitted
over a LAN. This address resolution problem can be solved by using IP address
to physical address translation tables. In the next chapter we discuss the Address
Resolution Protocol that 1P uses to solve this problem.

The routers in the campus network are interconnected to form the campus
backbone network, depicted by the mesh of switches, designated S, in Figure 7.6.
Typically, for large organizations such as universities these routers are intercon-
nected by using very high speed LANSs, for example, Gigabit Ethernet or an

4 | P | eTextMainMenu | Textbook Table of Contents

7.2 Packet Network Topology 469

ATM network. The routers use the Internet Protocol (IP), which enables them to
operate over various data link and network technologies. The routers exchange
information about the state of their links to dynamically calculate routing tables
that direct packets across the campus network. This approach allows the net-
work to adapt to changes in traffic pattern as well as changes in topology due to
faults in equipment.

The routers in the campus network form a domain or autonomous system.
The term domain indicates that the routers run the same routing protocol. The
term autonomous system is used for one or more domains under a single admin-
istration. All routing decisions inside the autonomous system are independent of
any other network.

Organizations with multiple sites may have their various campus networks
interconnected through routers interconnected by leased digital transmission
lines or frame relay connections. In this case access to the wide area network
may use an access multiplexer such as the one shown in Figure 7.4. In addition
the campus network may be connected to an Internet service provider through
one or more border routers as shown in Figure 7.7. To communicate with other
networks, the autonomous system must provide information about its network
routes in the border routers. The border router communicates on an interdomain
level, whereas other routers in a campus network operate at the intradomain
level.

A national ISP provides points of presence (POPs) in various cities where
customers can connect to their network. The ISP has its own national network
for interconnecting its POPs. This network could be based on ATM; it might use
IP over SONET; or it might use some other network technology. The ISPs in
turn exchange traffic as network access points (NAPs), as shown in Figure 7.8a.
A NAP is a high-speed LAN or switch at which the routers from different ISPs

Interdomain level

Border routers

Internet service
Border routers provider

Autonomous
system or
domain

LAN level

Intradomain level

FIGURE 7.7 Intradomain and interdomain levels

4 | P | eTextMainMenu | Textbook Table of Contents

470 cHAPTER 7 Packet-Switching Networks

(a) National service provider A

National service provider B

NAP m NAP
[N

National service provider C

Route
server

FIGURE 7.8 National ISPs exchange traffic at NAPs; routing information is
exchanged through route servers

can exchange traffic, and as such NAPs are crucial to the interconnectivity
provided by the Internet. (As discussed in Chapter 1, four NAPs were originally
set up by the National Science Foundation). The ISPs interconnected to a NAP
need to exchange routing information. If there are n such ISPs, then n(n — 1)
pairwise route exchanges are required. This problem is solved by introducing a
route server as shown in Figure 7.8b. Each ISP sends routing information to the
route server, which knows the policies of every ISP. The route server in turn
delivers the processed routing information to the ISPs.

Note that a national service provider also has the capability of interconnect-
ing a customer’s various sites by using its own IP network, so the customer’s sites
appear as a single private network. This configuration is an example of a virtual
private network (VPN).

Small office and home (SOHO) users obtain packet access through ISPs. The
access is typically through modem dial-up, but it could be through ADSL,
ISDN, or cable modem. When a customer connects to an ISP, the customer is

4 | P | eTextMainMenu | Textbook Table of Contents

7.3 Datagrams and Virtual Circuits 471

assigned an IP address for the duration of the connection.' Addresses are shared
in this way because the ISP has only a limited number of addresses. If the ISP is
only a local provider, then it must connect to a regional or national provider and
eventually to a NAP.

Thus we see that a multilevel hierarchical network topology arises for the
Internet which is much more decentralized than traditional telephone networks.
This topology comprises multiple domains consisting of routers interconnected
by point-to-point data links, LANs, and wide area networks such as ATM.

The principal task of a packet-switching network is to provide connectivity
among users. The preceding description of the existing packet-switching network
infrastructure reveals the magnitude of this task. Routers exchange information
among themselves and use routing protocols to build a consistent set of routing
tables that can be used in the routes to direct the traffic flows in these networks.
The routing protocols must adapt to changes in network topology due to the
introduction of new nodes and links or to failures in equipment. Different rout-
ing algorithms are used within a domain and between domains. A key concern
here is that the routing tables result in stable traffic flows that make efficient use
of network resources. Another concern is to keep the size of routing tables
manageable even as the size of the network continues to grow at a rapid pace.
In this chapter we show how hierarchical addressing structures can help address
this problem. A third concern is to deal with congestion that inevitably occurs in
the network. It makes no sense to accept packets into the network when they are
likely to be discarded. Thus when congestion occurs inside the network, that is,
buffers begin filling up as a result of a surge in traffic or a fault in equipment, the
network should react by applying congestion control to limit access to the net-
work only to traffic that is likely to be delivered. A final concern involves pro-
viding the capability to offer Quality-of-Service guarantees to some packet flows.
We deal with these topics also in the remainder of the chapter.

7.3 DATAGRAMS AND VIRTUAL CIRCUITS

A network is usually represented as a cloud with multiple input sources and
output destinations as shown in Figure 7.9. A network can be viewed as a
generalization of a physical cable in the sense of providing connectivity between
multiple users. Unlike a cable, a switched network is geographically distributed
and consists of a graph of transmission lines (i.e., links) interconnected by
switches (nodes). These transmission and switching resources are configured to
enable the flow of information among users.

"The dynamic host configuration protocol (DHCP) provides users with temporary IP addresses and is
discussed in Chapter 8.

4 | P | eTextMainMenu | Textbook Table of Contents

472 cHAPTER 7 Packet-Switching Networks

FIGURE 7.9 Switched network
Transmission
link

Packet
switch

Network

Networks provide for the interconnection of sources to destinations on a
dynamic basis. Resources are typically allocated to an information flow only
when needed. In this manner the resources are shared among the community
of users resulting in efficiency and lower costs. There are two fundamental
approaches to transferring information over a packet-switched network. The
first approach, called connection-oriented, involves setting up a connection across
the network before information can be transferred. The setup procedure typically
involves the exchange of signaling messages and the allocation of resources along
the path from the input to the output for the duration of the connection. The
second approach is connectionless and does not involve a prior allocation of
resources. Instead a packet of information is routed independently from switch
to switch until the packet arrives at its destination. Both approaches involve the
use of switches or routers to direct packets across the network.

7.3.1 Structure of Switch/Router

Figure 7.10 shows a generic switch consisting of input ports, output ports, an
interconnection fabric, and a switch controller/processor. Input ports and output
ports are usually paired. A line card typically handles several input/output ports.
The line card implements physical and data link layer functions. Thus the card is
concerned with symbol timing and line coding. It is also concerned with framing,
physical layer addressing, and error checking. For widely deployed standards,
the line card also implements medium access control and data link protocols in
hardware with a special-purpose chip set. The line card also contains some
buffering to handle the speed mismatch between the transmission line and the
interconnection fabric. The controller/processor can carry out a number of func-
tions depending on the type of packet switching. The function of the intercon-
nection fabric is to transfer packets between the line cards. Note that Figure 7.10
shows an “‘unfolded” version of the switch in which the line cards appear twice,
once with input ports and again with output ports. In the actual implementation
the transmit and receive functions take place in a single line card. However, the
function of various types of switch architectures is easier to visualize this way.

4 | P | eTextMainMenu | Textbook Table of Contents

7.3 Datagrams and Virtual Circuits 473

Control
1 Line card Line card 1
2 Line card Line card 2
3 Line card Line card 3

Interconnection
fabric

PR ey B | ey B Y

FIGURE 7.10 Components of generic switch/router

We elaborate on the operation of the switches as we develop the two approaches
to packet switching.

A simple switch can be built by using a personal computer or a workstation
and inserting several network interface cards (NICs) in the expansion slots as
shown in Figure 7.11. The frames that arrive at the NICs are de-encapsulated,
and the packets are transferred by using the I/O bus from the NIC to main
memory. The processor performs the required routing and protocol processing,
formats the packet header, and then forwards the packet by transferring it from
main memory to the appropriate NIC.

The simple setup in Figure 7.11 reveals the three basic resources and poten-
tial bottlenecks in switches: processing, memory, and bus (interconnection)
bandwidth. Processing is required to implement the protocols, and hence the
processing capacity places a limit on the maximum rate at which the switch
can operate. Memory is required to store packets, and hence the amount of
memory available determines the rate at which packets are lost, thus placing
another limit on the load at which the switch can be operated. In this approach

FIGURE 7.11 Building a switch from a general
/O) .
CPU purpose computer
bus
1 NIC card |<=—>
2 NIC card
2
3 NIC card {<—> £
. >
. 5 =
. o =
p=
N <I—=| NIC card

4 | P | eTextMainMenu | Textbook Table of Contents

474 cHAPTER 7 Packet-Switching Networks

N o ' FIGURE 7.12 Input port
— - D> demultiplexes incoming packet
S ety P stream; packets are routed to output
N - i
D) =S T 2 port; output port multiplexes
e e e R A »| > .
SN 7 outgoing packet stream
o N P
N P z
TN
~c e
< X
AN
e < AN
TN N
/// /// \\\ \\\
N | A S\ | N
,,,,,,,,,,,,,,,,,,,,, >

the memory bandwidth, which is the rate at which information can be read in
and out of RAM, also places a limit on the aggregate rate of the switch. Finally,
the 1/O bus bandwidth places a limit on the total rate at which information can
be transferred between ports. Different switch architectures configure these basic
resources so that target aggregate switch capacities are met in a cost-effective
manner.

Each input and output port in a switch/router typically contains multiplexed
streams of packets. Figure 7.12 shows that the flows that enter the switch in effect
are demultiplexed at the input port. The switch or router then directs the packets
to output ports. Each output port can be viewed as a multiplexer that precedes
the outgoing transmission line. Thus we see that switches and routers play a key
role in controlling where the packet flows are placed in a network. By controlling
packet flows, the network bandwidth can be used efficiently and the performacne
can be optimized. We return to this discussion when we discuss Quality-of-
Service mechanisms later in the chapter.

HOW TO MAKE BIG, FAST SWITCHES/ROUTERS

Big switches and routers are needed to handle the traffic loads in core net-
works. An examination of Figure 7.10 shows that the controller and the
interconnection fabric are likely to be the bottlenecks. Two strategies can be
used to increase switch size. First, as the volume of traffic increases, the
placement of a dedicated controller/processor in each line card is justified.
This step removes a centralized controller as a potential bottleneck. Second,
bus and broadcast type of interconnection structures can be replaced by large
bandwidth interconnection fabrics that transfer packets in parallel between
input and output ports. A large literature explains how to design switch
interconnection fabrics; for example, see [Robertazzi 1994].

4 | P | eTextMainMenu | Textbook Table of Contents

7.3 Datagrams and Virtual Circuits 475
7.3.2 Connectionless Packet Switching

Packet switching has its origin in message switching, where a message is relayed
from one station to another until the message arrives at its destination. At the
source each message has a header attached to it to provide source and destina-
tion addresses. CRC checkbits are attached to detect errors. As shown in Figure
7.13, the message is transmitted in a store-and-forward fashion. The message is
transmitted in its entirety from one switch to the next switch. Each switch per-
forms an error check, and if no errors are found, the switch examines the header
to determine the next hop in the path to the destination. If errors are detected, a
retransmission may be requested. After the next hop is determined, the message
waits for transmission over the corresponding transmission link. Because the
transmission links are shared, the message may have to wait until previously
queued messages are transmitted. Message switching does not involve a call
setup. Message switching can achieve a high utilization of the transmission
line. This increased utilization is achieved at the expense of queueing delays.
Loss of messages may occur when a switch has insufficient buffering to store
the arriving message.” End-to-end mechanisms are required to recover from
these losses.

Figure 7.14 shows the total delay that is incurred when a message is trans-
mitted over a path that involves two intermediate switches. The message must
first traverse the link that connects the source to the first switch. We assume that
this link has a propagation delay of p seconds.® We also assume that the message
has a transmission time of 7" seconds. The message must next traverse the link
connecting the two switches, and then it must traverse the link connecting
the second switch and the destination. For simplicity we assume that the

FIGURE 7.13 Message

switching

\Messjge

Subscriber
A

Message

<— Network

nodes Subscriber

B

The trade-offs between delay and loss are explored in Chapter 5, section 5.6.1.
3The propagation delay is the time that elapses from when a bit enters a transmission line to when it exits
the line at the other end.

4 | P | eTextMainMenu | Textbook Table of Contents

476 cHAPTER 7 Packet-Switching Networks

Source T

Switch 1

Switch 2

Destination

Delay
Minimum delay = 3p + 3T

FIGURE 7.14 Delays in message switching

propagation delay and the bit rate of the transmission lines are the same. It then
follows that the minimum end-to-end messge delay is 3p + 37. Note that this
delay does not take into account any queueing delays that may be incurred in the
various links waiting for prior messages to be transmitted. It also does not take
into account the times required to perform the error checks or any associated
retransmissions.

Example—Long Messages versus Packets
Suppose that we wish to transmit a large message (L = 10° bits) over two hops.
Suppose that the transmission line in each hop has an error rate of p = 10~ and
that each hop does error checking and retransmission. How many bits need to be
transmitted using message switching?

If we transmit the message in its entirety, the probability that the message
arrives correctly after the first hop is

P(' — (1 _p)L — (1 _ 1076)1000000 ~ e*L[J — 671 ~ 1/3

Therefore, on the average it will take three tries to get the message over the
first hop. Similarly, the second hop will require another three full message trans-
missions on the average. Thus 6 Mbits will need to be transmitted to get the 1
Mbit message across.

Now suppose that the message is broken up into ten 10°-bit packets. The
probability that a packet arrives correctly after the first hop is

P/C — (1 _ 10—6)100000 ~ e—l/]O ~ 090

Thus each packet needs to be transmitted 1/0.90 = 1.1 times on the average.
The message gets transmitted over each hop by transmitting an average of
1.1 Mbit. The total number of bits transmitted over the two hops is then
2.2 Mbits.

4 | P | eTextMainMenu | Textbook Table of Contents

7.3 Datagrams and Virtual Circuits 477

The preceding example reiterates our observation on ARQ protocols that the
probability of error in a transmitted block increases with the length of the block.
Thus very long messages are not desirable if the transmission lines are noisy
because they lead to a larger rate of message retransmissions. This situation is
one reason that it is desirable to place a limit on the maximum size of the blocks
that can be transmitted by the network. Thus long messages should be broken
into smaller blocks of information, or packets.

Message switching is also not suitable for interactive applications because it
allows the transmission of very long messages that can impose very long waiting
delays on other messages. By placing a maximum length on the size of the blocks
that are transmitted, packet switching limits the maximum delay that can be
imposed by a single packet on other packets. Thus packet switching is more
suitable than message switching for interactive applications.

In the datagram, or connectionless packet-switching approach, each packet is
routed independently through the network. Each packet has an attached header
that provides all of the information required to route the packet to its destina-
tion. When a packet arrives at a packet switch, the destination address (and
possibly other fields) in the header are examined to determine the next hop in
the path to the destination. The packet is then placed in a queue to wait until the
given transmission line becomes available. By sharing the transmission line
among multiple packets, packet switching can achieve high utilization at the
expense of packet queueing delays. We note that routers in the Internet are
packet switches that operate in datagram mode.

Because each packet is routed independently, packets from the same source
to the same destination may traverse different paths through the network as
shown in Figure 7.15. For example, the routes may change in response to a
network fault. Thus packets may arrive out of order, and resequencing may be
required at the destination.

Figure 7.16 shows the delay that is incurred by transmitting a message that is
broken into three separate packets. Here we assume that the three packets follow

\Packitl

Packet
2

FIGURE 7.15 Datagram packet switching

4 | P | eTextMainMenu | Textbook Table of Contents

478 cHAPTER 7 Packet-Switching Networks

Source
T t
i 1 2 3 p

Switch 1 | .
1
i 1 2 3 p+P

Switch 2 |
: t
i 1 2 3 p+P
1

L hops

Lp + (L-1)P first bit received

Lp + LP first bit released

Lp + LP + (k-1)P last bit released
where T'= kP

3p + 2(T73) first bit received
3p + 3(773) first bit released
3p + 5(773) last bit released

Destination
3 hops

FIGURE 7.16 Delays in packet switching

the same path and are transmitted in succession. We neglect the overhead due to
headers and suppose that each packet requires P = 7'/3 seconds to transmit. The
three packets are transmitted successively from the source to the first packet
switch.

The first packet in Figure 7.16 arrives at the first switch after p + P seconds.
Assuming that the packet arrives correctly, it can begin transmission over the
next hop after a brief processing time. The first packet is received at the second
packet switch at time 2p + 2P. Again we assume that the packet begins transmis-
sion over the final hop after a brief processing time. The first packet then arrives
at the final link at time 3p + 3P. As the first packet traverses the network, the
subsequent packets follow immediately, as shown in the figure. In the absence of
transmission errors, the final packet will arrive at the destination at time
3p+3P+2P=3p+5P=3p+ T+ 2P, which is less than the delay incurred
in the message switching example in Figure 7.14. In general, if the path followed
by a sequence of packets consists of L hops with identical propagation delays
and transmission speeds, then the total delay incurred by a message that consists
of k packets is given by

Lp+ LP+(k—1)P
In contrast, the delay incurred using message switching is
Lp+ LT = Lp + L(kP)

Thus message switching involves an additional delay of (L — 1)(k — 1)P. We
note that the above delays neglect the queueing and processing times at the
various hops in the network.

Figure 7.17 shows a routing table that contains an entry for each possible
destination for a small network. This entry specifies the next hop that is to be
taken by packets with the given destination. When a packet arrives, the destina-
tion address in the header is used to perform a table lookup. The result of the
lookup is the number of the output port to which the packet must be forwarded.

4 | P | eTextMainMenu | Textbook Table of Contents

7.3 Datagrams and Virtual Circuits 479

Destination Output FIGURE 7.17 Routing table in connectionless packet
address port switching
0785 7
1345 12
1566 6
2458 12

When the size of the network becomes very large, this simple table lookup is not
feasible, and the switch/router processor needs to execute a route lookup algo-
rithm for each arriving packet.

In datagram packet switching, the packet switches have no knowledge of a
“connection’ even when a source and destination exchange a sequence of pack-
ets. This feature makes datagram packet switching robust with respect to faults
in the network. If a link or packet switch fails, the neighboring packet switches
react by routing packets along different links and by sharing the fault informa-
tion with other switches. This process results in the setting up of a new set of
routing tables. Because no connections are set up, the sources and destinations
need not be aware of the occurrence of a failure in the network. The processors in
the switch/routers execute a distributed algorithm for sharing network state
information and for synthesizing routing tables.

The design of the routing table is a key issue in the proper operation of a
packet-switching network. This design requires knowledge about the topology of
the network as well as of the levels of traffic in various parts of the network.
Another issue is that the size of the tables can become very large as the size of the
network increases. We discuss these issues further later in the chapter.

Example—IP Internetworks

The Internet Protocol provides for the connectionless transfer of packets across
an interconnected set of networks called an internet. In general the component
networks may use different protocols so the objective of IP is to provide com-
munications across these dissimilar networks. Each device that is attached to an
IP internet has a two-part address: a network part and a host part. To transmit
an IP packet, a device sends an IP packet encapsulated using its local network
protocol to the nearest router. The routers are packet switches that act as gate-
ways between the component networks. The router performs a route lookup
algorithm on the network part of the destination address of the packet to

4 | P | eTextMainMenu | Textbook Table of Contents

480 cHAPTER 7 Packet-Switching Networks

determine whether the destination is in an immediately accessible network or, if
not, to determine the next router in the path to the destination. The router then
forwards the IP packet across the given network by encapsulating the IP packet
using the format and protocol of the given network. In other words, IP treats the
component networks as data link layers whose role is to transfer the packet to
the next router or to the destination. IP packets are routed in connectionless
fashion from router to router until the destination is reached.

7.3.3 Virtual-Circuit Packet Switching

Virtual-circuit packet switching involves the establishment of a fixed path
between a source and a destination prior to the transfer of packets, as shown
in Figure 7.18. As in circuit switching, the call setup procedure usually takes
place before any packets can flow through the network as shown in Figure 7.19.%

The connection setup procedure establishes a path through the network and
then sets parameters in the switches along the path as shown in Figure 7.20. The
controller/processor in every switch is involved in the exchange of signaling
messages to set up the path. As in the datagram approach, the transmission
links are shared by packets from many flows. In general, in virtual-circuit packet
switching, buffer and transmission resources need not be dedicated explicitly for
the use of the connection, but the number of flows admitted may be limited to
control the load on certain links. All packets for the connection then follow the
same path.

In datagram packet switching each packet must contain the full address of
the source and destination. In large networks these addresses can require a large
number of bits and result in significant packet overhead and hence wasted trans-
mission bandwidth. One advantage of virtual-circuit packet switching is that

Packet

Packet

FIGURE 7.18 Virtual-circuit packet switching

*In some cases permanent virtual circuits are established a priori.

4 | P | eTextMainMenu | Textbook Table of Contents

7.3 Datagrams and Virtual Circuits 481

SN\ e\ [
S NN e
ANET NN

FIGURE 7.19 Delays in virtual-circuit packet switching

~

abbreviated headers can be used. The connection setup procedure establishes a
number of entries in forwarding tables located in the various switches along the
path. At the input to every switch, the connection is identified by a virtual-circuit
identifier (VCI). When a packet arrives at an input port, the VCI in the header is
used to access the table, as shown in the example in Figure 7.21. The table
lookup provides the output port to which the packet is to be forwarded and
the VCI that is to be used at the input port of the next switch. Thus the call setup
procedure sets up a chain of pointers across the network that direct the flow of
packets in a connection. The table entry for a VCI can also specify the type of
priority that is to be given to the packet by the scheduler that controls the
transmissions in the next output port.

The number of bits required in the header in virtual-circuit switching is
reduced to the number required to represent the maximum number of simulta-
neous connections over an input port. This number is much smaller than the
number required to provide full destination network addresses. This factor is one
of the advantages of virtual-circuit switching relative to datagram switching. In
addition, the use of abbreviated headers and hardware-based table lookup allows
fast processing and forwarding of packets. Virtual-circuit switching does a table
lookup and immediately forwards the packet to the output port; connectionless
packet switching traditionally was much slower because it required software
processing of the header before the next hop in the route could be determined.
(This situation has changed with the development of hardware-based routing
techniques.)

Another advantage of virtual-circuit packet switching is that resources can
be allocated during connection setup. For example, a certain number of buffers
may be reserved for a connection at every switch along the path, and a certain
amount of bandwidth can be allocated at each link in the path. In addition, the

Connect Connect Connect
request request request
—_—> | SW [———— | SW . SW | —
- 1 - 2 n -—
Connect Connect
confirm confirm

FIGURE 7.20 Signaling message exchanges in virtual-circuit setup

4 | P | eTextMainMenu | Textbook Table of Contents

482 cHAPTER 7 Packet-Switching Networks

Output Next
Identifier port identifier
12 13 44
Entry for packets — 15 15 23
with identifier 15
27 13 16
58 7 34

FIGURE 7.21 Example of virtual-circuit routing table for an
input port

connection setup process ensures that a switch is able to handle the volume of
traffic that is allowed over every transmission link. In particular, a switch may
refuse a connection over a certain link when the delays or link utilization exceed
certain thresholds.

However, virtual-circuit packet switching does have disadvantages relative to
the datagram approach. The switches in the network need to maintain informa-
tion about the flows they are handling. The amount of required “‘state” informa-
tion grows very quickly with the number of flows. Another disadvantage is
evident when failures occur. In the case of virtual-circuit packet switching,
when a fault occurs in the network all affected connections must be set up again.

If virtual-switching packet switching is used then the minimum delay for
transmitting a message that consists of k packets is the same as in Figure 7.16,
in addition to the time required to set up the connection. A modified form of
virtual-circuit packet switching, called cut-through packet switching, can be used
when retransmissions are not used in the underlying data link control. It is then
possible for a packet to be forwarded as soon as the header is received and the
table lookup is carried out. As shown in Figure 7.22, the minimum delay in
transmitting the message is then reduced to approximately the sum of the pro-
pagation delays in the various hops plus the one-message transmission time.
(This scenario assumes that all lines are available to transmit the packet imme-
diately.)

Cut-through packet switching may be desirable for applications such as
speech transmission, which has a delay requirement but can tolerate some errors.
Cut-through packet switching is also appropriate when the transmission is vir-
tually error free, as in the case of optical fiber transmission, so that hop-by-hop
error checking is unnecessary.

4 | P | eTextMainMenu | Textbook Table of Contents

7.3 Datagrams and Virtual Circuits 483

Source
X t
i 1 2 3
Switch 1 | .
1
i 1 2 3
Switch 2 |
: t
i 1 2 3
1
L 13
Destination

Minimum delay =3p + T

FIGURE 7.22 Cut-through packet switching

Example—ATM Networks

ATM networks provide for the connection-oriented transfer of information
across a network. ATM requires all user information to be converted into
fixed-length packets called cells. A connection setup phase precedes the transfer
of information. During this setup a negotiation takes place in which the user
specifies the type of flow that is to be offered to the network, and the network
commits to some quality of service that is to be provided to the flow. The
connection setup involves setting up a path across the network and allocating
appropriate resources along the path.

An ATM connection is defined in terms of a chain of local identifiers called
VClIs that identify the connection in each link along the path. Cells are for-
warded by ATM switches that perform a table lookup on the VCI to determine
the next output port and the VCI in the next link. ATM assumes low-error rate

FLOWS, RESERVATIONS, AND SHORTCUTS

Here we note the emergence of packet-switching approaches that combine
features of datagrams and virtual circuits. These hybrid approaches are
intended for packet-switching networks that handle a mix of one-time packet
transfers (for which datagram mode is appropriate) and sustained packet
flows such as long file transfers, Web page downloads, or even steady flows
as in audio or video streaming (for which virtual-circuit forwarding is appro-
priate). In essence these systems attempt to identify longer-term packet flows
and to set up shortcuts by using forwarding tables so that packets in a flow are
forwarded immediately without the need for route lookup processing. This
approach reduces the delay experienced in the packet switch and is discussed
further in Chapter 10. Resource reservation procedures for allocating
resources to long-term flows have also been developed for datagram networks.
We also discuss this in Chapter 10.

4 | P | eTextMainMenu | Textbook Table of Contents

484 cHAPTER 7 Packet-Switching Networks

optical connections so error control is done only end to end. We discuss ATM in
more detail in section 7.6.

7.4 ROUTING IN PACKET NETWORKS

A packet-switched network consists of nodes (routers or switches) intercon-
nected by communication links in an arbitrary meshlike fashion as shown in
Figure 7.23. As suggested by the figure, a packet could take several possible
paths from host A to host B. For example, three possible paths are 1-3-6, 1-4-
5-6, and 1-2-5-6. However, which path is the “‘best’’one? Here the meaning of the
term best depends on the objective function that the network operator tries to
optimize. If the objective is to minimize the number of hops, then path 1-3-6 is
the best. If each link incurs a certain delay and the objective function is to
minimize the end-to-end delay, then the best path is the one that gives the
end-to-end minimum delay. Yet a third objective function involves selecting
the path with the greatest available bandwidth. The purpose of the routing
algorithm is to identify the set of paths that are best in a sense defined by the
network operator. Note that a routing algorithm must have global knowledge
about the network state in order to perform its task.

The main ingredients of a good routing algorithm depend on the objective
function that one is trying to optimize. However, in general a routing algorithm
should seek one or more of the following goals:

1. Rapid and accurate delivery of packets. A routing algorithm must operate
correctly; that is, it must be able to find a route to the destination if it exists.
In addition, the algorithm should not take an unreasonably long time to find
the route to the destination.

2. Adaptability to changes in network topology resulting from node or link failures.
In a real network equipment and transmission lines are subject to failures.

@ Switch or router

FIGURE 7.23 An example of a packet-switch network

4 | P | eTextMainMenu | Textbook Table of Contents

7.4 Routing in Packet Networks 485

Thus a routing algorithm must be able to adapt to this situation and recon-
figure the routes automatically when equipment fails.

3. Adaptability to varying source-destination traffic loads. Traffic loads are quan-
tities that are changing dynamically. In a period of 24 hours, traffic loads may
go into cycles of heavy and light periods. An adaptive routing algorithm
would be able to adjust the routes based on the current traffic loads.

4. Ability to route packets away from temporarily congested links. A routing
algorithm should try to avoid heavily congested links. Often it is desirable
to balance the load on each link.

5. Ability to determine the connectivity of the network. To find optimal routes, the
routing system needs to know the connectivity or reachability information.

6. Low overhead. A routing system typically obtains the connectivity informa-
tion by exchanging control messages with other routing systems. These mes-
sages represent an overhead that should be minimized.

7.4.1 Routing Algorithm Classification

One can classify routing algorithms in several ways. Based on their responsive-
ness, routing can be static or dynamic (or adaptive). In static routing the network
topology determines the initial paths. The precomputed paths are then manually
loaded to the routing table and remain fixed for a relatively long period of time.
Static routing may suffice if the network topology is relatively fixed and the
network size is small. Static routing becomes cumbersome as the network size
increases. The biggest disadvantage of static routing is its inability to react
rapidly to network failures. In dynamic (adaptive) routing each router continu-
ously learns the state of the network by communicating with its neighbors. Thus
a change in a network topology is eventually propagated to all the routers. Based
on the information collected, each router can compute the best paths to desired
destinations. One disadvantage of dynamic routing is the added complexity in
the router.

Routing algorithms can be centralized or distributed. In centralized routing a
network control center computes all routing paths and then uploads this infor-
mation to the routers in the network. In distributed routing routers cooperate by
means of message exchanges and perform their own routing computations.
Distributed routing algorithms generally scale better than centralized algorithms
but are more likely to produce inconsistent results. If the routes calculated by
different routers are inconsistent, loops can develop. That is, if A thinks that the
best route to Z is through B and B thinks that the best route to Z is through A,
then packets destined for Z that have the misfortune of arriving at A or B will be
stuck in a loop between A and B.

A routing decision can be made on a per packet basis or during the connec-
tion setup time. With virtual-circuit packet switching, the path (virtual circuit) is
determined during the connection setup phase. Once the virtual circuit is estab-
lished, all packets belonging to the virtual circuit follow the same route.

4 | P | eTextMainMenu | Textbook Table of Contents

486 cHAPTER 7 Packet-Switching Networks

Datagram packet switching does not require a connection setup. The route
followed by each packet is determined independently.

7.4.2 Routing Tables

Once a routing decision is made, the information has to be stored in a routing
table so that the switch (or router) knows how to forward a packet. The specific
routing information stored depends on the network type. With virtual-circuit
packet switching, the routing table translates each incoming virtual circuit num-
ber to an outgoing virtual circuit number and identifies the output port to which
to forward the packet. With datagram networks, the routing table identifies the
next hop to which to forward the packet based on the destination address of the
packet.

Consider a virtual-circuit packet-switching network as shown in Figure 7.24.
There are two virtual circuits between host A and switch 1. A packet from host A
with VCI 1 in the header will eventually reach host B, while a packet with VCI 5
will eventually reach host D. For each source-destination pair, the VCI has local
significance only. At each link the identifier may be translated to a different
identifier, depending on the availability of the virtual-circuit numbers at the
given switch. In our example VCI 1 from host A gets translated to 2, and then
to 7, and finally to 8 at host B. When switch 1 receives a packet with VCI 1, that
switch should replace the identifier with 2 and then forward the packet to switch
3. Other switches perform similarly.

Using a local VCI rather than a global one has two advantages. First, more
virtual circuits can be assigned, since the virtual-circuit numbers have to be
unique only on a link basis rather than on a global basis. If the virtual circuit
field in the packet header is two bytes long, then up to 64K virtual circuits can be
accommodated on a single link. Second, searching for an available VCI is simple,
since a switch has to guarantee uniqueness only on its local link—the informa-
tion that the switch has in its own routing table. If global virtual-circuit numbers
are used, the switch has to make sure that the number if not currently being used
by any link along the path, a very time-consuming chore.

FIGURE 7.24 Virtual-circuit packet switching

4 | P | eTextMainMenu | Textbook Table of Contents

7.4 Routing in Packet Networks 487

The corresponding routing table at each switch is shown in Figure 7.25. We
assume that the links are bidirectional and that the VCI is the same for both
directions. If a packet with VCI 5 arrives at node 1 from node A, the packet is
forwarded to node 3 after the VClI is replaced with 3. After arriving at node 3, the
packet receives the outgoing VCI 4 and is then forwarded to node 4. Node 4
translates the VCI to 5 and forwards the packet to node 5. Finally, node 5
translates the VCI to 2 and delivers the packet to the destination, which is
host D.

With datagram packet switching, no virtual circuit has to be set up, since no
connection exists between a source and a destination. Figure 7.26 shows the
routing tables for the network topology in Figure 7.23, assuming that a mini-
mum-hop routing is used. If a packet destined to node 6 arrives at node 1, the
packet is first forwarded to node 3 based on the corresponding entry in the
routing table at node 1. Node 3 then forwards the packet to node 6. In general,
the destination address may be long (32 bits for IPv4), and thus a hash table may
be employed to yield a match quickly.

Now suppose that a packet arrives at node 1 from node A and is destined to
host D, which is attached to node 5. The routing table in node 1 directs the
packet to node 2. The routing table in node 2 directs the packet to node 5, which
then delivers the packet to host D.

Node 3
Node 1 Incoming Outgoing Node 6
. - Node VCI |Node VCI - -
Incoming Outgoing | 2 6 7 Incoming Outgoing
Node VCI | Node VCI 1 3 4 4 Node VCI | Node VCI
A 1 3 2 4 2 6 1 \ 3 7 B 8
A 5 3 3 6 7 1 2 3 1 B 5
3 2 A 1 6 1 4 2 B 5 3 1
3 3 A 5 4 4 1 3 B 8 3 7
Node 4
Incoming Outgoing
Node VCI | Node VCI
Node 2 e Node 5
3 4 5 5
Incoming Outgoing 3 2 2 3 Incoming Outgoing
Node VCI | Node VCI 5 5 3 4 Node VCI | Node VCI
@ 6 4 3 4 5 D 2
4 3 C 6 D 2 4 5

FIGURE 7.25 Routing tables for the network in Figure 7.24

<)

| e-Text Main Menu

| Textbook Table of Contents

488 cHAPTER 7 Packet-Switching Networks
Node 1 Node 3 Node 6
Destination | Next node Destination | Next node Destination | Next node
2 2 1 1 1 3
3 3 / 2 4 2 5
4 4 4 4 3 3
5 2 5 6 4 3
6 3 6 6 5 5
Node 4
Destination Next node
1 1
Node 2 g g Node 5
Destination Next node / 5 5 Destination | Next node
1 1 6 3 1 4
3 1 2 2
4 4 3 4
5 5 4 4
6 5 6 6

FIGURE 7.26 Routing tables for datagram network

7.4.3 Hierarchical Routing
The size of the routing tables that routers need to keep can be reduced if a
hierarchical approach is used in the assignment of addresses. Essentially, hosts
that are near each other should have addresses that have common prefixes. In
this way routers need to examine only part of the address (i.e., the prefix) in order

HIERARCHICAL ADDRESSES IN THE INTERNET

IP addresses consist of two parts: the first part is a unique identifier for the
network within the Internet; the second part identifies the host within the
network. IP addresses are made hierarchical in two ways. Within a domain
the host part of the address may be further subdivided into two parts: an
identifier for a subnetwork within the domain and a host identifier within
the subnet. Outside the domain, routers route packets according to the net-
work part of the destination address. Once a packet arrives to the domain,
further routing is done based on the subnetwork address.

The Internet also uses another hierarchy type for addressing, called super-
netting. Here networks that connect to a common regional network are given
addresses that have a common prefix. This technique allows distant routers to
route packets that are destined to networks connected to the same region
based on the single routing table entry for the prefix. We explain the details
of this procedure when we discuss CIDR addressing in Chapter 8.

4|

| e-Text Main Menu | Textbook Table of Contents

7.4 Routing in Packet Networks 489

FIGURE 7.27 Hierarchical routing

to decide how a packet should be routed. Figure 7.27 gives an example of
hierarchical address assignment and a flat address assignment. In part (a) the
hosts at each of the four sites have the same prefix. Thus the two routers need
only maintain tables with four entries as shown. On the other hand, if the
addresses are not hierarchical (Figure 7.27b), then the routers need to maintain
16 entries in their routing tables.

7.4.4 Link State versus Distance Vector Routing

The set of best paths are invariably found by using a shortest-path algorithm that
identifies the set of shortest paths according to some metric. The metric reflects
the objective function of the network operator, for example, hops, cost, delay,
available bandwidth. To perform the shortest-path calculations, the values of the
metrics for different links in the networks are required. Routers must cooperate
and exchange information to obtain the values of these metrics. They then use
one of the two types of shortest-path algorithms to compute the set of current
best routes.

In the distance vector routing approach, neighboring routers exchange rout-
ing tables that state the set or vector of known distances to other destinations.
After neighboring routers exchange this information, they process it to see
whether they can find new better routes through the neighbor that provided

4 | P | eTextMainMenu | Textbook Table of Contents

490 cHAPTER 7 Packet-Switching Networks

UNFINISHED BUSINESS: MULTICASTING

Multicasting involves the delivery of packets to a group of users in a network.
Many applications can use multicasting, but the most familiar and suggestive
involves receiving the “live” transmission from an audio or video studio.
Multicasting has a number of components: addressing to identify multicast
groups; mechanisms for joining and leaving a multicast group (i.e., how to
“tune in” to a station!); and of course, routing protocols for forwarding the
packets from the source to the destinations. Issues in multicasting relating to
routing, quality of service, reliability, and security are not completely resolved.
We discuss multicast routing in Chapter 8.

the information. Distance vector algorithms adapt to changes in network topol-
ogy gradually as the information on the changes percolates through the network.
In the /ink state routing approach each router floods information about the state
of the links that connect it to its neighbors. This action allows each router to
construct a map of the entire network and from this map to derive the routing
table. Both approaches and the associated algorithms are discussed in section
7.5. The application of these algorithms in Internet routing is discussed in
Chapter 8.

7.5 SHORTEST-PATH ALGORITHMS

Network routing is a major component at the network layer and is concerned
with the problem of determining feasible paths (or routes) from each source to
each destination. A router or a packet-switched node performs two main func-
tions: routing and forwarding. In the routing function an algorithm finds an
optimal path to each destination and stores the result in a routing table. In
the forwarding function a router forwards each packet from an input port to
the appropriate output port based on the information stored in the routing table.
In this section we present two commonly implemented shortest-path routing
algorithms: the Bellman-Ford algorithm and Dijkstra’s algorithm. We then pre-
sent several other routing approaches, including flooding, deflection routing, and
source routing.

Most routing algorithms are based on variants of shortest-path algorithms,
which try to determine the shortest path for a packet according to some cost
criterion. To better understand the purpose of these algorithms, consider a com-
munication network as a graph consisting of a set of nodes (or vertices) and a set
of links (or edges, arcs, or branches), where each node represents a router or a
packet switch and each link represents a communication channel between two
routers. Figure 7.28 shows such an example. Associated with each link is a value
that represents the cost (or metric) of using that link. For simplicity, it is assumed

4 | P | eTextMainMenu | Textbook Table of Contents

7.5 Shortest-Path Algorithms 491

FIGURE 7.28 A sample network with

associated link costs

that each link is nondirected. If a link is directed, then the cost must be assigned
to each direction. If we define the path cost to be the sum of the link costs along
the path, then the shortest path between a pair of nodes is the path with the least
cost. For example, the shortest path from node 2 to node 6 is 2-4-3-6, and the
path cost is 4.

Many metrics can be used to assign a cost to each link, depending on which
function is to be optimized. Examples include

1. Cost ~ I/capacity. The cost is inversely proportional to the link capacity.
Here one assigns higher costs to lower-capacity links. The objective is to
send a packet through a path with the highest capacity. If each link has
equal capacity, then the shortest path is the path with the minimum number
of hops.

2. Cost ~ packet delay. The cost is proportional to an average packet delay,
which includes queueing delay in the switch buffer and propagation delay in
the link. The shortest path represents the fastest path to reach the destination.

3. Cost ~ congestion. The cost is proportional to some congestion measure, for
example, traffic loading. Thus the shortest path tries to avoid congested links.

7.5.1 The Bellman-Ford Algorithm

The Bellman-Ford algorithm (also called the Ford-Fulkerson algorithm) is based
on a principle that is intuitively easy to understand: If a node is in the shortest
path between A and B, then the path from the node to A must be the shortest
path and the path from the node to B must also be the shortest path. As an
example, suppose that we want to find the shortest path from node 2 to node 6
(the destination) in Figure 7.28. To reach the destination, a packet from node 2
must first go through node 1, node 4, or node 5. Suppose that someone tells us
that the shortest paths from nodes 1, 4, and 5 to the destination (node 6) are 3, 3,
and 2, respectively. If the packet first goes through node 1, the total distance (also
called total cost) is 3 4 3, which is equal to 6. Through node 4, the total distance
is 1 + 3, equal to 4. Through node 5, the total distance is 4 + 2, equal to 6. Thus
the shortest path from node 2 to the destination node is achieved if the packet
first goes through node 4.

4 | P | eTextMainMenu | Textbook Table of Contents

492 cHAPTER 7 Packet-Switching Networks

To formalize this idea, let us first fix the destination node. Define D; to be the
current estimate of the minimum cost (or minimum distance) from node j to the
destination node and Cj; to be the link cost from node i to node j. For example,
Ciy = Cy; =2, and C45 = 3 in Figure 7.28. The link cost from node i to itself is
defined to be zero (that is, C;; = 0), and the link cost between node i and node k
is infinite if node i and node k are not directly connected. For example, Ci5 =
Cy3 = oo in Figure 7.28. With all these definitions, the minimum cost from node
2 to the destination node (node 6) can be calculated by

Dy = min{Cy; + Dy, Cyy + Dy, Cy5 + Ds}
—min{3+3,1+3,4+2) (1)
=4

Thus the minimum cost from node 2 to node 6 is equal to 4, and the next node to
visit is node 4.

One problem in our calculation of the minimum cost from node 2 to node
6 is that we have assumed that the minimum costs from nodes 1, 4, and 5 to
the destination were known. In general, these nodes would not know their mini-
mum costs to the destination without performing similar calculations. So let us
apply the same principle to obtain the minimum costs for the other nodes. For
example,

Dy = min{Ci5 + D,, Cy3 + D3, C4 + Dy} ()
and
Dy = min{Cy; + Dy, Cyp + D3, C43 + D3, Cys + Ds} (3)

A discerning reader will note immediately that these equations are circular,
since D, depends on D; and D; depends on D,. The magic is that if we keep
iterating and updating these equations, the algorithm will eventually converge
to the correct result. To see this outcome, assume that initially D; =

D, = ... = Ds =o00. Observe that at each iteration, D;, D,, ..., D5 are nonin-
creasing. Because the minimum distances are bounded below, eventually
Dy, D,,...,Ds must converge.

Now if we define the destination node, we can summarize the Bellman-Ford
algorithm as follows:

1. Initialization

D, =o00,Vi#d 4)
Dd = O
2. Updating: For each i # d,
D; = min{Cy+ D,}, ¥ # i (5)
J

Repeat step 2 until no more changes occur in the iteration.

4 | P | eTextMainMenu | Textbook Table of Contents

7.5 Shortest-Path Algorithms 493

Example—Minimum Cost

Using Figure 7.28, apply the Bellman-Ford algorithm to find both the minimum
cost from each node to node 6 (the destination) and the next node along the
shortest path.

Let us label each node i by (n, D;), where n is the next node along the current
shortest path and D; is the current minimum cost from node i to the destination.
The next node is found from the value of j in equation 5, which gives the
minimum cost. If the next node is not defined, we set n to —1. Table 7.1
shows the execution of the Bellman-Ford algorithm at the end of each iteration.
The algorithm terminates after the third iteration, since no more changes are
observed. The last row records the minimum cost and the next node along the
shortest path from each node to node 6.

Iteration Node 1 Node 2 Node 3 Node 4 Node 5
Initial (—1,00) (—1,00) (=1, 00) (—1,00) (—1,00)
1 (=1, 00) (=1, 00) 6, 1) 3,3) (6, 2)
2 (3, 3) 4, 4) 6, 1) 3, 3) (6, 2)
3 3, 3) 4, 4) 6, 1) 3,3) (6, 2)

TABLE 7.1 Sample processing of Bellman-Ford algorithm. Each entry for node j represents
the next node and cost of the current shortest path to destination 6.

Example—Shortest-Path Tree

From the preceding example, draw the shortest path from each node to the
destination node. From the last row of Table 7.1, we see the next node of
node 1 is node 3, the next node of node 2 is node 4, the next node of node 3
is node 6, and so forth. Figure 7.29 shows the shortest-path tree rooted at node 6.

FIGURE 7.29 Shortest-path tree to node 6

One nice feature of the Bellman-Ford algorithm is that it lends itself readily
to a distributed implementation. The process involves having each node inde-
pendently compute its minimum cost to each destination and periodically broad-
cast the vector of minimum costs to its neighbors. Changes in the routing table

4 | P | eTextMainMenu | Textbook Table of Contents

494 cHAPTER 7 Packet-Switching Networks

can also trigger a node to broadcast the minimum costs to its neighbors to speed
up convergence. This mechanism is called triggered updates. It turns out that the
distributed algorithm would also converge to the correct minimum costs under
mild assumptions. Upon convergence, each node would know the minimum cost
to each destination and the corresponding next node along the shortest path.
Because only cost vectors (or distance vectors) are exchanged among neighbors,
the distributed Bellman-Ford algorithm is often referred to as a distance vector
algorithm. Each node i participating in the distance vector algorithm computes
the following equation:

Dy =0
Dy =min{Cy + Dy}, ¥ k # i ©)

where D;; is the minimum cost from node 7 to the destination node j. Upon
updating, node i broadcasts the vector {D; DjD;; ...} to its neighbors. The dis-
tributed version can adapt to changes in link costs or topology as the next

example shows.

Example—Recomputing Minimum Cost

Suppose that after the distributed algorithm stabilizes for the network shown in
Figure 7.28, the link connecting node 3 and node 6 breaks. Compute the mini-
mum cost from each node to the destination node (node 6), assuming that each
node immediately recomputes its cost after detecting changes and broadcasts its
routing updates to its neighbors. The new network topology is shown in Figure
7.30.

For simplicity assume that the computation and transmission are synchro-
nous. As soon as node 3 detects that link (3,6) breaks, node 3 recomputes the
minimum cost to node 6 and finds that the new minimum cost is 5 via node 4 (as
indicated in the first update in Table 7.2). It then sends the new routing update to
its neighbors, which are nodes 1 and 4. These nodes then recompute their mini-
mum costs (update 2). Node 1 transmits its routing table to nodes 2, 3, and 4,
and node 4 transmits its routing table to nodes 1, 2, 3, and 5. After the messages
from nodes 1 and 4 are received, nodes 2 and 3 will update their minimum costs
(update 3).

FIGURE 7.30 New network topology

following break from node 3 to 6

4 | P | eTextMainMenu | Textbook Table of Contents

7.5 Shortest-Path Algorithms 495

Update Node 1 Node 2 Node 3 Node 4 Node 5
Before break 3,3) 4, 4) 6, 1) 3,3) (6, 2)
1 3, 3) 4, 4) 4, 95) 3,3) (6, 2)

2 3,7 4, 4) 4, 95) 2,95 (6, 2)

3 3,7 4, 6) 4,7 2,95 (6, 2)

4 2,9 4, 6) 4, 7) (5,5) (6, 2)

5 2,9 4, 6) 4,7 (5,95 (6, 2)

TABLE 7.2 Next node and cost of current shortest path to node 6

Next nodes 1 and 4 update their minimum costs and send the update mes-
sages to their neighbors (update 4). In the last row no more changes are detected,
and the algorithm converges. Note that during the calculation, packets already in
transit may loop among nodes but eventually find the destination.

Example—Reaction to Link Failure

This example shows that the distributed Bellman—Ford algorithm may react
slowly to a link failure. To see this, consider the topology shown in Figure
7.31a with node 4 as the destination. Suppose that after the algorithm stabilizes,
link (3,4) breaks, as shown in Figure 7.31b. Recompute the minimum cost from
each node to the destination node (node 4).

The computation of minimum costs is shown in Table 7.3. As the table
shows, each node keeps updating its cost (in increments of 2 units). At each

() () FIGURE 7.31 Topology before and after link
(a)@I@IQ/l@ opology C

failure
» @—@——Ox@

Update Node 1 Node 2 Node 3
Before break 2, 3) 3,2 4, 1)
After break (2, 3) 3,2 3, 3)

1 (2, 3) (3, 4) 3,3)
2 2, 5) (3, 4) 3,95
3 (2,5) (3, 6) 3,95
4 2,7 (3, 6) 3,7
5

2,7 3. 8) 3,7

Note: Dots in the last row indicate that the table continues to infinity

TABLE 7.3 Routing table for Figure 7.31

4 | P | eTextMainMenu | Textbook Table of Contents

496 cHAPTER 7 Packet-Switching Networks

iteration, node 2 thinks that the shortest path to the destination is through node
3. Likewise, node 3 thinks the best path is through node 2. As a result, a packet
in either of these two nodes bounces back and forth until the algorithm stops
updating. Unfortunately, in this case the algorithm keeps iterating until the
minimum cost is infinite (or very large, in practice), at which point, the algorithm
realizes that the destination node is unreachable. This problem is often called
counting to infinity. It is easy to see that if link (3,4) is restored, the algorithm will
converge very quickly. Therefore: Good news travels quickly, bad news travels
slowly.

To avoid the counting-to-infinity problem, several changes to the algorithm
have been proposed, but unfortunately, none of them work satisfactorily in all
situations. One particular method that is widely implemented is called the split
horizon, whereby the minimum cost to a given destination is not sent to a neigh-
bor if the neighbor is the next node along the shortest path. For example, if node
X thinks that the best route to node Y is via node Z, then node X should not send
the corresponding minimum cost to node Z. Another variation called split hor-
izon with poisoned reverse allows a node to send the minimum costs to all its
neighbors; however, the minimum cost to a given destination is set to infinity if
the neighbor is the next node along the shortest path. Here, if node X thinks that
the best route to node Y is via node Z, then node X should set the corresponding
minimum cost to infinity before sending it to node Z.

Example—Split Horizon with Poisoned Reverse

Consider again the topology shown in Figure 7.31a. Suppose that after the
alogirthm stabilizes, link (3,4) breaks. Recompute the minimum cost from
each node to the destination node (node 4), using the split horizon with poisoned
reverse.

The computation of minimum costs is shown in Table 7.4. After the link
breaks, node 3 sets the cost to the destination equal to infinity, since the mini-
mum cost node 3 has received from node 2 is also infinity. When node 2 receives
the update message, it also sets the cost to infinity. Next node 1 also learns that
the destination is unreachable. Thus split horizon with poisoned reverse speeds
up convergence in this case.

Update Node 1 Node 2 Node 3
Before break 2,3) (3,2 41
After break 2,3) (3,2 (—1,00)

1 2,3) (=1, 00) (=1, 00)
2 (=1, 00) (=1,00) (=1, 00)

TABLE 7.4 Minimum costs by using split horizon with poisoned reverse

4 | P | eTextMainMenu | Textbook Table of Contents

7.5 Shortest-Path Algorithms 497
7.5.2 Dijkstra’s Algorithm

Dijkstra’s algorithm is an alternative algorithm for finding the shortest paths
from a source node to all other nodes in a network. It is generally more efficient
than the Bellman-Ford algorithm but requires each link cost to be positive,
which is fortunately the case in communication networks. The main idea of
Dijkstra’s algorithm is to keep identifying the closest nodes from the source
node in order of increasing path cost. The algorithm is iterative. At the first
iteration the algorithm finds the closest node from the source node, which
must be the neighbor of the source node if link costs are positive. At the second
iteration the algorithm finds the second-closest node from the source node. This
node must be the neighbor of either the source node or the closest node to the
source node; otherwise, there is a closer node. At the third iteration the third-
closest node must be the neighbor of the first two closest nodes, and so on. Thus
at the kth iteration, the algorithm will have determined the k closest nodes from
the source node.

The algorithm can be implemented by maintaining a set N of permanently
labeled nodes, which consists of those nodes whose shortest paths have been
determined. At each iteration the next-closest node is added to the set until all
nodes are used. To formalize the algorithm, let us define D; to be the current
minimum cost from the source node (labeled s) to node i. Dijkstra’s algorithm
can be described as follows:

1. Initialization:

N = {s}
D;=CyVj#s @
D, =0

2. Finding the next closest node: Find node i ¢ N such that

Addito N.
If N contains all the nodes, stop.

3. Updating minimum costs: For each node j ¢ N
Go to step 2.

Example—Finding the Shortest Path
Using Figure 7.28, apply Dijkstra’s algorithm to find the shortest paths from the
source node (assumed to be node 1) to other nodes.

Table 7.5 shows the execution of Dijkstra’s algorithm at the end of the
initialization and each iteration. At each iteration the value of the minimum
cost of the next closest node is underlined. In case of a tie, the closest node

4 | P | eTextMainMenu | Textbook Table of Contents

498 cHAPTER 7 Packet-Switching Networks

Iteration N D2 D3 D4 D5 D6
Initial {1} 3 2 5 00 00
1 1,3} 3 2 4 00 3

2 (123} 3 2 4 7 3

3 (1,2,3,6} 3 2 4 5 3

4 (1,2,3,4,6) 3 2 4 5 3

5 11,2,3,4,5,6) 3 2 4 5 3

TABLE 7.5 Execution of Dijkstra’s algorithm

can be chosen randomly. The minimum cost for each node not permanently
labeled is then updated sequentially. The last row records the minimum cost
to each node.

If we also keep track of the predecessor node of the next-closest node at each
iteration, we can obtain a shortest-path tree rooted at node 1, such as shown in
Figure 7.32. When the algorithm stops, is knows the minimum cost to each node
and the next node along the shortest path. For a datagram network, the routing
table at node 1 looks like Table 7.6.

FIGURE 7.32 Shortest-path tree from node 1
to other nodes

Destination Next node Cost
2 2 3
3 3 2
4 3 4
5 3 5
6 3 3

TABLE 7.6 Routing table for Figure 7.32

To calculate the shortest paths, the Dijkstra algorithm requires the costs of
all links to be available to the algorithm. Thus these link values must be com-
municated to the processor that is carrying out the computation. The class of /ink
state routing algorithms uses this approach to calculating shortest paths. We

4 | P | eTextMainMenu | Textbook Table of Contents

7.5 Shortest-Path Algorithms 499

discuss these algorithms further in Chapter 8 when we consider how the Internet
handles routing.

7.5.3 Other Routing Approaches

Various other routing techniques may be used for other purposes. In this section
we look at three common approaches: flooding, deflection routing, and source
routing.

FLOODING

The principle of flooding calls for a packet switch to forward an incoming packet
to all ports except the one the packet was received from. If each switch performs
this flooding process, the packet will eventually reach the destination as long as
at least one path exists between the source and the destination. Flooding is a very
effective routing approach when the information in the routing tables is not
available, such as during system startup, or when survivability is required,
such as in military networks. Flooding is also effective when the source needs
to send a packet to all hosts connected to the network (i.e., broadcast delivery).
For example, we will see that the link state routing algorithm uses flooding to
distribute the link state information.

However, flooding may easily swamp the network as one packet creates
multiple packets that in turn create multiples of multiple packets, generating
an exponential growth rate as illustrated in Figure 7.33. Initially one packet
arriving at node 1 triggers three packets to nodes 2, 3, and 4. In the second
phase nodes 2, 3, and 4 send two, two, and three packets, respectively. These
packets arrive at nodes 2 through 6. In the third phase 15 more packets are
generated, giving a total of 25 packets after three phases. Clearly, flooding
needs to be controlled so that packets are not generated excessively. To limit
such a behavior, one can implement a number of mechanisms.

One simple method is to use a time-to-live field in each packet. When the
source sends a packet, the time-to-live field is initially set to some small number
(say, 10 or smaller). Each switch decrements the field by one before flooding the
packet. If the value reaches zero, the switch discards the packet. To avoid unne-
cessary waste of bandwidth, the time-to-live should ideally be set to the minimum
hop number between two furthest nodes (called the diameter of the network). In
Figure 7.33 the diameter of the network is two. To have a packet reach any
destination, it is sufficient to set the time-to-live field to two.

In the second method, each switch adds its identifier to the header of the
packet before it floods the packet. When a switch encounters a packet that
contains the identifier of the switch, it discards the packet. This method effec-
tively prevents a packet from going around a loop.

The third method is similar to the second method in that they both try to
discard old packets. The only difference lies in the implementation. Here each
packet from a given source is identified with a unique sequence number. When a
switch receives a packet, the switch records the source address and the sequence

4 | P | eTextMainMenu | Textbook Table of Contents

500 cHAPTER 7 Packet-Switching Networks

FIGURE 7.33 Flooding is initiated from

node 1

number of the packet. If the switch discovers that the packet has already visited
the switch, based on the stored source address and sequence number, it will
discard the packet.

DEFLECTION ROUTING

Deflection routing was first proposed by Paul Baran in 1964 under the name of
hot-potato routing. To work effectively, this approach requires the network to
provide multiple paths for each source-destination pair. Each switch first tries to
forward a packet to the preferred port. If the preferred port is busy or congested,
the packet is deflected to another port. Deflection routing usually works well in a
regular topology. One example of a regular topology is shown in Figure 7.34,
which is called the Manhattan street network, since it resembles the streets of New
York City. Each column represents an avenue, and each row represents a street.
Each switch is labeled (7, j) where i denotes the row number and j denotes the
column number. The links have directions that alternate for each column or row.
If switch (0,2) would like to send a packet to switch (1,0), the packet could go

4 | P | eTextMainMenu | Textbook Table of Contents

7.5 Shortest-Path Algorithms 501

/J\ v /J\ FIGURE 7.34 Manhattan street network
A9
09)~—)1—0)—@
—>€0\ 1,1 1,2 1,3
> N N N4
2 4 52 5
@@ @@
G0 .)) 2}
) R e e)

two left and one down. However, if the left port of switch (0,1) is busy (see
Figure 7.35), the packet will be deflected to switch (3,1). Then it can go through
switches (2,1), (1,1), (1,2), (1,3) and eventually reach the destination switch (1,0).

One advantage of deflection routing is that the switch can be bufferless, since
packets do not have to wait for a specific port to become available. If the pre-
ferred port is unavailable, the packet can be deflected to another port, which will
eventually find its own way to the destination. Since packets can take alternative
paths, deflection routing cannot guarantee in-sequence delivery of packets.
Deflection routing is a very strong candidate in optical networks where optical
buffers are currently expensive and difficult to build. Deflection routing is also
used to implement many high-speed packet switches where the topology is
usually very regular and high-speed buffers are relatively expensive compared
to deflection routing logic.

Bus%ll\ /0{2\

/]\ FIGURE 7.35 Deflection routing in
03 Manhattan street network

AN I B A I\
R R ®
D@
G666

4 | P | eTextMainMenu | Textbook Table of Contents

502 cHAPTER 7 Packet-Switching Networks

SOURCE ROUTING

Source routing is a routing approach that does not require an intermediate node
to maintain a routing table, but rather puts more burden at the source hosts.
Source routing works in either datagram or virtual-circuit packet switching.
Before a source host can send a packet, the host has to know the complete
route to the destination host in order to include the route information in the
header of the packet. The route information contains the sequence of nodes to
traverse and should give the intermediate node sufficient information to forward
the packet to the next node until the packet reaches the destination. Figure 7.36
shows how source routing works.

Each node examines the header, strips off the label identifying the node, and
forwards the packet to the next node. The source (host A) initially includes the
entire route (1,3,6,B) in the packet to be destined to host B. Switch 1 strips off its
label and forwards the packet to switch 3. The route specified in the header now
contains 3,6,B. Switch 3 and switch 6 perform the same function until the packet
reaches host B, which finally verifies that it is the intended destination.

In certain situations it may be useful to preserve the complete route informa-
tion while the packet is progressing. With complete route information host B can
send a packet back to host A by simply reversing the route. Thus host B does not
have to learn the route to host A a priori. Route preservation can easily be
implemented by introducing another field in the header that keeps track of the
next node to be visited in the route so that a node knows which specific label to
read.

The current version of Internet Protocol, IPv4, and the next version, IPv6,
provide an option for source routing of IP packets.

Destination
host

FIGURE 7.36 Example of source routing

4 | P | eTextMainMenu | Textbook Table of Contents

7.6 ATM Networks 503

7.6 ATM NETWORKS

Asynchronous transfer mode (ATM) is a method for multiplexing and switching
that supports a broad range of services. ATM is a connection-oriented packet-
switching technique that generalizes the notion of a virtual connection to one
that provides Quality-of-Service guarantees.

ATM combines several desirable features of packet switching and time-divi-
sion multiplexing (TDM) circuit switching. Table 7.7 compares four features of
TDM and packet multiplexing. The first comparison involves the capability to
support services that generate information at a variable bit rate. Packet multi-
plexing easily handles variable bit rates. Because the information generated by
the service is simply inserted into packets, the variable-bit-rate nature of the
service translates into the generation of the corresponding packets. Variable-
bit-rate services can therefore be accommodated as long as packets are not
generated at a rate that exceeds the speed of the transmission line. TDM systems,
on the other hand, have significantly difficulty supporting variable-bit-rate
services. Because TDM systems transfer information at a constant bit rate, the
bit rates that TDM can support are multiples of some basic rate, for example,
64 kbps for telephone networks.

The second comparison involves the delay incurred in traversing the net-
work. In the case of TDM, once a connection is set up the delays are small
and nearly constant. Packet multiplexing, on the other hand, has inherently
variable transfer delays because of the queueing that takes place in the multi-
plexers. Packet multiplexing also has difficulty in providing particular services
with low delay. For example, because packets can be of variable length, when a
long packet is undergoing transmission, all other packets including urgent ones
must wait for the duration of the transmission.

The third criterion for comparison is the capability to support bursty traffic.
TDM dedicates the transmission resources, namely, slots, to a connection. If the
connection is generating information in a bursty fashion, then many of the
dedicated slots go unused. Therefore, TDM is inefficient for services that gen-
erate bursty information. Packet multiplexing, on the other hand, was developed
specifically to handle bursty traffic and can do so in an efficient way.

Processing is the fourth comparison criterion. In TDM, hardware handles
the transfer of slots, so the processing is minimal and can be done at very high
speeds. Packet multiplexing, on the other hand, traditionally uses software to

Variable bit rate Delay Bursty traffic Processing
TDM Multirate only Low, fixed Inefficient Minimal, very high speed
Packet Easily handled Variable Efficient Header and packet

processing required

TABLE 7.7 TDM versus packet multiplexing

4 | P | eTextMainMenu | Textbook Table of Contents

504 cHAPTER 7 Packet-Switching Networks

process the information in the packet headers. Consequently, at the time that
ATM was formulated, packet multiplexing was slow and processing intensive.
However, the development of hardware techniques has reduced packet-proces-
sing times and has made very high speed, variable-length packet systems viable.

ATM was developed in the mid-1980s to combine the advantages of TDM
and packet multiplexing. ATM involves the conversion of all information flows
into short fixed-length packets called cells. Cells contain abbreviated headers, or
labels, which are essentially pointers to tables in the switches. In terms of the four
criteria. ATM has the following features. Because it is packet based, ATM can
easily handle services that generate information in bursty fashion or at variable
bit rates. The abbreviated header of ATM and the fixed length facilitate hard-
ware implementations that result in low delay and high speeds.

Figure 7.37 shows the operation of an ATM multiplexer. The information
flows generated by various users are converted into cells and sent to an ATM
multiplexer. The multiplexer arranges the cells into one or more queues and
implements some scheduling strategy that determines the order in which cells
are transmitted. The purpose of the scheduling strategy is to provide for the
different qualities of service required by the different flows. ATM does not
reserve transmission slots for specific information flows, and so it has the effi-
ciencies of packet multiplexing. The reason for the term asynchronous is that the
transmission of cells is not synchronized to any frame structure as in the case of
TDM systems.

ATM networks are connection-oriented and require a connection setup prior
to the transfer of cells. The connection setup is similar to that described for
virtual-circuit packet-switched networks. The connection setup procedure
requires the source to provide a traffic descriptor that describes the manner in
which cells are produced, for example, peak cell rate in cells/second, sustainable
(long-term average) cell rate in cells/second, and maximum length of a burst of
cells. The source also specifies a set of Quality-of-Service (QoS) parameters that

Voice ,_l ,_l
[[
Data
packets ,_l ,_l LHOES
| ,_l Wasted bandwidth
mages

tom [IR L L

4 3 2 1 4 3 2 1 4 3 2 1

arm [0 I

4 3 1 3 2 2 1

FIGURE 7.37 ATM multiplexing

4 | P | eTextMainMenu | Textbook Table of Contents

7.6 ATM Networks 505

the connection must provide, for example, cell delay, cell loss, and cell delay
jitter. The connection setup procedure involves identifying a path through the
network that can meet these requirements. A connection admission control pro-
cedure is carried out at every multiplexer along the path. This path is called a
virtual channel connection (VCC).

The VCC is established by a chain of local identifiers that are defined during
the connection setup at the input port to each switch between the source and the
destination. The generic packet-switch structure in Figure 7.10 can be modified
to carry out ATM switching. Figure 7.38 shows the tables associated with two of
the input ports to an ATM switch. In input port 5 we have cells from a voice
stream arriving with identifier 32 in the header. We also have cells from a video
stream arriving with identifier 25. When a cell with identifier 32 arrives at input
port 5, the table lookup for entry 32 indicates that the cell is to be switched to
output port 1 and that the identifier in the header is to be changed to 67.
Similarly, cells arriving at port 5 with identifier 25 are switched to output port
N with new identifier 75. Note that the identifier is locally defined for each input
port. Thus input port 6 uses identifier 32 for a different VCC.

At this point it is clear that ATM has a strong resemblance to virtual-circuit
packet switching. One major difference is ATM’s use of short, fixed-length pack-
ets. This approach simplifies the implementation of switches and makes very high
speed operation possible. Indeed, ATM switches have proven to be scalable to
very large sizes, that is, switches of 10,000 ports with each port running at
150 Mbps are possible. The use of short fixed-length packets also gives a finer
degree of control over the scheduling of packet transmissions, since the shorter
packets imply a smaller minimum waiting time until the transmission line
becomes available for the next transmission.

To understand how the local identifiers are defined in ATM, we first need to
see how ATM incorporates some of the concepts used in SONET. SONET
allows flows that have a common path through the network to be grouped
together. ATM uses the concept of a virtual path to achieve this bundling.
Figure 7.39 shows five VCCs in an ATM network. The VCCs a, b, and ¢ enter

l _| |V0ice| 67| 1
: Switch
Video | 67 2
- : 25| N |75
, [l o[l || V|7 — :

o [Daa[32] [Video[61] |32|3 |39
61| 2|67

N Video | 75 N

FIGURE 7.38 ATM switching

4 | P | eTextMainMenu | Textbook Table of Contents

506 cHAPTER 7 Packet-Switching Networks

VP3 VP5

a
[A

b ATM - ATM - ATM ATM b
¢ Sw DCC Sw Sw ¢
d 1 - 2 3
e

VP2

VP1
. ATM
Sw = switch S g
4

FIGURE 7.39 Role of virtual paths in an ATM network

the network at switch 1, share a common path up to switch 2, and are bundled
together into a virtual path connection (VPC) that connects switch 1 to switch 2.°
This VPC happens to pass through an ATM cross-connect switch whose role in
this example is to switch only virtual paths. The VPC that contains VCCs a, b,
and c has been given virtual path identifier (VPI) 3 between switch 1 and the
cross-connect. The cross-connect switches all cells with VPI 3 to the link con-
necting it to switch number 2 and changes the VPI to 5, which identifies the
virtual path between the cross-connect and ATM switch 2. This VPC terminates
at switch 2 where the three VCCs are unbundled; cells from VCC a are switched
out to a given output port, whereas cells from VCCs b and ¢ proceed to switch 3.
Figure 7.39 also shows VCCs d and e entering at switch 1 with a common path to
switch 4. These two channels are bundled together in a virtual path that is
identified by VPI 2 between switch 1 and the cross-connect and by VPI 1 between
the cross-connect and switch 4.

The preceding discussion clearly shows that a virtual circuit in ATM requires
two levels of identifiers: an identifier for the VPC, the VPI; and a local identifier
for the VCC, the so-called virtual channel identifier, VCI. Figure 7.40 shows a
cross-section of the cell stream that arrives at a given input port of an ATM
switch or a cross-connect. The cells of a specific VCC are identified by a two-part
identifier consisting of a VPI and a VCI. VCCs that have been bundled into a
virtual path have the same VPI, and their cells are switched in the same manner
over the entire length of the virtual path. At all switches along the virtual path,
switching is based on the VPI only and the VCIs are unchanged. The VClIs are
used and translated only at the end of the virtual path.

SWe use letters to identify the end-to-end virtual connection. In ATM the network identifies each virtual
connection by a chain of locally defined identifiers.We use numbers to indicate these identifiers.

4 | P | eTextMainMenu | Textbook Table of Contents

7.7 Traffic Management and QoS 507

Virtual paths

Physical link /

Virtual channels

FIGURE 7.40 ATM virtual connections

The details of the VPIs and VClIs are discussed in Chapter 9. However, it is
worth noting here that the VCI/VPI structure can support a very large number of
connections and hence provides scalability to very large networks.

ATM provides many of the features of SONET systems that facilitate the
configuration of the network topology and the management of the bandwidth.
The virtual path concept combined with the use of ATM cross-connect switches
allows the network operator to dynamically reconfigure the topology seen by the
ATM switches using software control. This concept also allows the operator to
change the bandwidth allocated to virtual paths. Furthermore, these bandwidth
allocations can be done to any degree of granularity, that is, unlike SONET,
ATM is not restricted to multiples of 64 kbps.

7.7 Traffic Management and QoS

Traffic management is concerned with the delivery of QoS to specific packet
flows. Traffic management entails mechanisms for managing the flows in a net-
work to control the load that is applied to various links and switches. Traffic
management also involves the setting of priority and scheduling mechanisms at
switches, routers, and multiplexers to provide differentiated treatment for pack-
ets and cells belonging to different classes, flows, or connections. It also may
involve the policing and shaping of traffic flows as they enter the network.®
When we discussed the general structure of switches and routers, we noted in
Figure 7.12 that a switch can be viewed as a node where multiplexed packet
streams arrive and are then demultiplexed, routed, and remultiplexed onto out-
going lines. Thus the path traversed by a packet through a network can be
modeled as a sequence of multiplexers and transmission links as shown in

Traffic management also encompasses congestion control, the topic of the next section.

4 | P | eTextMainMenu | Textbook Table of Contents

508 cHAPTER 7 Packet-Switching Networks

Figure 7.41. The dashed arrows show packets from other flows that “interfere”
with the packet of interest in the sense of contending for buffers and transmission
along the path. We also note that these interfering flows may enter at one multi-
plexer and depart at some later multiplexer, since in general they belong to
different source-destination pairs and follow different paths through the net-
work.

The performance experienced by a packet along the path is the accumulation
of the performance experienced at the N multiplexers. For example, the total
end-to-end delay is the sum of the delays experienced at each multiplexer.
Therefore, the average end-to-end delay is the sum of the individual average
delays. On the other hand, if we can guarantee that the delay at each multiplexer
can be kept below some upper bound, then the end-to-end delay can be kept
below the sum of the upper bounds at the various multiplexers. The jitter experi-
enced by packets is also of interest. The jitter measures the variability in the
packet delays and is typically measured in terms of the difference of the mini-
mum delay and some maximum value of delay.

Packet loss performance is also of interest. Packet loss occurs when a packet
arrives at a multiplexer that has no more buffers available. Causes of packet loss
include surges in packet arrivals to a multiplexer and decreased transmission
rates out of a multiplexer due to faults in equipment or congestion downstream.
The end-to-end probability of packet loss is the probability of packet loss some-
where along the path and is bounded above by the sum of the packet loss
probabilities at each multiplexer.

Note that the discussion here is not limited solely to connection-oriented
packet transfer. In the case of connectionless transfer of packets, each packet
will experience the performance along the path traversed. If each packet is likely
to traverse a different path, then it is difficult to make a statement about packet
performance. On the other hand, this analysis will hold in connectionless packet-
switching networks for the period of time during which a single path is used
between a source and a destination. If these paths can be “pinned down” for
certain flows in a connectionless network, then the end-to-end analysis is valid.

Packet-switching networks are called upon to support a wide range of ser-
vices with diverse QoS requirements. To meet the QoS requirements of multiple
services, an ATM or packet multiplexer must implement strategies for managing
how cells or packets are placed in the queue or queues, as well as control the
transmission bit rates that are provided to the various information flows. We
now consider a number of these strategies.

1 2 N-1 N

B - I
L P

A\l A\l \

FIGURE 7.41 The end-to-end QoS of a packet along a path
traversing N hops

4 | P | eTextMainMenu | Textbook Table of Contents

7.7 Traffic Management and QoS 509
7.7.1 FIFO and Priority Queues

The simplest approach to managing a multiplexer involves first-in, first-out
(FIFO) queueing where all arriving packets are placed in a common queue and
transmitted in order of arrival, as shown in Figure 7.42a. Packets are discarded
when they arrive at a full buffer. The delay and loss experienced by packets in a
FIFO system depend on the interarrival times and on the packet lengths. As
interarrivals become more bursty or packet lengths more variable, performance
will deteriorate. Because FIFO queueing treats all packets in the same manner, it
is not possible to provide different information flows with different qualities of
service. FIFO systems are also subject to fhogging, which occurs when a user
sends packets at a high rate and fills the buffers in the system, thus depriving
other users of access to the multiplexer.

A FIFO queueing system can be modified to provide different packet-loss
performance to different traffic types. Figure 7.42b shows an example with two
classes of traffic. When the number of packets reaches a certain threshold, arri-
vals of lower access priority (Class 2) are not allowed into the system. Arrivals of
higher access priority (Class 1) are allowed as long as the buffer is not full. As
a result, packets of lower access priority will experience a higher packet-loss
probability.

Head-of-line (HOL) priority queueing is a second approach that involves
defining a number of priority classes. A separate queue is maintained for each
priority class. As shown in Figure 7.43, each time the transmission line becomes
available the next packet for transmission is selected from the head of the line of
the highest priority queue that is not empty. For example, packets requiring low
delay may be assigned a high priority, whereas packets that are not urgent may
be assigned a lower priority. The size of the buffers for the different priority
classes can be selected to meet different loss probability requirements. While
priority queueing does provide different levels of service to the different classes,
it still has shortcomings. For example, it does not allow for providing some

(a) Packet buffer FIGURE 7.42 (a) FIFO queueing; (b)

Arriving D:I:I:I:I:D C FIFO queueing with discard priority
packets l

Transmission link

Packet
discard
when full
(b) "
Packet buffer
Arriving D:I:I:I:I:D C
packets
l l Transmission link
Class 1 Class 2
discard discard
when full when threshold
exceeded

4 | P | eTextMainMenu | Textbook Table of Contents

510 cHAPTER 7 Packet-Switching Networks

Packet FIGURE 7.43 HOL priority

discard . ’
queueing

when full

High-priority T

—_—
packets D:I:I:I:I:D WQ\ Transmission link

Low-priority When
packets T > high-priority
l queue empty
Packet
discard
when full

degree of guaranteed access to transmission bandwidth to the lower priority
classes. Another problem is that it does not discriminate between users of the
same priority. Fairness problems can arise here when a certain user hogs the
bandwidth by sending an excessive number of packets.

A third approach to managing a multiplexer, shown in Figure 7.44, involves
sorting packets in the queue according to a priority tag that reflects the urgency
with which each packet needs to be transmitted. This system is very flexible
because the method for defining priority is open and can even be defined dyna-
mically.” For example, the priority tag could consist of a priority class followed
by the arrival time of a packet to a multiplexer. The resulting system implements
the HOL priority system discussed above. In a second example the priority tag
corresponds to a due date. Packets without a delay requirement get indefinite or
very long due dates, and are transmitted after all time-critical packets have been
transmitted. A third important example that can be implemented by the
approach is fair queueing and weighted fair queueing, which are discussed next.

Sorted packet buffer

pkets — o 7 LIIH-@——
packets unit l

Transmission link
Packet

discard
when full

FIGURE 7.44 Sorting packets according to priority tag

"See [Hashemi 1997] for a discussion on the various types of scheduling schemes that can be implemented
by this approach.

4 | P | eTextMainMenu | Textbook Table of Contents

7.7 Traffic Management and QoS 511
7.7.2 Fair Queueing

Fair queueing attempts to provide equitable access to transmission bandwidth.
Each user flow has its own logical queue. In an ideal system the transmission
bandwidth, say, C bits/second, is divided equally among the queues that have
packets to transmit.® The contents of each queue can then be viewed as a fluid
that is drained continuously. Fair queueing prevents the phenomenon of /hogging,
which occurs when an information flow receives an unfair share of the bit rate.
The size of the buffer for each user flow can be selected to meet specific loss
probability requirements so that the cells or packets of a given user will be
discarded when that buffer is full.

Fair queueing is “fair” in the following sense. In the ideal fluid flow situa-
tion, the transmission bandwidth is divided equally among all nonempty queues.
Thus if the total number of flows in the system is n and the transmission capacity
is C, then each flow is guaranteed at least C/n bits/second. In general, the actual
transmission rate experienced may be higher because queues will be empty from
time to time, so a share larger than C/n bps is received at those times.

In practice, dividing the transmission capacity exactly equally is not possible.
As shown in Figure 7.45 one approach could be to service each nonempty queue
one bit at a time in round-robin fashion. However, decomposing the resulting bit
stream into the component packets would require the introduction of framing
information and extensive processing at the demultiplexer. In the case of ATM,
fair queueing can be approximated in a relatively simple way. Because in ATM
all packets are the same length, the multiplexer need only service the nonempty
queues one packet at a time in round-robin fashion. User flows are then guar-
anteed equal access to the transmission bandwidth.

Figure 7.46 illustrates the differences between ideal or “fluid flow” and
packet-by-packet fair queueing. The figure assumes that queue 1 and queue 2
each has a single L-bit packet to transmit at t =0 and that no subsequent
packets arrive. Assuming a capacity of C = L bits/second = 1 packet/second,
the fluid-flow system transmits each packet at a rate of 1/2 and therefore

Approximated
Packet flow 1 TDM bit-level

round-robin

Packet flow 2 —»‘:D:I:D:D service
¢ C bits/second
Packet fl —>|:|:|:|:|:|:D Transmission link
acket flow n *

FIGURE 7.45 Fair queueing

8This technique is called processor sharing in the computing literature.

4 | P | eTextMainMenu | Textbook Table of Contents

512 cHAPTER 7 Packet-Switching Networks

Fluid-flow system:
both packets served

Queue 1 I:D at rate 1/2
@rt=0 3 3

Queue 2 L """""" Both packets
@r=0 I:D ! 3 complete service
/ atr=2
1 | ¢
0 1 2
Packet from Packet-by-packet system:

Packet from 1 Packet from queue 2

queue 1 being | > / being served

queue 2 waiting queue 1 served first at rate 1;

then queue 2 served at rate 1

served

t

0 1 2
FIGURE 7.46 Fluid-flow and packet-by-packet fair queueing (two
packets of equal length)

completes the transmission of both packets exactly at time ¢ = 2 seconds. The
bit-by-bit system (not shown in the figure) would begin by transmitting one bit
from queue 1, followed by one bit from queue 2, and so on. After the first bit
each subsequent bit from queue 1 would require 2/L seconds to transmit.
Therefore, the transmission of the packet from queue 1 would be completed
after 1 +2(L — 1) = 2L — 1 bit-transmission times, which equals 2 — 1/L sec-
onds. The packet from queue 2 is completed at time 2 seconds. The transmission
of both packets in the fluid-flow system would be completed at time 2L/L =2
seconds. On the other hand, the packet-by-packet fair-queueing system transmits
the packet from queue 1 first and then transmits the packet from queue 2, so the
packet completion times are 1 and 2 seconds. In this case the first packet is 1
second too early relative to the completion time in the fluid system.
Approximating fluid-flow fair queueing is not as straightforward when pack-
ets have variable lengths. If the different user queues are serviced one packet at a
time in round-robin fashion, we do not necessarily obtain a fair allocation of
transmission bandwidth. For example, if the packets of one flow are twice the
size of packets in another flow, then in the long run the first flow will obtain twice
the bandwidth of the second flow. A better approach is to transmit packets from
the user queues so that the packet completion times approximate those of a fluid-
flow fair queueing system. Each time a packet arrives at a user queue, the
completion time of the packet is derived from a fluid-flow fair-queueing system.
This number is used as a finish tag for the packet. Each time the transmission of
a packet is completed, the next packet to be transmitted is the one with the

4 | P | eTextMainMenu | Textbook Table of Contents

7.7 Traffic Management and QoS 513

smallest finish tag among all of the user queues. We refer to this system as a
packet-by-packet fair-queueing system.

Assume that there are n flows, each with its own queue. Suppose for now that
each queue is served one bit at a time. Let a round consist of a cycle in which all n
queues are offered service as shown in Figure 7.47. The actual duration of a given
round is the actual number of queues 7,,,;,.(?) that have information to transmit.
When the number of active queues is large, the duration of a round is large; when
the number of active queues is small, the rounds are short in duration.

Now suppose that the queues are served as in a fluid-flow system. Also
suppose that the system is started at = 0. Let R(¢) be the number of the rounds
at time ¢, that is, the number of cycles of service to all n queues. However, we let
R(?) be a continuous function that increases at a rate that is inversely propor-
tional to the number of active queues; that is:

dR(l)/dl = C/nactive(l)

where C is the transmission capacity. Note that R(?) is a piecewise linear function
that changes in slope each time the number of active queues changes. Each time
R(?) reaches a new integer value marks an instant at which all the queues have
been given an equal number of opportunities to transmit a bit.

Let us see how we can calculate the finish tags to approximate fluid-flow fair
queueing. Suppose the kth packet from flow i arrives at an empty queue at time
t;. and suppose that the packet has length P(i, k). This packet will complete its
transmission when P(i, k) rounds have elapsed, one round for each bit in the
packet. Therefore, the packet completion time will be the value of time r*
when the R(7)" reaches the value:

F(i, k) = R(1}) + P(i, k)

We will use F(i, k) as the finish tag of the packet. On the other hand, if the
kth packet from the ith flow arrives at a nonempty queue, then the packet will
have a finish tag F(i, k) equal to the finish tag of the previous packet in its queue
F(i, k — 1) plus its own packet length P(i, k); that is:

F(i,k) = F(i,k — 1)+ P(i, k)

The two preceding equations can be combined into the following compact
equation:

F(i, k) = max{F(i, k — 1), R(t})} + P(i, k) for fair queueing.

Rounds Generalize so R(f) is continuous, not discrete ~ FIGURE 7.47 Computing the

finishing time in packet-by-
R(t) grows at rate inversely packet fair queueing and
proportional to 7,ye(?) weighted fair queueing

4 | P | eTextMainMenu | Textbook Table of Contents

514 cHAPTER 7 Packet-Switching Networks

We reiterate: The actual packet completion time for the kth packet in flow i
in a fluid-flow fair-queueing system is the time ¢ when R(7) reaches the value
F(i, k). The relation between the actual completion time and the finish tag is not
straightforward because the time required to transmit each bit varies according
to the number of active queues.

As an example, suppose that at time ¢ = 0 queue | has one packet of length
one unit and queue 2 has one packet of length two units. A fluid-flow system
services each queue at rate 1/2 as long as both queues remain nonempty. As
shown in Figure 7.48, queue 1 empties at time ¢t = 2. Thereafter queue 2 is served
at rate 1 until it empties at time ¢ = 3. In the packet-by-packet fair-queueing
system, the finish tag of the packet of queue 1 is F(1,1) = R(0)+ 1 = 1. The
finish tag of the packet from queue 2 is F(2, 1) = R(0) + 2 = 2. Since the finish
tag of the packet of queue 1 is smaller than the finish tag of queue 2, the system
will service queue 1 first. Thus the packet of queue 1 completes its transmissions
at time ¢ = 1 and the packet of queue 2 completes its transmissions at ¢ = 3.

WEIGHTED FAIR QUEUEING

Weighted fair queueing addresses the situation in which different users have
different requirements. As before, each user flow has its own queue, but each
user flow also has a weight that determines its relative share of the bandwidth.
Thus if queue 1 has weight 1 and queue 2 has weight 3, then when both queues
are nonempty, queue 1 will receive 1/(1 + 3) = 1/4 of the bandwidth and queue 2
will receive 3/4 of the bandwidth. Figure 7.49 shows the completion times for the

! Fluid-flow system:
IR ”””””” both packets served
; | at rate 1/2

arso [
@r=0
ey [1
@r=0

Packet from queue

/ s served at rate 1

Packet-by-packet fair queueing:
queue 2 served at rate 1

Packet from
queue 2 waiting

Packet from
queue 1 being
served at rate 1

FIGURE 7.48 Fluid flow and packet-by-packet fair queueing (two
packets of different lengths)

4 | P | eTextMainMenu | Textbook Table of Contents

7.7 Traffic Management and QoS 515

fluid-flow case where both queues have a one-unit length packet at time ¢ = 0.
The transmission of the packet from queue 2 is now completed at time ¢t = 4/3,
and the packet from queue 1 is completed at t = 2. The bit-by-bit approximation
to weighted fair queueing would operate by allotting each queue a different
number of bits/round. In the preceding example, queue 1 would receive 1 bit/
round and queue 2 would receive 3 bits/round.

Weighted fair queueing is also easily approximated in ATM: in each round
each nonempty queue would transmit a number of packets proportional to its
weight. Packet-by-packet weighted fair queueing is also easily generalized from
fair queueing. Suppose that there are n packet flows and that flow i has weight w;,
then the packet-by-packet system calculates its finish tag as follows:

F(i, k) = max{F(i, k — 1), R(t})} + P(i, k)/w; for weighted fair queueing.

Thus from the last term in the equation, we see that if flow 7 has a weight that
is twice that of flow j, then the finish tag for a packet from flow i will be
calculated assuming a depletion rate that is twice that of a packet from flow ;.

Figure 7.49 also shows the completion times for the packet-by-packet
weighted fair-queueing system. The finish tag of the packet from queue 1 is
F(1,1)=R(0)+1/1 =1. The finish tag of the packet from queue 2 is
F(2,1)4+ R(0) 4+ 1/3 = 1/3. Therefore the packet from queue 2 is served first.
The packet for queue 2 is now completed at time ¢ =1, and the packet from
queue 1 at time # = 2. Note that packet-by-packet weighted fair queueing is also
applicable when packets are of different length.

Fluid-flow system:
packet from queue 1

Queue 1 I:D served at rate 1/4
@t=0 } }

Queue 2 : Packet from queue 1
@t=0 / served at rate 1

Packet from queue 2 [
served at rate 3/4 0 1 2

Packet from : : Packet-by-packet weighted fair queueing:
queue 1 waiting « [T queue 2 served first at rate 1;
then queue 1 served at rate 1

Packet from
queue 2 being
served

Packet from queue 1

L / being served

0 1 2 !

FIGURE 7.49 Fluid flow and packetized, weighted fair queueing

4 | P | eTextMainMenu | Textbook Table of Contents

516 cHAPTER 7 Packet-Switching Networks

PROVIDING QoS IN THE INTERNET

In order to support real-time audio and video communications the Internet
must provide some level of end-to-end QoS. One approach provides differ-
entiated service in the sense that some classes of traffic are treated preferen-
tially relative to other classes. This approach does not provide strict QoS
guarantees. Packets are instead marked at the edge of the network to indicate
the type of treatment that the packets are to receive in the routers inside the
network. Modified forms of priority queueing can be used to provide the
required differential treatment. A second approach provides guaranteed ser-
vice that gives a strict bound on the end-to-end delay experienced by all
packets that belong to a specific flow. This approach requires making resource
reservations in the routers along the route followed by the given packet flow.
Weighted fair queueing combined with traffic regulators are needed in the
routers to provide this type of service. Differentiated service IP and guaran-
teed service [P are discussed in Chapter 10.

Weighted fair-queueing systems are a means for providing QoS guarantees.
Suppose a given user flow has weight w; and suppose that the sum of the weights
of all the user flows is W. In the worst case when all the user queues are non-
empty, the given user flow will receive a fraction w;/W of the bandwidth C.
When other user queues are empty, the given user flow will receive a greater
share. Thus the user is guaranteed a minimum long-term bandwidth of at least
(w;/W)C bps. This guaranteed share of the bandwidth to a large extent insulates
the given user flow from the other user flows.

In addition, section 7.8 shows that if the user information arrival rate is
regulated to satisfy certain conditions, then the maximum delay experienced in
the multiplexer can be guaranteed to be below a certain value. In fact, it is
possible to develop guaranteed bounds for the end-to-end delay across a series
of multiplexers that use packet-by-packet weighted fair queueing. These bounds
depend on the maximum burst that the user is allowed to submit at each multi-
plexer, on the weights at the various multiplexers, and on the maximum packet
size that is allowed in the network. We return to the details of this scheme in
section 7.8.

7.8 CONGESTION CONTROL

Congestion occurs when too many packets try to access the same buffer pool in a
switch. For an example, consider the communication network shown in Figure
7.50. Suppose that nodes 1, 2, and 5 send bursts of packets to node 4 simulta-
neously. Assume that the aggregate incoming rate of the packets is greater than
the rate at which the packets can be transmitted out. In this case the buffer in

4 | P | eTextMainMenu | Textbook Table of Contents

7.8 Congestion Control 517

Congestion FIGURE 7.50 A congested switch

node 4 will build up. If this situation occurs sufficiently long, the buffer even-
tually may become full and start rejecting packets. When the destination detects
the missing packets, it may ask the sources to retransmit the packets. The sources
would unfortunately obey the protocol and send more packets to node 4, making
the congestion even worse. In turn, node 4 discards more packets, and this effect
triggers the destination to ask for more retransmissions. The net result is that the
throughput at the destination will be very low, as illustrated in Figure 7.51
(uncontrolled curve). The purpose of congestion control is to eliminate or reduce
congestion. If done properly, performance should improve (controlled curve).

For a novice, it is tempting to claim that congestion can be solved by just
allocating a large buffer. However, this solution merely delays congestion from
happening. Worse yet, when congestion kicks in, it will last much longer and will
be more severe. In the worst case where the buffer size is infinite, packets can be
delayed forever!

It turns out that congestion control is a very hard problem to solve.
Typically, the solution depends on the application requirements (e.g., qualities
of service). A variety of congestion control algorithms have been proposed in the
literature. As with routing algorithms, we can classify congestion control algo-
rithms several ways. The most logical approach is to divide them into two broad
classes: open loop and closed loop. Open-loop algorithms prevent congestion from

FIGURE 7.51 Throughput
drops when congestion occurs
Controlled

Uncontrolled

Throughput

Offered load

4 | P | eTextMainMenu | Textbook Table of Contents

518 cHAPTER 7 Packet-Switching Networks

occurring by making sure that the traffic flow generated by the source will not
degrade the performance of the network below the specified QoS. If the QoS
cannot be guaranteed, the network has to reject the traffic flow. The function
that makes the decision to accept or reject the traffic flow is usually called an
admission control. Thus open-loop algorithms involve some type of resource
reservation. Closed-loop algorithms, on the other hand, react to congestion
when it is already happening or is about to happen, typically by regulating the
traffic flow according to the state of the network. These algorithms are called
closed loop because the state of the network has to be fed back to the point that
regulates the traffic, which is usually the source. Closed-loop algorithms typically
do not use any reservation.

It is important to note that congestion control algorithms are an effective
way to reduce temporary overloads in the network (typically on the order of
several milliseconds). If the overload lasts longer (several seconds to minutes),
then adaptive routing may help by avoiding congested nodes and links. If the
overload period is still longer, then the network has to be upgraded, for example,
by deploying higher capacity links, faster switches, and so on.

7.8.1 Open-Loop Control

Open-loop congestion control does not rely on feedback information to regulate
the traffic flow. Thus this technique assumes that once a source is accepted, its
traffic flow will not overload the network. In this section we look at several
promising open-loop approaches.

ADMISSION CONTROL

Admission control is an open-loop preventive congestion control scheme. It was
initially proposed for virtual-circuit, packet-switched networks such as ATM but
has been investigated for datagram networks as well. Admission control typically
works at the connection level but can also work at the burst level. The analogy of
a connection in datagram networks is a flow. At the connection level the function
is called a connection admission control (CAC). At the burst level, it is called a
burst admission control.

The main idea of CAC is very simple. When a source requests a connection
setup, CAC has to decide whether to accept or reject the connection. If the QoS
of all the sources (including the new one) that share the same path can be
satisfied, the connection is accepted; otherwise, the connection is rejected. The
QoS can be expressed in terms of maximum delay, loss probability, delay var-
iance, and other performance parameters.

For CAC to determine whether the QoS can be satisfied, CAC has to know
the traffic flow of each source. Thus each source must specify its traffic flow,
described by a set of traffic parameters called the traffic descriptor, during the
connection setup. A traffic descriptor may contain peak rate, average rate, max-
imum burst size, and so on, and is supposed to summarize the traffic flow
compactly and accurately. Figure 7.52 shows an example of a traffic flow gen-

4 | P | eTextMainMenu | Textbook Table of Contents

7.8 Congestion Control 519

********************************* Peak rate

*** Average rate

Bits/second

Time

FIGURE 7.52 Example of a traffic flow

erated by a source, indicating the peak rate and the average rate. The maximum
burst size usually relates to the maximum length of time the traffic is generated at
the peak rate. Based on the characteristics of the traffic flow, CAC has to calcu-
late how much bandwidth it has to reserve for the source. The amount of band-
width typically lies between the average rate and the peak rate and is called the
effective bandwidth of the source. The exact calculation for effective bandwidth is
very complex and is beyond the scope of this book.

POLICING

Once a connection is accepted by a CAC, the QoS will be satisfied as long as the
source obeys the traffic descriptor that it specified during the connection setup.
However, if the traffic flow violates the initial contract, the network may not be
able to maintain acceptable performance. To prevent the source from violating
its contract, the network may want to monitor the traffic flow during the con-
nection period. The process of monitoring and enforcing the traffic flow is called
traffic policing. When the traffic violates the agreed-upon contract, the network
may choose to discard or tag the nonconforming traffic. The tagged traffic will be
carried by the network but given lower priority. If there is any congestion down-
stream, the tagged traffic is the first one to be lost.

Most implementations of traffic policing use the leaky bucket algorithm. To
understand how a leaky bucket can be used as a policing device, imagine the
traffic flows to a policing device as water being poured into a bucket that has a
hole at the bottom, as illustrated in Figure 7.53. The bucket has a certain depth
and leaks at a constant rate when it is not empty. A new container (that is,
packet) of water is said to be conforming if the bucket does not overflow when
the water is poured in the bucket. The bucket will spill over if the amount of
water in the container is too large or if the bucket is nearly full from prior
containers. The bucket depth is used to absorb the irregularities in the water
flow. If we expect the traffic flow to be very smooth, then the bucket can be made
very shallow. If the flow is bursty, the bucket should be deeper. The drain rate
corresponds to the traffic rate that we want to police.

4 | P | eTextMainMenu | Textbook Table of Contents

520 cHAPTER 7 Packet-Switching Networks

FIGURE 7.53 A leaky bucket

Water poured
irregularly

Leaky bucket

Water drains at
b a constant rate

There are many variations of the leaky bucket algorithm. In this section we
look at an algorithm that is standardized by the ATM Forum. Here packets are
assumed to be of fixed length (i.e., ATM cells). A counter records the content of
the leaky bucket. When a packet arrives, the value of the counter is incremented
by some value I provided that the content of the bucket would not exceed a
certain limit; in this case the packet is declared to be conforming. If the content
would exceed the limit, the counter remains unchanged and the packet is
declared to be nonconforming. The value [typically indicates the nominal inter-
arrival time of the packet that is being policed (typically, in units of packet time).
As long as the bucket is not empty, the bucket will drain at a continuous rate of 1
unit per packet time.

Figure 7.54 shows the leaky bucket algorithm that can be used to police the
traffic flow. At the arrival of the first packet, the content of the bucket X is set to
zero and the last conforming time (LCT) is set to the arrival time of the first
packet. The depth of the bucket is L 4+ I, where L depends on the maximum
burst size. If the traffic is expected to be bursty, then the value of L should be
made large. At the arrival of the kth packet, the auxiliary variable X’ records the
difference between the bucket content at the arrival of the last conforming packet
and the interarrival time between the last conforming packet and the kth packet.
The auxiliary variable is constrained to be nonnegative. If the auxiliary variable
is greater than L, the packet is considered nonconforming. Otherwise, the packet
is conforming. The bucket content and the arrival time of the packet are then
updated.

4 | P | eTextMainMenu | Textbook Table of Contents

7.8 Congestion Control 521

I Arrival of a packet at time 7, |

| X'=X~-(1,- LCT) |

il

Nonconforming
packet

X=X"+1 X = value of leaky bucket counter
LCT=t, X’ = auxiliary variable
conforming packet LCT = last conformance time

FIGURE 7.54 [.caky bucket algorithm used for policing

A simple example of the operation of the leaky bucket algorithm is shown in
Figure 7.55. Here the value of I is four packet times, and the value of L is six
packet times. The arrival of the first packet increases the bucket content by four
(packet times). At the second arrival the content has decreased to three, but four
more are added to the bucket resulting in a total of seven. The fifth packet is
declared as nonconforming since it would increase the content to 11, which
would exceed L + I. Packets 7, 8, 9, and 10 arrive back to back after the bucket
becomes empty. Packets 7, 8, and 9 are conforming, and the last one is non-
conforming. If the peak rate is one packet/packet time, then the maximum burst
size (MBS) for this algorithm is three. Note that the algorithm does not update
the content of the bucket continuously, but only at discrete points (arrival times)
indicated by the asterisks. Also note that the values of 7 and L in general can take
any real numbers.

Often the inverse of I is the sustainable rate which is the long-term average
rate allowed for the conforming traffic. Suppose the peak rate of a given traffic is
denoted by R and its inverse is 7'; that is, 7 = 1/R. Then the maximum burst size
is given by

L
MBS =1+ [ﬁ} (10)

where [x] gives the greatest integer less than or equal to x. To understand this
formula, note that the first packet increases the bucket content to /. After the
first packet the bucket content increases by the amount of (/ — T) for each
packet arrival at the peak rate. Thus we can have approximately L/(I — T)

4 | P | eTextMainMenu | Textbook Table of Contents

522 cHAPTER 7 Packet-Switching Networks

Nonconforming

ros I 0.0M...0... [OTH..T

Time

e i

Bucket
content

T T T O I N B T T T I B
* % * * * % k% * Time

FIGURE 7.55 Behavior of leaky bucket

additional conforming packets. The relations among these quantities are picto-
rially depicted in Figure 7.56. MBS roughly characterizes the burstiness of the
traffic. Bursty traffic may be transmitted at the peak rate for some time and then
remains dormant for a relatively long period before being transmitted at the peak
rate again. This type of traffic tends to stress the network.

Leaky buckets are typically used to police both the peak rate and the sus-
tainable rate. In this situation dual leaky buckets such as the one shown in Figure
7.57 can be used. The traffic is first checked for the peak rate at the first leaky
bucket. The cell delay variation tolerance (CDVT) is the amount of variation
that is allowed in the peak cell rate. The bucket has a total capacity of T and t
and each arrival of a conforming packet increases the bucket by 7. The non-
conforming packets at the first bucket are dropped or tagged. The conforming
(untagged) packets are then checked for the sustainable rate at the second leaky
bucket. The nonconforming packets at the second leaky bucket are also dropped
or tagged. The conforming packets are the ones that remain untagged after both
leaky buckets.

TRAFFIC SHAPING

When a source tries to send packets, it may not know what its traffic looks like. If
the source wants to ensure that the traffic conforms to the parameters specified in
the leaky bucket policing device, it should first alter the traffic. The process of
altering a traffic flow to another flow is called traffic shaping.

MB

_O0pnfo.. [0 [ge.|

Time

FIGURE 7.56 Relations among MBS and other parameters

4 | P | eTextMainMenu | Textbook Table of Contents

7.8 Congestion Control 523

Incoming Leaky bucket 1 Tagged or
traffic PCR and CDVT dropped
Untagged
traffic
Leaky bucket 2 Tagged or
SCR and MBS dropped

PCR = peak cell rate
UnFégged CDVT = cell delay variation tolerance
traffic SCR = sustainable cell rate

MBS = medium burst size

FIGURE 7.57 A dual leaky bucket configuration

Traffic shaping can also be used to make the traffic smoother. Consider an
example where an application periodically generates 10 kilobits of data every
second. The source can transmit the data in many ways. For example, it can
transmit at the rate of 10 kbps continuously. It can transmit at the rate of 50
kbps for 0.2 seconds for each period or at the rate of 100 kbps for 0.1 second for
each period, as illustrated in Figure 7.58. From the network’s point of view, the
traffic shown in Figure 7.58a represents the smoothest pattern, and the one least
likely to stress the network. However, the destination may not want to wait for 1
second to receive the data at each period. Another use of traffic shaping is to
smooth the traffic flow according to the user’s specification.

(a) 10 Kbps
| S S A s S Sy | |
0 1 2 3 Time
(b) 50 Kbps
| I I T S N | I I T S N | I I I N |
0 1 2 3 Time
(c) 100 Kbps
I I N I R | I I N I R | I I S I R |
0 1 2 3 Time

FIGURE 7.58 Possible traffic patterns at the average rate of 10 kbps

4 | P | eTextMainMenu | Textbook Table of Contents

524 cHAPTER 7 Packet-Switching Networks

There are many implementations of traffic shaping. In this section, we will
look at two possibilities. The first one is based on a leaky bucket. The second is
usually called a token bucket shaper.

Leaky Bucket Traffic Shaper

A leaky bucket traffic shaper is a very simple device. It can be implemented by a
buffer whose content is read out periodically at a constant interval, as shown in
Figure 7.59. Unlike the leaky bucket policing algorithm, which only monitors the
traffic, a leaky bucket traffic shaper regulates the traffic flow. The bucket in the
policing algorithm is just a counter, whereas the bucket in the shaper is a buffer
that stores packets.

Incoming packets are first stored in a buffer. Packets are served periodically
so that the stream of packets at the output is smooth. The buffer is used to store
momentary bursts of packets. The buffer size defines the maximum burst that
can be accommodated. If the buffer is full, incoming packets are in violation and
are thus discarded.

Token Bucket Traffic Shaper

The leaky bucket traffic shaper described above is very restricted, since the out-
put rate is constant when the buffer is not empty. Many applications produce
variable-rate traffic. If such applications have to go through the leaky bucket
traffic shaper, the delay through the buffer can be unnecessarily long. Recall that
the traffic that is monitored by the policing algorithm does not have to be
smooth to be conforming. The policing device allows for some burstiness in
the traffic as long as it is under a certain limit.

Another more flexible shaper, called the token bucket traffic shaper, regulates
only the packets that are not conforming. Packets that are deemed conforming
are passed through without further delay. In Figure 7.60 we see that the token
bucket is a simple extension of the leaky bucket. Tokens are generated periodi-
cally at a constant rate and are stored in a token bucket. If the token bucket is
full, arriving tokens are discarded. A packet from the buffer can be taken out
only if a token in the token bucket can be drawn. If the token bucket is empty,
arriving packets have to wait in the packet buffer. Thus we can think of a token
as a permit to send a packet.

Imagine that the buffer has a backlog of packets when the token bucket is
empty. These backlogged packets have to wait for new tokens to be generated

Size N
Incoming traffic Shaped traffic
Server
il I » NN
Packet
FIGURE 7.59 A leaky bucket traffic shaper

4 | P | eTextMainMenu | Textbook Table of Contents

7.8 Congestion Control 525

Tokens arrive
periodically

Size K

1
Token—___|

Size N

Incoming traffic Shaped traffic

Packet

FIGURE 7.60 Token bucket traffic shaper

before they can be transmitted out. Since tokens arrive periodically, these pack-
ets will be transmitted periodically at the rate the tokens arrive. Here the behav-
ior of the token bucket shaper is very similar to that of the leaky bucket shaper.

Now consider the case when the token bucket is not empty. Packets are
transmitted out as soon as they arrive without having to wait in the buffer,
since there is a token to draw for an arriving packet. Thus the burstiness of
the traffic is preserved in this case. However, if packets continue to arrive,
eventually the token bucket will become empty and packets will start to leave
periodically. The size of the token bucket essentially limits the traffic burstiness
at the output. In the limit, as the bucket size is reduced to zero, the token bucket
shaper becomes a leaky bucket shaper.

QoS GUARANTEES AND SERVICE SCHEDULING

Switches and routers in packet-switched networks use buffers to absorb tempor-
ary fluctuations of traffic. Packets that are waiting in the buffer can be scheduled
to be transmitted out in a variety of ways. In this section we discuss how the
packet delay across a network can be guaranteed to be less than a given value.
The technique makes use of a token bucket shaper and weighted fair-queueing
scheduling.

Let b be the bucket size in bytes and let r be the token rate in bytes/second.
Then in a time period 7', the maximum traffic that can exit the traffic shaper is
b+ rT bytes as shown in Figure 7.61. Suppose we apply this traffic to two
multiplexers in tandem each served by transmission lines of speed R bytes/second

4 | P | eTextMainMenu | Textbook Table of Contents

526 cHAPTER 7 Packet-Switching Networks

FIGURE 7.61 Maximum traffic allowed out of
token bucket shaper

] b bytes
instantly

b bytes/second
|

with R > r. We assume that the two multiplexers are empty and not serving any
other flows.

Figure 7.62a shows the multiplexer arrangement, and Figure 7.62b shows the
buffer contents as a function of time. We assume that the token bucket allows an
immediate burst of b bytes to exit and appear at the first multiplexer at z = 0, so
the multiplexer buffer surges to b bytes at that instant. Immediately after t = 0,
the token bucket allows information to flow to the multiplexer at a rate of r
bytes/second, and the transmission line drains the multiplexer at a rate of R
bytes/second. Thus the buffer occupancy falls at a rate of R — r bytes/second.
Note that the buffer occupancy at a given instant determines the delay that will
be experienced by a byte that arrives at that instant, since the occupancy is
exactly the number of bytes that need to be transmitted before the arriving
byte is itself transmitted. Therefore, we conclude that the maximum delay at
the first multiplexer is bounded by b/R.

Now consider the second multiplexer. At time ¢ = 0, it begins receiving bytes
from the first multiplexer at a rate of R bytes/second. The second multiplexer
immediately begins transmitting the arriving bytes also at a rate of R bytes/
second. Therefore there is no queue buildup in the second multiplexer, and the
byte stream flows with zero queueing delay. We therefore conclude that the

(a) A =b+rt 1:1)(13 E:ccli(é?f
R(D) R()

(b)
Buffer b
occupancy R-r Empty
@1
0 b t t
R
FIGURE 7.62 Delay experienced by token bucket shaped traffic

4 | P | eTextMainMenu | Textbook Table of Contents

7.8 Congestion Control 527

information that exits the token bucket shaper will experience a delay no greater
than b/R over the chain of multiplexers.

Suppose that the output of the token bucket shaper is applied to a multi-
plexer that uses weighted fair queueing. Also suppose that the weight for the flow
has been set so that it is guaranteed to receive at least R bytes/second. It then
follows that the flow from the token bucket shaper will experience a delay of at
most b/ R seconds. This result, however, assumes that the byte stream is handled
as a fluid flow. [Parekh 1992] showed that if packet-by-packet weighted fair
queueing is used, then the maximum delay experienced by packets that are
shaped by a (b, r) token bucket and that traverse H hops is bounded as follows:

b (H—Dm TMm
DSE+T+;E (11)

where m is the maximum packet size for the given flow, M is the maximum
packet size in the network, H is the number of hops, and R; is the speed of
the transmission line in link j. Also note that r < R. This result provides the basis
for setting up connections across a packet network that can guarantee the packet
delivery time. This result forms the basis for the guaranteed delay service propo-
sal for IP networks.

To establish a connection that can meet a certain delay guarantee, the call
setup procedure must identify a route in which the links can provide the neces-
sary guaranteed bandwidth so that the bound is met. This process will involve
obtaining information from potential hops about their available bandwidth,
selecting a path, and allocating the appropriate bandwidth in the path.

7.8.2 Closed-Loop Control

Closed-loop congestion control relies on feedback information to regulate the
source rate. The feedback information can be implicit or explicit. In the implicit
feedback the source may use a time-out to decide whether congestion has
occurred in the network. In the explicit feedback some form of explicit message
will arrive at the source to indicate the congestion state in the network. In the
next two subsections, we discuss the closed-loop control used in TCP and in
ATM networks. It is interesting to note that TCP exercises congestion control at
the transport layer, whereas ATM operates at the network layer.

TCP Congestion Control

Recall from Chapter 5 that TCP uses a sliding-window protocol for end-to-end
flow control. This protocol is implemented by having the receiver specify in its
acknowledgment the amount of bytes it is willing to receive in the future, called
the advertised window. The advertised window ensures that the receiver’s buffer
will never overflow, since the sender cannot transmit data that exceeds the

4 | P | eTextMainMenu | Textbook Table of Contents

528 cHAPTER 7 Packet-Switching Networks

amount that is specified in the advertised window. However, the advertised
window does not prevent the buffers in the intermediate routers from overflow-
ing—the condition is called congestion. Routers can become overloaded when
they have to cope with too many packets in their buffers. Because IP does not
provide any mechanism to control congestion, it is up to the higher layer to
detect congestion and take proper actions. It turns out that TCP window
mechanism can also be used to control congestion in the network.

The basic idea of TCP congestion control is to have each sender transmit just
the right amount of data to keep the network resources utilized but not over-
loaded. If the senders are too aggressive by sending too many packets, the net-
work will experience congestion. On the other hand, if TCP senders are too
conservative, the network will be underutilized. The maximum amount of
bytes that a TCP sender can transmit without congesting the network is specified
by another window called the congestion window. To avoid network congestion
and receiver buffer overflow, the maximum amount of data that a TCP sender
can transmit at any time is the minimum of the advertised window and the
congestion window.

The TCP congestion control algorithm dynamically adjusts the congestion
window according to the network state. The operation of the TCP congestion
control algorithm may be divided into three phases. The first phase is run when
the algorithm starts or restarts, assuming that the pipe is empty. The technique is
called slow start and is accomplished by first setting the congestion window to
one maximum-size segment.” Each time the sender receives an acknowledgment
from the receiver, the sender increases the congestion window by one segment.
After sending the first segment, if the sender receives an acknowledgment before
a time-out, the sender increases the congestion window to two segments. If these
two segments are acknowledged, the congestion window increases to four seg-
ments, and so on. As shown in Figure 7.63, the congestion window size grows
exponentially during this phase. The reason for the exponential increase is that
slow start needs to fill an empty pipe as quickly as possible. The name “‘slow
start” is perhaps a misnomer, since the algorithm ramps up very quickly.

Slow start does not increase the congestion window exponentially forever,
since the pipe will be filled up eventually. Specifically, slow start stops when the
congestion window reaches a value specified as the congestion threshold which is
initially set to 65,535 bytes. At this point a congestion avoidance phase takes over.
This phase assumes that the pipe is running close to full utilization. It is wise for
the algorithm to reduce the rate of increase so that it will not overshoot exces-
sively. Specifically, the algorithm increases the congestion window linearly rather
than exponentially during congestion avoidance. This is realized by increasing
the congestion window by one segment for each round-trip time.

Obviously, the congestion window cannot be increased indefinitely. The
congestion window stops increasing when TCP detects that the network is con-
gested. The algorithm now enters the third phase. At this point the congestion

Recall from Chapters 2 and 5 that a segment is the data block or protocol data unit that is used by TCP.

4 | P | eTextMainMenu | Textbook Table of Contents

7.8 Congestion Control 529

20 | Congestion ~— Congestion occurs
- avoidance
z 15T
2 n
ks
g B
3 L
g I Threshold
A I S Y
of i ow
8 I start
5 -
0 i |

Round-trip times

FIGURE 7.63 Dynamics of TCP congestion window

threshold is first set to one-half of the current window size (the minimum of the
congestion window and the advertised window, but at least two segments). Next
the congestion window is set to one maximum-sized segment. Then the algorithm
restarts, using the slow start technique.

How does TCP detect that the network is congested? TCP assumes that
congestion occurs in a network when an acknowledgment does not arrive before
the time-out expires because of segment loss. The basic assumption the algorithm
is making is that a segment loss is due to congestion rather than errors. This
assumption is quite valid in a wired network where the percentage of segment
losses due to transmission errors is generally low (less than 1 percent). However,
it should be noted that the assumption may not be valid in a wireless network
where transmission errors can be relatively high.

TCP also detects congestion when a duplicate ACK is received, which can be
due to either segment reordering or segment loss. TCP reacts to duplicate ACKs
by decreasing the congestion threshold to one-half the current window size, as
before. However, the congestion window is not reset to one. If the congestion
window is less than the new congestion threshold, then the congestion window is
increased as in slow start. Otherwise, the congestion window is increased as in
congestion avoidance.'®

Figure 7.63 illustrates the dynamics of the congestion window as time pro-
gresses. Initially, slow start kicks in until the congestion threshold (set at 16
segments) is reached. Then congestion avoidance increases the window linearly
until a time-out occurs, indicating that the network is congested. The congestion

10See RFC 2001 for details of the operation.

4 | P | eTextMainMenu | Textbook Table of Contents

530 cHAPTER 7 Packet-Switching Networks

threshold is set to 10 segments, and the congestion window is set to 1 segment.
The algorithm then starts with slow start again.

Our discussion so far assumed that the TCP entity knows when to time out.
It turns out that computing the retransmission time-out value (RTO) is not a
trivial problem, since network delays are highly variable. In general, we can
roughly say that the queueing delay in a router is proportional to 1/(1 — p),
where p is the traffic load. Thus the round-trip time (RTT) that is used as the
basis for computing RTO varies over time, depending on the traffic load. Each
time TCP receives an acknowledgment to a segment, TCP records the current
measured RTT and then updates the estimate of RTT. There are two methods
for estimating RTT for TCP. The older method involved estimating the time-out
RTO as a fixed multiple of RTT; that is, RTO = g8 RTT. Early implementations
of TCP used a constant value of 8 equal to 2. However, the constant value was
found to be inadequate as it does not take into account the delay variance.
Typically, the delay variance in a queue is proportional to 1/(1 — p)*. This
expression says that when the network is lightly loaded, RTT is almost constant
(small variance). When the network is heavily loaded, RTT varies widely (large
variance).

In the late 1980s Jacobson proposed an efficient implementation that keeps
track of the delay variance [Jacobson 1988]. Specifically, the algorithm estimates
a standard deviation using a mean deviation. The mean deviation gives a some-
what more conservative result than the standard deviation but is much easier to
compute. The smoothed mean deviation, DEV, is computed according to

DEV « S8DEV + (1 — 8)|RTT — M| (12)

where § is typically set to 3/4. Once the mean deviation of the round-trip time is
found, the RTO is finally set to

RTO < RTT +4DEV (13)

An ambiguity exists when a segment is retransmitted because the time-out
has expired. When the acknowledgment eventually comes back, do we associate
it with the first segment or with the retransmitted segment? Karn proposed
ignoring the RTT when a segment is retransmitted because using the RTT
may corrupt the estimate. This idea is generally called Karn’s algorithm.

ABR CONGESTION CONTROL FOR ATM NETWORKS

The available bit rate (ABR) service in ATM is intended for non-real-time appli-
cations such as data communications. ABR service does not have a strict delay
or loss constraint. However, the network would try to minimize the cell loss
ratio, since a typical data payload would contain many ATM cells and a loss
of an ATM cell ruins the entire payload. At connection setup an ABR source is
required to specify its peak cell rate (PCR) and its minimum cell rate (MCR),
which may be set to zero. During data transfer the network tries to give up as
much bandwidth as possible to the PCR but never goes below the MCR. The
bandwidth available to ABR sources at any time depends on the residual band-

4 | P | eTextMainMenu | Textbook Table of Contents

7.8 Congestion Control 531

ABR
Total
bandwidth
VBR
B — e
Time

FIGURE 7.64 Bandwidth allocation to services

width in the pipe after the bandwidth for constant bit rate (CBR) and variable bit
rate (VBR) sources have been allocated, as shown in Figure 7.64.

ABR congestion control in ATM network uses a rate-based control mechan-
ism that works by continuously adjusting the source rate according to the net-
work state. The information about the network state is carried by special control
cells called resource management (RM) cells. An ABR source generates forward
RM cells periodically at the rate of one RM cell for every Ny — 1 of data cells,
as shown in Figure 7.65. At the destination the RM cells are turned around and
sent back to the source. The backward RM cells carry the feedback information
used by the source to control its rate. The way the feedback information is
inserted in the RM cell depends on implementations. The next two sections
describe possible implementations.

Binary Feedback

The binary feedback scheme allows switches with minimal functionalities to
participate in the control loop. Each source sends its data cells with the explicit
forward congestion indication (EFCI) bit set to zero to indicate that no
congestion is experienced. RM cells that are sent periodically also have the

Forward FIGURE 7.65 End-to-end rate-
Data cell RM cell based control
DéD.DDDﬁDDD.
_______________________________________ >~
S () () -

N4 N

S Y A
,]
Backward Switch
RM cell
S = source

D = destination

4 | P | eTextMain Menu | Textbook Table of Contents

532 cHAPTER 7 Packet-Switching Networks

Data cell RM cell Data cell FIGURE 7.66 Binary feedback
EFCI=0 Cl= EFCI=1

0
DED@HDE%EE

control

_______________________________________ >
S ()) -
/ _/
e ___

: "
Congested RM cell
switch Cl=1

congestion indication (CI) bit set to zero. Each switch along the connection
monitors the link congestion status continuously. A switch may decide that
the link is congested if the associated queue level exceeds a certain threshold.
In this case the switch would set the EFCI bit of all data cells passing through the
queue to one, as shown in Figure 7.66.

When data cells received by the destination have the EFCI bit set to one, the
destination should set the CI bit of the backward RM cell to one, indicating that
the forward path is congested. Else, the CI bit is left unchanged. Note that the
resulting technique conveys binary feedback information only, since it can only
tell the source whether or not there is congestion in the path.

How does the source react to congestion? When the source receives a back-
ward RM cell with the CI bit set to zero, that source could increase its transmis-
sion rate. If the CI bit is one, the source should instead decrease its transmission
rate. Typically, the increase would be linear, whereas the decrease would be
exponential. In the absence of backward RM cells, the source should decrease
its transmission rate. This method, sometimes called positive feedback, essentially
forces the source to decrease its rate in case the backward path is congested and
thus provides a more robust control.

Explicit Rate Feedback

Because the binary feedback scheme can only tell the source to increase or
decrease its rate, the scheme tends to converge slowly and oscillate widely around
the operating point. Another method, called the explicit rate scheme, tries to
solve the convergence problem by allowing each switch to explicitly indicate the
desired rate to the RM cell that passes through.

The explicit rate scheme works as follows. Each source puts the rate at which
it would like to transmit cells in the explicit rate (ER) field of the forward RM
cell. The value of the ER field is initially set to PCR. Any switch along the path
may reduce the ER value to the desired rate that it can support. However, a
switch must not increase the ER value, since doing so would nullify the value set
by the more congested switch. If the destination is congested, it may also reduce
the ER value before returning the RM cell to the source. When the source
receives the backward RM cell, the source adjusts its transmission rate so as
not to exceed the ER value. By doing so, every switch along the path is expected

4 | P | eTextMainMenu | Textbook Table of Contents

7.8 Congestion Control 533

ER=10Mbps ~ ER =5 Mbps ER =1 Mbps FIGURE 7.67 Explicit rate

DDDIJ_LIDDDIJ_LIDDEI

control

_______________________________________ >
T D DT
N
e mm e
|%| (] (]
ER =1 Mbps Can support Can support

only 5 Mbps only 1 Mbps

to be able to support the rate. Figure 7.67 illustrates the operation of the ER
control.

The switch can use many methods to compute its desired rate. One attractive
way, which is based on the max-min fairness principle, assigns the available
bandwidth equally among connections that are bottlenecked on the considered
link. If B is the bandwidth to be shared by active connections bottlenecked on the
link and # 1s the number of active connections bottlenecked on the link, then the
fair share for connection i, B(i), is

B =2 (14)

n

Enhanced Proportional Rate Control Algorithm

The enhanced proportional rate control algorithm (EPRCA) combines both binary
feedback and ER feedback schemes, allowing simple switches supporting only
EFCI bit setting to interoperate with more complex switches that can compute
ERs.

Switches that implement only the EFCI mechanism would ignore the content
of the RM cell and would set the EFCI bit to one if the link is congested.
Switches that implement the ER scheme may reduce the ER value in the RM
cell accordingly if the link is congested. The destinations turn around RM cells,
setting the CI bit to one if the last received data cell has the EFCI bit set to one.
When the source receives the backward RM cell, the source would set its trans-
mission rate to the minimum value calculated by the binary feedback scheme and
the ER value specified in the RM cell.

In EPRCA an ABR source should adhere to the following rules:

1. The source may transmit cells at any rate up to the allowed cell rate (ACR).
The value of the ACR should be bounded between MCR and PCR.

2. At the call setup time, the source sets ACR to the initial cell rate (ICR). The
first cell transmitted is an RM cell. When the source has been idle for some
time, ACR should also be reduced to ICR.

3. The source should send one RM cell for every Ngy — 1 data cells or when
Tru time (typically set to 100 msec) has elapsed.

4 | P | eTextMainMenu | Textbook Table of Contents

534 cHAPTER 7 Packet-Switching Networks

4. If the backward RM cell does not return, the source should decrease its ACR
by ACR * RDF, down to MCR. RDF stands for rate decrease factor and is
typically set to 1/16.

5. When the source receives a backward RM cell with CI = 1, the source should
also decrease its ACR by ACR * RDF, down to MCR.

6. When the source receives a backward RM cell with CI = 0, the source may
increase the ACR by no more than RIF * PCR, up to the PCR. RIF stands for
rate increase factor and is typically 1/16.

7. When the source receives any backward RM cell, the source should set the
ACR to the minimum of the ER value from the RM cell and the ACR
computed in 5 and 6.

An ABR destination should adhere to the following rules:

1. The destination should turn around all RM cells so that they can return to the
source. The direction bit (DIR) in the RM cell should be set to one to indicate
a backward RM cell.

2. If the last received data cell prior to a forward RM cell had an EFCI bit set to
one, the destination should set the CI bit in the backward RM cell to one. The
destination may also reduce the ER value to whatever rate it can support.

Finally, an ATM switch supporting ABR congestion control should adhere
to the following rules:

1. The switch should implement either EFCI marking or ER marking. With
EFCI marking the switch should set the EFCI bit of a data cell to one
when the link is congested. With ER marking the switch may reduce the
ER field of forward or backward RM cells.

2. The switch may set the CI bit of the backward RM cell to one to prevent the
source from increasing its rate.

3. The switch may generate a backward RM cell to make the source respond
faster. In such a case, the switch should set CI = 1 and BN = 1 to indicate
that the RM cell is not generated by the source.

SUMMARY

In this chapter we have examined networks that transfer information in the form
of blocks called packets. We began with a discussion of how packet information
is transferred end-to-end across the Internet. We saw how the Internet protocol
achieves this transfer over a variety of networks including LANs and ATMs. We
also how the Internet involves the distributed operation of multiple autonomous
domains.

Packet networks can offer either connection-oriented service or connection-
less services to the transport layer. These services are supported by the internal
operation of the packet network, which can involve virtual circuits and data-

4 | P | eTextMainMenu | Textbook Table of Contents

Checklist of Important Terms 535

grams. The Internet is an example of a network that operates internally using
datagrams. ATM networks provide an example of virtual-circuit operation. We
discussed the advantages and disadvantages of virtual circuits and datagrams in
terms of their complexity, their flexibility in dealing with failures, and their
ability to provide QoS. We also discussed the structure of generic switches and
routers.

We next considered the key topic of routing. We explained the use of routing
tables in the selection of the paths that packets traverse in the virtual circuit and
in datagram networks. We introduced approaches to synthesizing routing tables
and we developed corresponding shortest path algorithms. We also discussed the
interplay between hierarchical addressing and routing table size.

We then returned the topic of ATM networks and explained in more detail
the use of VClIs in establishing end-to-end connections across a network. We also
explained the use of VPIs in managing bandwidth and in creating logically-
defined network topologies.

FIFO, priority, and weighted fair queueing mechanisms were introduced and
their role in traffic management to provide QoS in packet networks was
explained. The combination of traffic regulators and weighted fair queueing to
provide guaranteed delay service was also discussed.

Finally, control techniques for dealing with congestion in the network were
introduced. We showed how TCP provides for congestion control in the Internet
using end-system mechanisms. We also showed how rate-based mechanisms
provide congestion control in ATM networks.

CHECKLIST OF IMPORTANT TERMS

asynchronous transfer mode (ATM) fair queueing
available bit rate (ABR) finish tag
Bellman-Ford algorithm first-in, first-out (FIFO) queueing
cell flooding
centralized routing head-of-line (HOL) priority queueing
connectionless leaky bucket
connection-oriented load
counting to infinity Manhattan street network
cut-through packet switching maximum burst size (MBS)
datagram packet switching message switching
deflection routing network routing
Dijkstra’s algorithm packet switching
distributed routing packet-by-packet fair queueing
dynamic (adaptive) routing packet-by-packet weighted fair
effective bandwidth queueing
enhanced proportional rate control packets

algorithm (EPRCA) resource management (RM)

4 | P | eTextMainMenu | Textbook Table of Contents

536 cHAPTER 7 Packet-Switching Networks

router virtual channel identifier (VCI)
shortest-path algorithms virtual-circuit connection (VCC)
source routing virtual-circuit identifier (VCI)
split horizon virtual-circuit packet switching
split horizon with poisoned reverse virtual path

static routing virtual path identifier (VPI)
traffic shaping weighted fair queueing

FURTHER READING

Bertsekas, D. and R. Gallagher, Data Networks, Prentice-Hall, Englewood Cliffs, New Jersey,
1992.

Halabi, B., Internet Routing Architectures, New Riders Publishing, Indianapolis, Indiana,
1997.

Hashemi, M. R. and A. Leon-Garcia, “Implementation of Scheduling Schemes Using a
Sequence Circuit,” Voice, Video, and Data Communications, SPIE, Dallas, November
1997.

Huitema, C., Routing in the Internet, Prentice-Hall, Englewood Cliffs, New Jersey, 1995.

Jacobson, V., “Congestion Avoidance and Control,” Computer Communications Review, Vol.
18, No. 4, August 1988, pp. 314-329.

Keshav, S., An Engineering Approach to Computer Networking, Addison-Wesley, Reading,
Massachusetts, 1997.

McDysan, D. E. and D. L. Spohn, ATM: Theory and Application, McGraw-Hill, New York,
1995.

Parekh, A. K., “A Generalized Processor Sharing Approach to Flow Control in Integrated
Services Networks,” Ph.D. dissertation, Department of Electrical Engineering and
Computer Science, MIT, February 1992.

Perlman, R., Interconnections: Bridges and Routers, Addison-Wesley, Reading, Massachusetts,
1992. (The most comprehensive book on bridges and routers.)

Robertazzi, T. G., Performance Evaluation of High Speed Switching Fabrics, IEEE Press, 1994.

Saltzer, J. et al., “End-to-end arguments in System Design,” ACM Transactions on Computer
Systems, Vol. 2, No. 4, November 1984, pp. 277-288.

Zhang, H., “Service Disciplines for Guaranteed Performance in Packet Switching Networks,”
Proceedings of IEEE, October 1995, pp. 1374-1396.

RFC 2001, W. Stevens, “TCP Slow Start, Congestion Avoidance, Fast Retransmit, and Fast
Recovery Algorithms,” January 1997.

PROBLEMS

1. Explain how a network that operates internally with virtual circuits can provide connec-
tionless service. Comment on the delay performance of the service. Can you identify
inefficiencies in this approach?

4 | P | eTextMainMenu | Textbook Table of Contents

10.

11.

Problems 537

Is it possible for a network to offer best-effort virtual-circuit service? What features would
such a service have, and how does it compare to best-effort datagram service?

Suppose a service provider uses connectionless operation to run its network internally.
Explain how the provider can offer customers reliable connection-oriented network ser-
vice.

Where is complexity concentrated in a connection-oriented network? Where is it concen-
trated in a connectionless network?

Comment on the following argument: Because they are so numerous, end systems should
be simple and dirt cheap. Complexity should reside inside the network.

In this problem you compare your telephone demand behavior and your Web demand

behavior.

a. Arrival rate: Estimate the number of calls you make in the busiest hour of the day;
express this quantity in calls/minute. Service time: Estimate the average duration of a
call in minutes. Find the load that is given by the product of arrival rate and service
time. Multiply the load by 64 kbps to estimate your demand in bits/hour.

b. Arrival rate: Estimate the number of Web pages you request in the busiest hour of the
day. Service time: Estimate the average length of a Web page. Estimate your demand in
bits/hour.

c. Compare the number of call requests/hour to the number of Web requests/hour.
Comment on the connection setup capacity required if each Web page request requires
a connection setup. Comment on the amount of state information required to keep
track of these connections.

Apply the end-to-end argument to the question of how to control the delay jitter that is
incurred in traversing a multihop network.

Compare the operation of the layer 3 entities in the end systems and in the routers inside
the network.

In Figure 7.6 trace the transmission of IP packets from when a Web page request is made

to when the Web page is received. Identify the components of the end-to-end delay.

a. Assume that the browser is on a computer that is in the same departmental LAN as the
server.

b. Assume that the Web server is in the central organization servers.

c. Assume that the server is located in a remote network.

In Figure 7.6 trace the transmission of IP packets between two personal computers run-
ning an IP telephony application. Identify the components of the end-to-end delay.

a. Assume that the two PCs are in the same departmental LAN.

b. Assume that the PCs are in different domains.

In Figure 7.6 suppose that a workstation becomes faulty and begins sending LAN frames
with the broadcast address. What stations are affected by this broadcast storm? Explain
why the use of broadcast packets is discouraged in IP.

4 | P | eTextMainMenu | Textbook Table of Contents

538

12.

13.

14.

15.

16.

17.

cHAPTER 7 Packet-Switching Networks

Explain why the distance in hops from your ISP to a NAP is very important. What
happens if a NAP becomes congested?

Consider the operation of a switch in a connectionless network. What is the source of the
load on the processor? What can be done if the processor becomes the system bottleneck?

Consider the operation of a switch in a connection-oriented network. What is the source
of the load on the processor? What can be done if the processor becomes overloaded?

Suppose that a computer that is used as a switch can process 20,000 packets/second. Give
a range of possible bit rates that traverse the I/O bus and main memory.

A 64-kilobyte message is to be transmitted from over two hops in a network. The network
limits packets to a maximum size of 2 kilobytes, and each packet has a 32-byte header. The
transmission lines in the network are error free and have a speed of 50 Mbps. Each hop is
1000 km long. How long does it take to get the message from the source to the destina-
tion?

An audio-visual real-time application uses packet switching to transmit 32 kilobit/second
speech and 64 kilobit/second video over the following network connection.

18.

1 km 3000 km 1000 km 1 km
Workstation Switch 1 Switch 2 Switch 3 Workstation
10 Mbps 45 Mbps 45 Mbps 10 Mbps
or or
1.5 Mbps 1.5 Mbps

Two choices of packet length are being considered: In option 1 a packet contains 10
milliseconds of speech and audio information; in option 2 a packet contains 100 milli-
seconds of speech and audio information. Each packet has a 40 byte header.

a. For each option find out what percentage of each packet is header overhead.

b. Draw a time diagram and identify all the components of the end-to-end delay in the
preceding connection. Keep in mind that a packet cannot be sent until it has been filled
and that a packet cannot be relayed until it is completely received. Assume that bit
errors are negligible.

c. Evaluate all the delay components for which you have been given sufficient informa-
tion. Consider both choices of packet length. Assume that the signal propagates at a
speed of 1 km/5 microseconds. Consider two cases of backbone network speed:
45 Mbps and 1.5 Mbps. Summarize your result for the four possible cases in a table
with four entries.

d. Which of the preceding components would involve queueing delays?

Suppose that a site has two communication lines connecting it to a central site. One line
has a speed of 64 kbps, and the other line has a speed of 384 kbps. Suppose each line is
modeled by an M/M/1 queueing system with average packet delay given by
E[D] = E[X]/(1 — p) where E[X] is the average time required to transmit a packet, A is
the arrival rate in packets/second, and p = LE[X] is the load. Assume packets have an
average length of 8000 bits. Suppose that a fraction « of the packets are routed to the first
line and the remaining 1 — « are routed to the second line.

4 | P | eTextMainMenu | Textbook Table of Contents

19.

20.

21.

22.

23.

24.

25.

26.

Problems 539

a. Find the value of « that minimizes the total average delay.
b. Compare the average delay in part (a) to the average delay in a single multiplexer that
combines the two transmission lines into a single transmission line.

A message of size m bits is to be transmitted over an L-hop path in a store-and-forward

packet network as a series of N consecutive packets, each containing & data bits and 4

header bits. Assume that m > k+ h. The bit rate of each link is R bits/second.

Propagation and queueing delays are negligible.

a. What is the total number of bits that must be transmitted?

b. What is the total delay experienced by the message (i.e., the time between the first
transmitted bit at the sender and the last received bit at the receiver)?

c. What value of &k minimizes the total delay?

Suppose that a datagram network has a routing algorithm that generates routing tables so
that there are two disjoint paths between every source and destination that is attached to
the network. Identify the benefits of this arrangement. What problems are introduced with
this approach?

Suppose that a datagram packet network uses headers of length H bytes and that a
virtual-circuit packet network uses headers of length / bytes. Use Figure 7.19 to determine
the length M of a message for which virtual-circuit switching delivers the packet in less
time than datagram switching does. Assume packets in both networks are the same length.

Suppose a routing algorithm identifies paths that are “best” in the following sense: (1)
minimum number of hops, (2) minimum delay, or (3) maximum available bandwidth.
Identify the conditions under which the paths produced by the different criteria are the
same? are different?

Suppose that the virtual circuit identifiers are unique to a switch, not to an input port.
What is traded off in this scenario?

Consider the virtual-circuit packet network in Figure 7.24. Suppose that node 4 in the
network fails. Reroute the affected calls and show the new set of routing tables.

Consider the datagram packet network in Figure 7.26. Reconstruct the routing tables
(using minimum-hop routing) that result after node 4 fails. Repeat if node 3 fails instead.

Consider the following six-node network. Assume all links have the same bit rate R.

a. Suppose the network uses datagram routing. Find the routing table for each node,
using minimum-hop routing.

4 | P | eTextMainMenu | Textbook Table of Contents

540

27.

28.

29.

30.

31.

cHAPTER 7 Packet-Switching Networks

b. Explain why the routing tables in part (a) lead to inefficient use of network bandwidth.

¢. Can VC routing improve efficiency in the use of network bandwidth? Explain why or
why not.

d. Suggest an approach in which the routing tables in datagram routing are modified to
improve efficiency. Give the modified routing tables.

Consider the following six-node unidirectional network. Assume all links have the same
bit rate R =1.

a. If flows a and b are equal, find the maximum flow that can be handled by the network.

b. If flow a is three times larger than flow b, find the maximum flow that can be handled
by the network.

c. Repeat (a) and (b) if the flows are constrained to use only one path.

Consider the network in Figure 7.30.

a. Use the Bellman-Ford algorithm to find the set of shortest paths from all nodes to
destination node 2.

b. Now continue the algorithm after the link between node 2 and 4 goes down.

Consider the network in Figure 7.28.
a. Use the Dijkstra algorithm to find the set of shortest paths from node 4 to other nodes.
b. Find the set of associated routing table entries.

Suppose that a block of user information that is L bytes long is segmented into multiple

cells. Assume that each data unit can hold up to P bytes of user information, that each cell

has a header that is H bytes long, and that the cells are fixed in length and padded if

necessary. Define the efficiency as the ratio of the L user bytes to the total number of bytes

produced by the segmentation process.

a. Find an expression for the efficiency as a function of L, H, and P. Use the ceiling
function ¢(x), which is defined as the smallest integer larger or equal to x.

b. Plot the efficiency for the following ATM parameters: H = 5, P = 48, and L = 24k for
k=0,1,2,3,4,5, and 6.

Consider a videoconferencing application in which the encoder produces a digital stream

at a bit rate of 144 kpbs. The packetization delay is defined as the delay incurred by the

first byte in the packet from the instant it is produced to the instant when the packet is

filled. Let P and H be defined as they are in problem 30.

a. Find an expression for the packetization delay for this video application as a function
of P.

b. Find an expression for the efficiency as a function of P and H. Let H = 5 and plot the
packetization delay and the efficiency versus P.

4 | P | eTextMainMenu | Textbook Table of Contents

32.

33.

34.

35.

36.

37.

38.

39.

Problems 541

Suppose an ATM switch has 16 ports each operating at SONET OC-3 transmission rate,
155 Mbps. What is the maximum possible throughput of the switch?

Refer to the virtual circuit packet network in Figure 7.24. How many VCIs does each
connection in the example consume? What is the effect of the length of routes on VCI
consumption?

Generalize the hierarchical network in Figure 7.27 so that the 2% nodes are interconnected
in a full mesh at the top of the hierarchy and so that each node connects to two 2 nodes in
the next lower level in the hierarchy. Suppose there are four levels in the hierarchy.

a. How many nodes are in the hierarchy?

b. What does a routing table look like at level j in the hierarchy, j = 1,2, 3, and 4?

c. What is the maximum number of hops between nodes in the network?

Assuming that the earth is a perfect sphere with radius 6400 km, how many bits of
addressing are required to have a distinct address for every 1 cm x 1 cm square on the
surface of the earth?

Suppose that 64 kbps PCM coded speech is packetized into a constant bit rate ATM cell
stream. Assume that each cell holds 48 bytes of speech and has a 5 byte header.

a. What is the interval between production of full cells?

b. How long does it take to transmit the cell at 155 Mbps?

¢. How many cells could be transmitted in this system between consecutive voice cells?

Suppose that 64 kbps PCM coded speech is packetized into a constant bit rate ATM cell
stream. Assume that each cell holds 48 bytes of speech and has a 5 byte header. Assume
that packets with silence are discarded. Assume that the duration of a period of speech
activity has an exponential distribution with mean 300 ms and that the silence periods
have a duration that also has an exponential distribution but with mean 600 ms. Recall
that if 7 has an exponential distribution with mean 1/, then P[T > f] = e *.

a. What is the peak cell rate of this system?

b. What is the distribution of the burst of packets produced during an active period?

c. What is the average rate at which cells are produced?

Suppose that a data source produces information according to an on/off process. When
the source is on, it produces information at a constant rate of 1 Mbps; when it is off, it
produces no information. Suppose that the information is packetized into an ATM cell
stream. Assume that each cell holds 48 bytes of speech and has a 5 byte header. Assume
that the duration of an on period has a Pareto distribution with parameter 1. Assume that
the off period is also Pareto but with parameters 1 and «. If 7 has a Pareto distribution
with parameters 1 and «, then P[T >] =¢* for t > 1. If o > 1, then E[T] = a/(x — 1),
and if 0 < o < 1, then E[T] is infinite.

a. What is the peak cell rate of this system?

b. What is the distribution of the burst packets produced during an on period?

c. What is the average rate at which cells are producd?

An IP packet consists of 20 bytes of header and 1500 bytes of payload. Now suppose that
the packet is mapped into ATM cells that have 5 bytes of header and 48 bytes of payload.
How much of the resulting cell stream is header overhead?

4 | P | eTextMainMenu | Textbook Table of Contents

542

40.

41.

42,

43.

44.

45.

46.

47.

48.

49.

cHAPTER 7 Packet-Switching Networks

Suppose that virtual paths are set up between every pair of nodes in an ATM network.
Explain why connection setup can be greatly simplified in this case.

Suppose that the ATM network concept is generalized so that packets can be variable in
length. What features of ATM networking are retained? What features are lost?

Explain where priority queueing and fair queueing may be carried out in the generic
switch/router in Figure 7.10.

Consider the head-of-line priority system in Figure 7.43. Explain the impact on the delay
and loss performance of the low-priority traffic under the following conditions:

a. The high-priority traffic consists of uniformly spaced, fixed-length packets.

b. The high-priority traffic consists of uniformly spaced, variable-length packets.

¢. The high-priority traffic consists of highly bursty, variable-length packets.

Consider the head-of-line priority system in Figure 7.43. Suppose that each priority class
is divided into several subclasses with different ““drop” priorities. Each priority subclass
has a threshold that if exceeded by the queue length results in discarding of arriving
packets from the corresponding subclass. Explain the range of delay and loss behaviors
that are experienced by the different subclasses.

Incorporate some form of weighted fair queueing in the head-of-line priority system in
Figure 7.43 so that the low-priority traffic is guaranteed to receive r bps out of the total bit
rate R of the transmission link. Explain why this feature may be desirable. How does it
affect the performance of the high-priority traffic?

Consider a packet-by-packet fair-queueing system with three logical queues and with a
service rate of one unit/second. Show the sequence of transmissions for this system for the
following packet arrival pattern. Queue 1: arrival at time ¢ = 0, length 2; arrival at r = 4,
length 1. Queue 2: arrival at time ¢ = 1, length 3; arrival at 1 = 2, length 1. Queue 3: arrival
at time 7 = 3, length 5.

Repeat problem 46 if queues 1, 2, and 3 have weights, 2, 3, and 5, respectively.

Suppose that in a packet-by-packet weighted fair-queueing system, a packet with finish tag
F enters service at time ¢. Is it possible for a packet to arrive at the system after time ¢ and
have a finish tag less than F? If yes, give an example. If no, explain why.

Deficit round-robin is a scheduling scheme that operates as follows. The scheduler visits
the queues in round-robin fashion. A deficit counter is maintained for each queue. When
the scheduler visits a queue, the scheduler adds a quantum of service to the deficit counter,
and compares the resulting value to the length of the packet at the head of the line. If the
counter is larger, the packet is served and the counter is reduced by the packet length. If
not, the deficit is saved for the next visit. Suppose that a system has four queues and that
these contain packets of length 16, 10, 12, and 8 and that the quantum is 4 units. Show the
deficit counter at each queue as a function of time and indicate when the packets are
transmitted.

4 | P | eTextMainMenu | Textbook Table of Contents

50.

51.

52.

53.

54.

5S.

Problems 543

Suppose that ATM cells arrive at a leaky bucket policer at times 7=
1,2,3,5,6,8,11,12,13,15, and 19. Assuming the same parameters as the example in
Figure 7.55, plot the bucket content and identify any nonconforming cells. Repeat if L
is reduced to 4.

Explain the difference between the leaky bucket traffic shaper and the token bucket traffic
shaper.

Which of the parameters in the upper bound for the end-to-end delay (equation 11) are
controllable by the application? What happens as the bit rate of the transmission links
becomes very large?

Supose that a TCP source (with an unlimited amount of information to transmit) begins
transmitting onto a link that has 1 Mbps in available bandwidth. Sketch the congestion
window versus the time trajectory. Now suppose that another TCP source (also with an
unlimited amount of information to transmit) begins transmitting over the same link.
Sketch the congestion window versus the time for the initial source.

Suppose that TCP is operating in a 100 Mbps link that has no congestion.

a. Explain the behavior of slow start if the link has RTT = 20 ms, receive window of 20
kbytes, and maximum segment size of 1 kbyte.

b. What happens if the speed of the link is 1 Mbps? 100 kbps?

Random early detection (RED) is a buffer management mechanism that is intended to

avoid congestion in a router by keeping average queue length small. The RED algorithm

continuously compares a short-time average queue length with two thresholds: min,, and

max,,. When the average queue length is below min,,, RED does not drop any packets.

When the average queue length is between min,, and max,, RED drops an arriving packet

with a certain probability that is an increasing function of the average queue length. The

random packet drop is used to notify the sending TCP to reduce its rate before the queue

becomes full. When the average queue length exceeds max,,, RED drops each arriving

packet.

a. What impact does RED have on the tendency of TCP receivers to synchronize during
congestion?

b. What is the effect of RED on network throughput?

c. Discuss the fairness of the RED algorithm with respect to flows that respond to packet
drops and nonadaptive flows, for example, UDP.

d. Discuss the implementation complexity of the RED algorithm.

4 | P | eTextMainMenu | Textbook Table of Contents

