Chapter 4

Introduction to Network Layer

INTRODUCTION

Network Layer

- Network Layer: the most complex layer
 - Requires the coordinated actions of multiple, geographically distributed network elements (switches & routers)
 - Must be able to deal with very large scales
 - Billions of users (people & communicating devices)
 - Biggest Challenges
 - Addressing: where should information be directed to?
 - Routing: what path should be used to get information there?

Internet as a Black Box

Internet as a Combination of LANs and WANs

Switching

- Circuit Switching
 - The whole message is sent from source to destination without being divided into packets
- Packet Switching
 - The whole message is divided into some packets

Packet Switching

- Transfer of information as payload in data packets
- Packets undergo random delays & possible loss
- Different applications impose differing requirements on the transfer of information

Network Service

- Network layer can offer a variety of services to transport layer
- Connection-oriented service or connectionless service
- Best-effort or delay/loss guarantees

Packet Switching Network

Packet switching network

- Transfers packets between users
- Transmission lines + packet switches (routers)

Two modes of operation:

- Connectionless
- Virtual Circuit

Packet Switching – Connectionless (Datagram)

- Messages broken into smaller units (packets)
- Source & destination addresses in packet header
- Connectionless, packets routed independently (datagram)
- Packet may arrive out of order

Connectionless Packet-Switched Network

Forwarding Process in connectionless networks

Routing Tables in Datagram Networks

- Route determined by table lookup
- Routing decision involves finding next hop in route to given destination
- Routing table has an entry for each destination specifying output port that leads to next hop
- Size of table becomes impractical for very large number of destinations

Delay in connectionless network

Connection oriented packet switched networks –virtual circuit

Packet Switching - Virtual Circuit

- Call set-up phase sets up pointers in fixed path along network
- All packets for a connection follow the same path
- Abbreviated header identifies connection on each link
- Packets queue for transmission
- Variable bit rates possible, negotiated during call set-up
- Delays variable, cannot be less than circuit switching

Forwarding Process in connection oriented networks

Connection Setup

- Signaling messages propagate as route is selected
- Signaling messages identify connection and setup tables in switches
- Typically a connection is identified by a local tag, Virtual Circuit Identifier (VCI)
- Each switch only needs to know how to relate an incoming tag in one input to an outgoing tag in the corresponding output
- Once tables are setup, packets can flow along path

Connection Setup

Setup acknowledgment

Data transfer

Delay in connection oriented network

Network layer services

- Logical addressing
- Routing
- Service provided at the source computer
- Service provided at each router
- Service provided at the destination computer
- Error control
- Low control
- Congestion control
- Quality of service
- Security

An imaginary part of the Internet

Service provided at the source computer

Drocecing at each router Network layer Routing table DA Network DA NA Find next-hop logical address Processes NA Datagram + NA Data Data NA link Find next-hop MAC address ARP MAC Outgoing Datagram + MAC Incoming MTU table Link Link MTU Fragment Legend **MTU** Data Upper layer data DA Destination logical address NA Next-hop logical address MAC Next-hop MAC address Maximum Transfer Unit [true] MTU Valid datagram? H Datagram header Discard datagram [false] Datagram H Data H MAC Fragment Data Data link layer of incoming interface Fragment Н MAC Data Fragment H Data MAC Data link layer of outgoing interface

Processing at the destination computer

Error checking at data link layer

