Delft University of Technology
Parallel and Distributed Systems Report Series

Cost-driven Scheduling of Grid Workflows Using
Partial Critical Paths

Saeid Abrishami, Mahmoud Naghibzadeh, Dick Epema

s-abrishami@um.ac.ir,naghibzadeh@um.ac.ir, D.H.J.Epema@tudelft.nl

Completed April 2011. Submitted for publication

report number PDS-2011-001

%
TUDelft PDSE==

ISSN 1387-2109

Published and produced by:

Parallel and Distributed Systems Section

Faculty of Information Technology and Systems Department of Technical Mathematics and Informatics
Delft University of Technology

Mekelweg 4

2628 CD Delft

The Netherlands

Information about Parallel and Distributed Systems Report Series:
reports@pds.ewi.tudelft.nl

Information about Parallel and Distributed Systems Section:
http://www.pds.ewi.tudelft.nl/

(© 2011 Parallel and Distributed Systems Section, Faculty of Information Technology and Systems, Department
of Technical Mathematics and Informatics, Delft University of Technology. All rights reserved. No part of this
series may be reproduced in any form or by any means without prior written permission of the publisher.

Abstract

Recently, utility Grids have emerged as a new model of service provisioning in heterogeneous distributed
systems. In this model, users negotiate with service providers on their required Quality of Service and on
the corresponding price to reach a Service Level Agreement. One of the most challenging problems in utility
Grids is workflow scheduling, i.e., the problem of satisfying the QoS of the users as well as minimizing the
cost of workflow execution. In this paper, we propose a new QoS-based workflow scheduling algorithm based
on a novel concept called Partial Critical Paths (PCP), that tries to minimize the cost of workflow execution
while meeting a user-defined deadline. The PCP algorithm has two phases: in the deadline distribution phase
it recursively assigns sub-deadlines to the tasks on the partial critical paths ending at previously assigned
tasks, and in the planning phase it assigns the cheapest service to each task while meeting its sub-deadline.
The simulation results show that the performance of the PCP algorithm is very promising.

Contents
1 Introduction
2 Scheduling System Model

3 The Partial Critical Paths Algorithm

3.1 Main Idea L e e
3.2 Basic Definitionso
3.3 The Workflow Scheduling Algorithm
3.4 The Parents Assigning Algorithm
3.5 The Path Assigning Algorithm

3.5.1 Optimized Policy e

3.5.2 Decrease Cost Policy e

3.5.3 Fair Policy e
3.6 The Planning Algorithm
3.7 Time Complexity« . o e e
3.8 An Hlustrative Example e

3.8.1 CQalling AssignParents e

3.8.2 CQalling Planning o e e e e

4 Performance Evaluation

4.1 Experimental Workflows
4.2 Experimental Setup
4.3 Experimental Results L
4.4 Computation Time e

5 Related Work

6 Conclusions

15
15
17
17
21

22

23

List of Figures

[\

A sample workflow L
The structure of five realistic scientific workflows [1] 0L
Normalized Makespan and Normalized Cost of scheduling workflows with three scheduling policies: HEFT, Fastest

and Cheapest L oL e e e e e e e s e e s e e
Normalized Cost of scheduling workflows with the PCP and Deadline-MDP algorithms

List of Tables

Available services for the workflow of Figure 1
The values of EST, LFT and sub-deadline (DL) for each Step of running the PCP algorithm on
the sample workflow of Figure 1.o
The average percentage by which the Normalized Makespan is smaller than the deadline factor
(Q) o
Average cost decrease in percent of the PCP (Optimized policy) over the Deadline-MDP
Maximum computation time of different path assigning policies for the large size workflows (ms)

1 Introduction

Many researchers believe that economic principles will influence the Grid computing paradigm to become an
open market of distributed services, sold at different prices, with different performance and Quality of Service
(QoS) [2]. This new paradigm is known as wutility Grid, versus the traditional community Grid in which services
are provided free of charge with best-effort service. Although there are many papers that address the problem of
scheduling in traditional Grids, there are only a few works on this problem in utility Grids. The multi-objective
nature of the scheduling problem in utility Grids makes it difficult to solve, specially in the case of complex
jobs like workflows. This has led most researchers to use time-consuming meta-heuristic approaches, instead of
fast heuristic methods. In this paper we propose a new heuristic algorithm for scheduling workflows in utility
Grids, and we evaluate its performance on some well-known scientific workflows in the Grid context.

The main difference between community Grids and utility Grids is QoS: while community Grids follow the
best-effort method in providing services, utility Grids guarantee the required QoS of users via Service Level
Agreements (SLAs) [3]. An SLA is a contract between the provider of resources and the consumer of those
resources describing the qualities and the guarantees of the service provisioning. Consumers can negotiate
with providers on the required QoS and the price to reach an SLA. The price has a key role in this contract: it
encourages providers to advertise their services to the market, and encourages consumers to define their required
qualities more realistically. Obviously, traditional resource management systems for community Grids are not
directly suitable for utility Grids, and therefore, new methods have been proposed and implemented in recent
years [4].

Workflows constitute a common model for describing a wide range of applications in distributed systems.
Usually, a workflow is described by a Directed Acyclic Graph (DAG) in which each computational task is
represented by a node, and each data or control dependency between tasks is represented by a directed edge
between the corresponding nodes. Due to the importance of workflow applications, many Grid projects such
as Pegasus [5], ASKALON [6], and GrADS [7] have designed workflow management systems to define, manage,
and execute workflows on the Grid. A taxonomy of Grid workflow management systems can be found in [8].
Workflow scheduling is the problem of mapping each task to a suitable resource and of ordering the tasks on
each resource to satisfy some performance criterion. As task scheduling is a well-known NP-complete problem
[9], many heuristic methods have been proposed for homogeneous [10] and heterogeneous distributed systems
like Grids [11, 12, 13, 14]. These scheduling methods try to minimize the execution time (makespan) of the
workflows and as such are suitable for community Grids. Most of the current workflow management systems,
like the ones above mentioned, use such scheduling methods. However, in utility Grids, there are many potential
other QoS attributes than execution time, like reliability, security, availability, and so on. Besides, stricter QoS
attributes mean higher prices for the services. Therefore, the scheduler faces a QoS-cost tradeoff in selecting
appropriate services, which belongs to the multi-objective optimization problems family.

In this paper we propose a new QoS-based workflow scheduling algorithm, called the Partial Critical Paths
(PCP) algorithm. The objective function of the PCP algorithm is to create a schedule that minimizes the total
execution cost of a workflow while satisfying a user-defined deadline for the total execution time. The proposed
algorithm has two main phases: Deadline Distribution and Planning. In the former phase, the overall deadline
of the workflow is distributed across individual tasks. First, the algorithm tries to assign sub-deadlines to all
tasks of the (overall) critical path of the workflow such that it can complete before the user’s deadline and its
execution cost is minimized. Then it finds the partial critical path to each assigned task on the critical path
and executes the same procedure in a recursive manner. In the latter phase, the planner selects the cheapest
service for each task such that the task finishes before its sub-deadline.

The remainder of the paper is organized as follows. Section 2 describes our system model, including the ap-
plication model, the utility Grid model, and the objective function. The PCP scheduling algorithm is explained
in Section 3 followed by an illustrative example. A performance evaluation is presented in Section 4. Section 5
reviews related work and Section 6 concludes.

2 Scheduling System Model

The proposed scheduling system model consists of an application model, a utility Grid model, and a performance
criterion for scheduling. An application is modeled by a directed acyclic graph G(T, E), where T is a set of
n tasks {t1,t2,...,t,}, and E is a set of arcs. Each arc e; ; = (¢;,t;) represents a precedence constraint that
indicates that task ¢; should complete executing before task ¢; can start. In a given task graph, a task without
any parent is called an entry task, and a task without any child is called an ezit task. As our algorithm requires
a single entry and a single exit task, we always add two dummy tasks teyiry and teq to the beginning and the
end of the workflow, respectively. These dummy tasks have zero execution time and they are connected with
zero-weight arcs to the actual entry and exit tasks, respectively.

A utility Grid model counsists of several Grid Service Providers (GSPs), each of which provides some services
to the users. Each workflow task ¢; can be processed by m; services S; = {si 1, $i,2, .y Si,m, ; from different
service providers with different QoS attributes. There are many QoS attributes for services, like execution
time, price, reliability, security, and so on. In this study we use the most important ones, execution time
and cost, for our scheduling model. The cost of a service usually depends on its execution time, i.e., shorter
execution times are more expensive. However, some service providers may offer special services to special users,
or in certain (off-peak) times. We assume ET(t;,s) and EC(t;,s) to be the estimated execution time and
execution cost for processing task ¢; on service s, respectively. Estimating the execution time of a task on an
arbitrary resource is an important issue in Grid scheduling. Many techniques have been proposed in this area
such as code analysis, analytical benchmarking/code profiling, and statistical prediction [15], that are beyond
our discussion. Besides, there is another source of time and money consumption: transferring data between
tasks. We assume TT (e; j,7,s) and TC(e; ;,7,s) to be the estimated transfer time and transfer cost of sending
the required data along e; ; from service r (processing task t;) to service s (processing task t;), respectively.
Estimating the transfer time can be done using the amount of data to be transmitted, and the bandwidth and
latency information between services.

To obtain the available services and their information, the scheduler should query a Grid information service
like the Grid Market Directory (GMD)[16]. In a utility Grid, the GMD is used to provide information such
as the type, the provider, and the QoS parameters (including price) for all services. Each GSP has to register
itself and its services with the GMD, so that it can present and sell its services to users. Whenever a scheduler
accepts a workflow, it contacts the GMD to query about available services for each task and their QoS attributes.
Then the broker directly contacts the service’s GSP to gather detailed information about the dynamic status
of the service, especially the available time slots for processing tasks. Using this information, the scheduler can
execute a scheduling algorithm to map each task of a workflow to one of the available services. According to the
generated schedule, the broker contacts GSPs to make advanced reservations of selected services. This results
in an SLA between the broker and the GSP specifying the earliest start time, the latest finish time, and the
price of the selected service. Usually, the SLA contains a penalty clause in case of violation of the service level
to enforce service level guarantees.

The last element in our model is the performance criterion. In community Grids (traditional scheduling),
users prefer to minimize the completion time (makespan) of their jobs. However, in utility Grids, price is the
most important factor. Therefore, users prefer to utilize cheaper services with lower QoS that satisfy their
needs and expectations. Generally, a user job has a deadline before which the job must be finished, but earlier
completion of the job only incurs more cost to the user. Therefore, our performance criterion is to minimize
the execution cost of the workflow while completing the workflow before the user specified deadline.

3 The Partial Critical Paths Algorithm

In this section, we first elaborate on the PCP scheduling algorithm, then compute its time complexity, and
finally demonstrate its operation through an illustrative example.

3.1 Main Idea

The proposed algorithm has two main phases: Deadline Distribution and Planning. In the first phase, the
overall deadline of the workflow is distributed over individual tasks, such that if each task finishes before its
sub-deadline then the whole workflow finishes before the user defined deadline. In the second phase, the planner
selects the cheapest service for each task while meeting its sub-deadline.

Our main contribution in this paper is the deadline distribution algorithm which is based on a Critical Path
(CP) heuristic. Critical path heuristics are widely used in workflow scheduling. The critical path of a workflow
is the longest execution path between the entry and the exit tasks of the workflow. Most of these heuristics try
to schedule critical tasks (nodes), i.e., the tasks belonging to the critical path, first by assigning them to the
services that process them earliest, in order to minimize the execution time of the entire workflow. Our deadline
distribution algorithm is based on a similar heuristic, but it uses the critical path to distribute the overall
deadline of the workflow across the critical nodes. After this distribution, each critical node has a sub-deadline
which can be used to compute a sub-deadline for all of its parent nodes, i.e., its (direct) predecessors in the
workflow. Then we can carry out the same procedure by considering each critical node in turn as an exit node
with its sub-deadline as a deadline, and creating a partial critical path that ends in the critical node and that
leads back to an already assigned node, i.e., a node that has already been given a sub-deadline. In the Partial
Critical Paths (PCP) algorithm, this procedure continues recursively until all tasks are successfully assigned
a sub-deadline. Finally, the planning algorithm schedules the tasks according to their sub-deadlines. In the
following sections, we elaborate on the details of the PCP algorithm.

3.2 Basic Definitions

In our PCP scheduling algorithm, we want to find the critical path of the whole workflow, and all partial critical
paths. In order to find these, we need some (idealized, approximate) notion of the start time of each workflow
task before we actually schedule the task. This means that we have two notions of the start times of tasks,
the earliest start time computed before scheduling the workflow, and the actual start time computed by our
planning algorithm.

For each unscheduled task t; we define its Earliest Start Time, EST (t;), as the earliest time at which ¢;
can start its computation, regardless of the actual service that will process the task (which will be determined
during planning). Clearly, it is not possible to compute the exact EST (t;), because a Grid is a heterogeneous
environment and the computation time of tasks varies from service to service. Furthermore, the data trans-
mission time is also dependent on the selected services and the bandwidth between their providers. Thus, we
have to approximate the execution and data transmission time for each unscheduled task. Among the possi-
ble approximation options, e.g., the average, the median, or the minimum, the minimum execution and data
transmission time is selected. The Minimum Execution Time, M ET (t;), and the Minimum Transmission Time,
MTT (e;;), are defined as follows:

MET (t;) = min ET (t;, s) (1)
sES;
MTT (e;,5) = rESI'Iil,iSHGSj TT (e;,j,r,5) (2)

Having these definitions, we can compute EST (t;) as follows:

EST (tentry) = 0 (3)
EST (t;) max EST (tp) + MET (tp) + MTT (eps)
tpEt]s parents
Also, we define for each unscheduled task ¢; its Latest Finish Time LFT (¢;) as the latest time at which ¢; can
finish its computation such that the whole workflow can still finish before the user-defined deadline, D. Once
again, it is impossible to compute LFT (t;) exactly and we have to compute it according to the approximate
execution and data transmission time as follows:

Algorithm 1 The PCP Scheduling Algorithm

1: procedure ScHEDULEWORKFLOW(G(T, E), D)

2: request available services for each task in G from GMD
add tentry, texit and their corresponding edges to G
compute M ET(t;) for each task according to Eq. 1
compute MTT (e; ;) for each edge according to Eq. 2
compute EST(t;) for each task in G according to Eq. 3
compute LFT(t;) for each task in G according to Eq. 4
sub-deadline(tentry) <— 0, sub-deadline(teqit) <= D

9: mark tentry and tegie as assigned

10: call AssignParents(teyzit)

11: call Planning(G(T, E))

12: end procedure

LET (teait) = D (4)
LFT (t;) = min LFT (t.) — MET (t.) — MTT (e;..)
te€t)s children
For each scheduled task we define the Selected Service SS (t;) as the service selected for processing ¢; during
scheduling, and the Actual Start Time AST (¢;) as the actual start time of ¢; on that service. These attributes
will be determined during planning.

3.3 The Workflow Scheduling Algorithm

Algorithm 1 shows the pseudo-code of the overall PCP algorithm for scheduling a workflow. In line 3, two
dummy nodes teptry and tepir are added to the task graph, even if the task graph already has only one entry or
exit node. This is necessary for our algorithm, but we won’t actually schedule these two tasks. After computing
the required parameters in lines 4 - 7, a sub-deadline is assigned to the nodes tepiry and teg (line 8), and
they are marked as assigned (line 9). An assigned node is defined as a node that has already a sub-deadline,
and clearly a node without a sub-deadline is called unassigned. As can be seen, the sub-deadline of t..;; is
set to the user’s deadline. This enforces the parents of t..;, i.e., the actual exit nodes of the workflow, to be
finished before the user’s deadline. The most important part of the algorithm is the last two lines. In line 10
the procedure AssignParents is called for t..;+. This procedure assigns sub-deadlines to all unassigned parents
of its input node. As it has been called for .., i.e., the last node of the workflow, it will assign sub-deadlines
to all workflow tasks. Therefore the AssignParents algorithm is responsible for distributing the overall deadline
among the workflow tasks. Finally, in line 11 the procedure Planning is called to select a service for each task
according to its sub-deadline.

3.4 The Parents Assigning Algorithm

The pseudo-code for AssignParents is shown in Algorithm 2. This algorithm receives an assigned node as input
and tries to assign a sub-deadline to all of its parents (the while loop from line 2 to 14). First, AssignParents
tries to find the Partial Critical Path of unassigned nodes ending at its input node and starting at one of its
predecessors that has no unassigned parent. For this reason, it uses the concept of Critical Parent.

Definition 1 The Critical Parent of a node t; is the unassigned parent of t; that has the latest data arrival
time at t;, that is, it is the parent t, of t; for which EST (tp) + MET (t,) + MTT (eps) 15 maximal.

We will now define the fundamental concept of the PCP algorithm.

Definition 2 The Partial Critical Path of node t; is:

Algorithm 2 Assigning Deadline to the Parents Algorithm

1: procedure AssIGNPARENTS(t)

while (¢ has an unassigned parent) do

3 PCP + null,t; + t

4 while (there exists an unassigned parent of ¢;) do
5: add Critical Parent(t;) to the beginning of PC'P
6: t; < Critical Parent(t;)
7.

8

end while
: call AssignPath(PCP)
9: for all (¢; € PCP) do

10: update EST for all unassigned successors of t;
11: update LF'T for all unassigned predecessors of t;
12: call AssignParents(t;)

13: end for

14: end while
15: end procedure

i empty if ¢; does not have any unassigned parents.

ii consists of the Critical Parent ¢, of ¢; and the Partial Critical Path of ¢, if has any unassigned parents.

Algorithm 2 begins with the input node and follows the critical parents until it reaches a node that has no
unassigned parent, to form a partial critical path (lines 3-7). Note that in the first call of this algorithm, it
begins with ¢.,;+ and follows back the critical parents until it reaches t¢p¢ry, and so it finds the overall critical
path of the complete workflow graph.

Then the algorithm calls procedure AssignPath (line 8), which receives a path (an ordered list of nodes)
as input, and assigns sub-deadlines to each node on the path before its latest finish time. We elaborate on
this procedure in the next sub-section. Note that when a sub-deadline is assigned to a task, the EST of its
unassigned successors, and the LFT of its unassigned predecessors may change (according to the Eq. 3 and
4). For this reason, the algorithm updates these values for all tasks of the path in the next loop. Finally,
the algorithm starts to assign sub-deadlines to the parents of each node on the partial critical path, from the
beginning to the end, by calling AssignParents recursively (lines 9-13).

3.5 The Path Assigning Algorithm

The AssignPath algorithm receives a path as input and assigns sub-deadlines to each of its nodes, for which we
propose three policies below. In these policies we try to create an estimated schedule for the path and then use
it to determine the sub-deadline of each task on the path. As this is just an estimation and not a real schedule,
we do not consider the free time slots of the services in order to speed up our algorithms.

3.5.1 Optimized Policy

In this policy, we try to find the cheapest schedule that can execute each task of the path before its latest finish
time. Then we use this primary schedule to assign sub-deadlines to the tasks of the path. This policy is shown
in Algorithm 3, and it is based on a Backtracking strategy. It starts from the first task on the path and moves
forward to the last task, at each step selecting the next slower available service for the current task (line 5).
Therefore, the services for each task are examined form the fastest to the slowest one. If there is no available
untried service for a task left, or assigning the current task ¢, to its next slower service s is not an admissible
assignment, then the algorithm backtracks to the previous task on the path and selects another service for it
(lines 6-8). We call an assignment admissible if task ¢ can be finished on service s before the task’s latest finish
time, i.e., if EST(t) + ET(t,s) < LFT(t).

Algorithm 3 Optimized Path Assigning Algorithm
1: procedure AssicNPartu(path)

2: best <— null

3: t < first task on the path

4 while (¢ is not null) do

5: s < next slower service € Sy

6: if (s =1£j or assigning ¢ to s is not admissible) then

7 t <— previous task on the path and continue while loop
8: end if

9: if (¢ is the last task on the path) then

10: if (current schedule has a lower cost than best) then
11: set this schedule as best

12: end if

13: t < previous task on the path

14: else

15: t < next task on the path

16: end if

17: end while
18: if (best is null) then

19: set sub-deadline(t)=EST(t)+MET(t) for all tasks t on the path
20: else

21: set EST and sub-deadline according to best for all tasks € path
22: end if

23: mark all tasks of the path as assigned
24: end procedure

In the next lines, the algorithm checks if the current task is the last task on the path and has a lower cost
than currently best assignment, it is recorded as the current best assignment. At the end of the while loop (line
18), the algorithm checks whether a schedule has been found or not, because there is a chance that some tasks
of the path cannot be scheduled before their LFTs. This happens because we have computed the primary ESTs
using METs and MTTs, which is an ideal schedule and (almost) does not exist in the real world. So if a task
has a very tight LFT (near its current finish time using ideal (minimum) execution times), then we cannot find
an estimated schedule for it. In this case, we just use the task’s EST-+MET as the sub-deadline for that task
(line 19). Remember that this is not a real schedule, so we can fix this problem in the planning phase.

At the end, there may be an extra time, i.e., the difference between the LFT of the last task and its sub-
deadline, which can be added to the sub-deadlines of the tasks on the path. When this extra time is less than
a minimum, we simply add it to the last task’s sub-deadline. But if its value is significant, we distribute it
over the path’s tasks, in proportion to their transfer time plus execution time. Our experiments show that this
distribution has a positive effect on the performance of the algorithm. Although we do not explicitly specify
this distribution in the path assigning algorithms (Algorithms 3-5), we use it in all three of them.

The main drawback of this policy is its exponential time complexity. Suppose the path length (number of
nodes on the path) is [, and the maximum number of potential services for a single task is m. Then the time
complexity of this algorithm is O(I"™). In addition, we transformed the uninformed backtracking search to an
informed A™ search [17] (we skip the details for the sake of brevity), which considerably improved the average
computation time of the algorithm, although the time complexity in the worst case remains the same.

3.5.2 Decrease Cost Policy

This policy is based on a Greedy method that tries to approximate the previous (optimized) policy, i.e., it tries
to find a good (but not necessarily optimal) solution with a polynomial time complexity. In this policy, we first
assign the fastest service to each task on the path. Obviously this is the most expensive schedule. Then we try
to decrease the cost by assigning cheaper (and therefore slower) services to the tasks, without exceeding the
LFT of any task. To determine which task should be reassigned to a cheaper service, we first compute the Cost

Algorithm 4 Decrease Cost Path Assigning Algorithm
1: procedure AssicNPartu(path)

2: cur < assign the fastest service to each task of the path
3: compute CDR(t;) for each task of the path according to Eq. 5
4: repeat
5: t* < null
6: for all (¢; € path) do
7 if (CDR(t;) > CDR(t*) and t; is replaceable) then
8: t* +— t;
9: end if
10: end for
11: if (¢* is not null) then
12: update cur by assigning t* to the next slower service
13: update CDR(t*)
14: end if
15: until (¢* is null)
16: if (there is an inadmissible assignment in cur) then
17: set sub-dealine(t)=EST(t)+MET(t) for all tasks t on the path
18: else
19: set EST and sub-deadline according to cur for all tasks € path
20: end if
21: mark all nodes of the path as assigned

22: end procedure

Decrease Ratio, CDR, which is defined as follows:

_ TEC(t;,cs) = TEC(t;,ns) (5)
- TET(t;,ns) — TET(t;,cs)

where cs is the current service that has been assigned to the task t; and ns is the next slower service than the
current one for ¢;. The Total Execution Time of the task ¢ on service s, TET (¢, s), is the sum of the execution
time of ¢ on s, ET(t,s), plus the total required transfer time between ¢ and its parent and child on the path
(except for the first/last task that has no parent/child). The Total Execution Cost of task ¢ on service s,
TEC(t,s), is defined in a similar manner.

The CDR of a task t; shows how much it will be execute cheaper in expense of taking one unit of time
longer. Then task ¢* is selected such that it has the maximum CDR and it is replaceable, i.e., assigning it to
the next slower service is an admissible assignment. Finally, ¢*’s current service is changed to the next slower
service. Algorithm 4 shows this policy.

The time complexity of this algorithm is better than the previous one. The most time consuming part is
the repeat-until loop. In the worst case, all tasks can try all of their available services, so this loop can be run

at most [.m times. As this loop has a nested ForAll loop that is run [times, the ultimate time complexity is
O(I%.m).

CDR(t;)

3.5.3 Fair Policy

This policy tries to distribute the path’s sub-deadline across the nodes of the path in a fair manner. For this
reason, it first schedules the path by assigning each task to its fastest service. Then, starting from the first
task towards the last task, it substitutes the assigned service with the next slower service, without exceeding
the task’s LFT. This procedure continues iteratively until no substitution can be made. The policy is shown in
Algorithm 5. In the worst case, the repeat-until loop can be executed m times, so the time complexity of the
algorithm is O(l.m).

10

Algorithm 5 Fair Path Assigning Algorithm

1: procedure AssicNPartu(path)

2: cur < assign the fastest service to each task of the path

3: repeat

4 for all (¢; € Path) do

5 if (assigning ¢; to the next service is admissible) then

6: update cur by assigning t; to the next slower service

7 end if

8 end for

9: until (no change is done)

10: if (there is an inadmissible assignment in cur) then

11: set sub-dealine(t)=EST(t)+MET(t) for all tasks t on the path
12: else

13: set EST and sub-deadline according to cur for all tasks € path
14: end if

15: mark all nodes of the path as assigned
16: end procedure

3.6 The Planning Algorithm

In the planning phase, we try to select the best service for each task of the workflow to create an optimized
schedule that ends before the deadline and has the minimum overall cost. In the deadline distribution phase,
each task was assigned a sub-deadline. If we schedule each task such that it finishes before its sub-deadline,
then the whole workflow will finish before the user’s deadline. Our algorithm is based on a Greedy strategy
that tries to create an optimized global solution by making optimized local decisions. At each stage it selects
a ready task, i.e., a task all of whose parents have already been scheduled, and then assigns it to the cheapest
service which can execute it before its sub-deadline. So the selected service for a ready task ¢;, SS(¢;), is the
service s € §; for which

EC(ti,s)+ Y., TCl(epi, SS(t), 5)

tpEtls parents

is minimized subject to the condition that

AST(t;,s) + ET(t;, s) < sub-deadline (¢;) (6)

where the Actual Start Time of ¢; on s, AST(t;, s), is the maximum between the latest data arrival time of the
parents of t; to the services, and the start time of the suitable free time slot on the service s.

It is possible that no service can execute t; before its sub-deadline, because the sub-deadlines are just
estimated schedules and they do not consider the actual free time slots on the services. In that case, we just
select the service with the minimum finish time, i.e., SS(t;) is the service s € S; for which

is minimized. Of course, this delay must be compensated in the following selections, as soon as possible. The
Planning algorithm is shown in Algorithm 6.

3.7 Time Complexity

To compute the time complexity of our proposed algorithm, suppose that Schedule Workflow has received a
workflow G(T,E) as input with n tasks and e arcs. Besides, we assume the maximum number of available
services for each task ism, and [is the length of the longest path between entry and exit tasks. As G is a

directed acyclic graph, the maximum number of arcs is ("71)2&, so we can assume that e ~ O(n?). The

11

Algorithm 6 Planning Algorithm

1: procedure PLANNING(G(T, E))
2: Queue < tentry

3: while (Queue is not empty) do

4: t < delete first task from Queue

5: query available time slots for each service from related GSPs
6: compute SS(t) according to Eq. 6 and 7

7 AST(t) < the actual start time of t on SS(t)
8: make advance reservation of t on SS(t)

9: for all (t. € children of t) do

10: if (all parents of t. are scheduled) then
11: add t. to Queue

12: end if

13: end for

14: end while
15: end procedure

most time consuming part of Schedule Workflow is the deadline distribution phase, i.e., calling AssignParents.
Nevertheless, we first compute the time complexity of other (main) parts of the algorithm as follow:

e Line 4 (computing METs):O(n.m) =0(n?)

e Line 5 (computing MTTs): O(e.m?) = O(n%.m)

(
(
e Line 6 (computing ESTs):0(n + ¢) = O(n?)
e Line 7 (computing LFTs): O(n +e) = O(n?)
e Line 11 (Planning): O(n.m.e) = O(n®.m)

For the Planning algorithm, we should try all services for each task to find the cheapest service that finishes the
task before its sub-deadline. In each try, we should compute the actual start time of the task on that service
which requires to consider all parent tasks (and their arcs). So the overall time complexity is O(n.m.e).

The AssignParents algorithm is a recursive procedure. In the first place, it is called for the exit task and
then it calls itself for all of the workflow’s tasks. The algorithm has a while loop (lines 2-14) that processes all
incoming arcs of each node (task), so it will process all workflow’s arcs. Inside the while loop, first it computes
partial critical path which its time complexity is O(l). Then it calls AssignPath which its time complexity
depends on the selected policy. As the time complexity of AssignPath depends on [and m, let consider it as
g(l,m). Therefore, the time complexity of the AssignParents is O(e.l + e.g(l,m)). Remember that the fastest
policy for AssignPath was the Fair policy which its time complexity is O(l.m), so we can omit e.l part of the
time complexity against the most time consuming part, i.e., e.g(l,m). If we replace e, then we have the final
time complexity as O(n?.g(l,m)). Note that AssignParents also updates the EST of all unassigned successors,
and the LFT of all unassigned predecessors of each node after assigning a sub-deadline to it. In the worst case,
a node has n-1 unassigned successors and predecessors, so the time complexity of updating ESTs and LFTs for
all nodes will be O(n?) that can be omitted against the bigger part of the time complexity.

Having the time complexity of our three AssignPath policies, the time complexity of AssignParents will be
O(n2.1™),0(n%.1%2.m) and O(n?.1.m), respectively. Now, consider the parameter [and how big it can be. As we
defined before, [is the length of the longest path between entry and exit tasks, so its maximum value can be n,
i.e., when we have a linear workflow. In this case the time complexity of AssignParents will be O(n™), O(n*.m)
and O(n®.m), which is also the time complexity of the whole PCP algorithm.

On the other hand, if we consider real workflows (like realistic workflows we use in the evaluation section),
we see that for many of them the value of [cannot take such a big value. The value of [shows, in some way, the
number of stages in a workflow, particularly for the structured workflows. When we consider large workflows,

12

Figure 1: A sample workflow

|Service Time Cost | Service Time Cost|

5171 6 10 5573 12 5
SLQ 8 8 S6,1 8 12
Sis 10 5 Se.2 12 6
52,1 5 8 56,3 20 4
Sa.2 8 5 S71 5 8
Sas 12 3 S7a 9 6
Ss.1 4 4 S 12 4
Ss.2 7 3 Ss.1 5 10
Sss 10 1 Ss.2 8 8
Sin 8 10 | Sss 10 5
Sy 12 5 So.1 6 8
Sis 15 4 So.2 12 5
S5.1 6 9 So.s 15 3
S5.2 9 8

Table 1: Available services for the workflow of Figure 1

it can be seen that the number of tasks (nodes) is high, but the depth of the workflow is a reasonable value.
In other words, when a specific workflow gets larger, the number of tasks increases, but the number of stages
(length) remains the same. This is the case for the realistic workflows we have used in the evaluation section.
Although we cannot say it is a general rule for workflows, but it is quite reasonable for many realistic workflows.
Having this assumption, we can consider [as a constant in the time complexity computation. In this case, the
time complexity of AssignParents will be O(n?.I™), O(n?.m) and O(n%.m), respectively. Except for the first

one, all of these time complexity is dominated by the Planning algorithm’s time complexity.

3.8 An Illustrative Example

In order to show how the algorithm works, we trace its operation on the sample graph shown in Figure 1. The
graph consists of nine tasks from t; to ty, and two dummy tasks, tensry and tepyie. There are three different
services for each task ¢;, i.e., S; 1, Si2 and S; 3 which can execute the task with different QoS. Table 1 shows
the execution time and the execution cost of each service. It can be seen that for each task, a faster service
costs more than a slower one. Furthermore, we suppose that all services are completely available and that they
can provide the services at any desired time. To make the example as simple as possible, we suppose that the
estimated data transfer time and cost between two adjacent tasks are fixed, and that they are independent of the
selected services for the corresponding tasks. In Figure 1, the number above each arc shows both, the estimated

13

Initial Step 1 Step 1.1 Step 2 Step 2.1 Step 3
Tasks | EST LFT | EST LFT DL | EST LFT DL | EST LFT DL | EST LFT DL | EST LFT D
ty 0 20 0 20 - 0 20 - 0 15% - 0 11* 10* 0 11 1
ty 0 16 0 2% 12% 0 12 12 0 12 12 0 12 12 0 12 1
t3 0 16 0 12* - 0 12 10* 0 12 10 0 12 10 0 12 1
7 7 29 7 29 - 7 29 - 7 24* - 11* 24 23% | 11 24 2
ts 7 26 14* 26 - 14 26 - 14 21% 20% | 14 21 20 14 21 2
ts 7 26 14* 26* 26% | 14 26 26 14 26 26 14 26 26 14 26 2
t7 16 35 16 35 - 16 35 - 16 35 - 24* 35 - 24 35 35
ts 17 35 24* 35 - 24 35 - 24* 35 34* | 24 35 34 24 35 3
tg 18 35 20% 35% 35% | 29 35 35 29 35 35 29 35 35 29 35 3

Table 2: The values of EST, LFT and sub-deadline (DL) for each Step of running the PCP algorithm on the
sample workflow of Figure 1

data transfer time and cost between the corresponding tasks. For example, the estimated data transfer time
between to and t5 is 2 (time units) and it also costs 2 (monetary units) for the user, independent of the selected
services for these two tasks. Finally, let the overall deadline of the workflow be 35.

When we call the PCP scheduling algorithm, i.e., Algorithm 1, for the sample workflow of Figure 1, it first
computes the Earliest Start Time (EST) and the Latest Finish Time (LFT) for each task of the workflow by
assigning them to their fastest service. The initial value of these parameters are shown in Table 2 under the
Initial column. Then the algorithm sets the sub-deadlines of tcytry and tcyi to zero and 35, respectively, and
marks them as assigned. The next steps are to call the main procedures of the algorithm, AssignParents and
Planning, which will be discussed now.

3.8.1 Calling AssignParents

First, the procedure AssignParents (Algorithm 2) is called for task t.,;+. As this task has three parents, the
while loop in line 2 will be executed three times, which we call Step 1 to Step 3, and each one will be discussed
separately. Furthermore, we should choose one of the path assigning policies for this example, which will be the
Optimized policy. The new values of EST, LFT and sub-deadline (DL column) of the workflow tasks for each
step are given in the related column in Table 2. Note that the appearance of a star mark (*) in front of a cell
shows that the value of that cell has been changed over the previous step. Also, the column DL stands for the
sub-deadline of each task.

Step 1: At first, the AssignParents algorithm follows the partial critical parent of t..;+ to find its partial
critical path, which is ta-tg-tg. Then it calls AssignPath with the Optimized policy (Algorithm 3) to assign
sub-deadlines to these tasks. There are 27 possible service assignments for these three tasks, and among them
the assignment of S5 3 to t2, Ss2 to tg and Sg 1 to tg is the best admissible assignment with minimum cost.
This assignment is used to determine the sub-deadline of each task. The next step is to update the EST of all
unassigned successors of these three tasks, i.e., t5 and tg, and also the LFT of their unassigned predecessors,
i.e., t3. These changes are shown in Table 2 under the Step 1 column. The final step is to call AssignParents
recursively for all tasks on the path. Since tasks t5 and t9 have no unassigned parents, we just consider calling
of AssignParents for task tg in Step 1.1.

Step 1.1: When AssignParents is called for task tg, it first finds the partial critical path of this task, which
is t3. Then it calls AssignPath to find the best admissible assignment for ¢z, which is S5 3. Since ¢3 has no
unassigned child or parent, Step 1 finishes here.

Step 2: Now, back to task te.s, the AssignParents tries to find the next partial critical path of this task,
which is t5-tgs. Then it calls AssignPath, which considers all 9 possible assignments for these two tasks and

14

selects the best admissible assignment as assigning S5 1 to t5 and Sg 3 to tg. The tasks have no unassigned
successor, but the algorithm updates the LFT of their unassigned predecessors, which are t; and ¢4. Finally,
the algorithm calls AssignParents for all tasks on the path, ¢5 has no unassigned parent, so we just consider tg
in Step 2.1.

Step 2.1: When AssignParents is called for task tg, it finds the partial critical path for it, which is t1-t4, and
then calls AssignPath which computes the best admissible assignment of this path as assigning 573 to ¢; and
S4,2 to ts. The tasks have no unassigned predecessors, but the algorithm updates the EST of ¢4’s child, which
is t7. As t; and t4 have no unassigned parents, Step 2 stops.

Step 3: In the final step, AssignParents finds the last partial critical path of ¢..;, which is t7. AssignPath
finds the best admissible assignment as assigning S7 2 to t7, and since there is no unassigned parent or child,
the algorithm stops.

Note that the value of the DL column is computed according to the finish time of the tasks in the best
admissible assignment. By the way, as we discussed in Section 3.5.1, the sub-deadline of the last task on the
path can be set to its latest finish time (when the extra time is small). For example, the value of DL for task
t7 under the Step 3 column should be set to 35 instead of 33. Nevertheless, we do not change the DLs to make
the calculations more clear.

3.8.2 Calling Planning

In this simple example, the Planning algorithm just schedules each task on the same service that was assigned to
that task by the AssignParents algorithm. There are two reasons for this issue: fixed data transfer times and fully
available services. These two assumptions make the estimated schedules of the AssignPath (and consequently
the AssignParents) as real schedules and since they are optimized schedules, the Planning algorithm selects the
same services. The selected services are shown in the last column of Table 2. The total time is 35 and the total
cost is 64, including execution cost (48) and data transfer cost (16).

4 Performance Evaluation

In this section we will present the results of our simulations of the Partial Critical Paths algorithm.

4.1 Experimental Workflows

To evaluate a workflow scheduling algorithm, we should measure its performance on some sample workflows.
There are two ways to choose these sample workflows:

i Using a random DAG generator to create a variety of workflows with different characteristics.
ii Using a library of realistic workflows which are used in the scientific or business community.

Although the latter seems to be a better choice, unfortunately there is no such a comprehensive library available
to researchers. One of the preliminary works in this area is done by Bharathi et al. [1]. They study the structure
of five realistic workflows from diverse scientific applications, which are:

e Montage: astronomy
e CyberShake: earthquake science

e Epigenomics: biology

LIGO: gravitational physics
e SIPHT: biology

15

3%
i

ek

o
@

(a) Montage (b) Epigenomics (c) SIPHT
(d) LIGO (e) CyberShake

Figure 2: The structure of five realistic scientific workflows [1]

16

They provide a detailed characterization for each workflow and describe its structure and data and computational
requirements. Figure 2 shows the approximate structure of a small instance of each workflow. It can be seen
that these workflows have different structural properties in terms of their basic components (pipeline, data
aggregation, data distribution and data redistribution) and their composition. For each workflow, the tasks
with the same color are of the same type and can be processed with a common service.

Furthermore, using their knowledge about the structure and composition of each workflow and the infor-
mation achieved from actual execution of these workflows on the Grid, Bharathi et al. developed a workflow
generator, which can create synthetic workflows of arbitrary size, similar to the real world scientific workflows.
Using this workflow generator, they create four different sizes for each workflow application in terms of total
number of tasks. These workflows are available in DAX (Directed Acyclic Graph in XML) format from their
website!, from which we choose three sizes for our experiments, which are Small (about 30 tasks), Medium
(about 100 tasks) and Large (about 1000 tasks).

4.2 Experimental Setup

We use GridSim [18] for simulating the utility Grid environment for our experiments. We simulate a multicluster
Grid environment, consists of 10 heterogeneous clusters. Each cluster has a random number of nodes between 20
to 100. All nodes of a cluster has the same processor speed, which is determined randomly such that the fastest
cluster is 10 times faster than the slowest one. We assume all required services are installed on every cluster,
such that all workflow tasks can be executed on each arbitrary cluster. Furthermore, a random cost per second
is assigned to each cluster, following that a faster cluster costs more than a slower one. The average inter-cluster
bandwidth is a random number between 100 to 512 Mbps, and the data transfer costs are assigned proportional
to the bandwidths, i.e., a higher bandwidth costs more than a lower one. The intra-cluster bandwidth is assumed
to be 1 Gbps for each cluster and is free. In addition, we assume that all clusters are empty in the beginning.
Finally, we compare the PCP algorithm with the Deadline-MDP, one of the most cited algorithms in this
area that has been proposed by Yu et al. [19]. They divide the workflow into partitions and assigned each
partition a sub-deadline according to the minimum execution time of each task and the overall deadline of the
workflow. Then they try to minimize the cost of each partition execution under its sub-deadline constraint.

4.3 Experimental Results

First, to get a better idea of the required time and cost for each workflow application, we simulate their execution
using three scheduling algorithms: HEFT [11], a well-known makespan minimization algorithm, Fastest, which
submits all tasks to the fastest cluster, and Cheapest, which submits all tasks to the cheapest (and slowest)
cluster. Note that the last two algorithms submit all tasks to one cluster (fastest or cheapest), and therefore
some tasks may have to wait for free resources, particularly in the case of large workflows. Furthermore, since a
large set of workflows with different attributes is used, it is important to normalize the total cost and makespan
of each workflow execution. So we define the Normalized Makespan (NM) and the Normalized Cost (NC) of a
workflow execution as follows:

schedule makespan
NM = (8)
Mg
NCO - total schedule cost ©)
Co

where C¢ is the cost of executing the same workflow with the Cheapest strategy and My is the makespan of
executing the same workflow with the HEFT strategy. The results of executing the workflow applications using
these three scheduling policies are shown in Figure 3. Obviously, the normalized makespan and the normalized
cost are the same for the HEFT and Fastest strategy for small workflows, because the number of tasks is less

Thttps://confluence.pegasus.isi.edu/display/pegasus/WorkflowGenerator

17

40

BCyberShake OEpigenomics ®LIGO ®Montage B Sipht

35

30

25

20

15

Normalized Makespan

10

Small Small Small Medium Medium Medium Large Large Large
HEFT Fastest Cheapest HEFT Fastest Cheapest HEFT Fastest Cheapest

(a) Normalized Makespan

B CyberShake OEpigenomics BLIGO OMontage BSipht

Normalized Cost
o

Small Small Small Medium Medium Medium Large Large Large
HEFT Fastest Cheapest HEFT Fastest Cheapest HEFT Fastest Cheapest

(b) Normalized Cost

Figure 3: Normalized Makespan and Normalized Cost of scheduling workflows with three scheduling policies: HEFT, Fastest and
Cheapest

than the fastest cluster’s resources. But they are slightly different in medium workflows, and in large workflows
they have a meaningful difference because the HEFT strategy tries to send some tasks to slower resources rather
than waiting for the fastest resource to finish the currently assigned tasks.

To evaluate our PCP scheduling algorithm, we need to assign a deadline to each workflow. Clearly this
deadline must be greater than or equal to the makespan of scheduling the same workflow with the HEFT
strategy. In order to set deadlines for workflows, we define the deadline factor o, and we set the deadline of a
workflow to the time of its arrival plus a- Mpg. In our experiments, we let o range from 1 to 5.

Both algorithms successfully scheduled all workflows before their deadlines, even in the case of tight deadlines
(small deadline factor). Table 3 shows the average percentage by which the normalized makespan is smaller
than the deadline factor for all workflows. It can be seen that both algorithms almost use all available deadline
to minimize the execution cost for LIGO and CyberShake workflows, i.e., their average difference percentages
are less than 1%. This is almost the case for Montage, but for Epigenomics and SIPHT, the Deadline-MDP
algorithm has high average difference percentages, e.g., 3.07% for medium Epigenomics and 5.99% for small
SIPHT. Although, all three policies of the PCP algorithm also have rather high difference percentages for the
small STPHT.

Figures 4 shows the cost of scheduling all workflows with the PCP (including three path assigning policies)

18

Normalized Cost

Normalized Cost

Normalized Cost

e — 9 10
B B0ptimized B ®Optimized 8 @ Optimized 9 - wOptimized —
DODecrease Cost s [Decrease Cost N 7 ODecrease Cost | | 8 ODecrease Cost — |
. aFair BFair
BFair g @ Dedaline-MDP %6 g7 aFair T
85 3 @Dedaline-MDP S J——
@ Dedaline-MDP T .E 5 g .
N &
s 8y H
] 3]
3 E 4
g 5o £,
2, 2
2 2
1 1]
0 0 0
1 15 2 25 3 35 4 45 5 1 15 2 25 3 35 4 4.5 5 1 15 2 25 3 35 4 45 5 1 15 2 25 3 35 4 45 5
Deadline Factor Deadline Factor Deadline Factor Deadline Factor
(a) CyberShake (Small) (b) CyberShake (Medium) (¢) CyberShake (Large) (d) Epigenomics (Small)
9 9 9 9
s = 0ptimized s mOptimized s m0ptimized N mOptimized
, ODecrease Cost | | . DDecrease Cost ; DODecrease Cost 7 ODecrease Cost
6 BFair g6 BFair 36 BFair | g SFair
s @ Deadline-MDP 8 Deadine-MDP 8, & Deadiine-MDP S, @Deadline-MDP
EE—— 3 f
4 24 24 24
g
3 53 § 3 § 3
2 g 2
2 2 2 2
1 1 1 1
0 0 0 0
1 15 2 25 3 35 4 45 5 1 15 2 25 3 35 4 45 5 1 15 2 25 3 35 4 45 5 1 15 2 25 3 35 4 45 5
Deadline Factor Deadline Factor Deadline Factor Deadline Factor
(e) Epigenomics (Medium) (f) Epigenomics (Large) (g) LIGO (Small) (h) LIGO (Medium)
10 10
9 mOptimized 0ptimized 9 woptimized || o | =Opimizd
ODecrease Cost
8 ODecrease Cost ODecrease Cost 8 @Dacrease Cost 8 BFair
7 BFair % BFair w7 BFair H g7 mDeadline-MDP
g g g
6 line-| . o 6
Deadine-MDP S BDeadineMDP Se BDeadline-MDP é
5 & 85 &5
4 H g g4
3 s S3 23
2 2 2
1 1 1
0 0 0

25 3
Deadline Factor

(i) LIGO (Large)

35 4 45 5

1

1 15 2 25 3 35 4

Deadline Factor

(j) Montage (Small)

45 5

1 15 2 25 3 35 4

Deadline Factor

(k) Montage (Medium)

45 5

Normalized Cost
oA MWL s oo N oD

1 15 2

Deadline Factor

(m) SIPHT (Small)

25

25 3
Deadline Factor

(1) Montage (Large)

35 4 45 5

10 9
®Optimized 9 ®Optimized 8 ®Optimized
ODecrease Cost N ODecrease Cost || ; ODecrease Cost
B Fair 7 @Fair - @Fair
3 ge
@ Deadline-MDP Se BDeadineMDP [S @ Deadline-MDP
35]
K 34
i :
3 $3
z° z
2 2
1 1
0 0
3 35 4 45 5 115 2 25 3 35 4 45 5 115 2 25 3 35 4 45 5

Deadline Factor

(n) SIPHT (Medium)

Daadline Factor

(o) SIPHT (Large)

Figure 4: Normalized Cost of scheduling workflows with the PCP and Deadline-MDP algorithms

19

PCP Deadline

Optimized | DC | Fair -MDP

small 0.51 | 0.36 | 0.67 0.93

CyberShake | medium 0.17] 0.01 | 0.18 0.06
large 0.34 | 0.39 | 0.21 0.32

small 0.19 | 0.19 | 0.40 2.94

Epigenomics | medium 1.17 | 1.36 | 1.72 3.07
large 0.52 | 1.11 | 1.06 2.09

small 0.20 | 0.39 | 0.21 0.47

LIGO medium 0.08 | 0.09 | 0.18 0.15
large 0.05 | 0.30 | 0.25 0.49

small 0.49 | 0.41 | 0.61 0.46

Montage medium 0.03 | 0.74 | 0.39 0.88
large 0.21 | 0.87 | 0.35 1.17

small 2.24 | 3.53 | 3.10 5.99

SIPHT medium 1.19 | 0.89 | 1.14 2.44
large 0.04 | 0.16 | 0.05 0.40

Table 3: The average percentage by which the Normalized Makespan is smaller than the deadline factor («)

Small | Medium | Large
CyberShake | 5.56 8.13 9.04
Epigenomics | 6.46 3.75 2.92

LIGO 3.65 6.78 10.83
Montage 8.48 5.44 0.04
SIPHT 7.23 9.32 12.26

Table 4: Average cost decrease in percent of the PCP (Optimized policy) over the Deadline-MDP

and the Deadline-MDP algorithms. A quick look at Figure 4 shows that the results for small and medium size
workflows are almost similar. In all of them, both algorithms have (almost) the same normalized cost (about 2)
for a relaxed deadline, i.e., deadline factor equal to 5. This means that when we increase the deadline about 5
times from My to 5Mp, the normalized cost decreases to slightly less than twice Co for all small and medium
size workflows. The only exception is the medium Montage workflow (Figure 4(k)). But for the large workflows
things are completely different for some workflows. The only large workflow that maintains the same results
as the smaller ones is the SIPHT workflow, while the Montage has the worst performance. This shows that in
large workflows with huge numbers of tasks (about 1000), the structural properties of the workflows influence
the scheduling process more than for small and medium ones. Figure 4 also shows that the optimized policy
has the best performance (lowest cost) among the three policies for the PCP algorithm in most cases. It also
outperforms the Deadline-MDP in many cases. Table 4 shows the average cost decrease of using the PCP
algorithm with the Optimized policy over the Deadline-MDP algorithm for each workflow.

For CyberShake, LIGO and SIPHT workflows, the PCP scheduling algorithm with the Optimized policy
has the best performance, while the Decrease Cost policy has a very close performance. The Fair policy has a
lower performance, still it performs better than the Deadline-MDP. Table 4 shows that the PCP algorithm has
a very promising result over the Deadline-MDP for these workflows.

For the Epigenomics workflow, Deadline-MDP has a better performance than PCP in some cases, which
results in a small average cost decrease for the medium and large sizes (Table 4). The problem of the PCP
algorithm with this workflow is about its structure. Considering the Epigenomics structure in Figure 2(b) shows

20

Optimized | Decrease Cost | Fair

CyberShake 156 141 140
Epigenomics 28371 31 31
LIGO 6552 47 31
Montage 48215 141 141

SIPHT 1388 140 125

Table 5: Maximum computation time of different path assigning policies for the large size workflows (ms)

that it consists of multiple parallel pipelines operating on distinct chunks of data. At the beginning, when the
PCP finds the critical path of the whole workflow, it obviously consists of the entry task, one of the parallel
pipes (with four tasks), plus the final three tasks of the workflow. Then PCP tries to find the best schedule for
this critical path, without considering the other parallel pipes between the first and the sixth tasks. But if we
consider the other parallel pipes, likely it is better to assign longer sub-deadlines to these four tasks, because
the other parallel pipelines also benefit from this extra time and the overall cost is reduced. We are working on
a modification of the PCP algorithm to solve this problem for highly parallel workflows.

The large size Montage has the worst performance for all algorithms, i.e., the cost hardly decreases with the
deadline increase. The results show that when we increase the deadline about 5 times, the cost decreases about
half of the initial value for the large size Montage. Furthermore, the performance of the PCP algorithm with
the Optimized policy decreases from the small size instance to the large size, such that in the large size instance,
it has worse performance than the Deadline-MDP in some cases and the overall performance is almost the same
(see Table 4). To find the reason, consider the Montage structure in Figure 2(a). The overall critical path of this
workflow consists of 9 tasks, which are assigned sub-deadlines first by the Otimized policy according to the best
possible schedule for this path. For the small size Montage, these sub-deadlines are respected in the Planning
phase. However, for the large Montage, there are many tasks before the third task on the overall critical path
which overflow the faster clusters and force the Planning algorithm to schedule them on slower clusters. As a
result, the third task on the critical path cannot finish on time, and this delay is propagated to its successors,
which decreases the final schedule performnce. Fortunately, Fair policy has a very promising performance for
large Montage, such that its average cost decrease percentage over Deadline-MDP is 12.07. This policy also has
a good performance for the medium size Montage.

4.4 Computation Time

In this section we try to answer some questions like what is the actual computation time of the PCP algorithm?,
and what is the impact of different path assigning policies, different workflow types and different deadlines on
the computation time of this algorithm? Table 5 shows the maximum computation time (in milliseconds) of
the algorithm for the large size workflows, using three different policies. The computation time of the small and
medium size workflows have a similar pattern with smaller values (except for the Montage).

For the CyberShake workflow, there is no significant difference among the three policies. This is not surpris-
ing, because this workflow has a small length [of the longest path between the entry and exit tasks, equal to
4, which is the most important factor in the time complexity of the Optimized policy. Furthermore, the overall
deadline of the workflow has no impact on the computation time, i.e., the computation time is almost the same
for « =1 to a = 5. This is the only workflow with such properties.

But for Epigenomics, there is a huge difference between the Optimized policy and the other two policies,
because it has a relatively long [equal to 8. The overall deadline influences the computation time of the
Optimized policy, i.e., it is much lower for a tight deadline than a loose deadline. The reason is that for a tight
deadline only the fast services can be used, and most of the slower services are not considered. For example,
the computation time for the large Epigenomics is about 35 ms for a = 1, 1,459 ms for o« = 1.5 and 28,731

21

for « = 5. LIGO and SIPHT workflows have the same properties as Epigenomics, except that the difference
between the Optimized and the other two policies is much lower, because of their smaller [, which is equal to 6.

The Montage workflow has the longest computation time for the Optimized policy, with its [equal to 9.
Furthermore, it is the only workflow whose computation time for the small and medium size instances are almost
equal to that of the large one, i.e., its maximum computation time for the small instance is 44,123 ms and for
the medium instance is 45,056 ms. To find the reason, we should look at the Montage structure in Figure 2(a).
The most time consuming part is to find the overall critical path of the workflow (with 9 tasks) and assigning
sub-deadline to its tasks. This phase is common between all three sizes. The next phase is to find the partial
critical paths and assigning sub-deadline to them. Figure 2(a) shows that the next partial critical paths consist
of one or two tasks, so assigning sub-deadlines to them is easy and fast. Therefore, althought the large size
workflow has more tasks than the small and medium size instances, assigning sub-deadlines to these extra tasks
is not time consuming and the overall computation times are almost the same. Finally, the computation time
is highly dependent on the overall deadline like Epigenomics.

Table 5 shows that the algorithm has an acceptable computation time, even for the Optimized policy with
its exponential time complexity. Obviously, this is the case for our sample realistic workflows for which the
maximum [is 9. For a workflow with a large [, or in a Grid environment with a large number of resources (large
m), the Optimized policy cannot be used. Fortunately, Figure 4 shows that the other two policies have a close
(and sometimes better) performance to the Optimized policy and can be used in such cases.

5 Related Work

There are few works addressing workflow scheduling with QoS in the literature, most of them consider the
execution time of the workflow as the major QoS attribute. We have already mentioned the Deadline-MDP
proposed by Yu et al. [19]. Yuan et al. [20] proposed the DET (Deadline Early Tree) algorithm which is based
on a similar method. First, they create a primary schedule as a spanning tree which is called Farly Tree. Then,
they try to distribute the whole deadline among workflow tasks by assigning a time window to each task. This
is achieved in two steps: first a dynamic programming approach assigns time windows to critical tasks, then an
iterative procedure finds a time window for each non-critical task. Finally, a local optimization method tries to
minimize the execution costs according to the dedicated time windows.

Sakellariou et al. [21] proposed two scheduling algorithms for a different performance criterion: minimizing
the execution time under budget constraint. In the first algorithm, they initially try to schedule workflows with
minimum execution time, and then they refine the schedule until its budget constraint is satisfied. In the second
one, they initially assign each task to its cheapest resource, and then try to refine the schedule to shorten the
execution time under budget constraint.

Prodan et al. [22] proposed a bi-criteria scheduling algorithm that follows a different approach to the
optimization problem of two arbitrary independent criteria, e.g., execution time and cost. In the Dynamic
Constraint Algorithm (DCA), the end user defines three important factors: the primary criteria, the secondary
criteria and the sliding constraint which determines how much the final solution can vary from the best solution
for the primary criterion. The DCA has two phases: 1) primary scheduling finds the preliminary solution
which is the best solution according to the primary criterion, 2) secondary scheduling optimizes the preliminary
solution for the secondary criterion while keeping the primary criterion within the predefined sliding constraint.
The primary scheduling algorithm depends on the type of primary criteria, e.g., HEFT is used for the execution
time. For the secondary scheduling, the authors model the problem as a multiple choice knapsack problem and
solve it using a heuristic based on a dynamic programming method.

Duan et al. [23] proposed two algorithms based on Game Theory for the scheduling of n independent
workflows. The first one called Game-quick, tries to minimize the overall makespan of all workflows. The
second algorithm called Game-cost, tries to minimize the overall cost of all workflows, while meeting each
workflow’s deadline. Brandic et al. [24] solved the problem of multi-objective workflow scheduling using Integer

22

Programming. To transform the multi-objective problem to a single-objective one, the user should assign a
weight to each QoS parameter and the algorithm tries to optimize the weighted sum of the QoS parameters.
In Afzal et al. [25] the problem of cost minimization under deadline constraint is solved using Mixed-Integer
Non-Linear Programming (MINLP). They also used queueing theory to take the inherent unpredictability of
the Grid into account.

Meta-heuristic methods are also used to tackle this problem. Although these methods have a good perfor-
mance, but usually are more time consuming than the heuristic ones. Yu et al. [3] used Genetic Algorithm
to solve both problems: cost optimization under deadline constraint, and execution time optimization under
budget constraint. In another work, Yu et al. [26] used three multi-objective evolutionary algorithms, i.e., NS-
GAII, SPEA2 and PAES for this problem. In this work, the user can specify his desired deadline and maximum
budget and the algorithm proposes a set of alternative trade-off solutions meeting the user’s constraints from
which he can select the best one according to his needs. In a similar research, Talukder et al. [27] proposed a
Multiobjective Differential Evolutionary algorithm which generates a set of alternative solutions for the user to
selecet. Chen and Zhang [28] proposed an Ant Colony Optimization (ACO) algorithm, which considers three
QoS parameters, i.e., time, cost and reliability. They enable the users to determine constraints for two of these
parameters, and the algorithm finds the optimized solution for the third parameter while meeting those con-
straints. In Quan et al. [29], the performance of six different algorithms, i.e., Tabu Search, Simulated Annealing,
Tterated Local Search, Guided Local Search, Genetic Algorithm and Estimation of Distribution Algorithm are
compared together in solving the problem of cost optimization under deadline constraint. Finally, Tao et al. [30]
considered a multi dimensional QoS parameters like time, cost, reliability, availability, reputation and security,
and tried to optimize the weighted sum of these parameters using Particle Swarm Optimization (PSO).

Among the current workflow management systems, Amadeus [31] supports QoS-aware workflow definition,
scheduling and execution. In the definition phase, it provides a graphical user interface that enables user not
only to define his workflow, but also to specify local (for one task) and/or global (for the whole workflow) QoS
constraints. For the scheduling phase, it has two different strategies: static scheduling uses Integer Programming
(same as [24]) and dynamic scheduling that selects services during the execution when a task is ready to start.
Another example is ICENI [32] which uses several algorithms like Game Theory and Simulated Annealing to
optimize a single benefit function, e.g., time or cost. Furthermore, a number of algorithms are implemented and
tested on existing Grid environment, e.g., the previously mentioned algorithm in [22] is implemented as part of
the ASKALON.

6 Conclusions

Utility Grids enable users to obtain their desired QoS (such as deadline) by paying an appropriate price. In
this paper we propose a new algorithm named Partial Critical Paths (PCP) for workflow scheduling in utility
Grids that minimizes the total execution cost while meeting a user-defined deadline. The PCP algorithm has
two phases: deadline distribution and planning. In the deadline distribution phase, the overall deadline of the
workflow is divided over the workflow’s tasks, for which we proposed three different policies, i.e., Optimized,
Decrease Cost and Fair. In the planning phase, the best service is selected for each task according to its sub-
deadline. We evaluate our algorithm by simulating it with synthetic workflows that are based on real scientific
workflows with different structures and different sizes. The results show that PCP outperforms another highly
cited algorithm called Deadline-MDP. Furthermore, the experiments show that the computation time of the
algorithm is very low for the Decrease Cost and the Fair policies, but is much longer for the Optimized policy,
although still acceptable for the mentioned workflows.

In the future, we plan to modify our algorithm to improve its performance on parallel pipelines. Furthermore,
we will extend our algorithm to support Cloud computing models.

23

References

(1]

2]

3]

4]

1]

16]

7]

18]

19]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

S. Bharathi, A. Chervenak, E. Deelman, G. Mehta, M.-H. Su, and K. Vahi, “Characterization of scientific
workflows,” in The 3rd Workshop on Workflows in Support of Large Scale Science, 2008. 3, 15, 16

D. Laforenza, “European strategies towards next generation grids,” in Proc. of The Fifth Int’l Symposium
on Parallel and Distributed Computing (ISPDC ’06), 2006, p. 11. 4

J. Yu and R. Buyya, “Scheduling scientific workflow applications with deadline and budget constraints
using genetic algorithms,” Sci. Program., vol. 14, no. 3,4, pp. 217-230, 2006. 4, 23

J. Broberg, S. Venugopal, and R. Buyya, “Market-oriented grids and utility computing: The state-of-the-art
and future directions,” J. Grid Comput., vol. 6, no. 3, pp. 255-276, 2008. 4

E. Deelman et al., “Pegasus: A framework for mapping complex scientific workflows onto distributed
systems,” Sci. Program., vol. 13, pp. 219-237, 2005. 4

M. Wieczorek, R. Prodan, and T. Fahringer, “Scheduling of scientific workflows in the askalon grid envi-
ronment,” SIGMOD Rec., vol. 34, pp. 56-62, 2005. 4

F. Berman et al., “New grid scheduling and rescheduling methods in the grads project,” Int’l J. Parallel
Program., vol. 33, pp. 209-229, 2005. 4

J. Yu and R. Buyya, “A taxonomy of workflow management systems for grid computing,” J. of Grid
Comput., vol. 3, pp. 171-200, 2005. 4

M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide to the Theory of NP-Completeness.
W. H. Freeman, January 1979. 4

Y. K. Kwok and I. Ahmad, “Static scheduling algorithms for allocating directed task graphs to multipro-
cessors,” ACM Comput. Surv., vol. 31, no. 4, pp. 406471, 1999. 4

H. Topcuoglu, S. Hariri, and M. Wu, “Performance-effective and low-complexity task scheduling for hetero-
geneous computing,” IEEE Trans. on Parallel and Distributed Systems, vol. 13, no. 3, pp. 260-274, 2002.
4,17

R. Bajaj and D. P. Agrawal, “Improving scheduling of tasks in a heterogeneous environment,” IEEE Trans.
on Parallel and Distributed Systems, vol. 15, no. 2, pp. 107-118, 2004. 4

M. I. Daoud and N. Kharma, “A high performance algorithm for static task scheduling in heterogeneous
distributed computing systems,” J. of Parallel and Distributed Computing, vol. 68, no. 4, pp. 399-409,
2008. 4

D. Bozdag, U. Catalyurek, and F. Ozguner, “A task duplication based bottom-up scheduling algorithm for
heterogeneous environments,” in Proc. of the 20th Int’l Parallel and Distributed Processing Symposium (
IPDPS ’06), April 2006, pp. 12—. 4

S. Verboven, P. Hellinckx, F. Arickx, and J. Broeckhove, “Runtime prediction based grid scheduling of
parameter sweep jobs,” in Asia-Pacific Conference on Services Computing, 2008, pp. 33-38. 5

J. Yu, S. Venugopal, and R. Buyya, “A market-oriented grid directory service for publication and discovery
of grid service providers and their services,” The J. of Supercomputing, vol. 36, no. 1, pp. 17-31, 2006. 5

S. Russell and P. Norvig, Artificial Intelligence, A Modern Approach, 3rd ed. Prentice Hall, January 2009.
9

24

[18]

[19]

[20]

21]

22]

23]

[24]

[25]

[26]

27]

28]

[29]

[30]

31]

32|

R. Buyya and M. Murshed, “Gridsim: A toolkit for the modeling and simulation of distributed resource
management and scheduling for grid computing,” Concurr. Comput. : Pract. Exper., vol. 14, no. 13, pp.
1175-1220, 2002. 17

J. Yu, R. Buyya, and C. K. Tham, “Cost-based scheduling of scientific workflow applications on utility
grids,” in First Int’l Conference on e-Science and Grid Computing, July 2005, pp. 140-147. 17, 22

Y. Yuan, X. Li, Q. Wang, and X. Zhu, “Deadline division-based heuristic for cost optimization in workflow
scheduling,” Information Sciences, vol. 179, no. 15, pp. 2562 — 2575, 2009. 22

R. Sakellariou, H. Zhao, E. Tsiakkouri, and M. D. Dikaiakos, “Scheduling workflows with budget con-
straints,” in Integrated Research in GRID Computing, ser. CoreGRID Series, S. Gorlatch and M. Danelutto,
Eds., 2007, pp. 189-202. 22

R. Prodan and M. Wieczorek, “Bi-criteria scheduling of scientific grid workflows,” IEFE Trans. on Au-
tomation Sci. and Eng., vol. 7, no. 2, pp. 364 —376, 2010. 22, 23

R. Duan, R. Prodan, and T. Fahringer, “Performance and cost optimization for multiple large-scale grid
workflow applications,” in Proc. of the 2007 ACM/IEEE conference on Supercomputing, 2007, pp. 1-12. 22

I. Brandic, S. Benkner, G. Engelbrecht, and R. Schmidt, “QoS support for time-critical grid workflow
applications,” in Int’l Conference on e-Science and Grid Computing, 2005, pp. 108-115. 22, 23

A. Afzal, J. Darlington, and A. McGough, “QoS-Constrained stochastic workflow scheduling in enterprise
and scientific grids,” in Proc. of the 7th IEEE/ACM Int’l Conference on Grid Computing (GRID ’06),
2006, pp. 1-8. 23

J. Yu, M. Kirley, and R. Buyya, “Multi-objective planning for workflow execution on grids,” in Proceedings
of the 8th IEEE/ACM International Conference on Grid Computing, 2007, pp. 10-17. 23

A. K. M. K. A. Talukder, M. Kirley, and R. Buyya, “Multiobjective differential evolution for scheduling
workflow applications on global grids,” Concurr. Comput. : Pract. Exper., vol. 21, pp. 1742-1756, 2009. 23

W. N. Chen and J. Zhang, “An ant colony optimization approach to grid workflow scheduling problem
with various QoS requirements,” IEEFE Trans. on Systems, Man, and Cybernetics, vol. 39, no. 1, pp. 29-43,
2009. 23

D. M. Quan and D. F. Hsu, “Mapping heavy communication grid-based workflows onto grid resources
within an SLA context using metaheuristics,” Int’l J. High Perform. Comput. Appl., vol. 22, no. 3, pp.
330-346, 2008. 23

Q. Tao, H. Chang, Y. Yi, C. Gu, and Y. Yu, “Qos constrained grid workflow scheduling optimization based
on a novel pso algorithm,” in Fighth International Conference on Grid and Cooperative Computing, 2009,
pp. 153 —159. 23

I. Brandic, S. Pllana, and S. Benkner, “Specification, planning, and execution of qos-aware grid workflows
within the amadeus environment,” Concurr. Comput. : Pract. Ezper., vol. 20, pp. 331-345, 2008. 23

S. McGough, L. Young, A. Afzal, S. Newhouse, and J. Darlington, “Workflow Enactment in ICENIL,” in
UK e-science all-hands meeting, AHM 2004, 2004, pp. 894-900. 23

25

	1 Introduction
	2 Scheduling System Model
	3 The Partial Critical Paths Algorithm
	3.1 Main Idea
	3.2 Basic Definitions
	3.3 The Workflow Scheduling Algorithm
	3.4 The Parents Assigning Algorithm
	3.5 The Path Assigning Algorithm
	3.5.1 Optimized Policy
	3.5.2 Decrease Cost Policy
	3.5.3 Fair Policy

	3.6 The Planning Algorithm
	3.7 Time Complexity
	3.8 An Illustrative Example
	3.8.1 Calling AssignParents
	3.8.2 Calling Planning

	4 Performance Evaluation
	4.1 Experimental Workflows
	4.2 Experimental Setup
	4.3 Experimental Results
	4.4 Computation Time

	5 Related Work
	6 Conclusions

