
 
 

 

  

 
Abstract— Computational complexity is a major challenge in 
evolutionary algorithms due to their need for repeated fitness 
function evaluations. Here, we aim to reduce number of fitness 
function evaluations by the use of fitness granulation via an 
adaptive fuzzy similarity analysis.  In the proposed algorithm, 
an individual’s fitness is only computed if it has insufficient 
similarity to a queue of fuzzy granules whose fitness has 
already been computed. If an individual is sufficiently similar 
to a known fuzzy granule, then that granule’s fitness is used 
instead as a crude estimate. Otherwise, that individual is added 
to the queue as a new fuzzy granule. The queue size as well as 
each granule’s radius of influence is adaptive and will 
grow/shrink depending on the population fitness and the 
number of dissimilar granules. The proposed technique is 
applied to a set of 6 traditional optimization benchmarks that 
are for their various characteristics. In comparison with 
standard application of evolutionary algorithms, statistical 
analysis reveals that the proposed method will significantly 
decrease the number of fitness function evaluations while 
finding equally good or better solutions. 

I. INTRODUCTION 
s the field of evolution-based algorithms matures and 
tackles more real-world applications, its limitations and 

challenges also become more clear. While nature is indeed 
the original inspiration as well as a successful example of 
evolutionary algorithms, it is clear that natural and artificial 
evolutions are not really at par, at least not yet. This is 
because nature has an abundance of resources and time 
while man made systems are severely limited in both. 

Fitness function evaluation is often the most prohibitive 
and limiting segment of artificial evolutionary algorithms, 
for an explicit fitness function may either be non existent or 
its computation is prohibitively costly. In both cases, it may 
be necessary to forgo an exact evaluation and use an 
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approximated fitness that is computationally efficient. In 
design of mechanical structures, for instance, each exact 
fitness evaluation requires the time consuming stage of finite 
element analysis which, depending on the size of the 
problem, may require anywhere from several seconds to 
several days. In a conventional genetic algorithm with a 
fixed and modest population size of 100 and 100 number of 
generations, and a very small scale structural problem that 
requires only 10 seconds, this means about thirty hours of 
computing.  

To alleviate this problem, various methods have been 
proposed to date. A popular subclass of fitness function 
approximation methods known as fitness inheritance is 
introduced in [1] and [2] where fitness is simply inherited. 
Theoretical analyses of convergence time and population 
sizing when fitness is inherited is reported in [3]. An 
approach similar to fitness inheritance has also been 
suggested where the fitness of a child individual is the 
weighted sum of its parents [4]. Unfortunately, the 
performance of parents is not always indicative of the child, 
and this simple strategy can fail in sufficiently complex and 
multi-objective problems [5]. 

The problem of fitness estimate also appears in 
sufficiently complex applications where it may be desirable 
to decompose a problem into several smaller/simpler 
problems that are more easily solvable such as in 
cooperative co-evolutionary schemes. But the rising problem 
is estimating fitness of these smaller problems from 
evaluation of the original problem at large. Individuals in 
these sub-populations encode only part of the problem and 
their fitness value always depends on others. To solve this 
problem, methods such as fitness assignment for estimating 
fitness values [10] and fitness estimation by 
association/friendship [25] have been developed. 

Other common approaches are based on learning and 
interpolation from known fitness values of a small 
population. Specifically, one widely used method in design 
engineering include the response surface methodology that 
uses low-order polynomials and the least square estimations 
[11], and the Kriging model that is also called the Design 
and Analysis of Computer Experiments (DACE) model [12]. 
In Kriging model, a global polynomial approximation is 
combined with a local gaussian process and the maximum 
likelihood method is used for parameter estimation.  
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In the last few years, artificial neural networks (ANN), 
including multi-layer perceptrons [13] and radial basis 
function networks [14] have also been employed to build 
approximate models for design optimization. Due to 
universal approximation property of ANN, ANN can 
become good estimators of fitness function if provided with 
sufficient complexity of their neuro-structure and richness of 
training data points [15,16]. As with any other 
approximation method, the performance of the neural 
network is closely related to the quality of the training data. 
Lack of sufficient training data is the main problem of using 
fitness approximation models and the failure to reach a 
model with sufficient approximation accuracy. Since 
evaluation of the original fitness function is very time-
consuming and/or expensive, the approximate model may be 
of low fidelity and may even introduce false optima. 
Furthermore, if the training data does not cover all the 
domain range, large errors may occur due to extrapolation. 
Errors may also occur when the set of training points is not 
sufficiently dense and uniform. In such situations, a 
combination of methods may be more desirable. For 
example, Ong et al. [17] combined radial basis functions 
with transductive inference to generate local surrogate 
models. Gaussian Processing [18] is a statistical modeling 
technique which is also used for fitness function 
approximation. A comparison of neural networks and 
kriging for fitness approximation in evolutionary 
optimization can be found in [19]. Fitness approximation by 
Support Vector Regression (SVR) is introduced in [20].   

Alternatively, if individuals in a population can be 
clustered into several groups as in [6], then only the 
individual that represents its cluster can be evaluated. The 
fitness value of other individuals in the same cluster will be 
estimated from the representative individual based on a 
distance measure. This is termed fitness imitation in contrast 
to fitness inheritance in [7]. The idea of fitness imitation has 
been extended and more sophisticated estimation methods 
have been developed in [8], [9].  

While the above methods aim to reduce computational 
cost by fitness function approximation, constructing a 
globally correct approximate model remains to be difficult 
because of the high dimensionality and limited number of 
training samples. Evolutionary algorithms using such 
approximate fitness functions may converge to false 
optimums. Therefore, it can be beneficial to selectively use 
the original fitness function together with the approximate 
model [21]. In conventional optimization, this is commonly 
known as model management [22] or evolution control in 
evolutionary computation [23]. For example, Khorsand and 
Akbarzadeh [15] recently investigated structural design by a 
hybrid of neural network and finite element analysis that 
only selectively used the neuro-estimation when either 
interpolation was expected (interpolation is generally 
expected to be more accurate) or the individual was not 
deemed to be highly fit (error in estimation is not important). 

However, the prevalent problems with interpolation in rough 
surfaces remain. The assumption of smooth continuity may 
not be valid, and interpolation may hence yield values that 
are not even physically realizable. Furthermore, we may be 
blinded to the optimal solutions using interpolation as 
interpolation assumes a pattern of behavior that may not be 
valid around optimal peeks.  

In this paper, fitness is not interpolated or estimated; 
rather the uncertainty in the similarity among real solutions 
is exploited. Nature’s “survival of the fittest” is not about 
exact measures of fitness; rather it is about rankings among 
peers. By exploiting this natural tolerance for imprecision, 
we hope to preserve optimization performance by computing 
fitness only selectively and only to preserve this ranking 
among individuals in a given population.  In the proposed 
algorithm, an adaptive queue of solutions (fuzzy granules) 
with an exactly computed fitness function is maintained. If a 
new individual is sufficiently similar to a known fuzzy 
granule, then that granule’s fitness is used instead as a crude 
estimate. Otherwise, that individual is added to the queue as 
a new fuzzy granule. In this fashion, irregardless of the 
competition’s outcome, fitness of the new individual is 
always a physically realizable one, even if it is a “crude” 
estimate and not an exact measurement. The queue size as 
well as each granule’s radius of influence is adaptive and 
will grow/shrink depending on the utility of each granule 
and the overall population fitness. To encourage fewer 
function evaluations, each granule’s radius of influence is 
initially large and is gradually shrunk in latter stages of 
evolution. This encourages more exact fitness evaluations 
when competition is fierce among more similar and 
converging solutions. Furthermore, to prevent the queue 
from growing too large, granules that are not used are 
gradually eliminated.  

This paper is organized as follows. The proposed method 
of generating fuzzy granules is explained in Section 2 via an 
adaptive fuzzy similarity analysis for granule generation. A 
set of six conventional optimization benchmark problems 
are simulated in Section 3. Statistical analysis confirms that 
the proposed approach reduces the computational 
complexity of the design problems by over 50% while 
reaching similar or better fitness levels. It should be 
mentioned that the present approach does not require any 
initial training. 

II. ADAPTIVE FUZZY FITNESS GRANULATION 
(AFFG) [26] 

A. The Main Idea 
The proposed fuzzy adaptive fitness granulation aims to 
minimize the number of exact fitness function evaluations 
by creating a queue of solutions (fuzzy granules) by which 
an approximate solution may be sufficiently applied to 
proceed with the evolution. If a human designer could be in 
the middle of an evolutionary cycle, trying to selectively 
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Fig. 1.   Flowchart of the Purposed AFFG Algorithm

minimize the number of fitness evaluations, the human 
designer would group and cluster rather than interpolate. In 
other words, if a given design is sufficiently similar to an 
existing design that is poor, it is discarded; and if it is similar 
to one that is good, it is kept. So, the question for the 
designer would be when to assign a new individual to an 
existing cluster and when to create a new cluster. With this 
approach, every cluster is assigned fitness value of a 
representative individual.  The designer would then know 
that there exists at least one physically realizable solution 
for that cluster.  
Similarly, the proposed algorithm uses fuzzy similarity 
analysis to produce and update an adaptive competitive 
queue of dissimilar solutions/granules. When a new solution 
is introduced to this queue, granules compete by a measure 
of similarity to win the new solution and thereby to prolong 
their lives in the queue. In turn, the new individual simply 
assumes fitness of the winning (most similar) individual in 
this queue. If none of the granules are sufficiently similar to 
the new individual, i.e. their similarity is below a certain 
threshold, the new individual is instead added to the queue 
after its fitness is evaluated exactly by the known fitness 
function. Finally, granules that cannot win new individuals 
are gradually eliminated in order to avoid a continuously 
enlarging queue. The proposed algorithm is shown in Figure 
1.  
As is shown in Figure 1, a random parent population 
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and 0>α  is a constant of proportionality. Threshold iθ  
increases as the best individual’s fitness in generation i  
increases. Hence as the population matures and reaches 
higher fitness valuations while also converging more, the 
algorithm becomes more selective and uses exact fitness 
calculations more often. Therefore, with this technique we 
can utilize the previous computational efforts during 
previous generations. Alternatively, if 
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i
jX  is chosen as a newly created granule.  

B. Adaptation in the Width of Membership Functions 

kσ  is distance measurement parameter that controls the 
degree of similarity between two individuals. Since it is 
more important to have accurate estimation of the fitness 
function of the individuals that are highly fit, the granules 
shrink or enlarge in reverse proportion to their fitness as 
below.  
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 Where 0>β  is an emphasis operator. The combined 
effect of granule enlargement/shrinkage in accordance to the 
granule fitness and the threshold increase in proportion to 
each population’s fitness is that the algorithm initially 
accepts individuals with less similarity as similar individual. 
Since, in general, members of the initial populations also 
have smaller fitness, threshold is also smaller. Therefore, 
fitness is computed by more often by estimation/association 
to the granules.  As the evolution proceeds, fitness in both 
the queue of granules as well as current population is 
expected to increase. This prompts higher selectivity for 
granule associability and higher threshold for estimation. In 
other words, in the last generations, the degree of similarity 
between two individuals must be larger than the first 
generations to be accepted as similar individuals. Equation 
(2) adapts the width of membership functions in order to 
have more exact fitness computed around individuals who 
perform very well, but fewer fitness computations around 
individuals who have poor performance. This procedure 
promotes both fast convergence rate as well as high 
accuracy because of lower computation cost in the early 
steps of evolution and accurate estimation of fitness function 
during latter generations.  

C. Adaptation in the Length of Granule Queue 
Finally, as the evolutionary algorithm proceeds, it is 

inevitable that new granules are increasingly generated and 
added to the queue. Depending on complexity of the 
problem, the size of this queue can become excessive and 

become a computational burden itself. To prevent such 
unnecessary computational effort, a “forgetting factor” is 
introduced in order to appropriately decrease the size of the 
queue. In other word, it is better to remove granules that do 
not win new individuals, thereby producing a bias against 
individuals that have low fitness and were likely produced 
by a failed mutation attempt. Hence, kL  is initially set at N 
and subsequently updated as below, 
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Where M is the life reward of the granule and K is the 
index of the winning granule for each individual in 
generation i. Here we set M = 5. 

The following example is provided to illustrate the 
competitive granule queue update. 

Example: Suppose there are three granules with four 
variables in the i-th generation ( Table 1.a), and two new 
upcoming individuals for fitness estimation. Similarity 
threshold is computed as 8.0=iθ  from previous 
generation. Table 1.b shows the two individuals in the i-th 
generation. Tables 1.c and 1.d illustrate similarities between 
individuals in the current population and the granules. Since 
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individual, is not similar to any of the existing granules and 
is added as a new granule to the pool. Finally, the first 
granule is deleted from the pool (stack of granules) as shown 
by the updated granule pool in Table 1.e.  

III. NUMERICAL RESULTS  
To illustrate the efficacy of the proposed granulation 

techniques, we have chosen a set of 6 traditional 
optimization benchmarks for their various characteristics. 
We need a test environment in order to prove the 
performance of the proposed method. De Jong [24] 
proposed that test environment must address the following 
characteristics: continuous vs. discontinuous, convex vs. 
non-convex, unimodal vs. multimodal, quadratic vs. non-
quadratic, low-dimensionality vs. high-dimensionality and 
deterministic vs. stochastic. 

Due to the stochastic nature of evolutionary optimization, 
each of the below simulations are repeated several times, 
and a paired t-test of significance is performed. The 
significance level α represents the maximum tolerable risk 
of incorrectly rejecting the null hypothesis H0, indicating 
that population 1’s mean is not significantly different from 
population 2’s mean. The p-value or the observed 
significance level of a statistical test is the smallest value of 
α for which H0 can be rejected. If the p-value is less than the 
pre-assigned significance level α, then the null hypothesis is 



 
 

 

rejected. Here, the significance level α was assigned, and the 
p-value was calculated for each of the following 
applications. 

The GA routines utilized random initial populations, 
binary-coded chromosomes, single-point crossover, 
mutation, fitness scaling, and an elitist stochastic universal 
sampling selection strategy. The probabilities of crossover 
(PCROSSOVER = 1) and mutation (PMUTATION = 0.01), and the 
population size (Number of chromosomes = 20) in each 
generation, and (Number of generation = 100). Finally 
chromosome length varies depending on the number of 
variables in a given problem but each variable is allocated 8 
bits. 

Comparison results are illustrated in Table II. The GA and 
GA-AFFG is run 15 times for each of the above 6 functions. 
While the two evolutionary schemes GA and GA-AFFG’s 
reach statistically similar performance in terms of optimal 
fitness, the proposed technique reduces number of function 
evaluations by over 50%.  

IV. CONCLUSION 
By exploiting evolution’s robustness against uncertainties 

in fitness function evaluations, the proposed adaptive fuzzy 
fitness granulation provides a method to selectively reduce 
number of fitness function evaluations without 
approximating or on-line training. The proposed algorithm 
detects the similarity between solutions to either create new 
fuzzy granules or to use results of earlier computations in 
order to avoid unnecessary computation of fitness, even 
among members of same generation. This technique 
overcomes many of the drawbacks of prior methods like: 
initial training, approximation error, and time consuming 

online learning. 
The simulations show that the proposed method could 

lead to improvement in computation time while keeping 
performance by its accurate estimates of fitness function for 
only 50 percent of individuals in each generation. The 
Traditional Optimization problem simulations are standard 
optimization benchmarks chosen for their various features 
such as multimodality and nonlinearity. Statistical analysis 
confirms that the proposed method demonstrates an ability 
to reduce computation without sacrificing performance. 
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Table 1. ( a ) The pool of granules and two new individuals in generation i, 9.0=α , 1.0=β , 5=M . 

 1,kc 2,kc 3,kc 4,kc ( )kGf kσ kL 

1G , 1st granule 1 1 1 1 6 0.5488 3 

2G , 2nd granule 1 2 2 1 12 0.3012 2 

3G , 3rd granule 2 1 1 2 18 0.1653 4 
 

( b ) Members of Population i, Population size = 2. 

 i
jx 1, 

i
jx 2, 

i
jx 3, 

i
jx 4, 

   

iX 1 1.1 1.9 1.9 1.1    

iX 2 2 2 2 2    

 
 ( c ) Degrees of similarity for first individual in i-th population. 

 
,1 1,1( )i

k xμ ,2 1,2( )i
k xμ ,3 1,3( )i

k xμ ,4 1,4( )i
k xμ k,1μ

 ( )iXf 1 
iX1 and 1G 0.9835 0.2606 0.2606 0.9835 0.6220 6 
iX1 and 2G 0.9464 0.9464 0.9464 0.9464 0.9464 12 
iX1 and 3G -710*3.654 -710*3.654 -710*3.654 -710*3.654 -710*3.654 18 

 
 ( d ) Degrees of similarity for second individual in i-th population. 

 ,1 2,1( )i
k xμ ,2 2,2( )i

k xμ ,3 2,3( )i
k xμ ,4 2,4( )i

k xμ k,2μ
 ( )iXf 2 

iX 2 and 1G 0.1901 0.1901 0.1901 0.1901 0.1901 6 
iX 2 and 2G 0.0040 1 1 0.0040 0.5020 12 
iX 2 and 3G 1 -810*1.129 -810*1.129 1 0.5000 18 

 
( e ) Updated pool of granules 

 1,kc 2,kc 3,kc 4,kc ( )kGf kσ kL 
1G 2 2 2 2 15 0.2231 5 

2G 1 2 2 1 12 0.3012 7 

3G 2 1 1 2 18 0.1653 4 


