
This ch~apter remedies the major problem when a partial-differential equation is solved 
through replacing the derivatives with finite-difference quotients. In that technique, 
nodes rnust be in rectangular arrays. In finite-element analysis (often abbreviated FEA), 
the top:ic of this chapter, nodes can be spaced in any desired orientation so that a region 
of any shape can be accommodated. The method is also called the finite-element 
methodl (FEM). 

In particular, curved boundaries can be approximated by closely spaced nodes. It is not 
difficult to place modes closer together in subregions where the function is changing 
rapidly., thus improving the accuracy. A program to carry out FEA is not as simple as for 
the finite-difference method but software is available to define the region, set up the equa- 
tions for all types of boundary conditions, and then get the solution. We will describe one 
of these programs, that from MATLAB in its PDE Toolbox." This program is most user- 
friendh-a graphical user interface even lets the user draw a 2-D region on the computer 
screen. 

The basis of FEA is to break up the region of interest into small subregions, the ele- 
ments. With a 2-D region, elements can be triangles (the most common) or rectangles, 
even "triangles" or "rectangles" with curved sides. In 3-D, they may be pyramids or bricks. 
Once the region and its elements are defined, the equations for the system are set up and 
solved. The equation must, of course, incorporate the boundary conditions, which can be 
of any type. 

The problems that can be solved with FEA include all three types of partial-differential 
equatians, and other problems such as eigenvalue problems, which we do not discuss. 

In this chapter, we develop the background for finite elements from a branch of mathe- 
matics called the calculus of variations, which offers three solution methods that do not 
use finite elements. 

* This toolbox is not a part of the student edition. 



C o n t e n t s  o f  T h i s  C h a p t e r  

Mathematical Background 
Gives a description of three methods: the Rayleigh-Ritz method, the 
collocation method, and the Galerkin method. The first of these optimizes a 
so-called functional to get the solution to a boundary-value problem. The 
other two methods also solve such problems and are more directly used in 
establishing the equations for the finite-element method in later sections 

Finite Elements for Ordinary-Differentia1 Equations (ODE) 
Applies the Galerkin method to the elements of the region to arrive at a 
system of linear equations whose solution is an approximation to the solution 
of an ordinary-differentia1 equation. Several steps are used in the 
development. Any type of boundary values can be accommodated. 

Finite Elements for Partial-Differential Equations 
Uses a different approach to setting up the system of equations for the finite 
element solution. The development is made for all three type of PDEs: 
elliptic, parabolic, and hyperbolic. Simple regions are used to illustrate the 
method. Examples with a more complex region are solved with MATLAB7s 
Toolbox. 

Finite-element analysis is based on some elegant mathematics. We begin the discussion 
with the Rayleigh-Ritz method for solving boundary-value problems. The method comes 
from that part of mathematics called the calculus of variations. 

In the Rayleigh-Ritz method, we solve a boundary-value problem by approximating 
the solution with a finite linear combination of basis functions. (We define basis functions 
and the requirements that are placed on them a little later.) In the calculus of variations, we 
seek to minimize a special class of functions calledfunctionals. The usual form for a func- 
tional in problems with one independent variable is 

Observe that ILy] is not a function of x because x disappears when the definite integral is 
evaluated. The argument y of ILy] is not a simple variable but a function, y = y(x). The 
square brackets in ILy] emphasize this fact. A functional can be thought of as a "function of 
functions." The value of the right-hand side of Eq. (9.1) will change as the function y(x) is 
varied, but when y(x) is fixed, it evaluates to a scalar quantity (a constant). We seek the y(x) 
that minimizes m]. 
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Figure 9.1 

Let us illustrate this concept by a very simple example where the solution is obvious in 
advance-find the function y(x) that minimizes the distance between two points. Although 
we know what y(x) must be, let's pretend we don't. Figure 9.1 suggests that we are to 
choose from among the set of curves y,(x) of which yl(x), y2(x), and y3(x) are representative. 
In this simple case, the functional is the integral of the distance along any of these curves: 

To minimize I[y], just as in calculus, we set its derivative to zero. There are certain restric- 
tions on all the curves y,(x). Obviously, each must pass through the points (xl, yl) and (x2, 
y2)  In addition, for the optimal trajectory, the Euler-Lagrange equation must be satisfied: 

Applying this to the functional for shortest distance, we have 

dF 1 
- = - (1 + (y')2)-"2(2y'), 
dy' 2 

[The last comes from Eq. (9.2).] 
From this, it follows that 
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Solving for y' gives 

y' = = a constant = b, 

and, on integrating, 

As stated, y(x) must pass through PI and P2; this condition is used to evaluate the con- 
stants a and b. 

Let us advance to a less trivial case. Consider this second-order linear boundary-value 
problem over [a, b] : * 

(An equation that has y = constant at the endpoints is said to be subject to Dirichlet condi- 
tions.) It turns out that the functional that corresponds to Eq. (9.3) is 

(If the boundary equations involve a derivative of y, the functional must be modified.) 
We can transform Eq. (9.4) to Eq. (9.3) through the Euler-Lagrange conditions, so opti- 

mizing Eq. (9.4) gives the solution to Eq. (9.3). Observe carefully the benefit of operating with 
the functional rather than the original equation: We now have only first-order instead of sec- 
ond-order derivatives. This not only simplifies the mathematics but also permits us to find solu- 
tions even when there are discontinuities that cause y not to have sufficiently high derivatives. 

If we know the solution to our differential equation, substituting it for u in Eq. (9.4) will 
make Z[u] a minimum. If the solution isn't known, perhaps we can approximate it by some 
(almost) arbitrary function and see whether we can minimize the functional by a suitable 
choice of the parameters of the approximation. The Rayleigh-Ritz method is based on this 
idea. We let u(x), which is the approximation to y(x) (the exact solution), be a sum: 

There are two conditions on the v's in Eq. (9.5): They must be chosen such that u(x) 
meets the boundary conditions, and the individual v's must be linearly independent (mean- 
ing that no one v can be obtained by a linear combination of the others). We call the v's 
trialfunctions; the c's and v's are to be chosen to make u(x) a good approximation to the 
true solution to Eq. (9.3). 

If we have some prior knowledge of the true function, y(x), we may be able to choose 
the v's to closely resemble y(x). Most often we lack such knowledge, and the usual choice 
then is to use polynomials. We must find a way of getting values for the c's to force u(x) to 
be close to y(x). We will use the functional of Eq. (9.4) to do this. 

* This equation is a prototype of many equations in applied mathematics. Equations for heat conduction, 
elasticity, electrostatics, and so on in a one-dimensional situation are of this form. 
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If we substitute u(x) as defined by Eq. (9.5) into the functional, Eq. (9.4), we get 
2 

I(co. CI ,  . . . , c,) = 1 [($ Z C,v,) - Q(P c,vJ2 + 2FZ  c,v, dx. I c9.6) 

We observe that I is an ordinary function of the unknown c's after this substitution, as 
reflected in our notation. To minimize I, we take its partial derivatives with respect to each 
unknown c and set to zero, resulting in a set of equations in the c's that we can solve. This 
will define u(x) in Eq. (9.5). 

We now substitute the u(x) of Eq. (9.5) into the functional. If we partially differentiate 
with respect to, say, ci where this is one of the unknown c's, we will get 

= [2 (2) % (2) dx - 1 2Qu (g) dx + 2F (E) dx, (9.7) dc, 

where we have broken the integral into three parts. 
An example will clarify the procedure. 

EXAMPLE 9.1 Solve the equation y" +- y = 3x2, with boundary points (0,0) and (2, 3.5). (Here Q = 1 and 
F = 3x2..) Use polynomial trial functions up to degree 3. If we define u(x) as 

we have linearly independent v's. The boundary conditions are met by the first term, and 
because the other terms are zero at the boundaries, u(x) also meets the boundary condi- 
tions. [It is customary to match the boundary conditions with the initial term(s) of u(x) and 
then make the succeeding terms equal zero at the boundaries, as we have done here.] 

Examination of Eq. (9.7) shows that we need these quantities: 

We now substitute from Eq. (9.9) into Eq. (9.7). Note that we have two equations, one for 
the partial with respect to c, and the other from the partial with respect to c3. The results - 
from this step are: 
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Figure 9.2 

We now carry out the integrations. Although there are quite a few of them, all are quite 
simple in our example. With a more complicated Q(x) and F(x), this might require numer- 
ical integrations. The result of this step is the pair of equations 

which we solve to get the coefficients in our u(x). On expanding, we find that 

Figure 9.2 shows that our u(x) agrees well with the exact solution, which is 6 cos(x) + 
3(x2 - 2), over the interval [0, 21. Table 9.1 compares computed values and the error of 

The Coilocation Method 

There are other ways to approximate y(x) in Example 9.1. The collocation method is what 
is called a "residual method." We begin by defining the residual, R(x), as equal to the left- 
hand side of Eq. (9.3) minus the right-hand side: 

R(x) = y" + Qy - F. (9.14) 
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Table 9.J 

Error x Y (4 44 
- 

Error 

We approximate y(x) again with u(x) equal to a sum of trial functions, usually chosen as 
linearly independent polynomials, just as for the Rayleigh-Ritz method. We substitute 
u(x) into R(x) and attempt to make R(x) = 0 by a suitable choice of the coefficients in 
u(x). Of course, normally we cannot do this everywhere in the interval [a,  b], so we 
select several points at which we make R(x) = 0. [The number of points where we do 
this must equal the number of unknown coefficients in u(x).] An example will clarify the 
procedure. 

EXAMPLE 9.2 Solve the same equation as in Example 9.1, but this time use collocation. 
The equation we are to solve is 

y'l + y = 3x2, y(0) = 0,  y (2)  = 3.5. <9.15) 

We take u(x) as before to satisfy the boundary conditions: 

The residual is, after substituting u(x) for y(x). 

R(x) = u" + u - 3x2, 

which becomes, when we differentiate u twice to get u", 

Because there are two unknown constants, we can force R(x) to be zero at two points in 
[O, 21. 'We do not know which two points will be the best choices, so we arbitrarily take 
them as x = 0.7 and x = 1.3. (These points are more or less equally spaced in the interval.) 
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Setting R(x) = 0 for these choices gives a pair of equations in the c's: 

From x = 0.7: 

1090c2 + 2 6 1 7 ~ ~  - 2795 
Fromx = 1.3: 

1000 
= 0. 

When these are solved for the c's, we get, for u(x), 

in which the coefficients are quite different than in Eq. (9.13). Figure 9.3 shows that this 
approximation is not as good as that obtained by the Rayleigh-Ritz technique. (But the 
amount of arithmetic is certainly less! We could improve the approximation by using more 
terms in u(x).) Table 9.2 compares the approximation with the exact solution. 

Table 9.2 

Error x Error 
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The Galerkin Method 

The Galerkin method is widely used, especially in the very popular technique that we 
will describe in Section 9.2. It is important to know the Galerkin method because of its 
widespread application. 

Like collocation, Galerkin is a "residual method" that uses the R(x) of Eq. (9.14), except 
that now we multiply R(x) by weighting functions, Wi(x). The Wi(x) can be chosen in many 
ways, but Galerkin showed that using the individual trial functions, vi, of Eq. (9.5) is an 
especial1,y good choice. 

Once we have selected the v's for Eq. (9.5), we compute the unknown coefficients by 
setting the integral over [a, b] of the weighted residual to zero: 

f b  

where Wi(x) = vi. (Observe that using Dirac delta functions for the Wi(x) gives the colloca- 
tion method.) 

Let us use the Galerkin method on the same example as before. 

EXAMPLE 9.3 Solve 

y"+y=3x2 ,  y(O)=O, y(2)=3.5 

by the Gralerkin method. Use the same u(x) as before: 

SO that v2 = x(x - 2) and v3 = x2(x - 2). 
The residual is 

R(x) = y" + y - 3x2, 

which blecomes, after substituting u" and u for y" and y, respectively, 

We now carry out two integrations (because there are two unknown c's): 

Using v2 as a Wi: [ [x(x - 2)] * R(x) dx = 0, 

Using v3 as a Wi: [ [*(x - 211 * R(x) dx = 0, 

which gives two equations in the c's: 
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Solving Eqs. (9.23) for c2 and c3 gives 

Although Eq. (9.24) looks different from Eq. (9.13), between x = 0 and x = 2 it gives values 
for u(x) that have errors about twice those from the Rayleigh-Ritz technique. Equation 
(9.24) differs from the analytical solution by little more than does the Rayleigh-Ritz 
equation. [The maximum error of Eq. (9.24) is 0.058; for Eq. (9.13), it is 0.034.1 
---- 

Although the Rayleigh-Ritz method is slightly more accurate in this example, the 
Galerkin method is much easier and we never have to find the variational form. 

The disadvantages of the methods of the previous section are twofold: Finding good trial 
functions [the v's in Eq. (9.31 is not easy, and polynomials [the usual choice when we have 
no prior knowledge of the behavior of y(x)] may interpolate poorly. [We can think of u(x) 
as an interpolation function between the boundary conditions that also obeys the differen- 
tial equation.] This is especially true when the interval [a, b] is large. 

The remedy to this problem is based on the observation in Chapters 3 and 5 that a 
function can be approximated by even low-degree polynomials if the polynomial fits the 
function at values that are closely spaced. We then hope that we can get the solution to a 
boundary-value problem by applying the Galerkin method to subintervals of [a, b], the 
boundaries of the equation. It turns out that our hope is fulfilled. 

The method that we now describe is calledfinite-element analysis (FEA), also called the 
finite-element method (FEM). The strategy is as follows: 

1. Subdivide [a, b] into n subintervals, called elements, that join at xl, x2, . . . , x,-~. 
Add to this array xo = a and x, = b. We call the xi the nodes of the interval. Number 
the elements from 1 to n where element (i) runs from xipl to xi. The xi need not be 
evenly spaced. 

2. Apply the Galerkin method to each element separately to interpolate (subject to the 
differential equation) between the end nodal values, u(xiWl) and u(xi), where these 
u's are approximations to the y(xi)'s that are the true solution to the differential equa- 
tion. [These nodal values are actually the c's in our adaptation of Eq. (9.5), the equa- 
tion for u(x).] 

3. Use a low-degree polynomial for u(x). Our development will use a first-degree poly- 
nomial, although quadratics or cubics are often used. (The development for these 
higher-degree polynomials parallels what we will do but is more complicated.) 

4. The result of applying Galerkin to element (i) is a pair of equations in which the 
unknowns are the nodal values at the ends of element (i), the c's. When we have done 
this for each element, we have equations that involve all the nodal values, which we 
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combine to give a set of equations that we can solve for the unknown nodal values. 
(The process of combining the separate element equations is called assembling the 
system.) 

5. These equations are adjusted for the boundary conditions and solved to get 
approximations to y(x)  at the nodes; we get intermediate values for y(x) by linear 
intlerpolation. 

We now begin the development. Although it involves several steps, each step is straight- 
forward. The differential equation that we will solve is 

yl' t Q(x)y = F(x) subject to boundary conditions at x = a and x = b. a ?3 

(We will specify the boundary conditions later.) 

Step I Subdivide [a, b] into n elements, as discussed. Focus attention on element (i) that 
suns between xi-, and xi. To simplify the notation, call the left node L and the right node R. 

Step 2 Write u(x) for element (i): 

Recognize that the N's in Eq. (9.26) are really first-degree Lagrangian polynomials. 
When we use such linear interpolation, the shape functions are often called hatfunctions. 
(Chapeau functions, from the French, is another name.) The reason for this name will 
become apparent. 

Figure 9.4 sketches NL and NR within element (i). Because the values of the N's vary 
(from unity to zero) as x goes from xL to xR, they are functions of .x. Note also that the c's 
in Eq. (9.26) are independent of x. 

The reason that our N's are called "hat functions" is clear when we look at a sketch of 
the N's for several adjacent elements in Figure 9.5. Observe that we combine the NR(x) and 
NL(x) of Figure 9.4 that join at xi into a quantity that we call Ni. 

Step 3 Apply the Galerlun method to element (i). The residual is 

Figure 9.4 
1/L and N,? within element (i) 
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where we have substituted u(x) for y(x). The Galerkin method sets the integral of R 
weighted with each of the N's (over the length of the element) to zero: 

NLR(x) dx = 0, 

CR (9.28) 

Now expand Eq. (9.28): 

Step 4 Transform Eqs. (9.29) and (9.30) by applying integration by parts* to the first 
integral. In the second integral, we will take Q out from the integrand as Q,, an average 
value within the element. We also take F outside the third integral. When this is done, 
Eq. (9.29) becomes 

In the last two terms of Eq. (9.31), NL = 1 at L and is zero at R, so the equation can be 
simplified: 

Doing similarly with Eq. (9.30) gives 

* From d(UV) = U dV + V d U ,  we have 
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Step 5 Change signs in Eqs. (9.32) and (9.33); substitute from Eq. (9.26) for u, duldx, 
dNLldx, ,and dN,ldx; and carry out the integrations. We show this separately for each term 
in Eq. (9.32): 

Doing the same with Eq. (9.33) gives 

Step 6 Substitute the result of step 5 [Eqs. (9.34) and (9.35) into Eqs. (9.32) and (9.33), 
and rearrange to give two linear equations in the unknown cL and cR: 

Qav h, -Fa$, du 
6 2 (9.36) 

We call the pair of equations in (9.36) the element equations. We can do the same for each 
element to get n such pairs. 

Step 7 Combine (assemble) all the element equations together to form a system of linear 
equations for the problem. We now recognize that point R in element ( i )  is precisely the 
same as point L in element (i + 1). Renumber the c's as co, c,, . . . , c,. Also notice that the 
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gradient (duldx) must be the same on either side of the join of the elements-that is, 
( d ~ l d x ) ~ , ~  in element (i) equals (d~ldx),=~ in element (i + 1). This means that these terms 
cancel when we do the assembling except in the first and last equations. (On rare occasions 
this is not true, but in that case the difference in the two gradients is a known value.) 

The result of this step is this set of n + 1 equations (numbered from 0 to n), 

[KlIc) = {bJ, (9.37) 

where the diagonal elements of [m are 

1 h ( - Qav. I * y) in row 0, 
h 1 

1 1 hi+l (% - Qav, ; * %) + (G - Qav,i+ I * in rows 1 ton - I, 
3 

and elements above and to the left of the diagonal in rows 1 to n are 

The elements of {c} are c ,  i = 0 to n. 
The elements of {b) are 

In the preceding equations, Qav,i and are values of Q and F at the midpoints of 
element (i). 

Step 8 Adjust the set of equations from step 6 for the boundary conditions. We will 
handle two cases: Case (I), a Dirichlet condition is specified-y(a) = constant [andlor 
y(b) = constant]. Case (2), a Neumann condition is specified-dyldx = constant at x = a 
andlor x = b. (If Q = 0, we cannot have a Neumann condition at both ends, because the 
solution would be known only to within an additive constant.) [We leave case (3), mixed 
conditions, as an exercise; it is a modification of case (2) . ]  

Case (1): Dirichlet condition. In this case, c is known at the end node. Suppose this 
is y(a) = A. Then the equation in row 0 is redundant, and so we remove it from the set of 
equations of step 6. In the next row, we move klo * A  to the right-hand side (subtracting this 
from the element computed in step 6). If the condition is y(b) = B, we do the same but with 
the last and next to last equations. 

Case (2): Neumann condition. In this case, c is not known at the end node. Suppose 
the condition is dyldx = A at x = a. We retain the equation in row 0 and substitute the 
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given value of dyldx into the right-hand side. If the condition is dyldx = B at x = b, we do 
the same with the last equation. 

Step 9 Solve the set of equations for the unknown c's after adjusting, in step 8, for the 
boundary conditions. The c's are approximations to y(x) at the nodes. If intermediate val- 
ues of y are needed between the nodes, we obtain them by linear interpolation. 

Examples will clarify the procedure. 
- - 
EXAMPLE 9.4 Solve y" $. y = 3x2, y(0) = 0, y(2) = 3.5. (We solved this same equation in Section 9.1 .) 

Subdivide into seven elements that join at x = 0.4, 0.7,0.9, 1.1, 1.3, and 1.6. 
Table 9.3 shows the values we need to build the system of equations. 
The augmented matrix of the set of equations from step 6 is 

2.367 -2.567 0.000 0.000 0.000 0.000 0.000 0.000 j -0.024 

-2.567 5.600 --3.383 0.000 0.000 0.000 0.000 0.000 j -0.160 

0.000 -3.383 8.167 -5.033 0.000 0.000 0.000 0.000 i -0.328 

0.000 0.000 -5.033 9.867 -5.033 0.000 0.000 0.000 \ -0.492 

0.000 0.000 0.000 -5.033 9.867 -5.033 0.000 0.000 -0.732 

0.000 0.000 0.000 0.000 -5.033 8.167 -3.383 0.000 j -1.378 

0.000 0.000 0.000 0.000 0.000 -3.383 5.600 -2.567 i -2.890 

'Table 9.3 

1 0.000 0.000 0.000 0.000 0.000 0.000 -2.567 2.367 ! -1.944 

-8.9845 from the right-hand side of the bottom row to get 

To adjust for the boundary conditions, we eliminate the first and last equations and subtract 
(0)(-2.567) = 0 from the right-hand side of the top row and subtract (3.50)(-2.567) = 

Element L 

' 5.600 -3.383 0.000 0.000 0.000 0.000 -0.160 
- 

-3.383 8.167 -5.033 0.000 0.000 0.000 -0.328 
0.000 -5.033 9.867 -5.033 0.000 0.000 -0.492 
0.000 0.000 -5.033 9.867 -5.033 0.000 -0.732 
0.000 0.000 0.000 -5.033 8.167 -3.383 -1.378 
0.000 0.000 0.000 0.000 -3.383 5.600 6.094 - - 

Midpoint 

. (9.39) 

We have shown Eqs. (9.38) and (9.39) in their full form but observe that the system is tridi- 
agonal (and symmetric, too). It would have been better to store these as 8 X 4 arrays, so 
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Table 9.4 

x U ( X )  Anal. Error 

that Eq. (9.39) would be 

When the system of Eq. (9.39) is solved, we get the solution as shown in Table 9.4. The 
table also shows the analytical solution and the errors of our computation. The table indi- 
cates that closer spacing of nodes near x = 1 would give better answers. 

This next example solves a boundary-value problem, which has Neumann conditions at 
the ends of the region. 

EXAMPLE 9.5 Solve y" - ( x  + l ) y  = e-X(x2 - x + 2) subject to Neumann conditions of 

y ' ( 2 ) = 0 ,  yr(4)=-0.036631. 

Use four elements of equal lengths. Compare to the analytical solution 

y(x) = eFX(x - 1).  

Table 9.5 gives values that we need to set up the equations. 

Element L R Midpoint hi Qw Fa" 

1 2 2.5 2.25 0.5 -3.25 -0.5072 
2 2.5 3.0 2.75 0.5 -3.75 -0.4355 
3 3 .O 3.5 3.25 0.5 -4.25 -0.3611 
4 3.5 4.0 3.75 0.5 -4.75 -0.2896 
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The initial matrix of equations is 

After adjusting for boundary conditions, we get 

x u(x) Anal. Error 

I 
- 

2.542 - 1.729 0.000 0.000 0.000 i 0.127 
- 1.729 5.167 -1.688 0.000 0.000 i 0.236 

0.000 -1.688 5.333 -1.646 0.000 j 0.199 
0.000 0.000 - 1.646 5.500 -1.604 i 0.163 
0.000 0.000 0.000 -1.604 2.792 i 0.036 - 

We again observe that the system is tridiagonal and symmetric. Will this be true for mixed- 
boundaq conditions? 

, 

ther Kinds of Elements 

and the solution is 

We have used the "hat7' functions because they are the simplest kind of element for a 1-D 
problem. This may not always be adequate. This sketch shows why. 
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The dots in the figure represent the computed u-values at the nodes and the straight lines 
that connect the dots are the supposed intermediate values (because the value of u is 
assumed to vary linearly within the elements). This certainly does not correctly describe 
the function u(x)! (Of course, if the elements are much smaller, the broken line would be a 
better approximation.) How can we remedy this defect in the procedure? 

The obvious way is to use a shape function that better approximates the true function. A 
quadratic shape function would involve three nodes: two at the ends and an intermediate 
one. This will force the solution to behave like a parabola that passes through the three 
nodes. A cubic shape function might be used; it would involve four nodes. Using such 
higher-order shape functions adds some modest complications to the development of the 
procedure, but the general approach is identical to what we have shown. When such 
higher-order shape functions are used, the integration of the analogs of Eqs. (9.3 1) or (9.5) 
is usually done by numerical methods. The resulting system of equations is no longer tridi- 
agonal, but the nonzero elements of the coefficient matrix are still clustered about the main 
diagonal. 

There is still a flaw with such higher-order elements in the I-D problem-the curve for 
u is not continuous in slope at the juncture of the elements. This flaw could be eliminated 
if the shape function were splines, but this is not often done because that complicates the 
procedure significantly. 

Sometimes the user of finite-element analysis wants to know the flux in addition to the 
u-values. In one dimension, the flux is kaldx. (In the sketch, this is proportional to the 
slopes.) With the linear hat function, the flux values are discontinuous and have larger 
errors than u(x). Higher-order shape functions help to overcome this. 

Convergence Rates 

A numerical analyst is always greatly concerned about the accuracy of the numerical 
solutions. For finite-element-method procedures, the question is "How do the errors 
decrease when we put nodes closer together?" It can be shown that, with linear ele- 
ments, errors are of order 0(h2), where h is a measure of the nodal spacing. Quadratic 
elements give an 0(h3) accuracy; higher orders than two give even better accuracy as 
the mesh is refined. As we have said, the rate of decrease is a limit value that is 
achieved only as the h-value gets very small. (The rate of decrease in the errors with 
quadratic or higher-order shape functions also depends on the integration method used 
in formulating the system of equations.) Also, a very interesting phenomenon has been 
observed in studies of the effect of smaller h-values on accuracy-errors may not 
always decrease uniformly as the spacing is made closer. As a mesh is gradually 
refined, anomalous behavior can occur. 

It is frequently the case that nodes are not uniformly spaced-in fact, this is one of 
the major advantages of the finite-element method; we can put nodes closer together 
where the solution u(x) varies most rapidly to get better accuracy in that subregion. This 
imposes a problem about how best to define "h" in the order of convergence. We shall 
not pursue this but only remark that if a mesh is refined to improve the accuracy of the 
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numerical solution, we must refine it everywhere, not just in selected parts of the 
region. 

The errors in the flux do not decrease as rapidly with smaller spacing of the nodes. For 
a linear shape function, errors decrease as O(h). 

Burn~ett (1987) is an excellent reference. 

9.3 Finite Elements for 
Partial-Differential Equations 

When an elliptic partial-differential equation is solved by replacing derivatives with finite- 
difference approximations, there are serious difficulties if the region is irregular. Analytical 
methods are also very awkward to apply in such cases. 

The finite-element method has no such problems. As we saw in Section 9.2 for one- 
dimensnonal boundary-value problems, nodes can be placed wherever the problem solver 
desires with the finite-element method. This is also true for two- and three-dimensional 
regions. They can be placed along any boundary so as to approximate it closely. It is the 
method of choice for solving elliptic partial-differential equations on regions of arbitrary 
shape. 

Although setting up the equations that solve partial-differential equations is no easy 
task, computer programs are available that do so. It is important to understand how this 
method works, although this text cannot give everything that today's scientists and engi- 
neers might want to know. Our treatment will give a basic knowledge. 

The introduction to finite elements in Sections 9.1 and 9.2 is important background for 
what we shall do here. Recall that two ways of applying variational methods to subdivi- 
sions of the region of interest were presented: Rayleigh-Ritz and Galerkin. The first of 
these ainimized the functional for the problem by setting partial derivatives to zero; the 
second by setting integrals of a weighted residual to zero. The two methods are equivalent 
for most problems, and both can be used for elliptic equations. We choose the former, in 
part to provide variety from the presentation in Section 9.2. 

The elliptic equation that we will solve in this section is 

on region R that is bounded by curve L, with boundary conditions 

where dulan is the outward normal gradient. 
Observe that we have Dirichlet conditions on some parts of the boundary and mixed 

boundary conditions on other parts. For our notation, we will use u(x, y) as the exact solu- 
tion to Eq. (9.40) and v(x, y) as our approximation to u(x, y). Although the finite-element 
method is most often used when the region is three dimensional, we will simplify the 
development by doing it in only two dimensions. 
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Here is our plan of attack: 

Step 1. Find the functional that corresponds to the partial-differential equation. 
This is well known for a large class of problems. 

Step 2. Subdivide the region into subregions (elements). Although many kinds of 
elements can be used, our treatment will consider only triangular elements. The ele- 
ments must span the entire region and approximate the boundary relatively closely. 
Every node (the vertices of our triangular elements) and every side of the triangles 
must be common with adjacent elements except for sides on the boundaries. 

Step 3. Write an interpolating relation that gives values for the dependent variable 
within an element based on the values at the nodes (the vertices of the triangles). We 
will use linear interpolation from the three nodal values for the element. We will write 
the interpolation function as the sum of three terms; each term involves a quantity ci, 
the value of v(x, y) at a node. 

Step 4. Substitute the interpolating relation into the functional, and set the partial 
derivatives of the functional with respect to each c to zero. This gives three equa- 
tions, with the c's as unknowns for each element. 

Step 5. Combine together (assemble) the element equations of step 4 to get a set 
of system equations. Adjust these for the boundary conditions of the problem, then 
solve. This will give the values for the unknown nodal values, the c's, that are 
approximations to u(x, y) at the nodes. We can get approximations to u(x, y) at inter- 
mediate points in the region by using the interpolating relations. 

We will discuss each of these five steps in turn. We will provide simple examples to 
illustrate some of them. 

Step 1. Find the Functional 

For Eq. (9.40) the functional is well known: 

I[u] = J][(%r + (zy - Qu2 + 2Fu [uu2 + 2puldL. (9.41) 
Region 

It is possible to develop Eq. (9.41) using the Galerkin technique, Workers in the field 
of structural analysis usually derive it from the principle of virtual work. We will take it as 
a given. 

Step 2. Subdivide the Region 

As stipulated, we will use triangular elements, which will be defined by our choice of 
nodes. The placement of nodes is, in part, an art. In general, we place nodes close together 
in subregions where the solution is expected to vary rapidly. It is advantageous to make the 
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sides run in the direction of the largest gradient. Along the curved parts of the boundary, 
nodes should be placed so that a side of the triangle closely approximates the boundary. 

Some of these recommendations depend on knowing the nature of the solution in 
advance. Often, however, a better placement for the nodes can be accomplished after some 
preliminary computations or after preliminary trials using the finite-element method with 
nodes placed arbitrarily. 

The chore of defining the nodes' coordinates is facilitated by computer programs that 
allow the user to place nodes with a pointing device on a graphical display of the region. 
These programs even permit rotating 3-D regions or looking at cross sections. Once the 
nodes halve been located, the program connects them to create the elements. 

Computer routings are available that can divide any given planar region into triangles 
automatically, but they usually do not have the expertise of an experienced engineer. 

Step 3. Write the Interpolating Relations 

This part of the development is longer than the previous one. As stated, we will use a linear 
relation. Figure 9.6a is a sketch of typical element (i) whose nodes are numbered r, s, and 
t in counterclockwise direction. The nodal values are c,, cs, and c, as indicated in 
Figure 9.6b. The shaded triangle shows how v(x, y) varies within the element. 

Within typical element (i), we write 

where th,e N's (called shape&nctions) will be defined so that v(x, y) at an interior point is a 
linear interpolation from the nodal values, the c's. We have shown in Eq. (9.42) that v(x, y) 
can be expressed as the product of vectors (N) and {c) .  (We use parentheses to enclose a 
row vector and curly brackets to enclose a column vector in this section.) Vector and 
matrix notation will be useful. We will indicate matrix M by [w. 
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Figure 9.7 

Figure 9.6b suggests that v(x, y) lies on the plane above the element that passes through 
the nodal values. Equation (9.42) does not define v(x, y) outside of element ( i ) ;  there will 
be similar expressions for the other elements, but their N's and c's will differ. 

A sketch of the entire region would not show v(x, y) as a plane. Instead, it would be a 
surface composed of planar facets, each in a plane above an element. v(x, y) for the entire 
region is continuous, but vr(x, y) is not. (This is one of the flaws in our choice of element. 
Some other element definitions do not have this flaw.) 

Another name for the N's of Eq. (9.42) is pyramid function. The reason for this name is 
illustrated in Figure 9.7, where N, of Figure 9.6 is drawn. Its height at node s is unity and 
zero at the other nodes. It looks like an unsymmetrical pyramid whose base is the element 
with its apex directly above node s. The other two N's are similar. It is obvious that the N's 
are functions of x and y and that the c's are independent of x and y. We now develop expres- 
sions for the N's. 

Because v(x, y) varies linearly with position within the element, an alternative way to 
write the linear relation is 

which must agree with the nodal values when (x, y) = (xj, yj), j = r, S,  t. Hence 

v at r: c, = a l  + a,xr + a3yr, 

v at s: c, = al + a2xs + a3y,, 

v at t: c, = a l  + a2xt + a,y, 

This is a system of equations 

[MI {a)  = {c) (curly brackets show a column vector), 

where 

Solving for {a): 

{u) = [M-l]{c). 
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The inverse of M is not difficult to find 

with 2(.Area) = det(A4). The value of the determinant is the sum of the elements in row 1 of 
Eq. (9.45) within the brackets. Area is the area of the triangular element.* You should ver- 
ify that [M-'][MI = [I] to ensure that Eq. (9.45) truly gives the inverse matrix. 

To alpply the interpolating function to the minimization of the quadratic functional, 
Eq. (9.41), we prefer to write v(x, y) in terms of the shape functions of Eq. (9.42). This task 
is easy. We have, from Eqs. (9.42) and (9.43), 

Howev~er, in terms of N (from Eq. 9.42), 

Comparing the two expressions, we have 

where A C 1  is given by Eq. (9.45). Observe carefully that Eq. (9.47) says that each N is a 
linear function of x and y of the form 

and that the coefficients are in column j of [M-'1. 
We have found the expressions for the N's. Before we go on, we digress to show an 

example that will clarify this step. 

EXAMPLE 9.6 For the triangular element shown in Figure 9.8 with nodes r, s, and t in counterclockwise 
order, find { a } ,  {N}, and v(0.8,0.4). 

Node x Y c 

Before we do any computations, we can find v(0.8, 0.4) by inspection. (See Fig. 9.8.) 
Point 1 is at (0, 0.4), so v there is 180 by linear interpolation between nodes r and t. 
Similarly, v at point (2) is 240. The point (0.8,0.4) is 5 of the distance from points 1 and 2, 

* That Area = det (M) is shown in most books on vectors where the cross product is explained 
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Figure 9.8 

so v(0.8, 0.4) = 180 + i(240 - 180) = 220. We get the same result by interpolating 
between points 3 and 4, and between node r and (5). 

To get { a }  we first compute [M-l]: 

Then we compute 

{ a }  = [M-']{c) = 

giving v(x, y) = 100 + 50x + 200y. (You should confirm that this gives the correct 
values at each of the nodes.) If we substitute x = 0.8, y = 0.4, we get v = 220, as we 
should. 

From Eq. (9.47), 

(N) = (1 x y)[M-'] = (1 - OSx - y, 0.5x, y). 

In other words, we have 

(You should confirm that these also have the proper values at each of the nodes.) It is 
important to notice that the coefficients of the N's [the Ai, Bi, and Ci of Eq. (9.48)] can be 
read directly from the columns of [M-'1. 

In what follows we will need the partial derivatives of the N's with respect to x and to y. 
From Nj = Aj + Bjx + Cjy, we see that these are constants that can be read from rows 
2 and 3 of [M-l] in column j. 

At this point we know how to write v(x, y) within the single triangular element (i) as 
v(x, y) = (N(i)){~(i)}. (The superscripts (i) tell which element is being considered whenever 
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this is necessary.) We now stipulate that (fl)) = (0) everywhere outside of element (i). 
Therefore we can write 

v(x, y) = (N(j)) {c(~)} 
i = all elements 

This is a mathematical statement of the previous observation that v(x, y) is a surface com- 
posed of joined planar facets. 

We are now ready for step 4 of our plan. This too is lengthy but each portion is easy. 

Step 4. Substitute v(x, y) into the 
Functional and Minimize 

We continue to work with typical element (i) whose nodes are r, s, and t. Repeating 
Eq. (9.46), our v(x, y) is 

V(X, Y) = (N){c} = Nrcr + Nscs + Ntct, 

where the Ws are given by Eqs. (9.47) and (9.45). Recall that each N is Aj + Bjx + C'y 
with the coefficients given by the elements in column j of [M-'1. 

Our objective is to develop a set of three equations for element (i), which is, in matrix form, 

[KlIcJ = IbJ, 

and which is a prototype of similar equations for all other elements. 
Whe:n we substitute v(x, y) for element (i) into the functional of Eq. (9.41), we get 

-$ [m2 + 2/32, dL. 

[I is now an ordinary function of the c's. The integral is only over the area of element (i) 
because: the Ws that define v(x, y) in element (i) are zero outside of (i). The last term appears 
only if element (i) has a side on the boundary. Actually, we will postpone handling this last 
term for now and handle it as an adjustment to the equations after they have been developed.] 

We minimize I by setting the three partials (with respect to each of the three c's) to zero. 
We now develop expressions for these partials. First consider aIlacr. 

For the first term in the integrand: 

However, 

= BrcT + BScS + Btct, 

by virtue of Eq. (9.48). (The B's come from row 2 of [M-'1.) 
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Also, aldcr(dvlax) = Br because c, and c, are independent of c,.. Hence 

The result for the second term is similar: 

where the C's come from row 3 of [M-'1. 
We next consider the Q term. Q is independent of c ,  so 

Finally we work with the F term. F is independent of c,, so 

Putting all this together, we have 

- 2Q[N:cr + NrNsc, + NrN,d dxdy 

(0 

Equation (9.50) really is a formulation with the c's unknown: 

Krrcr + Krscs + Krtct = by, 

where 

K,  = 2B: dx dy + (I 2C: dx dy - 2QN: dx dy, 

(0 (0 (9 

b,. = -I/ 2FNr dx dy. 
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[Remember, we postpone handling the last part of Eq. (9.49).] 
Now we recognize that the B's and C's of Eq. (9.51) are constants, so we can bring them 

out from under the integral sign. If we use average values for Q and F within the element, 
we can also bring these out as their average values. (The best average value to use is the 
value of' Q and F at the centroid of the triangular element.) 

This means that we have to evaluate these five integrals: 

The first of these is easy: Il  = Area of the element, which we already know from having 
cornputled [M- l ] .  The other integrals are laborious to compute directly, but there is a use- 
ful formula for the integral of the product of powers of linear functions over a triangle: 

II 24!m!n! 
N ~ N T N :  dx dy = (Area). 

(4 + m + n + 2)! 
(triangle) 

Using this with the proper values for the exponents, 4, m, and n, gives 

(Area) 
I2 = - 

6 '  

(Area) 
Z4 = - 

12 ' 

(Area) 
Z5 = -. 

3 
The tenms in Eq. (9.5 1) are then 

Y r ' r  + Krscs + K r F ,  + 

where 
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If we do the same with dIlac, and Wac,, we get two more equations in the c's for element 
(i). All together we have three equations, which we call the element equations. We simplify 
these equations somewhat by omitting the common factor of 2 for each of them to get 

where 

(diagonals) j = I-, s, t; 

Observe that [K] is symmetrical: Kv = Kji. 
Here is an example to clarify the formation of the element equations. 

EX AMPLE 9.7 Find the element equations for the element of Example 9.6 if Q(x, y) = (xy)/2 and F(x, y) = 
x + y. 

The nodes are (x, y) = (0, O), (2, O), and (0, 1). We had, for [M-'1, 

Area = 1. Centroidis atx = (0 + 2 + 0)/3 = ?, y = (0 + 0 + l)/3 = 4. Q, = ($)(f)12 = b. 
F = l + l =  

a" 3 3 1. 
Using Eq. (9.52), we find that the element equations are 

1.2315 -0.2592 - 1.0092 

-0.2592 0.2315 -0.0093 
-1.0092 -0.0093 0.9815 

We are now ready for step 5 of the plan. 

Step 5. Assemble the Equations, 
Adjust for Boundary Conditions, Solve 

There are three separate operations in step 5: (i) assemble the equations, (ii) adjust for 
boundary conditions, and (iii) solve the equations. 
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(i) Do the Assembly As we have seen, there are three equations for every element. 
However, some or all nodes of element (i) are shared with other elements; the c-value for a 
shared node then appears in the equations of all elements that share the node. Combining 
all of the element equations will create a global system coefficient matrix with as many 
rows and columns as there are nodes in the system. We combine (assemble) the system 
matrix in the following way. 

Suppose there are n nodes in the system. Number the nodes in order, from 1 to n. 
Associate the number of each node with the row and column of every element matrix 
where the c for that node appears on the diagonal. Also associate the node numbers with 
the rows and columns of the system matrix in the same way. 

We get the entry in row (i) and column ( j )  of the system matrix by adding the values 
from row (i) of every element matrix that has row (i), then adding these in the columns 
where the column-node numbers match. We also add the hi's from these rows to get the bi 
of the system matrix. An example will clarify this operation. 

EXAMPILE 9.8 Suppose there are five nodes that define three elements, as shown in Figure 9.9 with the 
element matrices of Eq. (9.53a, b, c) below. Construct the system matrix without adjusting 
for boundary conditions. 

(1) + 

Element [I] (2) -+ 

(4) -+ 

Element [2]  (3) + 

t t t  
(2) (3) (4) 

Figure 9.9 
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[The rows and columns of Eqs. (9.53) could have been in a different order, although we 
always go counterclockwise around the element in selecting the nodes.] 

We construct the system matrix as follows, where the superscripts indicate the element 
number that provides the value: 

For row 1 For row 2 

col 1: Kfil + K g  c01 1: K ~ { I  

C O ~  2: K!;] ~ 0 1 2 :  K&] + ~[1211 

col3: 0 ~ 0 1 3 :  K!?) 

co1 4: ~ [ 1 ~ ~ l  + K&32 co14: K&] + ~ 1 2 3 1  

~015 :  ~;32] ~015 :  0 

b: bill + bi3] b: by1 + bi21 
and so forth. 

[A zero appears in column 3 of row 1 because node (3) is not in any element that includes 
node (1). A zero appears in column 5 of row 2 because node (5)  is not in any element that 
includes node (2).1 

Once the system matrix has been assembled, we make the adjustments for boundary 
conditions. 

(ii) Adjzmt for Boundary Conditions There are two types of boundary conditions: non- 
Dirichlet conditions on some parts of the boundary (L2) and Dirichlet conditions on other 
parts (L1). We will always select nodes such that only one of the two types of conditions 
pertains to any side of the element. Hence there will always be a node at the point where 
the two types join. These two types of boundary conditions require two separate adjust- 
ments. We prefer to apply the adjustment for a boundary condition that involves the out- 
ward normal derivative to the system equations first and then do the adjustment for 
Dirichlet conditions. 

Adjrcsting for Nun-Dirichlet Conditions Non-Dirichlet conditions (those that involve 
the outward normal derivative) are associated, not with the nodes, but with sides of the tri- 
angular elements, sides that correspond to part of L, of Eq. (9.41). Consider an element 
that has a non-Dirichlet condition on one side that lies between nodes r and s. The effect of 
the boundary condition on the equations comes from differentiating the last term of 
Eq. (9.49) with respect to the c's. However, if we take a and /3 out from the integrand as 
average values, we see from Eq. (9.49) that they are of the same form as the Q and F terms 
except they are line integrals rather than area integrals. That similarity lets us immediately 
write the result of the differentiation with respect to c, as 
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where the line integrals are along the side between nodes r and s. It is important to note 
that we have not included c, because node t is not on the side we are considering. (The 
average values of a and p should be taken at the midpoint of the side.) When 
we integrate, we have 

(It is easy to evaluate the integrals when we remember that the N's are linear from 1 to 0 
between the two nodes.) 

Precisely the same relations result when we differentiate with respect to node c,, except 
the roles of r and s are interchanged in Eqs. (9.54) and (9.55). The net result would be to 
add 2pL/2 to the right-hand sides of the rows for c, and c,. We also would subtract the mul- 
tipliers of c, and c, in Eq. (9.55) from the coefficients for c, and c, in row r. The similar 
equations from the partials with respect to c, provide subtractions from the coefficients 
in row s. 

Recall, however, that we canceled a 2 factor when we constructed the element equations 
and so we must do so here. We make this adjustment to the element equations for every 
element that has a derivative condition on a side. 

Adjusting for Dirichlet Conditions For every node that appears on the boundary where 
there is a Dirichlet condition, the U-value is specified. We insert this known value in place 
of the c of that node in every equation where it appears and transpose to the right-hand 
side. (Actually, if the node number is m, all entries in column m of the matrix are multi- 
plied by the value and subtracted from the right-hand side of the corresponding row.) We 
also remove the row corresponding to the number of the known node from the set of equa- 
tions. (The column for this node has already been "removed" by being transferred to the 
right-hand side.) 

Removing the rows for those nodes with a Dirichlet condition is simplified in a com- 
puter program if these rows are at the top or the bottom of the matrix. There are other ways 
to handle Dirichlet conditions that avoid having to remove the rows. 

This completes our construction of the system equations. 

(iii) Getting the Solution We solve the system in the usual way, perhaps preferring an 
iterative procedure if the system is large. 

An example, intentionally simple, follows. 

EXAMPLE 9.9 The region shown in Figure 9.10 has four nodes. It is divided into just two elements. The 
values for u are specified at nodes (3) and (4), and the outward normal gradient is specified 
on three sides as indicated. The equation we are to solve is 
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Figure 9.1 0 

Find the solution by the finite-element method. The element-matrix inverses are: 

M inverse for element 1 M inverse for element 2 
area is 11.5 area is 6 

From these we get these element equations: 

Element equations for element I 

Element equations for element 2 

These equations assemble to give this unadjusted system matrix: 
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We need the lengths of sides 4- 1, 1-2, and 2-3. They are 

Side 4-1: 6.083, Side 1-2: 4.123, Side 2-3: 4. 

We now adjust for the derivative conditions to get the modified system: 

The second adjustment is for the known values at nodes (3) and (41, giving 

which we solve to get these estimates of ul and u i  

Solving an Elliptic Problem with MATLAB 

MATLAB's professional version has a toolbox, the Partial Differential Equation Toolbox 
(not included in the student version that we use) that can solve all three types of partial- 
differential equations. We describe here how it solves an elliptic problem. 

This illustrative example solves Laplace's equation to get the temperature distribution 
on a region that is a rectangle whose width is twice its height and that has a quarter circle 
removed from its upper-right corner: 
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Along the base of the figure, the temperature is 100"; on the arc it is 0" (Dirichlet condi- 
tions). All other edges are insulated (Neumann condition, duldn = 0). We desire the 
steady-state temperature distribution. 

We will obtain the solution through six steps: 

1. Draw the region. 
2. Save the region as an M-file. 
3. Set boundary conditions. 
4. Create a mesh of triangular elements. 
5. Define the type of equation to be solved. 
6. Solve the problem. 

I .  Draw the Region The Toolbox provides two different ways to do this: with a 
Graphical User Interface (GUI), or through commands typed into the command screen. 

We will use the second way. Our region will be composed of two parts: the rectangle 
and a circle that is subtracted from it. We begin with the rectangle. We use the command: 

>> pderect ( [-1 1 -. 5 .51 ) 

where the parameter is a vector of the x-coordinates followed by the y-coordinates 
of two opposite corners. [The corners are at (-1, -0.5) and (1, OS).] After the 
command is entered, we see the rectangle in a separate window that we will call the 
"figure window." 

This window has a menu bar as well as another bar that has icons; these icons are quick 
ways to call for many menu commands. 

We now create the circle. We go back to the command window and enter 

This superimposes a circle on the rectangle with center at x = 1, y = 0.5, and radus of 0.5, 
which we can view in the figure window. The figure window has a box labeled "Set formula" 
that reads R1 + el, which we change to R1 - C1 by clicking the box and using the key- 
board to make the change. The figure window does not yet reflect the change but it is in effect. 

From now on, each step is done in the figure window. 

2. Save the Region It is always good to save the description of the region. This permits 
one to retrieve it at a later time. Saving is done by invoking F i l e  / Save A s  in the figure 
window. We give it a name, say, FIGA, and it is added to the list of M-files. 

3. Set Boundary Conditions We invoke Boundary / Boundary Mode and see the 
region displayed (the distorted rectangle is now seen). Its outline is red with arrows indi- 
cating a counterclockwise ordering. We establish the boundary conditions by double-click- 
ing on a boundary and then entering parameters into a dialog box. 

We begin with the base of the figure. After double-clicking on the base, we see the dia- 
log box. Select Dirichlet (actually, this is the default), and make the value o f t  = 100. 
Click OK and we are returned to the figure window. We double-click on the arc and select 
Dirichlet , and make t = 0 (both are default values). 
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We need to establish a Neumann condition on each of the other sides of the rectangle. This 
is easy tso do: double-click on the side, select Neumann, set g = 0, q = 0 (default values), 
click OK. 

The boundary conditions are now established. 

4. Create a Mesh of Triangular Elements Clicking on Mesh / I n  i t i a 1 i z e Mesh in 
the menlu bar creates a coarse mesh of triangular elements: 

We can refine this mesh with Mesh/Re f ine Mesh but we stay with the current mesh 
for now. 

5. Define the Type of Equation to Be Solved We do this by clicking on PDE/PDE 
Specification in the menu bar. In the dialog box that appears, we select Elliptic 
(the default) and set c = 1, a = 0, f = 0. We then click OK to finish this step. (These para- 
meters axe for our equation, V2u = 0.) 

6. Solve the Problem Clicking Solve/Solve PDE in the menu bar gets the solution. 
The software in the toolbox sets up the equations, assembles these, adjusts for boundary 
conditions, and solves the system of equations. 

We see a display of the region with colors indicating the temperature in each element. 
On the right of this is a vertical bar that shows how colors and temperatures are related. 
Our figure here is not in color but the output actually indicates the temperatures within 
each element by colors that vary from bright red (100") to bright blue (0"). Because we use 
a coarse mesh, it is easy to see the temperature of each individual element by its color. This 
would be difficult with a fine mesh. 
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Color: u 

I I I I I 

Another way to see the solution is to get the isotherms. Selecting only Contour in the 
Plot Parameters dialog box gives a plot of isotherms within the region, with 
Au = 5". This is shown in the next figure. On the computer screen, these isotherms are 
colored to indicate the temperatures. 

Contour: u 
1 

0.8 

0.6 



9.3: Finite Elements for Partial-Differential Equations 553 

The Heat Emquation 

As we have just seen, the finite-element method is often preferred for solving boundary- 
value problems. It is also the preferred method for solving the heat equation when the 
region of interest is not regular. You should know something about this application of finite 
elements, but we do not give a full treatment. 

Consider the heat-flow equation in two dimensions with heat generation given by F(x, y): 

which is subject to initial conditions at t = 0 and boundary conditions that may be 
Dirichlet or may involve the outward normal gradient. Although this is really a three- 
variabl~e problem (in x, y, and t), it is customary to approximate the time derivative with 
a finite difference and apply finite elements only to the spatial region. Doing so, we can 
rewrite Eq. (9.56) as 

where we have used a forward difference as in the explicit method. (We might prefer 
Crank--Nicolson or the implicit method, but we will keep things simple.) 

To alpply finite elements to the region, we do exactly as described previously-cover 
the region with joined elements, write element equations for the right-hand side of 
Eq. (9.56), assemble these, adjust for boundary conditions. and solve. However, we must 
also consider the time variable. We do so by considering Eq. (9.57) to apply at a fixed point 
in time, t,. Because we know the values of u everywhere within the region at t = to, 
we surely know the initial nodal values. We then can solve Eq. (9.57) for the u-values at 
t = to + At, where the size of At is chosen small enough to ensure stability. 

We will use the Galerkin procedure to derive the element equations to provide some 
variety from the above. In this procedure you will remember that we integrate the residual 
weighted with each of the shape functions and set them to zero. (The integrations are done 
over the element area.) If we stay with linear triangular elements, there are three shape 
functions, N,, N,, and N,, where the subscripts denote the three vertices (nodes) of the ele- 
ment taken in counterclockwise order. 

The residual for Eq. (9.56) is 

Residual = u, - a(uU + uyy) - F, (9.58) 

where we have used the subscript notation for derivatives and have abbreviated klcp with a .  
As stated, we will use linear triangular elements; within each element we approximate 

u with 

U(X, y )  = v(x, y) = N,c, + N,cx + N,c,. (9.59) 

This means that Galerkin integrals are 
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If we apply integration by parts (as we did in Section 9.2) to the second derivatives of 
Eq. (9.60), we can reduce the order of these derivatives. Doing so and replacing v from 
Eq. (9.59) gives a set of three equations for each element, which we write in matrix form: 

The components of {c} are the nodal temperatures of the element, of course; those of 
{dcldt) are the time derivatives. The components of the matrices of Eq. (9.61) are 

In Eq. (9.62), the line integral in the b's is present only along a side of an element on the 
boundary of the region where the outward normal gradient uN is specified in a boundary 
condition. 

From the development of Eq. (9.52), we know how to evaluate all of the integrals of 
Eq. (9.62) when the elements are triangles. [See, for example, Burnett (1987) for the eval- 
uations for other types of elements.] 

As stated, we will use a finite-difference approximation for dcldt. If this is a forward 
difference as suggested, we get the explicit formula 

1 1 
- [C]{cm+') = - [C]{cm) - [Kl{cm) + {b}, (9.63) 
At At 

where all the c's on the right are nodal temperatures at t = tm and the nodal temperatures 
on the left in {cm+l] are at t = tm+l 

We can put Eq. (9.63) into a more familiar iterating form by multiplying through by 
At[C]-l: 

(cmil) = {cm) - At[C] - l [~ ]{~m}  + A~[c]-'{b). (9.64) 

[We can make Eq. (9.64) more compact by combining the multipliers of {cm) .] 
In principle, we have solved the heat-flow problem by finite elements. We construct the 

equations for every element from Eq. (9.64) and assemble them to get the global matrix, 
then adjust for boundary conditions just as before. This gives a set of equations in the 
unknown nodal values that we use to step forward in time from the initial point. With the 
explicit method illustrated here, each time step is just a matrix multiplication of the current 
nodal temperatures (and a vector addition) to get the next set of values. If we had used an 
implicit method such as Crank-Nicolson, we would have had to solve a set of equations at 
each step, but, unfortunately, they are not tridiagonal. We might hope for some equivalent to 
the A.D.I. method, but A.D.I. requires that the nodes be uniformly spaced. The conclusion 
is that the finite-element method in two or three dimensions is a problem that is expensive to 
solve. In one dimension, however, the system is tridiagonal, so that situation is not bad. 
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Sdvirig a Parabolic Problem with MATLAB 

The Partial Differential Equation Toolbox can solve all types of partial-differential equa- 
tions. We show here how it can solve the heat equation. In the previous description of 
solving an elliptic problem with the toolbox, the solution is the steady-state distribution of 
temperatures. This is not reached instantaneously; the progress of the solution from an ini- 
tial state to the steady state can be found by solving the heat equation: 

MATLAB's generic form of a parabolic equation is 

where we have used boldface to pinpoint the parameters. For our equation, we want d = 1, 
c = k/cp (the thermal diffusivity), a = 0, and f = 0. 

Let u,s see how the steady state is approached as time advances for the same region and 
boundary conditions as before. We will take the initial temperatures within the region as 0". 

The procedure is almost exactly the same as before, only step 5 is different: 

1. Define the region. 
2. Define the boundary conditions. 
3. Enter the values for the parameters of the equation. 
4. Establish a mesh of triangular elements. 
5. Enter values for the initial values for u and a list of times for which the solution is 

ca'mputed. 
6. Solve the problem and display the results 

I .  Defin'e the Region We saved the region with the file name FIGA so all we have to do 
is enter this file name as a command. 

2. Define Boundary Conditions We could have saved the previous set of conditions as 
an M-file, but we neglected to do that so we do it again. Because several of the boundaries 
have the same Neumann condition, it is advantageous to do Edit /Select A1 I, set the 
conditioins to Neumann with aulan = 0, and reset the two with Dirichlet conditions after- 
ward. If we save this with the filename 'FIG-BC,' we can do steps 1 and 2 from that file. 

3. Enter Values of Equation Parameters From PDE/ PDE Specifications, we 
select Parabolic , and make d = 1, c = 1, a = 0, and f = 0 to match our equation. 

4. Initialize the Mesh The easiest way to do this is with the triangular-shaped icon in the 
toolbar. 'We see the same mesh as before. 

5. Enter Initial Temperature and List of Times This is done through the Solve/ 
Parameters / Solve Parameters combination. We enter uO = 0 (the default), and 
enter into the time field 0:O.l:O.l to obtain the solution after one-tenth of a second. (We 
will revise this after seeing this solution to find the temperatures within the object after 0.2, 
0.4,O.g and 10.0 seconds.) 



Chapter Nine: Finite-Element Analysis 

6. Solve the Equation We have many options here. Clicking on the = icon gives a color 
image similar to that from our elliptical example, except the temperatures are lower. 
Getting the isotherms is a better way to see the temperature distribution. This is accomp- 
ished by P l o t  / Paramet ers  and then choosing only Contour. 

We repeated step 6 with different ending times to see how the isotherms change over 
time. At t = 10.0, the temperatures are essentially at steady state. (Smaller values for c in 
the equation delay the time to reach equilibrium.) 

The figures show the isotherms for the sequence of ending times. By counting the num- 
ber of isotherms, we estimate the temperature at the origin (0, 0) to be 

t: 0.1 0.2 0.4 0.8 10.0 
temp: 28" 43" 57" 66" 68.6" 

Time = 0.1 Contour: u 
1 I I I I I 1 

Time = 0.2 Contour: u 
1 

0.8 

0.6 

I I I I I 
- - 

- - 
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Time = 0.4 Contour: u 
1 

0.8 

0.6 

Time = 0.8 Contour: u 

lr I I I I I 
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Time = 10 Contour: u 
1 I I I I I 

The Wave Equation 

We will only outline how finite elements are applied to the wave equation, because this 
topic is too complex for full coverage here. Just as for the heat equation, finite elements are 
used for the space region and finite differences for time derivatives. We will develop only 
the vibrating string case (one dimension); two or three space dimensions are handled anal- 
ogously but are harder to follow. 

The equation that is usually solved is a more general case of the simple wave equation 
we have been discussing. In engineering applications, damping forces that serve to 
decrease the amplitude of the vibrations are important, and external forces that excite the 
system are usually involved. We therefore use, for a 1-D case, this equation for the 
displacement of points on the vibrating string, y(x, t): 

Here T represents the tension, which is allowed to vary with x; h represents a damping 
coefficient that opposes motion in proportion to the velocity; F is the external force; and 
w/g is the mass density. There are boundary conditions (at x = a and x = 6) as well as ini- 
tial conditions that specify initial displacements and velocities. 

The approach is essentially identical to that used for unsteady-state heat flow: Apply 
finite elements to x and finite differences to the time derivatives. We will use linear 
one-dimensional elements, so we subdivide [a, b] into portions (elements) that join at 
points that we call nodes. Within each element, we approximate y(x, t )  with v(x, t), 
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where cL and cR are the approximations to the displacements at the nodes at the left and 
right ends of a typical linear element. The N's are shape functions (in this 1-D case, we 
have called them "hat functions"). 

By using the Galerkin procedure, we can get this integral equation, which we will even- 
tually transform into the element equations: 

In Eq. (9.67) we have used subscript notation for the partial derivatives of y with respect to 
t and x and primes to represent the derivatives of the N's with respect to x (because the N's 
are functions of x only). 

We now use Eq. (9.66) to find substitutions for y and its derivatives: 

Here we employ the dot notation for time derivatives. (The c's vary with time, of course, 
but the IV's do not.) 

We now substitute from Eqs. (9.68) into Eq. (9.67) to get a pair of equations for each 
element (we write them in matrix form): 
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We will replace the time derivatives with finite differences, selecting central differences 
because they worked so well in the finite-difference solution to the simple wave equation. 
Thus we get 

Now we solve Eq. (9.70) for {cmf l 1: 

1 1 1 
[MI + - 2At IC1) {c"'~} = (& [MI - [K]) { cm}  - (- WI - nt LC]) {ern-'} + {bm}. 

(LO2 

Notice that we need two previous sets of displacements to advance to the new time, tm+l. 
We faced this identical problem when we solved the simple wave equation with finite 
differences, and we solve it in the same way. We use the initial velocities (given as one of 
initial conditions) to get {c-l}to start the solution: 

where {g(x)} is the vector of initial velocities. [In view of our earlier work, we expect 
improved results if we use a weighted average of the g-values if the g(x)'s are not 
constants.] 

We have not specifically developed the formulas for the components of the matrices and 
vector of Eqs. (9.69), but they are identical to those we derived when we applied finite ele- 
ments to boundary-value problems in Section 9.2 because we will take out w, h, T, and F 
as average values within the elements. So we just copy from Section 9.2: 

A 
MI' = M,, = (F) - 6 ' 

In this set, A represents the length of the element. 
We now have everything we need to construct the element equations. Except for the 

end elements (and then only if the boundary conditions involve the gradient), the gradi- 
ent terms in Eqs. (9.73) cancel between adjacent elements. Assembly in this case is 
very simple because there are always two elements that share each node (except at 
the ends). 
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What advantage is there to finite elements over finite differences? The major one 
is that we can use nodes that are unevenly spaced without having to modify the procedure. 
The advantage becomes really significant in two- and three-dimensional situations, but the 
other side of the coin is that solving the equations for each time step is not easy. 

--- 
olving the Wave Equation with M T L  

---. 

The wave equation is a hyperbolic partial-differential equation. Lets see how MATLAB's 
PDE Toolbox handles an example. We will solve Example 8.14 by FEM. (The vibrating 
string problem can be solved with pdep , available in the student edition.) 

The steps in the procedure are identical to those for a parabolic equation except for step 
five: 

1. Define the region. 
2. Define the boundary conditions. 
3. Enter the values for the parameters of the equation. 
4. Establish a mesh of triangular elements. 
5. Enter the initial values for u,  duldt, and a list of times for which the solution is 

computed. 
6. Solve the problem and display the results. 

Example 8.14 finds the displacements of a square flexible membrane that has an initial dis- 
placement but zero initial velocity. We will put the center of the square at the origin rather 
than a colrner. This changes the initial displacement function to (1 - x2)(1 - y2). 

1. We draw the square with pderect ( [ - 1 1 - 1 1 I ) and we see the square in 
the figure window. It is labeled SQ1. 

2. All boundaries are at u = 0. Doing Boundary /Boundary Mode shows the 
region in red. This means that the Dirichlet conditions with u = 0 are automatically 
supplied. (We can verify this by double-clicking on a side.) 

3. Wedo PDE/PDE Speci f ica t ionandf i l l in thedia logboxtohavec  = l,a = 

O , f =  0 ,andd  = 1. 
4. Clicking on the triangular icon creates a coarse mesh of triangles. We will stay with 

this coarse mesh to make it easier to see how the individual elements change with 
time. A finer mesh would give a more accurate solution. 

5. We do S o l v e /  Parameters and fill in the dialog box with Time = 0 : 0 . 2  : 1 
a n d u ( t 0 )  = (1 - x."2) . * ( I  - y . " 2 ) .  

6. We are now ready for the solution. For this problem, seeing the results as 
a "movie" is best. So we do Plot / Parameters and select only Heiqht ( 3 - 
D Plot ) and Anima t i o n  in the dialog box. When we click on Plot , we see 
the membrane go from its initial bubblelike position to its mirror image on the 
othier side of the (x, y) plane and back again repeatedly. The animation repeats 
itself several times. This figure shows the final position that is reached after one 
second. 
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Time = 1 Height: u 

xercises 

Section 9.1 

1. Show that the integrand of Eq. (9.4) is equivalent to 
Eq. (9.3) if the Euler-Lagrange condition is 
used. This means that Eq. (9.4) is the functional for 
any second-order boundary-value problem of the 
form 

Y" + Q(x)y = F(x),  

subject to Dirichlet boundary conditions 

where A and B are constants. 

b 2. Use the Rayleigh-Ritz method to approximate the 
solution of 

y U = 3 x + 1 ,  y ( O ) = O ,  y ( l ) = O ,  

using a quadratic in x as the approximating function. 
Compare to the analytical solution by graphing the 
approximation and the analytical solution. 

3. Repeat Exercise 2, but this time, for the approximating 
function, use 

ax(x - I)  + bx2(x - 1). 

Show that this reproduces the analytical solution. 

4. Another approximating function that meets the bound- 
ary condition of Exercise 3 is 

Use this to solve by the Rayleigh-Ritz technique. 

5. Suppose that the boundary conditions in Exercise 3 are 
y(0) = 1, y(l) = 3. Modify the procedure of Exercise 3 
to get a solution. 

6. Solve Exercise 2 by collocation, setting the residual to 
zero at x = and x = $. Compare this solution to that 
from Exercise 2. 

7. Repeat Exercise 6, except now use different points 
within [0, 11 for setting the residual to zero. Are some 
pairs of points better than others? 
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Repeat Exercise 3, but now use collocation. Does it 19. Confirm that the sum of the entries in the first row of 
matter where within [0, 11 you set the residual to zero? M-' is equal to twice the area for each of the elements 

Use Galerkin's technique to solve Exercise 2. Is the in Exercise 18. 

same solution obtained? b20. Find the element equations for the elemei~t in part (c) 

Repeat Exercise 3, but now use Galerkin. of Exercise 18 if Q = xZy and F = -xly (these refer to 
Eq. 9.40). There are no derivative conditions on any of 

Section 9.2 the element boundaries. 

11. suppose that, in E ~ ,  (9,251, Q ( ~ )  = sin(x) and ~ ( ~ 1  = 
21- Solve Example 8.1 (Chapter 8) by finite elements. 

x2 + 2. For an element that occupies [0.33,0.45], Place nodes at each corner and at the midpoints of the 
top and bottom edges, also at points 9, 12, and 14. 

F a .  Find N, and NR of Eq. (9 26). Draw triangular elements whose vertices are at these 
b. Wr~te out the integrals of Eq. (9.28). nodes. Compare the answers at each node to those 
c. Wrlte out the element equations (9.36). obtained with finite-difference approximations to the 

b d .  Coinpute the correct average values for Q and F. derivatives. 
Repeat Exercise 11 for two adjacent elements. These 
occupy [0.21,0.33) and [0.45,0.71]. 

Assemble the three pairs of element equations of 
Exercises 11 and 12 to form a set of four equations with 
the nodal values at x = 0.21, x = 0.33, x = 0.45, and 
x = 0.71 as unknowns. 

Solve by the finite-element method: 

4 
)' + xy = ,$ - - ( 1  = 1 y(2) = 3. 

x3 ' 

Put nodes at x = 1.2, 1.5, and 1.75 well as at the ends 
of [I,  21. Compare your solution to the analytical solu- 
tion, which is y = x2 - 21x. 

Repeal: Exercise 14, except $or the end condition at x = 

1 of y'(1) = 4. 

Repeat Exercise 14, but with more nodes. Place added 
nodes at x = 1.1, 1.3, 1.4, 1.65, and 1.9. Compare the 
errors with those of Exercise 14. 

Section 9.3 

17. Confirm that Eq. (9.45) is in fact the inverse of matrix 
M in Eq. (9.44). 

18. Find Mpl ,  a, N, and u(x, y) for these triangular ele- 
ments: 

a. Nocles: (1.2, 3.1), (-0.2, 4), (-2, -3); u-values at 
these nodes: 5, 20, 7; point where u is to be deter- 
mined: (- 1,O) 

b. Nocles: (20, 40), (50, lo), (5, 10); u-values at these 
nodes: 12.5, 6.2, 10.1; point where u is to be deter- 
mined: (20,20) 

c. Nocles: (12.1, 1 P.3), (8.6, 9.3), (13.2, 9.3); u-values 
at these nodes: 121, 215, 67; point where u is to be 
determined: (10.6,9.6) 

22. In Exercise 21, the temperatures in the top half of the 
slab are the same as those in the bottom half because of 
symmetry in the boundary conditions. Solve the prob- 
lem for the top half only of the slab with the same 
nodes as in Exercise 21. (Along the horizontal midline, 
the gradient will be zero). 

b23. For a triangular element that has nodes at points (1.2, 
3.2), (4.3, 2.7), and (2.4, 4. l), find the components of 
each matrix in the element equations [Eqs. (9.61) and 
(9.62)] if the material is aluminum. 

24. For heat flow in one dimension, the governing equation is 

Repeat the development of the analog of Eq. (9.62) for 
this case. 

25. Use the equations that you derived in Exercise 24 to 
solve Exercise 3 1 of Chapter 8. Place the nodes exactly 
as those used in the finite-difference solution. Are the 
resulting equations the same? 

26. Use finite elements to solve Exercise 34 of Chapter 8. 
Place interior nodes at three arbitrarily selected points 
(but do not make these symmetrical). Create triangular 
elements with these nodes and the four corner points. 
Set up the element equations, assemble, and solve for 
four time steps. Use the resulting nodal temperatures to 
estimate the same set of temperatures that were com- 
puted by finite differences. Compare the two methods 
of solving the problem. 

27. Solve Example 8.6 (Chapter 8) by finite elements. Place 
nodes strategically along the edges and within the slab 
so there are a total of 14 or 15 nodes. Use triangular ele- 
ments. Compare the solution to that obtained with 
finite-difference approximations. (You may want to take 
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advantage of symmetry in the boundary conditions to 
solve the problem with fewer elements.) 

b28. Rederive Eq. (9.64), but now for the Crank-Nicolson 
method. 

29. Repeat Exercise 28, but now for the theta method. 

30. Set up the finite-element equations for advancing the 
solution to part (a) of Exercise 50 of Chapter 8. 

b31. Set up the finite-element equations for starting the 
solution to part (a) of Exercise 50 of Chapter 8. Do this 
first for the analog of Eq. (8.42) and then for the analog 
of Eq. (8.49). 

b32. If we were to solve part (c) of Exercise 50 of Chapter 8, 
would there be an advantage to using shorter elements 
near the middle of the string where the displacements 
depart more from linearity? 

33. Solve, using finite elements, Example 8.14, except with 
initial conditions of 

u(x, y) = 0, uJx, y )  = x2(2 - x)y2(2 - y). 

34. Repeat Exercise 33, but with these initial conditions: 

~ ( x .  y) = x2(2 - x)y2(2 - y), ur(x, Y )  = 0. 

35. Solve Exercise 58 of Chapter 8 using finite elements. 
Where do you think interior nodes should be placed if 
there are 

a. 6 of them? 
b. 12 of them? 

Compare the solutions from these two cases to that 
from the finite-difference method. 

36. Solve Exercise 60 of Chapter 8 by finite elements, plac- 
ing five interior nodes at points that you think are best. 
Justify your choice of nodal positions. 

b37. Using the isotherm plots from the MATLAB solution 
to a parabolic equation, count the isotherms (there are 
20 curves) to see how the temperature at the upper-left 
corner varies with time. Plot these. Can you find an 
equation that fits? 

Applied Problems and Projects 

APP1. Use the Internet to find software that solves both ordinary- and partial-differential equations. Can 
you find any that use the finite-element method? (Hint: Try http://gams.nist.gov/ and search the 
topic: partial differential equations.) 

APP2. Write a computer program that uses finite elements to solve the vibrating string problem. Test it by 
solving Example 8.13. 

APP3. Repeat APP2, but now for the heat equation, Eq. (9.56). Test it by solving Exercises 26 and 27. 

APP4. Write a computer program (using your favorite language) to solve a two-dimensional elliptic partial- 
differential equation. Allow for both Dirichlet and non-Dirichlet boundary conditions. Have the 
program read in the required data from a file. Provide function procedures to compute the values for 
f(x, y) and q(x, y). Here is a suggested data structure: 

NN = the total number of nodes 

NK = the number of boundary nodes with Dirichlet conditions. (NN - NK = number of nodes 
whose values are not specified, that is, the interior nodes and those boundary nodes whose values 
are not specified.) 

VX (NN) = an array to hold the x-values for all nodes in the order that nodes are numbered. 
There is an advantage if the nodes whose u-values are specified are numbered so as to follow 
those nodes where the u-values must be computed. 

VY (NN) = an array to hold the corresponding y-values for all nodes 

M (NE, 4, 3) = an array to hold the element matrices. The first subscript indicates the element 
number. The second and third subscripts indicate the row and column of the matrix. The fourth 
row holds the node numbers for nodes in this element in counterclockwise order. There is an 
advantage if the unspecified nodes come before the nodes whose u-values are known. 
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UU (I'JN) = an array to hold unknown and known u-values at nodes in order of the node number. 
Zeros may be used as fillers for unknown u-values. 

AE (NE) = an array to hold areas of the elements 

F(NE) = an array to hold averagefvalues for each element 

Q(NE) = an array to hold average q-values for each element 

A(NN, NN i- 1) = the system matrix 

Here is what your logic might look like: 

1. Read in NN, NE, NU. 
2. Read in (x, y) values for the nodes, storing in VX and VY. 
3. Read in node numbers for each element in turn (nodes should be in counterclockwise order), 

storing in the fourth row of the element matrices. 
4. Read in the unknown and known u-values for each node. 
5. Compute average values for f and q in each element. (You may prefer to evaluate these at the 

centroid of the element.) Store in F and Q. 
6. Read in the known u-values, storing in UK. 
7. Compute the area for each element and its inverse [Eq. (9.49), the area from the first row elements]. 
8. Find the element equations and add the appropriate values to the system matrix. 
9. Adjust the system matrix for non-Dirichlet boundary conditions. (You may want to have the user 

input the a and b values for these and the node numbers at the ends of the element boundary 
where this applies. Alternatively, these could have been read in with the other parts of the data.) 

10. Adjust the system matrix for Dirichlet conditions using values from the UU array. 
11. Solve the system. 
12. Display the u-values for each node. 

APPS. Write and test a program that solves the vibrating membrane problem using the finite-element method. 

APP6. In developing the element equations, a number of integrals must be evaluated [see Eq. (9.51)]. For 
triangular elements, these are very easy to get: Each is just the area divided by a number. These sim- 
ple triangular elements that we have discussed are called Co-linear elements. 

Other types of elements besides these simple triangles are sometimes useful. For example, con- 
necting the nodes with lines that form quadrilateral elements can cut the number of elements almost 
in half. For these, the integrals are not so readily evaluated. 

Even if we stay with triangular elements, the accuracy of the solution is improved if we add one 
node within each of the three sides. Such additional nodes can even permit the "triangle" to have 
curved sides. Such a more elaborate triangular element is called a cO-quadratic element. This idea 
can be extended to add more than three nodes to the triangle, and additional nodes are sometimes 
added to quadrilateral elements. 

For all of these more elaborate elements, the shape functions no longer have a "flat top" like that 
sketched in Figure 9.7. The normal procedure for these is to employ Gaussian quadrature in which 
a weighted sum of the integrand at certain points, called Gauss-points, approximates the integral 
quite well. 

For a square region with opposite corners at (- 1, - 1) and (1, I), these Gauss-points are at 
x = 5 h 3 ,  y = t 6 1 3 ,  as given in Table 5.13. For a region that is a triangle with vertices at (0, O), 

(1,0), (0, I), there are three Gauss-points at (i, i), ($, i), and (i, :), each weighted with i. For ele- 
ments that do not conform to these basic cases, they must be mapped to coincide with them. Where 
are the Gauss-points for 
a. A triangle whose vertices are (- l ,3 ) ,  (7, I), and (2,7)? 
b. A quaclrilateral whose vertices are (1,2), (5 ,  - l), (6, 3), (3, 5)? 



Chapter Nine: Finitc-Element Analysis 

APP7. Use MATLAB's PDE Toolbox to solve several of the examples of Chapters 8 and 9. Define the 
regions both with the mouse on the graphical user interface and also by using commands. 

APPS. There are other software packages that let you solve engineering and scientific problems with FEA. 
Two of these are ALGOR and MSCNastran. Find information on these and compare their capabili- 
ties with that of MATLAB's PDE Toolbox. The Internet is a good place to get some information. 
Your library may have books on them, too. 

APP9. Search for information on finite elements with a Web browser. Write a report on what you find. 


