
Most problems in the real world are modeled with differential equations because iais easier 
to see the relationship in terms of a derivative. An obvio~us example is Newton's Law-f = 

M * a-where the acceleration a is the rate of change of the velocity. Velocity is also a 
derivative, the rate of change the position, s, of an object of mass, M, when it is acted on by 
force,$ So we should think of Newton's Law as 

a second-order ordinary differential equation. It is ordinary because it does not involve 
partial differentials and second order because the ordeir of the derivative is two. The solu- 
tion to this equation is a function, s(t). This is a particularly easy problem to solve analyti- 
cally when the acceleration is constant: 

The solution contains two arbitrary constants, vo and so, the initial values for the veloc- 
ity and position. The equation for s(t) allows the computation of a numerical value for s, 
the position of the object, at any value for time, the independent variable, t. 

Many differential equations can be solved analytically and you probably learned how to 
do this in a previous course. The general analytical solution will include arbitrary constants 
in a number equal to the order of the equation. If the same number of condittons on the 
solution are given, these constants can be evaluated. 

When all of the conditions on the problem are specified at the same value for the 
independent variable, the problem is termed an initial-value problem. If these are at two 
different values for the independent variable, usually ait the boundaries of some region of 
interest, it is called a boundary-value problem. 

This chapter describes techniques for solving ordinary differential equations by numer- 
ical methods. To solve the problem numerically, the required number of conditions must be 
known and these values are used in the numerical solution. We will begin the chapter with 
a Taylor series method that is not only a good method in itself but serves as the basis for 



several other methods. We start with first-order initial-value problems and later cover 
higher-order problems and boundary-value problems. 

With an initial-value problem, the numerical solution begins at the initial point and 
marches from there to increasing values for the independent variable. With a boundary 
problem, one must march toward the other boundary and match with the condition(s) 
there. This is not as easy to accomplish. Certain boundary-value problems have a solution 
only for characteristic values for a parameter; these are known as characteristic-value 
problems. 

When we attempt to solve a differential equation, we must be sure that there really is a 
solution and that the solution we get is unique. This requires that f(x, y)  in dyldx = f(x, y) 
meet the Lipschitz condition: 

Let f(x, y) be defined and continuous on a region R that contains the point (xo, y o )  We 
assume that the region is a closed and bounded rectangle. Then f(x, y) is said to satisfy the 
Lipschitz condition if: 

There is an L > 0 so that for all x, yl ,  y2 in R, we have 

For most problems and all examples of this chapter, the condition is met. 
There is a similar set of conditions for the solution to a boundary-value problem to exist 

and be unique. A linear problem of the form 

d2u 
-- 

d 2  
- pu' + qu + r, for x on [a, b] ,  

with 

where p, q, and r are functions of x only, has a unique solution if two conditions are met: 

p, q, and r must be continuous on [a, b], 

and 

q > 0 on [a, b]. 

If the problem is nonlinear, more severe conditions apply that involve the partial deriva- 
tives of the right-hand side with respect to u and u'. 

C o n t e n t s  o f  T h i s  C h a p t e r  

6.1 The Taylor-Series Method 
Adapts this method from calculus to develop a power series that, if 
truncated, approximates the solution to a first-order initial-value problem. 
Unless many terms are used, the solution cannot be carried far beyond the 
initial point. 



The Euler Method and Its Modifications 
Describes a method that is easy to use but is not very precise unless the step 
size, the intervals for the projection of the solution, is very small. 
Modifications permit the use of a larger step size or give greater accuracy at 
the same size of steps. These methods are based on low-order Taylor series. 

Runge -Kutta Methods 
Presents methods that are based on more terms of a Taylor series than the 
Euler methods and are thereby much more accurate. A very widely used 
method, the Runge-Kutta-Fehlberg method (RKF) allows an estimation of 
the error as computations are made so tihe step size can be clhanged 
appropriately. 

Multistep Methods 
Covers methods that are more efficient than tlhe previous methods, which are 
called single-step methods. They require a number of starting values in 
addition to the initial value. A Runge-Kutta method is frequently used to get 
these starting values. A valuable adjunct to a multistep method is to first 
compute a predicted value and then do a second computation to get a 
corrected value. Doing this monitors the accuracy of the computations. 

Higher-Order Equations and Systems 
Describes how the methods previously covered can solve an equation of 
order higher than the first. This is done by converting the equation to a 
system of first-order problems. Hence, even a system of higher-order 
problems can be handled. 

Stiff Equations 
Discusses a type of problem that poses difficulties in avoiding instability, the 
growth of initial error as the solution proceeds. 

Boundary-Value Problems 
Extends the methods previously described 1.0 solve a differential equation 
whose conditions are specified at not just the initial point. This section also 
describes how the solution can be approximated if the derivatives are 
replaced by difference quotients, as explained in Chapter 5. 

Characteristic-Value Problems 
Shows how that class of boundary-value problems that have a solution only 
for certain values of a parameter can be solved. These certain values are the 
eigenvalues of the system; eigenvalues and their associated eigen~ec~tors are 
essential matrix-related quantities that have applications in many fields. Two 

- - 

different ways to obtain eigenvalues are desciribed. 
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As you have seen before, a Taylor series is a way to express (most) functions as a power 
series. When expanded about the point x = a, the coefficients of the powers of (x - a) 
include the values of the successive derivatives of the function at x = a. This means that if 
we know enough about a function at some point x = a, that is, its value and the value of all 
of its derivatives, we can (usually) write a series that has the same value as the function at 
all values of x. We will use xo to represent x = a. 

In the present application, we are given the function that is thk first derivative of 
y(x): yr  = f (x, y), and an initial value, y(xo) With this information we can write the 
Taylor series for y(x) about x = xo. We just differentiate yr(x) = f(x, y) as many times as 
we desire and evaluate these derivatives at x = xo. The problem is that, when yf(x) 
involves not just x but the unknown y as well, the higher derivatives may not be easy to 
come by. 

Even so, these higher derivatives can be written in terms of x and the lower derivatives 
of y. We only want their values at x = xo. Here is an example: 

(This particularly simple example is chosen to illustrate the method so that you can readily 
check the computational work. The analytical solution, 

y(x) = -3eCX - 2x + 2 

is obtained immediately by application of standard methods and will be compared with our 
numerical results to show the error at any step.) 

We develop the relation between y and x by finding the coefficients of the Taylor series 
in which we expand y about the point x = xo: 

If we let x - xo = h, we can write the series as 

Because y(xo) is our initial condition, the first term is known from the initial condition 
y(0) = - 1. (Because the expansion is about the point x = 0, our Taylor series is actually 
the Maclaurin series in this example.) 

We get the coefficient of the second term by substituting x = 0, y = - 1 in the equation 
for the first derivative, Eq. (6.1): 

We get the second- and higher-order derivatives by successively differentiating the 
equation for the first derivative. Each of these derivatives is evaluated corresponding to 
x = 0 to get the various coefficients: 
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Table 6.1 
- 

x Y Anal Error 

We then write our series solution for y, letting x = h be the value at which we wish to 
determine y: 

y(h) = -1 + 1.0h - 1.5h2 + 0.5h3 - 0.125h4 + error. 

Table 6.1 shows how the computed solutions compare to the analytical between x = 0 
and x = 0.6. At the start, the Taylor-series solution agrees well, but beyond x = 0.3 they 
differ increasingly. More terms in the series would extend the range of good agreement. 

The error of this computation is given by the next term in the series, evaluated at a point 
between 0 and x: 

Error = ( ~ ~ / 1 2 0 ) y ( ~ ) ( ~ ) ,  0 < ( < x. 

We have used the so-called next-term rule before. How good is this estimate of the error at 
x = 0.6? The next term is (31120) * (0 .6)~  = 0.00194, comparing well to the actual error 
of 0.00177. 

We stated earlier that the analytical solution of the example differential equation can be 
obtained by "the application of standard methods." MATLAB can do this: 

which is the same as the above with terms in a different order. 
Maple can get the Taylor-series solution: 

>deq : =diff(y(x),x) =-2*x-y(x): 
>dsolve ({deq, y ( 0 )  = -11, y(x), series); 

which is the series of order 6 and the error order. 
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When the function that defines yl(x) is not as simple as this, getting the successive 
derivatives is not as easy. Consider 

You will find that the successive derivatives get very messy. 
Even though computers are not readily programmed to produce these higher derivatives, 

computer algebra systems like Maple and Mathematics do have the capabilities that we need. 
There is another approach-automatic differentiation. This is different from the sym- 

bolic differentiation that computer algebra systems use. It produces machine code that 
finds values of the derivatives when dyldx is defined through a code list. 

We will not give a thorough explanation, only an example, but L. R. Rall (1981) and 
Corliss and Chang (1982) are good sources for more information. Here is our example: 

X 
Solve y' = f (x, y) = using automatic differentiation with y(0) = 1 

Oi - -8 
To do this, we first create a code list, which is just a name for a sequence of statements that 
define dyldx, with only a single operation on each line: 

T1 = x*x 
T2 = y - T1 
dy/dx = x/T2 [which is f (x ,  y)].  

We will use a simplified notation for the terms of the Taylor series: 

And we will use ( x ) ~  = xo. We then have = y(xo). 
The software for automatic differentiation includes the standard rules for differentiation 

in recursive form, such as the derivatives of (u + v ) ~ ,  (U - v ) ~ ,  (u * v ) ~ ,  and ( ~ l v ) ~ ,  plus the 
elementary functions, including sin, cos, In, exp, and so on. 

In our example, we have ( x ) ~  = 0, ( x )~  = 1 (because dxldx = I), so that ( x ) ~  = 0 for all 
higher derivatives of x. From the initial condition, ( Y ) ~  = 1 and from the expression for 
yf(x), ( Y ) ~  = 0. It is not hard to determine that ( Y ) ~  = 0.5. The automatic differentiation 
software develops a recursion formula for the additional coefficients of the Taylor series. 
This formula is something like this: 

k-  l 

( ~ ) k  = ffk i(~)i(y)k- 1, 
i =  1 

where the multiplier, ak, is a complicated function of k. 
Similar recursion formulas will be derived by the software for any differential equation 

that can be compiled into a code list, and these can have any initial condition. 
For our example, all the odd-order terms are zero; the even-order terms are: 

Order 0 2 4 6 8 

1 1 1 - 1  
Coefficient 1 - - - - 

2 8 48 384 
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Using this in the Taylor series produces y(0.1) = 1.0050125, y(0.2) = 1.0202013. 
The authors are especially grateful to Professor Ramon E. Moore of Ohio State University 

for calling our attention to this method for solving ordinary differential equations. 
While getting the higher derivatives of y' = xl(y - ;c2) is awkward by hand, Maple has 

no trouble. If we want these up to the 22nd power of x, we must first reset the Order from 
its default value, then use the series option of dsolve. 

>Order: = 22: 
>deq: = diff (y(x), x) =x/(y(x) -xA2) : 
> dsolve ({deq, y (0) = I}, y (x) , series) ; 

The Taylor series is easily applied to a higher-order equation. For example, if we are given 

yfl = 3 + x - y2, y(0) = 1, y1(0) = -2, 

we can find the derivative terms in the Taylor series as follows: 

y(O), and yl(0)  are given by the initial conditions. 

yV(O) comes from substitution into the differential equation from y(0) and y'(0). 

y"'(0) and higher derivatives are found by differentiating the equation for the previous 
order of derivative and substituting previously computed values. 

The first tmly numerical method that we discuss is the Ehler method. We can solive the dif- 
ferential equation 

dyldx = f (4 Y ) ,  y(x,) = Yo, 

by using just one term of the Taylor-series method: 

y(x) = y(xo) + yl(xo) (x  - xo) + error, 

error = (h2/2)y"(<) = 0(h2).  

This is known as the Euler method. In effect, we project along the tangent lin~e from the 
starting point, y(xo). If the increment to x, (x  - xo) = h, is small enough, the error will be 
small. Once we have y at xo f h, we can repeat to get more y-values: 

Y,+1 = Y ,  f hy; f 0(h2).* (6.3) 

The method is easy to program for we know the formula for yl(x) and a starling value, 
Yo = Y (xo). 

" This error is just the local error. Over many steps, the global error becomes O(h). 
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Table 6.2 

0.0 - 1.00000 1 .ooooo 0.10000 
0.1 -0.90000 0.70000 0.07000 
0.2 -0.83000 0.43000 0.04300 
0.3 -0.78700 0.18700 0.01870 
0.4 -0.76830 -0.03170 

(Analytical answer is -0.81096, error is -0.04266.) 

To see this in action, we apply it to the sample equation: 

where the computation can be done rather simply. It is convenient to arrange the work as in 
Table 6.2. Here we take h = 0.1. 

Each of the yn values is computed using Eq. (6.3), adding hy; and yn of the previous 
line. Comparing the last result to the analytical answer y(0.40) = -0.81096, we see that 
there is only one-decimal-place accuracy, even though we have advanced the solution only 
four steps! To gain four-decimal-place accuracy, we must reduce the error by more than 
400-fold. Because the global error is about proportional to h, we will need to reduce the 
step size about 426-fold, to <0.00024. 

Improving the Simple Eu 

The trouble with this most simple method is its lack of accuracy, requiring an extremely 
small step size. Figure 6.1 suggests how we might improve this method with just a little 
additional effort. 

In the simple Euler method, we use the slope at the beginning of the interval, y;, to 
determine the increment to the function. This technique would be correct only if the func- 
tion were linear. What we need instead is the correct average slope within the interval. This 
can be approximated by the mean of the slopes at both ends of the interval. 

Suppose we use the arithmetic average of the slopes at the beginning and end of the 
interval to compute 

This should give us an improved estimate for y at x,+~. However, we are unable to employ 
Eq. (6.4) directly, because the derivative is a function of both x and y and we cannot evalu- 
ate yA+l with the true value of yn+l unknown. The modified Euler method works around 
this problem by estimating or "predicting" a value of Y , + ~  by the simple Euler relation, 
Eq. (6.3). It then uses this value to compute Y : + ~ ,  giving an improved estimate 



', 
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wlth x,,  y,  (from Euler) 

Yo- - - - - -  

I I 
I I 
I 1 
I I X 

xo X1 

(a "corrected" value) for Y , + ~  Because the "predicted" value for yn+i is not usually very 
accurate, the value for yL,I that we compute from it is also inaccurate. One might be 
tempted to recorrect, using the first "corrected" value to recompute yL+I to get a better 
value for yh+l and repeat this until there is no significant change. However, this is less effi- 
cient than using a more powerful method, as we describe in the next section. 

Table 6.3 shows the results of this modified Euler method on this same proble~n, dyldx = 

-2x - y, y(0) = -1. 
We can find the error of the modified Euler method by comparing it with the Taylor 

series: 

1 Y "'(5) 
yn+,=yn+y ' , ,h+Ty:h2+-h3 ,  x n < E < x n + h .  

/ 
6 

Replace the second derivative by the fonvard-difference approximation for y ", ( y l,+ I - y L)lh, 
which has error of O(h), and write the error term as 0(h3): 

0.0 - 1 .OOOO 0.1000 -0.9000 0.0700 0.0850 
0.1 -0.9150 0.0715 -0.8435 ,01.0444 0.0579 
0.2 -0.8571 0.0457 -0.8114 0.0211 0.0334 
0.3 -0.8237 0.0224 -0.8013 0'.0001 0.01 12 
0.4 -0.8124 0.0012 -0.8112 -0.0189 -0.0088 
0.5 -0.8212 

(0.5) = -0.81959, the analytical value] 
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This shows that the error of one step of the modified Euler method is 0(h3) .  This is the 
local error. There is an accumulation of errors from step to step, so that the error over the 
whole range of application, the so-called global error, is 0(h2) .  This seems intuitively rea- 
sonable, because the number of steps into which the interval is subdivided is proportional 
to llh; hence the order of error is reduced to 0(h2)  on continuing the technique. 

Another Way to Improve the Eder Method 

The technique that we have called the modified Euler method tries to find a value for the 
average slope of y between x, and x, + h by averaging the slopes at x, and at x,, l .  There 
are other ways to do this. The midpoint method uses the slope at the midpoint of the inter- 
val as the average slope. It uses the simple Euler method to estimate y at x + h12 and eval- 
uates y' at the midpoint with this. For some derivative functions this is better than modified 
Euler and for others it is less accurate; for the example used to construct Tables 6.2 and 6.3, 
this midpoint method gives precisely the same results. 

Propagation of Errors 

The errors that we have mentioned for these Euler methods are the truncation errors, those 
due to truncating the Taylor series on which they are based. There are other errors; round 
off in particular will enter. It is important to understand that errors made early in the 
process will also affect the later computations-the early error will be propagated. The 
analysis of propagated error is not easy. We do it here only for the simple Euler method- 
this will indicate how such analysis can be accomplished. 

We consider the first-order equation dyldx = f(x, y), y (xo) = yo. Let 

Y, = calculated value at x,, 

y, = true value at x,, 

e,=y,-Y,=errorinY,;y,=Y,+e,. 

By the Euler algorithm, 

Y,+l = yn + hf(x,, Y,). 

By Taylor series, 
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In Eq. (6.5), we have used the mean-value theorem, imposing continuity and existence 
conditions on f(x, y) and fy. We suppose, in addition, that the magnitude of fy is bounded by 
the positive constant Kin the region of x, y-space in which we are interested." Hence, 

Here, y(xo) = yo is our initial condition, which we assume free of error. Because Yo = yo, 
eo = 0: 

Similarly, 

Iff 5 K is positive, the truncation error at every step is propagated to every later step 
Y 

after being amplified by the factor (1 + hfY) each time. Note that as h --+ 0, the error at any 
point is just the sum of all the previous errors. If the fy are negative and of magnitude such 
that lhfyl < 2, the errors are propagated with diminishing effect. 

We now show that the accumulated error after n steps is O(h); that is, the global error of 
the simple Euler method is O(h). We assume, in addition, that y" is bounded, lyV(x)I < M, 
M > 0. After taking absolute values, Eq. (6.6) becomes 

Now we compare to the first-order difference equation: 

* This is essentially the same as the Lipschits condition, which will gueirantee existence and uniqueness of a solution. 
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Obviously the values of Zn are at least equal to the magnitudes of le,ll. The solution to 
Eq. (6.7) is (check by direct substitution) 

The Maclaurin expansion of ehk is 

so that 

It follows that the global error en is O(h). (This result can be derived without difference 
equations.) 

The simple Euler method comes from using just one term from the Taylor series for y(x) 
expanded about x = xo. The modified Euler method can be derived from using two 
terms: 

If we replace the second derivative with a backward-difference approximation, 

we get the formula for the modified method. What if we use more terms of the Taylor 
series? Two German mathematicians, Runge and Kutta, developed algorithms from using 
more than two terms of the series. We will consider only fourth- and fifth-order formulas. 
The modified Euler method is a second-order Runge-Kutta method. 

Second-order Runge-Kutta methods are obtained by using a weighted average of two 
increments to y(xo), kl and k2. For the equation dy/dx = f(x, y): 
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We can think of the values kl and k2 as estimates of the change in y when x advances by h, 
because they are the product of the change in x and a value for the slope of the curve, dy/dx. 
The Runge-Kutta methods always use the simple Euler estimate as the first estimate of Ay; 
the other estimate is taken with x and y stepped up by the fractions a and ,f3 of h and of the 
earlier estimate of Ay, kl. Our problem is to devise a scheme of choosing the four parameters, 
a, b, a ,  p. We do so by making Eq. (6.8) agree as well. as possible with the Taylor-series 
expansion, in which the y-derivatives are written in terms off, from dy/dx = f(x, y), 

An equivalent form, because df/dx = f, + f, dy/dx = f, + f, f, is 

[All the derivatives in Eq. (6.9) are calculated at the point (x,, y,).] We now rewrite 
Eq. (6.9) by substituting the definitions of kl and k2: 

To make the last term of Eq. (6.10) comparable to Eq. (6.9), we expandjr(x, y) in a 
Taylor series in terms of x,, y,, remembering that f is a function of two variables,* retain- 
ing only first derivative terms: 

f [x, + ah, Yn + phf(~, ,  Y,)] = ( f  f f , f f h  + f,Phf 1,. (6.11) 

On the right side of both Eqs. (6.9) and (6.1 1) f and its partial derivatives are all to be eval- 
uated at (x,, y,). 

Substituting from Eq. (6.11) into Eq. (610), we have 

Y,+l = Y, + (a + Wf, + h2(abJ'x + Pbf,f), 

Equation (6.12) will be identical to Eq. (6.9) if 

* Appendix A will remind readers of this expansion. 



Chapter Six: Numerical Solution of Ordinary Differential Equations 

Note that only three equations need to be satisfied by the four unknowns. We can choose 
one value arbitrarily (with minor restrictions); hence, we have a set of second-order methods. 

One choice can be a = 0, b = 1; a = 112, P = 112. This gives the midpoint method. 
Another choice can be a = 112, b = 112; a = 1, P = 1, which give the modified Euler. 
Still another possibility is a = 113, b = 213, a = 314, P = 314; this is said to give a 
minimum bound to the error. All of these are special cases of second-order Runge-Kutta 
methods. 

Fourth-order Runge-Kutta methods are most widely used and are derived in similar 
fashion. Greater complexity results from having to compare terms through h4, and this 
gives a set of 11 equations in 13 unknowns. The set of 11 equations can be solved with 2 
unknowns being chosen arbitrarily. The most commonly used set of values leads to the 
procedure: 

Using Eqs. (6.13) to apply the Runge - Kutta fourth order to the problem, dyldx = - 2x - y, 
y(0) = - 1 with h = 0.1, we obtain the results shown in Table 6.4. The results here are very 
impressive compared to those given in Table 6.1, where we computed the values using 
the terms of the Taylor series up to the h4 term. Table 6.4 agrees to five decimals with the 
analytical result-illustrating a further gain in accuracy with less effort than with the 
Taylor-series method of Section 6.1 -and it certainly is better than the Euler or modified Euler 
methods. 

Table 6.4 

(The analytical value of y(O.6) is -0.846434.) 
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Figure 6.2 illustrates the four slope values that are combined in the four k's of the 
Runge-Kutta method. 

The local error term for the fourth-order Runge-Kutta method is 0(h5); the global error 
would be 0(h4). It is computationally more efficient than the modified Euler method 
because, although four evaluations of the function are required per step rather than two, the 
steps can be manyfold larger for the same accuracy. The Runge-Kutta techniques have 
been very popular, especially the fourth-order method just presented. Because going from 
second to fourth order was so beneficial, we may wonder whether we should use a still 
higher order of formula. Higher-order (fifth, sixth, and so on) Runge-Kutta formulas have 
been developed and can be used to advantage in determining a suitable size for h, as we 
will see. Still, Runge-Kutta methods of order greater than 4 have the disadvantage that the 
number of function evaluations that are required is greater than the order of the method, 
while Runge-Kutta methods of order-4 or less require the same number of evaluations as the 
order. 

One way to determine whether the Runge-Kutta values are sufficiently accurate is to 
recompute the value at the end of each interval with the step size halved. If only a slight 
change in the value of Y , + ~  occurs, the results are accep1:ed; if not, the step must be halved 
again until the results are satisfactory. This procedure is very expensive, however. For 



Chapter Six: Numerical Solution of Ordinary Differential Equations 

instance, to implement Eq. (6.13) this way, we would need an additional seven function 
evaluations to determine the accuracy of our Y , + ~ .  The best case then would require 4 + 

, 6 = 10 function evaluations to go from (x,, y,J to (x,+~, Y,+~).  
A different approach uses two Runge-Kutta methods of different orders. For instance, 

we could use one fourth-order and one fifth-order method to move from (x,, y,) to (x,+~, 
Y,+~). We would then compare our results at Y , + ~ .  The Runge-Kutta-Fehlberg method, 
now one of the most popular of these methods, does just this. Only six functional evalua- 
tions (versus ten) are required, and we also have an estimate of the error (the difference of 
the two y's at x = x,%+~): 

Given y' = f(x, y) and y (x,) = y,, to compute y ( ~ , + ~ )  = Y , + ~  where x ,+~  = x, + h, 
evaluate: 

, with global error 0(h4), 

with global error 0(h5); 

k,  128k3 
Error, E = - - - - 

360 4275 

The basis for the Runge-Kutta-Fehlberg scheme is to compute two Runge-Kutta 
estimates for the new value of Y , + ~  but of different orders of errors. Thus, instead of com- 
paring estimates of Y , + ~  for h and hl2, we compare the estimates jjn+l and y,,, using 
fourth- and fifth-order (global) Runge-Kutta formulas. Moreover, both equations make 
use of the same k's, so only six function evaluations are needed versus the previous 11. In 
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addition, one can increase or decrease h depending on the value of the estimated error. As 
our estimate for the new Y,+~, we use the fifth-order (global) estimate. 

As an example, we once more solve dyldx - -2x - y, y(0) = - 1 with h = 0.1, using 
the Runge-Kutta-Fehlberg method: 

9 ,  = -0.914512212, y, = -0.914512251, Error, E = -0.000000040. 

The exact value is y(0.1) = -0.9145 12254. Thus, on the first step, yl agrees with the exact 
answer to eight decimal places with only two additional function evaluations. l\/loreover, 
we have the value E to adjust our step size for the next iteration. Of course, we would use 
the more accurate yn+l for the next step. This algorithin is well documented and imple- 
mented in the FORTRAN program, RKF4.5, of Forsylhe, Malcolm, and Moler (1977). 
MATLAB has two numerical procedures ode45 and ode23. Maple has r k f  45  in its 
arsenal to get the numerical solution to differential equations. 

A summary and comparison of the numerical methods we have studied for solving 
y' = f(x, y) is presented in Table 6.5. 

To see empirically that the global errors of Table 6.5 hold, again consider thl- example 
dyldx = -2x - y, y(0) = - 1. Table 6.6 shows how the errors of y(0.4) decrease as h is 
halved. The table shows the ratios of errors of successive calculations. 

In Table 6.6, we obtain the second row in this way: For a step size of h = 0.2, we com- 
pute the errors in the values for y at x = 0.4 using the three methods indicated at the top of 
columns two through four. We write down the values of the differences between the com- 
puted value and the analytical value. The last three colurnns represent the ratio between the 
previous error (larger step size h) and the current. For instance, the 3.3 in the second row is 
the ratio of 2.1 1E-0119.10E-2 for the errors from Euler's method for h = 0.4 and h = 0.2. 
We do the same for the modified Euler method and the Runge- Kutta fourth-order method 
in columns six and seven. We see that as h gets smaller, the last three columns approach the 

Table 6.5 - 

Method 
Global Local E,valuations 

Estimate of slope error error per step 

Euler Initial value 0(h) 0(h2) 1 
Modified Euler Average, initial and final 0(h2) 0(h3) 2 
Midpoint Midpoint of interval 0(h2) 0(113) 2 
Runge-Kutta (fourth-order) Weighted average, four values 0(h4) 0(h5) 4 
Runge-Kutta-Fehlberg Weighted average, six values 0(h5) 0(h6) 6 
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Error in value 
computed at x = 0.4 

Ratios of 
successive errors 

Modified Runge -Kutta 
h Euler Euler 4th 

Modified Runge- Kutta 
Euler Euler 4th 

ratios of 2.0, 4.0, and 16.0. This is what we expect, because these three methods are, 
respectively, O(h), 0(h2) ,  and 0(h4)  and because at each stage the step size is halved. 

We end this section by showing the Runge-Kutta-Merson method, another fourth- 
order method even though five different k's must be computed. It can be seen from the 
formula that the order is given, not by the number of k's, but by the global error. 

1 
Error, E = - (2kl - 9k3 + 8k4 - k5). 

30 

As we have already indicated, there are methods that use Runge-Kutta formulas of orders 
5,6, and higher. In fact, the IMSL routine DVERK uses formulas or orders 5 and 6 that were 
developed by J. H. Verner. In this case, the method uses eight function evaluations. Maple has 
an option in its procedure for solving differential equations that is called dverk7 8. 

Although the Runge-Kutta method has been very popular in the past, it has its limita- 
tions in solving certain types of differential equations. However, for a large class of 
problems the methods presented in this section produce some very stunning results. Also 



6.4: Multistep Methods 347 

the technique introduced by Fehlberg in comparing two different orders rather than halving 
step sizes increases the efficiency of the Runge-Kutta methods. 

The methods so far discussed are called single-step methods. They use only the infor- 
mation at (x,, y,) to get to (x,,,, Y,,~). In the next sections, we examine methods that uti- 
lize past information from previous points to get ( x ~ , ~ ,  Y,+~). 

Here is the MATLAB solution to our sample problem through its ode4 5 command, 
which uses the RKF method with the step size automatically adjusted. We first. create an 
M-file that defines the derivative function: 

function dydx = deql (x, y) 
dydx = -2*x - y ;  

Now we use the 'ode45' command to get the solution between x = 0 and x = 0.6 using the 
RKF method: 

and MATLAB displays a list of the x-values used in the computations followed by the 
corresponding y-values. Though not apparent here, the procedure uses automatic step-size 
adjustment. We show only a portion of the whole output; the default of 40 interwals is used. 
We show the y-values side by side with the x-values. (The solution is much more accurate 
than four digits.) 

Runge-Kutta-type methods (which include Euler and inodified Euler as special cases) are 
called single-step methods because they use only the information from the laslt step com- 
puted. In this, they have the ability to perform the next step with a different stlep size and 
are ideal for beginning the solution where only the initial conditions are available. After 
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the solution has begun, however, there is additional information available about the func- 
tion (and its derivative) if we are wise enough to retain it in the memory of the computer. A 
multistep method is one that takes advantage of this fact. 

The principle behind a multistep method is to utilize the past values of y andlor y' to 
construct a polynomial that approximates the derivative function, and extrapolate this into 
the next interval. Most methods use equispaced past values to make the construction of the 
polynomial easy. The Adams method is typical." The number of past points that are used 
sets the degree of the polynomial and is therefore responsible for the truncation error. The 
order of the method is equal to the power of h in the global error term of the formula, 
which is also equal to one more than the degree of the polynomial. 

To derive the relations for the Adams method, we write the differential equation 
dyldx = f(x, y) in the form 

dy = f (x,  y) dx, 

and we integrate between xn and x ~ + ~ :  

To integrate the term on the right, we approximate f(x,  y) as a polynomial in x, deriving this 
by making it fit at several past points. If we use three past points, the approximating poly- 
nomial will be a quadratic. If we use four points, it will be a cubic. The more points we use, 
the better the accuracy (until round off interferes, of course). 

You saw in Chapter 3 how interpolating polynomials can be developed. Mathernatica 
can do this for us with its Interpolating Polynomial function. With this, we can 
get a quadratic approximation: 

Now we again use Mathernatica to integrate between the limits of x = x, and x = x,,,. 
The result is a formula for the increment in y: 

and we have the formula to advance y: 

* This is often called the Adams-Bashford method. 
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Observe that Eq. (6.14) resembles the single-step formulas of the previous sections in that 
the increment to y is a weighted sum of the derivatives times the step size, but differs in that 
past values are used rather than estimates in the forward direction. 

-- .- - - 
SXAMPLE 6 .1  We illustrate the use of Eq. (6.14) to calculate y(0.6) for dyldx = -2x - y ,  y(0) = - 1. We 

compute good values for y(0.2) and y(0.4) using a single-step method. In this case we 
obtain these values using the Runge-Kutta-Fehlberg method with h = 0.2. Th~ese values 
are given in Table 6.7. 

Then, from Eq. (6.14), we have 

Comparing our result with the exact solution (-0.8464:3), we find that the computed value 
has an error of 0.00135. We can reduce the size of the error by doing the calcuLations with 
a smaller step size of 0.1. We use the fifth-order values of the Runge-Kutta-Fehlberg 
method once again to obtain the values in Table 6.8. 

Using Eq. (6.14) again with the values for f(x,  y) at x = 0.3, x = 0.4, x = 0.5 from 
Table 6.8, we recompute y(0.6): 

which has an error of 0.00007. 
P =- 

A d a m  Fou:~h- rder Formula 

Equation (6.14) is a third-order formula that uses y-values at three past points, xl1, x n  ,, and 
xnPz, to estimate Y , % + ~ .  Using four past points is equivalent to integrating a cubic interpo- 
lating polynomial through four past points. We can use the method of undetermined coef- 
ficients to obtain this. 

x Y  y, analytical f h y )  
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x Y y,  analytical . f ( x , ~ )  

We desire a formula of the form 

With four constants, we can make the formula exact when f(x) is any polynomial of degree-3 
or less. Accordingly, we replace f(x) successively by x3, x2, x, and 1 to evaluate the coefficients. 

It is apparent that the formula must be independent of the actual x-values. To simplify 
the equations, let us shift the origin to the point x = xn; our integral is then taken over the 
interval from 0 to h, where h = x,+~ - x,: 

Carrying out the computations by replacing f(x) with the particular polynomials, we have 

h = co(l) + cl(l) + c2(l) + ~ ~ ( 1 ) .  

The linear system we are to solve is 

whose solution is 

c0 = -9124, cl = 37124, c2 = -59124, c3 = 55124. 

The fourth-order Adams formula is then 
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Table 6.9 

Number of Estimate of Error 
points used Y (0.6) (h = 0.1) 

3 -0.8463626 0.000072 
4 - 0.8464420 0.000007 

If we repeat Example 6.1 with this fourth-order formula, taking values at x = 0.2, 0.3,0.4, 
and 0.5, we compute: 

+ 37(0.22245) - 9(0.45619)] 

= -0.84644. 

The error of this computation has been reduced to 0.00001. We summarize the results of 
these two formulas in Table 6.9. 

The Error Term We get the error term for the fourth-order Adams formula by integrating 
the error of the cubic interpolating polynomial. This turns out to be 

25 1 
Error = - h5y(5)([), 

720 

which is 0(h5)  as we have used before. 

The Adaws Moulton 

An improvement over the Adams method is the Adams-Moulton method. It uses the 
Adams method as a predictor formula, then applies a corrector formula, based on con- 
structing another cubic interpolating formula through four points -the one obtained with 
the predictor formula and three previously computed points. (You may want to use unde- 
termined coefficients to confirm this.) 



Chapter Six: Numerical Solution of Ordinary Differential Equations 

r Corrector: 

We illustrate the Adams -Moulton method using our earlier example, dyldx = -2x - y, 
y(0) = - 1. Using Eqs. (6.16) and (6.17) we construct Table 6.10. Here is how the entries 
in the table were obtained. By the predictor formula of (6.16), we get 

Then f(O.4, -0.8109687) is computed, to get 0.0109688, and we use the corrector formula 
of Eq. (6.17) to get 

The computations are continued in the same manner to get y(0.5). The corrected value 
almost agrees to five decimals with the predicted value. Comparing error terms of 
Eqs. (6.16) and (6.17) and assuming that the two fifth-derivative values are equal, we see 
that the true value should lie between the predicted and corrected values, with the error in 
the corrected value being about 

times the difference between the predicted and corrected values. A frequently used crite- 
rion for accuracy of the Adams-Moulton method with four starting values is that the 
corrected value is not in error by more than 1 in the last place if the difference between 

0.0 - 1 .ooooooo 1 .ooooooo 
0.1 -0.9145122 0.7145123 
0.2 -0.8561923 0.4561923 
0.3 -0.8224547 0.2224547 
0.4 (-0.8109687) predicted 

(-0.8109652) corrected (-0.8109601 analytical) 
0.5 (-0.8195978) predicted 

(-0.8 195905) corrected (-0.8 195920 analytical) 
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predicted and corrected values is less than 14 in the last decimal place. If this degree of 
accuracy is not met, we know that h is too large. 

Changing the Step Size 

When the predicted and corrected values agree to as many decimals as the desired accu- 
racy, we can save computational effort by increasing the step size. We can conveniently 
double the step size, after we have seven equispaced values, by omitting every second one. 
When the difference between predicted and corrected values reaches or exceeds the accu- 
racy criterion, we should decrease step size. If we interpolate two additional y-values with 
a fourth-degree polynomial, where the error will be 0(ii5), consistent with the rest of our 
work, we can readily halve the step size. Convenient formulas for this are 

Use of these values with yn, Y , - ~  gives four values of the function at intervals of Ax = hl2. 
The efficiency of Adams-Moulton is about twice that of the Runge-Kutta-Fehlberg 

and Runge-Kutta methods. Only two function evaluations are needed per step for the for- 
mer method, whereas six or four are required with the single-step alternatives. All have 
similar error terms. Change of step size with the multistep methods is considerably more 
awkward, however. 

Stability Corisiderations 

In getting the solution to a differential equation, one must always worry whether the 
method is stable. In a stable method, early errors (due to the imprecision of the method or 
to an initial value that is slightly incorrect) are damped out as the computations proceed; 
they do not grow without bound. The opposite is true for an unstable method. 

In the discussion of the Euler method in Section 6.2, we showed the conditions for 
stability. This was not a simple task. It is easier to see if a method is stable or unstable by 
testing it with certain kinds of derivative functions, yl(x) = f (x, y). 

Consider this equation: 

whose analytical solution is y(x) = 1 - 2 e ~ ~ ~ .  The curve for y(x) is smooth, starting at 
y = -1, proceeding rapidly upward with a slope of 4, crossing the x-axis at about 
x = 0.35, and approaching the asymptote of y = 1 as x increases. By x = 3, the: y-value is 
within 0.5% of its limiting values. 

Suppose that we use a very simple multistep formula: 



Chapter Six: Numerical Solution of Ordinary Differential Equations 

which has a truncation error of (1/6)h3y"r(<), smaller than for the simple Euler method, 
which is (1/2)h2y"(5), particularly with small values for h. 

If we apply Eq. (6.18) to yr = -2y + 2, y(0) = - 1, with an h-value of 0.1 we get the 
results in Table 6.1 1. (We need starting values at x = 0 and x = 0.1; these were from the 
given y(0) = - 1 and the analytical value at x = 0.1.) 

Table 6.11 Results from Eq. (6.18) 

Analytical 

-0.34064 
-0.09762 

0.10134 
0.26424 
0.39761 
0.50681 
0.59621 
0.66940 
0.72933 
0.77839 
0.81856 
0.85145 
0.87838 
0.90043 
0.91848 
0.93325 
0.94535 
0.95526 
0.96337 
0.97001 
0.97545 
0.97990 
0.98354 
0.98652 
0.98897 
0.99097 
0.99260 
0.99394 
0.99504 
0.99594 
0.99668 
0.99728 
0.99777 
0.99818 
0.99851 
0.99878 
0.99900 
0.99918 
0.99933 

Error 

0.00438 
0.00183 
0.00658 
0.00160 
0.00790 
0.00005 
0.00920 

-0.00255 
0.01 110 

-0.00626 
0.01420 

-0.01 146 
0.01918 

-0.01880 
0.02696 

-0.02937 
0.03889 

-0.04478 
0.05692 

-0.06745 
0.08398 

-0.10098 
0.12443 

-0.15070 
0.18474 

-0.22457 
0.27460 

-0.33439 
0.40837 

-0.49773 
0.60747 

-0.74071 
0.90376 

-1.10221 
1.34465 

- 1.64006 
2.00068 

-2.44033 
2.97682 

Re1 error 
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Table 6.12 Results from Simple Euler Method -. - A"-- 

Analytical Error Re1 error 

Observe in Table 6.1 1 that we get good results up to about x = 0.8, but from x = 2 the 
computed values are increasingly poor, and as x approaches 4 they are completely useless; 
they oscillate widely about the asymptotic value for y. 

Compare these with the results from a simple Euler computation, also with h = 0.1, that 
are given in Table 6.12. These are much less accurate at small values of x (the magnitudes 
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of the errors from the simple Euler computation between x = 0.2 and x = 0.5 are on the 
average nearly 20 times as large). 

On the other hand, the Euler results closely resemble the analytical values at larger val- 
ues for x and do not show the same oscillations. 

The method of Eq. (6.18) is unstable while the Euler method is stable. 
There is another unstable method but its instability is less apparent. Milne's method is a 

multistep predictor-corrector that uses these equations: 

Observe that the error term after correcting has a multiplier that is less than half that of 
Adams-Moulton so we should expect very accurate results. However, if we solve the 
same equation, 

with the formulas of Eq. (6.19), we again observe oscillatory behavior as exhibited in 
Table 6.13, but the oscillations are slight and do not appear until about x = 2 and even at 
x = 8 they are not large but they are increasing in magnitude. 

Of course, this demonstration of instability for Milne's method is not entirely satisfac- 
tory. We can do this more theoretically. Consider the differential equation 

dyldx = Ay, 

where A is a constant. The general solution is y = ceh. Suppose now that y(xo) = yo is the 
initial condition; it then follows that the value of c must be c = yoeCAXo. Hence, letting y, 
be the value of the function when x = xn, the analytical solution is 

y, = yo&(x"-x~). 

If we solve the differential equation by the method of Milne, we have, from the correc- 
tor formula, 

Letting y; = Ay,, from the original differential equation, and rearranging, we get 



6.4: Multistep Methods 3 57 

Table 6.13 Results with Milne's method 
-- ---- ----- 

x Y Analytical Error lRel error 

This a second-order difference equation that has the solution: 

yn = c,z; + c,q, 
where Z1, Z2 are the roots of the quadratic 

which you may check by direct substitution. We can simplify this by letting hA/3 = u; the 
roots of the quadratic are then 

z, = 
2r + 4TFZ 

1 - r  

What happens if the step size h becomes small? As h -> 0, r  + 0, and r2 + 0 even faster. 
We then can neglect the 3r2 terms in comparison to 1 under the radical and get, after 
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dividing the fractions, 

We now compare this to the Maclaurin series for the exponential function, 

ehA = 1 + hA + 0(h2), 

hA 
e-hA/3 = 1 - - + 0(h2). 

3 

We see that, for h + 0, 

2, = em, 2 = -,-hA/3. 
2 

Hence, the Milne solution is represented by 

In this, we have used xn - xo = nh. The solution consists of two parts. The first term 
obviously agrees with the analytical solution. The second term, called a parasitic term, 
will die out as x, increases if A is a positive constant, but if A is negative, it will grow expo- 
nentially with xn. Note that we get this peculiar behavior independent of h; smaller step 
size is of no benefit in eliminating the error. 

The analysis of Milne's method shows that the instability comes from the corrector equa- 
tion. Hamming describes a way to avoid this instability while still using the Milne predic- 
tor with its simplicity. Hammings equations are 

Predictor: 

which is first modified as 

and the modified value is used in the corrector: 



6.5: Higher-Order Equations and Systems 359 

The error of this method is not as small as with Milne, but it is a little better than 
Adam -Moulton. 

In the opening portion of this chapter, we pointed out that Newton's law of motion, f = m * a, 
is a differential equation with a being the acceleration, the rate of change of velocity with 
time. Velocity is itself the derivative of distance with time, dxldt. So, f = ma is really 

a second-order differential equation. 
We can solve this equation numerically by changing it into a pair of first-order equa- 

tions. We rearrange the equation to put the derivative on the left 

d2xldt2 = f lm,  

and then, by letting dxldt = y, a new variable, we have 

dxldt = y, 

dyldt = d2xldt2 = flm. 

To solve the original second-order equation for x as a function of time, we need two initial 
conditions, the starting position, xo, and the starting velocity, xb. So, the equation for dxldt 
begins with x = xo, and that for dyldt begins with y = yo = x;. 

Here is another example, a variation on the familiar spring-mass problem. Figure 6.3 
shows our system. Mass 1 is a block that rolls along a horizontal surface and whose motion 
is controlled by the linear spring whose spring constant is k l .  The second mass, m2, is a 
wheel of radius r2 that rolls on the top of mass 1 and is attached to another spring whose 
spring constant is k2. The equations of motion for this system are: 

I -Mass =m2$ 
Radius = r2 

) " 
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These equations make up a system of two second-order equations. To solve this prob- 
lem numerically, we reduce to a system of four first-order equations by substituting dyldt 
for d2x11dt2 and dzldt for d2x21dt2. YOU should write out these for equations for practice. 
What are the four initial conditions? 

It is clear that all we need to do to solve higher-order equations, even a system of higher- 
order initial-value problems, is to reduce them to a system of first-order equations. We 
illustrate how a system of first-order problems can be solved with a pair of equations 
whose solution at t = 0.1 is x = 0.913936, y = -0.909217. 

Taylor-Senes "\i 

We need the various derivatives x', x", x"', . . . , y', y", y "', . . . , all evaluated at t = 0: 

x' = xy + t, x'(0) = ( I ) ( -  1 )  + 0 = - 1 

y' = ty + X ,  y'(0) = (O)(-1) + 1 = 1, 

x" = xy' + x'y + 1,  xl'(0) = ( l ) ( l )  + ( - I ) ( - 1 )  + 1 = 3,  

yl' = y + ty' + x', y"(0) = -1  + (0)(1) - 1 = -2, 

xl,' = x'y' + xy" + X'y + x'y', xU'(0) = -7, 

y"'= y' + y' + ty" y"'(0) = 5, 

and so on; and so on; 

At t = 0.1, x = 0.9139 and y = -0.9092. 
Equations (6.21) are the solution to the set (6.20). Note that we need to alternate 

between the functions in getting the derivatives; for example, we cannot get x"(0) until 
y'(0) is known; we cannot get y"'(0) until d'(0) is known. After we have obtained the coef- 
ficients of the Taylor-series expansions in Eq. (6.21), we can evaluate x and y at any value 
oft, but the error will depend on how many terms we employ. 
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Euler Predictor - Corrector Method (Modifie 

We apply the predictor to each equation; then the comxtor can be used. Again, note that 
we work alternately with the two functions. 

Take h = 0.1. Let p and c subscripts indicate predicted and correct~zd values, 
respectively: 

In computing xc(O.l), we used the xp and yp. In computing yc (0.1) after x,(O. 1) is known, 
we have a choice between xp and xc. There is an intuitive feel that one should use x,, with the 
idea that one should always use the best available values. This does not always expedite 
convergence, probably due to compensating errors. Here we have used the best values to 
date. If we use the corrected values to recompute the value of the derivatives at h = 0.1, we 
can obtain better values. Doing so gives 

but this is not as efficient as using a more powerful method. We can now advance the solu- 
tion another step if desired, by using the computed values at t = 0.1 as the stanting values. 
From this point, we can advance one more step, and so on for any value oft .  The errors will 
be the combination of local truncation error at each step plus the propagated emor resulting 
from the use of inexact starting values. 

Runge - Mutta - Fehlberg 

Again there is an alternation between the x and y calculations. In applying this method, one 
always uses the previous k-value in incrementing the f~unction values and the value of h to 
increment the independent variable. As in the previous calculations, we alternate 
between computations for x and for y; for example, we do kl,x, then k l , y ,  before doing k2,x, 
and so on. 

Keeping in mind that the equations are 
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the k-values for x and y are 

for x: 

kl,x = hf(O, 1, - 1 )  

= O.l[(l)(-  1 )  + 01 

= -0.1; 

k,,, = hf(0.025, 0.975, -0.975) 

= 0.1 [(0.975)(-0.975) + 0.0251 

= -0.092562; 

k,,, = hf(0.038,0.965, -0.964) 

= 0.1[(0.965)(-0.964) + 0.0381 

= -0.089226; 

k4,x = hf(0.092, 0.919, -0.915) 

= 0.1[(0.919)(-0.915) + 0.0921 

= -0.074892; 

k,,, = hf(0.1,0.913, -0.908) 

= 0.1[(0.913)(-0.908) + 0.11 

= -0.072904; 

k,,  = hf(0.05,0.954, -0.953) 

= 0.1 [(0.954)(-0.953) + 0.051 

= -0.085868. 

Then, using the fifth-order formula, we get 

for y: 

kl,y = hg(0, 1, - 1 )  

= 0.1 [ ( O ) ( -  1) + 11 
= 0.1; 

k2,y = hg(0.025, 0.975, -0.975) 

= 0.1[(0.025)(-0.975) + 0.9751 

= 0.095062; 

k,,y = hg(0.038, 0.965, -0.964) 

= 0.1 [(0.038)(-0.964) + 0.9651 

= 0.092845; 

k,, = hg(0.092, 0.919, -0.915) 

= 0.1[(0.092)(-0.915) + 0.9191 

= 0.083461; 

k,,y = hg(O.l,0.913, -0.908) 

= 0.1 [(O. I)(-0.908) + 0.9131 

= 0.082178; 

k,,y = hg(0.05, 0.954, -0.953) 

= 0.1 [(0.05)(-0.953) + 0.9541 

= 0.090628. 

Extending the Taylor-series solution even further shows that the Runge-Kutta-Fehlberg 
values are correct to more than five decimals, whereas the modified Euler values are 
correct to only three, so h = 0.1 may be too large for that method. 

Advancing the solution by the Runge-Kutta-Fehlberg method will again involve using 
the computed values of x and y as the initial values for another step. The errors here will be 
much less than those for the Euler predictor-corrector method. 
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Table 6.1 

Starting 
values 

Predicted 
Corrected 

After getting four starting values, we proceed with the algorithm of Eqs. (6.16) and (6.17), 
again alternately computing x and then y (see Table 6.14.) 

In the computations we first get predicted values of :c and y: 

After getting x' and y' at t = 0.1, using x(0.1) and y(0. l), we then correct: 

The close agreement of predicted and corrected values indicates six-decimal-place 
accuracy. 

In this method, as we advance the solution to larger values oft, the comparison between 
predictor and corrector values tells us whether the step size needs to be changed. 

Our computer algebra systems have no trouble in solving a system of first-order equations. 
Here is how Maple can solve the same problem that we have used to illustrate the methods: 

>deqs  : = { ~ ( x ) ( t )  = x ( t ) * y ( t )  + t ,  D ( y ) ( t )  = t * y ( t )  + x ( t ) } :  

> i n i t s  : = ( ~ ( 0 )  = 1, y ( 0 )  = -1): 
> so ln  : = dsolve (degs union i n i t s ,  {x (t) , y ( t )  ) ,  numeric, 
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output=array([O, 0.1, 0.2, 0.3, 0.41)); 

Kt, x(t) y(t)l 
0 1. -1. 

.1 .91393569117289 -.90921691879919 

soh: = .2 .85218609746503 -.83408937511807 

.3 .81063353106742 -.77109331990007 

. 4  .78634968913429 -.71735810231063 

Here, we asked for the solution at x-values between 0 and 0.4 in steps of 0.1 
are given in tabular form. MATLAB and Mathernatica can do so similarly. 

and the results 

Some initial value problems pose significant difficulties for their numerical solution. 
Acton points out several kinds of such difficulties-one of his examples is Bessel's 
equation: 

y " + y 1 l x + y = 0 ,  y (0 )=1 ,  y t (0)=O.  

There is a singularity at the origin, but this is surmounted by the initial value for y (y = O), 
so that one can replace the equation at x = 0 and get a starting value with 

2y" + y = 0. 

There are other difficult situations: The equation may change its form at certain critical 
points, or it may have a sharp narrow peak that will be missed if too large an interval is used. 

One particular difficult case is one that we now discuss-stiff difSerentia1 equations. 
The word stiff comes from an analogy to a spring system where the natural frequency of 
vibration is very great if the spring constant is large. 

When the solution to a differential equation (say, of second order) has a general solution 
that involves the sum or difference of terms of the form aeCt and bedt where both c and dare  
negative but c is much smaller than d, the numerical solution can be very unstable even 
with a very small step size. 

An example is the following: 

x' = 1195x - 1995y, x(0) = 2, 

y' = 1197x - 1997y, y(0) = -2. 

The analytical solution of Eq. (6.22) is 

x(t) = loe-2t - ge-800t -y(t) = be-Zt - 8,-800t 

Observe that the exponents are all negative and of very different magnitude, qualifying this 
as a stiff equation. Suppose we solve Eq. (6.22) by the simple Euler method with h = 0.1, 
applying just one step. The iterations are 

= xi + hf(x, yi) = xi + 0.1(1195xi - 1995yi), 

yi+ 1 = yi + hg(x,, yi) = yi + 0.1(1197~, - 1 9 9 7 ~ ~ ) .  
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This gives x(0.1) = 640, y(0.1) = 636, while the analytical values are x(O.1) = 8.1 87 
and y(0.1) = 4.912. Such a result is typical (although here exaggerated) for stiff 
equations. 

One solution to this problem is to use an implicit method rather than an explicit one. All 
the methods so far discussed have been explicit, meaning that new values, xi+l and yi+l, 
are computed in terms of previous values, xi and yi. An implicit method computes the 
increment only with the new (unknown) values. Suppose that 

x' = f(x, y) and y' = g(x, y). 

The implicit form of the Euler method is 

If the derivative functions f(x, y) and g(x, y) are nonlinear, this is difficult to solve. 
However, in Eq. (6.22) they are linear. Solving Eq. (6.2%) by use of Eq. (6.23) we have 

The system is linear, so we can write 

which has the solution x(0.1) = 8.23, y (0.1) = 4.90, reasonably close to the analytical values. 
In summary, our results for the solution of Eq. (6.22) are 

Analytical 8.19 4.91 
Euler 

Explicit 640 636 
Implicit 8.23 4.90 

If the step size is very small, we can get good results from the simpler Euler after the 
first step. With h = 0.0001, the table of results becomes 

Analytical 2.61 -1.39 
Euler 

Explicit 2.64 -1.36 
Implicit 2.60 -1.41 

but this would require 1000 steps to reach t = 0.1, and round-off errors would be large. 
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If we anticipate some material from Section 6.8, we can give a better description of 
stiffness as well as indicate the derivation of the general solution to Eq. (6.22). We rewrite 
Eq. (6.22) in matrix form: 

The general solution, in matrix form, is 

where 

vI  = [:] and v2 = [:I. 
You can easily verify that Avl = -2vl and Av2 = -800v2. This means that vl is an eigen- 
vector of A and that -2 is the corresponding eigenvalue. Similarly, v2 is an eigenvector of 
A with the corresponding eigenvalue of -800. (In Section 6.8, you will learn additional 
methods to find the eigenvectors and eigenvalues of a matrix.) 

A stiff equation can be defined in terms of the eigenvalues of the matrix A that repre- 
sents the right-hand sides of the system of differential equations. When the eigenvalues of 
A have real parts that are negative and differ widely in magnitude as in this example, the 
system is stiff. In the case of a nonlinear system 

one must consider the Jacobian matrix whose terms are dJ;:/dxj See Gear (1971) for more 
information. 

As we have seen, a second-order differential equation (or a pair of first-order problems) 
must have two conditions for its numerical solution. Up until now, we have considered that 
both of these conditions are given at the start-these are initial-value problems. That is not 
always the case; the given conditions may be at different points, usually at the endpoints of 
the region of interest. For equations of order higher than two, more than two conditions are 
required and these also may be at different x-values. We consider now how such problems 
can be solved. 

Here is an example that describes the temperature distribution within a rod of uniform 
cross section that conducts heat from one end to the other. Look at Figure 6.4. By concen- 
trating our attention on an element of the rod of length dx located at a distance x from the 
left end, we can derive the equation that determines the temperature, u, at any point along 
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Figure 6.4 

the rod. The rod is perfectly insulated around its outer circumference so that heat 
flows only laterally along the rod. It is well known that heat flows at a rate (measured in 
calories per second) proportional to the cross-sectional area (A), to a property of the mate- 
rial [k, its thermal conductivity, measured in cal/(sec * an2 * ("Clem))], and to the temper- 
ature gradient, duldx (measured in "Clem), at point x. \We use u(x) for the temperature at 
point x, with x measured from the left end of the rod. Thus, the rate of flow of heat into the 
element (at x = x) is 

The minus sign is required because duldx expresses how rapidly temperatures increase 
with x, while the heat always flows from high temperature to low. 

The rate at which heat leaves the element is given by a similar equation, but now the 
temperature gradient must be at the point x + dx: 

in which the gradient term is the gradient at x plus the change in the gradient between x and 
x + dx. 

Unless heat is being added to the element (or withdrawn by some means), the rate that 
heat flows from the element must equal the rate that heat enters, or else the temperature of 
the element will vary with time. In this chapter, we consider only the case of steady-state 
or equilibrium temperatures, so we can equate the rates of heat entering and leaving the 
element: 

When some common terms on each side of the equation are canceled, we get the very sim- 
ple relation 

where we have written the second derivative in its usual! form. For this particularly simple 
example, the equation for u as a function of x is the solution to 
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and this is obviously just 

a linear relation. This means that the temperatures vary linearly from TL to TR as x goes 
from 0 to L. 

The rod could also lose heat from the outer surface of the element. If this is Q (call 
(sec * cm2)), the rate of heat flow in must equal the rate leaving the element by conduction 
along the rod plus the rate at which heat is lost from the surface. This means that: 

where p is the perimeter at point x. (Q might also depend on the difference in temperature 
within the element and the temperature of the surroundings, but we will ignore that for 
now.) 

If this equation is expanded and common terms are canceled, we get a somewhat more 
complicated equation whose solution is not obvious: 

In Eq. (6.24), Q can be a function of x. 
The situation may not be quite as simple as this. The cross section could vary along the 

rod, or k could be a function of x (some kind of composite of materials, possibly). Suppose 
first that only the cross section varies with x. We will have, then, for the rate of heat leav- 
ing the element 

-k[A + A' dx] - + u"dx , [: I 
where we have used a prime notation for derivatives with respect to x. Equating the rates in 
and out as before and canceling common terms results in 

Mu" dx + kAru' dx + kAfu" dx2 = Qp dx. 

We can simplify this further by dropping the term with dx2 because it goes to zero faster 
than the terms in dx. After also dividing out dx, this results in a second-order differential 
equation similar in form to some we have discussed in Section 6.5: 

kAuf' + kAru' = Qp. (6.25) 

The equation can be generalized even more if k also varies along the rod. We leave to the 
reader as an exercise to show that this results in 

Mu" + (kAf + krA)u' = Qp. 

If the rate of heat loss from the outer surface is proportional to the difference in tempera- 
tures between that within the element and the surroundings (u,), (and this is a common sit- 
uation), we must substitute for Q: 
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giving 

kAu" + (kA' + k'A)ur - q " pu = -q * pus. 0 2  /) 

This chapter will discuss two ways to solve equations like Eqs. (6.24) to (6.27). 
Heat flow has been used in this section as the physical situation that is modeled, but 

equations of the same form apply to diffusion, certain types of fluid flow, torsion in objects 
subject to twisting, distribution of voltage, in fact, to any problem where the potential is 
proportional to the gradient. 

The Shooting Method 

We can rewrite Eq. (6.27) as 

where the coefficients, A, B, C, and D are functions of x. (Actually, they could a190 be func- 
tions of both x and u, but that makes the problem more difficult to solve. In a temperature- 
distribution problem, such nonlinearity can be caused if the thermal conductivit~i k, is con- 
sidered to vary with the temperature, u. That is actually true for almost all materials but, as 
the variation is usually small, it is often neglected and an average value is used.) 

To solve Eq. (6.28), we must know two conditions on u or its derivative. If both u and M' 
are specified at some starting value for x, the problem is an initial-value prob6em. In this 
section, we consider Eq. (6.28) to have two values of u to be given but these are at two dif- 
ferent values for x-this makes it a boundary-value problem. In this section, we discuss 
how the same procedures that apply to an initial-value problem can be adapted. 

The strategy is simple: Suppose we know u at x = a (the beginning of a region of inter- 
est) and u at x = b (the end of the region). We wish we knew u' at x = a; that would make 
it an initial-value problem. So, why not assume a value for this? Some general Icnowledge 
of the situation may indicate a reasonable guess. Or we could blindly select some value. 
The test of the accuracy of the guess is to see if we get the specified u(b) by solving the 
problem over the interval x = a to x = b. If the initial slope that we assumed is too large, 
we will often find that the computed value for u(b) is too large. So, we try again with a 
smaller initial slope. If the new value for u(b) is too small, we have bracketed the correct 
initial slope. This method is called the shooting method because of its resemblance to the 
problem faced by an artillery officer who is trying to hit a distant target. The right elevation 
of the gun can be found if two shots are made of which one is short of the target and the 
other is beyond. That means that an intermediate elevation will come closer. 

--- -- ---- - 

EXAMPLE 6 . 2  Solve 

(This is an instance of Eq. (6.28) with A = 1, B = 0, C = -(1 - x/5), and D = x.) 
Assume that u'(1) = -1.5 (which might be a reasonable guess, because u declines 
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Assume 
u'(1) = -1.5 

Assume Assume 
~ ' ( 1 )  = -3.0 ~ ' ( 1 )  = -3.4950 

between x = 1 and x = 3; this number is the average slope over the interval). If we use a 
program that implements the Runge-Kutta-Fehlberg method, we get the values shown in 
the first part of Table 6.15. 
--%- 

Because the value for u(3) is 4.7876 rather than the desired - 1, we try again with a differ- 
ent initial slope, say ul(l) = -3.0, and get the middle part of Table 6.15. The resulting 
value for 4 3 )  is still too high: 0.4360 rather than - 1. We could guess at a third trial for 
ul(l), but let us interpolate linearly between the first two trials." Doing so suggests a value 
for ul(l) of -3.4950. Lo and behold, we get the correct answer for u(3)! These results are 
shown in the third part of Table 6.15. 

It was not just by chance that we got the correct solution by interpolating from the first 
two trials. The problem is linear and for linear equations this will always be true. Except 
for truncation and round-off errors, the exact solution to a linear boundary-value problem 
by the shooting method is a linear combination of two trial solutions: 

Suppose that xl(t) and xz(t) are two trial solutions of a boundary-value problem 

x" + Fx' + Gx = H, x(tO) = A, x(tf) = B 

(where F, G, and H are functions of t only) and both trial solutions begin at the correct 
value of x(to). 

We then state that 

* If G = guess, and R = result: DR = desired result: G3 = G2 + (DR - R2)(G1 - G2)/(R1 - R2) 
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is also a solution. We show that this is true, because, since .xl and x2 are solutions, it follows that 

x; + Fx; + Gxl = H, and x$ t Fxi + Gx2 = H. 

If we substitute y into the original equations, with 

we get 

which shows that y is also a solution that begins at the correct value for x(to). The implica- 
tion of this is that, if cl and c2 are chosen so that y(tf) -= x(tf)  = B, y(t) is the correct solu- 
tion to the boundary-value problem. 

It must also be true that yt(to) is the correct initial slope and that one can interpolate 
between every pair of computed values to get correct values for y(x) at intermediate points. 

This next example shows that we cannot get the correct solution so readily when the 
problem is nonlinear: 

EXAMPLE 6.3 Solve 

This resembles Example 6.2 but observe that the coefficient of u' involves u, the dependent 
variable. This problem is nonlinear and we shall see that it is not as easy to solve. If we 
again use the Runge-Kutta-Fehlberg method, we get the results summarized in 
Table 6.16. Here the third trial, which used the interpolated value from the first two trials, 

Table 6.16 

Assumed value Calculated value 
for u t ( l )  for u(3) 

': Interpolated from two previous values 
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does not give the correct solution. A nonlinear problem requires a kind of search operation. 
We could interpolate with a quadratic from the results of three trials, an adaptation of 
Muller's method. Table 6.17 gives the computed values for u(x) between x = 1 and x = 3 
with the final (good) estimate of the initial slope. 

The shooting method is often quite laborious, especially with problems of fourth or 
higher order. With these, the necessity of assuming two or more conditions at the starting 
point (and matching with the same number of conditions at the end) is slow and tedious. 

There are times when it is better to compute "backwards" from x = b to x = a. For exam- 
ple, if u(b) and u1(a) are the known boundary values, the technique just described works best if 
we compute from x = b to x = a. Another time that computing backwards would be preferred 
is in a fourth-order problem where three conditions are given at x = b and only one at x = a. 

Maple's dsolve command works with boundary-value problems. Here is how it can 
solve Example 6.3. 

> d e 2  : = d i f f  ( u ( x )  , x $ 2 )  - (1 - x / 5 )  * u  (x)  *diff ( u  ( x ) x )  = x:  

> F  : = d s o l v e  ( { d e 2 ,  u ( 1 )  = 2 ,  u ( 3 )  = -I}, u ( x )  , n u m e r i c )  ; 

F  : = proc (bvp-x . . . e n d  p r o c  

> F ( l ) ;  F ( 2 ) ;  F ( 3 ) ;  
x = 1. , u ( X I  = 2 .  , a/ax u (x) = - 2 . 0 1 6 0 7 4 2 9 5 2 1 3 9 0 0 1 4  

x = 2 . ,  u  (x)  = - . 4 2 7 1 7 6 1 6 3 1 7 7 4 4 9 1 0 8 ,  d/dx u  (x)  = 

- 1 . 9 4 7 2 3 0 2 0 1 6 5 8 4 3 6 8 6  

= 3 . ,  (x)  = -1. o o 0 0 o o o o o o o o o o o 2 2 ,  a/ax U ( X )  = 

. 7 9 0 9 1 0 2 5 4 5 3 7 5 3 0 2 7 7  

> F ( 1 . 4 ) ;  F ( 2 . 6 ) ;  

= 1 . 4 ,  U ( X )  = 1 . 0 4 5 9 4 6 0 3 8 3 8 3 1 1 9 6 2 ,  a/ax U ~ X )  = 

- 2 . 6 4 3 7 6 8 4 7 1 3 8 3 2 4 1 0 0  

x = 2 . 6 ,  u  (x)  = - 1 . 1 0 2 2 1 3 3 3 6 6 4 7 9 7 7 6 0 ,  d/dx u ( x )  = 

- . 2 8 4 8 1 8 2 3 9 5 4 5 4 5 3 1 0 0  
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In this, we first defined the second-order equation, then used the dsolve command to get 
the solution, F, (a "procedure" that is not spelled out). When we asked for values of the 
solution at x = 1, 2, 3, 1.4, and 2.6, Maple displayed ~+esults that match to Table 6.17 but 
with many more digits of precision. 

- 
There is another way to solve boundary-value problems like Example 6.2. We have seen in 
Chapter 5 that derivatives can be approximated by finite-difference quotients. If we replace 
the derivatives in a differential equation by such expressions, we convert it into a difference 
equation whose solution is an approximation to the solution of the differential equation. This 
method is sometimes preferred over the shooting method, but it really can be used only with 
linear equations. (If the differential equation is nonlinear, this technique leads to a set of non- 
linear equations that are more difficult to solve. Solving such a set of nonlinear equations is 
best done by iteration, starting with some initial approximation to the solution vector.) 

TX A MPI,E 6.4 Solve the boundary-value problem of Example 6.2 but use a set of equations obtained by 
replacing the derivative with a central difference approximation. Divide the region into 
four equal subintervals and solve the equations, then divide into ten subintervals. Compare 
both of these solutions to the results of Example 6.2. 

When the interval from x = 1 to x = 3 is subdivided into four subintervals, there are 
interior points (these are usually called nodes) at x = I .5,2.0, and 2.5. Label the nodes as 
xl, x,, and x3. The endpoints are xo and x4. We write the difference equation at the three 
interior nodes. The equation, LL" - (1 - x15)u = x, u(1) = 2, 4 3 )  = - 1, becomes 

These equations are all of the form: 

which can be rearranged into: 

Substitute h = 0.5, substitute the x-values at the nodes, and substitute the u-values at the 
endpoints and arrange in matrix form, which gives 
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Observe that the system is tridiagonal and that this will always be true even when there are 
many more nodes, because any derivative of u involves only points to the left, to the right, 
and the central point. 

When this system is solved, we get 

xl = 0.552, x2 = -0.424 and x3 = -0.964. 

If we solve the problem again but with ten subintervals (h = 0.2), we must solve a system 
of nine equations, because there are nine interior nodes where the value of u is unknown. 
The answers, together with the results from the shooting method for comparison, are 

Values from the Values from the 
finite-difference shooting 

x method method 

There is quite close agreement. It is difficult to say from this which method is more accu- 
rate because both are subject to error. We can compare the methods and determine how 
making the number of subintervals greater increases the accuracy by examining the results 
for a problem with a known analytical answer. 

-- - --- - - 
YXAWBPILE 6.5  Compare the accuracy of the finite-difference method with the shooting method on this 

second-order boundary-value problem: 

whose analytical solution is u = sinh(x). 
When the problem is solved by finite-difference approximations to the derivatives, the 

typical equation is 

Solving with h = 1, h = 0.5, and h = 0.25, we get the values in Table 6.18. If we solve this 
with the shooting method (employing Runge-Kutta-Fehlberg), we get Table 6.19. 
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Solutions with the finite-difference method 

u-values with 
-- 

x 2 subintervals 4 subintervals 8 subintervals 

1.25 
1 S O  
1.75 
2.00 
2.25 
2.50 
2.75 

error at 
x = 2.00 

In both tables, the errors at x = 2.0 are shown. This is nearly the maximum error of any 
of the results. 

When the results from the two methods are compared, it is clear that (1) the shooting 
method is much more accurate at the same number of subintervals, its errors being from 80 
to over 500 times smaller; and (2) the errors for the finite-difference method decrease 
about four times when the number of subintervals is doubled, which is as expected. 

The reader should make a similar comparison for oth~er equations. 

The conditions at the boundary often involve the derivative of the dependent variable in 
addition to its value. A hot object loses heat to its surroundings proportional to the 

Solutions with the shooting method 

u-values with 

x 2 subintervals 4 subintervals 8 subintervals 

1.25 
1.50 
1.75 
2.00 
2.25 
2.50 
2.75 

error at 
x = 2.00 
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Figure 6.5 

difference between the temperature at the surface of the object and the temperature of the 
surroundings. The proportionality constant is called the heat-transfer coeficient and is 
frequently represented by the symbol h. (This can cause confusion because we use h for 
the size of a subinterval. To avoid this conf~~sion, we shall use a capital letter, H, for the 
heat-transfer coefficient.) The units of H are c a l / s e c l ~ m ~ / ~ ~  (of temperature difference). 
In this section we consider a rod that loses heat to the surroundings from one or both ends. 
Of course, heat could be gained from the surroundings if the surroundings are hotter than 
the rod. 

Names have been given to the various types of boundary conditions. If the value for u is 
specified at a boundary, it is called a Dirichlet condition. This is the type of problem that 
we have solved before. If the condition is the value of the derivative of u, it is a Neumann 
condition. When a boundary condition involves both u and its derivative, it is called a 
mixed condition. 

We now develop the relations when heat is lost from the ends of a rod that conducts heat 
along the rod but is insulated around its perimeter so that no heat is lost from its lateral sur- 
face. First consider the right end of the rod and assume that heat is being lost to the sur- 
roundings (implying that the surface is hotter than the surroundings). Figure 6.5 will help 
to visualize this. At the right end of the rod (x = xR), the temperature is uR; the temperature 
of the surroundings is uSR Heat then is being lost from the rod to the surroundings at a rate 
[measured in (callsec)] of 

where A is the area of the end of the rod. This heat must be supplied by heat flowing from 
inside the rod to the surface, which is at the rate of 

where the minus sign is required because heat flows from high to low temperature. 
Equating these two rates and solving for duldx (the gradient) gives (the A's cancel): 

du 
- dx = - ( ) ( u R  - u s )  at the right end. 

Now consider the left end of the rod, at x = 0, where u = uL. Assume that the temperature 
of the surroundings here are at some other temperature, uSL Here, heat is flowing from 
right to left, so we have 

Heat leaving the rod: - HA(uL - usL). 
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For the rate at which heat flows from inside the rod we still have 

and, after equating and solving for the gradient: 

The fact that the signs in the equations for the gradients are not the same can be a source of 
confusion. Of course, if both ends lose heat to the surroundings, the equilibrium or steady- 
state temperatures of the rod will just be a linear relation between the two (possibly differ- 
ent) surrounding temperatures. In practical situations of heat distribution in a rod, only one 
end of the rod loses (or gains) heat to (from) the surroundings, the other end being held at 
some constant temperature. 

A minor problem is presented in the cases under consideration. We need to give consid- 
eration to how to approximate the gradient at the end of the rod. One could use a forward 
difference approximation (at the right end, a backward difference at the left), but lihat seems 
inappropriate when central differences are used to approximate the derivatives within the 
rod. This conflict can be resolved if we imagine that the rod is fictitiously extended by 
one subinterval at the end of the rod that is losing heat. Doing so permits us to approximate 
the derivative with a central difference. The "temperature" at this fictitious point is elimi- 
nated by using the equation for the gradient. The next example will clarify this. 

EXAMPLE 6 .6  An insulated rod is 20 cm long and is of uniform cross section. It has its right end held at 
100" while its left end loses heat to the surroundings, which are at 20". The rod lhas a ther- 
mal conductivity, k, of 0.52 caU(sec * cm * "C), and the heat-transfer coefficient, H, is 
0.073 cal/(sec/cm2/"~). Solve for the steady-state temperatures using the finite-difference 
method with eight subintervals. 

For this example, because the boundary condition at the left end involves both the LL- 
value at the left end and the derivative there, this example has a mixed condition at the left 
end, whereas it has a Dirichlet condition at the right end. 

The equation that applies is Eq. (6.24) with Q = 0, because no heat is added at points 
along the rod: 

The typical equation is 

and this applies at each node. At the left end we imagine a fictitious point at x- ,, and this 
allows us to write the equation for that node. At the left endpoint, at x = xo, we write an 
equation for the gradient: 
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which we use to eliminate u p  I: 

We will use this last for the equation written at xO, to give, at that point: 

which is the first equation of the set. Here is the augmented matrix for the problem: 

for which the solution is 

ui: 41.0103 48.3840 55.7577 63.1314 70.5051 77.8789 85.2526 92.6263 (100) 

Observe that the gradient all along the rod is a constant (2.94948"CIcm). 

Here is another example that illustrates an important point about derivative boundary 
conditions. 

EXAMPLE 6.7 Solve u" = u, uf(l) = 1.17520, u1(3) = 10.01787, with the finite-difference method. 
This example is identical to that of Example 6.5, except that the boundary conditions 

are the derivatives of u rather than the values of u. (It has Neumann conditions at both 
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ends.) For this problem, the known solution is u = cosh(x) + C, and the boundary values 
are values of sinh(1) and sinh(3). 

Because the values of u are not given at either end of the interval, we must add fictitious 
points at both ends; call these uLF and uRF With four subintervals, (h  = 214 = OS), we can 
write five equations (at each of the three interior nodes plus the two endpoints where u is 
unknown). We label the nodes from xo (at the left end) to x4 (at the right end). Each equa- 
tion is of the form: 

~ - ~ - 2 u ~ + u ~ + ~ = h ~ u ~ ,  i = 0 , 1 7 2 , 3 , 4 ,  h2=0.25, 

where u_l  and u5 are the fictitious points uLF and uRp 
Doing so gives this augmented matrix: 

- 
-2.25 1 0 0 0 -ULI  

1 -2.25 1 0 0 0 

0 1 -2.25 1 0 0 

0 0 1 -2.25 1 0 

0 0 0 1 -2.25 -uR, - 
There are two more unknowns in this than equations: the unknown fictitious points. 
However, these can be eliminated by using the derivative conditions at the ends. As before, 
we use central difference approximation to the derivative: 

which we solve for the fictitious points in terms of nod,d points: 

uLF = u1 - 1.17520, uRF = 10.01787 + u3. 

Substituting these relations for the fictitious points changes the first and last. equations 
to 

- 2 . 2 5 ~ ~  + 2ul = 1.17520, 

2u3 - 2 . 2 5 ~ ~  = - 10.01787. 

When the five equations are solved, we get these answers: 

x Answers cosh(x) Error 
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We observe that the accuracy is much poorer than it was in Example 6.5. Take note of the 
fact that the numerical solution is not identical to the analytical solution; the arbitrary con- 
stant is missing (or, we may say, is equal to zero). 

We can solve boundary-value problems where the derivative is involved at one or both end 
conditions by "shooting." In fact, as this method computes both the dependent variable and 
its derivative, this is quite natural. Here is how Example 6.7 can be solved by the shooting 
method. 

E X A M P L E  6.8 Solve u" = u, ul(l)  = 1.17520, u1(3) = 10.01787 by the shooting method. 
We can begin at either end, but it seems more natural to begin from x = 1. To begin the 

solution, we must guess at a value for u(l)-not for the derivative as we have been doing. 
From this point, we compute values for u and u' by, say, RKF. If the value of u1(3) is not 
10.01787, we try again with a guess for u(1). This will probably not give the correct value 
for u1(3), but, because the problem is linear, we can interpolate to find the proper value to 
use for u(1). Here are the answers when four subintervals are used: 

The results are surprisingly accurate even though the subdivision was coarse; the largest 
error in the u(x) values is 0.0001 1 at x = 1 and the errors are less as x increases. For this 
example, the shooting method is much more accurate than using finite-difference approxi- 
mations to the derivative. 

Here is an example that has a mixed end condition. 

E X A M P L E  6.9 Solve Example 6.6 by the shooting method. We restate the problem: 
An insulated rod is 20 cm long and is of uniform cross section. It has its right end held 

at 100" while its left end loses heat to the surroundings, which are at 20'. The rod has a 
thermal conductivity, k, of 0.52 cal/(sec * cm * "C), and the heat-transfer coefficient, H, is 
0.073 cal/(sec * cm2 * "C). Use the shooting method with eight subintervals. 

The procedure here is similar to that used in Example 6.8 but it is necessary to begin at 
the right end and solve "backwards." (That is no problem; we just use a negative value for 
Ax.) Beginning at x = 0 would be very difficult because we would have to guess at both 
u(0) and ul(0). 
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Finding the correct value for u' at x = 20 is not as easy as in the previous example 
because we must fit to a combination of u(0) and ~ ' ( 0 ) .  Here are the results after finding 
the correct value for ur(20) by a trial and error technique. 

(The gradient here is 2.94975 throughout.) These  value,^ match those of Example 6.6 very 
closely. 

--*-= 

We note that Maple can solve a boundary-value problem with an end condition that 
involves the derivative. 

Problems in the fields of elasticity and vibration (including applications of the wave equa- 
tion of modern physics) fall into a special class of boundary-value problems known as 
characteristic-value problems. Some problems of statistics also fall into this class. We dis- 
cuss only the most elementary forms of characteristic-value problems. 

Consider the homogeneous* second-order equation with homogeneous boundary 
conditions: 

where k2 is a parameter. (Using k2 guarantees that the parameter is a positive number.) We 
first solve this equation nonnumerically to show that lhere is a solution only for certain 
particular or "characteristic" values of the parameter. These characteristic values are more 
often called the eigenvalues from the German word. The general solution is 

which can easily be verified by substituting into the differential equation. The solution 
contains the two arbitrary constants a and b because thle equation is of second order. The 
constants a and b are to be determined to make the general solution agree with the bound- 
ary conditions. 

At x = 0, u = 0 = a sin(0) + b cos(0) = b. Then b must be zero. At x = 11, u = 0 = 

a sin(k); we may have either a = 0 or sin(k) = 0 to satisfy the end condition. However, if 
a = 0, y is everywhere zero-this is called the trivial solution, and is usually of no inter- 
est. To get a useful solution, we must choose sin(k) == 0, which is true only for certain 
"characteristic" values: 

* Homogeneous here means that all terms in the equation are functions of u or its derivatives 
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These are the eigenvalues for the equation, and the solution to the problem is 

The constant a can have any value, so these solutions are determined only to within a mul- 
tiplicative constant. Figure 6.6 sketches several of the solutions to Eq. (6.30). 

These eigenvalues are the most important information for a characteristic-value 
problem. In a vibration problem, these give the natural frequencies of the system, which 
are important because, if the system is subjected to external loads applied at or very 
near to these frequencies, resonance causes an amplification of the motion and failure is 
likely. 

Corresponding to each eigenvalue is an eigenfunction, u(x), which determines the pos- 
sible shapes of the elastic curve when the system is at equilibrium. Figure 6.6 shows such 
eigenfunctions. Often the smallest eigenvalue is of particular interest; at other times, it is 
the one of largest magnitude. 

We can solve Eq. (6.29) numerically, and that is what we concentrate on in this section. 
We will replace the derivatives in the differential equation with finite-difference approxi- 
mations, so that we replace the differential equation with difference equations written at all 
nodes where the value of u is unknown (which are all the nodes of a one-dimensional sys- 
tem except for the endpoints). 

PLE 6 - 1 0  Solve Eq. (6.29) with five subintervals. We restate the problem: 

d2u 
- + k2u = 0, u(0) = 0, ~ ( 1 )  = 0. 
dx2 

The typical equation is 

(uipl - 2ui + ui+J 
h2 

+ k2ui = 0. 
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With five subintervals, h = 0.2, and there are four equations because there are four interior 
nodes. In matrix form these are 

2 - 0.04k2 - 1 0 0 
-1 2 - 0.04k2 -1 

0 -1 2 - 0.04k2 -1 
0 0 

where we have multiplied by - 1 for convenience. Observe that this can be written as the 
matrix equation (A - hl)u = 0,  where I is the identity matrix and the A matrix is 

2 -1 0 I-; -; -; 
0 - 1  

and h = 0.04k2. 
The approximate solution to the characteristic-value problem, Eq. (6.29) is found by 

solving the system of Eq. (6.31). However, this system is an example of a homogeneous 
system (the right-hand sides are all equal to zero), and it has a nontrivial solution only if 
the determinant of the coefficient matrix is zero. Hence, we set 

det(A - hl) = 0. 

Expanding the determinant will give an eighth-degree polynomial in k. (This is ?lot the pre- 
ferred way !) Doing so and getting the zeros of that polynomial gives these values for k: 

k = +3.09, k = 25.88, k = 18.09, k = 29.51. 

The analytical values for k are 

and we see that the estimates for k are not very good and get progressively worse. We 
would need a much smaller subdivision of the interval to get good values. There are other 
problems with this technique: Expanding the determinant of a matrix of large size is com- 
putationally expensive, and solving for the roots of a polynomial of high degree is subject 
to large round-off errors. The system is very ill-conditioned." 

We r~ormally find the eigenvalues for a characteristic-value problem from (A -- hl)u = 0 
in other ways that are not subject to the same difficulties. We describe these now. For clarity 
we use small matrices. 

--r-#m-m-- - 

The power method is an iterative technique. The basis for this is presented below. We illus- 
trate the method through an example. 

* One authority says never to use the characteristic polynomial for a matrix larger than 5 X 5. 
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EX AMPLE 6 . 1  1 Find the eigenvalues (and the eigenvectors) of matrix A: 

(The eigenvalues of A are 5.47735, 2.44807, and 0.074577, which are found, perhaps, by 
expanding the determinant of A - AZ. The eigenvectors are found by solving the equations 
Au = Au for each value of A. After normalizing, these vectors are 

where the normalization has been to set the largest component equal to unity.)" 
We will find that both the eigenvalues and the eigenvectors are produced by the power 

method. We begin this by choosing a three-component vector more or less arbitrarily. 
(There are some choices that don't work but usually the column vector u = [I, 1, 11 is a 
good starting vector.) We always use a vector with as many components as rows or 
columns of A. 

We repeat these steps: 

1. Multiply A * u. 
2. Normalize the resulting vector by dividing each component by the largest in magni- 

tude. 
3. Repeat steps 1 and 2 until the change in the normalizing factor is negligible. At that 

time, the normalization factor is an eigenvalue and the final vector is an eigenvector. 

Step 1, withu = [I,  1, 11: 

A * u gives [2, -1, 01. 

Step 2: 

Normalizing gives 2 * [I, - .5,0], and u now is [I, - .5,0]. 

Repeating, we get 

A * u = [3.5, -4, S], 

normalized: -4 * [- 375, 1, -. 1251; 

A * u = [-3.625, 6.125, -1.1251, 

normalized: 6.125 * [-S918, 1, -.1837]; 

A * u = [-2.7755, 5.7347, - 1.18371, 

normalized: 5.7347 * [-.4840, 1, -.2064]; 

After 14 iterations, we get 

* It is more common to set some norm equal to 1. 
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A * u = [-2.21113, 5.47743, - 1.2213331, 

normalized: 5.47743 * [- .4O368, 1, - .22334]. 

The fourteenth iteration shows a negligible change in the normalizing factor: We have 
approximated the largest eigenvalue and the corresponding eigenvector. (Twenty iterations 
will give even better values.) Although not very rapid, the method is extremely :simple and 
easy to program. Any of the computer algebra systems can do this for us. 

The Inverse Power 

The previous example showed how the power method gets the eigenvalue of largest mag- 
nitude. What if we want the one of smallest magnitude'? All we need to do to get this is to 
work with the inverse of A. For the matrix A of Example 6.11, its inverse is 

Applying the power method to this matrix gives a value for the normalizing factor of 
13.4090 and a vector of [.3163, ,9254, 11. For the original matrix A, the eigenvalue is the 
reciprocal, 0.07457. The eigenvector that corresponds is the same; no change is needed. 

Shifting with the 

As we have seen, the power method may not converge very fast. We can accelerate the con- 
vergence as well as get eigenvalues of magnitude intermediate between the largest and 
smallest by shifting. Suppose we wish to determine the eigenvalue that is nearly equal to 
some number s. If s is subtracted from each of the diagonal elements of A, the resulting 
matrix has eigenvalues the same as for A but with s subtracted from them. This means that 
there is an eigenvalue for the shifted matrix that is nearly zero. We now use  the inverse 
power method on this shifted matrix, and the reciprocal of this very small eigenvalue is 
usually very much larger in magnitude than any other. As shown below, this causes the 
convergence to be rapid. Observe that if we have some knowledge of what the eigenvalues 
of A are, we can use this shifted power method to get the value of any of them. 

How can we estimate the eigenvalues of a matrix'? Gerschgorin's theorem can help 
here. This theorem is especially useful if the matrix has strong diagonal dominance. The 
first of Gerschgorin's theorems says that the eigenvalues lie in circles whose centers are at 
all with a radius equal to the sum of the magnitudes of the other elements in row i .  
(Eigenvalues can have complex values, so the circles are in the complex plane.) 

Gerschgorin's Theorem We will not give a proof of this theorem,'" but only show that it 
applies in several examples. 

* Proofs can be found in Ralston (1965) and in Burdern and Faires (:!001) 
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If matrix A is diagonal, its eigenvalues are the diagonal elements: 

10 0 0 

0 7 0 -+ 4, 7, 10, which are in 

0 0 4  4 + 0, 7 + 0, 10 '1.0. 

If matrix A has small off-diagonal elements: 

10 0.1 0.1 

0.1 7 0.1 + 3.9951, 6.9998, 10.0051, in 

0.1 0.1 4 4 + 0.2, 7 2 0.2, 10 + 0.2, 

and there is a small change. 
When the off-diagonals are larger: 

10 1 1 

1 7 1 -+ 3.6224, 6.8329, 10.5446, in 

1 1 4  4 t 2, 7 + 2, 10 + 2, 

there is a greater change. 
If they are still larger: 

10 2 2 

2 7 2 + 2.8606, 6.2151, 11.9243, in 

2 2 4  4 + 4, 7 + 4, 10 + 4, 

there is a still greater change, but the theorem holds. 
Even in this case, the theorem holds: 

10 4 4 

4 7 4 -+ 1.0398, 4.4704, 15.4898, in 

4 4 4  4 + 8, 7 + 8, 10 + 8. 

Whenever the matrix is diagonally dominant or nearly so, shifting by the value of a diago- 
nal element will speed up convergence in the power method. 

-- -- - 

EXAMPLE 6.12 Given matrix A: 

find all of its eigenvalues using the shifted power method. 
Gerschgorin's theorem says that there are eigenvalues within -6 2 2, 1 t 2, and 4 2 

2. We shift first by -6 and get an eigenvalue equal to -5.7685 1 (vector = [-. 11574, 
- ,13065, 11) using the inverse power method in four iterations; the tolerance on change in 
the normalization factor was 0.0001. (Getting this largest-magnitude eigenvalue through 
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the regular power method required 23 iterations.) If we repeat but shift by one, the inverse 
power method gives 1.29915 as an eigenvalue (vector = f.41207, 1, - .11291]) in six iter- 
ations. (Using just the inverse power method to get this smallest of the eigenvalues 
required eight iterations.) 

For this 3 X 3 matrix, we do not have to get the other eigenvalue; the sum of the eigen- 
values equals the trace of the matrix. So, if we subtrac~~ (-5.7685 1 + 1.29915') from - 1 
(the trace) we get the third eigenvalue, 3.46936. (It is always true that the sum of the eigen- 
values equals the trace.) The eigenvalues satisfy Gerschgorin's theorem: -5.76851 is in 
-6 -t 2, 1.29915 is in 1 2 2, 3.46936 is in 4 t 2. 

Getting the third eigenvalue from the trace does not give us its eigenvector; we can use 
the shifted inverse power method on the original matrix to find it. 

Shifting by 4 in this example runs into a problem; a division by zero is attempted. We 
overcome this problem by distorting the shift amount slightly. Shifting by 3.9 and employ- 
ing the inverse power method gives the eigenvalue: 3.46936, and the vector [I, .31936, 
-.21121] in six iterations. (If a division by zero occurs, it is advisable to distort the shift 
amount slightly.) 

---- - 
The utility of the power method is that it finds the eigenvalue of largest magnitude and its 
corresponding eigenvector in a simple and straightfonward manner. It has the disadvan- 
tage that convergence is slow if there is a second eigenvalue of nearly the same magni- 
tude. The following discussion proves this and also shows why some starting vectors are 
unsuitable. 

The method works because the eigenvectors are a set of basis vectors. A set of basis 
vectors is said to span the space, meaning that any n-component vector can be written as a 
unique linear combination of them. Let do) be any vector and xl, x2, . . . , x,, be eigenvec- 
tors. Then, for a starting vector, do), 

If we multiply do) by matrix A, because the xi are eigenvectors with corresponding eigen- 
values hi and remembering that Axi = A$, we have, 

Upon repeated multiplication by A, after rn such multiplies, we get, 

Now, if one of the eigenvalues, call it hl, is larger than all the rest, it follows that all the 
coefficients in the last equation become negligibly small in comparison to A;" as m gets 
large, so 
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which is some multiple of eigenvector xl with the normalization factor A,, provided only 
that cl f 0. This is the principle behind the power method. Observe that if another of the 
eigenvalues is exactly of the same magnitude as Al, there never will be convergence to a 
single value. Actually, in this case, the normalization values alternate between two num- 
bers and the eigenvalues are the square root of the product of these values. If another eigen- 
value is not equal to Al, but is near to it, convergence will be slow. Also, if the starting 
vector, do), is such that the coefficient c ,  in Eq. (6.32) equals zero, the method will not 
work. (This last will be true if the starting vector is "perpendicular" to the eigenvector that 
corresponds to hl-that is, the dot-product equals zero.) On the other hand, if the starting 
vector is almost "parallel" to the eigenvector of Al, all the other coefficients in Eq. (6.32) 
will be very small in comparison to cl and convergence will be very rapid. 

The preceding discussion also shows why shifting and then using the inverse power 
method can often speed up convergence to the eigenvalue that is near the shift quantity. Here 
we create, in the shifted matrix, an eigenvalue that is nearly zero, so that using the inverse 
method makes the reciprocal of this small number much larger than any other eigenvalue. 

The power method with its variations is fine for small matrices. However, if a matrix 
has two eigenvalues of equal magnitude, the method fails in that the successive normaliza- 
tion factors alternate between two numbers. The duplicated eigenvalue in this case is the 
square root of the product of the alternating normalization factors. If we want all the eigen- 
values for a larger matrix, there is a better way. 

art I -Similarity Transformations 

If matrix A is diagonal or upper- or lower-triangular, its eigenvalues are just the elements 
on the diagonal. This can be proved by expanding the determinant of (A - hl). This sug- 
gests that, if we can transform A to upper-triangular, we have its eigenvalues! We have 
done such a transformation before: The Gaussian elimination method does it. 
Unfortunately, this transformation changes the eigenvalues! ! 

There are other transformations that do not change the eigenvalues. These are called 
similarity tvansformations. For any nonsingular matrix, M,  the product M * A * M-I = B, 
transforms A into B, and B has the same eigenvalues as A. The trick is to find matrix M 
such that A is transformed into a similar upper-triangular matrix from which we can read 
off the eigenvalues of A from the diagonal of B. The QR technique does this. We first 
change one of the subdiagonal elements of A to zero; we then continue to do this for all the 
elements below the diagonal until A has become upper-triangular. The process is slow; 
many iterations are required, but the procedure does work. 

Suppose that A is 4 X 4. Here is a matrix, Q, also 4 X 4, that will create a zero in posi- 
tion a42: 

Q = 
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where 

PLE 6. B 3 Given this matrix A, create a zero in position (4,2) by multiplying by the proper Q matrix. 

We compute: 

The Q matrix is 

When we multiply Q by A, we get for Q * A: 

where the element in position (4,2) is zero, as we wanted. However, we do not yet have 
a similarity transformation. (The trace has been changed, meaning that the eigenvalues 
are not the same as those of A,) To get the similarity transformation that is n'eeded, we 
must now postmultiply by the inverse of Q. Getting the inverse (which is Q - I  ) is easy 
in this case because for any Q as defined here, its imierse is just its transpose! (When 
this is true for a matrix, it is called a rotation matrix.) If we now multiply Q *: A * Q-l,  

we get 



Chapter Six: Numerical Solution of Ordinary Differential Fquationq 

for which the trace is the same as that of the original A and whose eigenvalues are the 
same. However, it seems that we have not really done what we desired; the element in posi- 
tion (4,2) is zero no longer! There has been some improvement, though. Observe that the 
sum of the magnitudes of the off-diagonal elements in row 4 is smaller than in matrix A. 
This means that 3.69231 is closer to one of the eigenvalues (which will turn out to be 1) 
than the original value, 4. Also, the element in position (2, 2) (6.30769) is closer to another 
eigenvalue (which is equal to 7) than the original number, 6. 

This suggests that we should continue doing such similarity transformations to reduce 
all below-diagonal elements to zero. It takes many iterations, but, after doing 11 1 of these, 
we get 

where the numbers have been rounded to four decimals. (All the below-diagonal elements 
have a value of 0.00001 or less.) We have found the eigenvalues of A; these are 10,7,4, and 1. 
L 

The trouble with doing such similarity transformations repeatedly is poor efficiency. We 
can improve the method by first doing a Householder transformation, which is a similarity 
transformation that creates zeros in matrix A for all elements below the "subdiagonal." 
(This means all elements below the diagonal except for those immediately below the diag- 
onal. We might call such a matrix "almost triangular.") The name for such a matrix is 
upper Hessenberg. The Householder transformation changes matrix A into upper 
Hessenberg. Once an n X n matrix has been converted to upper Hessenberg, there are only 
n - 1 elements to reduce, compared to (n)(n - 1)/2. 

There is another technique that further speeds up the reduction of matrix A to upper- 
triangular. We can employ shifting (similar to that done in the power method). The easiest 
way to shift is to do it with the element in the last row and last column. 

Here are the steps that we will use: 

1. Convert to upper Hessenberg. 
2. Shift by a,,, then do similarity transformations for all columns from 1 to n - 1. 
3. Repeat step 2 until all elements to the left of a,, are essentially zero. An eigenvalue 

then appears in position a,,. 
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4. Ignore the last row and column, and repeat steps 2  and 3  until all elements below the 
diagonal of the original matrix are essentially zero. The eigenvalues then appear on 
the diagonal. 

How do we convert matrix A to upper Hessenberg without changing the eigenvalues? 
This is best explained through an example. 

-% "---- --.------- "- " 

E X A M P L  E 6,  B 4 Convert the same matrix A (as in Example 6.13) to upper Hessenberg. 
We recall that A is 

We can create zeros in the f ~ s t  column and rows 3  and 4 by B *A * B-', where. 

Observe that the B matrix is the identity matrix with the two zeros below the diagonal in 
column 2 replaced with -b3 and -b4, where these values are the elements of ciolumn 1 of 
matrix A that are to be made zero divided by the subciiagonal element in column 1. The 
inverse of this B matrix is B with the signs changed for the new elements in its csolumn 2. 

If we now perform the multiplications B1 * A * B;'., we get 

I 
7 32 6 811 

I 

1 -1 -1 -2 

0 - 2  6 0 '  
0 22 6 10- 

which has zeros below the subdiagonal of column 1 and the same eigenvalues as the origi- 
nal matrix A. 

We continue this in column 2, where now 

Here, B;' is the same as B2 except that the sign of b4 is changed. Now premultiplying the 
last matrix by B2 and postmultiplying by Bz1  gives the lower Hessenberg matrix: 
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which is what was desired. 

There is a potential problem with this reduction to the Hessenberg matrix. If the divisor 
used to create the B matrices is zero or very small, either a division by zero occurs or the 
round-off error is great. We can avoid these problems by interchanging both rows and 
columns to put the element of largest magnitude in the subdiagonal position. It is essential 
to do the interchanges for both rows and columns so that the diagonal elements remain the 
same. 

X Method, lazpi: 2 -The Sce 

If we (I) convert matrix A to upper Hessenberg, and, (2) perform QR operations on this, 
the final matrix that results is 

in which the same eigenvalues appear on the diagonal as when QR operations were 
done on the original A matrix. However, only seven QR iterations were required 
after reduction to Hessenberg, compared to 11 1 if that step is omitted. The other ele- 
ments are different because row and column interchanges were done in creating the last 
result. 

MATLAB can find the eigenvalues and eigenvectors of a square matrix. Here is an 
example: 

Find the eigenvalues of 

Solution: 
We define A in MATLAB : 
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and then do 

e = e ig  ( A )  

e = 

4 

- 1 

10 

If we want both the eigenvalues and eigenvectors: 

[V,  Dl  = eig ( A )  

v = 

0 0 0.9977 

-0.7071 0.9615 0.0605 

0.7071 -0.2747 0.0302 

D = 

4 0 0 

0 -1 0 

0 0 10 

where the eigenvectors appear as the columns of V (th~ey are scaled so each has a norm of 
one) and the eigenvalues are on the diagonal of matrix D. Observe that MATLAB gets all 
the eigenvectors at once. 

Suppose we want to get the eigenvalues of A after its element in row 1 ,  column 2 is 
changed to one. If that is what we want, we just enter: 

A ( 1 ,  2) = 1; 

e ig  ( A )  

ans = 

10.0606 

-1.1250 

4.0644 

MATLAB uses a QR algorithm to get the eigenvalues after converting to Hessenberg 
form as described. We can also use the characteristic polynomial: 

After defining the original matrix (A) in MATLAB, we do 

which are the coefficients of the cubic 
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We get the roots by 

ans = 

1 0 . 0 6 0 6  

4 . 0 6 4 4  

-1.1250 

which is the same as before, as expected. 

Section 6.1 

1. Use the Taylor series method to get solutions to 

dyldx = x + y - xy, y(0) = 1 

at x = 0.1 and x = 0.5. Use terms through x5. 

) 2. The solution to Exercise 1 at x = 0.5 is 1.59420. How 
many terms of a Taylor series must be used to match this? 

3. Repeat Exercises 1 and 2 but for 

yU(x) = xly, y (0) = 1 ,  y' (0) = 1. 

The correct value for y(0.5) is 1.51676. 

4. A spring system has resistance to motion proportional to 
the square of the velocity, and its motion is described by 

If the spring is released from a point that is a unit dis- 
tance above its equilibrium point, x(0) = 1, x f (0)  = 0, 
use the Taylor-series method to write a series expres- 
sion for the displacement as a function of time, includ- 
ing terms up to t6. 

Section 6.2 

Repeat Exercise 1, but use the simple Euler method. How 
small must h be to match to the values of Exercise l ?  

Repeat Exercise 2, but use the simple Euler method. 
How small must h be? 

Repeat Exercise 5, but now with the modified Euler 
method. Comparing to Exercise 5, how much less 
effort is required? 

Find the solution to 

- dy - - y 2 +  t2, y(1) = o ,  a t t =  2, 
dt 

by the modified Euler method, using h = 0.1. Repeat 
with h = 0.05. From the two results, estimate the accu- 
racy of the second computation. 

9. Solve y' = sin(x) + y, y(0) = 2 by the modified 
Euler method to get y(0.1) and y(0.5). Use a value of 
h small enough to be sure that you have five digits 
correct. 

) 10. A sky diver jumps from a plane, and during the time 
before the parachute opens, the air resistance is propor- 
tional to the power of the diver's velocity. If it is 
known that the maximum rate of fall under these condi- 
tions is 80 mph, determine the diver's velocity during 
the first 2 sec of fall using the modified Euler method 
with At = 0.2. Neglect horizontal drift and assume an 
initial velocity of zero. 

11. Repeat Exercise 8 but use the midpoint method. Are 
the results the same? If not, which is more accurate? 

2. The midpoint method gives results identical to modi- 
fied Euler for dyldx = -2x - xy, y(0) = - 1. But for 
some definitions of dyldx, it is better; for other defini- 
tions, it is worse. What are the conditions on the deriv- 
ative function that cause 

a. The midpoint method to be better? 
b. The midpoint method to be poorer? 
c. The two methods to give identical results? 
d. Give specific examples for parts (a) and @). 

b13. For some derivative functions, the simple Euler method 
will have errors that are always positive but for others, 
the errors will always be negative. 

a. What property of the function will determine which 
kind of error will be experienced? 

b. Provide examples for both types of derivative function. 
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c. When will the errors be positive at first, but then 
become negative? Give an example where the errors 
oscillate between positive and negative as the x-values 
increase. 

14. Is the phenomenon of Exercise 13 true for the modified 
Euler method? If it is, repeat Exercise 13 for this method. 

Section 6.3 

15. What are the equations that will be used for a second- 
order Runge-Kutta method if a = 113, b = 213, a = 

314 and /3 = 314. The statement is made that "this is 
said to give a minimum bound to the error." Test the 
truth of this statement by comparing this method with 
modified Euler on the equations of Exercises 1 and 8. 
Also compare to the midpoint method. 

16. What is the equivalent of Eq. (6.10) for a third-order 
RK method? What then is the equivalent of Eq. (6.12)? 
Give three different combinations of parameter values 
that can be employed. 

17. Use one set of the parameter values you found in 
Exercise 16 to solve Exercise 9. 

a. How much larger can h be than the value found in 
Exercise 9? 

b. Repeat with the other sets of parameters. Which set 
is preferred? 

18. Solve Exercise 1 with fourth-order Runge-Kutta 
method. How large can h be to get the correct value at 
x = 1.0, which is 2.19496? 

19. Determine y at x = 1 for the following equation, using 
fourth-order Runge-Kutta method with h = 0.2. How 
accurate are the results? 

dyldx = Il(x + y), y (0) = 2. 

)20. Using the conditions of Exercise 10, determine how long 
it takes for the jumper to reach 90% of his or her maxi- 
mum velocity, by integrating the equation using the 
Runge-Kutta technique with At = 0.5 until the ve1ocit.y 
exceeds this value, and then interpolating. Then use 
numerical integration on the velocity values to determine 
the distance the diver falls in attaining 0.911,~. 

21. It is not easy to know the accuracy with which the func- 
tion has been determined by either the Euler methods 
or the Runge-Kutta method. A possible way to mea- 
sure accuracy is to repeat the problem with a smaller 
step size, and compare results. If the two computations 
agree to n decimal places, one then assumes the values 

are correct to that many places. Repeat Exercise 20 
with At = 0.3, which should give a global error about 
one-eighth as large, and by comparing results, deter- 
mine the accuracy in Exercise 20. (Why do we expect 
to reduce the err~or eightfold by this change in At?) 

22. Solve Exercises 1, 9, and 10 by the Runge-Kutta- 
Fehlberg methocl. 

23. Using Runge-Kutta-Fehlberg, compare your results 
to that from fourth-order Runge-Kutta method in 
Exercise 18. 

)24. Solve y' = 2x2 -- y, y(0) = - 1 by the Runge-Kutta- 
Fehlberg method to x = 2.0. How large can h be and 
still get the solution accurate to 6 significant digits? 

25. Add the results from the Runge-Kutta-Fehlberg 
method to Table 6.6. 

26. In the algorithm for the Runge-Kutta-Fehlberg method, 
an expression for the error is given. Repeat Exercise 19 
with the Runge--Kutta-Fehlberg method and compare 
the actual error to the value from the expression. 

Section 6.4 

)27. Derive the formula for the second-order Adams 
method. Use the method of undetermined coefficients. 

28. Use the formula of Exercise 27 to get values as in 
Example 6.1. 

29. For the differential equation 

starting values are known: 

y(0.2) = 1.2186, y(0.4) = 1,4682, 

y(0.6) = 1.7379. 

Use the Adams method, fitting cubics with the last four 
(y, t) values aind advance the solution to t = 1.2. 
Compare to the analytical solution. 

)30. For the equation 

the analytical solution is easy to find: 

If we use three points in the Adarns method, what error 
would we expect in the numerical solutio~n? Confirm 
your expectation by performing the computations. 
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31. Repeat Exercise 30, but use four points. 

32. Solve Exercise 29 with Adams-Moulton fourth order 
method. 

33. For the equation y' = y * sin (m), y(0) = 1, get start- 
ing values by RKF for x = 0.2, 0.4, and 0.6 and then 
advance the solution to x = 1.4 by Adams-Moulton 
fourth order method. 

34. Get the equivalent of Eqs. (6.16) and (6.17) for a third- 
order Adams-Moulton method. 

35. Derive the interpolation formulas given in Section 6.4 
that permit getting additional values to reduce the step 
size. 

)36. Use Eq. (6.18) on this problem 

dyldx = 2x + 2, y(1) = 3. 

a. Is instability indicated? 
b. Compare the results with this method to those from 

the simple Euler method as in Tables 6.11 and 6.12. 

37. Use Milne's method on the equation in Exercise in 36. 
Is there any indication of instability? 

38. Parallel the theoretical demonstration of instability 
with Milne's method with the equation dyldx = Axn, 
where A and n are constants. What do you conclude? 

39. What is the error term for Hamming's method? Show 
that it is a stable method. 

Section 6.5 

40. The mathematical model of an electrical circuit is given 
by the equation 

d2Q dQ 
0.5 ,- + 6 - + 50Q = 24 sin lot ,  

dt dt 

with Q = 0 and i = dQldt = 0 at t = 0. Express as a 
pair of first-order equations. 

)41. In the theory of beams, it is shown that the radius of cur- 
vature at any point is proportional to the bending moment: 

where y is the deflection of the neutral axis. In the usual 
approach, (Y ' )~ is neglected in comparison to unity, but 
if the beam has appreciable curvature, this is invalid. 
For the cantilever beam for which y(0) = y'(0) = 0, 
express the equation as a pair of simultaneous first- 
order equations. 

42. A cantilever beam is 12 ft long and bears a uniform 
load of W Iblin. so that M(x) = W * x2/2. Exercise 41 

suggests that a simplified version of the differential 
equation can be used if the curvature of the beam is 
small. For what value of W, the value of the uniform 
load, does the simplified equation give a value for the 
deflection at the end of the beam that is in error by 
5%? 

)43. Solve the pair of simultaneous equations 

d x l d t = x y - t ,  x ( O ) = l ,  

dyldt = x + t ,  y(0) = 0 ,  

by the modified Euler method from t = 0 to t = 1.0 in 
steps of 0.2. 

44. Repeat Exercise 43, but with the Runge-Kutta- 
Fehlberg method. How accurate are these results? How 
much are the errors less than those of Exercise 43? 

45. Use the first results of Exercise 44 to begin the 
Adams-Moulton method and then advance the solu- 
tion to x = 1.0. Are the results as accurate as with the 
Runge-Kutta-Fehlberg method? 

)46. The motion of the compound spring system as sketched 
in Figure 6.7 is given by the solution of the pair of 
simultaneous equations 

where y ,  and y2 are the displacements of the two 
masses from their equilibrium positions. The initial 
conditions are 

Express as a set of first-order equations. 

Figure 6.7 
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47. For the third-order equation 

y"' + ty' - 2y = t ,  y(0) = y"(0) = 0 ,  y'(0) = 1 ,  

a. Solve for y (0.2), y(0.4), y (0.6) by RKF. 
b. Advance the solution to t = 1.0 with the 

Adams -Moulton method. 
c. Estimate the accuracy of y(1.0) in part (b). 

48. Solve the equation in Exercise 47 by the Taylor-series 
method. How many terms are needed to be sure that 
y(1.0) is correct to four significant digits? 

49. If some simplifying assumptions are made, the equa- 
tions of motion of a satellite around a central body 
are 

where 

r-=1/--;, x(0)=0.4,  

y(O)=x'(O)=O, y f ( 0 ) = 2 .  

a. Evaluate x(t) and y(t) from t = 0 to t = 10 in steps 
of 0.2. Use any of the single-step methods to do this. 

b. Plot the curve for this range of t-values. 
c. Estimate the period of the orbit. 

Section 6.6 

50. Equation 6.22 is for a stiff equation. If the coefficients 
of the equation for x' are changed, for what values is 
the system no longer stiff? 

51. A pair of differential equations has the solution 
X(t) = e-22r - e-t 

y(t) = e-22r + e-! 
with initial conditions of x(0) = 0, y(0) = 2. 

a. What are the differential equations? 
b. Is that system "stiff "? 
c. What are the computed values for x(0.2) and y(0.2) 

if the equations of part (a) are solved with the simple 
Euler method, with h = 0.1? 

d. Repeat part (c), but employing the method of Eq. 
(6.23). Is this answer closer to the correct value? 

e. How small must h be to get the solutions at t = 0.2 
accurate to four significant digits when using the 
simple Euler method? 

f. Repeat part (e), but now for the method of Eq. (6.23). 

)52. When testing a linear system to see if it is "stiff" it is 
convenient to write it as 

where the elements of matrix A are the multipliers of x 
and y in the equations. If the eigenvalues of A are all 
real and negative and differ widely in magnitude, the 
system is stiff. ((One can get the eigenvalues from the 
characteristic polynomial as explained in Chapter 2 or 
with a computer algebra system.) 

Suppose that A has these elements: 

a. What are the eigenvalues of A? Would you call the 
system stiff? 

b. Change the elements of A so that all are positive. 
What are the eigenvalues of A after tlhis change? 
Does this make the system "nonstiff"? 

53. The definition ctf a stiff equation as one nhose coeffi- 
cient matrix has negative eigenvalues that "differ 
widely in magnitude" is rather subjective. Propose an 
alternate defini~lon of stiffness that is more specific. 

Section 6 2  

54. Suppose that a rod of length L is made from two dis- 
similar materials welded together end-to-end. From 
x = 0 to x = X, the thermal conductivity is k , ;  from 
x = X to x = L, it is k2. How will the temperatures vary 
along the rod if u = 0" at x = 0 and u = 100" at x = L? 
Assume that Eq, (6.24) applies with Q = 0 and that the 
cross-section is constant. 

55. What if k varier; with temperature: k = a -t bu + cu2? 
What is the equation that must be solved 1.0 determine 
the temperature distribution along a rod of constant 
cross section? 

56. Solve the boundary value problem 

d2xldt2 + t (dxldt) - 3x = 3t, x(0)  = 1 ,  s(2) = 5 

by "shooting." ('The initial slope is near - 1.5.) Use h = 
0.25 and compare the results from the Ru~nge-Kutta- 
Fehlberg method and modified Euler methods. Why 
are the results different? Is it possible to match the 
Runge-Kutta-Fehlberg method results when the 
modified Euler method is used? If so, show how this 
can be accomplished. 

57. Repeat Exercise 56, but with smaller values for h. At 
what h-values with the Runge-Kutta-Fehlberg 
method are successive computations the same? 

58. The boundary-value problem of Exercise 56 is linear. 
That means thal: the correct initial slope can be found 
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by interpolating from two trial values. Show that inter- 
mediate values from the computations obtained with 
these two trial values can themselves be interpolated to 
get correct intermediate values for x(t). 

59. If the equation of Exercise 56 is changed only slightly to 

d2xldt2 + x (dxldt) - 3x = 3t, x(0) = 1, x(2) = 5, 

it is no longer linear. Solve it by the shooting method 
using RKE Do you find that more than two trials are 
needed to get the solution? What is the correct value for 
the initial slope? Use a value of h small enough to be 
sure that the results are correct to five significant digits. 

60. Given this boundary-value problem: 

which has the solution y = 2 sin(0/2), 

a. Solve, using finite difference approximations to the 
derivative with h = d4 and tabulate the errors. 

b. Solve again by finite differences but with a value of h 
small enough to reduce the maximum error to 0.5%. 
Can you predict from part (a) how small h should be? 

c. Solve again by the shooting method. Find how large 
h can be to have maximum error of 0.5%. 

61. Solve Exercise 56 though a set of equations where the 
derivatives are replaced by difference quotients. How 
small must 12 be to essentially match to the results of 
Exercise 56 when RKF was used? 

62. Use finite difference approximations to the derivatives 
to solve Exercise 59. The equations will be nonlinear 
so they are not as easily solved. One way to approach 
the solution is to linearize the equations by replacing x 
in the second term with an approximate value, then 
using the results to refine this approximation succes- 
sively. Solve it this way. 

63. Solve this boundary-value problem by finite differ- 
ences, first using h = 0.2, then with h = 0.1: 

y" + xy' - xZy = 2x3, y(0) = 1, y(l) = - I .  

Assuming that errors are proportional to h2, extrapolate 
to get an improved answer. Then, using a very small h- 
value in the shooting method, see if this agrees with 
your improved answer. 

64. Repeat Exercise 60, except with these derivative 
boundary conditions: 

y'(0) = 0, y1(7r) = 1. 

In part (a), compare to y = -2 cos(012). 

65. Solve through finite differences with four subintervals: 

66. The most general form of boundary condition normally 
encountered in second-order boundary-value problems 
is a linear combination of the function and its deriva- 
tives at both ends of the region. Solve through finite 
difference approximations with four subintervals: 

x" - tx' + t2x = t3, 

x(0) + x'(0) - x(1) t x'(1) = 3, 

x(0) - ~ ' ( 0 )  + x (1)  - x'(1) = 2. 

67. Repeat Exercise 63, but use the Runge-Kutta- 
Fehlberg method. The errors will not be proportional to 
h2 

68. Repeat Exercise 66, but use the modified Euler method. 

69. Can a boundary-value problem be solved with a Taylor- 
series expansion of the function? If it can, use the 
Taylor-series technique for several of the above prob- 
lems. If it cannot be used, provide an argument in sup- 
port of this. 

)70. In solving a boundary-value problem with finite differ- 
ence quotients, using smaller values for h improves the 
accuracy. Can one make h too small? 

71. Compare the number of numerical operations used in 
Example 6.5 to get Tables 6.18 and 6.19. 

sectios 5.3 

72. Consider the characteristic-value problem with k 
restricted to real values: 

y"-kzY=O,  y(O)=O, y(l)=O. 

a. Show analytically that there is no solution except 
the trivial solution y = 0. 

b. Show, by setting up a set of difference equations 
corresponding to the differential equation with h = 
0.2, that there are no real values for k for which a 
solution to the set exists. 

c. Show, using the shooting method, that it is impossi- 
ble to match y(1) = 0 for any real value of k [except 
if y '(0) = 0, which gives the trivial solution]. 

b73. For the equation 
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find the principal eigenvalue and compare to Ikl = 78. Use the power method or its variations to find all of the 
2.46166, eigenvalues and eigenvectors for the matrices of 

a. using h = t. 
b. using h = i. 
c. using h = $. 
d. Assuming errors are proportional to h2, extrapolate 

from parts (a) and (c) to get an improved estimate. 

74. Using the principal eigenvalue, k = 2.46166, in 
Exercise 73, find y as a function of x over [0, 11. This is 
the corresponding eigenfunction. 

75. Parallel the computations of Exercise 73 to estimate the 
second eigenvalue. Compare to the analytical value of 
4.56773. 

76. Find the dominant eigenvalue and the corresponding 
eigenvector by the power method: 

[In part (c), the two eigenvalues are equal but of oppo- 
site sign.] 

77. For the two matrices 

- 

Exercise 77. For matrix B, do you need to use complex 
arithmetic? 

b79. Get the eigenval~ies for matrix A in Exercise 77 from its 
characteristic polynomial. Then invert the matrix and 
show that the eigenvalues are reciprocals but the eigen- 
vectors are the same. How do the two characteristic poly- 
nomials differ? Can you get the second polynomial 
directly from the first? Can you do all of this for matrix B? 

80. Repeat Exercise 79, but use the power method to get the 
dominant eigenvalue. Then shift by that amount and get 
the next one. Finally, get the third from the trace of A. 

81. Find three matrices that convert one of the lbelow diag- 
onal elements to zero for matrix A of Exercise 77. 

82. Use the matrices of Exercise 81 successively to make 
one element below the diagonal of A equal to zero, then 
multiply that product and the inverse of the rotation 
matrix (which is easy to find because it is just its trans- 
pose). We keep the eigenvalues the same lbecause the 
two multiplications are a similarity transformation. 

Repeat this process until all elements below the diago- 
nal are less than 1.OE-4. When this is done, compare the 
elements now on the diagonal to the eigenvalues of A 
obtained by iteration. (This will take many steps. You will 
want to write a short computer program to carry it out.) 

b83. Use similarity transformations to reduce the matrix to 
upper Hessenberg. (Do no column or row interchanges.) 

r 3  -1 2 71 

a, put bounds on eigenvalues using ~ ~ ~ ~ ~ h ~ ~ ~ i ~ ' ~  84. Repeat Exercise 83 but with row/column interchanges 

theorem. that maximize the magnitude of the divisors. 

b. Can you tell from part (a) whether either of the 85. Repeat Exercise 82 after first converting to upper 
matrices is singular? Hessenberg. How many fewer iterations are needed? 

APP1. The mass in Figure 6.8 moves horizontally on the frictionless bar. It is connected by a spring to a sup- 
port located centrally below the bar. The unstretched length of the spring is L = a = 3.1623 m 
(meters); the spring constant is k = 100 Nlm (newtons per meter); the mass of the block is 3 kg. Let 
x(t) be the distance from the center of the bar to the location of the block at time t. Clearly the equi- 
librium position of the block is at x = 1.0 m (or x = - 1.0 m). Let yo = fi m (the unstrel ched length 
of the spring). This second-order differential equation describes the motion: 
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Figure 6.8 

a. Using both single-step and multistep methods, find the position of the block between t = 0 and 
t = 10 sec if xo = 1.4 and the initial velocity is zero. 

b. Repeat part (a), but now with the spring stretched more at the start, xo = 2.5. 
c. Use Maple and/or MATLAB to graph the motion for both parts (a) and (b). Compare your graphs 

to Figure 6.9. 

APP2. The equation y' = 1 + y2, y(0) = 0 has the solution y = tan(x). Use modified Euler method to com- 
pute values for x = 0 to x = 1.6 with a value for h small enough to obtain values that differ from the 
analytical by no more than -C0.0005. What is the largest h-value to do this? y (x) becomes infinite at 
x = d 2 .  What happens if you try to integrate y' beyond this point? Is there some way you can solve . - 

the equation numerically from x = 0 to x = 2? 
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Figure 6.10 

A nonlinear boundary-value problem is more difficult than a linear problem because many trials may 
be needed to get a good value for the initial slope. From three initial trials it should be possible to use 
a Muller's-type interpolation. Outline the steps of a program that will do this. 

In an electrical circuit (Figure 6.10) that contains resistance, inductance, and capacitance (and every 
circuit does), the voltage drop across the resistance is iR (i is current in amperes, R is resistance in 
ohms), across the inductance it is L, (dildt) (L is inductance in henries), and across the capacitance it 
is qlC (q is charge in the capacitor in coulombs, Cis  capacitance in farads). We then can write, for the 
voltage, difference between points A and B, 

Differentiating with respect to t and remembering that dqldt =. i, we have a second-order differential 
equation; 

If the voltage VAB (which has previously been 0 V) is suddenly brought to 15 V (let us say, by con- 
necting a battery across the terminals) and maintained steadily at 15 V (so dVldt = 0), current will 
flow through the circuit. Use an appropriate numerical method to determine how the current varies 
with time between 0 and 0.1 sec if C = 1000 pf, L = 50 mH, ;and R = 4.7 ohms; use At of 0.002 sec. 
Also determine how the voltage builds up across the capacitor during this time. You niay want to 
compare the computations with the analytical solution. 

APP5. Repeat App 4, but let the voltage source be a 60-Hz sinusoidal input: 

How closely does the voltage across the capacitor resemble a sine wave during the last ihll cycle of 
voltage variation? 

APP6. After the voltages have stabilized in APP4 (15 V across the capacitor), the battery is shorted so that 
the capacitor discharges through the resistance and inductor Follow the current and the capacitor 
voltages for 0.1 sec, again with At = 0.002 sec. The oscillations of decreasing amplitude are called 
damped oscillations. If the calculations are repeated but with the resistance value increased, the 
oscillations will be damped out more quickly; at R = 14.14 ohms the oscillations should disappear; 
this is called critical damping. Perform numerical computations with values of R increasing from 4.7 
to 22 ohms to confirm that critical damping occurs at 14.14 ohms. 

APW. Cooling fins are often welded to objects in which heat is generated to conduct the heat away. thus 
controlling the temperature. If the fin loses heat by radiation to the surroundings the rate of heat loss 
from the fin is proportional to the difference in fourth powers of the fin temperature a~nd the sur- 
roundings, both measured in absolute degrees. The equation reduces to 

d2uldx2 = k(u4 - T?) 
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where u is the fin temperature, T is the surroundings temperature, and x is the distance along the fin. 
k is a constant. For a fin of given length L, this is not difficult to solve numerically if u(0) and u(L) are 
known. Solve for u(x), the distribution of temperature along the fin, if T = 300, u(0) = 450, 420)  = 

350, k = 0.23, utilizing any of the methods for a boundary-value problem. Use a value for h small 
enough to get temperatures accurate to 0.1 degree. 

APPS. In APP7, suppose the fin is of infinite length and we can assume that lim (u(x)) = 0 as x + m. Can 
this problem be solved numerically? If so, get the solution for u(x) between x = 0 and x = 20. 

APP9. A Foucault pendulum is one free to swing in both the x- and y-directions. It is frequently displayed in 
science museums to exhibit the rotation of the earth, which causes the pendulum to swing in direc- 
tions that continuously vary. The equations of motion are 

i - 2w sin $ji + k2x = 0, 

y + 2w sin $.i + kZy = 0, 

when damping is absent (or compensated for). In these equations, the dots over the variable represent 
differentiation with respect to time. Here w is the angular velocity of the earth's rotation (7.29 X 

secpl), IJ is the latitude, k2 = g1.f where 4! is the length of the pendulum. How long will it take 
a 10-m-long pendulum to rotate its plane of swing by 45" at the latitude where you live? How long if 
located in Quebec, Canada? 

APP10. Condon and Odishaw (1967) discuss Dufing's equation for the flux 4 in a transformer. This nonlin- 
ear differential equation is 

w 4 + 4 4  + b43 = E cos wt. 

In this equation, E sin wt is the sinusoidal source voltage and N is the number of turns in the primary 
winding, while wo and b are parameters of the transformer design. Make a plot of 4 versus t (and 
compare to the source voltage) if E = 165, w = 1 2 0 ~ ,  N = 600, w t  = 83, and b = 0.14. For 
approximate calculations, the nonlinear term b43 is sometimes neglected. Evaluate your results to 
determine whether this makes a significant error in the results. 

APP11. Ethylene oxide is an important raw material for the manufacture of organic chemicals. It is produced 
by reacting ethylene and oxygen together over a silver catalyst. Laboratory studies gave the equation 
shown. 

It is planned to use this process commercially by passing the gaseous mixture through tubes filled 
with catalyst. The reaction rate varies with pressure, temperature, and concentrations of ethylene and 
oxygen, according to this equation: 

where 
v = reaction rate (units of ethylene oxide formed per lb of catalyst per hr); 
T = temperature, OK ("C + 273), 
P = absolute pressure (lblin.'), 

CE = concentration of ethylene, 
C, = concentration of oxygen. 

Under the planned conditions, the reaction will occur, as the gas flows through the tube, according to 
the equation 

where 
x = fraction of ethylene converted to ethylene oxide, 
L = length of reactor tube (ft). 
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The reaction is strongly exothermic, so that it is necessary to cool the tubular reactor to prevent over- 
heating. (Excessively high temperatures produce undesirable side reactions.) The rea.ctor will be 
cooled by surrounding the catalyst tubes with boiling coolartt under pressure so that the tube walls 
are kept at 225OC. This will remove heat proportional to the temperature difference between the gas 
and the boiling water. Of course, heat is generated by the reaction. The net effect can be expressed by 
this equation for the temperature change per foot of tube, where B is a design parameter: 

For preliminary computations, it has been agreed that we can neglect the change in pressure as the 
gases flow through the tubes; we will use the average pressure of P = 22 lb/in.2 absolute. We will 
also neglect the difference between the catalyst temperature (which should be used to find the reac- 
tion rate) and the gas temperature. You are to compute the length of tubes required for 65% conver- 
sion of ethylene if the inlet temperature is 250°C. Oxygen is consumed in proportion to the ethylene 
converted; material balances show that the concentrations oil ethylene and oxygen vary with x, the 
fraction of ethylene converted, as follows: 

The design parameter B will be determined by the diameter of tubes that contain the catalyst. (The num- 
ber of tubes in parallel will be chosen to accommodate the quantities of materials flowing through the 
reactor.) The tube size will be chosen to control the maximum Lemperature of the reaction, as set by the 
minimum allowable value of B. If the tubes are too large in diameter (for which the value of B is small), 
the temperatures will run wild. If the tubes are too small (giving a large value to B), so much heat is lost 
that the reaction tends to be quenched. In your studies, vary B to find the least value that will keep the 
maximum temperature below 300°C. Permissible values for the parameter B are from 1.0 to 10.0. 

In addition to finding how long the tubes must be, we need to know how the temperature varies 
with x and with the distance along the tubes. To have some indication of the controllability of the 
process, you are also asked to determine how much the oudet temperature will change for a 1°C 
change in the inlet temperature, using the value of B already determined. 

APP12. An ecologist has been studying the effects of the environment on the population of field mice. Her 
research shows that the number of mice born each month is proportional to the number of females in 
the group and that the fraction of females is normally constant in any group. This implies that the 
number of births per month is proportional to the total population. 

She has located a test plot for further research, which is a restricted area of semiarid 1,and. She has 
constructed baniers around the plot so mice cannot enter or leave. Under the conditions of the exper- 
iment, the food supply is limited, and it is found that the dea1.h rate is affected as a result, with mice 
dying of starvation at a rate proportional to some power of the population. (She also hypothesizes 
that when the mother is undernourished, the babies have less chance for survival and t.hat starving 
males tend to attack one another, but these factors are only speculation.) 

The net result of this scientific analysis is the following equation, with N being the number of 
mice at time t (with t expressed in months). The ecologkt has come to you for help in solving the 
equation; her calculus doesn't seem to apply. 

dN -- - aN - EN' ', with B given by Table 6.20 
dt 



Chapter Six: Numerical Solution of Ordinary Differential Equations 

As the season progresses, the amount of vegetation varies. The ecologist accounts for this change in 
the food supply by using a "constant" B that varies with the season. 

If 100 mice were initially released into the test plot and if a = 0.9, estimate the number of mice 
as a function oft,  for t  = 0 to t = 8. 

APP13. A certain chemical company produces a product that is a mixture of two ingredients, A and B. In 
order to ensure that the product is homogeneous, A and B are fed into a well-mixed tank that holds 
100 gal. The desired product must contain two parts of A to one part of B within certain specifica- 
tions. The normal flows of A and B into the tank are 4 and 2 gallmin. There is no volume change 
when these are mixed, so the outflow is 6 gallmin and the holding time in the tank is 10016 = 16.66 
min. Due to an unfortunate accident, the flow of ingredient B is cut off and before this is noticed and 
corrected, the ratio of A to B in the tank has increased to 10 parts of A to 1 part of B. (There are still 
100 gal in the tank.) Set up equations that give the ratio of A to B in the tank as a function of time 
after the flow of B has been restored to its normal value of 2 gallmin. How long will it take until the 
output from the tank reaches 2 parts A to 0.99 parts B? How much product is produced (and dis- 
carded because it is not up to specification) during this time? How would you suggest that this time 
to reach specification be reduced? 


