
The subject of Chapter 6 was ordinary differential equations (ODES), so called because 
they involved ordinary derivatives. Some these equations were boundary-value problems 
where conditions on the problem were specified at the boundaries of some region. 

If the region is on a plane or in three-dimensional space, a point in the region has 
coordinates (x, y) or (x, y, z )  and the variation of the dependent function u = f(x, y, z )  
will be in terms of the space derivatives, duldx, aulay, and duldz and/or the correspond- 
ing second order derivatives. When a boundary-value problem is defined in terms of 
these partial derivatives, it is a partial-differential equation (PDE). We study PDEs in 
this chapter. 

Partial-differential equations (PDEs) are classified as one of three types, with terminology 
borrowed from the conic sections. 

For the second-degree polynomial in x and y, 

 AX^ + Bxy + cy2 + F = 0, 

the graph is a quadratic curve, and when 

B2 - 4AC < 0, the curve is an ellipse, 

B2 - 4AC = 0, the curve is a parabola, 

B2 - 4AC > 0, the curve is a hyperbola. 

For the general partial-differential equation, 

~ d ~ u 1 d . x ~  + Bd2u/dxdy + cd2u/dy2 + f(x, y, u) = 0, 
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the same terminology is used. If 

B2 - 4AC < 0, the equation is elliptic, 

B2 - 4AC = 0, the equation is parabolic, 

B2 - 4AC > 0, the equation is hyperbolic. 

As with the 1-D problems of Chapter 6, the partial-differential equation may have different 
types of boundary conditions. If the value for u is fixed on some parts of the boundary, it 
has a Dirichlet condition there. If the derivative of u, the gradient, is known, it is a 
Neumann condition. (The gradient is always measured along the outward normal.) The 
condition may be mixed, a condition where both the value for u and the gradient is 
involved. A mixed condition results when heat is lost by conduction or convection to the 
surroundings. 

Elliptic equations describe how a quantity called the potential varies within a region. 
The potential measures the intensity of some quantity (temperature and concentration are 
"potentials"). The dependent variable, u, that measures the potential at points in the region 
takes on its equilibrium or steady-state value due to values of the potential on the edges or 
surface of the region. So, elliptic equations are also called potential equations. The general 
form of an elliptic equation in 2-D is 

and we see in comparing with the equations for conic sections that A = 1, B = 0, and 
C = 1, the values for an ellipse. 

How the steady state of the potential is attained from some different starting state is 
described by a parabolic equation. So, these equations involve time, t ,  as one of its vari- 
ables. In effect, we march from the initial state toward the final equilibrium state as time 
progresses. An important parabolic equation is 

which tells how temperatures vary with time along a rod subject to certain conditions at its 
ends. The quantities in cplk are parameters (k = thermal conductivity, p = density, c = heat 
capacity). 

Observe that, for this example, A = 1, B = 0,  and C = 0, so that B2 - 4AC = 0, the 
same as for a parabola. This equation and the corresponding ones for 2-D and 3-D regions 
is then called the heat equation. Exactly the same equation but with cplk replaced by 1/D 
describes the molecular diffusion of matter (D is the diffusion coeficient), so the equation 
in this form is called the difusion equation. The ratio (klcp) is sometimes called the ther- 
mal difusivity. 

The third type of partial-differential equation, hyperbolic equations, is also time- 
dependent. It tells how waves are propagated; thus it is called the wave equation. In 1-D, it 
shows how a string vibrates. The partial-differential equation for a vibrating string is 

d2uldx2 - (Tglw) d2uldt2 = 0, 

in which T is the tension in the string, g is acceleration of gravity, and w is the weight per 
unit length. All of these parameters are positive quantities, so we see that, in comparison to 



8.1: Elliptic Equations 463 

the conic-section equation, A = 1, B = 0, and C is a negative quantity. Therefore, 
B~ - 4AC > 0, the requirement for a hyperbola. In 2-D, the wave equation describes the 
propagation of waves. 

In this chapter, we discuss the usual techniques for solving partial-differential equations 
numerically. These methods replace the derivatives with finite-difference quotients. You 
will see that there are limitations to solving these equations in this way because some 
regions over which we want to solve the problem do not lend themselves to placing the 
nodes uniformly. There are ways to overcome this but they are awkward and it is not easy 
to achieve good accuracy in the solution. To some extent, this chapter is preparation for the 
next where you will find a more recent way to solve PDEs. 

Elliptic Equations 
Extends the derivation of the equation for heat flow in 1-D, along a rod, that 
was done in Chapter 6 to 2-D (a slab of uniform thickness) and to 3-D 
objects. Finite-difference quotients are used to approximate the derivatives, 
allowing one to set up a system of equations whose solution is the steady- 
state temperatures within the object. Ways to solve the equations more 
economically are described. 

Another form of elliptic equation, called Poisson's equation, is employed 
to find a quantity related to the torsion within a rod when subjected to a 
twisting force. 

Parabolic Equations 
Discusses how temperatures vary with time when heat flows along a rod 
(I-D) or within a slab (2-D) after deriving the equations for these cases. 
Beginning with a method that is not very accurate, it progresses to a better 
technique and then generalizes the procedure to show how these are related. 

Hyperbolic Equations 
Begins with the derivation of the equation for determining the lateral 
displacements of a vibrating string. The equation is solved through finite- 
difference approximations for the derivatives. Remarkably, the solution is 
found to match exactly to the analytical solution. Unfortunately, this is found 
to be not true for a vibrating drum head. 

In Chapter 6, we described how a boundary problem for an ordinary-differentia1 equation 
could be solved. We now discuss boundary-value problems where the region of interest is 
two- or three-dimensional. This makes it a partial-differential equation. 
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There are two standard forms of elliptic partial-differential equations when the object is 
two-dimensional: 

Laplace's equation: -dldx (c,auldx + cyduld y) + au = 0. 

Poisson's equation: -dldx (c,duldx + cyduldy) + au = f(x, y), 

where c,, cy, and a are parameters of the system that may depend on u and on the values 
of x and y. u is the variable whose values within the region we desire, the potential, 
at points (x, y) within the 2-D region. Laplace's equation is often called the potential 
equation. 

We will deal with a simplified version where a = 0. If c, = cy = c, a constant, the equa- 
tions can be rewritten as 

c(d2uldx2 + d2u/dy2) = 0, or c(d2u/dx2 + d2u/dy2) = f(x, y). 

There is a special symbol that is often used to represent the sum of the second-order partial 
derivatives: 

and the operator V2 is called the Laplacian. 
Laplace's equation has many applications besides the steady-state distribution of tem- 

perature within an object that we use as our model. We chose this because that situation is 
easier for most people to visualize. 

We derived the equation for temperature distribution within a rod, a one dimensional 
problem, in Chapter 6. We do this now for a two-dimensional region, a flat plate. Figure 8.1 
shows a rectangular slab of uniform thickness r with an element of size dx X dy. u, the 
dependent variable, is the temperature within the element. We measure to the location of 
the element from the lower-left corner of the slab. We consider heat to flow through the 
element in the direction of positive x and positive y. 

The rate at which heat flows into the element in the x-direction is 

-(conductivity) (area) (temperature gradient) = -kA duldx, 

= -k(~dy) w a x ,  

where the derivative is a partial derivative because there are two space dimensions. 
Similarly, the rate of heat flow into the element in the y-direction is 

We equate the rate of heat flow into the element to that leaving plus the rate of flow out of 
the element from the surface of the slab, Q cal/crn2 (the system is at steady state). For the 
rate of heat leaving, we must use the gradients at x + dx and y + dy: 

rate of flow out in x-direction = - k(rdy) 

au a2u 
rate of flow out in y-direction = -k(rdx) [- + - dy], 

dy ay2 
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Figure 8.1 

so the total flow of heat from the element is 

au a2u [* + *dX] - k(7dx) [- + - dy] + Q(dx dy), -k(rdy) ax ax2 
ay ay2 

The sum of the flows into the element must equal the rate at which heat flows from the 
element plus the heat loss from the surface of the element if the temperature of the element 
is to remain constant (and we are here considering only the steady-state), so that we have, 
after sorne rearrangement: 

If the object under consideration is three-dimensional, a similar development leads to 

where nlow Q is the rate of heat loss per unit volume. 
(The loss of heat in the three-dimensional case would have to be through an imbedded 

"heat-sink," perhaps a cooling coil. It is easier to visualize heat generation within the 
object, perhaps because there is an electrical current passing through it.) 

As we have said, the Laplacian, the sum of the second partial derivatives, is often repre- 
sented by V2u, SO Eq. (8.1) is frequently seen as 

If the thickness of the plate varies with x and y, a development that parallels that of 
Section 6.7 gives 
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If both the thickness and the thermal conductivity are variable: 

Solving for the Temperature Within the Slab 

The standard way to obtain a solution to Eqs. @.I), (8.2), and (8.3) is to approximate the 
derivatives with finite differences. We will use central differences and assume that the ele- 
ments are all square and of equal size so that nodes are placed uniformly within the slab. 
This is relatively easy to do if the slab is rectangular and the height and width are in an 
appropriate ratio. (If this is not true, another technique, the finite element method, which 
we describe in the next chapter, is most often used.) When the nodes are uniformly spaced 
so that Ax = Ay, we will use the symbol h for that spacing. 

A convenient way to write the central difference approximations to the second partial 
with respect to x is 

where uL and uR are temperatures at nodes to the left and to the right, respectively, of a 
central node whose temperature is uO. The nodes are Ax apart. A similar formula approx- 
imates d2uld y2: 

in which uA and uB are at nodes above and below the central node. It is customary to make 
Ax = Ay = h. So, if we combine these, we get 

Here is an example. 

EXAMPLE 8.1 Solve for the steady-state temperatures in a rectangular slab that is 20 cm wide and 10 cm 
high. All edges are kept at 0' except the right edge, which is at 100°. There is no heat 
gained or lost from the surface of the slab. Place nodes in the interior spaced 2.5 cm apart 
(giving an array of nodes in three rows and seven columns) so that there are a total of 21 
internal nodes. 

Figure 8.2 is a sketch of the slab with the nodes numbered in succession by rows. We 
could also number them according to their row and column, with node (1, 1) at the upper 
left and node (3, 7) at the lower right. However, it is better to number them with a single 
subscript by rows when we are setting up the equations, as we have done in the figure. (In 
a second example, the alternative numbering system will be preferred.) Let ui be the tem- 
perature at node (i). 
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Figure 8.2 

The (equation that governs this situation is Eq. (8.1) with Q = 0: 

We use these approximations for the second-order derivatives at a central node, where the 
temperature is uO: 

where uL and uR are nodes to the left and right of the central node. Similarly, nodes uA 
and uB are nodes above and below the central node. Substituting these into Eq. (8.4) 
gives 

There is a simple device we can use to remember this approximation to the Laplacian. 
We call it a "pictorial operator": 

This pictorial operator says: Add the temperatures at the four neighbors to uO, subtract 
4 times uO, then divide by h2, and you have an approximation to the Laplacian. 
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We can now write the 21 equations for the problem. Because in this example we set the 
Laplacian for every node equal to zero, we can drop the h2 term. A node that is adjacent to 
a boundary will have the boundary value(s) in its equation; this will be subtracted from the 
right-hand side of that equation before we solve the system. Rather than write out all the 
equations, we will only show a few of them: 

For node 1: 0 + u2 + 0 + ug - 4ul = 0, which, when the nodes are put in order, 
becomes: 

For node 9: u2 + ug - 4ug + u10 + uI6  = 0. 

Fornode 14: u7 + u13 - 4uI4 + u,, = -100. 

For node 18: u l l  + uI7 - 4uI8 f ulg = 0. 

If we write out all 21 equations in matrix form, we get 

and we see that the coefficient matrix is symmetric and banded with a band width of 15. 
There are modifications of Gaussian elimination that can take advantage of the symmetry 
and bandedness, and we can use less memory to store the coefficients. You will find that 
numbering the nodes in a different order can reduce the band width to seven. (An exercise 
at the end of the chapter asks you to find this preferred ordering.) 
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When the system of equations is solved by Gaussian elmination, we get these results: 

Column Row 1 Row 2 Row 3 

Rows 1 and 3 are the same; this is to be expected from the symmetry of boundary con- 
ditions at the top and bottom of the region. Nodes near the hot edge are warmer than those 
farther away. 

The accuracy of the solution would be improved if the nodes are closer together; the 
errors decrease about proportional to h2, which we anticipate because the central differ- 
ence approximation to the derivative is of 0(h2). Another way to improve the accuracy is 
to use a nine-point approximation to the Laplacian. This uses the eight nodes that are adja- 
cent to the central node and has an error of 0(h6). A pictorial operator for this is 

If Example 8.1 is solved using this nine-point formula and with h = 2.5 cm, the 
answers will be within -+0.0032 of the "analytical" solution (from a series solution given 
by classical methods for partial differential equations). 

The difficulty with getting the solution to a problem in the way that was done in the last 
example is that a very large matrix is needed when the nodal spacing is close. In that exam- 
ple, if h = 1.25, the number of equations increases from 21 to 105; if h were 0.625, there 
would be 465 equations. The coefficient matrix for 465 equations has 4652 = 216,225 ele- 
ments! Not only is this an extravagant use of computer memory to store the values but also 
the solution time may be excessive. However, the matrix is sparse, meaning that most of 
the elements are zero. (Only about 1% of the elements in the last case are nonzero.) 

Iterative methods that were discussed in Chapter 2 are an ideal technique for solving a 
sparse matrix. We do need to arrange the equations so that there is diagonal dominance 
(and this is readily possible for the problems of this section). We can write the equations in 
a form useful for iteration from this pictorial operator: 
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which is, when nodes are specified using row and column subscripts: 

We can enter the Dirichlet boundary conditions into the equations by substituting these 
specified values for the boundary nodes that are adjacent to interior nodes. 

The name given to this method of solving boundary-value problems is Liebmann's 
method. We illustrate with the same example problem as Example 8.1. 

EXAMPLE 8.2 Solve Example 8.1, but now use Liebrnann's method. Use h = 2.5 cm. 
We will designate the temperatures at the nodes by ui,? where i and j are the row and 

column for the node. Row 1 is at the top; column 1 is at the left and there are three rows 
and seven columns for interior nodes. The boundary conditions will be stored in row 0 and 
row 4, and in column 0 and column 8. 

Figure 8.3 shows how nodes are numbered for this problem-we use double subscripts 
to indicate the row and column. 

Here is the typical equation for node (i, j ) :  

( ~ ~ , ~ - l  + u ; , j + l  + ui-l,j + ~ i + l , , j )  
U .  . = , withi= l . . .  

L J  4 

It is best to begin the iterations with approximate values for the uy, but beginning with all 
values set to zero will also work. Another way to begin the iterations is with all interior node 
values set to the average of the boundary values. If this is done, 26 iterations give answers 
that change by less than 0.0001 and that essentially duplicate those of Example 8.1. (If the 

Columns 

Figure 8.3 
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Accelerating Convergence in kieb 

In Chapter 2, it was observed that solving a linear system by iteration can be speeded by 
applying an overrelaxation factor to the process. In the present context, this is called suc- 
cessive overrelaxation, abbreviated S.O.R. 

To use the S.O.R. techniques, the calculations are made with this formula: 

where the ui, terms on the right are the current values of that variable and the one on the 
left becomes the new value. The o-term is called the overrelaxation factor: 

Solving Example 8.2 with various values for the overrelaxation factor gives these results: 

Overrelaxation Number of 
factor iterations 

From this we see that overrelaxation can decrease the number of iterations required by 
almost me-half. 

The optimal value to use for o, the overrelaxation factor, is not always predictable. 
There are methods that use the results of the first few iterations to find a good value. For a 
rectangular region with Dirichlet boundary conditions, there is a formula: 

Optimal w = smaller root of this quadratic equation = 0: 

[cos (:) + cos (f)p3 - 160 + 16, 

where p and q are the number of subdivisions of each of the sides. This formula suggests 
using w = 1.267 for the previous example. This is about the same as the value oOp, = 1.3 
that was found by trial and error. 

hy 'Does SO. . Accelerate Cowergesrmce? 

We can find the basis for S.O.R. by examining the rate of convergence of iterative meth- 
ods, both Gauss-Seidel, which we have used on Example 8.2, and the Jacobi method. 
Both of these techniques can be expressed in the form 

.(n+l) = Gx(n) = -Bx(n) + b r .  (8.9) 
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(Of course, both methods require that matrix A be diagonally dominant, or nearly so.) The 
two methods differ, and the difference can be expressed through these matrix equations. 
where A is written as L t D + U: 

Jacobi: x(n+l) = -D-1 (L + u ) x ( ~ )  + ~ - l b ,  

Gauss -Seidel: x(n+l) = -(L + D ) - ~  U X ( ~ )  + (L + D)-lb. 

As Eq. (8.9) makes clear, the rate of convergence depends on how matrix B affects the 
iterations. 

We now discuss how matrix B operates in these two methods. If an iterative method 
converges, ~ ( ~ ' l )  will converge to x, where this last is the solution vector. Because it is the 
solution, it follows that Ax = b. Equation (8.9) becomes, for xn'l = xn  = X ,  

Let e(") be the error in the nth iteration 

When there is convergence, e(?') -+ 0, the zero vector, as n gets large. Using Eq. (8.9) it 
follows that 

Now, if Bn -+ 0, the zero matrix, it is clear that e(n) + 0. To show when this occurs, we 
need a principle from linear algebra: 

Any square matrix B can be written as U D U - I .  If the eigenvalues of B are 
distinct, then D is a diagonal matrix with the eigenvalues of B on its diagonal. 
(If some of the eigenvalues of B are repeated, then D may be triangular, but the 
argument holds in either case.) 

From this we write 

Now, if all the eigenvalues of B (these are on the diagonal of D) have magnitudes less than 
one, it is clear that Dn will approach the zero matrix and that means that Bn will also. We 
then see that iterations converge depending on the eigenvalues of matrix B: They must all 
be less than one in magnitude. Further, the rate of convergence is more rapid if the largest 
eigenvalue is small. We also see that even if matrix A is not diagonally dominant, there 
may still be convergence if the eigenvalues of B are less than unity. 

This example will clarify the argument. 

- ---" ------- - - - - .- 

.3 Compare the rates of convergence for the Jacobi and Gauss-Seidel methods for Ax = b, 
where 
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For this example, we have 

and 

For the Jacobi method, we need to compute the eigenvalues of this B matrix: 

-113 116 

B = D-'(L + U )  = 

0 115 2 0 - 115 -215 0 

The eigenvalues are -0.1425 + 0.3366i, -0.1425 - 0.3366i, and 0.2851. The largest 
in magnitude is 0.3655. 

For the Gauss-Seidel method, we need the eigenvalues of this B matrix: 

B = ( L +  D)-'U = 

111210 2/35 -115 

which has these eigenvalues: 0 ,  0.0357 + 0.1333i, and 0.0357 - 0.1333i. The largest in 
magnitu~de for the Gauss-Seidel method is 0.1380. We then see that (as expected) the 
Gauss-Seidel method will converge faster. If we solve this example problem with both 
methods, starting with [0 0 01 and ending the iterations when the largest change in any 
element of the solution is less than 0.00001, we find that Gauss-Seidel takes only seven 
iterations, whereas the Jacobi method takes 12. 

We have used overrelaxation (the S.O.R. method) to speed the convergence of the itera- 
tions in solving a set of equations by the Gauss-Seidel technique. In view of the last 
discussion, this must be to reduce the eigenvalue of largest magnitude in the iteration equa- 
tion. We have used S.O.R. in the following form: 

with the first summation fromj = 1 to j = i - 1 and the second from j = i to j = N. As 
shown before, the standard Gauss-Seidel iteration can be expressed in matrix form: 

which is more convenient for the present purpose. We want the overrelaxation equation to 
be in a similar form. From A = L + D + U,  we can write 
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Now, if we add Dx to both sides of this, we get 

Dx - wLx - wDx - wUx + wb = Dx, 

which can be rearranged into 

x(~+ ' )  = (D + wL)-'[(l - w)D - w ~ 1 . d ~ )  + w(D + wL)-lb, 

and this is the S.O.R. form with w equal to the overrelaxation factor. It is not easy to show 
in the general case that the eigenvalue of largest magnitude in Eq. (8.13) is smaller than 
that in Eq. (8.12), but we can do it for a simple example. 

LE 8 . 4  Show that overrelaxation will speed the convergence of iterations in solving 

For this, the Gauss-Seidel iteration matrix is 

whose eigenvalues are 0 and 116. 
For the overrelaxation equation, the iteration matrix is 

We want the eigenvalues of this, which are, of course, functions of w. We know that, for 
any matrix, the product of its eigenvalues equals its determinant (why?), so we set 

hl * h2 = det(iteration matrix) = (w - I ) ~ .  

To get the smallest possible value for hl and h2, we set them equal, so hl = h2 = (w - 1). 
We also know that, for any matrix, the sum of its eigenvalues equals its trace, so 

which has a solution w = 1.045549. Substituting this value of w into Eq. (8.14) gives 

-0.0455 -0.5228 
0.0159 0.1366 1 ' 

whose eigenvalues are 0.0456 + 0.0047i, whose magnitudes are smaller than the largest 
for the Gauss-Seidel matrix, which is 116 = 0.16667. 

The previous examples were for an equation known as Laplace's equation: 

v2u = 0. 
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If the right-hand side is nonzero, we have Poisson's equation: 

V2u = R, 

where R can be a function of position in the region (x, y). To solve a Poisson equation, we 
need to make only a minor modification to the methods described for Laplace's equation. 

- 

IEXAMPL E $ . 5  Solve for the torsionfinction, 4, in a bar of rectangular cross section, whose dimensions 
are 6 in. X 8 in. (The tangential stresses are proportional to the partial derivatives of the 
torsion Function when the bar is twisted.) The equation for 4 is 

V2+ = -2, with 4 = 0 on the outer boundary of the bar's cross section. 

If we subdivide the cross section of the bar into 1-in. squares, there will be 35 interior nodes 
at the corners of these squares (h = 1). If we use the iterative technique, the equation for 4 is 

Convergence will be hastened if we employ overrelaxation. Equation (8.8) predicts mop, to 
be 1.383. Using overrelaxation with this value for w converges in 13 iterations to the val- 
ues in Table 8.1. 

If overrelaxation is not employed, it takes 25 iterations to get the values of Table 8.1. 
Again, overrelaxation cuts the number of iterations about in half. 

Just as we saw in Section 6.7 for a one-dimensional problem, two-dimensional problems 
may have derivative boundary conditions. These may be of either Neumann or mixed type. 
We can define a more universal type of boundary conditions by the relation: 

Au + B = Cu', where A, B, and C are constants. 

If C = 0, we have a Dirichlet condition: u = -BIA. If A = 0, the condition is Neumann: 
u' = BIC. If none of the constants is zero, it is mixed condition. This relation can match a 
boundary condition for heat loss from the surface: 

-kul = H(u - u,) 

'Fable 8.1 Torsion function at interior nodes for Example 8.5 
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by taking A = H, B = -H * us, C = -k. 
Here is an example that shows how this universal type of boundary conditions can be 

handled. 

is 5 cm X 9 cm and is 0.5 cm thick. 
Everywhere within the slab, heat is being generated at the rate of 0.6 cal/sec/cm3. The two 
5-cm edges are held at 20' while heat is lost from the bottom 9-cm edge at a rate such that 
du ldy  = 15. The top edge exchanges heat with the surroundings according to -k du ldy  = 

H * (uO - us), where k, the thermal conductivity, is 0.16; H, the heat transfer coefficient, 
is 0.073; and us, the temperature of the surroundings, is 25". (uO in this case is the temper- 
ature of a node on the top edge.) No heat is gained or lost from the surfaces of the slab. 
Place nodes within the slab (and on the edges) at a distance 1 cm apart so that there are a 
total of 60 nodes. 

Figure 8.4 illustrates the problem. In Figure 8.4, rows of fictitious nodes are shown 
above and below the top and bottom nodes in the slab. These are needed because there are 
derivative boundary conditions on the top and bottom edges. 

The Dirichlet conditions on the left and the right will be handled by initializing the 
entire array of nodal temperatures to 20°, and omitting these left- and right-edge nodes 
from the iterations that find new values for the nodal temperatures. 
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(These edge nodes are the uL or uR in the formula: 

For computations along the bottom edge (row 6 ) ,  where duldy = 15, the gradient, 
dul a y,  will be computed by 

where uA is at a node in the fifth row and uF is a fictitious node. (Take note of the fact that, 
if the gradient here is positive, heat flows in the negative y-direction, so heat is being lost 
as specified.) The equation for computing temperatures along the bottom edge is then 

(uL + uR + uA + uB) Q * h2 
u o  = -- with uB = uF. 

4 kt ' 

For computations along the top edge where the relation is 

temperatures will be computed using a fictitious node above uO, uF, from 

where uA = uF, and, because 

where uB is a node in the second row, we have 

which gives 

When these replacements are included in a program and overrelaxation is employed 
(w = 1.57), the results after 28 iterations are as shown in Table 8.2. 

Table 8.2 Temperatures after 28 iterations for Example 8.6 
- * -- - --- - 
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When the partial-differential equations of this chapter are solved (using the finite- 
difference method), the resulting coefficient matrix is sparse. The sparseness increases as 
the number of nodes increases: If there are 21 nodes, 8 1% of the values are zeros; if there 
are 105 nodes, 96% are zeros; for a 30 X 30 X 30 three-dimensional system, only 0.012% 
of the 729 * lo6 values are nonzero! 

The coefficient matrices are not only sparse in two- and three-dimensional problems. They 
are also banded, meaning that the nonzero values fall along diagonal bands within the matrix. 
There are solution methods that take advantage of this banding, but, because the location of 
the bands depends strongly on the number of nodes in rows and columns, it is not simple to 
accomplish. Only for a tridiagonal coefficient matrix is getting the solution straightforward. 

One way around the difficulty, as we have shown, is iteration. This is an effective way 
to decrease the amount of memory needed to store the nonzero coefficients and to (usually) 
speed up the solution process. However, as we saw in Section 6.7, the system of equations 
for the one-dimensional case always has a tridiagonal coefficient matrix, and, for this, nei- 
ther the computational time nor the storage requirements is excessive. We ask "Is there a 
way to get a tridiagonal coefficient matrix when the region has two or three dimensions?" 
The answer to this question is yes, and the technique to achieve this is called the alteunat- 
ing direction implicit method, usually abbreviated to the A.D.I. method. 

The trick to get a tridiagonal coefficient matrix for computing the temperatures in a slab 
is this: First make a traverse of the nodes across the rows and consider the values above and 
below each node to be constants. These "constants" go on the right-hand sides of the equa- 
tions, of course. (We know that these "constant" values really do vary, but we will handle 
that variation in the next step.) After all the nodes have been given new values with the hor- 
izontal traverse, we now make a traverse of the nodes by columns, assuming for this step 
that the values at nodes to the right and left are constants. There is an obvious bias in these 
computations, but the bias in the horizontal traverse is balanced by the opposing bias of the 
second step. If the object is three-dimensional, three passes are used: first in the x-direc- 
tion, then in the y-direction, and finally in the z-direction. 

A.D.I. is particularly useful in three-dimensional problems but it is easier to explain 
with a two-dimensional example. When we attack Laplace's equation in two dimensions, 
we write the equations as 

where, as before, uL, uR, uA, and uB stand for temperatures at the left, right, above, and 
below the central node, respectively, where it is uO. When, as is customary, hx = Ay, the 
denominators can be canceled. The row-wise equations for the (k + 1) iteration are 

(uL - 2u0  + UR)(~+') = -(uA - 2u0 + UB)(~), (8.15) 

where the right-hand nodal values are the constants for the equations. When we work col- 
umn-wise, the equations are for the (k + 2) iteration 

(uA - 2u0 $. uB)(~'~) = -(uL - 22.40 + UR)(~"), (8.16) 

where, again, the right-hand nodal values are the constants. 
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We can speed up the convergence of the iterations by introducing an acceleration factor, 
p, to malke Eq. (8.15) become 

U O ( ~ + ' )  = U O ( ~ )  + p(uL - 2u0 + UR)(~+ I )  + p(uA - 2240 + UB)(~), 

and Eq. (8.16) becomes 

U O ( ~ + ~ )  = U O ( ~ + ' )  + p(uA - 2u0 + UB)(~+') + p(uL - 2u0 + UR)(~+  '1, 

where the last terms in both use the values from the previous traverse. 
Rearranging further, we get the tridiagonal systems 

and 

for the horizontal and vertical traverses, respectively. 
In writing a program for the A.D.I. method, we must take note of the fact that the coef- 

ficient matrices for the two traverses are not identical because the boundary values enter 
differently. Here is a deliberately simple example that illustrates the procedure. 

-- ------ p- - -- -- - 
EXALMPLE 8.7 A rectangular plate is 6 in. X 8 in. The top edge (an 8-in. edge) is held at 100°, the right 

edge at 50°, and the other two edges at 0'. Use the A.D.I. method to find the steady-state 
temperatures at nodes spaced 1 in. apart within the plate. 

There are 5 * 7 = 35 interior nodes, so there are 35 equations in each set (the horizon- 
tal and vertical traverses). With p = 0.9, and starting with all interior values set to 0°, the 
values of Table 8.3 result after 28 iterations, which is when the maximum change in any of 
the values is less than 0.001. (If we begin with the interior nodes set to the average of the 
boundary values, these values are reached in 24 iterations with p = 1.1 .) 

For this particular example, the number of nodes is small enough that Liebmann's 
method with overrelaxation could be used. That method is somewhat more efficient 
because it requires only 15 iterations to attain the same accuracy. 

3 Temperatures at interior nodes for Example 8.7 
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Figure 8.5 

All of the examples that we have used so far have had regions where the nodes can be 
spaced uniformly. That is not always the case. There are three reasons why we may need a 
nonuniform spacing: 

1. A rectangular region may have width and length incompatible with a uniform spacing. 
2. The region may be nonrectangular. 
3. We may want nodes closer together in some areas to improve the accuracy where the 

dependent variable is changing rapidly. 
(If the region is three-dimensional, analogous cases apply.) 

For case 2, we may be able to change the coordinate system and use an appropriate redefi- 
nition of the Laplacian. In any case, we can approximate it for a set of nodes not uniformly 
spaced. Consider Figure 8.5. 

Figure 8.5 illustrates a situation where the four nodes around the central node have differ- 
ent spacing. As shown in the figure, the distances to points L, R, A, and B from point 0 ,  the 
central node, are hL, hR, hA, and hB. These points are nodes to the left, right, above, and 
below the central node, respectively. The u-values at these points are uL, uR, uA, and uB. 
Approximate the first derivatives between points L and 0 and between points 0 and R with: 

These can be interpreted as central difference approximations at points halfway 
between points L and 0 and halfway between 0 and R. We then approximate the second 
derivative with: 

but this is not a central difference approximation at exactly point 0 .  We can use it to 
approximate the second derivative there but doing so incurs an error of O(h). We can do the 
same to approximate a2uldy2 by using the points in a vertical line. 
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Using Eq. (8.19) is not the best way to handle the problem, however. Thejinite-element 
method (FEM)" is much to be preferred and we describe this in the next chapter. In FEM, 
the region is divided into subregions and these can be other than squares, usually triangles 
in 2-D. The subregions, which have common vertices, can be of varying sizes. A boundary 
that is not straight is approximated by a sequence of straight lines that can be very short 
where the boundary is sharply curved. 

The second class of partial-differential equations is usually called the diffusion equation or 
the heat equation because the typical examples are the molecular diffusion of matter and 
the flow of heat within regions. We will use heat flow as our example, similarly to 
Section 8.1. In contrast to that for an elliptic PDE, the situation is not the steady state but is 
time dependent; temperatures vary with time. 

We begin with the 1-D case, but we will extend the treatment to 2-D and 3-D. For 1-D, 
we think of heat flowing along a rod. (If the temperatures do reach a steady state, these will 
be the same as those found by the method of Section 8.1 .) 

Figure 8.6 shows a rod of length L with an element of length dx in the interior. No heat 
leaves or enters the rod through its circumference (it may be insulated) but flows only 
along the rod. As described in Chapter 6, heat flows into the element from the left at a rate, 
measured in callsec, of 

The minus sign is required because duldx expresses how rapidly temperatures increase 
with x, whereas the heat always flows from high temperature to low. 

The rate at which heat leaves the element is given by a similar equation, but now the 
temperature gradient must be at the point x + dx: 

in which the gradient term is the gradient at x plus the change in the gradient between x and 
x + dx. 

These two relations are precisely those of Section 6.7. Now, however, we do not assume 
that these two rates are equal, but that their difference is the rate at which heat is stored 

Figure 8.6 

* The abbmreviation FEA is sometimes used, frompnite-element analysis. 
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within the element. This heat that is stored within the element raises its temperature. The 
rate of increase in the amount of heat that is stored is related to the rate of change in tem- 
perature of the element by an equation that involves the volume of the element ( A  * dx, 
measured in cm3), the density of the material ( p ,  measured in callgm), and a property of the 
material called the heat capacity, [c, measured in cal/(gm * "C)]: 

du 
rate of increase of heat stored = cp(A dx) -. 

dt 

We equate this increase in the rate of heat storage to the difference between the rates at 
which heat enters and leaves: 

where the derivatives are now partial derivatives because there are two independent 
variables, x and t. We can simplify Eq. (8.20) to 

If the region is a slab or a three-dimensional object, we have the analogous equation 

in which the Laplacian appears. 
It may be that the material is not homogeneous and its thermal properties may vary 

with position. Also, there could be heat generation within the element equal to Q call 
(sec * cm3). In this more general case we have, in three dimensions, 

Our illustrations will stay with the simpler cases represented by Eqs. (8.21) and (8.22). 
In order to solve these equations for unsteady-state heat flow (and they apply as well to 

diffusion or to any problem where the potential is proportional to the gradient), we need to 
make the solution agree with specified conditions along the boundary of the region of 
interest. In addition, because the problems are time dependent, we must begin with speci- 
fied initial conditions (at t = 0) at all points within the region. We might think of these 
problems as both boundary-value problems with respect to the space variables and as ini- 
tial-value problems with respect to time. 

olving the Heat Equation 

We describe three different ways to solve for temperatures as they vary with time along a 
rod, the one-dimensional case. All three techniques are similar in that they replace the 
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space derivative with a central difference. They differ in that different finite-difference 
quotients are used for the time derivative. We begin with what is called the explicit method. 
We use this forward approximation for the time derivative: 

au  u i + j - u j  -- - (at point xi and time tj), 
at a t  

where we use subscripts to indicate the location and superscripts to indicate the time.* For 
the derivative with respect to x, we use (at point xi and time tj): 

Observe that we are using a forward difference in Eq. (8.23) but a central difference in 
Eq. (8.24). From the discussion in Chapter 3, we know that the first has an error of order 
O(At), whereas the second has an error of order ~ ( h ) ~ .  This difference in orders has an 
important consequence, as will be seen. 

Substituting these approximations into Eq. (8.21) and solving for u{+l, we get 

where 

Equation (8.25) is a way that we can march through time one At at a time. For t = tl, we 
have the u's at to from the initial conditions. At each subsequent time interval, we have the 
values for the previous time from the last computations. We apply the equation at each 
point alo'ng the rod where the temperature is unknown. (If an end condition involves a tem- 
perature gradient, that endpoint is included.) 

The use of Eq. (8.25) to compute temperatures as a function of position and time is 
called the explicit method because each subsequent computation is explicitly given from 
the previous u-values. 

An example will clarify the procedure. 

----------- ----- -- -- - 
1, F 8.8 Solve for the temperatures as a function of time within a large steel plate that is 2 cm thick. 

For steel, k = 0.13 cal/(sec * cm * "C), c = 0.11 cal/(g " "C), and p = 7.8 g/cm3. Because 
the plate is large, neglect lateral flow of heat and consider only the flow perpendicular to 
the faces of the plate. 

Initially, the temperatures within the plate, measured from the top face (where x = 0) to 
the bottom (where x = 2) are given by this relation: 

* The xi are locations of evenly spaced nodes. The 9 are times spaced apart by At. 
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The boundary conditions, both at x = 0 and at x = 2, are u = 0". Use Ax = 0.25 so there 
are eight subdivisions. Number the interior nodes from 1 to 7 so that node 0 is on the top 
face and node 8 is at the bottom. 

The value that we use for At depends on the value that we choose for r, the ratio 
( kA t ) l [ cp (A~)~] .  Let us use r = 0.5 for a first trial. Doing so greatly simplifies Eq. (8.25). It 
becomes 

(We shall compare the results of this first trial to other trials with different values for r.) 
With r = 0.5, the value of At is r~p (AX)~ / k  = 0.5(0.11)(7.8)(0.25)~/0.13 = 0.206 sec. 

We use Eq. (8.26) to compute temperatures at each node for several time steps. When 
this is done, the results shown in Table 8.4 are obtained. Because the values are symmetri- 
cal about the center of the rod, only those for the top half are tabulated, and the values for 
x = 0,  which are all u = 0, are omitted. Table 8.4 also shows values from the "analytical" 
solution at x = 0.5 and at x = 1 from the series solution given by a classical method for 
solving the problem. 

It is apparent from the conditions for this example that the temperatures will eventu- 
ally reach the steady-state temperatures; at t = m, u will be 0" everywhere. The values in 
Table 8.4 are certainly approaching this equilibrium temperature. (All temperatures are 
within 0.1 of 0.0 after 85 time steps.) 

.4 Computed and analytical temperatures for Example 8.8 

x value 

0.25 0.50 0.75 1.00 
Time 
steps t (computed) (comp) (anal) (computed) (comp) (anal) 

0 0 25.00 50.00 50.00 75.00 100.00 100.00 
1 0.206 25.00 50.00 49.58 75.00 75.00 80.06 
2 0.413 25.00 50.00 47.49 62.50 75.00 71.80 
3 0.619 25.00 43.75 44.68 62.50 62.50 65.46 
4 0.825 21.88 43.75 41.71 53.13 62.50 60.1 1 
5 1.031 21.88 37.50 38.79 53.13 53.13 55.42 
6 1.237 18.75 37.50 35.99 45.31 53.13 51.18 
7 1.444 18.75 32.03 33.37 45.31 45.31 47.33 
8 1.650 16.02 32.03 30.91 38.67 45.31 43.79 
9 1.856 16.02 27.34 28.63 38.67 38.67 40.52 

10 2.062 13.67 27.34 26.51 33.01 38.67 37.51 
11 2.269 13.67 23.34 24.55 33.01 33.01 34.72 
12 2.475 1 1.67 23.34 22.73 28.17 33.01 32.15 
13 2.681 11.67 19.92 21.04 28.17 28.17 29.76 
14 2.887 9.96 19.92 19.48 24.05 28.17 27.55 
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Figure 3.7 

The computed values generally follow the analytical but oscillate above and below succes- 
sive values. This is shown more clearly in Figure 8.7, where the computed temperatures at the 
center node and at x = 0.5 cm are plotted. The curves represent the analytical solution. If the 
computa.tions are repeated but with two other values of r (r = 0.4 and r = 0.6), we find an 
interesting phenomenon. Of course, the values of At will change as well. With the smaller 
value for r, 0.4, the computed results are much more accurate, and the differences from the 
analytical values are about half as great during the early time steps and become only one-tenth 
as great after ten time steps. We would expect somewhat better agreement because the time 
steps are: smaller, but the improvement is much greater than this change would cause. 

On the other hand, using a value of 0.6 for r results in extremely large errors. In fact, after 
only eight time steps, some of the calculated values for u are negative, a patently impossible 
result. Figure 8.8 illustrates this quite vividly. The open circles in the figure are results with 
r = 0.6; the solid points are for r = 0.4. The explanation for this behavior is instability. The 
maximum value for r to avoid instability (which is particularly evident for r = 0.6) is 
r = 0.5. The oscillation of points about the analytical curve in Figure 8.7 shows incipient 
instability. Even this value for r is too large if the boundary conditions involve a gradient. 

The reason why there as instability when r is greater than 0.5 in the explicit method is the 
difference in orders of the finite-difference approximations for the spatial derivative and 
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Figure 8.8 

the time derivative. The Crank-Nicolson method is a technique that makes these finite- 
difference approximations of the same order. 

The difference quotient for the time derivative, (uj" - uj)lAt, can be considered a 
central-difference approximation at the midpoint of the time step. If we do take this as a 
central-difference approximation, we will need to equate it to a central-difference approx- 
imation of the spatial derivative at the same halfway point in the time step, and this we can 
hope to obtain by averaging two approximations for d2uldx2, one computed at the start and 
the other at the end of the time step. So, we write, for 

this approximation: 

which we solve for the u-values at the end of the time step to give 

Equation (8.27) is the Crank-Nicolson formula, and using it involves solving a set 
of simultaneous equations, because the equation for u{+' includes two adjacent u-values at 
t = tJ+l. Hence, this is an implicit method. Fortunately, the coefficient matrix is tridiago- 
nal. A most important advantage of the method is that it is stable for any value for r, 
although smaller values usually give better accuracy. This next example illustrates the 
method. 
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- 
E X A M P L E  8.9 Solve Example 8.8, but now use the Crank-Nicolson method. Compare the results with 

r = 0.5 and with r = 1.0 to the analytical values. 
Employing Eq. (8.27) gives the results shown in Table 8.5 for the centerline tempera- 

tures with r = 0.5 and in Table 8.6 for the centerline temperatures with r = 1 .O. The error 
columns are the differences between the computed temperatures and those from the series 
solution. In Table 8.5, these range from 2.0% to 2.7% of the analytical values, whereas in 
Table 8.6, they range from 1.0% to 2.5%. One would expect the errors with r = 0.5 to be 
smaller, but this is not the case. Both sets of computations are more accurate than those in 
Table 8.4, where the explicit method was used with r = 0.5. -- -2 

The Theta Method -A Generalization 

In the Crank-Nicolson method, we interpret the finite-difference approximation to the 
time derivative as a central difference at the midpoint of the time interval. In the theta 
method, we make a more general statement by interpreting this approximation to apply at 
some other point within the time interval. If we interpret it to apply at a fraction 0 of At, we 
then equate the time-derivative approximation to a weighted average of the spatial deriva- 
tives at the beginning and end of the time interval, giving this relation: 

Observe that using 0 = 0.5 gives the Crank-Nicolson method, whereas using H = 0 gives 
the expllicit method. If we use 0 = 1, the theta method is often called the implicit method. 
For 0 = 1, the analog of Eq. (8.27) is 

.5 Centerline temperatures with 
Crank-Nicolson Method, r = 0.5 

Time steps t u-values Error 

Table 8.6 Centerline temperatures with 
Crank-Nicolson Method, r = 1.0 

Time steps 

0 
1 
2 
3 
4 
5 
6 
7 
8 

u-values 

100.00 
71.13 
61.53 
51.97 
44.67 
38.29 
32.88 
28.23 
24.23 

Error 
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For any value of 6, the typical equation is 

What value is best for O? Burnett (1987) suggests that 6 = 5 is nearly optimal, but he points 
out that a case can be made for using 6 = 0.878. This next example compares the use of 
these two values. 

---- . P -- A --- A=-------- --- - 
LE 8.10 Solve Example 8.8 by the theta method with 0 = 5, 0.878, and 1.0. Compare these to 

results from the Crank-Nicolson and explicit methods. 
Using Eq. (8.28), computations were made for ten time steps. Table 8.7 shows how the 

values at the centerline, x = 1.0 differ from the analytical values. It is interesting to 
observe that, for this problem, the Crank-Nicolson results (6 = 0.5) have smaller errors 
than those with larger values for 6. Even the results from the explicit method (6 = 0) are 
better than those with 6 = 1.0 (although the explicit values oscillate around the analytical). 
This suggests that there is an optimal value for 6 less than 5 and greater than zero. We leave 
this determination as an exercise, as well as the comparison at other values for x. We also 
leave as an exercise to find if there is an optimal value in other problems. 

Stability Cons% 

We have seen in our examples that when the ratio k A t ~ c ~ ( A x ) ~  is greater than 0.5, the 
explicit method is unstable. Crank-Nicolson and the implicit methods do not have such a 
limitation. We now look at this more analytically. We also discuss the convergence of the 
methods. 

'Fabie 8.7 Comparisons of results from the theta method, r = 0.5 

Errors in computed centerline temperatures 
Bvalue 

Time . -- 

steps 213 0.878 1.0 0.5 0.0 
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By convergence, we mean that the results of the method approach the analytical values 
as At and Ax both approach zero. By stability, we mean that errors made at one stage of the 
calculations do not cause increasingly large errors as the computations are continued, but 
rather will eventually damp out. 

We will first discuss convergence, limiting ourselves to the simple case of the unsteady- 
state heat-flow equation in one dimension:* 

We will use the symbol U to represent the exact solution to Eq. (8.29), and u to represent 
the numerical solution. At the moment, we assume that u is free of round-off errors, so the 
only difference between U and u is the error made by replacing Eq. (8.29) by the difference 
equation. Let ei = U: - u i ,  at the point x = xi,  t = tj. By the explicit method, Eq. (8.29) 
becomes 

u{+l = r ( ~ { + ~ +  u.jPl) + ( 1  - 2r)ui, (8.30) 

where r = k A t ~ c ~ ( A x ) ~ .  Substituting u = U - e into Eq. (8.30), we get 

e i f l  = ~ ( e { + ~  + ei-J + (1  - 2r)e: - r(U{+, + U{_,) - ( 1  - 2 r ) ~ i  + u { + ~ .  (8.31) 

By using Taylor-series expansions, we have 

Substitluting these into Eq. (8.31) and simplifying, remembering that  AX)^ = k Atlcp, 
we get 

* We could have treated the simpler equation dUIdT = d 2 ~ / d x 2  without loss of generality, because with the 
change of variables-X = 6 x, T = kt-the two equations are seen to be identical. 
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Let EJ be the magnitude of the maximum error in the row of calculations for t = 5, and 
let M > 0 be an upper bound for the magnitude of the expression in brackets in Eq. (8.32). 
If r 5 i, all the coefficients in Eq. (8.32) are positive (or zero) and we may write the 
inequality 

This is true for all the eJ+l at t = so 

EJ+l 5 EJ + M At. 

This is true at each time step, 

because l?, the errors at t = 0, is zero, as U is given by the initial conditions. 
Now, as Ax -+ 0, At + 0 if k A t l ~ ~ ( A x ) ~  5 :, and M -+ 0, because, as both Ax and At 

get smaller, 

This last is by virtue of Eq. (8.29), of course. Consequently, we have shown that the 
explicit method is convergent for r 5 :, because the errors approach zero as At and Ax are 
made smaller. 

For the solution to the heat-flow equation by the Crank-Nicolson method, the analysis 
of convergence may be made by similar methods. The treatment is more complicated, but 
it can be shown that each Ejfl is no greater than a finite multiple of Ej plus a term that van- 
ishes as both Ax and At become small, and this is independent of r. Hence, because the 
initial errors are zero, the finite-difference solution approaches the analytical solution as 
At -+ 0 and Ax -+ 0, requiring only that r stay finite. This is also true for the 8 method 
whenever 0.5 5 8 5 1. 

We begin our discussion of stability with a numerical example. Because the heat-flow 
equation is linear, if two solutions are known, their sum is also a solution. We are interested 
in what happens to errors made in one line of the computations as the calculations are con- 
tinued, and because of the additivity feature, the effect of a succession of errors is just the 
sum of the effects of the individual errors. We follow, then, a single error,* which most 
likely occurred due to round off. If this single error does not grow in magnitude, we will call 
the method stable, because then the cumulative effect of all errors affects the later calcula- 
tions no more than a linear combination of the previous errors would. (Because round-off 
errors are both positive and negative, we can expect some cancellation.) 

Table 8.8 illustrates the principle. We have calculated for the simple case where the bound- 
ary conditions are fixed, so that the errors at the endpoints are zero. We assume that a single 

* A computation made assuming that each of the interior points has an error equal to e at t = t ,  demonstrates the 
effect more rapidly. 
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Table 8.,8 Propagation of errors - explicit method ----- 
Endpoint Endpoint 

t 
-- X2 X3 X4 X5 

error of size e occurs at t = tl and x = x2. The explicit method, k A t l ~ ~ ( h x ) ~  = i, was used. 
The original error quite obviously dies out. As an exercise, it is left to the student to show that 
with r > 0.5, errors have an increasingly large effect on later computations. Table 8.9 shows 
that errors damp out for the Crank-Nicolson method with r = 1 even more rapidly than in the 
explicit !method with r = 0.5. The errors with the implicit method also die out with r = 1, 
more rapidly than with the explicit method but less rapidly than with Crank-Nicolson. 

ore Analytical Argument 

To discuss stability in a more analytical sense, we need some material from linear algebra. 
In Chapter 6, we discussed eigenvalues and eigenvectors of a matrix. We recall that for the 
matrix AL and vector x, if 

Ax = Ax, 

then the scalar h is an eigenvalue of A and x is the corresponding eigenvector. If the N 
eigenvalues of the N X N matrix A are all different, then the corresponding N eigenvectors 

..!I Propagation of errors-Crank-Nicolson method 
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are linearly independent, and any N-component vector can be written uniquely in terms of 
them. 

Consider the unsteady-state heat-flow problem with fixed boundary conditions. 
Suppose we subdivide into N + 1 subintervals so there are N unknown values of the tem- 
perature being calculated at each time step. Think of these N values as the components of 
a vector. Our algorithm for the explicit method (Eq. 8.25) can be written as the matrix 
equation* 

where A represents the coefficient matrix and uj and uj'l are the vectors whose N compo- 
nents are the successive calculated values of temperature. The components of u0 are the ini- 
tial values from which we begin our solution. The successive rows of our calculations are 

u1 = AuO, 
~2 = Aul = ~ 2 ~ 0 ,  

(Here the superscripts on the A's are exponents; on the vectors they indicate time.) 
Suppose that errors are introduced into uO, so that it becomes ii0. We will follow the 

effects of this error through the calculations. The successive lines of calculation are now 

Let us define the vector ej  as u j  - id so that ej represents the errors in uj caused by the 
errors in GO. We have 

,j = u j  - ,j = Aj,O - = Aje0. 

This shows that errors are propagated by using the same algorithm as that by which the 
temperatures are calculated, as was implicitly assumed earlier in this section. 

* A change of variable is required to give boundary conditions of u = 0 at each end. This can always be done for 
fixed end conditions. 
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Now the N eigenvalues of A are distinct (see below) so that its N eigenvectors x l ,  
x2, . . . , xN are independent, and 

We now write the error vector e0 as a linear combination of the xi: 

e0 = c lx l  + c2x2 + . . - + C N X ~ ,  

where the c's are constants. Then el is, in terms of the xi, 

and for e2, 

(Again, the superscripts on vectors indicate time; on h they are exponents.) After j steps, 
Eq. (8.34) can be written 

N 

ej = 2 cih{xi.  
i =  1 

If the magnitudes of all of the eigenvalues are less than or equal to unity, errors will not 
grow as the computations proceed; that is, the computational scheme is stable. This then is 
the analytical condition for stability: that the largest eigenvalue of the coefficient matrix 
for the algorithm be one or less in magnitude. 

The eigenvalues of matrix A (Eq. 8.33) can be shown to be 

(note that they are all distinct). We will have stability for the explicit scheme if 

The limiting value of r is given by 

Hence, id r 5 i, the explicit scheme is stable. 
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The Crank-Nicolson scheme, in matrix form, is 

We can write 

so that stability is given by the magnitudes of the eigenvalues of A - ~ B .  These are 

Clearly, all the eigenvalues are no greater than one in magnitude for any positive value of 
r. A similar argument shows that the implicit method is also unconditionally stable. 

eat Equaaioan in Two or Three 

In dimensions greater than one, the equation that we are to solve is 

We will apply finite-difference approximations to the derivatives as we did in 1-D. We 
show how a typical example is solved. 

Suppose we have a rectangular region whose edges fit to evenly spaced nodes. If we 
replace the right-hand side of Eq. (8.35) with central-difference approximations, where 
Ax = Ay = h, and r = k Atl(cph2), the explicit scheme becomes 

u t f  l - u t j  = Y ( U ; + ~ , ~  - 2utj + u;- , .~  + u ; ~ + ~  - 2Ufj + u : ~ - J  

or 
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In this scheme, stability requires that the value of u be or less in the simple case of 
Dirichlet boundary conditions. (Note that this corresponds again to the numerical value that 
gives a particularly simple formula.) In the more general case with Ax # Ay, the criterion is 

The analogous equation in three dimensions, with equal grid spacing each way, has the 
coefficient (1 - 6r), and r 5 is required for convergence and stability. 

The difficulty with the use of the explicit scheme is that the restrictions on At require 
inordinately many rows of calculations. One then looks for a method in which At can be 
made larger without loss of stability. In one dimension, the Crank-Nicolson method was 
such a method. In the 2-D case, using averages of central-difference approximations to 
give d2uldx2 and d2uldy2 at the midvalue of time, we get 

The problem now is that a set of ( M ) ( N )  simultaneous equations must be solved at 
each time step, where M is the number of unknown values in the x-direction and N in the 
y-direction. Furthermore, the coefficient matrix is no longer tridiagonal, so the solution to 
each set of equations is slower and memory space to store the elements of the matrix may 
be exorbitant. 

The advantage of a tridiagonal matrix is retained in the alternating direction implicit 
scheme (A.D.I.) proposed by Peaceman and Rachford (1955). It is widely used in modern 
computer programs for the solution of parabolic partial-differential equations. We dis- 
cussed the A.D.I. method in Section 8.1 applied to elliptic equations. For parabolic equa- 
tions, we approximate V2u by adding a central-difference approximation to d2uldx2 written 
at the beginning of the time interval to a similar expression for d2u/dy2 written at the end of 
the time interval. We will use subscripts L, R, A, and B to indicate nodes to the left, right, 
above, and below the central node, respectively, where u = uo. We then have 

where r = k AtlcpA2 and A = Ax = Ay. The obvious bias in this formula is balanced by 
reversing the order of the second derivative approximations in the next time span: 

Observe that in using Eq. (8.36), we make a vertical traverse through the nodes, comput- 
ing new values for each column of nodes. Similarly, in using Eq. (8.37) we make a horizon- 
tal traverse, computing new values row by row. In effect, we consider uL and uR as fixed 
when we do a vertical traverse; we consider uA and uB as fixed for horizontal traverses. 

- -. -- 
PLE 8.1 P A square plate of steel is 8 in. wide and 6 in. high. Initialty, all points on the plate are at 

50". The edges are suddenly brought to the temperatures shown in Figure 8.9 and held at 
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Figure 8.9 Figure 8.1 0 

these temperatures. Trace the history of temperatures at nodes spaced 2 in. apart using the 
A.D.I. method, assuming that heat flows only in the x- and y-directions. 

Figure 8.9 shows a numbering system for the internal nodes, all of which start at 50°, as 
well as the temperatures at boundary nodes. 

Using Eq. (8.36), the typical equation for a vertical traverse is 

If we use this equation and the numbering system of Figure 8.9 to set up the equations for 
a vertical traverse, we do not get the tridiagonal system that we desire, but we do if the 
nodes are renumbered as shown in Figure 8.10. To keep track of the different numbering 
systems, we will use v for temperatures when a vertical traverse is made (numbered as in 
Fig. 8.10) and u when a horizontal traverse is made (numbered as in Fig 8.9). 

This is the set of equations for a vertical traverse: 

When we apply Eq. (8.36) to get a set of equations for a horizontal traverse, we get (the 
dashed lines show they break into subsets) 

- 
(1 + 2r) -r 

-r  ( 1 + 2 r )  

(1 + 2r) -r 
-r (1 + 2r) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

(1 + 2r) -r 

-r ( 1 + 2 ~ ) ~ \ ~ ~ ,  

- 
( 1 + 2 r )  - r  

- 1 
u,' '~(10) + (1 - 2r)vl + w2 + r(25)' 

-r  (1 + 2r) -r u, r(20) + (1 - 2r)v3 + w4 
-r (1 + 2r) 

- 
r(30) + (1 - 2r)v, + w, + r(50) .............................................................................. 3 ,  - -- ----------- ----- ------- -----------------------------------, 

( 1 + 2 r )  -r  u4 w, + (1 - 2r)v2 + r(100) + ~(65)  ' 
-r ( 1 + 2 r )  - r  u, w, + (1 - 2r)v4 + r(90) 

-r (1 + 2r) u,, (w, + (1 - 2r)v6 + r(80) + r(60) ) 

A value must be specified for r. Small r's give better accuracy but smaller At's, so more 
time steps are required to compute the history. If we take r = 1, At is 26.4 sec. 

v 

,ru, + (1 - 2r)u6 + ~(60)  + r(80) , 

'r(25) + (1 - 2r)u, + ru, + r(10) 
r(65) + (1 - 2r)u4 + ru5 + r(100) 
ru, + (1 - 2r)u2 + ru3 + r(20) 

ru, + (1 - 2r)u5 + TUG + r(90) 

ru, + (1 - 2r)u3 + r(50) + r(30) 

v, 

( V 3 ,  

v4 

v5 

' - ,  - 
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The first vertical traverse gives results for t = 26.4 sec. We get the first set of v's from 

- 
3 -1 

-1 3 
3 -1 

-1 3 
3 -1 

-1 3 - 
Solving, we get these values: 

{33.75 66.25 

These values are used to build the right-hand sides for the next computations, a hori- 
zontal traverse, getting these equations for t = 52.8 sec: 

which have the solution (a set of u's) 

We continue by alternating between vertical and horizontal traverses to get the results 
shown in Table 8.10. This also shows the steady-state temperatures that are reached after a 
long time. The steady-state temperatures could have been computed by the methods of 
Section 8.1. We observe that the A.D.I. algorithm for steady-state temperatures is essen- 
tially identical to what we have seen here. 

The compensation of errors produced by this alternation of direction gives a scheme 
that is convergent and stable for all values of r,  although accuracy requires that r not be too 
large. The 3-D analog alternates three ways, returning to each of the three formulas after 
every third step. [Unfortunately, the 3-D case is not stable for all fixed values of r > 0. A 
variant due to Douglas (1962) is unconditionally stable, however.] When the nodes are 
renumbered, in each case tridiagonal coefficient matrices result. 

Note that the equations can be broken up into two independent subsets, corresponding to 
the nodes in each column or row. (See the first set of equations of Example 8.1 1.) This is 
always true in the A.D.I. method; each row gives a set independent of the equations from the 
other rows. For columns, the same thing occurs. For very large problems, this is important, 
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Results for Example 8.11 using the A.D.I. method 

AT START, TEMPS ARE 

0 . 0 0 0 0  1 0 . 0 0 0 0  2 0 . 0 0 0 0  

2 5 . 0 0 0 0  5 0 . 0 0 0 0  5 0 . 0 0 0 0  

6 5 . 0 0 0 0  5 0 . 0 0 0 0  5 0 . 0 0 0 0  
1 1 0 . 0 0 0 0  1 0 0 . 0 0 0 0  9 0 . 0 0 0 0  

AFTER ITERATION 1 TIME=26.4 -VALUES ARE 

0 . 0 0 0 0  1 0 . 0 0 0 0  2 0 . 0 0 0 0  

2 5 . 0 0 0 0  3 3 . 7 5 0 0  4 3 . 7 5 0 0  

6 5 . 0 0 0 0  6 6 . 2 5 0 0  6 1 . 2 5 0 0  
1 1 0 . 0 0 0 0  1 0 0 . 0 0 0 0  9 0 . 0 0 0 0  

AFTER ITERATION 2  TIME= 5 2 . 8  -VALUES ARE 

0 . 0 0 0 0  1 0 . 0 0 0 0  2 0 . 0 0 0 0  

2 5 . 0 0 0 0  3 5 . 5 9 5 2  6 9 . 2 8 5 7  

6 5 . 0 0 0 0  6 6 . 7 8 5 7  6 7 . 8 5 7 1  

1 1 0 . 0 0 0 0  1 0 0 . 0 0 0 0  9 0 . 0 0 0 0  

AFTER ITERATION 3  TIME= 7 9 . 2  -VALUES ARE 

0 . 0 0 0 0  1 0 . 0 0 0 0  2 0 . 0 0 0 0  

2 5 . 0 0 0 0  3 5 . 2 6 7 9  4 2 . 0 5 3 6  

6 5 . 0 0 0 0  6 7 . 1 1 3 1  6 5 . 0 8 9 3  

1 1 0 . 0 0 0 0  1 0 0 . 0 0 0 0  9 0 . 0 0 0 0  

AFTER ITERATION 4 TIME= 1 0 5 . 6  -VALUES ARE 

0 . 0 0 0 0  1 0 . 0 0 0 0  2 0 . 0 0 0 0  

2 5 . 0 0 0 0  3 6 . 2 4 4 3  4 1 . 8 8 7 8  

6 5 . 0 0 0 0  6 6 . 1 3 6 6  6 5 . 2 5 5 1  

1 1 0 . 0 0 0 0  1 0 0 . 0 0 0 0  9 0 . 0 0 0 0  

STEADY-STATE TEMPERATURES: 

0 . 0 0 0 0  1 0 . 0 0 0 0  2 0 . 0 0 0 0  

2 5 . 0 0 0 0  3 5 . 8 4 2 7  4 1 . 8 3 2 3  

6 5 . 0 0 0 0  6 6 . 5 3 8 3  6 5 . 3 1 0 6  

1 1 0 . 0 0 0 0  1 0 0 . 0 0 0 0  9 0 . 0 0 0 0  

because it permits the ready overlay of main memory in solving the independent sets. 
Observe also that each subset can be solved at the same time by parallel processors. 

As discussed in Section 8.1, it is possible to place nodes unevenly and approximate the 
space derivatives differently, as in Eq. (8.19). Or we might use a different coordinate 
system (polar or spherical coordinates, for example). However, the most frequently used 
procedure in such a case is the finite-element method of Chapter 9. 
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The third class of partial-differential equations, the hyperbolic, is time dependent. They 
describe vibrations within objects and especially how waves are propagated. Because of 
this, they are called wave equations. 

The simplest of the wave equations is that for a vibrating string, the 1-D situation. Another 
example: is that of waves traveling along the length of a long, narrow trough. In 2-D, you might 
imagine a drum head that is set to vibrating by the musician. The 3-D case is harder to visual- 
ize; one could think of a cherry suspended within a bowl of transparent gelatin that moves 
when the container is tapped with a spoon. In all cases, we want to model the motion and, in 
the real world, that motion decreases with time due to frictional forces that oppose the motion. 

The Iribrating String 

We can develop the 1-D wave equation, an example of hyperbolic partial-differential equa- 
tions, by considering the oscillations of a taut string stretched between two fixed endpoints. 
Figure 8.11 shows the string with displacements from the straight line between the endpoints 
greatly exaggerated. The figure shows an element of the string of length dx between points A 
and B. 'We use u for the displacements, measured perpendicularly from the straight line 
between the ends of the string. We focus our attention on the element of the string in 
Figure 8.11. It is shown enlarged in Figure 8.12, which also shows the angles, aA and 018, 
between the ends of element and the horizontal. (The bending of the element between points 
A and B is exaggerated as are the displacements.) The figure also indicates that the tension in 
the stretched string is a force, T. Taking the upward direction as positive, we can write, for the 
upward forces at each end of the element (these are the vertical components of the tensions). 

Upward force at point A = -T sin(%), 

Upward force at point B = T sin(aB). 

Rememibering that Figure 8.12 has displacements and angles greatly exaggerated, the 
tangents of these angles are essentially equal to the sines. We then can write 

Upward force at point A = - T tan(aA) = - T 

Upward force at point B = T tan(aB) = 

Figure 8.12 
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The net force acting on the element then is 

T ($) dx. 

Now, using Newton's law, we equate the force to mass X acceleration (in the vertical 
direction). Our simplifying assumptions permit us to use w dx as the weight (w is the 
weight per unit length), so 

As pointed out in Section 8.1. when Eq. (8.38) is compared to the general form of second- 
order partial-differential equations, we see that A = 1, B = 0, and C = -Tg/w, and so this 
falls in the class of hyperbolic equations. 

If we have a stretched membrane (like a drum head) instead of a string, the governing 
equation is 

The solution to Eq. (8.38) or Eq. (8.39) must satisfy given boundary conditions along the 
boundary of the region of interest as well as given initial conditions at t = 0. Because 
the problem is of second order with respect to t, these initial conditions must include both 
the initial velocity and the initial displacements at all points within the region. 

Solving the Vibrating String 

We can solve Eq. (8.38) numerically by replacing the derivatives with finite-difference 
approximations, preferring to use central differences in both cases. If we do this, we get 

where the subscripts indicate x-values and the superscripts indicate t-values." (If the 
boundary conditions involve derivatives, we will approximate them with central differ- 
ences in the way that we are accustomed.) If we solve for the displacement at the end of the 
current time step, u;+l, we get 

If we make ~ ~ ( A t ) ~ / w ( A x ) ~  equal to 1, the maximum value that avoids instability, there is 
considerable simplification: 

* We again assume evenly spaced nodes and evenly spaced time intervals. 
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Equation (8.40) shows how one can march through time: To get the new value for u at node 
i, we add the two u-values last computed at nodes to the right and left and subtract 
the valule at node i at the time step before that. That is fine for the second time step; we 
have the initial u-values (at t = 0) and those for step 1 (at t = At). We also have the neces- 
sary information for all subsequent computations. But how do we get the value for the first 
time step? We seem to need the values of u one time step before the start! 

That really is no problem if we recognize that the oscillation of the vibrating string is a 
periodic function and that the "starting point7' is just an arbitrary instant of time at which 
we happen to know the displacement and the velocity. That suggests that we can get the 
u-values at t = -At from the specified initial velocities. If we use a central-difference 
approximation: 

duldt at t = 0 is known; it is one of the initial conditions, call it g(x). So we can write 

uiV1 = u,! - 2g(x) At. ,a.iki: 

If we sulbstitute Eq. (8.41) into Eq. (8.40), we have (but for t = 0 only), 

1 
Uf = - 

2 
(u:+, + Z4Y-J + g(x) At. 

Our procedure then is to use Eq. (8.42) for the first time step, then use Eq. (8.40) to march 
on through time after that first step." As we will see, Eq. (8.40) is not only stable but also 
can give exact answers. It is interesting that using a value for ~ ~ ( A t ) ~ / w ( A x ) ~  less than 1, 
while stable, gives results that are less accurate. 

An example will illustrate the technique. 

' ~ X A  MPI, E 8.12 A banjo string is 80 cm long and weighs 1.0 gm. It is stretched with a tension of 40,000 g. At 
a point 20 cm from one end it is pulled 0.6 cm from the equilibrium position and then released. 
Find the  displacements along the string as a function of time. Use Ax = 10 cm. How long does 
it take to complete one cycle of motion? From this, compute the frequency of the vibrations. 

If Eq. (8.42) is used to begin the calculations and Eq. (8.40) thereafter, the results are as 
shown in Table 8.11. The initial velocities are zero because the string is just released after 
being displaced. Observe that the displacements are reproduced every 16 time steps. 

Figure 8.13 illustrates how the displacements change with time; it also shows that, after 
16 At's, the original u-values are reproduced, which will be true for every 16 time steps. 
Because the original displacements are reproduced every 16 time steps, we can compute 
the frequency of the vibrations. Each time step is 

* There is a more accurate way to start the computations that we discuss a little later. 
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Figure 8.1 3 

and the frequency is 

1 

= 16 * 0.000179 
= 350 hertz. 

The standard formula from physics is - 
40000 * 980 

= 350 hertz, 

precisely the same! 
It seems remarkable that we get exactly the correct frequency, but what about the accuracy 

of the displacements? We will find that these too are precisely correct, as the next discussion 
shows. It is also apparent that the computations are stable when Tg(At)2/~(Ax)2 equals 1. 

The D'Alembert Solution 

The simple vibrating string problem is one where the analytical solution is readily 
obtained. This analytical solution is called the D'Alembert solution. Consider this expres- 
sion for u(x, t): 

I& t )  = F(x + ct) + G(x - ct), (8.43) 

where F and G are arbitrary functions. 
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Table 8..11 Results for vibrating string example ,' --- -, 

u-values at x = 
- 

Time 
steps 0 10 

0 0.00 0.30 
1 0.00 0.30 
2 0.00 0.10 
3 0.00 -0.10 
4 0.00 -0.10 
5 0.00 -0.10 
6 0.00 -0.10 
7 0.00 -0.10 
8 0.00 -0.10 
9 0.00 -0.10 

10 0.00 -0.10 
11 0.00 -0.10 
12 0.00 -0.10 
13 0.00 -0.10 
14 0.00 0.10 
15 0.00 0.30 
16 0.00 0.30 
17 0.00 0.30 
18 0.00 0.10 
19 0.00 -0.10 
20 0.00 -0.10 

If we substitute this into the vibrating string equation, which we repeat, 

we find that the partial-differential equation is satisfied, because 

In Eqs. (8.45) and (8.46), the primes indicate derivatives of the arbitrary functions. Now, 
substituting these expressions for the second partials into Eq. (8.44), we see that the equa- 
tion for the vibrating string is satisfied when c2 = (Tglw). This means that we can get the 
solution to Eq. (8.44) if we can find functions F and G that satisfy the initial conditions 
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and the boundary conditions. That too is not difficult. Suppose we are given the initial 
conditions 

The combination 

U ( X ,  t )  = (+) [ f  ( X  + ct) + f(x - ct)] + (8.47) 

is of the same form as Eq. (8.43). It certainly fulfills the boundary conditions, for 
substituting t = 0 in Eq. (8.47) gives u(x, 0 )  = f ( x )  and differentiating with respect to t 
gives 

for the first term of Eq. (8.47), and 

(when t = 0 )  for the second term. 
We have thus shown that the solution to the vibrating string problem is exactly that 

given by Eq. (8.47). Now we ask "Does the simple algorithm of Eq. (8.40) match 
Eq. (8.47) for the example problem?'We can show that the answer to the question is yes in 
the following way. 

First, for ~ ~ ( A t ) ~ / w ( A x ) ~  equal to 1, Ax = cat. Recalling that u{ represents the U-value 
at x = xi = iAx and at t = t .  = jAt, we see that c5 = cjAt = jAx. If we write u(xi, tj) using 

J 
our subscript/superscript notation, it becomes 

ui = F(xi + ctj) + G(xi - c5) = F(iAx + jAx) + G(iAx - jAx) (8.48) 

= F[(i + j) Ax] + G[(i - j) Ax]. 

Now let us use Eq. (8.48) to write each term on the right-hand side of Eq. (8.40), the algo- 
rithm that we used in the example. 

u:+~ = F[(i + 1 + j) Ax] + G[(i + 1 - j) Ax], 

u{-~ = F[(i - 1 + j) Ax] + G[(i - 1 - j) Ax], 

ui-' = F[(i + j - 1) Ax] + G[(i - j + 1) Ax]. 

In the example, both F and G are linear functions of x, so that F(a) + F(b) = F(a + b), 
and the same is true for G. If we combine these terms in Eq. (8.40), 

u:+~ + ui-l - ui-l = F[(i + 1 + j)] Ax + (i  - 1 + j ) h  - (i  + j - l ) A x ]  

+ G[( i+  1 - j ) A x +  ( i -  1 - j ) A x -  ( i - j +  l ) A x ]  

= F{[ i  + ( j  + I ) ]  Ax} + G{[ i  - ( j  + I ) ]  Ax} 
= .{+', 
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and the validity of Eq. (8.40) is proved. The important implication from this is that, if we 
have correct values for the u's at two successive time steps, all subsequent computed 
values will be correct. 

When the Initial Velocity Is Not Zero 

Example 8.12 had the string starting with zero velocity. What if the initial velocity is not 
zero? Equation (8.42) was a very simple way to begin the computations, but it gave correct 
results only because g(x) was zero in Eq. (8.47). This next example shows that Eq. (8.42) 
is inadequate when g(x) # 0 and that there is a better way to begin. 

IEXAMPL,E 8.13 A string is 9 units long. Initially, it is in its equilibrium position (just a straight line between 
the supports). It is set into motion by striking it so that it has an initial velocity given by 
duldt = 3 sin(m1L). Take Ax = 1 unit and let c2 = Tglw = 4. When the ratio c ~ ( A ~ ) ~ /  
(Ax)2 = 1, the value of At is 0.5 time units. Find the displacements at the end of one At. 

Becanse Ax = 1 and the length is 9, the string is divided into nine intervals; there are 
eight interior nodes. We are to compute the u-values at t = At = 0.5. 

As we have seen, Eq. (8.42) is one way to get these starting values. However, looking at 
Eq. (8.47), we see that there is an alternative technique. If we substitute t = At in that 
equation and remember that cAt = Ax, we get for u(xi, At) 

1 
u(xi, At) = - [f (ii + Ax) + f(xi - Ax)] + 

2 
(8.49) 

1 
= - [u?+, + up-,] + 

2 

Equation (8.49) differs from Eq. (8.42) only in the last term. If g(x) = a constant, the last 
terms are equal, but if g(x) is not constant, we should do the integration in Eq. (8.49). 
Table 8.12 compares the results of both techniques and also gives the answers from the 
analytical solution. Only values for x between 1 and 4 are given as the displacements for 
the right half of the string are the same as for the left half. Simpson's rule was used to do 

Table 8.12 Comparison of ways to begin the wave 
equation at t = At with Ax = 1 

u = values from 

x Eq. (8.42) Eq. (8.49) Analytical 



Chapter Eight: Partial-Differential Equations 

the integrations. We see from the tabulated results that the values using Eq. (8.49) are 
almost exactly the same as the analytical values (they are the same within one in the fourth 
decimal place) but that the results from Eq. (8.42) are less accurate (they each differ by 
2.0% from the analytical). We could improve the accuracy with Eq. (8.42) by decreasing 
the size of Ax (and reducing At correspondingly). By making Ax = 0.5, the errors are 
reduced fourfold as expected. 

ility of the Solution 

We have said that the numerical solution of the vibrating string problem is stable if this 
ratio is not greater than 1: 

Because we ordinarily set that ratio equal to 1, it is sufficient to demonstrate stability for 
that scheme. 

For this demonstration, assume that all computations are correct up to a certain point 
in time, but then an error of size 1 occurs. If the method is stable, that error will not 
increase. Table 8.13 traces how this single error is propagated. It is allowable to think 
only of the effect of this single error because for a linear problem that this is, the puin- 
cipal of superposition says that we can add together the effects of each of the errors. 
Equation (8.40) was used and the ends of the string are specified so they are free of 
error. 

.I3 Propagation of single error in numerical solution to wave equation 

Initially error-free values 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Error made here > 0.0 0.0 0.0 0.0 0.0 0.0 

0.0 1 .o LO1 0.0 0.0 0.0 
0.0 0.0 l 1 . 0  \ 0.0 l.ol 0.0 0.0 
0.0 0.0 0.0 1.0 \ 0.0 l . q  0.0 
0.0 0.0 0.0 0.0 1.0\ o.o/ 0.0 
0.0 0.0 0.0 0.0 0.0 0.- 0.0 
0.0 0.0 0.0 0.0 -1.0 " 0.0 0.0 
0.0 0.0 0.0 -1.0" 0.0 -1.0" 0.0 
0.0 " 0.0 -LO/ 0.0 0.0 

O.O 4:: -1.0" 0.0 0.0 0.0 
0.0 " 0.0 0.0 0.0 0.0 
0.0 0.0 0.0 0.0 0.0 
0.0 "0.0 l 1 . 0  \ 0.0 0.0 0.0 0.0 
0.0 1 1 . 0  0.0 l.Ol 0.0 0.0 0.0 
0.0 0.0 1.0 0.0 1 .o 0.0 0.0 
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The Wave Equation in Two Dimensions 

The finite-difference method can be applied to hyperbolic partial-differential equations in 
two or more space dimensions. A typical problem is the vibrating membrane. Consider a 
thin, flexible membrane stretched over a rectangular frame and set to vibrating. As we have 
seen, the equation is 

in which u is the displacement, t is the time, x and y are the space coordinates, T is the uni- 
form tenision per unit length, g is the acceleration of gravity, and w is the weight per unit 
area. For simplification, let Tglw = c2. Replacing each derivative by its central-difference 
approximation, and using h = Ax = Ay, gives (we recognize the Laplacian on the right- 
hand side) 

Solving for the displacement at time t k+ l ,  we obtain 

In Eqs. (8.50) and (8.51), we use superscripts to denote the time. If we let ~ ~ ( A t ) ~ / h ~  = 

i, the last term vanishes and we get 

For the first time step, we get displacements from Eq. (8.53), which is obtained by 
approximating dulat at t = 0 by a central-difference approximation involving u: and u$ 

In Eq. (8.53), g(x, y) is the initial velocity. 
It should not surprise us to learn that this ratio ~ ~ ( A t ) ~ / h ~  = i is the maximum value for 

stability, in view of our previous experience with explicit methods. However, in contrast 
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with the wave equation in one space dimension, we do not get exact answers from 
the numerical procedure of Eq. (8.52), and we further observe that we must use smaller 
time steps in relation to the size of the space interval. Therefore, we advance in time more 
slowly. However, the numerical method is straightforward, as the following example will 
show. 

EXAMPLE 8.14 A membrane for which c2 = Tglw = 3 is streched over a square frame that occupies the 
region 0 5 x 5 2, 0 5 y 5 2, in the xy-plane. It is given an initial displacement described 

by 

u = x(2 - x)y(2 - y), 

and has an initial velocity of zero. Find how the displacement varies with time. 
We divide the region with h = Ax = Ay = :, obtaining nine interior nodes. Initial dis- 

placements are calculated from the initial conditions: uO(x, y) = x(2 - x)y(2 - y); At is 
taken at its maximum value for stability, hl(.\h c) = 0.2041. The values at the end of one 
time step are given by 

Table $.I4 Displacements of a vibrating membrane-finite-difference method: At = h l ( f i c )  

Grid location 

Note: Analytical values are in parentheses. 
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because g(x, y) in Eq. (8.53) is everywhere zero. For succeeding time steps, Eq. (8.52) is 
used. Table 8.14 gives the results of our calculations. Also shown in Table 8.14 (in paren- 
theses) are analytical values, computed from the double infinite series: 

1 6a2b2A 
B , ,  = , , , ( 1  - cos mz-)(I - cos nn-), 

rr m n 

which gives the displacement of a membrane fastened to a rectangular framework, 0 5 x 
5 a, 0 5 y 5 b, with initial displacements of Ax(a - x)y(b - y). 

We observe that the finite-difference results do not agree exactly with the analytical cal- 
culations. The finite-difference values are symmetrical with respect to position and repeat 
themselves with a regular frequency. The very regularity of the values itself indicates that 
the finite-difference computations are in error, because they predict that the membrane 
could emit a musical note. We know from experience that a drum does not give a musical 
tone when struck; therefore, the vibrations do not have a cyclic pattern of constant fre- 
quency, as exhibited by our numerical results. 

Decreasing the ratio of ~ ~ ( A t ) ~ / h ~  and using Eq. (8.5 1) gives little or no improvement in 
the average accuracy; to approach closely to the analytical results, h = Ax = Ay must be 
made smaller. When this is done, At will need to decrease in proportion, requiring many 
time steps and leading to many repetitions of the algorithm and extravagant use of com- 
puter time. One remedy is the use of implicit methods, which allow the use of larger ratios 
of ~ ~ ( A t ) ~ / h ~ .  However, with many nodes, this requires large, sparse matrices similar to the 
Crank-Nicolson method for parabolic equations in two space dimensions. A.D.I. methods 
have been used for hyperbolic equations-tridiagonal systems result. We do not discuss 
these methods. 

As with other types of partial-differential equations, if the region is not rectangular or if 
we desire nodes closer together in some parts of the region, it is much preferred to employ 
the finite-element method, discussed in the next chapter. 

Exercises 

Section 8.11 

1. Show that Eq. (8.2) results if the thickness of the slab 
varies with position (x, y). 

2. Show that Eq. (8.3) applies if both thickness and ther- 
mal conductivity vary with position in a slab. 

b 3. The mixed second derivative d2ul(dx ay) can be consid- 
ered as 

If the nodes are spaced apart a distance h in both the x- 
and y-directions, show that this derivative can be repre- 
sented by the pictorial operator 

4. What ordering of nodes in Example 8.1 will reduce the 
band width of the coefficient matrix to seven? Can this 
be done in more than one way? Can it be reduced to 
less than seven? 
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) 5. If d2uldx2 is represented as this fourth-order central- 
difference formula 

d2u - -ui+, + 16ui+, - 30ui + 1 6 ~ , - ~  - u ~ + ~  - - 
dW2 12h2 

find the fourth-order operator for the Laplacian. (This 
requires the function to have a continuous sixth 
derivative.) 

6. Derive the nine-point approximation for the Laplacian 
of Eq. (8.6). 

7. Solve Example 8.1 using the nine-point approximation 
to the Laplacian. What is the band width of the coeffi- 
cient matrix if numbered as in Figure 8.2? What order- 
ing of nodes will give the minimum band width? Is this 
the same as the preferred ordering of Exercise 4? 

The coefficient matrix of Example 8.1 is bonded and 
symmetric. If it is solved taking advantage of this struc- 
ture rather than as it is shown, how many fewer arith- 
metic operations will be needed to get the solution? 

A rectangular plate of constant thickness has heat flow 
only in the x- and y-directions (k is constant). If the top 
and bottom edges are perfectly insulated and the left 
edge is at 100' and the right edge at 200°, it is obvious 
that there is no heat flow except in the x-direction and 
that temperatures vary linearly with x and are constant 
along vertical lines. 

a. Show that such a temperature distribution satisfies 
both Eqs. (8.5) and (8.6). 

b. Show that the temperatures also satisfy the relation 
derived in Exercise 5. How should nodes adjacent to 
the edges be handled? 

What is the operator equivalent to Eq. (8.7) for the 
nine-point formula? 

Solve for the steady-state temperatures in the plate of the 
figure when the edge temperatures are as shown. The 
plate is 10 cm X 8 cm, and the nodal spacing is 2 cm. 

12. Repeat Exercise 11, but with the nine-point formula. 
Get the solution both by Gaussian elimination and by 
iteration. How many iterations does it take to reach the 
solution with a maximum error of 0.001 at any node? 

13. The region on which we solve Laplace's equation does 
not have to be rectangular. We can apply the methods 
of Section 8.1 to any region where the nodes fall on the 
boundary. Solve for the steady-state temperatures at the 
eight interior points of this figure. 

)14. Solve Exercise 11 by Liebmann's method with all ele- 
ments of the initial u-vector equal to zero. Then repeat 
with all elements equal to 300°, the upper bound to the 
steady-state temperatures. Repeat again with the initial 
values all equal to the arithmetic average of the boundary 
temperatures. Compare the number of iterations needed 
to reach a given tolerance for convergence in each case. 
What is the effect of the tolerance value that is used? 

15. Repeat Exercise 14, but now use overrelaxation with 
the factor given in Eq. (8.8). 

16. Find the torsion function 4 for a 2 in. X 2 in. square bar. 

a. Subdivide the region into nine equal squares, so that 
there are four interior nodes. Because of symmetry, 
all of the nodes will have equal +values. 

b. Repeat, but subdivide into 36 equal squares with 25 
interior nodes. Use the results of part (a) to get start- 
ing values for iteration. 

17. Solve 

V2u = 2 + x2 + 
over a hollow square bar, 5 in. in outside dimension and 
with walls 2 in. thick (so that the inner square hole is 
1 in. on a side). The origin for x and y is the center of 
the object. On the inner and outer surfaces, u = 0. 

18. Solve 

V2u = 2 + x2 + y2 
over a hollow square bar whose outside width is 5 in. 
There is an inner concentric square hole of width 2 in. 



Exercises 51 1 

(so that the thickness of the wall is 1.5 in.). The origin 
for x and y is the center of the object. On the outer and 
inner surfaces, u = 0. Space nodes 0.5 in. apart. 

19. Can Exercise 18 be solved by iterations as well as by 
elimination? Repeat it using a method other than the 
one you used in solving Exercise 18. Which method 
would be preferred if nodes are spaced very closely 
together, say, at 0.01 in.? 

20. Repeat Exercise 17 but use overrelaxation. Find the 
optimal overrelaxation factor experimentally. Does this 
match to that from Eq. (8.8):) 

b21. Solve for the steady-state temperatures in the region of 
Exercise 13, except now the plate is insulated along the 
edge where the temperatures were zero. All tempera- 
tures on the other edges are as shown in the figure. 

22. Solve a modification of Example 8.1, where along 
every edge there is an outward gradient of - 15"CIcm. 
Is it possible to get a unique solution? 

23. Solve Exercise 11 by the A.D.I. method using p = 1.0. 
Begin with the initial values equal to the arithmetic 
average of the boundary temperatures. Compare the 
number of iterations needed to those required with 
Liebrnann's method (Exercise 14) and with those 
using S.O.R. with the optimal overrelaxation factor 
(Exercise 15). 

24. Repeat Exercise 16 but now use the A.D.I. method. 
Vary the value of p to find the optimal value experi- 
mentally. 

b25. A cube is 7 cm along each edge. Two opposite faces are 
held at. 100°, the other four faces are held at 0'. Find the 
interior temperatures at the nodes of a 1 cm network. 
Use the A.D.I. method 

26. Repeat Exercise 25, but now the two opposite edges 
have a mixed condition: The outward normal gradient 
equals 0.25(u - 18), where u is the surface temperature. 

Sections 8.2 

b27. Suppose that the rod sketchled in Figure 8.6 is tapered, 
with the diameter varying linearly from 2 in. at the 
left end to 1.25 in. at the right end; the rod is 14 in. 
long and is made of steel. If 200 BTUIhr of heat flows 
from left to right (the flow is the same at each x-value 
along the rod-steady state), what are the values of 
the gradient at 

a. The left end? 
b. The right end? 
c. x = 3 in.? 

28. Solve for the temperatures at t = 2.06 sec in the 2-cm 
thick steel slab of Example 8.8 if the initial tempera- 
tures are given by 

Use the explicit method with Ax = 0.25 cm. Compare 
to the analytical solution: 100e-0.3738* s i n ( d 2 ) .  

29. Repeat Exercise 28, but now with Crank-Nicolson. 

30. Repeat Exercise 28, but now with the theta method: 

a. 0 = 213. 
b. 6 = 0.878. 
c. 0 = 1.0. 

b31. Solve for the temperatures in a cylindrical copper rod 
that is 8 in. long and whose curved outer surface is 
insulated so that heat flows only in one direction. The 
initial temperature is linear from 0°C at one end to 
100°C at the other, when suddenly the hot end is 
brought to O°C and the cold end is brought to 100°C. 
Use Ax = 1 in. and an appropriate value of At so that 
k Atlcp(Ax)2 = i. Look up values for k, c, and p in a 
handbook. Carry out the solution for 10 time steps. 

32. Repeat Exercise 31, but with Ax = 0.5 in., and com- 
pare the temperature at points 1 in., 3 in., and 6 in. from 
the cold end with those of the previous exercise. You 
will need to compute more time steps to match the 10 
steps done previously. 

You will find it instructive to graph the temperatures 
for both sets of computations. 

33. Repeat Exercise 31 but with Ax = 1.0 and At such that 
the ratio kAtlcp(Ax2) = 114. Compare the results with 
both Exercises 31 and 32. 

b34. A rectangular plate 3 in. X 4 in. is initially at 50'. At 
t = 0, one 3-in. edge is suddenly raised to 100°, and 
one 4-in. edge is suddenly cooled to 0'. The tempera- 
ture on these two edges is held constant at these tem- 
peratures. The other two edges are perfectly insulated. 
Use a 1 in. grid to subdivide the plate and write the 
A.D.I. equations for each of the six nodes where 
unknown temperatures are involved. Use r = 2, and 
solve the equations for four time steps. 

35. A cube of aluminum is 4 in. on each side. Heat flows in 
all three directions. Three adjacent faces lose heat by 
conduction to a flowing fluid; the other faces are held 
at a constant temperature different from that of the 
fluid. Set up the equations that can be solved for the 
temperature at nodes using the explicit method with a 
1-in. spacing between all nodes. How many time steps 
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are needed to reach 15.12 sec using the maximum 
r-value for stability? (Look up the properties of alu- 
minum in a handbook). How many equations must be 
solved at each time step? 

Repeat Exercise 35 for Crank-Nicolson with r = 1. 

Repeat Exercise 35 for the implicit method with r = 1. 

Repeat Exercise 35 for the A.D.I. method with r = 1. 

Demonstrate that the explicit method is unstable with r = 

0.6 by performing computation similar to that of Table 8.8 

Demonstrate that the explicit method is stable if 
r = 0.25 by performing computations similar to that of 
Table 8.8. Do the errors damp out as rapidly? 

Suppose that the end conditions are not u = a constant as 
in Table 8.8 but rather ux = 0. Demonstrate by perform- 
ing calculations similar to those in Table 8.8 that the 
explicit method is still stable for r = 0.5 but that the errors 
damp out much more slowly. Observe that the errors at a 
later stage become a linear combination of earlier errors. 

Demonstrate by performing calculations similar to 
those in Table 8.8 that the Crank-Nicolson method is 
stable even if r = 10. You will need to solve a system 
of equations in this exercise. 

Compute the largest eigenvalue of the coefficient 
matrix in Eq. (8.33) for r = 0.5, then for r = 0.6. Do 
you find that the statements in the text relative to eigen- 
values are confirmed? 

Starting with the matrix form of the implicit method. 
show that for A-'B none of the eigenvalues exceed 1 in 
magnitude. 

Section 8.3 

45. Classify the following as elliptic, parabolic, or hyper- 
bolic. 

a. (Tw,), = p * g. 

c. kU,, + mux, - (au,), + bU = f(x, t). 

d. (TW,), - k2wt = 0, W(0) = 0, W(L) = 0. 

b46. For what values of x and y is this equation elliptic, par- 
abolic, hyperbolic? 

47. Divide the (x, y)-plane into regions where this equation 
is elliptic, parabolic, hyperbolic: 

X ~ U ,  - ~ X ~ ~ U , ,  + xu,,,, = x2 - ux + u,,. 

48. What would be the equivalent of Eq. (8.38) if the 
weight per unit length of the string is not constant but 
varies, w = W(x)? 

49. If the banjo string of Example 8.12 is tightened or 
shortened (as by holding it down on a fret with a fin- 
ger), the pitch of the sound is higher. What would be 
the frequency of the sound if the tension is made 
42,500 gm and the effective length is 65 cm? 
Compare your answer to the analytical value that is 
given by 

f = (112L) m. 
50. A vibrating string has Tg/w = 4 cm2/sec2 and is 48 cm 

long. Divide the length into subintervals so that Ax = 

L/8. Find the displacement for t = 0 to t = L if both 
ends are fixed and the initial conditions are 

b a. y = x(x - L)/L~, y, = 0. Cy, is the velocity.) 
b. the string is displaced +2  units at L/4 and - 1 unit 

at 5LI8, y, = 0. 
) c. y = 0, y, = x(L - x)/L~. (Use Eq. (8.42).) 
) d. the string is displaced 1 unit at L/2, y, = -y. 

e. Compare part (a) to the analytical solution, 

51. The function u satisfies the equation 

Uxx = utt, 

with boundary conditions of u = 0 at x = 0 and u = 0 
at x = 1, and with initial conditions 

u = sin(m), u,  = 0, for 0 5 x 5 1 

Solve by the finite-difference method and show that the 
results are the same as the analytical solution, 

52. The ends of the vibrating string do not have to be fixed. 
Solve the equation u, = u,, with y(x, 0) = 0, y,(x, 0) = 

0 for 0 5 x 5 1, and end conditions of 

53. If the initial velocity of a vibrating string is not zero, 
Eq. (8.42) is an inaccurate way to start the solution, so 
parts (c) and (d) of Exercise 50 are not exact. Repeat 
these computations, but use Eq. (8.49) employing 
Simpson's rule. How much difference does this make 
in the answers? 

54. Repeat Exercise 53, but now use more points around xi. 
Does this change the answers to Exercise 53? 
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b55. A string that weighs w lblft is tightly stretched between 
x  = 0 and x = L and is initially at rest. Each point is 
given an initial velocity of 

The analytical solution is 

y (x ,  t )  = 

where a = .\lTglw, with T the tension and g the acceler- 
ation due to gravity. When L = 3 ft, w = 0.02 lblft, and 
T = 5 lb, with vo = 1 ftlsec, the analytical formula pre- 
dicts y = 0.081 in. at the midpoint when t = 0.01 sec. 
Solve the problem numerically to confirm this. Does 
your solution agree with the analytical solution at other 
values of x and t? 

56. Solve the vibrating membrane problem of Example 
8.14 with different initial conditions: 

U(A, y) = 0, u,(x, y) = x2(2 - x)~2(2 - y). 

57. Repeat Exercise 56 with the initial conditions reversed: 

U(X, y) = x2(2 - x) y2(2 - y), U,(X y) = 0. 

b58. A membrane is stretched over a frame that occupies the 
region in the xy-plane bounded by 

x = 0 ,  x = 3 ,  y = 0 ,  y = 2 .  

At t = 0, the point on the membrane at (1, 1) is lifted 
1 unit above the xy-plane and then released. If T = 

6 lblin. and w = 0.55 1blh2, find the displacement of 
the point (2, 1) as a function of time. 

59. How do the vibrations of Exercise 58 change if w = 

0.055 with other parameters remaining the same? 

60. The frame holding the membrane of Exercise 58 is dis- 
torted by lifting the corner at (3,2) 1 unit above the xy- 
plane. (The members of the frame elongate so that the 
corner moves vertically.) The membrane is set to 
vibrating in the same way as in Exercise 58. Follow the 
vibrations through time. [Assume that the rest positions 
of points on the membrane lie on the two planes 
defined by the adjacent edges that meet at (0,0) and at 
(3321.1 

plied Problems and ProQects 

APP1. A classic problem in elliptic partial-differential equations is to solve V2u = 0 on a region defined by 
0 5 x 5 T, 0 5 y 5 w, with boundary condition of u = 0 at x = 0, at x = T, and at y = a. The 
boundary at y = 0 is held at u = F(x) .  This can be quite readily solved by the method of separation 
of variables, to give the series solution 

m 

u = B,e-" sin nx, 
n = l  

with 

Solve this equation numerically for various definitions of F(x) .  (You will need to redefine the region 
so that 0 5 y 5 M, where M is large enough that changes in u with y at y = M are negligible.) 
Compare your results to the series solution. You might try 

APP2. The equation 

is an elliptic equation. Solve it on the unit square, subject to u = 0 on the boundaries. Approximate 
the first derivative by a central-difference approximation. Investigate the effect of size of Ax on the 
results, to determine at what size reducing it does not have further effect. 

APP3. If you write out the equations for Example 8.1, you will find that the coefficient matrix is symmetric 
and bandled. How can you take advantage of this in solving the equations by Gaussian elimination? 
Would Gauss-Jordan be preferred? Is the matrix still symmetric and banded if the nodes are num- 
bered by columns? 
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APP4. A symmetric banded coefficient matrix of width b can be stored in an n X (b + 1)/2 array. Develop 
an algorithm for reducing the coefficient matrix by Gaussian elimination. Test it with program using 
a system of width 5. How many fewer operations are needed compared to elimination when the 
matrix is not compressed (n X 5 versus n X 3)? 

APPS. If we want to improve the accuracy of the solution to Example 8.6, there are several alternative 
strategies, including 

a. Recompute with nodes more closely spaced but still in a uniform grid. 
b. Use a higher-order approximation, such as Eq. (8.6). 
c. Add additional nodes only near the right and left sides because the gradient is large there (see 

Table 8.2) and errors will be greater. 

Discuss the pros and cons of each of these choices. Be sure to consider how boundary conditions will 
be handled. In part (c), how should equations be written where the nodal spacing changes? 

APP6. Solve Example 8.1 by S.O.R. with different values for o. What value is optimal? How do the starting 
values that are used affect this? 

APP7. A vibrating string, with a damping force-opposing its motion that is proportional to the velocity, fol- 
lows the equation 

where B is the magnitude of the damping force. Solve the problem if the length of the string is 5 ft 
with T = 24 lb, w = 0.1 lb/ft, and B = 2.0. Initial conditions are 

Compute a few points of the solution by difference equations. 

APPS. 

APP9. 

When steel is forged, billets are heated in a furnace until the metal is of the proper temperature, between 
2000°F and 2300°F. It can then be formed by the forging press into rough shapes that are later given 
their final finishing operations. To produce a certain machine part, a billet of size 4 in. X 4 in. X 20 in. 
is heated in a furnace whose temperature is maintained at 2350°F. You have been requested to estimate 
how long it will take all parts of the billet to reach a temperature above 2000°F. Heat transfers to the sur- 
face of the billet at a very high rate, principally through radiation. It has been suggested that you can 
solve the problem by assuming that the surface temperature becomes 2250°F instantaneously and 
remains at that temperature. Using this assumption, find the required heating time. 

Because the steel piece is relatively long compared to its width and thickness, it may not intro- 
duce significant error to calculate as if it were infinitely long. This will simplify the problem, per- 
mitting a two-dimensional treatment rather than a three-dimensional one. Such a calculation should 
also give a more conservative estimate of heating time. Compare the estimates from two- and three- 
dimensional approaches. 

After you have calculated the answers to APP8, your results have been challenged on the basis of 
assuming constant surface temperature of the steel. Radiation of heat flows according to the 
equation 

where E = emissivity (use 0.80), c i s  the Stefan-Boltzmann constant (0.171 X Btu/(hr * ft2 * 
" R ~ ) ,  uF and us are the furnace and surface absolute temperatures, respectively ("F + 460"). 
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The h~eat radiating to the surface must also flow into the interior of the billet by conduction, so 

where k is the thermal conductivity of steel (use 26.2 Btu/(hr * ft3 * ("Flft)) and (duldx) is the tem- 
perature gradient at the surface in a direction normal to the surface. Solve the problem with this 
boundary condition, and compare your solution to that of APP8. (Observe that this is now a nonlin- 
ear probllem. Think carefully how your solution can cope with it.) 

APP10. A horizontal elastic rod is initially undeformed and is at rest. One end, at x = 0, is fixed, and the 
other end, at x = L (when t = O), is pulled with a steady force of F lb/ft2. It can be shown that the dis- 
placements y(x, t )  of points originally at the point x are given by 

where a2 = Eglp; E = Young's modulus (lb/ft2); g = acceleration of gravity; p = density (lb/ft3). 
Find y versus t for the midpoint of a 2-ft-long piece of rubber for which E = 1.8 X lo6 and p = 70 if 
F/E = 0.7. 

APP11. A circular membrane, when set to vibrating, obeys the equation (in polar coordinates) 

A 3-ft-diameter kettledrum is started to vibrating by depressing the center in. If w = 0.072 lb/ ft2 
and T = 80 lblft, find how the displacements at 6 in. and 12 in. from the center vary with time. The 
problem can be solved in polar coordinates, or it can be solved in rectangular coordinates using the 
method of Eq. (8.19) to approximate V2u near the boundaries. 

APP12. A flexible chain hangs freely, as shown in Figure 8.14. For small disturbances from its equilibrium 
position (hanging vertically), the equation of motion is 

In this equation, x is the distance from the end of the chain, y is the displacement from the equilib- 
rium position, t is the time, and g is the acceleration of gravity. A 10-ft-long chain is originally hang- 
ing freely. It is set into motion by striking it sharply at its midpoint, imparting a velocity there of 
1 fthec. Find how the chain moves as a result of the blow. If you find you need additional informa- 
tion at t = 0, make reasonable assumptions. 

APP13. Shipment of liquefied natural gas by refrigerated tankers to industrial nations may become an impor- 
tant means of supplying the world's energy needs. It must be stored at the receiving port, however. 

Figure 8.14 
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[A. R. Duffy and his coworkers (1967) discuss the storage of liquefied natural gas in underground 
tanks.] A commercial design, based on experimental verification of its feasibility, contemplated a 
prestressed concrete tank 270 ft in diameter and 61 ft deep, holding some 600,000 bbl of liquefied 
gas at -258OF. Convection currents in the liquid were shown to keep the temperature uniform at this 
value, the boiling point of the liquid. 

Important considerations of the design are the rate of heat gained from the surroundings (causing 
evaporation of the liquid gas) and variation of temperatures in the earth below the tank (relating to 
the safety of the tank, which could be affected by possible settling or frost-heaving.) 

The tank itself is to be made of concrete 6 in. thick, covered with 8 in. of insulation (on the liquid 
side). (A sealing barrier keeps the insulation free of liquid, otherwise, its insulating capacity would 
be impaired.) The experimental tests showed that there is a very small temperature drop through the 
concrete: 12°F. This observed 12°F temperature difference seems reasonable in light of the relatively 
high thermal conductivity of concrete. We expect then that most of the temperature drop occurs in 
the insulation or in the earth below the tank. 

Because the commercial-design tank is very large, if we are interested in ground temperatures near 
the center of the tank (where penetration of cold will be a maximum), it should be satisfactoly to con- 
sider heat flowing in only one dimension, in a direction directly downward from the base of the tank. 
Making this simplifying assumption, compute how long it will take for the temperature to decrease to 
32°F (freezing point of water) at a point 8 ft away from the tank wall. The necessary thermal data are 

Insulation Concrete Earth 

Thermal conductivity (Btu/(hr 'k ft + OF)) 0.013 0.90 2.6 
Density (lb/ft3) 2.0 150 132 
Specific heat (Btu/(lb * OF)) 0.195 0.200 0.200 

Assume the following initial conditions: temperature of liquid, -258°F; temperature of insulation, 
-258°F to 72OF (inner surface to outer); temperature of concrete, 72°F to 60°F; temperature of 
earth, 60°F. 

APP14. XYZ Metallurgical has a problem. A slab of steel, 6 ft long, 12 in. wide, and 3 in. thick, must be heat 
treated and it is a rush job. Unfortunately, their large furnace is down for repairs and the only furnace 
that can be used will hold just three feet of the slab. It has been proposed that it would be possible to 
use this furnace if the three feet of the slab that protrude from the furnace are well insulated. (See the 
figure.) The heat treating requires that all of the slab be held between 950°F and 900°F for at least an 
hour. The portion that is outside the furnace is covered with a 1 in. thickness of insulation whose 
thermal conductivity, k, is 0.027 Btu/(hr * ft * O F ) .  Even though you are a new employee, the man- 
ager has asked you to determine three things: 

(1) Is one inch of this insulation sufficient for all of the slab to reach 900°F with the furnace at 950°F? 
(2) If it is, how long will it take for the end of the slab to reach that temperature? 
(3) If one inch is insufficient, how much of this same insulation should be used? 

, Portion of slab inside furnace 

, around the metal slab, / 1 in. thick 


