154 Advanced Stability Theory Chap. 4

found. The statement of Theorem 4.9 follows that in [Bodson, 1986]. Lemma 4.2 and s proof are
from [Popov, 1973]. An extensive study of absolute stability problems from a frequeicy-domain
perspective is contained in [Narendra and Taylor, 1973], from which the definitions and ' 1corems on
positive real functions are adapted. A more recent description of positive real functiors and their
applications in adaptive control can be found in [Narendra and Annasswamy, 1989}. The 3cllman-
Gronwall lemma and its proof are adapted from [Hsu and Meyer, 1968]. The definition .nd theorem
on total stability are based on [Hahn, 1965]. Example 4.23 is adapted from [Desoer, et a. , 1965].

Passivity theory (see {Popov, 1973; Desoer and Vidyasagar, 1975]) is presented in a ~lightly
unconventional form. Passivity interpretations of adaptive control laws are discussed n !l.andau,
1979). The reader is referred to [Vidyasagar, 1978] for a detailed discussion of absolute stability.
The circle criterion and its extensions to non-autonomous systems were derived by [Marendra and
Goldwyn, 1964: Sandberg, 1964; Tsypkin, 1964; Zames, 1966].

Other important robustness analysis tools include singular perturbations (sce, e.g.,
[Kokotovic, et al., 1986}) and averaging (see, e.g, [Hale, 1980; Meerkov. 1980]).

Relations between the existence of Lyapunov functions and the existence and tnicity of

solutions of nonlinear differential equations are discussed in {Yoshizawa, 1966. 1975].

4.13 Exercises

4.1 Show that, for a non-autonomous system, a system trajectory is generally not an invariant set.
4.2 Analyze the stability of the dynamics (corresponding to a mass sinking in a viscou lijuid)
v+ 2alviv+bv=c a>0,b>0

4.3 Show that a function V(x,!) is radially unbounded if, and only if, there exitis a class-K

function ¢ such that
V(x, 1) 2 o(lIxlD
where the function ¢ satisfies

im o(fix|}) = <0

X— ©O0

4.4 The performance of underwater vehicles control systems is often constrained by the
"unmodeled" dynamics of the thrusters. Assume that one decides to explicitly accour: for thruster

dynamics, based on the model
O =-0 0ol +aor a;>0.0,>0

u = bw|ol b>0
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where T is the torque input to the propeller, o is the propeller’s angular velocity. and u is the actual
thrust generated.

Show that, for a constan torque input T, the steady-state thrust is proportional to T, (which is
consistent witht the fact that thruster dynamics is often treated as "unmodeled”).

Assuming that the coefficients @; and b in the above model are known with good accuracy,
design and discuss the use of a simple "open-loop" observer for u (given an arbitrary time-varying
torque input 1) in the absence of measurements of ®. (Adapted from [Yoerger and Slotine, 1990].)

4.5 Discuss the similarity of the results of section 4.2.2 with Krasovskii’s theorem of section 3.5.2.

4.6 Use the first instability theorem to show the instability of the vertical-up position of a
pendulum.

4.7 Show explicitly why the linear time-varying system defined by (4.18) does not satisfy the
sufficient condition (4.19).

4.8 Condition (4.19) on the eigenvalues of A(f) + AT(1) is only, of course, a sufficient condition.
For instance, show that the linear time-varying system associated with the matrix

AN =
is globally asymptotically stable.

4.9 Determine whether the following systems have a stable equilibrium. Indicate whether the
stability is asymptotic, and whether it is global.

i’,- ,‘10 ! rxl
(a) = {

- — _1
X C 1 2sing L X
(b) = #
A') O ‘_(’ + ]) E ,\'f)
- Jou L -
X -1 e X £
(€) .= |
.X2 0 - 2 Xz ;

4.10 If a differentiable function f is lower bounded and decreasing (j‘s 0), then it converges to a
limit. However, f does not necessarily converge to zero. Derive a counter-example. (Hint: You may
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use for —f a function that peaks periodically, but whose integral is finite.)
4.11 (a) Show that if a function fis bounded and uniformly continuous, and there exis's a positive

definite function F(f, t) such that

(o o]
j F(f(),ndt < oo

then f(r) tends to zero as t — ©9.

(b) For a given autonomous nonlinear system, consider a Lyapunov function V 1 a ball By ,
and let ¢ be a scalar, differentiable, strictly monotonously increasing function of its scala- a-gument.
Show that {®(V) — ®(0)] is also a Lyapunov function for the system (distinguish te cuases of

stability and of asymptotic stability). Suggest extensions to non-autonomous systems.

4.12 Consider a scalar, lower bounded, and twice continuously differentiable functica /(1) such
that

Vi=20, \'/(t) <0
Show that, forany t 20,

Vin =0 = Wi =0



