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Abstract After Minsky and Papert (1969) showed the inability of percep-
trons in solving nonlinearly separable problems, for several decades people
misinterpreted it as an inherent weakness that is common to all single-layer
neural networks. The introduction of the backpropagation algorithm reinforced
this misinterpretation as its success in solving nonlinearly separable problems
passed through the training of multilayer neural networks. Recently, Conaway
and Kurtz (2017) proposed a single-layer network in which the number of
output units for each class is the same as input units and showed that it
could solve some nonlinearly separable problems. They used the MSE (Mean
Square Error) between the input units and the output units of the actual class
as the objective function for training the network. They showed that their
method could solve the XOR and M&S’81 problems, but it could not do any
better than random guessing on the 3-bit parity problem. In this paper, we
use a soft competitive approach to generalize the CE (Cross-Entropy) loss,
which is a widely accepted criterion for multiclass classification, to networks
that have several output units for each class, calling the resulting measure the
CCE (Competitive Cross-Entropy) loss. In contrast to Conaway and Kurtz
(2017), in our method, the number of output units for each class can be cho-
sen arbitrarily. We show that the proposed method can successfully solve the
3-bit parity problem, in addition to the XOR and M&S’81 problems. Further-
more, we perform experiments on several datasets for multiclass classification,
comparing a single-layer network trained with the proposed CCE loss against
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LVQ, linear SVM, a single-layer network trained with the CE loss, and the
method of Conaway and Kurtz (2017). The results show that the CCE loss
performs remarkably better than existing algorithms for training single-layer
neural networks.

Keywords Competitive Cross-Entropy ·multiclass classification · nonlinearly
separable problems · single-layer networks

1 Introduction

The introduction of the perceptron algorithm (Rosenblatt, 1958) for solving
classification problems lead to a surge of interest in neural networks. However,
after Minsky and Papert (1969) proved that the perceptron could only solve
linearly separable problems, this interest faded. Specifically, they demonstrated
that the perceptron could not solve even the simple XOR problem. More gen-
erally, they proved a ’Group Invariance Theorem’ stating that the perceptron
was unable to solve classification problems in which input data are invariant
to a set of transformations that form a group. The interest in neural networks
rose again after Rumelhart et al (1986) introduced the backpropagation algo-
rithm and showed that multilayer networks trained with the backpropagation
algorithm could solve nonlinearly separable problems. This historical sequence
of events resulted in a myth that single-layer networks are inherently unable
to solve nonlinearly separable problems.

Some researchers proposed new models of neurons which could solve non-
linearly separable problems using single-layer networks. Kohonen (1995) intro-
duced learning vector quantization (LVQ) which was a competitive prototype-
based algorithm that could solve non-linearly separable problems in a single-
layer network based on the Euclidean-distance model of neurons. Urcid et al
(2004) introduced the morphological perceptron which was a new computa-
tional model based on lattice algebra and showed that their model could solve
the N-bit parity problem in a single-layer structure. Siomau (2014) proposed
a quantum analog for the perceptron algorithm and showed that it could solve
some non-linearly separable problems, including XOR. Truly speaking, the
quantum perceptron algorithm is not a quantum implementation of the per-
ceptron algorithm but a completely new learning machine based on linear
operator theory (for a similar application of operator theory in clustering see
(Bagarello et al, 2017)). Zhu et al (2017) introduced an FPGA-based compu-
tational model which could solve the XOR problem in a single-layer network.
Recently, Conaway and Kurtz (2017) showed that, in a single-layer network of
ordinary additive neurons, if the number of output neurons allotted to each
class is equal to the number of input units, then the network can be trained
using an autoassociative approach with MSE to solve certain nonlinearly sep-
arable problems. The method of Conaway and Kurtz (2017) could solve the
XOR and M&S’81 (Medin and Schwanenflugel, 1981) problems, but it was
unable to work any better than random guessing on the 3-bit parity problem.
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Although Conaway and Kurtz (2017) studied single-layer networks from a
pure theoretical perspective, single-layer networks still have applications in the
era of big data since there exist fast training algorithms that can operate on
massive datasets. For example, linear SVMs, which are essentially single-layer
networks, are extensively used for solving large-scale classification problems
(Fan et al, 2008; Chan et al, 2015; Girshick et al, 2016). Another example
is distance-based classification (Mensink et al, 2013) which is known to be
equivalent to training a single-layer dot-product neural network (Mart́ın-del
Bŕıo, 1996).

One problem with the method of Conaway and Kurtz (2017) is that it min-
imizes the MSE loss, which is known to be inappropriate for all classification
problems (Bishop, 1995). Two criteria that have been shown to be excellent
for classification problems are the hinge loss and CE (Cross-Entropy) loss.
The hinge loss is usually used by the kernel methods community while the
CE criterion is the accepted choice in the field of neural networks, especially
for deep learning. Interestingly, Rosasco et al (2004) have shown that both
criteria have very similar and practically indistinguishable properties.

To train neural networks with the CE criterion, the output layer of the
network should have the same number of neurons as the number of classes.
By feeding the activation values of the output layer to a softmax function, one
obtains a probability distribution over the classes. Assuming that the number
of classes is c and the vector z = (z1, z2, ..., zc) represents the values of the
output units, the estimate for the probability that the input belongs to class
i is obtained by the following equation:

yi =
ezi∑c
j=1 e

zj
, for 1 ≤ i ≤ c. (1)

For each training sample, a target probability distribution is presumed
which assigns a value of one to the actual class and a value of zero to all other
classes. Assuming that y represents the probability distribution generated by
the network and τ represents the target probability distribution, the CE loss
is defined as follows:

ECE = −
c∑

i=1

τilog(yi) (2)

In this paper, we propose the CCE (Competitive Cross-Entropy) loss for
training networks with several output units for each class. Although the CCE
criterion is general and can be utilized for training multilayer neural networks,
in this paper we focus on single-layer networks and specifically compare our
proposed CCE method with LVQ, linear SVM, a single-layer network trained
with the CE loss, and the method of Conaway and Kurtz (2017). In comparison
with linear SVMs and single-layer networks trained with the CE loss, a single-
layer network trained with the proposed CCE loss has the advantage that
it achieves higher recognition accuracies and can solve non-linearly separable
problems. LVQ and the proposed CCE loss both allot multiple output neuron
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to each class and have a competitive nature. However, in contrast to LVQ,
the learning algorithm of the CCE loss has a rigid mathematical-optimization
basis. In addition, the CCE loss operates on common neural networks which
are based on the additive model of neurons, while LVQ neurons compute the
Euclidean distance. Furthermore, while LVQ is inherently a single-layer neural
network, the CCE criterion is a general loss function which can be used for
training multilayer neural networks as well. Finally, our experiments show
that, in practice, the CCE loss works much better than LVQ. Training the
network by minimizing the CCE loss has several advantages over the training
using an associative approach with MSE (which we call AAMSE for short) that
Conaway and Kurtz (2017) proposed. Firstly, while in AAMSE the number of
output neurons for each class must be equal to the number of input neurons,
CCE allows an arbitrary number of output neurons for each class. Secondly,
our experiments show that CCE is more powerful than AAMSE in solving
nonlinearly separable problems. For example, while the method of Conaway
and Kurtz (2017) was unable to solve the 3-bit parity problem any better
than random guessing, CCE could solve it completely on many runs, having
an average misclassification error of 2% over 100 runs. Thirdly, the proposed
method is highly interpretable with output neurons representing clusters of
data within the classes. We illustrate this by visualizing the functionality of
each output neuron of a network trained on the MNIST dataset. Fourthly,
since CCE is an extension of CE, it is a much more suitable criterion for
classification compared with AAMSE, which is based on the MSE criterion.
Finally, the CCE is not limited to single-class networks and can be easily
applied to multilayer neural networks as well.

2 The Competitive Cross-Entropy Loss

Consider a multiclass classification problem with c classes. For each k ∈
{1, ..., c}, let Ok be the set of indices of the output neurons that we have
assigned to class k and let n =

∑c
k=1 |Ok| be the total number of output neu-

rons. We presume that output neurons belonging to a class represent different
clusters within that class. Let z be the vector of the values of the neurons
in the output layer. By applying a softmax function to z, we obtain a prob-
ability distribution y over output neurons. In order to use the cross-entropy
measure in this extended setting, we should define a desired target distribu-
tion which assigns a value of one to the actual cluster in the correct class,
and a value of zero to all other clusters in all the classes. However, the su-
pervised information available in the training data determines only the class
of each sample and the exact output neuron to which that sample belongs
is unspecified. Therefore, we should use unsupervised learning in accompany
with the supervised information to obtain a target distribution. Clearly, the
target distribution should assign all of its probability mass to output neurons
allotted to that class. We propose that the desired probability distribution for
each sample to be determined in a soft competitive way based on the activities
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of the output neurons belonging to the class of that sample. Specifically, we
obtain the desired probability mass by applying a softmax function only to
the output neurons of the target class. We now express the proposed method
rigidly in exact mathematical terms. Assuming that z represents the values of
the last layer, the probability distribution of the network is obtained by the
following equation:

yi =
ezi∑n
j=1 e

zj
, for 1 ≤ i ≤ n. (3)

Assume that the input sample belongs to a class k. For output neurons i
that belong to the true class k, i.e. i ∈ Ok, we set

τi =
ezi∑

j∈Ok
ezj

(4)

and for those that belong to other classes, we set τi = 0. We define the CCE
(Competitive Cross-Entropy) loss as follows:

ECCE = −
n∑

i=1

τilog(yi) (5)

The derivative of ECCE with respect to z is

∂ECCE

∂zi
=

n∑
j=1

∂ECCE

∂yj

∂yj
∂zi

= −
n∑

j=1

τj
yj

(δijyj − yiyj)

= −
n∑

j=1

τj (δij − yi) = yi − τi

(6)

where δij is the Kronecker delta function which is 1 if i is qual to j and 0
otherwise. In contrast to the CE criterion, ECCE is not convex and so the
recognition accuracy of a network trained with the CCE loss depends on the
initial values of the weights.

3 Experiments

In this section, we report our experiments on training single-layer networks
with CCE. In subsection 3.1 we perform experiments using three nonlinearly
separable problems and compare CCE training with AAMSE training. In sub-
section 3.3 we report our experiments using some standard datasets for mul-
ticlass classification.
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3.1 Experiments on typical non-linearly separable problems

In this subsection, we perform experiments on the XOR, M&S’81, and 3-bit
parity problems which are those that had been studied by Conaway and Kurtz
(2017). For each problem, we performed 100 experiments, starting each one
from a different random initialization of the weights. In all 300 experiments,
we trained the network for 20 epochs. We experimentally found that a learn-
ing rate of 10 is suitable for solving these problems. We initialized the weights
randomly with a uniform distribution between −0.25 and 0.25. For the XOR,
M&S’81, and 3-bit parity problems we chose, respectively, two, three, and four
output neurons for each class. Figure 1 shows the learning curves of our pro-
posed method on these datasets averaged over 100 runs. In all of the 100 runs
the proposed method could completely solve the XOR and M&S’81 problems.
For the 3-bit parity problem, the average misclassification rate after 20 epochs
was 2% which is far better than the 50% misclassification rate obtained by
Conaway and Kurtz (2017). In fact, on this problem, 93 out of 100 runs ended
with an error of 0.0%.

3.2 Experiments on standard datasets for multiclass classification

In this subsection, we perform experiments on Letter, MNIST, Pendigits, Sen-
sorless, USPS, and Vowel datasets which are standard benchmarks for the
multiclass classification task1. We compare our proposed CCE method with or-
dinary cross-entropy (CE), the AAMSE method of Conaway and Kurtz (2017),
linear SVM, and LVQ. For CE and CCE methods, we chose the initial learning
rate using 5-fold cross-validation from the set of values

{
10−2, ..., 102

}
. During

training, we multiplied the learning rate at the end of each epoch by 0.95, train-
ing the network for a total of 200 epochs. In addition, we initialized the weights
with a uniform distribution between −0.01 and 0.01. For CCE we assigned 6
output neurons to each class2. We used the same method of initializing the
weights and decreasing the learning rate for the AAMSE method of Conaway
and Kurtz (2017) with the difference that, for the AAMSE method, the initial
learning rate was chosen using 5-fold cross validation from the set of values{

10−3, ..., 100
}

. For linear SVM, we used 5-fold cross-validation for choosing

the regularization parameter C from the range
{

2−14, 2−13, ..., 213, 214
}

. For
LVQ we set the number of iterations and the number of output neurons to
the same values as CCE. The other parameters for LVQ were chosen auto-
matically by the heuristics of the LVQ-PAK program package (Kohonen et al,
1996). Table 1 summarizes the results of this experiment. Overall, the CCE
method has a clear superiority over the other methods. It must be mentioned

1 These datasets can be downloaded from https://www.csie.ntu.edu.tw/~cjlin/

libsvmtools/datasets.
2 Note that while in this experiment the proposed method has 60 output neurons, the

number of output neurons for the method of Conaway and Kurtz (2017) is 7840.

https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets
https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets
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Dataset LVQ
Linear
SVM

Autoassociative
MSE

Cross
Entropy

Competitive
Cross Entropy

Letter 82.66% 63.24% 82.26% 77.54% 91.40%
Mnist 93.32% 91.95% 82.12% 92.28% 96.51%
Pendigits 96.08% 87.28% 95.20% 92.85% 97.54%
Sensorless 41.96% 55.19% 83.52% 89.91% 95.63%
Usps 93.27% 91.53% 92.18% 91.28% 92.68%
Vowel 44.16% 31.39% 20.13% 47.40% 50.65%

Table 1: Accuracy of the LVQ, linear SVM, the AAMSE method of Conaway
and Kurtz (2017), CE, and CCE methods on solving different multiclass clas-
sification tasks using single-layer networks.

that the results of the CCE method could be improved even further by the
weight-decay regularization method.

3.3 Visualizing the network operation on MNIST

In the previous subsection, we performed experiments on several datasets for
multiclass classification. In this subsection, we focus on MNIST, which is one
of these datasets, and visualize the operation of the CCE method on it. As
stated in the previous section, the proposed CCE with six output neurons
per class obtained a test accuracy of 96.51% while the best competing method
obtained a test accuracy of 93.32%. To visualize the role of each output neuron
in the network, we assigned the training samples to the output neurons and
drew their average. Specifically, if the training sample i maximally activates
the k’th output neuron, then we say that the training sample i belongs to the
output neuron k. Figure 2 depicts the average of the training samples that
belong to each output neuron. White cells in Figure 2 correspond to output
neurons that were not chosen even by a single training sample. As can be seen,
output neurons of each class specialize in detecting different styles of writing
for that class.

4 Conclusions and future work

In this paper, we introduced the CCE (Competitive Cross-Entropy) loss which
is a generalization of the CE (Cross-Entropy) loss to networks having several
output neurons for each class. We showed that when applied to single-layer
networks, CCE can be used to solve nonlinearly separable problems. Further-
more, by performing experiments on several benchmark datasets for multiclass
classification, we demonstrated that using the CCE loss with an appropriate
number of output neurons per class would remarkably increase the accuracy of
single-layer neural networks. In the future, we plan to add CCE to single-layer
toolboxes for large-scale multiclass classification like Online Passive-Aggressive
(Crammer et al, 2006) and Liblinear (Fan et al, 2008). We anticipate that
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training with the CCE loss would increase the recognition accuracy of these
toolboxes. Another line of research is finding the right way for applying clus-
tering algorithms like k-means to initialize the weights of the output neurons.
Finally, we plan to assess the CCE loss in the training of deep neural networks.
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Mart́ın-del Bŕıo B (1996) A dot product neuron for hardware implementation
of competitive networks. IEEE Transactions on Neural Networks 7(2):529–
532

Medin DL, Schwanenflugel PJ (1981) Linear separability in classification learn-
ing. Journal of Experimental Psychology: Human Learning and Memory
7(5):355

Mensink T, Verbeek J, Perronnin F, Csurka G (2013) Distance-based image
classification: Generalizing to new classes at near-zero cost. IEEE Transac-
tions on Pattern Analysis and Machine Intelligence 35(11):2624–2637

Minsky M, Papert S (1969) Perceptrons. MIT Press
Rosasco L, De Vito E, Caponnetto A, Piana M, Verri A (2004) Are loss func-

tions all the same? Neural Computation 16(5):1063–1076
Rosenblatt F (1958) The perceptron: A probabilistic model for information

storage and organization in the brain. Psychological Review 65(6):386



Competitive Cross-Entropy 9

Rumelhart DE, Hinton GE, Williams RJ (1986) Learning representations by
back-propagating errors. Nature 323(6088):533–538

Siomau M (2014) A quantum model for autonomous learning automata. Quan-
tum Information Processing 13(5):1211–1221

Urcid G, Ritter GX, Iancu L (2004) Single layer morphological perceptron
solution to the n-bit parity problem. In: Iberoamerican Congress on Pattern
Recognition, Springer, pp 171–178

Zhu G, Lin L, Jiang Y (2017) Resolve xor problem in a single layer neural
network. In: IWACIII 2017-5th International Workshop on Advanced Com-
putational Intelligence and Intelligent Informatics, Fuji Technology Press
Ltd



10 Kamaledin Ghiasi-Shirazi

-5 0 5 10 15 20 25

Epoch

-10

0

10

20

30

40

50

60

70

80

M
is

cl
as

si
fic

at
io

n 
E

rr
or

(%
)

(a) Learning curve for the XOR problem averaged over 100 runs.
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(b) Learning curve for the M&S’81 problem averaged over 100 runs.
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(c) Learning curve for the 3bit parity problem averaged over 100 runs.

Fig. 1: Error bar plots for the proposed CCE method of misclassification errors
vs epochs for the XOR, M&S’81, and 3-bit parity problems averaged over 100
runs.
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Fig. 2: Illustration of the functionality of each output neuron after training
with CCE. Each cell corresponds to an output neuron and shows the average
of training images that maximally activate that neuron.
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