
USING SATISFIABILITY IN TEMPORAL PLANNING

 KAMAL-ALDIN GHIATHI GHOLAM-REZA GHASEM-SANI
Computer Science Department Computer Science Department

Sharif University of Technology Sharif University of Technology
IRAN IRAN

 ghiathi@mehr.sharif.edu sani@sharif.edu
 http://ce.sharif.edu/~ghiathi http://sharif.edu/~sani

Abstract: Most traditional planners ignore the notion of time. Of those that have addressed this issue, Allen's
temporal planning is the most expressive approach so far. However, due to its high complexity, it is useless for
tackling real world problems. On the other hand, new highly efficient planning methods based on satisfiability,
do not still address the time appropriately. In this paper, using the idea of satisfiability planning, a new method
of temporal planning is introduced, which outperforms the Allen's approach.

Key-Words: temporal planning, satisfiability planning, interval algebra, point algebra

1 Introduction
Before introducing the notion of satisfiability
planning by Kautz and Selman [10], the planning was
seen as a deductive process. As a side effect of this
view, planners were usually lifted and solved
problems in first order logic. In last decade, two new
planners, SatPlan[10] and GraphPlan[2], returned
back to propositional planning and gained a great
speed-up. Since then, some planners have been
constructed that combined the ideas of these planners
with different aspects of planning. SatPlan, which is
discussed in section 2, is the pioneer in this regard.
An important aspect that humans consider in real
world planning is time. But automatic planners
usually rely on simplifying assumptions about the
time. For instance it is often assumed that actions are
instantaneous. As a result of this assumption,
temporal relations between actions are reduced to just
"before", "after", or "synchronous". But, in the real
world, actions are not instantaneous and may have
complex relations (e.g. consider relations between
micro-instructions in a microprocessor).
Some old planners tried to incorporate the notion of
time in planning [1,16]. Although considering the
time increases the expressiveness of planners, but not
all planners have exploited all of this expressiveness.
In some planners time is expressed numerically[17]
and others allow it to be expressed solely as relations
between actions and propositions[1]. On the other
hand, some planners work with discrete time
corresponding to natural numbers[10], while others
work with real numbers[15]. In some planning
systems, duration of actions is fixed but some allow
variable length actions. Allen has introduced the most
expressive method so far in a planner called

TIMELOGIC[1]. Using a model for planning based
on a temporal logic, Allen introduced a way of
incorporating time in planning. However, the main
problem with his method is its high complexity,
which renders it useless in tackling real problems.
This model is discussed in section 3.
There exist much similarity between TIMELOGIC
and SatPlan. For instance both need more information
than what can be expressed in the STRIPS[7] format.
In this paper, we introduce a new method of temporal
planning that solves planning problems using
constraint satisfaction method. The method has been
implemented in a planner we named SATEMP1.
SATEMP selects a combination of actions and, after a
series of simple tests, if it is determined to have the
chance of being a solution, translates it to an
equivalent CNF2 formula. If this CNF formula is
satisfiable, then the combination of actions would be
a solution to the problem; and one can obtain the
solution to the planning problem by using values of
variables in the satisfied CNF formula. SATEMP is
discussed in section 4.
There are different ways of translating a planning
problem to the corresponding CNF formula. For
instance, one can translate the planning problem into
a CNF formula based on interval algebra[1] or point
algebra[5]. These methods have different efficiencies.
In section 5 different methods of encoding planning
problems into CNF formulas and their efficiency are
discussed. Section 6 contains an example of
SATEMP Planning.

1 SAtisfiability TEMporal Planner.
2 Conjunctive Normal Form.

mailto:ghiathi@mehr.sharif.edu
mailto:sani@sharif.edu
http://ce.sharif.edu/~ghiathi
http://sharif.edu/~sani

2 Overview of SatPlan
Planning problems can be considered as constraint
satisfaction problems [15]. Furthermore, satisfiability
as a special representation of constraint satisfaction
problems has drawn attention of many researchers [9].
In 1992, in order to show effectiveness of a
satisfiability tester called GSAT[9], Kautz introduced
the notion of satisfiability planning and expanded the
domain of solvable planning problems. This success
has continued till now and still the fastest planners
use satisfiability test in at least one part of their
problem solving process [11]. Part of this success is
due to excessive work done on the SAT problem
itself. In this section, we give a brief review of
SatPlan.
SatPlan gets as input a planning problem (in
propositional form) and makes an equivalent CNF
formula (assuming the solution size is not greater than
a predetermined limit). By equivalent CNF, we mean
that if the CNF is satisfiable then the planning
problem is solvable; and if the CNF is unsatisfiable
then the planning problem is not solvable.
Furthermore, it is possible to find the solution of the
planning problem in polynomial time, given the
solution of the CNF, and vise versa. The above
statement needs a bit of elaboration. SatPlan does this
transformation assuming that the size of the solution
plan is known. To solve a problem, it first assumes
that a zero-size solution exists, and does the above
transformation. If the corresponding CNF is not
satisfiable, it then assumes that the size of solution is
one, and again tries to find the solution. This process
is repeated until either the solution is found or a
predetermined limit on the number of iterations is
reached.
There are many different methods of encoding
planning problems as CNF formulas[6]. Here we
explain a simple method that was used in [10].
Assume the size of the solution of a planning problem
is d. Then there are d actions with a total ordering,
and we can bind each action to its execution step.
Similarly, at each time step some propositions are true
and some are false. Each variable in the CNF formula
corresponds to the execution of an action or truth of a
proposition in one of the d time steps. Now that CNF
formula's variables are known, one can translate these
constraints into a CNF formula:

1. If action p is done at time step t, then its
preconditions are true at time step t-1 and its
effects are true at time step t.

2. Exactly one action takes place at each time step.
3. Initial conditions are true at time step zero.
4. Goal conditions are true at time step d.

5. If a proposition is true at time t-1 and the action
performed at time t does not delete it, it
continues to be true at time step t.

6. Domain constraints. For instance in blocks
world, propositions "on(a,b)" and "on(a,c)" can't
be true at the same time step.

These constraints can be expressed in propositional
form. For example, to state that at each step at least
one action takes place, we can write:

(() () ... ()) (() () ... ())
... (() () ... ())
a a a a a a

a d a d a d
n n

n

1 2 1 2

1 2

1 1 1 2 2∨ ∨ ∨ ∧ ∨ ∨ ∨
∧ ∧ ∨ ∨ ∨

2

,

Where n is the number of actions, and each ai(j) is a
variable.
After constructing the CNF formula, it is given to a
satisfiability checker program such as GSAT[10],
WalkSat [14], or Tableau [4] to determine whether it
is satisfiable or not; and, if it is, which propositions
are true and which are false. Having determined the
solution of a CNF formula, the solution to the
corresponding planning problem can easily be found
by listing actions that are true at each time step.

3 Temporal world model of Allen
Allen has introduced a model of planning that is
solely based on the notion of time. In his model, each
action and each proposition is associated with a time
interval. Each action (proposition) takes place (is true)
at its corresponding time interval. Table 1 shows 13
possible relations between any two intervals.

Relation Symbol Symbol for
inverse

Pictorial
example

X before
Y

< > XXX
YYY

X equal Y = = XXX
YYY

X meets Y m mi XXXYYY
X

overlaps
Y

o oi XXX
YYY

X during
Y

d di XXX
YYYYYYY

X starts Y s si XXX
YYYYY

X finishes
Y

f fi XXX
YYYYYY

Table 1: The thirteen possible relations

In this method, when defining an operator, the
relations between intervals of propositions and that of
the operator itself must be defined. For example,

consider operators MOVE and MOVTBL in the
blocks world domain:

MOVE (x,y,z)
 Preconditions: CLEAR(x), CLEAR(z), ON(x,y)
 Effects: ON(x,z), CLEAR(y), ¬CLEAR(z) ,
¬ON(x,y)

MOVTBL1 (x,y)
 Preconditions: CLEAR(x), ON(x,y)
 Effects: ON(x,table) , CLEAR(y), ¬ON(x,y)

In the temporal world model these operators are
expressed as:

If MOVE (x,y,z) occurs over time Sxyz then
CLEAR(x) holds over time Cx1,

 and Cx1 meets Sxyz, and
CLEAR(z) holds over time Cz ,

and Cz finishes Sxyz, and
ON(x,y) holds over time Oxy,

 and Oxy (o s d) Sxyz, and
CLEAR(y) holds over time Cy ,

 and Sxyz (o fi di) Cy, and
CLEAR(x) holds over time Cx2,

and Sxyz meets Cx2, and
ON(x,z) holds over time Oxz,

and Sxyz overlaps Oxz.

If MOVTBL (x,y) occurs over time Sxyt then
CLEAR(x) holds over time Cx1,

and Cx1 meets Sxyt, and
ON(x,y) holds over time Oxy,

 and Oxy (o s d) Sxyt, and
CLEAR(y) holds over time Cy,

 and Sxyt (o fi di) Cy, and
CLEAR(x) holds over time Cx2,

and Sxyt meets Cx2, and
ON(x,table) holds over time Oxt,

 and Sxyt overlaps Oxt.

Let's define some terms. Collapsing two intervals
means to limit the relation between them to equal. If
an interval of a goal or action’s precondition is not yet
collapsed with an interval of an initial state
proposition or action’s effect, then a causal gap
exists, and that goal (or precondition) has no causal
explanation (i.e. it is unexplained).
Now we can explain Allen's planning process. There
are two special intervals: I (initial state) and G (goal
state), such that initial state intervals (intervals
associated with initial state propositions) contain2 I,

1 Move to table
2 Interval A contains interval B iff A(di si fi)B.

and goal state intervals (intervals associated with goal
state propositions) contain G. The problem solver
continually repeats the process of finding causal gaps
and eliminating them with new proposed actions or
collapsing two intervals. As a result of causal gap
elimination process, possible relations between the
two intervals involved in the causal gap are restricted
to equal. This can propagate and constrain other
relations. If in some step, the set of possible relations
between two intervals becomes empty, system
backtracks. When no causal gap is left, the problem is
regarded as solved and the process stops.
In propagating constraints, two other types of
constraints other than interval algebra's constraints,
are used: the proposition and domain constraints.

Proposition constraint:
Two intervals associated with the same
proposition are either equal, or one is strictly
before the other. For instance, if both intervals I1
and I2 are associated with proposition P, then
I1(< = >) I2.

Domain constraint:
In each domain, some constraints exist that are
not used in deduction. These constraints are a
consequence of initial state and actions'
definitions[2]. For example, in the blocks world,
if we start with an initial state that no block is
both CLEAR and have some block on it, then we
can't reach a state in which CLEAR(a) and
ON(b,a) hold at the same time. This additional
information is not necessary when we use a
deductive approach. But it is necessary in the
satisfiability (constraint satisfaction) approach.

It is interesting that although TIMELOGIC solves the
planning problem by using deduction, since it uses
constraint satisfaction, it also needs domain
constraints.

4 Temporal planning as satisfiability
In this section, a new planning method, which
aggregates some aspects of SatPlan and TIMELOGIC
is introduced. From previous discussion, we can see
the following similarities between SatPlan and
TIMELOGIC:

1. Both define actions as a conditional proposition,
where the execution of an action implies the
truth of its preconditions and effects,
respectively, before and after the execution.

2. Both do not discriminate between preconditions

and effects. Albeit, in TIMELOGIC when
adding a new action to the plan, preconditions
are assumed to be unexplained, while effects are
assumed to be explained.

3. Both need more information than what is given
in the STRIPS format. For example, SatPlan
needs a complete initial state (i.e. no proposition
is allowed to be unknown) and both need
domain constraints.

On the other hand, the following differences between
these systems are noticeable:

1. TIMELOGIC solves the planning problem in
first order logic, whereas SatPlan does this in
propositional logic.

2. In TIMELOGIC, planning problem is solved
using deduction, but in SatPlan it is solved using
satisfiability.

Here, we introduce a new planner called SATEMP,
which is similar to TIMELOGIC from the possible
temporal relations point of view, but it solves the
planning problem using satisfiability. The main goal
is to improve the efficiency of temporal planning
process while preserving its expressiveness of
TIMELOGIC.
To find a solution, we first perform a breadth first
search, i.e, first a zero-length solution is searched for,
and if failed the length of solution is assumed to be
two, etc. This process is continued until either a
solution is found or the length of the plan being
searched for exceeds a predetermined limit. For each
fixed length of solution, all possible combinations
(order is not important) of actions are generated. Then
for each combination of actions a CNF formula is
generated. Each CNF formula is constructed using the
following constraints:

1. Interval I is before or meets all other intervals;
and interval G is after or is met by all other
intervals.

2. Interval I meets the intervals of initial state
propositions and intervals of goals state
propositions meet G.

3. Constraints between actions' intervals given in
the actions' definitions.

4. Domain constraints.
5. Propositional constraints.
6. Goal state intervals and intervals associated with

preconditions of actions must have causal
explanation.

7. Every two propositions have at least one of 13
possible relations.

8. Every two propositions have at most one of 13

possible relations.
9. Propagating constraints (by interval algebra),

e.g. if a<b and b<c we infer a<c.

It is necessary to elaborate on item 8. This item
ensures that a linear plan (total order plan) is
produced. This is in contrast with TIMELOGIC in
which a partial order plan is generated. Allen has
claimed that after constraint propagation if the set of
possible relations between no two intervals is empty,
then at least one linear plan exists. Even if this claim
is true, partial order plan generated by TIMELOGIC
is not worthy enough, because the solution is general
with respect to the specific actions used in generating
the plan. This means that in a real problem with some
numerical constraints on the length of intervals, it is
possible that while a solution exists, the solution
produced by TIMELOGIC would be unacceptable.
After generating a CNF formula, tableau1 is used to
check its satisfiability. Before making a CNF formula,
some preliminary tests are performed, the most
important of which is assuring that for each causal
gap at least one explanation exists. This test is very
fast and avoids construction of CNF formulas except
in a few cases.

5 A comparison among different
encoding methods
There are many different methods to transform a
planning problem to a CNF formula. Each of these is
called an encoding method. Counting the number of
clauses generated with each of constraints mentioned
in section 4, one can verify that, here, the dominant
factor is the size of the CNF formula and therefore the
main source of hardness of the problem, is the 9th
constraint2.
The number of "propagating constraints" is I3R2,
where I is the number of intervals in the proposed
solution (the combination of actions translated to
CNF), and R is the number of possible relations
between intervals. In the implementation of SATEMP
based on interval algebra3 R is 13. Since each
constraint is a conditional proposition with a
disjunctive consequent part and

a b c c a b c ck k∧ → ∨ ∨ ⇔ ¬ ∨¬ ∨ ∨ ∨1 1... ... ,

1 To overcome the huge size of our CNF formulas, we changed
tableau a bit.
2 If all clauses have only two literals, the problem is solvable in
polynomial time . So it is reasonable to say that clauses with 3
or more literals are the main source of the hardness of the
problem.

[3]

3 SATEMP is implemented both based on interval algebra and
improved natural encodings.

each propagating constraint is translated into a clause.
As it was said, these constraints have the most
influence on the hardness and size of the CNF
formula, thus we base comparison among different
encodings on the number of propagating constraints
and the number of literals in each clause.

5.1 TIMELOGIC encoding
In this encoding R is 13. Renaming I to n, we have
169n3 propagating constraints. We can omit those
clauses that don't expose any restriction, i.e. those that
restrict the relations between two intervals to all 13
possible relations. By doing so, propagating
constraints are reduced to 166n3. In this method,
number of literals in each clause can be as many as 14
(2 for the antecedent part and 12 for the consequence
part of the propagating constraint).

5.2 Natural encoding
Humans usually work with only three relations < = >.
If we break n intervals into their corresponding
endpoints, we will have 2n number of endpoints. A
few other constraints are needed to ensure that left
endpoints are before right endpoints (these new
constraints are very useful, since they constitute
clauses with only one variable, which are very useful
in fast simplification of the CNF formula). Using this
method, number of clauses is reduced to 32(2n)3 or
76n3. If we omit non-restricting clauses (those with a
consequent part stating that the two endpoints can
have all possible 3 relations), number of clauses is
reduced to 7(2n)3 or 56n3. Another advantage of this
encoding is the reduced number of literals in each
clause. In TIMELOGIC encoding, we had clauses
with 14 literals. Using new encoding, number of
literals in each clause is reduced to 3 (2 for 2
antecedents of "if aR1b and bR2c then …" constraint
and 1 for the single possible relation between a and
c). This reduction in the number of literals in each
clause is very important. Because although no
solution for SAT problem, better than the obvious
O(2n) where n is number of variables in CNF formula,
is found[8], for 3-SAT solutions with better time do
exist[13]. Also, there are evidences indicating that if
P≠NP, then k-SAT (SAT problem with no clauses
having more than k literals) is easier for smaller k [8].

5.3 Improved natural encoding
It is possible to express < = > relations with a single ≤
relation. For instance, a=b can be expressed as (a≤b ∧
b≤a). This leads to a reduction of the number of

propagating constraints down to (2n)3 or 8n3. Another
benefit of this encoding is the augmentation of unit
clauses, since = is now represented as a conjunction
of ≤ relations. The CNF formulas produced by this
encoding are at least 20 times smaller than those
produced by TIMELOGIC encoding. Since check of
satisfiability of a CNF formula is exponential in size
of CNF formula, reduction of the size of CNF
formula, results in an exponential increase of speed.

6 An example
In this section we illustrate, as an example, that how
SATEMP solves the Sussman anomaly. Sussman
anomaly is depicted in Figure 1. The version of
SATEMP based on TIMELOGIC encoding, solves
this problem in 35 seconds on a 950MHz computer
with 256MB memory. Three CNF formulas are made
before finding the solution and each CNF formula
consists of 7.8 million clauses. The version of
SATEMP based on improved natural encoding, solves
this problem in 3 seconds on the same computer. It
makes only one CNF formula (which correspond to
the solution) and the CNF formula consists of
390,000 clauses. Figure 2 shows the solution
generated by SATEMP. The source of SATEMP is
available from http://ce.sharif.edu/~ghiathi/SATEMP.

Figure 1: Sussman anomaly problem.

7 Conclusion
In this paper a new planner has been introduced that
aggregates efficiency of SatPlan and expressiveness
of TIMELOGIC. Although a practical comparison
between SATEMP and TIMELOGIC was not
possible for the lack of access to the source of
TIMELOGIC, but in section 5 it was explained why
SATEMP is much faster. Main reasons for
improvement of SATEMP over TIMELOGIC are:

1. SATEMP can use heuristics like fail first
principle and solve the problem very fast. It is
so, because SATEMP first constructs a CNF
formula in which all constraints are at hand. In
fact, efficiency of tableau is a result of this sort
of heuristics.

2. By transforming the planning problem into a

http://ce.sharif.edu/~ghiathi/TSat

CNF formula, it is possible to use encodings that
are 20 times smaller than encoding based on the
interval algebra. Note that a linear reduction in
size of CNF formula results in an exponential
speed up. It was also shown that TIMELOGIC
could be further improved if, instead of the
interval algebra, the point algebra is used.

Although SATEMP has gained a great speed up
compared to TIMELOGIC, but it is still slow and
can't be used for the real world problems. In future we
want to exchange some simplifying assumptions with
an acceptable speed up. The idea is that preconditions
and effects of the real life actions are usually before
and after action interval and at most may have some
overlap. But it is unusual for a precondition to last
after the action interval, and for an effect to be seen
before the action is executed. Using this assumption,
we can rule out cyclic causal gap explanation that in
our experiments was the main source of wasted time.

8 Acknowledgement
The authors would like to thank James Crawford for
his publicly available code of tableau, and Bart
Selman and Henry Kautz for that of GSAT.

References:
[1] James F. Allen and Johannes A. Koomen.

Planning using a temporal world model. In
Proceedings of the Eighth International Joint
Conference on Artificial Intelligence. 741-
747. 1983.

[2] Avrim L. Blum and Merrick L. Furst. Fast
Planning Through Graph Analysis. Artificial
Intelligence, 90:281-300, 1997.

[3] Thomas H. Cormen, Charles E. Leiserson,
Ronald L. Rivest, Clifford Stein. Introduction
to Algorithms (second edition). MIT press,
page 1003. 2001.

[4] James M. Crawford and Larry D. Auton.
Experimental results on the crossover point in
satisfiability problems. Proc. AAAI-93,
Washington, DC.1993.

[5] T. Dean and M. Boddy. Incremental causal
reasoning. AAAI87. 196-201. 1987.

[6] Michael D. Ernst, Todd D. Millstein and Daniel
S. Weld. Automatic SAT-Compilation of
Planning Problems. In proceedings of the 15th
International Joint Conference on Artificial
Intelligence (IJCAI- 97), Nagoya, Aichi,

Japan, August 23-29, 1997.
[7] R. E. Fikes and N. J. Nilsson. STRIPS: a new

approach to the application of theorem
proving to problem solving. Artificial
Intelligence, 2(3-4):189-208. 1971.

[8] Russel Impagliazzo and Ramamohan Paturi.
Complexity of k-SAT. IEEE Conference on
Computational Complexity 1999.

[9] J. Gu, P. W. Purdom, J. Franco, and B. W.
Wah. Satisfiability Problem: Theory and
Applications, DIMACS Series in Discrete
Mathematics and Theoretical Computer
Science, American Mathematical Society, pp.
19-152, 1997.

[10] Henry Kautz and Bart Selman. Planning as
Satisfiability. In proceedings of the 10th
European Conference on Artificial
Intelligence (ECAI 92), Vienna, Austria,
August 1992.

[11] Henry Kautz and Bart Selman. Pushing the
Envelope: Planning, Propositional Logic, And
Stochastic Search. In proceedings of the 13th
National Conference on Artificial Intelligence
(AAAI- 96), Porland, OR, 1996.

[12] Henry Kautz and Bart Selman. Unifying sat-
based and graph-based planning. In
Proceedings of the 16th International Joint
Conference on Artificial Intelligence (IJCAI-
99), pages 318–325. Morgan Kaufman, 1999.

[13] Robert Rodosek. A new approach to soling 3-
satisfiability. In Proceedings of the 3rd
International Conference on Artificial
Intelligence and Symbolic Mathematical
Computation, pages 197-212. Springer,
LNCS 1138, 1996.

[14] Bart Selman, Henry Kautz and B. Cohen. Local
search strategies for satisfiability testing.
Dimacs Series in Discrete Mathematics and
Theoretical Computer Science. 1996.

[15] David E. Smith and Daniel S. Weld. Temporal
Planning With Mutual Exclusion Reasoning.
IJCAI. 1999.

[16] Matk Stefik. Planning and Meta-Planning
(MOLGEN: Part 2). Artificial Intelligence 16
141-170. 1981.

[17] Steven A. Vere. Planning in Time: Windows
and Durations for Activities and Goals. IEEE.
1983.

[18] Daniel S. Weld. An Introduction to Least
Commitment Planning. AI Magazine,
Summer/ Fall 1994.

I
 G

ON(a,table) _______________________________________
ON(c,a) _______________
ON(b,table) ___________________________
CLEAR(c) ___
CLEAR(b) _________

 ON(a,b) ______
 ON(c,table) ______________________________
 ON(b,c) _____________________
 CLEAR(a) ___

MOVE(a,table,b)
CLEAR(a) __________________
ON(a,table) _______________________________________
CLEAR(b) ______

 CLEAR(a) ___
 ON(a,b) ______

MOVE(b,table,c)
CLEAR(b) _________
ON(b,table) ___________________________
CLEAR(c) ______
 CLEAR(b) ______
 ON(b,c) _____________________

MOVTBL(c,a)
CLEAR(c) ______
ON(c,a) _______________
 CLEAR(c) ___
 ON(c,table) ______________________________
 CLEAR(a) __________________

 Figure 2: solution generated by SATEMP for the Sussman anomaly.

