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Abstract:  Most traditional planners ignore the notion of time. Of those that have addressed this issue, Allen's 
temporal planning is the most expressive approach so far. However, due to its high complexity, it is useless for 
tackling real world problems. On the other hand, new highly efficient planning methods based on satisfiability, 
do not still address the time appropriately. In this paper, using the idea of satisfiability planning, a new method 
of temporal planning is introduced, which outperforms the Allen's approach.  
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1  Introduction 
Before introducing the notion of satisfiability 
planning by Kautz and Selman [10], the planning was 
seen as a deductive process. As a side effect of this 
view, planners were usually lifted and solved 
problems in first order logic. In last decade, two new 
planners, SatPlan[10] and GraphPlan[2], returned 
back to propositional planning and gained a great 
speed-up. Since then, some planners have been 
constructed that combined the ideas of these planners 
with different aspects of planning. SatPlan, which is 
discussed in section 2, is the pioneer in this regard. 
An important aspect that humans consider in real 
world planning is time. But automatic planners 
usually rely on simplifying assumptions about the 
time. For instance it is often assumed that actions are 
instantaneous. As a result of this assumption, 
temporal relations between actions are reduced to just 
"before", "after", or "synchronous". But, in the real 
world, actions are not instantaneous and may have 
complex relations (e.g. consider relations between 
micro-instructions in a microprocessor). 
Some old planners tried to incorporate the notion of 
time in planning [1,16]. Although considering the 
time increases the expressiveness of planners, but not 
all planners have exploited all of this expressiveness. 
In some planners time is expressed numerically[17] 
and others allow it to be expressed solely as relations 
between actions and propositions[1]. On the other 
hand, some planners work with discrete time 
corresponding to natural numbers[10], while others 
work with real numbers[15]. In some planning 
systems, duration of actions is fixed but some allow 
variable length actions. Allen has introduced the most 
expressive method so far in a planner called 

TIMELOGIC[1]. Using a model for planning based 
on a temporal logic, Allen introduced a way of 
incorporating time in planning. However, the main 
problem with his method is its high complexity, 
which renders it useless in tackling real problems. 
This model is discussed in section 3. 
There exist much similarity between TIMELOGIC 
and SatPlan. For instance both need more information 
than what can be expressed in the STRIPS[7] format. 
In this paper, we introduce a new method of temporal 
planning that solves planning problems using 
constraint satisfaction method. The method has been 
implemented in a planner we named SATEMP1. 
SATEMP selects a combination of actions and, after a 
series of simple tests, if it is determined to have the 
chance of being a solution, translates it to an 
equivalent CNF2 formula. If this CNF formula is 
satisfiable, then the combination of actions would be 
a solution to the problem; and one can obtain the 
solution to the planning problem by using values of 
variables in the satisfied CNF formula. SATEMP is 
discussed in section 4.  
There are different ways of translating a planning 
problem to the corresponding CNF formula. For 
instance, one can translate the planning problem into 
a CNF formula based on interval algebra[1] or point 
algebra[5]. These methods have different efficiencies. 
In section 5 different methods of encoding planning 
problems into CNF formulas and their efficiency are 
discussed. Section 6 contains an example of 
SATEMP Planning. 
 
 
                                                      
1 SAtisfiability TEMporal Planner. 
2 Conjunctive Normal Form. 
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2  Overview of SatPlan  
Planning problems can be considered as constraint 
satisfaction problems [15]. Furthermore, satisfiability 
as a special representation of constraint satisfaction 
problems has drawn attention of many researchers [9]. 
In 1992, in order to show effectiveness of a 
satisfiability tester called GSAT[9], Kautz introduced 
the notion of satisfiability planning and expanded the 
domain of solvable planning problems. This success 
has continued till now and still the fastest planners 
use satisfiability test in at least one part of their 
problem solving process [11]. Part of this success is 
due to excessive work done on the SAT problem 
itself. In this section, we give a brief review of 
SatPlan. 
SatPlan gets as input a planning problem (in 
propositional form) and makes an equivalent CNF 
formula (assuming the solution size is not greater than 
a predetermined limit). By equivalent CNF, we mean 
that if the CNF is satisfiable then the planning 
problem is solvable; and if the CNF is unsatisfiable 
then the planning problem is not solvable. 
Furthermore, it is possible to find the solution of the 
planning problem in polynomial time, given the 
solution of the CNF, and vise versa. The above 
statement needs a bit of elaboration. SatPlan does this 
transformation assuming that the size of the solution 
plan is known. To solve a problem, it first assumes 
that a zero-size solution exists, and does the above 
transformation. If the corresponding CNF is not 
satisfiable, it then assumes that the size of solution is 
one, and again tries to find the solution. This process 
is repeated until either the solution is found or a 
predetermined limit on the number of iterations is 
reached.  
There are many different methods of encoding 
planning problems as CNF formulas[6]. Here we 
explain a simple method that was used in [10]. 
Assume the size of the solution of a planning problem 
is d. Then there are d actions with a total ordering, 
and we can bind each action to its execution step. 
Similarly, at each time step some propositions are true 
and some are false. Each variable in the CNF formula 
corresponds to the execution of an action or truth of a 
proposition in one of the d time steps. Now that CNF 
formula's variables are known, one can translate these 
constraints into a CNF formula: 
 

1. If action p is done at time step t, then its 
preconditions are true at time step t-1 and its 
effects are true at time step t. 

2. Exactly one action takes place at each time step. 
3. Initial conditions are true at time step zero.  
4. Goal conditions are true at time step d. 

5.  If a proposition is true at time t-1 and the action 
performed at time t does not delete it, it 
continues to be true at time step t. 

6. Domain constraints. For instance in blocks 
world, propositions "on(a,b)" and "on(a,c)" can't 
be true at the same time step. 

 
These constraints can be expressed in propositional 
form. For example, to state that at each step at least 
one action takes place, we can write: 
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Where n is the number of actions, and each ai(j) is a 
variable. 
After constructing the CNF formula, it is given to a 
satisfiability checker program such as GSAT[10], 
WalkSat [14], or Tableau [4] to determine whether it 
is satisfiable or not; and, if it is, which propositions 
are true and which are false. Having determined the 
solution of a CNF formula, the solution to the 
corresponding planning problem can easily be found 
by listing actions that are true at each time step. 
 
 
3  Temporal world model of Allen  
Allen has introduced a model of planning that is 
solely based on the notion of time. In his model, each 
action and each proposition is associated with a time 
interval. Each action (proposition) takes place (is true) 
at its corresponding time interval. Table 1 shows 13 
possible relations between any two intervals. 
 

Relation Symbol Symbol for 
inverse 

Pictorial 
example 

X before 
Y 

< > XXX   
YYY 

X equal Y = = XXX 
YYY 

X meets Y m   mi XXXYYY 
X 

overlaps 
Y 

o  oi XXX 
YYY 

X during 
Y 

d di XXX 
YYYYYYY 

X starts Y s si XXX 
YYYYY 

X finishes 
Y 

f fi XXX 
YYYYYY 

Table 1: The thirteen possible relations 

 
In this method, when defining an operator, the 
relations between intervals of propositions and that of 
the operator itself must be defined. For example, 



consider operators MOVE and MOVTBL in the 
blocks world domain: 
 
MOVE (x,y,z) 
        Preconditions: CLEAR(x), CLEAR(z), ON(x,y) 
        Effects: ON(x,z), CLEAR(y), ¬CLEAR(z) ,  
¬ON(x,y) 
 
MOVTBL1 (x,y) 
        Preconditions: CLEAR(x), ON(x,y) 
        Effects: ON(x,table) , CLEAR(y), ¬ON(x,y) 
 
In the temporal world model these operators are 
expressed as: 
 
If    MOVE (x,y,z)   occurs over time    Sxyz then 
CLEAR(x)  holds over time Cx1, 

 and  Cx1 meets  Sxyz, and 
CLEAR(z)  holds over time Cz  ,  

and  Cz finishes Sxyz, and 
ON(x,y)      holds over time Oxy, 

 and  Oxy (o s d) Sxyz, and 
CLEAR(y)  holds over time Cy , 

 and   Sxyz (o fi di) Cy, and 
CLEAR(x)  holds over time Cx2,  

and  Sxyz meets Cx2, and 
ON(x,z)       holds over time Oxz,  

and  Sxyz overlaps Oxz. 
 
If    MOVTBL (x,y)   occurs over time    Sxyt then 
CLEAR(x)  holds over time Cx1,  

and Cx1 meets  Sxyt, and 
ON(x,y)      holds over time Oxy, 

 and Oxy (o s d) Sxyt, and 
CLEAR(y)  holds over time Cy, 

  and  Sxyt (o fi di) Cy, and 
CLEAR(x)  holds over time Cx2,  

and Sxyt meets Cx2, and 
ON(x,table) holds over time Oxt, 

 and Sxyt overlaps Oxt. 
 
Let's define some terms. Collapsing two intervals 
means to limit the relation between them to equal. If 
an interval of a goal or action’s precondition is not yet 
collapsed with an interval of an initial state 
proposition or action’s effect, then a causal gap 
exists, and that goal (or precondition) has no causal 
explanation (i.e. it is unexplained).  
Now we can explain Allen's planning process. There 
are two special intervals: I (initial state) and G (goal 
state), such that initial state intervals (intervals 
associated with initial state propositions) contain2 I, 
                                                      
1 Move to table 
2 Interval A contains interval B iff A(di si fi)B. 

and goal state intervals (intervals associated with goal 
state propositions) contain G. The problem solver 
continually repeats the process of finding causal gaps 
and eliminating them with new proposed actions or 
collapsing two intervals. As a result of causal gap 
elimination process, possible relations between the 
two intervals involved in the causal gap are restricted 
to equal. This can propagate and constrain other 
relations. If in some step, the set of possible relations 
between two intervals becomes empty, system 
backtracks. When no causal gap is left, the problem is 
regarded as solved and the process stops.  
In propagating constraints, two other types of 
constraints other than interval algebra's constraints, 
are used: the proposition and domain constraints. 
 

Proposition constraint:  
Two intervals associated with the same 
proposition are either equal, or one is strictly 
before the other. For instance, if both intervals I1 
and I2 are associated with proposition P, then 
I1(< = >) I2. 

 
Domain constraint:  
In each domain, some constraints exist that are 
not used in deduction. These constraints are a 
consequence of initial state and actions' 
definitions[2]. For example, in the blocks world, 
if we start with an initial state that no block is 
both CLEAR and have some block on it, then we 
can't reach a state in which CLEAR(a) and 
ON(b,a) hold at the same time. This additional 
information is not necessary when we use a 
deductive approach. But it is necessary in the 
satisfiability (constraint satisfaction) approach.  

 
It is interesting that although TIMELOGIC solves the 
planning problem by using deduction, since it uses 
constraint satisfaction, it also needs domain 
constraints. 
 
 
4  Temporal planning as satisfiability 
In this section, a new planning method, which 
aggregates some aspects of SatPlan and TIMELOGIC 
is introduced. From previous discussion, we can see 
the following similarities between SatPlan and 
TIMELOGIC: 
 

1. Both define actions as a conditional proposition, 
where the execution of an action implies the 
truth of its preconditions and effects, 
respectively, before and after the execution. 

2. Both do not discriminate between preconditions 



and effects. Albeit, in TIMELOGIC when 
adding a new action to the plan, preconditions 
are assumed to be unexplained, while effects are 
assumed to be explained. 

3. Both need more information than what is given 
in the STRIPS format. For example, SatPlan 
needs a complete initial state (i.e. no proposition 
is allowed to be unknown) and both need 
domain constraints. 

 
On the other hand, the following differences between 
these systems are noticeable: 
 

1. TIMELOGIC solves the planning problem in 
first order logic, whereas SatPlan does this in 
propositional logic. 

2. In TIMELOGIC, planning problem is solved 
using deduction, but in SatPlan it is solved using 
satisfiability. 

 
Here, we introduce a new planner called SATEMP, 
which is similar to TIMELOGIC from the possible 
temporal relations point of view, but it solves the 
planning problem using satisfiability. The main goal 
is to improve the efficiency of temporal planning 
process while preserving its expressiveness of 
TIMELOGIC. 
To find a solution, we first perform a breadth first 
search, i.e, first a zero-length solution is searched for, 
and if failed the length of solution is assumed to be 
two, etc. This process is continued until either a 
solution is found or the length of the plan being 
searched for exceeds a predetermined limit. For each 
fixed length of solution, all possible combinations 
(order is not important) of actions are generated. Then 
for each combination of actions a CNF formula is 
generated. Each CNF formula is constructed using the 
following constraints: 
 

1. Interval I is before or meets all other intervals; 
and interval G is after or is met by all other 
intervals. 

2. Interval I meets the intervals of initial state 
propositions and intervals of goals state 
propositions meet G. 

3. Constraints between actions' intervals given in 
the actions' definitions. 

4. Domain constraints. 
5. Propositional constraints. 
6. Goal state intervals and intervals associated with 

preconditions of actions must have causal 
explanation. 

7. Every two propositions have at least one of 13 
possible relations. 

8. Every two propositions have at most one of 13 

possible relations. 
9. Propagating constraints (by interval algebra), 

e.g. if a<b and b<c we infer a<c. 
 
It is necessary to elaborate on item 8. This item 
ensures that a linear plan (total order plan) is 
produced. This is in contrast with TIMELOGIC in 
which a partial order plan is generated. Allen has 
claimed that after constraint propagation if the set of 
possible relations between no two intervals is empty, 
then at least one linear plan exists. Even if this claim 
is true, partial order plan generated by TIMELOGIC 
is not worthy enough, because the solution is general 
with respect to the specific actions used in generating 
the plan. This means that in a real problem with some 
numerical constraints on the length of intervals, it is 
possible that while a solution exists, the solution 
produced by TIMELOGIC would be unacceptable. 
After generating a CNF formula, tableau1 is used to 
check its satisfiability. Before making a CNF formula, 
some preliminary tests are performed, the most 
important of which is assuring that for each causal 
gap at least one explanation exists. This test is very 
fast and avoids construction of CNF formulas except 
in a few cases. 
 
 
5  A comparison among different 
encoding methods 
There are many different methods to transform a 
planning problem to a CNF formula. Each of these is 
called an encoding method. Counting the number of 
clauses generated with each of constraints mentioned 
in section 4, one can verify that, here, the dominant 
factor is the size of the CNF formula and therefore the 
main source of hardness of the problem, is the 9th 
constraint2.  
The number of "propagating constraints" is I3R2, 
where I is the number of intervals in the proposed 
solution (the combination of actions translated to 
CNF), and R is the number of possible relations 
between intervals. In the implementation of SATEMP 
based on interval algebra3 R is 13. Since each 
constraint is a conditional proposition with a 
disjunctive consequent part and  

a b c c a b c ck k∧ → ∨ ∨ ⇔ ¬ ∨¬ ∨ ∨ ∨1 1... ... , 

                                                      
1 To overcome the huge size of our CNF formulas, we changed 
tableau a bit. 
2 If all clauses have only two literals, the problem is solvable in 
polynomial time . So it is reasonable to say that clauses with 3 
or more literals are the main source of the hardness of the 
problem.  

[3]

3 SATEMP is implemented both based on interval algebra and 
improved natural encodings. 



each propagating constraint is translated into a clause. 
As it was said, these constraints have the most 
influence on the hardness and size of the CNF 
formula, thus we base comparison among different 
encodings on the number of propagating constraints 
and the number of literals in each clause. 
 
 
5.1  TIMELOGIC encoding 
In this encoding R is 13. Renaming I to n, we have 
169n3 propagating constraints. We can omit those 
clauses that don't expose any restriction, i.e. those that 
restrict the relations between two intervals to all 13 
possible relations. By doing so, propagating 
constraints are reduced to 166n3. In this method, 
number of literals in each clause can be as many as 14 
(2 for the antecedent part and 12 for the consequence 
part of the propagating constraint).  
 
 
5.2  Natural encoding 
Humans usually work with only three relations < = >. 
If we break n intervals into their corresponding 
endpoints, we will have 2n number of endpoints. A 
few other constraints are needed to ensure that left 
endpoints are before right endpoints (these new 
constraints are very useful, since they constitute 
clauses with only one variable, which are very useful 
in fast simplification of the CNF formula). Using this 
method, number of clauses is reduced to 32(2n)3 or 
76n3. If we omit non-restricting clauses (those with a 
consequent part stating that the two endpoints can 
have all possible 3 relations), number of clauses is 
reduced to 7(2n)3 or 56n3. Another advantage of this 
encoding is the reduced number of literals in each 
clause. In TIMELOGIC encoding, we had clauses 
with 14 literals. Using new encoding, number of 
literals in each clause is reduced to 3 (2 for 2 
antecedents of  "if aR1b and bR2c then …" constraint 
and 1 for the single possible relation between a and 
c). This reduction in the number of literals in each 
clause is very important. Because although no 
solution for SAT problem, better than the obvious 
O(2n) where n is number of variables in CNF formula, 
is found[8], for 3-SAT solutions with better time do 
exist[13]. Also, there are evidences indicating that if 
P≠NP, then k-SAT (SAT problem with no clauses 
having more than k literals) is easier for smaller k [8].  
 
 
5.3  Improved natural encoding 
It is possible to express < = > relations with a single ≤ 
relation. For instance, a=b can be expressed as (a≤b ∧ 
b≤a). This leads to a reduction of the number of 

propagating constraints down to (2n)3 or 8n3. Another 
benefit of this encoding is the augmentation of unit 
clauses, since = is now represented as a conjunction 
of ≤ relations. The CNF formulas produced by this 
encoding are at least 20 times smaller than those 
produced by TIMELOGIC encoding. Since check of 
satisfiability of a CNF formula is exponential in size 
of CNF formula, reduction of the size of CNF 
formula, results in an exponential increase of speed. 
 
 
6  An example 
In this section we illustrate, as an example, that how 
SATEMP solves the Sussman anomaly. Sussman 
anomaly is depicted in Figure 1. The version of 
SATEMP based on TIMELOGIC encoding, solves 
this problem in 35 seconds on a 950MHz computer 
with 256MB memory. Three CNF formulas are made 
before finding the solution and each CNF formula 
consists of 7.8 million clauses. The version of 
SATEMP based on improved natural encoding, solves 
this problem in 3 seconds on the same computer. It 
makes only one CNF formula (which correspond to 
the solution) and the CNF formula consists of 
390,000 clauses. Figure 2 shows the solution 
generated by SATEMP. The source of SATEMP is 
available from http://ce.sharif.edu/~ghiathi/SATEMP. 
 

 
Figure 1: Sussman anomaly problem. 

 
 
7  Conclusion 
In this paper a new planner has been introduced that 
aggregates efficiency of SatPlan and expressiveness 
of TIMELOGIC. Although a practical comparison 
between SATEMP and TIMELOGIC was not 
possible for the lack of access to the source of 
TIMELOGIC, but in section 5 it was explained why 
SATEMP is much faster. Main reasons for 
improvement of SATEMP over TIMELOGIC are: 
 

1. SATEMP can use heuristics like fail first 
principle and solve the problem very fast. It is 
so, because SATEMP first constructs a CNF 
formula in which all constraints are at hand. In 
fact, efficiency of tableau is a result of this sort 
of heuristics. 

2. By transforming the planning problem into a 

http://ce.sharif.edu/~ghiathi/TSat


CNF formula, it is possible to use encodings that 
are 20 times smaller than encoding based on the 
interval algebra. Note that a linear reduction in 
size of CNF formula results in an exponential 
speed up. It was also shown that TIMELOGIC 
could be further improved if, instead of the 
interval algebra, the point algebra is used. 

 
Although SATEMP has gained a great speed up 
compared to TIMELOGIC, but it is still slow and 
can't be used for the real world problems. In future we 
want to exchange some simplifying assumptions with 
an acceptable speed up. The idea is that preconditions 
and effects of the real life actions are usually before 
and after action interval and at most may have some 
overlap. But it is unusual for a precondition to last 
after the action interval, and for an effect to be seen 
before the action is executed. Using this assumption, 
we can rule out cyclic causal gap explanation that in 
our experiments was the main source of wasted time. 
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I 
         G                                                  
 
ON(a,table)  _______________________________________ 
ON(c,a)  _______________ 
ON(b,table)  ___________________________ 
CLEAR(c)  ___ 
CLEAR(b)  _________ 
 
         ON(a,b)                                           ______ 
     ON(c,table)                   ______________________________ 
         ON(b,c)                            _____________________ 
        CLEAR(a)                                              ___ 
  
MOVE(a,table,b)                                    
CLEAR(a)                 __________________ 
ON(a,table)  _______________________________________ 
CLEAR(b)                                ______ 

  CLEAR(a)                                              ___ 
   ON(a,b)                                           ______ 

  
MOVE(b,table,c)             
CLEAR(b)  _________ 
ON(b,table)  ___________________________ 
CLEAR(c)        ______ 
        CLEAR(b)                               ______ 
         ON(b,c)                            _____________________ 
 
MOVTBL(c,a)               
CLEAR(c)        ______ 
ON(c,a)  _______________ 
        CLEAR(c)                      ___ 
     ON(c,table)                   ______________________________ 
        CLEAR(a)                __________________ 

 Figure 2: solution generated by SATEMP for the Sussman anomaly. 

 


