

Abstract—In this article we study two simplified examples of

the usage of the RSCM technology. In the first example, we

introduce a manageable server-side networking library for

SMPP protocol with the ability to manage the connection objects.

In the next example, we use this SMPP networking library to

develop a WordReplacer application which receives messages

from a SMPP client and replaces the words in the messages

according to some replacement rules. Finally, we show how the

WordReplacer application can be managed with our CLI and

web-based managers.

I. A NETWORKING LIBRARY WITH MANAGEABLE
CONNECTIONS FOR SMPP PROTOCOL

In this example, we explain the process of producing a

server-side SMPP networking library called SmppNetworking.

Here, one important design goal is to have manageable

networking connections. As mentioned earlier, the RSCM

technology can only manage objects which are created at

initial load of the application from the configuration file or by

a CREATE reconfiguration command. However, a connection

object is usually created when a client connects and is deleted

after the network connection is closed. Thus, in the usual

design the connection objects are created by an event and so

cannot be managed by the RSCM technology. Solving this

problem in the client side is easy: it is enough to permanently

associate a connection object with each client-side network

connection which continues to exist even when the network

connection is closed. However, management of server-side

connections is more subtle. For those network protocols where

the clients cannot be identified after losing the network

connection, like HTTP, the lifetime of a server-side

connection object is restricted to the lifetime of the associated

network connection. However, In the SMPP protocol clients

send a bind packet immediately after the network connection

is established. The bind packet contains a SystemId field

which serves as the identity of the client. In our modified

design, the SMPP server creates a connection object for each

valid client that is listed in the configuration file (or created

using CREATE command) and uses these objects when the

associated clients actually connect. This way, the lifetime of

the connection objects would be independent of whether the

network connection is established or not.

The detailed design of the SmppNetworking library is as

follows. For each valid client, we consider an instance of the

SmppExternalClient class which contains the client’s

information like SystemId and Password. The

SmppExternalClient class represents an ESME (External Short

Messaging Entity) in the SMPP protocol. Each object of type

SmppExternalClient contains a child of type SmppConnection

whose lifetime is the same as its parent. The creation/deletion

of SmppConnection objects, like any other managed object, is

WordReplacer Development Manual

Kamaledin Ghiasi-Shirazi, Mahdi Mohseni, Majid Darvishan, and Reza Yousefzadeh

performed by the reconfiguration commands and the

establishment of the actual network connection has no effect

on it. After a client connects, we create a temporary non-

manageable object of type SmppConnection. The

configuration parameters of this temporary connection are

cloned from a manageable SmppConnection called the

DefaultConnectionTemplate. According to the SMPP

protocol, when a client connects to a server it should send a

Bind packet which contains a SystemId field that identifies the

associated SmppExternalClient object. After receiving the

Bind packet, we copy the socket information of the temporary

SmppConnection to the actual manageable SmppConnection

that is associated with the client and delete the temporary

SmppConnection.

Main managed classes of the SmppNetworking library are1:

1- SmppServer: The SmppServer is the root object which

encompasses all other objects associate with a SMPP

server. SystemId of the server and the

SessionInitTimeout (which according to the SMPP

protocol is the longest time where a client is allowed to

delay between establishment of the connection and

sending the Bind packet) are the configuration

parameters of this object. In addition, to allow the users

of the library to decide whether to restrict the

permissible clients to those specified in the

ExternalClientdsTable or not, the BindProcessPolicy

configuration parameter is introduced. If the

BindProcessPolicy is set equal to

ContinueInitialConnection the packets are processed by

1 In accompanying codes and documents the names of the classes may be
preceded by a "PA_" prefix.

the unmanageable SmppConnection object which was

cloned from the DefaultConnectionTemplate.

However, if the BindProcessPolicy is set to

SwitchToKnownConnections then after receiving the

bind packet, the temporary SmppConnection is deleted

and the network connection is assigned to the

appropriate manageable SmppConnection within the

ExternalClientdsTable table. Figure 1 shows the XML

Schema of the SmppServer.

2- SmppConnection: The SmppConnection is a managed

class which represents a network connection.

According to the SMPP protocol, each connection has

the following configuration variables:

EnquireLinkTimeout, InactivityTimeout, and

ResponseTimeout. We also designate the actions which

can be performed on a managed object by an element

with minOccurs="0" and maxOccurs="0" in the XML

Schema (a technique previously used by Menten[1]) .

For the SmppConnection, we have provisioned the

Disconnect action. Figure 2 shows the XML Schema of

the SmppConnection managed class.

3- SmppExternalClient: The SmppExternalClient

represents a valid client (or ESME in SMPP

terminology). The SMPP protocol has provisioned the

SystemId, SystemType, Password, and

PermittedBindTypes configuration parameters for each

valid client. It must be mentioned that by overriding

the IsPassword method of the SimpleManagedObject

class in the SmppExternalClient class we have reqested

the subagent to store the Password configuration

parameter in encrypted format. In addition, each

SmppExternalClient includes a child of type

SmppConnection which allows the associated

connection to be manageable even when the client is

disconnected. This manageable SmppConnection

object can be used to reconfigure the configuration

parameters of a connection and monitor its state, even

when the actual networking connection is closed. The

proposed trick prevents the monitoring variables

associated with a client to be reset after an unwanted

disconnection. The schema of this class is depicted in

Figure 3.

4- SmppExternalClientsTable: The

SmppExternalClientsTable is a tabular managed object

which stores the list of the ExternalClient objects. The

Schema of this class is depicted in Figure 4.

II. A SAMPLE WORDREPLACER APPLICATION
In this section, we use the RSCM technology to develop a

sample application called WordReplacer. This application

contains a SMPP sever, which is an instance of the

SmppServer class of the previous section, along with a list of

words and their replacements. After binding, clients can send

messages using SubmitSm packet of the SMPP protocol.

When a message contains a word that is in the words list, the

word is replaced by its associated replacement word and a new

message is composed and returned back to the sender. To

show how the RSCM technology allows a modular design, we

use the SmppNetworking library of the previous section. From

the above definition of the WordReplacer application, we can

identify the following classes:

1- WordReplacer class which is the main class of the

application and represents the whole WordReplacer

application. This class has two children: one of type

WR_Server (which inherits from the SmppServer) and

another child of type WordReplacementRulesList

where its definition follows. In addition, it is possible

to run the ReplaceWord action on the WordReplacer.

The XML schema of the WordReplacer is shown in

Figure 5.

2- WR_ExternalClient which inherits from the

SmppExternalClient and has an additional

configuration parameter called

WordReplacementLicensePerMinute. Note how a

general SMPP configuration parameter, like SystemId,

is specified in the SmppNetworking library while this

application-specific configuration parameter is

specified in the application-level class

WR_ExternalClient. The XML schema of the

WR_ExternalClient class is shown in Figure 6

3- WordReplacementRulesList which contains the list of

the replacement rules. Figure 7 shows the XML schema

of this class.

4- WordReplacementRule which represents a rule. It

contains two configuration parameters: OriginalWord

and NewWord. Each rule has a monitoring variable

which counts the number of times that this rule has

been applied. The XML Schema of this class is

depicted in Figure 8.

In addition to the above classes, there are some other

classes which inherit from the classes of the SmppNetworking

library but have no additional configuration parameters. These

are application-specific classes which implement or override

some of the functionalities of their parent classes. These

classes are:

1- WR_Server which inherits from the SmppServer class.

2- WR_Connection which inherits from the

SmppConnection class.

3- WR_ExternalClientsTable which inherits from the

SmppExternalClientsTable class.

All the XML Schemas mentioned up to now are associated

with some class. However, there should be an XML Schema

which designates the format of the XML configuration file as

a whole. This XML Schema is depicted in Figure 9. The C++

codes of these classes along with the associated XSD files are

available at

http://profsite.um.ac.ir/~ghiasi/publications/RSCM/index.html

However, since the code depends on some proprietary libraries

of PeykAsa Company (including the SmppNetworking and

RSCM) it cannot be compiled.

III. MANAGING THE WORDREPLACER APPLICATION BY A CLI

We have developed a CLI with a syntax which is

compatible with the ITU-T Z300 standard. This CLI is

completely general and can be used to manage any application

which is developed by the RSCM technology. In this section

we report our experiment in managing the WordReplacer

application with this CLI. Figure 10 shows a sample run of the

CLI for creating a new managed object. Figure 11 shows

another sample run for deleting managed objects from the

WordReplacer application. To view a complete list of the

images and videos of how this CLI is used for managing the

WordReplacer application visit

http://profsite.um.ac.ir/~ghiasi/publications/RSCM/index.html

IV. MANAGING WORDREPLACER APPLICATION BY A WEB-
BASED MANAGER

PeykAsa Company has developed a web-based

management system based on the 3GPP 32.603 standard

which uses the CORBA technology for the manager-agent

communication. We added the RSCM management protocol

to the agent of this web-based management system and used

the modified system for web-based management of the

telecommunication applications developed by the RSCM

technology. The user interface of the web-based manager is

automatically generated from a database which in turn is filled

in automatically using the XSD files of the application.

Since the RSCM technology organizes the managed objects

in a tree structure, it seems natural to show a tree view of the

managed objects in the user interface. However, the tree

representation of a tabular managed object with many children

is not readable for human users. In addition, implementing a

web interface to add a new tree-structured managed object is a

complicated task. Since tabular objects can have only one type

of child, a natural representation is to display the subtree of a

tabular managed object as a table with each child in a row and

each configuration variable in a column. We map the tree

structure of the child class to a linear list by adding the name

of the parent objects to the beginning of the name of each

configuration variable, using dot to join the names. Figure 12

shows the tree representation of a tabular managed object as

http://profsite.um.ac.ir/%7Eghiasi/publications/RSCM/index.html
http://profsite.um.ac.ir/%7Eghiasi/publications/RSCM/index.html

displayed by our CLI. The tabular representation of the same

object in the web-based UI is shown in Figure 13. Note how

the configuration variables of the SmppExternalClient class

are linearized in the web-based representation.

REFERENCES
[1] L. E. Menten, "Experiences in the application of XML for device

management," IEEE Commun. Mag., vol. 42, pp. 92-100, 2004.

 <xs:complexType name="SmppServer">
 <xs:sequence>
 <xs:element name="Port" minOccurs="1">
 <xs:simpleType>
 <xs:restriction base="xs:unsignedShort">
 <xs:minInclusive value="1024" />
 </xs:restriction>
 </xs:simpleType>
 </xs:element>
 <xs:element name="SystemId" type="xs:string" minOccurs="1" />
 <xs:element name="SessionInitTimeout" type="xs:unsignedInt" minOccurs="1" />
 <xs:element name="BindProcessPolicy" minOccurs="1">
 <xs:simpleType>
 <xs:restriction base="xs:string">
 <xs:enumeration value="ContinueInitialConnection" />
 <xs:enumeration value="SwitchToKnownConnections" />
 </xs:restriction>
 </xs:simpleType>
 </xs:element>
 <xs:element name="DefaultConnectionTemplate" type="SmppConnection" minOccurs="1"
/>
 <xs:element name="ExternalClientsTable" type="SmppExternalClientsTable"
minOccurs="1" >
 <xs:key name="ExternalClientSystemIdKey">
 <xs:selector xpath=".//ExternalClient" />
 <xs:field xpath="SystemId" />
 </xs:key>
 </xs:element>
 </xs:sequence>
 </xs:complexType>

 <xs:complexType name="SmppConnection">
 <xs:sequence>
 <xs:element name="EnquireLinkTimeout" type="xs:integer"/>
 <xs:element name="InactivityTimeout" type="xs:integer"/>
 <xs:element name="ResponseTimeout" type="xs:integer"/>
 <xs:element minOccurs="0" maxOccurs="0" name="ActionList">
 <xs:complexType>
 <xs:all>
 <xs:element name="Disconnect">
 <xs:complexType>
 <xs:all>
 </xs:all>
 </xs:complexType>
 </xs:element>
 </xs:all>
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 </xs:complexType>

Figure 1: XML Schema for SmppServer

Figure 2: XML Schema for SmppConnection

 <xs:complexType name="SmppExternalClient">
 <xs:sequence>
 <xs:element name="SystemId" type="xs:string" />
 <xs:element name="SystemType" type="xs:string" />
 <xs:element name="Password" type="xs:string" />
 <xs:element name="PermittedBindTypes" default="TRX">
 <xs:simpleType>
 <xs:restriction base="xs:string">
 <xs:enumeration value="TX" />
 <xs:enumeration value="RX" />
 <xs:enumeration value="TRX" />
 </xs:restriction>
 </xs:simpleType>
 </xs:element>
 <xs:element name="Connection" type="SmppConnection" />
 </xs:sequence>
 </xs:complexType>

 <xs:complexType name="SmppExternalClientsTable">
 <xs:sequence>
 <xs:element name="ExternalClient" type="SmppExternalClient" minOccurs="0"
maxOccurs="unbounded">
 </xs:element>
 </xs:sequence>
 <xs:attribute name="key" type="xs:string" use="required" />
 </xs:complexType>

Figure 4: The XML Schema of the SmppExternalClientsTable class

Figure 3: The XML Schema of the SmppExternalClient class

 <xs:complexType name="WordReplacer">
 <xs:sequence>
 <xs:element name="WordReplacerServer" type="SmppServer" />
 <xs:element name="WordReplacementRulesList" type="WordReplacementRulesList">
 <xs:key name="OriginalWord">
 <xs:selector xpath=".//WordReplacementRule" />
 <xs:field xpath="OriginalWord" />
 </xs:key>
 </xs:element>
 <xs:element minOccurs="0" maxOccurs="0" name="ActionList">
 <xs:complexType>
 <xs:all>
 <xs:element name="ReplaceWord">
 <xs:complexType>
 <xs:all>
 <xs:element name="Word" type="xs:string" />
 </xs:all>
 </xs:complexType>
 </xs:element>
 </xs:all>
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 </xs:complexType>

<xs:complexType name="WR_ExternalClient">
 <xs:complexContent>
 <xs:extension base="SmppExternalClient">
 <xs:sequence>
 <xs:element minOccurs="1" name="WordReplacementLicensePerMinute"
type="xs:unsignedInt" />
 </xs:sequence>
 </xs:extension>
 </xs:complexContent>
</xs:complexType>

 <xs:complexType name="WordReplacementRulesList">
 <xs:sequence>
 <xs:element name="WordReplacementRule" type="WordReplacementRule" minOccurs="0"
maxOccurs="unbounded"/>
 </xs:sequence>
 <xs:attribute name="key" type="xs:string" use="required" />
 </xs:complexType>

 <xs:complexType name="WordReplacementRule">
 <xs:sequence>
 <xs:element name="OriginalWord" type="xs:string" />
 <xs:element name="NewWord" type="xs:string" />
 </xs:sequence>
 </xs:complexType>

Figure 5: The XML Schema for WordReplacer class.

Figure 6: The XML Schema for WR_ExternalClient

Figure 7: The XML Schema for WordReplacementRulesList

Figure 8: The XML Schema for WordReplacementRule class.

Figure 10: A sample run of the text-based manager used for adding managed objects to the WordReplacer application.

<?xml version="1.0" encoding="utf-8" standalone="no" ?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"
attributeFormDefault="unqualified" elementFormDefault="qualified"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

 <xs:element name="PA_Component">
 <xs:annotation>
 <xs:appinfo>
 <managedElementType value="WordReplacer"/>
 </xs:appinfo>
 </xs:annotation>
 <xs:complexType>
 <xs:all>
 <xs:element name="WordReplacer" type = "WordReplacer"/>
 </xs:all>
 </xs:complexType>
 </xs:element>
</xs:schema>

Figure 9: The XML Schema of the whole WordReplacer program.

Figure 11: A sample run of the text-based manager used for deleting managed objects from the WordReplacer

application.

Figure 12: The tree representation of a tabular managed object used by the CLI.

Figure 13: The tabular representation of the tabular managed object of Figure 12 in the web-based manager.

	I. A Networking Library with Manageable Connections for SMPP Protocol
	II. A Sample WordReplacer Application
	III. Managing the WordReplacer Application by a CLI
	IV. Managing WordReplacer Application by a Web-Based Manager
	References

