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Abstract 
 

Search engines have turned into one of the most 
important services of the Web that are frequently visited 
by any user. They assist their users in finding 
appropriate information. Among the many challenging 
issues in the design of Web search engines that is mostly 
related to the design of an adaptive interface is 
recommending suitable query phrases to the end-users. 
This has two major benefits: firstly the users can more 
easily interact with the Web search engine and secondly 
get hints on what is more apt to look for in cases where 
they may not have any clue. In this paper, we propose a 
graph based query recommendation algorithm that 
sequentially recommends query terms to its users. The 
most important notion behind the design of the 
algorithm is that the past behavior of previous users of 
a search engine is mined and a multi-segmented graph 
is built. Recommendation is made based on the relative 
similarity of query terms, their frequency and 
conceptual closeness in the graph. 
Index Terms— Search Engines, Query 
Recommendation, User Assistance 
 
 
1. Introduction 
 

The considerable growth in the number and diversity 
of the information available on the Web significantly 
increases the role of search engines.  Although search 
engines can help users find appropriate websites, but it 
is the users themselves that affect the final results of the 
search engines by providing the initial search queries. 
Users usually have the tendency to use only a few query 
terms in their query phrases for searching their intended 
information. A study shows that the average query 
phrase length is about two words [1]. These short 
queries increase the chance of mismatch between the 
information that the user needs on the one hand, and the 
results that have been returned by search engines on the 
other hand. Another common problem is that users in 
some cases are not familiar with the domain they are 
searching or cannot find the appropriate vocabulary 
which correctly describes their intention. Therefore, not 
only are search engines unable to find correct and 

suitable results in such cases, but may also seriously 
perplex their users. 

In order to overcome these problems and to enhance 
the performance of search engines, several methods 
have been suggested. Some techniques focus on 
proposing totally new query phrases different from those 
that have been entered by the user.  The new query 
phrases are proposed so that it is more likely that the 
user reaches his required information through the 
employment of the proposed query phrase. Calculation 
of the similarity between different query phrases is the 
essential point in this approach. Similarity is mainly 
derived from mining search engine query logs. Wen et 
al. [2] propose a clustering method based on query logs. 
In their method, they consider similar queries as queries 
that have returned the same set of web pages which have 
been ultimately selected by the end users. In addition, 
they also consider the content of the web pages that 
have been clicked after a query to estimate their mutual 
relevance.  

Baeza-Yates et al. [3] suggest a new clustering 
method for semantically clustering queries. In their 
method, a term-weight vector is assigned to each query, 
based on the terms available in the clicked URLs. The 
weight of each term in this vector has direct relation 
with the frequency of the term in that specific URL as 
well as the popularity of the URL in the set of all URLs 
which have been clicked for this query. The similarity of 
two queries is then calculated based on their term-
weight vector and through the application of a cosine 
function. 

Several query expansion techniques have also been 
developed in the recent years. Some of these methods 
make use of the content of the documents to select 
expansion terms, while others aim at mining past user 
queries to find appropriate query expansion terms. 
Methods that are based on global and local document 
analysis can be categorized into the first approach. The 
aim of global techniques is to inspect the whole 
document space and find out the relationship and 
association between all of its terms, and then expand 
any query phrase with the use of the obtained 
information [4]. Qiu and Frei [5] suggest a global query 
expansion method that makes use of similarity thesaurus 
for representing term association. Since global methods 
analyze all of the documents and detects the related 
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terms, they guarantees more robustness; however, the 
speed and the required disk space in a huge document 
set where documents can frequently change, get 
eliminated or created can be a big drawback for such 
approach. 

Alternatively, local document analysis methods only 
take into account a restricted number of documents. 
They use some of the top ranked documents to construct 
the thesaurus instead of processing the whole document 
space. Relevance feedback [6] is sort of local document 
analysis for determining the top ranked documents 
according to the web pages which are selected by the 
user. In order to overcome the fact that the users usually 
do not give correct and relevant feedback, blind 
feedback was suggested rather than the relevance 
feedback [7]. This type of feedback considers the n top 
ranked documents as relevant. Local Context Analysis 
[4], that is a technique for expanding users’ query 
phrases, makes use of this type of feedback. 

The other approach in query expansion focuses on 
the past queries that the users have entered into the 
system. Cui et al [8] propose a new scheme that assesses 
user query logs for extracting suitable terms. Actually, 
this method attempts to make use of both query log 
space and document space. Query terms are linked to 
document terms according to the choice of the user 
which has been logged at the time that the user had 
clicked on a particular document for each query. 
Normalized weight of a query term in a related 
document as well as the frequency of the pair of query-
documents in the query log has a direct affect on the 
correlation between the terms of the document and the 
query. Based on this correlation, new query phrases can 
be analysed and appropriate terms can be recommended.  

In this paper, we propose a new query 
recommendation method. In our proposed method, the 
relationship among query terms is maintained by a 
graph. Query terms are nodes of this graph and an 
undirected link between two nodes represents the 
occurrence of the associated terms in a same query 
phrase. Links related to the terms that have frequently 
co-occurred have a higher weight. In fact, the hypothesis 
behind our method is that the terms which often come 
together in a same query phrase have conceptual 
similarity. Also for reducing the affect of immature 
phrases, the weight of each link between two query 
terms is reduced periodically. 

In the next section, we will thoroughly explain our 
proposed query recommendation method which is based 
on a query graph. In Section 3, we describe our test 
setting, and implementation environment. After that we 
compare the obtained results from our proposed 
recommendation algorithm with a query expansion 
method. In the end, we conclude the paper with some 
final remarks. 

 

2. The Proposed Algorithm 
 

Most search engines maintain user query logs that 
consist of query phrases that their users’ have entered. 
Some of the previous methods (e.g. [8]) have made use 
of this logged information in order to detect the 
relationship between query terms and web documents. 
This relationship is derived based on the target of the 
search engine result that has been selected by the user 
for any given query. In our approach, we exploit the 
query logs from a different point of view. We only focus 
on the query terms and the frequency of their co-
occurrence. Through a graph structure, we maintain the 
relationship and depict the power of this relationship 
between each query term. In this graph, each node 
represents a query term. The links between the nodes of 
the graph represent the degree of co-occurrence of two 
query terms with each other.  

As the users enter their query phrases into the search 
engine, the graph gets populated incrementally. 
Whenever a new query term is visited that does not exist 
in the graph a new node will be added, and it will be 
connected to the other nodes based on its occurrence (It 
is obvious that the results obtained from our method are 
dependant on the degree of query graph completeness. 
The more complete the log and the graph are, the better 
the recommendations will be). Since the graph may 
gradually evolve, it is regularly trimmed for three major 
reasons: 

1. To prevent an enormous data structure and 
intractable memory consumption, 

2. To decrease the impact of older query phrases 
on more recent queries, 

3. Understand the present user interest’s trend and 
focus.  

 
As mentioned before, the terms that co-occur in 

previous queries have a higher chance of being 
semantically related and hence are more likely to appear 
in the same query. In our graph, we define a cost factor 
for each link that is inversely related to the number of 
co-occurrence of two related terms in the same query.  

For recommending a new query term, if a user only 
enters one query term, according to our approach, the 
adjacent node to the current term with the minimum link 
cost would be an appropriate recommendation choice. 
But this process will be more complicated as the user 
enters more than one query term. In the following 
subsections we will explain the structure of the 
recommendation method in more detail. 
 
Graph Construction  
 

Every query phrase, QP, in a query log can be 
presented as: 
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NtQPqttt q <<>< 0;,,,,, 21  (1) 

 
ti depicts the ith term in the query phrase and NtQP is 

the Number of query terms in the Query Phrase. For 
every query term, ti, in a query phrase, an associated 
node exists in the Graph G. If the node is not already 
present in G it will be inserted. 

After all of the available query terms present in a 
newly entered query phrase have been added to G, a link 
will be drawn between any of the two query terms in 
that query phrase. This link is created regardless of the 
order of the terms in the query phrase. As an example, 
let’s consider “Windows XP Microsoft” as a newly 
entered query phrase. Windows, XP, and Microsoft are 
the query terms that are available in the query phrase. 
Each of these three terms are added to G and are 
connected to each other through an undirected link with 
an initial weight (We,t: weight of edge e at time t)  equal 
to one. In this case, since there are three query terms in 
the query phrase, and they should be connected to each 
other, (3*2)/2 = 3 links need to be created (In a general 
case for a query phrase with n query terms, n(n-1)/2  
links should be added to G). 

In cases where the nodes related to the query terms 
and the edges between them already exist, they will be 
employed and therefore no other links or nodes are 
created. Here, the only alteration to G would be that the 
weight of the links would be incremented by one (We,t+1 
= We,t +1). 

 
We define an additional metric to evaluate the 

correlation between the query terms. For each edge, e, 
between two query terms, the related cost is defined as 
the inverse value of its weight at time t (We,t): 
 

tete WCost ,, 1=  (2) 

 
Figure 1. A Sample Graph Showing Five Different 

Query Terms Appearing in Different Query Phrases. 
For Example “XP” and “Office” Have Been Jointly Used 

in 25 Query Phrases. 

To decrease the value of older relationships between 
different query terms, the cost of each edge is 
incremented by a constant value (φ) periodically. 
Therefore for each period (τ) we have: 

 
ϕτ +=+ tete CostCost ,,  (3) 

 
Concurrently, a trim function evaluates the cost 

values of each edge in G. The edges that fall below a 
certain threshold at a given time, t, (λt) will be regarded 
as redundant and will hence be discarded. Various 
threshold values can be selected for this purpose. It can 
be either a static value or be adjusted adaptively based 
on different circumstances. A good choice for the 
threshold would be the mean value of the edge costs 
with a tolerance value equal to the mean standard 
deviation which is based on the Chebyshev’s theorem 
[10]. 

  
Having removed certain edges between various 

nodes, some of the nodes may end up dangling as 
separated disjoint entities that have no connections to 
any other node. The trim function also removes such 
nodes that represent the query terms that are not 
frequently used.  

For the small graph shown in Figure 1, the number 
of edges is 5, and the aggregate cost of the edges is: 
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Therefore, the adaptive threshold for eliminating 

redundant edges would be: 
 

0.0349  )STD(Cost0.0232 ti, =+=tλ  
 

In this example, the edge between the query terms 
“XP” and “Office” would be removed since it is higher 
than the threshold (0.04 > 0.0349). The rest of the edges 
will be kept. 

The final result of the graph construction process is a 
graph G, with a set of nodes that represent the most 
frequently used query items along with their strong 
correlations (co-occurrences higher than a given 
threshold) with other query terms. It should be noted 
that G may be a collection of n disjoint sub-graphs. This 
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means that the query terms in each of these sub-graphs 
have close relationship with each other and show no 
closeness to the query terms used in the other sub-
graphs. 

Based on this graph construction scheme, we 
introduce a multi-depth query recommendation 
algorithm in the next sub-section. The most important 
concept behind the algorithm is that we believe that the 
aggregate behavior of all the users entering query 
phrases into a search engine conveys a correct semantic 
meaning. 
 
Recommendation Algorithm 
 

As we explained earlier in this paper, a constructed 
graph may consist of many different disjoint sub-graphs. 
Let’s assume that the query term that the user has 
entered into the search engine is Q={t1,..tq}. Each of the 
query terms ti can belong to any of the n disjoint sub-
graphs. For instance, n=1 represents a situation where 
all of the query terms belong only to one of the sub-
graphs. Consider Sub-graph SGi, 0<i<n, and the query 
term tj, 0<j<q, for every adjacent neighbor nbijk to tj in 
SGi, we define a related Cumulative Distance Cost, 
CDC as: 

∑

∑

−

=
∗

= q

m
mijk

mijkm

q

m
ijk

ijk

tnbdjsLnt

tbdjsLnttnbdjsCst

CDC

1

1

),(

),(),(

 (6) 

 
Where djsWt(a,b) is a function that calculates the 

cost of the shortest path from node a to node b using the 
Dijkstra algorithm and djtLnt(a,b) determines the length 
of the shortest path that has been identified by the 
Dijkstra algorithm.  

For all the adjacent nodes to any of the query terms, 
ti, in the query phrase, one node for each SGi with the 
minimum cumulative distance is specified. These nodes 
are added to a set named the Candidate set. Since there 
are at most n sub-graphs in the query graph, the size of 
the Candidate set can at most reach n. This occurs only 
when the user enters n different query terms in his query 
phrase that are present in n different sub-graphs.  

There are four options for recommending a proper 
query item to the user based on the calculated 
cumulative distance cost values of the adjacent nodes to 
the entered query items: 
 

1. The first option is to rank order all of the 
members of the Candidate set in an incremental 
fashion based on their cumulative distance cost 
value. The member with the minimum CDC 

value (See Equation 7) is regarded as the most 
appropriate choice for recommendation  

 
)))(((1 i

n
i tCandidateCDCMinCandidate ==  (7) 

 
2. It is also possible to rank order the members of 

the Candidate set based on their CDC value. 
All of the members of the Candidate set are 
then recommended to the user in an ordered 
way. The user would then have the option to 
select from among these recommendations. 

 
3. Regardless of the Candidate set, we can order 

all of the adjacent nodes to any of the entered 
query terms based on their CDC value. The 
major difference between this method and the 
one previously introduced is that in this method 
more than one query term may be 
recommended to the user from the same sub-
graph; while in the previous method, every 
sub-graph has only one representative. 

 
4. In order to value the sub-graphs with more 

adjacent nodes to the entered query terms, we 
can divide the cumulative distance cost of each 
query item by the number of the query items in 
that sub-graph . In this way, the sub-graphs 
that accommodates more query items entered 
by the user will receive more attention. The 
Weighted Cumulative  Distance Cost (WCDC) 
is a measure designed for this purpose and is 
calculated as follows: 
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(8) 

 
In Equation 8, |member (QP, SGi)| denotes the 
number of query terms of the query phrase QP 
in sub-graph SGi. In our experiments, we have 
used this method for recommending query 
terms to the end users. 
 

To clarify how the recommendation algorithm 
actually performs, we go through a short example. Let’s 
suppose that a user has entered “Office Microsoft 
Information” into the search engine as his intended 
query phrase. Based on our sample graph (Figure 2), we 
have the CDC and WCDC values shown in Table 1. 
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Figure 2. A Sample Graph Representing the “Office 

Microsoft Information” Query Phrase and its Adjacent 
Nodes 

 
The recommendations made for any of the four 

approaches to query term recommendation would 
respectively be: 

 
1. The Candidate set would be the nodes from 

each sub-graph with the lowest CDC. 
Therefore, the Candidate set would be: 
Candidate set = {XP, Systems, Fusion} 
The member of the Candidate set with the 
minimum CDC will be selected as the term to 

be recommended to the end user, which will be 
“XP”.  

2. In the second method, the members of the 
Candidate set are ranked based their CDC 
value. This will result in the recommendation 
of an ordered list of 1. XP, 2. Fusion, 3. 
Systems.  

 
3. The third method ranks the query items 

regardless of their existence in the Candidate 
set based on their CDC value. Therefore, the 
recommendation list is: 1. XP, 2. Windows, 3. 
Fusion, 4. Systems, 5. Technology, 6. MSN, 7. 
Security. 

4. Finally, in the fourth approach that we have 
also selected in our implementation, the query 
terms in the Candidate set are rank ordered 
based on their WCDC value. The final output 
of this method would hence be 1. XP, 2. 
Fusion, 3. Systems. 

 
It is clear that the results of this example may not be so 
much rational since the graph that we have used for our 
example is too small and does not represent actual edge 
weights. In the following section, we will discuss the 
results obtained from an authentic implementation of 
our proposed recommender algorithm. The results will 
also be compared with that of another technique. 

 
Table 1: The Related CDC and WCDC for each of Query Term’s Adjacent Nodes 

Query terms 
Microsoft office Adjacent 

Nodes 
djsCst djsLnt djsCst djsLnt

CDC WCDC 

Windows 0.001 1 0.0012 2 0.0011 0.00055 
MSN 0.002 1 0.0025 2 0.0023 0.00115 
XP 0.0012 2 0.0006 1 0.001 0.0005 

Information   djsCst djsLnt  
Technology 0.0013 1 0.0013 0.0013 

Fusion 0.0011 1 0.0011 0.0011 
Security 0.0033 1  0.0033 0.0033 
Systems 0.0011 1 0.0011 0.0011 

 
3. Performance Evaluation 
 

In this section, we will describe our test 
environment, the implementation of our proposed 
algorithm and compare and discuss our obtained results. 
We make use of the AltaVista search engine query log 
for the purpose of our analysis. Our query log 
processing and graph construction phase has detected 
43058 query terms from a subset of the AltaVista query 
log. The constructed graph comprises 145601 edges 
between its nodes. 

 For computerizing the graph structure and running 
the base graph algorithms over our dataset, a java 
package for graph manipulation called JUNG [9] has 
been used. JUNG is a java package that allows 
programmers to model, analyze, and visualize their data 
in the form of graphs. 
To evaluate our algorithm, we have selected ten of the 
most frequently used query phrases in the query log. 
Studies have shown that users are likely to enter queries 
with at most two query terms. Therefore the terms that 
have been selected either contain one or two query 
terms. Table 2 shows the list of our initial query phrases. 
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Table 2: The Initial Query Phrases Used for Evaluating the 

Proposed Algorithm.  

1. Windows 2. Playstation 
3. Search  engine 4. Advance camera 
5. Plumbing 

fixtures 
6. Air conditioning 

7. Jedi outcast 8. Stack fault 
9. e-commerce 10. College 

 
To evaluate the performance of our proposed 

algorithm we employ two major criteria namely: the 
weighted cumulative distance cost, and the precision of 
the results obtained from the search engine after 
employing the recommendation algorithm. The WCDC 
factor depicts the usefulness degree of the recommended 
query term. The higher the value of WCDC for a 
recommended query term is, the less worthy it is. This is 
due to the fact that as the value of WCDC increases, 
their conceptual distances from the query terms entered 
by the user also increase. Therefore, since our 
recommendation algorithm aims at providing the users 
with the most relevant query terms, terms with high 
WCDC values are not reasonable. Based on our 
experiments, we have inferred the fact that as the 
number of recommendations increase, the WCDC value 
of the query terms also increases, and therefore their 
effectiveness decreases. To show this point, we have 
used the ten query phrases introduced in this section. 
For each query term we use our recommendation 
algorithm and make a suggestion. The WCDC value of 
the new query term is then calculated and recorded. 
Now with the employment of the new query phrase 
(which is the result of the concatenation of the old query 
phrase and the new recommended query term), we make 
another recommendation, and again the WCDC value is 
calculated. This process has been repeated five times for 
ten different query phrases. As it can be seen in Figure 
3, the WCDC values of the recommended query terms 
increases as the length of the query increases. This fact 
shows that the users need to be cautious in selecting or 
accepting the recommended query terms, since this will 
highly affect the final information that they will receive 
from the search engine which is a natural result of 
narrowing the search query phrase. 

Based on this observation, we conclude that the 
shorter query phrases that have been gradually created 
based on the recommendation algorithm have a higher 
chance of reaching users’ requirements and intentions. 
Therefore, if the user employs too many 
recommendations, he will start getting misled.  
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Figure 3. the Related WCDC Values of Each Query Phrase 
 

The other factor that we have employed for 
evaluating our proposed approach is precision. Precision 
defines the degree of noise (inappropriate retrieved web 
pages from the search engine) in the list of returned web 
pages after sending a query that has been made through 
our recommendation algorithm. To calculate the degree 
of usefulness of the returned documents, we have used 
the TF-IDF metric to calculate the relevance of the 
returned web page to the submitted query phrase. Table 
3 shows the precision of our proposed algorithm 
compared with both the Local Context Analysis query 
expansion method [4], and the state where no 
recommendation or expansion was employed. The 
smoothing factor of the LCA algorithm has been set to 
0.1. The top 50 results returned from the search engine 
have been used for query expansion in LCA. We have 
used Google as the base search engine for performing 
our queries. The first twelve web pages returned from 
each of the approaches have been used to calculate the 
precision value. The examinations show that the results 
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obtained from our proposed query recommendation 
algorithm outperforms the query expansion method (See 
Table [3]). 

Our proposed method also has the advantage that 
allows the user to see his options and choices and guides 
him through the query phrase construction process 
which is not the case in a typical query expansion 
algorithm. 
 

Table 3. To calculate precision, we have assumed the 
documents with a TF-IDF value higher than a specific 

threshold as relevant. The threshold (T) has been 
adaptively calculated based on the average TF-IDF of all 

returned documents in the baseline method. 

Threshold  Baseline LCA Proposed 
Model 

T 0.358333 0.391667 
(9%) 

0.441667 
(23%) 

T + 0.05 0.216667 0.183333 
(-15%) 

0.266667 
(23%) 

T - 0.05 0.630952 0.619048 
(-1%) 

0.690476 
(9%) 

Average 0.401984 0.398016 
(-2.3%) 

0.46627 
(18.3%) 

 
4. Conclusions 
 
In this paper, we have proposed a query 
recommendation algorithm. The algorithm creates a 
graph of query terms based on the degree of relevance 
of the query terms derived from their co-occurrence in 
different query phrases. As the user enters query terms 
into the search engine, our proposed algorithm traverses 
the graph to find the most relevant query terms that can 
be recommended to the user. The suitability and 
relevance of each query term has been calculated based 
on a factor named weighted cumulative distance cost. 
We have compared the performance of our proposed 
algorithm with two different states: 1. where the user 
does not use any sort of assistance, 2. where the user 
employs a query expansion algorithm.  The results 
obtained from these comparisons have been shown 
throughout the paper. These results depict reasonable 
performance for our proposed query recommendation 
algorithm. 
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