
The Application of Users' Collective Experience for Crafting Suitable Search
Engine Query Recommendations

Faezeh Ensan†, Ebrahim Bagheri†, Mohsen Kahani*
† University of New Brunswick, Fredericton, Canada.

* Ferdowsi University of Mashhad, Mashhad, Iran.
faezeh.ensan@unb.ca, e.bagheri@unb.ca, kahani@um.ac.ir

Abstract

Search engines have turned into one of the most
important services of the Web that are frequently visited
by any user. They assist their users in finding
appropriate information. Among the many challenging
issues in the design of Web search engines that is mostly
related to the design of an adaptive interface is
recommending suitable query phrases to the end-users.
This has two major benefits: firstly the users can more
easily interact with the Web search engine and secondly
get hints on what is more apt to look for in cases where
they may not have any clue. In this paper, we propose a
graph based query recommendation algorithm that
sequentially recommends query terms to its users. The
most important notion behind the design of the
algorithm is that the past behavior of previous users of
a search engine is mined and a multi-segmented graph
is built. Recommendation is made based on the relative
similarity of query terms, their frequency and
conceptual closeness in the graph.
Index Terms— Search Engines, Query
Recommendation, User Assistance

1. Introduction

The considerable growth in the number and diversity
of the information available on the Web significantly
increases the role of search engines. Although search
engines can help users find appropriate websites, but it
is the users themselves that affect the final results of the
search engines by providing the initial search queries.
Users usually have the tendency to use only a few query
terms in their query phrases for searching their intended
information. A study shows that the average query
phrase length is about two words [1]. These short
queries increase the chance of mismatch between the
information that the user needs on the one hand, and the
results that have been returned by search engines on the
other hand. Another common problem is that users in
some cases are not familiar with the domain they are
searching or cannot find the appropriate vocabulary
which correctly describes their intention. Therefore, not
only are search engines unable to find correct and

suitable results in such cases, but may also seriously
perplex their users.

In order to overcome these problems and to enhance
the performance of search engines, several methods
have been suggested. Some techniques focus on
proposing totally new query phrases different from those
that have been entered by the user. The new query
phrases are proposed so that it is more likely that the
user reaches his required information through the
employment of the proposed query phrase. Calculation
of the similarity between different query phrases is the
essential point in this approach. Similarity is mainly
derived from mining search engine query logs. Wen et
al. [2] propose a clustering method based on query logs.
In their method, they consider similar queries as queries
that have returned the same set of web pages which have
been ultimately selected by the end users. In addition,
they also consider the content of the web pages that
have been clicked after a query to estimate their mutual
relevance.

Baeza-Yates et al. [3] suggest a new clustering
method for semantically clustering queries. In their
method, a term-weight vector is assigned to each query,
based on the terms available in the clicked URLs. The
weight of each term in this vector has direct relation
with the frequency of the term in that specific URL as
well as the popularity of the URL in the set of all URLs
which have been clicked for this query. The similarity of
two queries is then calculated based on their term-
weight vector and through the application of a cosine
function.

Several query expansion techniques have also been
developed in the recent years. Some of these methods
make use of the content of the documents to select
expansion terms, while others aim at mining past user
queries to find appropriate query expansion terms.
Methods that are based on global and local document
analysis can be categorized into the first approach. The
aim of global techniques is to inspect the whole
document space and find out the relationship and
association between all of its terms, and then expand
any query phrase with the use of the obtained
information [4]. Qiu and Frei [5] suggest a global query
expansion method that makes use of similarity thesaurus
for representing term association. Since global methods
analyze all of the documents and detects the related

Fifth Annual Conference on Communication Networks and Services Research(CNSR'07)
0-7695-2835-X/07 $20.00 © 2007

terms, they guarantees more robustness; however, the
speed and the required disk space in a huge document
set where documents can frequently change, get
eliminated or created can be a big drawback for such
approach.

Alternatively, local document analysis methods only
take into account a restricted number of documents.
They use some of the top ranked documents to construct
the thesaurus instead of processing the whole document
space. Relevance feedback [6] is sort of local document
analysis for determining the top ranked documents
according to the web pages which are selected by the
user. In order to overcome the fact that the users usually
do not give correct and relevant feedback, blind
feedback was suggested rather than the relevance
feedback [7]. This type of feedback considers the n top
ranked documents as relevant. Local Context Analysis
[4], that is a technique for expanding users’ query
phrases, makes use of this type of feedback.

The other approach in query expansion focuses on
the past queries that the users have entered into the
system. Cui et al [8] propose a new scheme that assesses
user query logs for extracting suitable terms. Actually,
this method attempts to make use of both query log
space and document space. Query terms are linked to
document terms according to the choice of the user
which has been logged at the time that the user had
clicked on a particular document for each query.
Normalized weight of a query term in a related
document as well as the frequency of the pair of query-
documents in the query log has a direct affect on the
correlation between the terms of the document and the
query. Based on this correlation, new query phrases can
be analysed and appropriate terms can be recommended.

In this paper, we propose a new query
recommendation method. In our proposed method, the
relationship among query terms is maintained by a
graph. Query terms are nodes of this graph and an
undirected link between two nodes represents the
occurrence of the associated terms in a same query
phrase. Links related to the terms that have frequently
co-occurred have a higher weight. In fact, the hypothesis
behind our method is that the terms which often come
together in a same query phrase have conceptual
similarity. Also for reducing the affect of immature
phrases, the weight of each link between two query
terms is reduced periodically.

In the next section, we will thoroughly explain our
proposed query recommendation method which is based
on a query graph. In Section 3, we describe our test
setting, and implementation environment. After that we
compare the obtained results from our proposed
recommendation algorithm with a query expansion
method. In the end, we conclude the paper with some
final remarks.

2. The Proposed Algorithm

Most search engines maintain user query logs that
consist of query phrases that their users’ have entered.
Some of the previous methods (e.g. [8]) have made use
of this logged information in order to detect the
relationship between query terms and web documents.
This relationship is derived based on the target of the
search engine result that has been selected by the user
for any given query. In our approach, we exploit the
query logs from a different point of view. We only focus
on the query terms and the frequency of their co-
occurrence. Through a graph structure, we maintain the
relationship and depict the power of this relationship
between each query term. In this graph, each node
represents a query term. The links between the nodes of
the graph represent the degree of co-occurrence of two
query terms with each other.

As the users enter their query phrases into the search
engine, the graph gets populated incrementally.
Whenever a new query term is visited that does not exist
in the graph a new node will be added, and it will be
connected to the other nodes based on its occurrence (It
is obvious that the results obtained from our method are
dependant on the degree of query graph completeness.
The more complete the log and the graph are, the better
the recommendations will be). Since the graph may
gradually evolve, it is regularly trimmed for three major
reasons:

1. To prevent an enormous data structure and
intractable memory consumption,

2. To decrease the impact of older query phrases
on more recent queries,

3. Understand the present user interest’s trend and
focus.

As mentioned before, the terms that co-occur in

previous queries have a higher chance of being
semantically related and hence are more likely to appear
in the same query. In our graph, we define a cost factor
for each link that is inversely related to the number of
co-occurrence of two related terms in the same query.

For recommending a new query term, if a user only
enters one query term, according to our approach, the
adjacent node to the current term with the minimum link
cost would be an appropriate recommendation choice.
But this process will be more complicated as the user
enters more than one query term. In the following
subsections we will explain the structure of the
recommendation method in more detail.

Graph Construction

Every query phrase, QP, in a query log can be
presented as:

Fifth Annual Conference on Communication Networks and Services Research(CNSR'07)
0-7695-2835-X/07 $20.00 © 2007

NtQPqttt q <<>< 0;,,,,, 21 (1)

ti depicts the ith term in the query phrase and NtQP is

the Number of query terms in the Query Phrase. For
every query term, ti, in a query phrase, an associated
node exists in the Graph G. If the node is not already
present in G it will be inserted.

After all of the available query terms present in a
newly entered query phrase have been added to G, a link
will be drawn between any of the two query terms in
that query phrase. This link is created regardless of the
order of the terms in the query phrase. As an example,
let’s consider “Windows XP Microsoft” as a newly
entered query phrase. Windows, XP, and Microsoft are
the query terms that are available in the query phrase.
Each of these three terms are added to G and are
connected to each other through an undirected link with
an initial weight (We,t: weight of edge e at time t) equal
to one. In this case, since there are three query terms in
the query phrase, and they should be connected to each
other, (3*2)/2 = 3 links need to be created (In a general
case for a query phrase with n query terms, n(n-1)/2
links should be added to G).

In cases where the nodes related to the query terms
and the edges between them already exist, they will be
employed and therefore no other links or nodes are
created. Here, the only alteration to G would be that the
weight of the links would be incremented by one (We,t+1
= We,t +1).

We define an additional metric to evaluate the

correlation between the query terms. For each edge, e,
between two query terms, the related cost is defined as
the inverse value of its weight at time t (We,t):

tete WCost ,, 1= (2)

Figure 1. A Sample Graph Showing Five Different

Query Terms Appearing in Different Query Phrases.
For Example “XP” and “Office” Have Been Jointly Used

in 25 Query Phrases.

To decrease the value of older relationships between
different query terms, the cost of each edge is
incremented by a constant value (φ) periodically.
Therefore for each period (τ) we have:

ϕτ +=+ tete CostCost ,, (3)

Concurrently, a trim function evaluates the cost

values of each edge in G. The edges that fall below a
certain threshold at a given time, t, (λt) will be regarded
as redundant and will hence be discarded. Various
threshold values can be selected for this purpose. It can
be either a static value or be adjusted adaptively based
on different circumstances. A good choice for the
threshold would be the mean value of the edge costs
with a tolerance value equal to the mean standard
deviation which is based on the Chebyshev’s theorem
[10].

Having removed certain edges between various

nodes, some of the nodes may end up dangling as
separated disjoint entities that have no connections to
any other node. The trim function also removes such
nodes that represent the query terms that are not
frequently used.

For the small graph shown in Figure 1, the number
of edges is 5, and the aggregate cost of the edges is:

0.0232
5

65
1

35
1

25
1

45
1

100
1

1
,

=







 ++++
=

∑
=

gesnumberofed

Cost
gesnumberofed

i
ti

Therefore, the adaptive threshold for eliminating

redundant edges would be:

0.0349)STD(Cost0.0232 ti, =+=tλ

In this example, the edge between the query terms
“XP” and “Office” would be removed since it is higher
than the threshold (0.04 > 0.0349). The rest of the edges
will be kept.

The final result of the graph construction process is a
graph G, with a set of nodes that represent the most
frequently used query items along with their strong
correlations (co-occurrences higher than a given
threshold) with other query terms. It should be noted
that G may be a collection of n disjoint sub-graphs. This

)(,
1

,

ti

gesnumberofed

i
ti

t CostSTD
gesnumberofed

Cost

+=
∑
=λ

(4)

)()(, itei eerasethenCostifeedge λ>∀

(5)

Fifth Annual Conference on Communication Networks and Services Research(CNSR'07)
0-7695-2835-X/07 $20.00 © 2007

means that the query terms in each of these sub-graphs
have close relationship with each other and show no
closeness to the query terms used in the other sub-
graphs.

Based on this graph construction scheme, we
introduce a multi-depth query recommendation
algorithm in the next sub-section. The most important
concept behind the algorithm is that we believe that the
aggregate behavior of all the users entering query
phrases into a search engine conveys a correct semantic
meaning.

Recommendation Algorithm

As we explained earlier in this paper, a constructed
graph may consist of many different disjoint sub-graphs.
Let’s assume that the query term that the user has
entered into the search engine is Q={t1,..tq}. Each of the
query terms ti can belong to any of the n disjoint sub-
graphs. For instance, n=1 represents a situation where
all of the query terms belong only to one of the sub-
graphs. Consider Sub-graph SGi, 0<i<n, and the query
term tj, 0<j<q, for every adjacent neighbor nbijk to tj in
SGi, we define a related Cumulative Distance Cost,
CDC as:

∑

∑

−

=
∗

= q

m
mijk

mijkm

q

m
ijk

ijk

tnbdjsLnt

tbdjsLnttnbdjsCst

CDC

1

1

),(

),(),(

 (6)

Where djsWt(a,b) is a function that calculates the

cost of the shortest path from node a to node b using the
Dijkstra algorithm and djtLnt(a,b) determines the length
of the shortest path that has been identified by the
Dijkstra algorithm.

For all the adjacent nodes to any of the query terms,
ti, in the query phrase, one node for each SGi with the
minimum cumulative distance is specified. These nodes
are added to a set named the Candidate set. Since there
are at most n sub-graphs in the query graph, the size of
the Candidate set can at most reach n. This occurs only
when the user enters n different query terms in his query
phrase that are present in n different sub-graphs.

There are four options for recommending a proper
query item to the user based on the calculated
cumulative distance cost values of the adjacent nodes to
the entered query items:

1. The first option is to rank order all of the
members of the Candidate set in an incremental
fashion based on their cumulative distance cost
value. The member with the minimum CDC

value (See Equation 7) is regarded as the most
appropriate choice for recommendation

)))(((1 i

n
i tCandidateCDCMinCandidate == (7)

2. It is also possible to rank order the members of

the Candidate set based on their CDC value.
All of the members of the Candidate set are
then recommended to the user in an ordered
way. The user would then have the option to
select from among these recommendations.

3. Regardless of the Candidate set, we can order

all of the adjacent nodes to any of the entered
query terms based on their CDC value. The
major difference between this method and the
one previously introduced is that in this method
more than one query term may be
recommended to the user from the same sub-
graph; while in the previous method, every
sub-graph has only one representative.

4. In order to value the sub-graphs with more

adjacent nodes to the entered query terms, we
can divide the cumulative distance cost of each
query item by the number of the query items in
that sub-graph . In this way, the sub-graphs
that accommodates more query items entered
by the user will receive more attention. The
Weighted Cumulative Distance Cost (WCDC)
is a measure designed for this purpose and is
calculated as follows:

∑

∑

−

=
∗

= q

m
mijki

mijkm

q

m
ijk

ijk

tnbdjsLntSGQPmember

tbdjsLnttnbdjsCst
WCDC

1

1

),(),(

),(),(

(8)

In Equation 8, |member (QP, SGi)| denotes the
number of query terms of the query phrase QP
in sub-graph SGi. In our experiments, we have
used this method for recommending query
terms to the end users.

To clarify how the recommendation algorithm
actually performs, we go through a short example. Let’s
suppose that a user has entered “Office Microsoft
Information” into the search engine as his intended
query phrase. Based on our sample graph (Figure 2), we
have the CDC and WCDC values shown in Table 1.

Fifth Annual Conference on Communication Networks and Services Research(CNSR'07)
0-7695-2835-X/07 $20.00 © 2007

Figure 2. A Sample Graph Representing the “Office

Microsoft Information” Query Phrase and its Adjacent
Nodes

The recommendations made for any of the four

approaches to query term recommendation would
respectively be:

1. The Candidate set would be the nodes from

each sub-graph with the lowest CDC.
Therefore, the Candidate set would be:
Candidate set = {XP, Systems, Fusion}
The member of the Candidate set with the
minimum CDC will be selected as the term to

be recommended to the end user, which will be
“XP”.

2. In the second method, the members of the
Candidate set are ranked based their CDC
value. This will result in the recommendation
of an ordered list of 1. XP, 2. Fusion, 3.
Systems.

3. The third method ranks the query items

regardless of their existence in the Candidate
set based on their CDC value. Therefore, the
recommendation list is: 1. XP, 2. Windows, 3.
Fusion, 4. Systems, 5. Technology, 6. MSN, 7.
Security.

4. Finally, in the fourth approach that we have
also selected in our implementation, the query
terms in the Candidate set are rank ordered
based on their WCDC value. The final output
of this method would hence be 1. XP, 2.
Fusion, 3. Systems.

It is clear that the results of this example may not be so
much rational since the graph that we have used for our
example is too small and does not represent actual edge
weights. In the following section, we will discuss the
results obtained from an authentic implementation of
our proposed recommender algorithm. The results will
also be compared with that of another technique.

Table 1: The Related CDC and WCDC for each of Query Term’s Adjacent Nodes

Query terms
Microsoft office Adjacent

Nodes
djsCst djsLnt djsCst djsLnt

CDC WCDC

Windows 0.001 1 0.0012 2 0.0011 0.00055
MSN 0.002 1 0.0025 2 0.0023 0.00115
XP 0.0012 2 0.0006 1 0.001 0.0005

Information djsCst djsLnt
Technology 0.0013 1 0.0013 0.0013

Fusion 0.0011 1 0.0011 0.0011
Security 0.0033 1 0.0033 0.0033
Systems 0.0011 1 0.0011 0.0011

3. Performance Evaluation

In this section, we will describe our test
environment, the implementation of our proposed
algorithm and compare and discuss our obtained results.
We make use of the AltaVista search engine query log
for the purpose of our analysis. Our query log
processing and graph construction phase has detected
43058 query terms from a subset of the AltaVista query
log. The constructed graph comprises 145601 edges
between its nodes.

 For computerizing the graph structure and running
the base graph algorithms over our dataset, a java
package for graph manipulation called JUNG [9] has
been used. JUNG is a java package that allows
programmers to model, analyze, and visualize their data
in the form of graphs.
To evaluate our algorithm, we have selected ten of the
most frequently used query phrases in the query log.
Studies have shown that users are likely to enter queries
with at most two query terms. Therefore the terms that
have been selected either contain one or two query
terms. Table 2 shows the list of our initial query phrases.

Fifth Annual Conference on Communication Networks and Services Research(CNSR'07)
0-7695-2835-X/07 $20.00 © 2007

Table 2: The Initial Query Phrases Used for Evaluating the

Proposed Algorithm.

1. Windows 2. Playstation
3. Search engine 4. Advance camera
5. Plumbing

fixtures
6. Air conditioning

7. Jedi outcast 8. Stack fault
9. e-commerce 10. College

To evaluate the performance of our proposed

algorithm we employ two major criteria namely: the
weighted cumulative distance cost, and the precision of
the results obtained from the search engine after
employing the recommendation algorithm. The WCDC
factor depicts the usefulness degree of the recommended
query term. The higher the value of WCDC for a
recommended query term is, the less worthy it is. This is
due to the fact that as the value of WCDC increases,
their conceptual distances from the query terms entered
by the user also increase. Therefore, since our
recommendation algorithm aims at providing the users
with the most relevant query terms, terms with high
WCDC values are not reasonable. Based on our
experiments, we have inferred the fact that as the
number of recommendations increase, the WCDC value
of the query terms also increases, and therefore their
effectiveness decreases. To show this point, we have
used the ten query phrases introduced in this section.
For each query term we use our recommendation
algorithm and make a suggestion. The WCDC value of
the new query term is then calculated and recorded.
Now with the employment of the new query phrase
(which is the result of the concatenation of the old query
phrase and the new recommended query term), we make
another recommendation, and again the WCDC value is
calculated. This process has been repeated five times for
ten different query phrases. As it can be seen in Figure
3, the WCDC values of the recommended query terms
increases as the length of the query increases. This fact
shows that the users need to be cautious in selecting or
accepting the recommended query terms, since this will
highly affect the final information that they will receive
from the search engine which is a natural result of
narrowing the search query phrase.

Based on this observation, we conclude that the
shorter query phrases that have been gradually created
based on the recommendation algorithm have a higher
chance of reaching users’ requirements and intentions.
Therefore, if the user employs too many
recommendations, he will start getting misled.

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5

Number of Terms in a Query Phrase

W
C

D
C

Stack Fault Windows
Search Engine Plumbing Fixtures
Air Conditioning College

0
0.02
0.04
0.06
0.08
0.1

0.12
0.14
0.16

1 2 3 4 5

Number of Terms in a Query Phrase

W
C

D
C

Jedi Outcast E-commerce

Playstation Advance Camera

Figure 3. the Related WCDC Values of Each Query Phrase

The other factor that we have employed for
evaluating our proposed approach is precision. Precision
defines the degree of noise (inappropriate retrieved web
pages from the search engine) in the list of returned web
pages after sending a query that has been made through
our recommendation algorithm. To calculate the degree
of usefulness of the returned documents, we have used
the TF-IDF metric to calculate the relevance of the
returned web page to the submitted query phrase. Table
3 shows the precision of our proposed algorithm
compared with both the Local Context Analysis query
expansion method [4], and the state where no
recommendation or expansion was employed. The
smoothing factor of the LCA algorithm has been set to
0.1. The top 50 results returned from the search engine
have been used for query expansion in LCA. We have
used Google as the base search engine for performing
our queries. The first twelve web pages returned from
each of the approaches have been used to calculate the
precision value. The examinations show that the results

Fifth Annual Conference on Communication Networks and Services Research(CNSR'07)
0-7695-2835-X/07 $20.00 © 2007

obtained from our proposed query recommendation
algorithm outperforms the query expansion method (See
Table [3]).

Our proposed method also has the advantage that
allows the user to see his options and choices and guides
him through the query phrase construction process
which is not the case in a typical query expansion
algorithm.

Table 3. To calculate precision, we have assumed the
documents with a TF-IDF value higher than a specific

threshold as relevant. The threshold (T) has been
adaptively calculated based on the average TF-IDF of all

returned documents in the baseline method.

Threshold Baseline LCA Proposed
Model

T 0.358333 0.391667
(9%)

0.441667
(23%)

T + 0.05 0.216667 0.183333
(-15%)

0.266667
(23%)

T - 0.05 0.630952 0.619048
(-1%)

0.690476
(9%)

Average 0.401984 0.398016
(-2.3%)

0.46627
(18.3%)

4. Conclusions

In this paper, we have proposed a query
recommendation algorithm. The algorithm creates a
graph of query terms based on the degree of relevance
of the query terms derived from their co-occurrence in
different query phrases. As the user enters query terms
into the search engine, our proposed algorithm traverses
the graph to find the most relevant query terms that can
be recommended to the user. The suitability and
relevance of each query term has been calculated based
on a factor named weighted cumulative distance cost.
We have compared the performance of our proposed
algorithm with two different states: 1. where the user
does not use any sort of assistance, 2. where the user
employs a query expansion algorithm. The results
obtained from these comparisons have been shown
throughout the paper. These results depict reasonable
performance for our proposed query recommendation
algorithm.

5. References

1. BJ Jansen, A Spink, J Bateman, T Saracevic;
Real life information retrieval: a study of user

queries on the Web, ACM SIGIR Forum;
Volume 32 , Issue 1; Pages: 5 - 17 ; 1998

2. J. Wen, J. Nie, and H. Zhang; Clustering user

queries of a search engine, WWW10, May 1-5,
2001, Hong Kong.

3. R Baeza-Yates, C Hurtado, M Mendoza; Query

Recommendation using Query Logs in Search
Engines, In Workshop in Web Clustering,
Greece, 2004. Current Trends in Database
Technology - EDBT 2004 Workshops, LNCS
3268, Springer.

4. J Xu, WB Croft ; Query Expansion Using

Local and Global Document Analysis, In
Proceedings of the 19th International
Conference on Research and Development in
Information Retrieval, pages 4-l 1, 1996.

5. Y Qiu and H Frei; Concept Based Query

Expansion. In proceeding ACM SIGIR
Conference, pages 160-169, 1993.

6. G. Salton, C. Buckley; Improving retrieval

performance by relevance feedback. Journal of
the American Society for Information Science,
41, 288-297, 1990.

7. C. Buckley, G. Salton, J. Allen and A. Singhal;

Automatic query expansion using SMART:
TREC-3. In: D. K. Harman (ed.), The Third
Text Retrieval conference (TREC-3). U.S.
Department of Commerce, 1995.

8. H. Cui, J.-R. Wen, J.-Y. Nie, and W.-Y. Ma;

Query expansion by mining user logs - IEEE
Trans. Knowl. Data Eng. 15(4) 2003.

9. J. O’Madadhain, D. fisher, P. Smyth, S. White,

Y. Boey; Analysis and Visualization of
Network Data using JUNG. Available online at
http://jung.sourceforge.net/doc/ index.html,
February 2005.

10. R. E., Walpole, Elementary Statistical
Concepts. Macmillan, New York, 2nd edition,
1983.

Fifth Annual Conference on Communication Networks and Services Research(CNSR'07)
0-7695-2835-X/07 $20.00 © 2007

