
Web Service Composition based onWeb Service Composition based onWeb Service Composition based onWeb Service Composition based on

Agent SocietiesAgent SocietiesAgent SocietiesAgent Societies and Ontological Concepts and Ontological Concepts and Ontological Concepts and Ontological Concepts

Faezeh Ensan1, Mohsen Kahani2, Ebrahim Bagheri1

Faezeh.ensan@unb.ca, Kahani@ um.ac.ir E.Bagheri@unb.ca
1 Department of Computer Science, University of New Brunswick, Canada

2Department of Computing, Ferdowsi University of Mashhad, Iran

Abstract.
The world has experienced a great evolution through the
information technology era. Finding suitable vital industrial
resources may have been the aim of the previous decades;
however these goals have now changed. The pervasive
computing environments have overwhelmed humans with a vast
amount of information resulting in a lost in the hyperspace
problem. Different methods have been proposed to structure and
provide better information retrieval. The most recent
developments have been the creation of the semantic web and the
web services. The new challenge is to establish the basis for
semantic web services that are able to be organized into a chain
which satisfies the desired user functionality. In this paper we
propose a framework in which multi-agent societies have been
used to create an environment in which user requests are
received (in a restricted English grammar format) and a suitable
web service composition is formed. The framework targets
distributed environments where no central web service registry
is available.
Keywords:
Logical Reasoning, First Order Logic, Automated Web Service
Composition, Intent Verbalization, Multi-Agent Societies.

1. Introduction

The World Wide Web has been experiencing great
evolution since its early date of birth in the 90’s. The
number of users which have created an immense internet
traffic based on the usage of the content provided through
the web servers is quite astonishing. The number of web
sites hosted around the world shows great enthusiasm in
using the potential abilities of the world changing
technology. Although the early days of the internet were
the adaptation days which required more cultural
adaptation and social acceptance; it is now the time for
productivity and hyper breeding. Based on the four layers
of web usage, many organizations and governments are
providing their information and in many cases, their
services to their customers or their citizens in an electronic
manner. This trend inspires many researchers to build
upon the current structures and expand web’s ability.
However, statistics show surprising details on the decline
in the growth of the number of web servers being set up
throughout the world. These figures depict the fact that the
number of web servers world wide that was doubling

every 53 days in 1995 has had a decrease to 173 days in
1997. Many different reasons can be imagined for the
situation.

Having an unstructured growth of the current web
can be assumed as one of the most important reasons in
having a decline in the usage interest. On the other hand,
the lack of suitable building blocks to construct the
information on the web has allowed anarchy in the spread
of information all over the web. In this situation finding
suitable information, services and deriving the appropriate
results from the available content has turned into a
dilemma. Using web crawlers and search engines to help
finding the proper data has alleviated the situation;
although the continuation of such growth will deprive the
classification power from the search engines leaving them
in a jam. One of the main solutions to this problem is to
create meaning for the current structures and content
available on the web so that each information substance
can describe itself through the metadata that it is carrying.
XML and related schema creation and validation methods
e.g. RELAX [1], DTD [2], TREX [3] were initially
created and ongoing research in this area has been
followed. Later the idea of taxonomy to classify concepts
and to explain the principles underlying the classification
was born. Different systems such as the DELTA [4] were
designed to allow the usage of toxonomic description in
computer processing.

The broader concept of ontology was established to
formulate a domain structure containing its entities, the
available relationships and the governing rules. Ontologies
are usually hierarchically formed and are mostly described
for a specific domain. The created ontologies depending
on the computer ability to process them can be classified
as weak or strong. Ontologies described in languages such
as OWL [5], OIL [6], DAML [7], and DAML+OIL [8]
can be categorized as strong ontologies because they are
completely machine interpretable. The before mentioned
structures create the basis of what is now known as the
semantic web [9] which aims to increase reachability and
connectivity along with understandability to the current
available resources.

Although the move towards the semantic web is
paving the way for a better structure of information, the
lack of a proper programming structure to provide services
was also a great deficiency. Server-side scripts were

1-4244-0071-6/06/$20.00 ©2006 IEEE. 305

usually written in some sort of programming language
such as PHP, Perl and etc leaving the clients access to sole
web browser interface access. Creating packed logic, as in
software components, that can work in the World Wide
Web can enhance the current situation and interoperability
through interface unification and open standards. Web
services have been developed to answer such a need and
provide suitable capability for software boxing and
distribution. The web service technology has a protocol
stack that consists of WSDL, UDDI, and SOAP and all
messages passing is done through XML documents.
WSDL is used to describe the communication principles
of the web service. UDDI allows other applications to
look up specific web services functionality and allows a
uniform description and discovery model for the web
services. The last functionality, SOAP, provides the ability
to pass XML message on the web over the HTTP protocol.
The web service model is now supported by many
programming languages such as Java, Mirosoft .NET,
PHP, Python, and etc.

The need for exploring the web has created many
different algorithms. One of the technologies that have
been of much attention is the use of agent societies. The
main purpose of this model is to simulate the real world by
its real role-players in that the complexity is added to final
outcome eliminating the burden in initial design
intricacies. Models for building a resource discovery
algorithm have been proposed in the text like RADMA
[10]. These algorithms use mobile agents to identify
suitable dispersed resources for allocation to available
tasks in a pervasive computing environment. On the other
hand agents can be used to monitor user behavior for user
modeling purposes [11]. Agents have varied application in
which many researchers have had different contributions.
An entity should have different features to satisfy the
agent definition which are autonomy, intelligence,
flexibility, and rationality [12]. There have been different
definitions for an agent that can be applied in different
circumstances.

In this paper we aim to create a framework, to allow
the user to interact with the provided interface and express
his will in human understandable language (e.g. English
Grammar and Vocabulary). The framework will have the
ability to translate user intent into first order logic axioms,
and detect the users’ will. The user objective will then be
defined by a tuple composed of the user inputs, outputs
and his desired constraint. The framework identifies
possible solutions to the request based on an automated
web services composition in a distributed web service
registry environment. The web services are registered at
dispersed service banks or the so called UDDI repositories
which are spread world wide. The WSDL definition of the
web services which mainly consists of protocol bindings,
message formats, and input types (the web service syntax)
are converted to first order logic. The web service

composer (WSComposer) module with the help of the
Domain Specific Agents (DSA) tries to produce the best
solution to the problem by applying forward and
backword chaining rules. Partial solutions are given to the
user if the actual request could not be fully answered. The
user will then provide hints to help the WSComposer
fulfill the actual need. The final solution is then checked
for ontological and boundary consistency. The approved
solutions will be handed to the user.

The paper is composed of seven sections. The next
section will give a brief summary on the available
solutions to web service composition. Section 3 will detail
the methodology used in the framework creation and
explains the details of the design. The collective learning
behavior of the incorporated multi-agent society has been
minutely examined in section 4. Section six concludes the
paper and summaries the main points.

2. The Proposed Framework

As could clearly be seen from the short survey given
on the main systems available in the field of automated
web service composition, although the research ground is
a fresh one, but there are a wealth of available techniques,
frameworks, tools, and algorithms available. There still
exist many reasons to motivate researchers to tackle the
problem and provide new solutions. The main stimuli for
our proposed framework can be addressed in four
categories; however there are still open areas that will be
considered in the next versions of the framework. The
main concern in creating this framework was to create an
interface that can interact with the user and transfer user
language commands into a logic based language that could
allow reasoning. Such interface could not be found in any
other systems and allows users to easily communicate
with the planner and declare their needs. The other main
point that was considered in this framework was dealing
with partial solutions. There are times when the planner
(Logical Reasoner) can not infer any suitable solutions
based on the preliminary state for the users’ needs. The
planner will in these situations provide partial solutions to
the users in our proposed framework. Finding appropriate
web services according to the ontological domain of the
problem was also the other aim of our framework. Our
platform also provides the means to check parameter
ranges in the obtained solutions. For example if the user
requests a trip schedule from his home in Tehran to
Montreal, the planner should only use web services which
have the related records to buy a ticket from Tehran to
London and from London to Montreal, and a web service
which only support US domestic flights will be of no use.

The proposed framework consists of 3 main parts:
User edge, WSComposer, Ontology Handler. The user
edge is a component which has the most interaction with

306

the user. The main responsibility of the user edge is
receiving user commands in a verbalized form. The inputs
are then transformed to first order logic axioms and the
user intent, input and outputs are detected. The user inputs
are imagined to be the initial state and can used to describe
the user world. The required outputs are used as his
desired final state and his intent is the high level plan that
should be minutely decomposed using logical inference.
The third component is used to create and manage
ontology based agents that keep track of new web services
based on an ant routing algorithm and classifies the web
services in an ontology hierarchy. The framework has
been depicted in Figure 2.

Solution

Parameter Range Control

Planning Through DSAs’ Meetings
`

Hints for Partial
Solutions

Proof Dictionary

WSComposer Component

Logic Designer

User Edge
component

Input
Detector

Verbalization -
ACE

Output
Detector

DSAs and Agents

Ontology Component

Ontology

User

Figure2. Proposed Framework Structure

One the main phases of our web service composition
framework is the functionality that provides the
mechanisms that adapt the newly registered web services
into the environment. This process is referred to as Web
Service Registration (WSR).

3.1. Web Service Registration

Our model only handles the syntactic features of a
web service. The composability is thus only checked on

the syntax of the available web services: Binding,
Operation Mode, Messages [17]. Upon the addition of the
newly attached web service to a UDDI repository no
special event will occur. The only tasks that must be
performed are the ordinary registration process therefore
avoiding extra execution time on the whole system. The
web service semantic conceptualization will be explained
later on in the paper.

3.2. Web Service Composition

The automatic web service composition process
comprises of different stages that will be minutely
explained. The framework that is proposed for WSC does
not only deal with complexities related to the discovery
process but also handles user interaction. The purpose of a
built-in user interaction handler is to bring better
understanding of the user intent based on iterative queries
to the WSC framework. In this way the intent of the user
is extracted form his/her request based on the features that
are required for the algorithms to find the best chain of
web services for composition.

A. User Interface

The use interface is primarily responsible for
interacting with the user through different sorts of
interfaces. The basic interface provided to receive
information from the user can be thought of as a GUI
interface that can be implemented using a web or windows
based application. Although this approach seems to be
sufficient but another layer of abstraction has also been
envisaged for better interoperability. The system
capability can be provided to business firms as a web
service it self. In this way, legacy applications or currently
under development applications can easily interact with
this framework to find their required operations based on
the automatic web service framework; hence promoting
interoperability.

B. Verbalization - ACE

The process of verbalization is placed in the
framework to allow the users to interact with framework
through their usual grammatical structures. The
framework does not enforce the users to use a specific
form of request coding which is used in many systems.
For example sending a request to a search engine involves
creating a query sentence which is made up of + for
inclusion or - for exclusion of a certain term in the search.
These two operators do not make the state that
complicated; however a user requiring more specific
search will need to learn more details of the search engine
specific language that might include peculiar formats. This
problem complicates the user-system interaction process
and at times may dissatisfy many users. The ACE
language (Attempto Controlled English) was therefore
chosen as the basis of the verbalization process [18].

307

ACE is a natural language which is a controlled
subset of the English language grammar that can be
unambiguously translated into the first order logic. An
ACE written sentence is translated into a discourse
representation structure (DRS) using the Attempto Parsing
Engine (APE). DRS can then be turned into pure FOL
through slight modifications [19].
For example having entered the sentence:

John wants a car. The car is green.

Into the ACE, it parses the two sentences trying to find
missing verbs or nouns. If no such missing word is found
it then classifies the objects into variables and produces an
output that is the paraphrased version of the original
sentence:

John wants a car C. The car C is green.

C has been defined as a variable to identify the car that
John wants. The paraphrased sentence is then translated
into the DSR format which is to a great extent close to the
First Order Logic. The Discourse Representation Structure
created for the previously mentioned sentence would be
as:

[A, B, C, D, E, F, G]
Named (A, John)-1
Structure (A, atomic)-1
Quantity (A, cardinality,
count_unit, B, eq, 1)-1

Object (A, named_entity,
person)-1

Object(C, car, object)-1
Quantity(C, cardinality,
count_unit, D, eq, 1)-1

Structure(C, atomic)-1
Predicate (E, unspecified,
want, A, C)-1

Property (F, green)-2
Predicate (G, state, be, C,
F)-2

The provided syntax can easily be transformed into
the first order logic. A sample first order representation of
a more complex sentence that will be further used in the
paper to provide different examples has been shown later
in the paper. The ACE languages does not have a
dictionary of words as a built in function so a dictionary
should be created as an add-on by the systems that benefit
from it, or the type of words used in the sentence structure
should be specified when entering the sentence. For
example as the parser does not recognize London as a
proper name the letter ‘p’ has been placed behind it and an
‘a’ before the word blue specifies that blue is an adjective.

Original Sentence:

John wants a CAR. The car is green.
John lives in a CITY. The city's name
is p:London.

Paraphrased Sentence:
John wants a CAR E. the car E is green.
John lives in a CITY J. A name N of the
city J is London.

C. Logic Design and Intent Extraction

Having formulated the DRS form of the user input
sentence, we will then calculate a first order logic based
form. One the main reasons of choosing the first order
logic as the final representation of the internal framework
interaction was that it allows easy inference based on
current diverse methods like the forward or backward
chaining algorithms. On the other hand the first order
logic predicates allow us to easily extract the unbound
variables and classify them as the user intent/request. The
bound parameters along with their associated values
would then be imagined as the inputs to the system. The
user intention is then defined as: 1. an initial state which is
formed by the inputs, 2. a final state which is the output or
the unbound variables. The model is then defined as
follows:

Definition1. Web Service Composition Target: A target T
can be defined as a tuple (I, O, W) where:

- I is the set of bound variables in the
FOL clause.

- O is the set of all unbound attributes
marked as user intent in the FOL clause

- W is the set of all distributed and
disperse web services scattered around
the web in different repositories where
the framework agents have access to.

◊

To show a sample output of this stage we illustrate
the first order logic that can be inferred from the logic
design module; however the format is simplified for the
sake of clarity and readability and to allow more
understandable reasoning in the future parts of the paper.
Suppose that we are forming the target T for the
previously introduced sentence. The words written in
capital letter are related to an ontology will be explained
later in the paper.
Input Set (Axioms):
Man (John).
Is (CAR, E).
Color (E, Green).
Is (CITY, J).
Name (J, London).
¬Have (John, E).

Output Set (intent):

308

?- Have (John, E).

Rule Set:
All the distributed web services which
are accessible by the implemented
framework form the rule set.

D. Agent Groups and Their Behavior

There are typically two types of agents incorporated
into the structure of the framework. The first group of
agents which consists of the so called Domain specific
agents (DSA) is designed to be of mobile in nature, multi
purpose and perform different tasks. The second type of
agents is fixed and helps the Domain specific agents find
their best route based on the previous inferences which
form the positive or negative experiences. The DSA
movement is simulated based upon the behavior of a
particular insect which will be explained thoroughly in its
part. Our aim in using this type of routing is to provide
indirect agent collaboration through the changes they
make on the outside world; hence different means of direct
communication or message passing between agents is not
required. The two types of agents used in our framework
are located in the ontology component of the framework
allowing them to search for the required web services
based on an ontological perspective.

Domain Specific Agents

As the proposed framework does not push extra
processing on the servers at the registration process time,
the need to find suitable web services in the environment
exists. Different web services have been located on
different web service repositories based on the creators
decision and are introduced through web service registries.
In our model we aim to avoid the use of a single
repository for web services. The simplest approach would
be to create a central registry for the web services in the
way that the owner of the web service would have to
register his web service in our central repository in order
to allow its web service use in the web service
composition process. To omit the registration process
mobile agents could be used to discover new web services.
Although this approach will ease the chaining process in
the way that the inference process should be done on a
single rule base but it will create a bottleneck in the
system. Failure in the central repository will result in a
disturbance in the total system functionality.

Our methodology formulates a very complex
problem to solve for the designers of the framework but
on the other hand having created this framework the least
configuration for the WSC procedure would be needed.
The problem has been formulated in Definitions 2 and 3.

Definition2. Apt Rule Chain: Suppose there are n
predicates aggregately available in m different rule bases.
If at least one path exists from the initial state to the final

conditions, we name the best chain of rules to satisfy the
Target T as an Apt Rule Chain (ARC).
◊

Definition3. Apt Rule Chain Process: The process of
finding the most suitable chain of rules to satisfy the
constraint or prove the theory is called the Apt Rule Chain
Process (ARCP).
◊

The web service composition process can suitably be
mapped to the Apt Rule Chain Process where the rules in
the ARCP are the web services in our environment. The
web services provide an interface where the input will
receive the user request and variables and the output will
present the effect of WS functionality on the received
values. A web service can in this regard be modeled as a
rule in the rule base. The preconditions of the rule are
mapped to the inputs of the web service, while the web
service outputs would resemble the consequences of the
rule (Figure 3).

Figure3. Mapping a Web Service to a First Order Logic Rule

The framework uses an ontology based component
that maps different concepts under different categories.
For each of these categories, there exists a tree like
topology in which various concepts can sit. For each of the
main concepts in the root, that can vary depending on the
type of domain that has been modeled, on abstract type of
DSA is created. This framework provides the means to
create different concepts in the ontology component but
no specific conceptualization for a specific has been
provided. The exploiters of the framework can create
models related to their own domain of interest. As we
indicated before there are one abstract type of DSA for
each concept root. For example if we are conceptualizing
the Library domain, a DSA can be created for the Books,
Personnel, and etc. Books themselves can have Authors,
Content, and so forth. The main point is that only root
concepts can have relating DSAs.

The population of domain specific agents is
primarily user configured but is dynamically adapted
based on the environment needs. Every DSA is
responsible for finding and recording the web services
related to its field of interest (the agents’ field of interest is
supposed to be the same as the concepts in the category he
belongs to.). The DSAs’ life cycle consists of three
phases:

309

1. Birth
2. Lifetime

• Search and Index Domain Specific Web
Services

• Have Regular Homo-Meetings
• Have occasional Hetro-Meetings

3. Death

Figure4. The Lifecycle of Each DSA

DSA Lifecycle

As it had been previously mentioned the lifecycle of
DSA consists of three phases: Their birth that can be any
time, lifetime, and finally death. Their death occurs to
control the population of the agents that are active in the
system. Besides the agents were initially created at the
commencement of system activity, the rest of newly born
agents are formed based on a novel agent reproduction
system. We will explain a DSA’s behavior in detail in the
following paragraphs.

DSA agents search for the web services that are
related to the same context of their ontological
background. For example if an agent belongs to the class
of Book in the ontology he will be interested in web
services that may have indexed books, sell or even rent
electronic books, but on the other hand they have no
interest in the web services that try to provide rental cars.
As the DSA agents are mobile and move around the
environment (based on a given algorithm) they tend to
find new web services. Upon an arrival at a new web
service they will map the syntactic attributes of the WC as
shown in Figure3. The location of the encountered web
service along with a timestamp is also stored. In this way
the knowledge base of all agents is gradually filled but
having a complete knowledge base is never guaranteed in
this approach. Every DSA will have as much information
related to its context as possible. As different DSAs of the
same type traverse different paths they will eventually
have different knowledge bases.

The other feature that the DSAs benefit from is the
regular homo-DSA meetings. Every homo-DSA meeting is
held after α cycles have passed. These homo-DSA
meetings are held locally for homogeneous DSA agents
and provide the means of rule base exchanges. Each type
of DSA can have different simultaneous meetings for
DSAs which are spread in different locations of the
network. Every DSA agent has a Meeting Radius (MR)
which identifies the radius in which the attending agents
will participate. For example if the MR is 5, then only the

agents residing on the machines within this agents 5 hops
will receive his message for participating in a meeting.
Agents will based on the messages received decide on the
meeting they would like to attend. The local meeting (as
was explained before, there may be different homo-DSA
meetings for the same ontological concept at the same
time) will be held at the machine where the oldest DSA
resides. During the meeting the rule bases will be
exchanged and updated. If a web service has gone down
and many of the agents don’t know about it, they will
update their rule base based on their peers rule base and its
newer timestamp. The other point that the agents will
decide upon in the homo-DSA meetings is the value of
MR. If enough number of rule exchanges has been done,
MR will remain unchanged, however if the number of
exchanges is too low, MR will increase. The eventual
value of MR will be based on the average MR value of all
agents attending the meeting. The main benefits of the
homo-DSA meetings are:

1) The agents will add new rules without having to
traverse a specific machine which at times can be
very far away.

2) Rule bases of all DSAs are frequently updated
based on newer information.

The other main question is that what routes will the
DSAs follow? The idea behind the domain specific agents
movement is based on the swarm intelligence. The
behavior of one kind of ants were observed and used to
model the next hop selection strategy of the DSAs. The
collaboration of fireants[20] in defending or even
attacking an enemy was used to model DSAs movement
behavior.

The sting of a single fireant is not nearly as painful
as a single sting from a wasp or centipede. The pain and
danger lies in the multiple stings delivered by a single ant
and most important the fact that fireants rarely attack
alone. Their powerful pheromones tell their colony
members that help is needed. The real pain of fireants
comes from the combination of hundreds of angry insects
and each one may sting numerous times. In our algorithm
DSAs follow similar behavior. Having moved on to
another machine the DSAs will send back reports of how
useful this machine was. The usefulness of the machine is
determined by the number of new web services that the
DSA has found. As machines are not client machines and
are actual servers on the web, this activity shows the
servers activity in adding new services and can be used for
future references, so as the DSA reaches a useful machine
it sends back a message to the previous machine indicating
a good choice for routing other DSAs of the same type.

One other type of agents existing on each machine is
actually immobile. They form a routing table for each
specific type of DSA and manage all the messages that

310

have been sent from the DSAs. As the importance of the
sent back messages should wear off after some time, these
agents will decrease the effect of an old message on a
specific route by decrementing its value. So as time goes
by the effect of older messages is decreased and new
messages have greater effect. By this mechanism if a
server had been previously inactive but has started
extensive operation now will have the chance to survive
and receive DSA agents that will explore it.

The other technique that is utilized to increase path
selection diversity is the use of a probabilistic path
selection. In this method every path will be selected by a
degree which will be calculated based on the routing
tables. So even if DSAs have a low interest in navigating a
path that path still has a low chance of being selected. This
mechanism was to a great extent inspired by the roulette
wheel technique in genetic algorithms.

E. Web Service Composition Plan

After the user submits his request to the system, it
will be analyzed and the intent (user inputs and desired
outputs) are detected and are shaped in first order logic
clauses. The FOL clause is then passed to the Web Service
Compser (WSComposer) component which will handle
the case and provide the ARC. The first step in this
module is that the final desired outputs are parameterized.
For example if a user has requested a red car, the
WSComposer will change the request into the ARC
concept based on the available ontology. The abstract FOL
clause is then sent to the Planner to create the desired ARC.

Planning Through DSAs’ Meetings

Once the abstract FOL clause has been received by
the planner it will start to explore the possible solution
space to find the most optimal solution; however it does
not guarantee to find the best solution. The planner will
call one of the DAS agents that are related in concept with
the abstract FOL provided from the previous module. If
there is more than one concept that can be mapped to the
requested service, one DSA agent will be created for each
of those concepts. The summoned DSA agents will then
form a hetro-DSA meeting.

The hetro-DSA meeting will comprise all of the
DSA agents that conceptually have some sort of relation
with inputs or outputs of the request. The WSComposer
will start the rule chaining process based on the rule bases
of all the present DSAs which will be aggregated to form
one unique rule base. The inference process is followed
from top to bottom and vice versa, by this we mean that
the planner tries to reach a plan both starting from the
outputs to reach the inputs. While on the other hand the
inputs are thought as initial conditions and the chaining
process tries to gain the desired outputs. Both of the
techniques which respectively are called backward and
forward chaining are utilized. In other words, backward

chaining starts with a list of goals and works backwards to
find out if there are suitable inputs available to support the
desired goals or not but forward chaining will do the
reverse.

After the chaining process two probable states will
occur. The first state is when the WSComposer has been
successful in finding an ARC. In this situation the ARCs –
multiple ARCs can be calculated when there is more than
one chain which will reach the goal, we will talk more on
this in the future works section – are sent to the next
module to be checked for parameter value consistency.
However if the WSComposer is absolutely futile in
returning a suitable result the Hint module is consulted.

In this phase the list of all unbound variables are
listed and a request is sent to the user. The user will then
have the choice to fill in some the required variables in
order to provide the planner with more choices for
creating the chain. If the user refuses to provide more
information or in any case does not have more information
to offer the framework will return a list of partial solutions
that it was able to find. Although the partial solutions may
be off track, but they will benefit the user in two ways: 1.
The user will learn more on how the inference procedure
of the system is so the next time he will be more precise in
defining his requirements and 2. The partial solution may
help the user gain some information, although incomplete,
about the path to getting to the information he needs.

On the other hand if the user provides the framework
with the required information or even part of the required
information the chaining process will again start. This
time the old rule base is still consulted however the DSA
agents which where used the previous time have surely
left this server, so new DSAs are called for. This change
of agents will increase the possibility that some key
missing rules will be added and allow the chain to
complete or at least allow more rules to be added to the
rule base outdating the previous old rules and resulting in
an updated rule base which will ease the inference
process.

If the WSComposer is victorious in providing the
user with the required ARC, two subsequent actions will
be triggered. The first action is that the list of successful
chains is stored in a Proof Dictionary for later use. The
next time a similar request is made the WSComposer will
automatically check the proof dictionary for available
entries that might fit the problem on hand. The proof
dictionary on the other hand has a specific timeout value
for every entry. Whenever a timeout occurs the specific
record will be deleted. The reason that the records are
regularly deleted is that new web services might be
brought into function or old services might have gone
down.

The second action that is automatically triggered is
the birth of new DSA agents. If the chaining process is
successful, new agents of the type of the DSAs involved in

311

the chaining process are born. This is like the reproduction
in real world in the way that if fertility is achieved new
children will be born. On the other hand, as the DSAs get
older the probability of their death increases. Being
involved in success or failures in chaining will increase or
decrease the chance of survival. Having a heavy rule base
will also decrease DSA mortality.

F. Parameter Range Control

Having created the abstract ARC, the WSComposer
will send the abstract ACR to the parameter range control
module. The parameter range control component checks to
see although the requests and inputs conceptually match
the deducted chain, if there parameter values are in the
scope of the discovered web services or not. Suppose
some one is looking for web service to buy a red car in
London, and the WSComposer provides him with a web
services that manages a car seller but that car seller is
located in Los Angeles. So the Parameter range control
component is there to check for any inconsistencies. The
set of ARCs that have satisfied the control of this stage
will then be ready made for the end-user to select from.
The user will eventually have the choice to select from the
list of web service compositions provided by the
framework.

3. Agent Society Behavior Analysis

To analyze the behavior of the agent society and the
regulating parameters and algorithms that control and
moderate the behavior of the agents, several different
experiments were carried out; those at times showed great
results. The agent society performs as if it is learning and
building upon a collective behavior by showing aggregate
experience collection. The experiments were conducted on
three completely different circumstances where the web
service request, number of available web services, and the
number of servers acting as web service registries had
been initialized in a guided manner. In these experiments
the length of the system life time was set to 3000 cycles.
The cycles are internal global timer that had been used for
synchronization purposes.

In figures 5 through to 8 we will discuss the behavior
of the agent society based on the observations and the
anticipations. In the first condition, web services were
added to the web service registries on a regular basis until
cycle 900.the addition of further web services is stopped
from then. The growth in the number of agents in figure 5
shows that the system is creating more and more agents
because of successful homo-DSA meetings. Successful
meetings are held because web services are been added to
the repositories on a regular basis so enough web service
exchange has happened to allow new DSA reproduction
(new DSA birth). The chart related to condition 1 shows
that the system will continue discovering the new web

services until cycle 1400 and hence continues to
reproduces related DSAs. After cycle 1400 the number of
agents will decease due to the fact that no new web
services have been added so unsuccessful meetings will
have a reverse effect on the agent reproduction. As the
agents get older the probability of their death increases
and the population of the DSA agents decreases. As it can
be clearly seen in figure 6 the death probability related to
condition one is rising after cycle 1300.

Figure5. Mean Number of Live Agents in Each Generation

In condition 2, several different web services were
added to the servers available in the experiment so a sharp
rise in the number of agents can be seen. A few web
servers were removed from operation and at the last 1000
cycles those web services returned back to operation. The
gradual rise in the number of agents reveals the fact that
the agent society is able to quickly develop a collected
learning behavior and adapt itself to the changing
environment. The death probability chart related to the
second condition shows that the probability of death in the
agents in the first 900 cycles is following a stable trend;
having encountered a lot of unfortunate meetings; the
agents are more threatened by death so their death
probability increases. At the end of this experiment their
death probability gradually decreases to allow more agents
in the environment to quickly detect the newly added web
services which are actually the returning to operation web
services.

In the third experiment, no services were available in
the web service registries until a specific time (t = 1000
cycle). In the 1000th cycle a random number of web
services were added to the distributed set of web service
registries and no more changes were done from then on.
The changes in figure 5 reflect the correct collective
decision from the agent society by having birth and
reproduction of new agents resulting in an increase in the
agent population allowing a more diverse search space.
The gradual decrease in the number of agents shows that
the search space has been narrowed since the number of

312

web services has been fixed and no new web service is
available for discovery resulting in unsuccessful homo-
DSA meetings, this will in effect result in higher DSA
death probability and a decrease in the DSA society
population. The forth experiments aims at modeling the
behavior of the agent society re-learning capabilities. In
this experiment a number of web services were gradually
added to the registries between cycles 300 and 1100 and
after that no more web services were added. A few web
services were randomly omitted from the registries. After
an interval at cycle 2200 a couple of other web services
were again added to the web service repositories. The
whole experiment tried to understand the behavior of the
agent society in the way to observe their rationale in
finding the suitable population control. As it can be clearly
seen, as a number of new agents are added to the system
the population of the agents grows; however keeping the
number of agents constant, narrows the search space and
leads to unsuccessful homo-DSA meeting which will in
effect decrease the population. Following the addition of a
couple of new web services the population of DSA agent
increases to discover all of the newly added web services.
The reoccurring behavior of the agents shows a fast
collective learning style within the agent society. Figures 6
and 7 show the controls upon the meeting radius of the
DSAs and their death probability, respectively.

Figure6. Mean DSA meeting Radius

A different model has also been devised to show the
collective learning and experience gathering behavior of
the system. To show that the algorithm follows a natural
trend in keeping the elicit agents and dismissing the poor
agents, by using the agents with a higher experience and
utility rate, a factor called Internal Experience (IE) has
been created (Eq. 1).

ionDSApopulat

DeathprobDSAageDSA
perienceInternalEx

.. ×=

 (Eq.1)

Figure7. The Mean Death Probability of DSAs

The result of an experiment based on the IE equation
shows that the system gradually learns that the agents with
more experience and activity in the system are worth more
attention and keeps them, while on the other hand the
agents with less internal knowledge and experience are
quickly killed. Figure 8 shows that the system has a very
low experience and relatively high amount of agents in the
system; it adapts the number of agents through time while
increasing the experience of the system. The number of
agents in this model have been decreased without a
negative effect on the system overall knowledge; however
an increase can be seen (compare cycle 300 with cycle
2700 with the same number of agents). As a conclusion of
the five different experiments we can infer that the
algorithm that controls the agent behavior provides
diversity of the search space to agents while incorporating
experience and rationality in the DSA agents’ behavior.
The cooperative and collective learning behavior of the
agents is the most noteworthy point in the algorithm.

4. Conclusion

In this paper we have tried to provide the basis of a
complete framework for web service composition. We try
to provide the means of easier and simpler user interaction
through the usage of a restricted English language to
enable the user to communicate with the framework in a
much easier way. The user input is then transformed into
first order logic to allow rule chaining using both forward
and backward chaining. User intent and the sketch of the
outside world is made through bound and unbound
variables. Features like using hints to unlock a deadend in
the chaining process and the creation of a proof dictionary
to speed up the answering process have also been
introduced in this framework.

An agent society has also been introduced in the
system where the agents have a lifecycle and a

313

reproduction system. Two types of different agents have
been created. The domain specific agents are mobile
agents which allow the web service discovery and
definition and the other type of agents are used to guide
the DSAs while routing in the network. The routing
process was to a great extent inspired by the fire ants’
defence system.

Figure8. Collective Learning Behavior of the System

5. References

1. Relax NG Technical Committee: RELAX NG home
page.Online in Internet, 2005

2. B. Ludaescher, Y. Papakonstantinou, P. Velikhov, and
V. Vianu. View definition and DTD inference for xml.
In Workshop on Semistructured Data and Nonstandard
Data Formats, January 1999

3. TREX: Tree Regular Expressions for XML, J Clark -
URL http://www. thaiopensource. com/trex, 2001

4. G. Cobena, S. Abiteboul, and A. Marian. Detecting
changes in xml documents. In Proc. Int. Conf. on Data
Engineering, 2002.

5. Michael K. Smith, Chris Welty, and Deborah
McGuinness, Owl web ontology anguage guide.
http://www.w3.org/TR/owl-guide/, 2003.

6. D. Fensel, F. van Harmelen, I. Horrocks, D. L.
McGuinness, and P. F. Patel-Schneider. OIL: An
ontology infrastructure for the semantic web. IEEE
Intelligent Systems, 16(2):38-45, 2001.

7. J. Hendler and D. McGuinness, “The DARPA Agent
Markup Language,” IEEE Intelligent Systems, vol. 15,
no. 6,Nov./Dec. 2000, pp. 72–73.

8. I. Horrocks. DAML+OIL: A Description Logic for the
Semantic Web. IEEE Data Engineering Bulletin,
25(1):4–9, 2002.

9. P. Traverso and M. Pistore. Automated Composition of
Semantic Web Services into Executable Processes. In
Proc. of ISWC 2004.

10. Ebrahim Bagheri, Mahmood Naghibzadeh, Mohsen
Kahani: A Novel Resource Dissemination and
Discovery Model for Pervasive Environments Using
Mobile Agents. HPCC 2005: 1043-1048.

11. Felix Hernandez-del-Olmo, Elena Gaudioso, Jesus
Boticario: A Multiagent Approach to Obtain Open and
Flexible User Models in Adaptive Learning
Communities. User Modeling 2003: 203-207.

12. Franklin, S and Graesser, A, 1997, ``Is it an agent, or
just a program?: A taxonomy for autonomous agents''
In: MuÈ ller, JP, Wooldridge, MJ and Jennings, NR,
eds, Intelligent Agents III: Proceedings of the Third
International Workshop on Agent Theories,
Architectures and Languages (Lecture Notes in
Artifcial Intelligence, 1193) Springer-Verlag, 21-35.

13. Ebrahim Bagheri, Mahmoud Naghibzadeh, Mohsen
Kahani, Faezeh Ensan, A Novel Resource
Advertisement and Discovery Model for Ubiquitous
Computing Environments using Mobile Agents,
Proceedings of the 10th IEEE Tencon-2005,
Melbourne, Australia, November 21-24,2005.

14. Mandell, D.J. and McIlraith, S.A. Adapting BPEL4WS
for the Semantic Web: The Bottom-Up Approach to
Web Service Interoperation. In Proceedings of the
Second International Semantic Web Conference, 227-
241, 2003.

15. S. R. Ponnekanti and A. Fox. SWORD: A Developer
Toolkit for Web Service Composition. In Proc. of the
Eleventh International World Wide Web Conference,
Honolulu, HI, 2002.

16. D. Nau, T. Au, O. Ilghami, U. Kuter, J. Murdock,
D.Wu, F. Yaman, SHOP2: An HTN planning system,
Journal of Artificial Intelligence Research 20 (2003)
379–404.

17. B. Medjahed, A. Bouguettaya, and A. K. Elmagarmid.
Composing Web Services on the Semantic Web. The
VLDB Journal, 12(4):333–351, 2003.

18. Fuchs, Norbert E., Uta Schwertel, Rolf Schwitter
(1999) Attempto Controlled English (ACE), Language
Manual, Version 3.0, Technical Report ifi-99.03,
University of Zurich.

19. Stefan Hoeer. The Syntax of Attempto Controlled
English: An Abstract Grammar for ACE 4.0. Technical
Report I-2004.03, Department of Informatics,
University of Zurich, Zurich, Switzerland, 2004.

20. The Red Imported Fire Ant,
http://www.antcolony.org/fire_ants.htm, 2002

314

