LINEAR CONTROL SYSTEMS

Ali Karimpour
Associate Professor
Ferdowsi University of Mashhad
Lecture 20

Frequency domain charts

*Topics to be covered include:*

- Relative stability measures for minimum phase systems.
  - Gain margin.
  - Phase margin.
- Nichols chart or gain phase plot.
  - Stability analysis with gain phase plot.
- Bode plot.
  - Stability analysis with Bode plot.
- Step by step Bode plot construction.
Stability margins

Stability Is Not A Yes/No Proposition

It's not enough to know that a system is stable or unstable. If a system is just barely stable, then a small gain in a system parameter could push the system over the edge, and you will often want to design systems with some margin of error.

If you're going to do that, you'll need some measure of how stable a system is. To get such measures - and there are at least two that are widely used.
Stability margins

Phase Margin

Phase margin is the **most widely used measure** of relative stability when working in the frequency domain.

We define **phase margin** as the phase (angle) that the frequency response would have to change to move to the -1 point.

ω_c : Is the gain crossover frequency
Phase margin computation

The phase margin, $\phi_m$ is defined as follows:

$$\phi_m = 180 + \angle G(j\omega_c)G_c(j\omega_c)$$

How to derive $\omega_c$

Let $|G(j\omega)G_c(j\omega)| = 1$  

$\Rightarrow \omega_c = \sqrt{1}$
Stability margins

Phase Margin

The two different Nyquist plots above would lead to two different phase margins. The system with the frequency response with the dashed line is less stable.
Stability margins

Phase Margin

The two different gains shown for the Nyquist plot below would lead to the same phase margins. **But do they have the same stability margin? Clearly no.**

Thus we need another measure of relative stability.
Stability margins

Gain Margin

Gain margin is another widely used measure of relative stability when working in the frequency domain.

We define gain margin as the gain that the frequency response would have to increase to move to the -1 point.

\( \omega_{180} \): Is the phase crossover frequency
Gain margin computation

The gain margin, GM is defined as follows:

\[ GM = \frac{1}{|G(j\omega_{180})G_c(j\omega_{180})|} \]

But gain margin is usually specified in db.

\[ GM = 20\log\left(\frac{1}{|G(j\omega_{180})G_c(j\omega_{180})|}\right) \]

How to derive \( \omega_{180} \)

Let \( \angle(G(j\omega)G_c(j\omega)) = 180 \)

\[ \implies \omega_{180} = \sqrt{ } \]

or \( \text{Im}(G(j\omega)G_c(j\omega)) = 0 \)
Stability margins

Phase and Gain Margin

Same Phase Margin

But different Gain Margin
Sensitivity and complementary sensitivity peak

\[ L(s) = G_c(s)G(s) \]
\[ T(s) = \frac{G_c(s)G(s)}{1 + G_c(s)G(s)} = \frac{L(s)}{1 + L(s)} \]
\[ S(s) = \frac{1}{1 + G_c(s)G(s)} = \frac{1}{1 + L(s)} \]
Sensitivity peak

\[ |S(j\omega)| = \frac{1}{|1 + G(j\omega)G_c(j\omega)|} \]

The sensitivity peak, \( M_s \) is defined as follows:

\[ M_s = \max_{\omega} |S(j\omega)| = \frac{1}{|1 + G(j\omega_s)G_c(j\omega_s)|} \]
Nyquist chart (polar plot) construction

Let $G_c(s)G(s) = \frac{150}{s(s+5)(s+10)}$

<table>
<thead>
<tr>
<th>$\omega$</th>
<th>$G_c(j\omega)G(j\omega)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2.93∠-107°</td>
</tr>
<tr>
<td>2</td>
<td>1.37∠-123°</td>
</tr>
<tr>
<td>3</td>
<td>0.82∠-138°</td>
</tr>
<tr>
<td>4</td>
<td>0.54∠-151°</td>
</tr>
<tr>
<td>5</td>
<td>0.38∠-162°</td>
</tr>
<tr>
<td>6</td>
<td>0.27∠-171°</td>
</tr>
<tr>
<td>7</td>
<td>0.20∠-179°</td>
</tr>
<tr>
<td>8</td>
<td>0.16∠-187°</td>
</tr>
<tr>
<td>9</td>
<td>0.12∠-193°</td>
</tr>
<tr>
<td>20</td>
<td>0.02∠-229°</td>
</tr>
</tbody>
</table>

$G_c(j1)G(j1) = \frac{150}{j(j+5)(j+10)} = 2.93∠-107°$

$\omega_c = 2.6 \quad PM = 45° \quad \omega_{180} = 7 \quad GM = ??? \text{ db}$
Nichols chart (gain phase plot) construction

Let \( G_c(s)G(s) = \frac{150}{s(s + 5)(s + 10)} \)

| \( \omega \) | \( G_c(j\omega)G(j\omega) \) | \( 20 \log |G_c(j\omega)G(j\omega)| \) |
|---|---|---|
| 1 | 2.93 \(-107^\circ\) | 9.33 \text{ db} |
| 2 | 1.37 \(-123^\circ\) | 2.71 \text{ db} |
| 3 | 0.82 \(-138^\circ\) | -1.71 \text{ db} |
| 4 | 0.54 \(-151^\circ\) | -5.29 \text{ db} |
| 5 | 0.38 \(-162^\circ\) | -8.42 \text{ db} |
| 6 | 0.27 \(-171^\circ\) | -11.23 \text{ db} |
| 7 | 0.20 \(-179^\circ\) | -13.80 \text{ db} |
| 8 | 0.16 \(-187^\circ\) | -16.18 \text{ db} |
| 9 | 0.12 \(-193^\circ\) | -18.39 \text{ db} |
| 20 | 0.02 \(-229^\circ\) | -35.77 \text{ db} |

\( \omega_c = 2.6 \quad PM = 45^\circ \quad \omega_{180} = 7 \quad GM = 13.8 \text{ db} \)
Bode plot construction

Let \( G_c(s)G(s) = \frac{150}{s(s + 5)(s + 10)} \)

| \( \omega \) | \( G_c(j\omega)G(j\omega) \) | 20\log|G_c(j\omega)G(j\omega)| |
|---|---|---|
| 1 | 2.93\( \angle -107^\circ \) | 9.33\( db \) |
| 2 | 1.37\( \angle -123^\circ \) | 2.71\( db \) |
| 3 | 0.82\( \angle -138^\circ \) | -1.71\( db \) |
| 4 | 0.54\( \angle -151^\circ \) | -5.29\( db \) |
| 5 | 0.38\( \angle -162^\circ \) | -8.42\( db \) |
| 6 | 0.27\( \angle -171^\circ \) | -11.23\( db \) |
| 7 | 0.20\( \angle -179^\circ \) | -13.80\( db \) |
| 8 | 0.16\( \angle -187^\circ \) | -16.18\( db \) |
| 9 | 0.12\( \angle -193^\circ \) | -18.39\( db \) |
| 20 | 0.02\( \angle -229^\circ \) | -35.77\( db \) |

\[ \omega_c = 2.5 \quad PM = 48^\circ \quad \omega_{180} = 7 \quad GM = 13.8\( db \) \]
Step by step bode plot construction

Let \( G_c(s)G(s) = \frac{k(s + z_1)(s + z_2)}{s^2(s + p_1)(s + p_2)(s + p_3)} \)

Step 1:

\[
G_c(s)G(s) = \frac{kz_1z_2}{p_1p_2p_3} \cdot \frac{(s / z_1 + 1)(s / z_2 + 1)}{s^2(s / p_1 + 1)(s / p_2 + 1)(s / p_3 + 1)} = k \cdot \frac{(s / z_1 + 1)(s / z_2 + 1)}{s^2(s / p_1 + 1)(s / p_2 + 1)(s / p_3 + 1)}
\]

Step 2:

\[
20 \log |G_c(j\omega)G(j\omega)| = 20 \log |k| + 20 \log |j\omega / z_1 + 1| + 20 \log |j\omega / z_2 + 1| + 20 \log \left| \frac{1}{j\omega / p_1 + 1} \right| + 20 \log \left| \frac{1}{j\omega / p_2 + 1} \right| + 20 \log \left| \frac{1}{j\omega / p_3 + 1} \right|
\]

Step 3:

\[
\angle G_c(j\omega)G(j\omega) = \angle k + \angle (j\omega / z_1 + 1) + \angle (j\omega / z_2 + 1) + \angle (1/(j\omega)^2) + \angle (1/(j\omega / p_1 + 1)) + \angle (1/(j\omega / p_2 + 1)) + \angle (1/(j\omega / p_3 + 1))
\]
Let  \[ G_c(s)G(s) = k \frac{(s/z_1 + 1)(s/z_2 + 1)}{s^2(s/p_1 + 1)(s/p_2 + 1)(s/p_3 + 1)} \]

\[
20 \log |G_c(j\omega)G(j\omega)| = 20 \log |k| + 20 \log |\frac{j\omega}{z_1} + 1| + 20 \log |\frac{j\omega}{z_2} + 1| + 20 \log \left|\frac{1}{(j\omega)^2}\right|
\]

\[
+ 20 \log \left|\frac{1}{j\omega/p_1 + 1}\right| + 20 \log \left|\frac{1}{j\omega/p_2 + 1}\right| + 20 \log \left|\frac{1}{j\omega/p_3 + 1}\right|
\]

\[
\angle G_c(j\omega)G(j\omega) = \angle k + \angle (\frac{j\omega}{z_1} + 1) + \angle (\frac{j\omega}{z_2} + 1) + \angle (1/(j\omega)^2)
\]

\[
+ \angle (\frac{1}{j\omega/p_1 + 1}) + \angle (\frac{1}{j\omega/p_2 + 1}) + \angle (\frac{1}{j\omega/p_3 + 1})
\]
Step by step bode plot construction

\[ 20 \log \left| G_c(j \omega)G(j \omega) \right| = 20 \log |k| \]

\[ \angle G_c(j \omega)G(j \omega) = \angle k \]

Why 0 or 180?
It depends to sign of k.
Step by step bode plot construction

\[ 20 \log |G_c(j\omega)G(j\omega)| = 20 \log |j\omega / z_1 + 1| \]
\[ \angle G_c(j\omega)G(j\omega) = \angle (j\omega / z_1 + 1) \]

Let \( z_1 = 20 \)
Step by step bode plot construction

\[ 20 \log |G_c(j\omega)G(j\omega)| = 20 \log |1/(j\omega)^2| \]

\[ \angle G_c(j\omega)G(j\omega) = \angle(1/(j\omega)^2) \]
Step by step bode plot construction

\[ 20 \log |G_c(j\omega)G(j\omega)| = 20 \log \left| \frac{1}{j\omega / p_1 + 1} \right| \]

\[ \angle G_c(j\omega)G(j\omega) = \angle \left( \frac{1}{j\omega / p_1 + 1} \right) \]

Let \( p_1 = 20 \)

Let \( p_1 = 20 \text{ db/dec} \)
Example 1: Derive the GM and PM of following system by use of Bode plot.

Open loop transfer function is:

\[ G(s) = \frac{500}{s(s + 5)(s + 10)} = \frac{10}{s(s/5 + 1)(s/10 + 1)} \]
Example 1: Derive the GM and PM of following system by use of Bode plot.

\[ R(s) \xrightarrow{+} \frac{500}{s(s+5)(s+10)} \xrightarrow{-} C(s) \]

\[ R(s) + \frac{500}{s(s+5)(s+10)} \xrightarrow{-} C(s) \]

\[ \omega_c = 6.5 \text{ rad/sec} \]

\[ \Rightarrow \quad PM = 10^\circ \]

\[ \omega_{180} = 7.2 \text{ rad/sec} \]

\[ \Rightarrow \quad GM = 3 \text{ db} \]
Exercises

1: Derive the gain crossover frequency, phase crossover frequency, GM and PM of following system by use of Bode plot.

\[ \frac{1}{s(s+10)} \]

Answer: \( \omega_c = 12.5, \omega_{180} = \infty, GM = \infty \) and \( \phi_m = 38^\circ \)
Exercises

2 The polar plot of an open loop system with negative unit feedback is shown.

a) Find the open loop transfer function.
b) Find the closed loop transfer function.

\[ \omega = 11.18 \text{ rad/sec} \]

\[ -0.447 \]

answer a: \[ \frac{150}{s(s + 25)} \]

b: \[ \frac{150}{s^2 + 25s + 150} \]
Exercises

3 The Bode plot of an open loop system with negative unit feedback is shown.

a) Find the open loop transfer function.

b) Find the closed loop transfer function.

answer a: \( \frac{200}{s(s + 20)} \)

b: \( \frac{200}{s^2 + 20s + 200} \)

Dr. Ali Karimpour  Feb 2013