Lecture 2

Modeling of Control Systems

Topics to be covered include:

- An industrial example
- Modeling of systems
- Systems with time delay.
Example 1: An industrial plant

The example, taken from the steel industry, is of a particular nature, however the principal elements of specifying a desired behaviour, modeling and the necessity for trade-off decisions are generic.
Process schematic of a steel industry

Diagram:

- Tundish
- Liquid Crater
- Solidified Shell
- Driven Support Rolls
- Secondary Cooling Water Sprays
- Containment Rolls
- Straightening Rolls

Key:
- Tundish
- Liquid Crater
- Solidified Shell
- Driven Support Rolls
- Secondary Cooling Water Sprays
- Containment Rolls
- Straightening Rolls
Process schematic of a steel industry (continue)
The cast strip in the secondary cooling chamber
Performance specifications

The key performance goals for this problem are:

- **Safety**: Clearly, the mould level must never be in danger of overflowing or emptying as either case would result in molten metal spilling with disastrous consequences.

- **Profitability**: Aspects which contribute to this requirement include:
 - Product quality
 - Maintenance
 - Throughput
Definition of the control problem

Abstracting from the above particular problem, we can introduce:

Definition 2.1:

The central problem in control is to find a technically feasible way to act on a given process so that the process behaves, as closely as possible, to some desired behaviour. Furthermore, this approximate behaviour should be achieved in the face of uncertainty of the process and in the presence of uncontrollable external disturbances acting on the process.
Models

Model: Relationship among observed signals.

1- Mental models
2- Graphical models
3- Mathematical (analytical) models
4- Software models

Model types

1- Modeling
 - Split up system into subsystems,
 - Joined subsystems mathematically,
 - Does not necessarily involve any experimentation on the actual system.

2- System identification
 - It is directly based on experimentation.
 - Input and output signals from the system are recorded.

3- Combined
Modeling

\(h^* \): commanded level of steel in mould
\(h(t) \): actual level of steel in mould
\(v(t) \): valve position
\(\sigma(t) \): casting speed
\(q_{in}(t) \): inflow of matter into the mould
\(q_{out}(t) \): outflow of matter from the mould
Modelling a simple tank

مدل‌سازی یک منبع ساده

Tundish

Molten Steel

Valve

Mould Level

Cooling Water

آب خنک‌کننده

Dr. Ali Karimpour Feb 2013
Simplified block diagram for modeling

Block diagram of the simplified mould level dynamics, sensors and actuators

Casting speed measurement

Outflow due to casting speed

Inflow from control valve

Mould level

Measured mould level

Dr. Ali Karimpour Feb 2013
Level of compromise
سطح مصالحة

We may ask if these trade-offs are unavoidable or whether we could improve on the situation by such measures as:

- better modelling
- more sophisticated control system design

(Aside: Actually the trade-off is fundamental as we shall see presently).
Example 2: Dynamics of a mechanical system

مثال 2: دینامیک یک سیستم مکانیکی

\[u - b \dot{x} = M \ddot{x} \quad \rightarrow \quad \ddot{x} + \frac{b}{M} \dot{x} = \frac{1}{M} u, \text{ with } a = \dot{x} \]
A simplified aeroplane

getPosition control system
A simplified aeroplane

یک هواپیمای ساده شده
Example 3: Dynamics of a electromechanical system

مثال ۳: دینامیک یک سیستم الکترومکانیکی

Position control system

![Diagram](image-url)
Example 3: Continue

\[L_a \frac{di_a}{dt} + R_a i_a + e_b = e_a \]

\[e_b = K_b \frac{d\theta}{dt} \]

\[J \frac{d^2 \theta}{dt^2} + f \frac{d\theta}{dt} = T \]

\[T = Ki_a \]
Example 4: Dynamics of a liquid level system

مثال ۴: دینامیک سطح سطح مایعات

\[
\frac{d(\rho Ah)}{dt} = \rho F_i - \rho F_{out}
\]

\[
F_{out} = \alpha \sqrt{h}
\]

\(F_i\) = Inlet volumetric flow rate
\(F_{out}\) = Outlet volumetric flow rate
\(A\) = Cross sectional area of the tank
\(\rho\) = Density of water
\(h\) = Height of water
Example 5: A system with pure time delay

مثال 5: سیستم با تأخیر ثابت
Example 5: A system with pure time delay

مثال 5: سيستم با تأخير ثابت

\[H(s) = \frac{Ke^{-sT_d}}{(\tau s + 1)} \]

\[H(s) = e^{-sT_d} \]
Exercises

2-1 Derive the output of example 2 excited by following input $u = \sin t$

2-2 Repeat example 3, but neglect the inductance of the motor.

2-3 Repeat example 3, but consider the motor as a series motor.
2-4 Find the mathematical model of the following system.

Final answer is:

\[m_2 \ddot{y} + b \dot{y} + k_2 y = b \dot{x} + k_2 x \]
\[m_1 \ddot{x} + b \dot{x} + (k_1 + k_2) x = b \dot{y} + k_2 y + k_1 u \]
Exercises (Continue)

2-5 In a control system of an industrial composition process, it is very important to control the chemical composition of the output. There is an infrared analyzer for measurement and the valve of additive stream is controllable. Complete the feedback loop and find the block diagram of the process.
Exercises (Continue)

2-6 The figure shows a system for extracting water for irrigation by use of solar energy. Draw the block diagram of the system operation.