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In this chapter, we discuss the fundamental limitations on performance in SISO systems. Proper 

scaling of the input, output and disturbance variables prior to this analysis is critical. Consider the 

simple one degree-of-freedom configuration in Figure 3-1. The output of the system is 
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For “perfect control” we want 0=−= rye  that is, we would like 

ITS == ,0  3-2

For disturbance rejection and command tracking we need 0≈S or equivalently IT ≈ . On the 

other hand, the requirement for zero noise transmission implies that 0≈T or equivalently IS ≈ .  

 
Figure 3-1 One degree-of-freedom configuration 

This illustrates the fundamental nature of feedback design which always involves a trade-off 

between conflicting objectives, in this case between large loop gains for disturbance rejection and 

tracking, and small loop gains to reduce the effect of noise. 

Some important design objectives which necessitate trade-offs in feedback control are: 

1- Performance, good disturbance rejection: needs IT ≈  or 0≈S . 

2- Performance, good command following: needs IT ≈  or 0≈S . 

3- Mitigation of measurement noise on plant outputs: needs 0≈T  or IS ≈ . 

Fortunately, the conflicting design objectives mentioned above are generally in different 

frequency ranges. 
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3-1 Scaling and Performance 

 

Throughout this chapter and the next, when we will assume that the variables and models have 

been scaled as outlined previously so that the requirement for acceptable performance is: 

• For any reference )(tr  between -R and R and any disturbance )(td  between -1 and 1, keep 

the output )(ty  within the range 1)( −tr  to 1)( +tr  (at least most of the time), using an 

input )(tu  within the range -1 to 1. 

We will interpret this definition from a frequency-by-frequency sinusoidal point of view, i.e. 

ttd ωsin)( =  and so on.  With rye −= we then have: 

• For any disturbance 1)( ≤ωd  and any reference )()( ωω Rr ≤ , the performance 

requirement is to keep at each frequency ω  the control error 1)( ≤ωe  using an input 

1)( ≤ωu . 

It is impossible to track very fast reference changes, so we will assume that )(ωR  is frequency 

dependent, for simplicity, we assume that )(ωR  is R (a constant) up to the frequency rω  and is 0 

above that frequency. 

It could also be argued that the magnitude of the sinusoidal disturbances should approach zero at 

high frequencies. While this may be true, we really only care about frequencies within the 

bandwidth of the system, and in most cases it is reasonable to assume that the plant experiences 

sinusoidal disturbances of constant magnitude up to this frequency. Similarly, it might also be 

argued that the allowed control error should be frequency dependent. For example, we may 

require no steady-state offset, i.e. e should be zero at low frequencies. However, including 

frequency variations is not recommended when doing a preliminary analysis (however, one may 

take such considerations into account when interpreting the results). 

Recall that with rRr ~= the control error may be written as 

rRdGGurye d
~−+=−=  3-3

where R is the magnitude of the reference and 1)(~ ≤ωr  and 1)( ≤ωd  are unknown signals. We 

will use 3-3 to unify our treatment of disturbances and references. Specifically, we will derive 



Chapter 3                                                                                      Lecture Notes of Multivariable Control 

 4

results for disturbances, which can then be applied directly to the references by replacing dG  

by R− . 

 

3-2 Shaping Closed-loop Transfer Functions 

 

In this section, we introduce the reader to shaping of closed-loop transfer functions where we 

synthesize a controller by minimizing an ∞H  performance objective. Many design procedure act 

on the shaping of the open-loop transfer function L. An alternative design strategy is to directly 

shape the magnitudes of closed-loop transfer functions, such as )(sS and )(sT . Such a design 

strategy can be formulated as an ∞H  optimal control problem, thus automating the actual 

controller design and leaving the engineer with the task of selecting reasonable bounds “weights” 

on the desired closed-loop transfer functions. Before explaining how this may be done in practice, 

we discuss the terms ∞H . 

 
3-2-1 The terms ∞H  and 2H  
 

The ∞H  norm of a stable scalar transfer function matrix )(sF  is simply define as, 
 

( ))(max)( ωσ
ω

jFsF ≅
∞

 3-4

Strictly speaking, we should here replace “max” (the maximum value) by “sup” the supremum 

(the least upper bound). This is because the maximum may only be approached as ∞→ω  and 

may therefore not actually be achieved. However, for engineering purposes there is no difference 

between “sup” and “max”. 

The terms ∞H  norm and ∞H  control are intimidating at first, and a name conveying the 

engineering significance of ∞H  would have been better. After all, we are simply talking about a 

design method which aims to press down the peak(s) of one or more selected transfer functions. 

However, the term ∞H  which is purely mathematical, has now established itself in the control 

community. In literature the symbol ∞H  stands for the transfer function matrices with bounded 

∞ -norm which is the set of stable and proper transfer function matrices. 
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Similarly, the symbol 2H  stands for the transfer function matrices with bounded  2-norm, which 

is the set of stable and strictly proper transfer function matrices. The 2H  norm of a strictly proper 

stable transfer function matrix is defined as 
 

[ ]∫
∞+

∞−
= ωωω

π
djFjFtrsF H)()(

2
1)(

2
 3-5

 
Note that the 2H norm of a semi-proper transfer function (where )(lim ω

ω
jF

∞→
 is a nonzero constant 

matrix) is infinite, whereas its ∞H  norm is finite.  
 

3-2-2 Weighted Sensitivity 

As already discussed, the sensitivity function S is a very good indicator of closed-loop 

performance (both for SISO and MIMO systems). The main advantage of considering S is that 

because we ideally want S to be small, it is sufficient to consider just its magnitude, S  that is, we 

need not worry about its phase. Typical specifications in terms of S include: 

1- Minimum bandwidth frequency ∗
Bω  (defined as the frequency where ( )Sσ  crosses 0.707 

from below. 

2- Maximum tracking error at selected frequencies. 

3- System type, or alternatively the maximum steady-state tracking error, A. 

4- Shape of S over selected frequency ranges. 

5- Maximum peak magnitude of S, MjS ≤
∞

)( ω . 

The peak specification prevents amplification of noise at high frequencies, and also introduces a 

margin of robustness; typically we select 2=M . Mathematically, these specifications may be 

captured simply by an upper bound,
)(

1
swp

, on the magnitude of S where )(swp  is a weight 

selected by the designer. The subscript P stands for performance since S is mainly used as a 

performance indicator, and the performance requirement becomes 
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( ) ω
ω

ωσ ∀≤ ,
)(

1)(
jw

jS
P

 3-6

( ) 1)()(,1)()( ≤⇔∀≤⇔
∞

ωωωωωσ jSjwjSjw PP 3-7

The last equivalence follows from the definition of the ∞H  norm, and in words the performance 

requirement is that the ∞H  norm of the weighted sensitivity, SwP , must be less than one. In Figure 

3-2(a) an example is shown where the sensitivity, S  exceeds its upper bound 
Pw

1  at some 

frequencies. The resulting weighted sensitivity SwP  therefore exceeds 1 at the same frequencies 

as is illustrated in Figure 3-2(b). Note that we usually do not use a log-scale for the magnitude 

when plotting weighted transfer functions, such as SwP . 

Weight selection: An asymptotic plot of a typical upper bound 
Pw

1 is shown in Figure 3-3. The 

weight illustrated may be represented by 

As
Ms

sw
B

B
P ∗

∗

+
+

=
ω

ω/
)(  3-8

and we see that 1)( −ωjwP  is equal to 1≤A  at low frequencies, is equal to 1≥M  at high 

frequencies, and the asymptote crosses 1 at the frequency, ∗
Bω , which is approximately the 

bandwidth requirement. For this weight the loop shape 
s

L B
∗

=
ω  yields an S which exactly 

matches the bound 3-7 at frequencies below the bandwidth and easily satisfies (by a factor M) the 

bound at higher frequencies. This L has a slope -1 in the frequency range below crossover. In 

some cases, in order to improve performance, we may want a steeper slope for L (and S) below 
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Figure 3-2 Case where S  exceeds its bound
Pw

1 , resulting in 1>
∞

SwP  

 

 

Figure 3-3 Inverse of performance weight. Exact and asymptotic plot of 
)(

1
ωjwP

 in 3-8 

the bandwidth, and then a higher-order weight may be selected. A weight which asks for a slope -

2 for L at lower frequencies is 

( )
( )22/1

22/1/)(
As

Mssw
B

B
P ∗

∗

+

+
=

ω

ω  3-9

The insight gained from the previous section on loop-shaping design is very useful for selecting 

weights. For example, for disturbance rejection we must satisfy ( ) 1)( <ωσ jSGd  at all frequencies 
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(assuming the variables have been scaled to be less than 1 in magnitude). It then follows that a 

good initial choice for the performance weight is to let )(swp  look like )( ωjGd  at frequencies 

where 1>dG . In other  cases, one  may  first  obtain  an  initial  controller  using  another  design 

procedure, and the resulting sensitivity ( ))( ωσ jS  may then be used to select a performance 

weight for a subsequent ∞H  design. 

 

3-2-3 Stacked Requirements: Mixed Sensitivity 

The specification 1<
∞

SPω  puts a lower bound on the bandwidth, but not an upper one, and nor 

does it allow us to specify the roll-off of )(sL  above the bandwidth. To do this one can make 

demands on another closed-loop transfer function, for example, on the complementary sensitivity 

GKSSIT =−= . 

Also, to achieve robustness or to avoid too large input signals, one may want to place bounds on 

the transfer function KS . 

For instance, one might specify an upper bound 
Tω

1 on the magnitude of T to make sure that L 

rolls off sufficiently fast at high frequencies, and an upper bound, 
uω

1  on the magnitude of KS  

to restrict the size of the input signals, )( dGrKSu d−= . To combine these “mixed sensitivity” 

specifications, a “stacking approach” is usually used, resulting in the following overall 

specification: 

( )
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=<=

∞

KSw
Tw
Sw

NjNN

u

T

P

,1)(max ωσ
ω

 3-10

We here use the maximum singular value ( ))( ωσ jN to measure the size of the matrix N at each 

frequency. For SISO systems, N is a vector and ( )Nσ  is the usual Euclidean vector norm: 

222)( KSwTwSwN uTP ++=σ  3-11
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The stacking procedure is selected for mathematical convenience as it does not allow us to 

exactly specify the bounds on the individual transfer functions as described above. For example, 

assume that )(1 Kφ and )(2 Kφ  are two functions of K (which might represent SwK P=)(1φ  and 

TwK T=)(2φ ) and that we want to achieve 

11 <φ   and  12 <φ  3-12

This is similar to, but not quite the same as the stacked requirement 

12
2

2
1

2

1 <+=⎥
⎦

⎤
⎢
⎣

⎡
φφ

φ
φ

σ  3-13

Objectives 3-12 and 3-13 are very similar when either 1φ  or 2φ  is small but in the worst case 

when 21 φφ =  we get from 3-13 that 707.01 <φ   and 707.02 =φ . That is, there is a possible 

“error” in each specification equal to at most a factor dB32 = . In general, with n stacked 

requirements the resulting error is at most n . This inaccuracy in the specifications is something 

we are probably willing to sacrifice in the interests of mathematical convenience. In any case, the 

specifications are in general rather rough, and are effectively knobs for the engineer to select and 

adjust until a satisfactory design is reached. 

After selecting the form of N and the weights, the ∞H optimal controller is obtained by solving the 

problem  

∞
)(min KN

K
 3-14

where K is a stabilizing controller. Let 
∞

= )(min0 KN
K

γ denote the optimal ∞H norm. An 

important property of ∞H optimal controllers is that they yield a flat frequency response, that is, 

( ) 0)( γωσ =jN at all frequencies. The practical implication is that, except for at most a factor n  

the transfer functions resulting from a solution to 3-14 will be close to 0γ  times the bounds 

selected by the designer. This gives the designer a mechanism for directly shaping the magnitudes 

of )(Sσ , )(Tσ , )(KSσ , and so on.  

Example 3-1: ∞H  mixed sensitivity design for the disturbance process. 

Consider the disturbance process shown in the Figure 3-4. The system is described by   
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The control objectives are: 

1- Command tracking: The rise time (to reach 90% of the final value) should be less than 0.3 

second and the overshoot should be less than 5%. 

2- Disturbance rejection: The output in response to a unit step disturbance should remain 

within the range ]1,1[−  at all times, and it should return to 0 as quickly as possible ( )(ty  

should at least be less than 0.1 after 3 seconds). 

3- Input constraints: u(t) should remain within the range ]1,1[−  at all times to avoid input 

saturation (this is easily satisfied for most designs). 

Since 100)0( =dG  we have that without control the output response to a unit disturbance (d=1) 

will be 100 times larger than what is deemed to be acceptable. The magnitude )( ωjGd  is lower at 

higher frequencies, but it remains larger than 1 up to sec]/[10 radd =ω  (where 1)( =dd jG ω ).  

 
Figure 3-4 Block diagram representing the disturbance process of example 3-1 

 

Thus, feedback control is needed up to frequency dω  so we need cω to be approximately equal to 

10 rad/sec for disturbance rejection. On the other hand, we do not want cω  to be larger than 

necessary because of sensitivity to noise and stability problems associated with high gain 

feedback. We will thus aim at a design with sec/10 radc ≈ω . 

Consider an ∞H  mixed sensitivity S/KS design in which 
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⎥
⎦

⎤
⎢
⎣
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=

KSw
Sw
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P  3-15

It was stated earlier that appropriate scaling has been performed so that the inputs should be about 

1 or less in magnitude, and we therefore select a simple input weight 1=uω . The performance 

weight is chosen, in the form of 3-8 as 

410,10,5.1,
/

)( −∗
∗

∗

===
+

+
= AM

As
Ms

sw B
B

B
P ω

ω
ω

3-16

A value of A=0 would ask for integral action in the controller, but to get a stable weight and to 

prevent numerical problems in the algorithm used to synthesize the controller, we have moved the 

integrator slightly by using a small non-zero value for A. This has no practical significance in 

terms of control performance. The value 10=∗
Bω  has been selected to achieve approximately the 

desired crossover frequency sec/10 radc ≈ω . The ∞H  problem is solved with the −µ toolbox in 

MATLAB using the commands in table 3-1. 

 

Table 3-1 MATLAB program to synthesize an ∞H  controller. 

% Uses the Mu_toolbox 

G=nd2sys(1,conv([10 1],conv([0.05 1],[0.05 1])),200);                            %Plant is G. 

M=1.5; wb=10; A=1.e-4;Wp = nd2sys([1/M wb],[1 wb*A]); Wu=1;       % Weights. 

% 

%  Generalized plant P is found with function sysic; 

% 

Systemnames=’G Wp Wu’; 

inputvar=’[r(1);u(1)]’; 

outputvar=’[Wp;Wu;r-G]’; 

input_to_G=’[u]’; 

input_ to_ Wp=’[r-G]’; 

input_to_Wu=’[u]’; 

sysoutname=’P’; 
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cleanupsysic=’yes’; 

sysic; 

% 

%  Find H-infinity optimal controller; 

% 

Nmeas=1; nu=1; gmn=0.5;gmx=20; tol=0.001; 

[khinf,ghinf,gopt]= hinfsyn(P,nmeas,nu,gmn,gmx,tol); 

For this problem, we achieved an optimal ∞H  norm of 1.37, so the weighted sensitivity 

requirements are not quite satisfied (see design 1 in Figure 3-5). Nevertheless, the design seems 

good with o2.71,04.8,0.1,30.1 ==== PMGMMM TS  and 22.7=cω , and the tracking response 

is very good as shown by curve 1y  in Figure 3-6 (a). However, we see from curve 1y  in Figure 3-

6 (b) that the disturbance response is very sluggish. If disturbance rejection is the main concern, 

then from our earlier discussion we need for a performance weight that specifies higher gains at 

low frequencies. We therefore try 

( )
( )

6
22/1

22/1

10,10,5.1,/)( −∗

∗

∗

===
+

+
= AM

As

Mssw B

B

B
P ω

ω

ω
3-17

The inverse of this weight is shown in Figure 3-5 and is seen from the dashed line to cross 1 in 

magnitude at about the same frequency as weight 1Pw , but it specifies tighter control at lower 

frequencies. With the weight 2Pw  we get a design with an optimal ∞H  norm of 2.21, yielding  
o3.43,76.4,43.1,63.1 ==== PMGMMM TS  and 34.11=cω . The disturbance response is very 

good, whereas the tracking response has a somewhat high overshoot, see curve 2y in Figure 3-6(a).  

In conclusion, design 1 is best for reference tracking whereas design 2 is best for disturbance 

rejection. Two get a design with both good tracking and good disturbance rejection we need a two 

degrees-of-freedom controller. 



Chapter 3                                                                                      Lecture Notes of Multivariable Control 

 13

 
Figure 3-5 Inverse of performance weight (dashed line) and resulting sensitivity function 

(solid line) for two ∞H  design (1 and 2) for the disturbance process 

 
Figure 3-6 Closed-loop step responses for two alternative ∞H designs (1 and 2) for the 

disturbance process 

 

3-3 Fundamental Limitation on Sensitivity 

 

3-3-1 S plus T is the identity matrix 

From the identity ITS =+  we get 

1)()(1)( +≤≤− STS σσσ  3-18

1)()(1)( +≤≤− TST σσσ  3-19

This shows that we cannot have both S and T small (close to 0) simultaneously. The magnitude of 

)(Tσ  and )(Sσ  differs only at most 1 at a given frequency, so )(Tσ  is large if and only if )(Sσ  
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is large. For example, if )(Tσ  is 5 at a given frequency, then )(Sσ  must be between 4 and 6 at 

this frequency. 

3-3-2 Interpolation Constraints 

RHP-zero: If G(s) has a RHP-zero at z with output direction zy  then for internal stability of the 

feedback system the following interpolation constraints must apply: 
H

z
H

z
H

z yzSyzTy == )(;0)(  3-20

In words, it says that T must have a RHP-zero in the same direction as G and that S(z) has an 

eigenvalue of 1 corresponding to the left eigenvector zy . 

Proof of 3-20: Since z is a RHP-zero of G(s) with output direction zy  then we have 0)( =zGy H
z . 

For internal stability, the controller cannot cancel the RHP-zero and it follows that GKL =  has a 

RHP-zero in the same direction, i.e. 0)( =zLy H
z . Now ( ) 1−+= LIS  is stable and thus has no 

RHP-pole at zs = . It then follows from LST =  that 0)( =zTy H
z  and 0))(( =− zSIy H

z  

RHP-pole: If G(s) has a RHP pole at p with output direction py  then for internal stability the 

following interpolation constraints apply 

ppp yypTypS == )(;0)(  3-21

Proof of 3-21: The square matrix )( pL  has a RHP-pole at ps = and if by definition of RHP-pole 

there exists an output pole direction py such that 0)(1 =−
pypL . Since T is stable, it has no RHP-

pole at ps =  so )( pT  is finite. It then follows, from 1−= TLS , that 0)()()( 1 == −
pp ypLpTypS  and 

( ) ppp yypSIypT =−= )()( . 

3-3-3 Sensitivity Integrals 

For SISO systems we have several integral constraints on the sensitivity (the waterbed effects). 

These may be generalized to MIMO systems by using the determinant or singular value of S. For 

example, the generalization of the Bode sensitivity integral may be written 

( ) ∑∑∫∫
=

∞∞
==

pN

i
i

i
i pdjSdjS

1
00

)Re(.)(ln)(detln πωωσωω 3-22
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where ip  is RHP-pole of G(s) and pN  is the number of RHP-pole of G(s). For a stable L(s) the 

integral is zero. The area of ( ))(ln ωσ jSi  is negative, must equal the area of ( ))(ln ωσ jSi  is 

positive for stable system. So the area of ( ))( ωσ jSi  is less than one, must equal the area of 

( ))( ωσ jSi   above one for stable system. In this respect, the benefits and costs of feedback are 

balanced exactly, as in the waterbed analogy. From this we expect that an increase in the 

bandwidth ( ( ))( ωσ jSi  smaller than 1 over a larger frequency range) must come at the expense of 

a larger peak in ( ))( ωσ jSi . The presence of unstable poles usually increases the peak of the 

sensitivity ( ))( ωσ jSi  as seen from the positive contribution of ∑
=

pN

i
ip

1
)Re(.π in 3-22. 

Specifically, the area of sensitivity increase ( ( ))( ωσ jSi >1) exceeds that of sensitivity reduction 

by an amount proportional to the sum of the distance from the unstable poles to the left-half 

plane. This is plausible since we might expect to have to pay a price for stabilizing the system. 

 

3-4 Fundamental Limitation: Bounds on Peaks 

 

Based on the above interpolation constraints we here derive lower bounds on various closed-loop 

transfer function matrices. 

In the following, min,SM and min,TM denote the lowest achievable values for 
∞

S  and 
∞

T , 

respectively, using any stabilizing controller K. That is, we define 

∞
≅ SM S minmin, , 

∞
≅ TM T minmin,  

Theorem 3-1 Sensitivity and Complementary Sensitivity Peaks. 

Consider a rational plant G(s) (with no time delay). Let iz  be the one of the zN  RHP-zeros of 

G(s) with output zero direction vectors izy , . Let ip  be the one of the pN  RHP-poles of G(s) with 

output pole direction vectors ipy , . Furthermore, assume that iz  and ip are all distinct. Then we 

have the following tight lower bound on 
∞

S  and
∞

T : 

( )2/12/12
min,min, 1 −−+== pzpzTS QQQMM σ 3-23
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where the zQ , pQ  and zpQ  are zz NN × , pp NN ×  and pz NN ×  matrices respectively, and there 

elements are: 

[ ] [ ] [ ]
ji

jp
H

iz
ijzp

ji

jp
H

ip
ijp

ji

jz
H

iz
ijz pz

yy
Q

pp
yy

Q
zz

yy
Q

−
=

+
=

+
= ,,,,,, ,, 3-24

Note that 3-23 gives a tight bound for any number of RHP-poles and RHP-zeros. 

Example 3-2 

Consider the SISO plant 

2)1)(2(
)3)(1()(

+−
−−

=
ss
sssG  

Derive lower bounds on  
∞

S  and
∞

T . 

Solution: 

For this plant we have 2,3,1 121 === pzz , and since this is a SISO plant, all direction vectors 

are 1. Since we have RHP-zeros close to RHP-pole we except that control is fundamentally 

difficult. This is verified from theorem 3-1 that 

⎥
⎦

⎤
⎢
⎣

⎡−
==⎥

⎦

⎤
⎢
⎣

⎡
=

1
1

,4/1,
6/14/1
4/12/1

, pzpz QQQ  

15
6786.12
9531.7

1 2
min,min, =⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
⎥
⎦

⎤
⎢
⎣

⎡−
+== σTS MM  

We see from the factor 
ji

jp
H

iz

pz
yy
−

,, in zpQ , that the bound will be large if we have a RHP-pole ip  

close to RHP-zero jz  and with directions aligned such that jp
H

iz yy ,,  is not small. 

Example 3-3 

Consider the MIMO plant 

3,2;

11.0
20

0
11.0

)30cos()30sin(
)30sin()30cos(

3
10

01

)(30 ==
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

+
+

+
−

⎥
⎦

⎤
⎢
⎣

⎡ −

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

+

−= pz

s
s

s
zs

s

pssG
oo

oo

 

Derive lower bounds on  
∞

S  and
∞

T . 
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Solution: 

The output direction vectors corresponding to the RHP-zero at 2=z  and the RHP-pole at 2=p  

are, respectively, 

⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
−

=
0
1

,
945.0

327.0
pz yy  

This is verified from theorem 3-1 that 

327.0,6/1,4/1 , === pzpz QQQ  

( ) 8885.16020.11 2
min,min, =+== σTS MM  

One RHP-pole and one RHP-zero: For a plant with one RHP-zero z and one RHP-pole p, 3-23 

converts to: 

φφ 2
2

2
2

min,min, cossin
pz

pz
MM TS

−

+
+==  3-25

where p
H
z yy1cos−=φ  is the angle between the output directions of the pole and zero. If the pole 

and zero are orthogonal to each other o90=φ , and 1min,min, == TS MM , and there is no additional 

penalty for having both a RHP-pole and a RHP-zero. 

Example 3-4 

Consider the MIMO plant 

3,2;

11.0
20

0
11.0

cossin
sincos

3
10

01

)( ==
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

+
+

+
−

⎥
⎦

⎤
⎢
⎣

⎡ −

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

+

−= pz

s
s

s
zs

s

pssG

U
44 344 21

α

αα
αα

α  

For o0=α  the rotation matrix IU =0 , and the plant consists of two decoupled subsystems 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

++
+

−+
−

=

)3)(11.0(
20

0
))(11.0()(0

ss
s

pss
zs

sG  



Chapter 3                                                                                      Lecture Notes of Multivariable Control 

 18

Here the subsystem )(11 sg  has both a RHP-pole and a RHP-zero and closed-loop performance is 

expected to be poor. On the other hand, there are no particular control problems related to the 

subsystem )(22 sg . Next, consider o90=α , for which we have 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

++
−

−+
+

−
=⎥

⎦

⎤
⎢
⎣

⎡ −
=

0
)3)(11.0(

))(11.0(
20

)(,
01
10

9090

ss
zs

pss
s

sGandU  

and we again have two decoupled subsystems, but this time in the off-diagonal elements. The 

main difference, however, is that there is no interaction between the RHP-pole and RHP-zero in 

this case, so we expect this plant to be easier to control. For intermediate values of α  we do not 

have decoupled subsystems, and there will be some interaction between the RHP-pole and RHP-

zero. 

Since the RHP-pole in )(sGα  is located at the output of the plant, its output direction is fixed and 

we find T
py ]01[= for all values ofα . On the other hand, the RHP-zero output direction changes 

from T]01[  for o0=α  to T]10[  for o90=α . Thus, the angle φ  between the pole and zero 

direction also varies between o0  and o90  but  φ  and α  are not equal. This is seen from the Table 

3-2 where we also give min,min, TS MM = for four rotation angles ooo 60,30,0=α and o90=α . 

The table also shows the values of 
∞

S and 
∞

T obtained by an ∞H  optimal S/KS design(see 

section 3-2-3) using the following weights 

Table 3-2 Result of example 3-4 

α  o0  o30  o60  o90  

zy  ⎥
⎦

⎤
⎢
⎣

⎡
0
1

 ⎥
⎦

⎤
⎢
⎣

⎡
− 94.0

33.0
⎥
⎦

⎤
⎢
⎣

⎡
− 99.0

11.0
⎥
⎦

⎤
⎢
⎣

⎡
1
0

 

( )p
H
z yy1cos−=φ  o0  o9.70  o4.83  o90  

min,min, TS MM =  00.5  89.1  15.1  00.1  

∞
S  00.7  60.2  59.1  98.1  

∞
T  40.7  76.2  60.1  31.1  
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5.0,2,/, ==⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ +
== ∗

∗

B
B

Pu MI
s

MsWIW ω
ω  

The weight PW indicates that we require 
∞

S  less than 2, and require tight control up to a 

frequency of about 5.0=∗
Bω  rad/s. The corresponding responses to a step change in the 

reference ]11[ −=r , are shown in Figure 3-7. 

Several things about the example are worth noting: 

1- We see from the simulation for o0== αφ  in Figure 3-7 that the response for 1y  is very 

poor. This is expected because of the closeness of the RHP-pole and zero )3,2( == pz .  

 
Figure 3-7 MIMO plant with angle φ  between RHP-pole and RHP-zero. Response to step in 

reference ]11[ −=r  with ∞H  controller for four different values of φ  Solid line: 1y ; 

Dashed line: 2y  

The response for 2y is also relatively sluggish, because the ∞H is only concerned with the 

worth-case response in 1y . The response for 2y  may therefore be faster, if desired.  

2- For o90== αφ  the RHP-pole and RHP-zero do not interact. From the simulation we see 

that 1y  (solid line) has an overshoot due to the RHP-pole, whereas 2y  (dashed line) has an 

undershoot due to the RHP-zero. 

3-  The lower bound min,min, TS MM =  on 
∞

S and 
∞

T ,  (see 3-23), is tight in the sense that 

there exist a controller that achieves it. This can be shown numerically by 

selecting 01.0,,01.0 == ∗
Bu IW ω and 1=M . uW and ∗

Bω  are small so the main objective is to 
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minimize the peak of S. We find with these weights that the ∞H designs for the four angles 

yield 005.1,155.1,905.1,,04.5=
∞

S , which are very close to min,SM . 

4- The angle φ  between the pole and zero is quite different from the rotation angle at 

intermediate values between o0  and o90 . This is because of the influence of the RHP-pole 

in output 1, which yields a strong gain in this direction, and thus tends to push the zero 

direction towards output 2. 

5- The ∞H  optimal controller is unstable for  o0=α  and o30 . This is not altogether surprising, 

because for  o0=α  the plant becomes two SISO systems one of which needs an unstable 

controller to stabilize it since zp >  

 

3-5 Functional Controllability 

 

Consider a plant G(s) with l outputs and let r denote the normal rank of G(s). In order to control 

all outputs independently we must require lr = and the plant must be “functionally controllable”. 

This term was introduced by Rosenbrock for square systems, and related concepts are “right 

invertibility” and “output realizability”. We will use the following definition: 

 

 

 

Definition 3-1 Functional controllability. 

An m-input l-output system G(s) is functionally controllable if the normal rank of G(s), denoted r, 

is equal to the number of outputs )( lr = ; that is, if G(s) has full row rank. A plant is functionally 

uncontrollable if lr < . 

The normal rank of G(s) is the rank of G(s) at all values of s except at a finite number of 

singularities (which are the zeros of G(s)). The minimal requirement for functional controllability 

is that we have at least many inputs as outputs, i.e. lm ≥ . 

A plant is functionally uncontrollable if and only if ωωσ ∀= ,0))(( jGl . As a measure of how 

close a plant is to being functional uncontrollable we may therefore consider the minimum 
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singular value ))(( ωσ jGl . The only example of a SISO plant which is functionally uncontrollable 

is 0)( =sG . Similarly, a MIMO plant is functionally uncontrollable if the gain is identically zero 

in some output direction at all frequency. 

For strictly proper plants, BAsICsG 1)()( −−= , we have that )(sG is functionally uncontrollable if 

lBrank <)( (the system is input deficient), or if lCrank <)(  (the system is output deficient), or if 

lAsIrank <− )( (fewer states than outputs). This follows since the rank of a product of matrices is 

less than or equal to the minimum rank of the individual matrices. 

In most cases functional uncontrollability is a structural property of the plant; that is, it does not 

depend on specific parameter values, and it may often be evaluated from cause-and-effect graphs. 

A typical example of this is when none of the inputs iu  affect a particular output iy  which would 

be the case if one of the rows in )(sG was identically zero. Another example is when there are 

fewer inputs than outputs. 

If the plant is not functionally controllable, i.e. lr <   then there are rl −  output directions, 

denoted 0y  which cannot be affected. These directions will vary with frequency, and we have 

(analogous to the concept of a zero direction) 

0)()(0 =ωω jGjy H  3-26

From an SVD of HUYjG Σ=)( ω  the uncontrollable output directions )(0 ωjy  are the last 

rl − columns of )( ωjY . By analyzing these directions, an engineer can then decide on whether it 

is acceptable to keep certain output combinations uncontrolled, or if additional actuators are 

needed to increase the rank of )(sG . 

Example 3-5 

The following plant is singular and thus not functionally controllable 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

++

++=

2
4

2
2

1
2

1
1

)(

ss

sssG  

This is easily seen since column 2 of )(sG  is two times column 1.The uncontrollable output 

directions at low and high frequencies are, respectively, 
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⎥
⎦

⎤
⎢
⎣

⎡
−

=∞⎥
⎦

⎤
⎢
⎣

⎡
−

=
1

2
5

1)(,
1

1
2

1)0( 00 yy  

 

3-6 Limitations Imposed by Time Delays 

 

Time delays pose limitations in MIMO systems, but there are exceptions. As an example of a 

limitation, let ijθ  denote the time delay in the 'ij th element of )(sG . Then a lower bound on the 

time delay for output i is given by the smallest delay in row i of )(sG , that is: 

ijji θθ minmin =  

This bound is obvious since min
iθ is the minimum time for any input to affect output i, and min

iθ  

can be regarded as a delay pinned to output i. 

For MIMO systems we have the surprising result that an increased time delay may sometimes 

improve the achievable performance. As a simple example, consider the plant 

⎥
⎦

⎤
⎢
⎣

⎡
= − 1

11
)( se

sG θ  

With 0=θ  the plant is singular (not functionally controllable) and controlling the two outputs 

independently is clearly impossible. On the other hand, for 0>θ  affective feedback control is 

possible at high frequency, provided the bandwidth is larger than about θ/1 . That is, for this 

example control is easier the larger θ  is. In words, the presence of the delay decouples the initial 

(high-frequency) response, so we can obtain tight control if the controller reacts within this initial 

time period. To illustrate this, we may compute the singular values of G  as a function of 

frequency, and note that the minimum singular value is 0 at low frequencies, but increase with 

frequency and attains a maximum value of 41.1  at frequency θπ / .  

 

3-7 Limitations Imposed by RHP Zeros 

 

RHP-zeros are common in many practical multivariable problems. The limitations of a RHP-zero 

located at z may also be derived from the bound (by maximum module theorem) 
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)())((.)(max)()( zwjSjwsSsw PPP ≥=
∞

ωσω
ω 3-27

where )(swP  is a scalar weight. As usual, we select Pw/1 as an upper bound on the sensitivity 

function (see 3-6) so we need 1)()( <
∞

sSswP so to be able to satisfy 3-6 we must at least require 

that the weight satisfies 

1)( <zwP  3-28

We will now use 3-28 to gain insight into the limitations imposed by RHP-zeros, first by 

considering a weight that requires good performance at low frequencies, and then by considering 

a weight that requires good performance at high frequencies. 

 

3-7-1 Performance at Low Frequencies 

Consider again the performance weight 3-16 

As
Ms

sw
B

B
P ∗

∗

+

+
=

ω
ω/

)(  

It specifies a minimum bandwidth  ∗
Bω  (actually ∗

Bω is the frequency where the straight-line 

approximation of the weight crosses 1), a maximum peak of )(Sσ less than M and a steady-state 

offset less than 1<A , and at frequencies lower than the bandwidth the sensitivity is required to 

improve by at least 20 dB/decade (i.e. )(Sσ  has slope 1 or larger on a log-log plot). If the plant 

has a RHP-zero at zs = then from 3-28 we must require 

1/)( <
+

+
= ∗

∗

Az
Mzzw

B

B
P ω

ω  3-29

Real zero: Consider the case when z is real. Then all variables in 3-29 are real and positive and 3-

29 is equivalent to 

)11()1(
M

zAB −<−∗ω  3-30

For example, with 0=A  (no steady-state offset) and 2=M   ( 2)( <Sσ ) we must at least require  

2
z

B <∗ω  3-31
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Imaginary zero: For a RHP-zero on the imaginary axis zjz =  a similar derivation with 0=A  

yields 

z
M

z B

MIf

B 87.011
2

2 <⇒−< ∗
=

∗ ωω                     3-32

3-7-2 Performance at High Frequencies 

The bounds 3-30 and 3-32 derived above assume tight control at low frequencies. Here, we 

consider a case where we want tight control at high frequencies, by use of the performance weight 

∗+=
B

P
s

M
sw

ω
1)(  

This requires tight control 1)( <Sσ at frequencies higher than ∗
Bω  whereas the only requirement 

at low frequencies is that the peak of )(Sσ is less than M. Admittedly, the weight is unrealistic in 

that it requires 0)( →Sσ at high frequencies. In any case, to satisfy 1)( <
∞

sSwP  we must at least 

require that the weight satisfies 3-28 and with a real RHP-zero we derive for the above weight 

M
zB /11

1
−

>∗ω  3-33

For example, with 2=M the requirement is zB 2>∗ω . 

3-7-3 Moving the Effect of a RHP-zero to a Specific Output 

In MIMO systems, one can often move the deteriorating effect of a RHP-zero to a less important 

output. This is possible because, although the interpolation constraint 0)( =zTy H
z  imposes a 

certain relationship between the elements within each column of )(sT , the columns of )(sT  may 

still be selected independently. Let us first consider an example to motivate the results that 

follow.  

Example 3-6 

Consider the plant 

⎥
⎦

⎤
⎢
⎣

⎡
+++

=
221
11

)1)(12.0(
1)(

sss
sG  

which has a RHP-zero at 5.0== zs . The output zero direction satisfies 0)( =zGy H
z  and we find 
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⎥
⎦

⎤
⎢
⎣

⎡
−

=⎥
⎦

⎤
⎢
⎣

⎡
−

=
45.0

89.0
1

2
5

1
zy  

Any allowable )(sT  must satisfy the interpolation constraint 0)( =zTy H
z and this imposes the 

following relationships between the column elements of )(sT : 

0)()(2;0)()(2 22122111 =−=− ztztztzt  3-34

We will consider reference tracking Try = and examine three possible choices for T : 0T  diagonal 

(a decoupled design), 1T with output 1 perfectly controlled, and 2T  with output 2 perfectly 

controlled. Of course, we cannot achieve perfect control in practice, but we make the assumption 

to simplify our argument. In all three cases, we require perfect tracking at steady-state, i.e. 

IT =)0( . 

A decoupled design has 0)()( 2112 == stst and to satisfy 3-34 we then need 0)(11 =zt and 0)(22 =zt  

so the RHP-zero must be contained in both diagonal elements. One possible choice, which also 

satisfies IT =)0( is 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

+
+−

+
+−

=

zs
zs

zs
zs

sT
0

0
)(0  

For the two designs with one output perfectly controlled we choose 

⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡
++

+−
=

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

+
+−

+
=

10
)(

01
)(

2

211 zs
s

zs
zs

sT
zs
zs

zs
ssT

β
β  

The basis for the last two selections is as follows. For the output which is not perfectly controlled, 

the diagonal element must have a RHP-zero to satisfy 3-34 and the off-diagonal element must 

have an s term in the numerator to give IT =)0( . To satisfy 3-34 we must then require for the two 

designs 

14 21 == ββ  

The RHP-zero has no effect on output 1 for design )(1 sT  and no effect on output 2 for 

designing )(2 sT . We therefore see that it is indeed possible to move the effect of the RHP-zero to a 

particular output. However, we must pay for this by having to accept some interaction. We note 
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that the magnitude of the interaction, as expressed by kβ , is largest for the case where output 1 is 

perfectly controlled ( 41 =β ). This is reasonable since the zero output direction ⎥
⎦

⎤
⎢
⎣

⎡
−

=
45.0

89.0
zy is 

mainly in the direction of output 1 so we have to “pay more” to push its effect to output 2. 

We see from the above example that by requiring a decoupled response from r to y, as in 

design )(0 sT , we have to accept that the multivariable RHP-zero appears as a RHP-zero in each of 

the diagonal elements of )(sT , i.e. whereas )(sG  has one RHP-zero at zs = , )(0 sT  has two. In 

other words, requiring a decoupled response generally leads to the introduction of additional RHP 

zeros in )(sT which are not present in the plant )(sG . 

We also see that we can move the effect of the RHP-zero to a particular output, but we then have 

to accept some interaction. This is stated more exactly in the following Theorem. 

 Theorem 3-2  

Assume that )(sG is square, functionally controllable and stable and has a single RHP-zero at 

zs =  and no RHP-pole at zs = . Then if the k’th element of the output zero direction is non-zero, 

i.e. 0≠zky , it is possible to obtain “perfect” control on all outputs kj ≠  with the remaining 

output exhibiting no steady-state offset. Specifically, T can be chosen of the form 

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

+++
+−

+++
= +−

1...000...00
............
............

......
............
............
0...000...10
0...000...01

)( 1121

zs
s

zs
s

zs
zs

zs
s

zs
s

zs
ssT nkk βββββ 3-35

where 

kjfor
y
y

zk

zj
j ≠−= 2β  3-36
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Proof: It is clear that 3-35 satisfies the interpolation constraint 0)( =zTy H
z ; see also Holt and 

Morari (1985) 

The effect of moving completely the effect of a RHP-zero to output k is quantified by 3-36. We 

see that if the zero is not “naturally” aligned with this output, i.e. if zky is much smaller than 1 

then the interactions will be significant, in terms of yielding some 
zk

zj
j y

y
2−=β  much larger than 1 

in magnitude. In particular, we cannot move the effect of a RHP-zero to an output corresponding 

to a zero element in zy , which occurs frequently if we have a RHP-zero pinned to a subset of the 

outputs. 

 

3-8 Limitations Imposed by Unstable (RHP) Poles 

 

For unstable plants we need feedback for stabilization. The limitations of a RHP-pole located at p 

may also be derived from the bound (by maximum module theorem) 

)())((.)(max)()( pwjTjwsTsw TTT ≥=
∞

ωσω
ω

3-37

Consider that the weight )(swT  is selected such that Tw/1  is a reasonable upper bound on the 

complementary sensitivity function so we need 1)()( <
∞

sTswT . This condition and 3-37 at least 

require that the weight satisfies 

1)( <pwT  3-38

Now consider the following weight  

TBT
T M

ssw 1)( += ∗ω  
3-39

which requires T  to have a roll-off rate of at least 1 at high frequencies (which must be satisfied 

for any real system), that )(Tσ is less than TM  at low frequencies, and that )(Tσ  drops below 1 at 

frequency ∗
BTω . The requirement on )(Tσ  ( T  in SISO case) is shown graphically in Figure 3-8 

Real RHP-pole at ps = . For the weight 3-39 condition 3-38 yields 
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1−
>∗

T

T
BT M

Mpω  3-40

Thus, the presence of the RHP-pole puts a lower limit on the bandwidth in terms of T; that is, we 

cannot let the system roll-off at frequencies lower than p. For example, with 2=TM , we get 

pBT 2>∗ω which is approximately achieved if 

pc 2>ω  3-41

Imaginary RHP-pole. For a purely imaginary pole located at pjp = a similar analysis of the 

weight 3-39 with 2=TM shows that we must at least require pBT 15.1>∗ω which is approximately 

achieved if 

pc 15.1>ω  3-42

In conclusion, we find that stabilization with reasonable performance requires a bandwidth which 

is larger than the distance p  of the RHP-pole from the origin. 

 

 

 

 

 
Figure 3-8 Typical complementary sensitivity, T , with upper bound Tw/1  

 

 

 

Exercises 
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3-1 Derive equations 3-31 and 3-32. 

 

3-2 Consider the weight 

∗

∗∗

+
++

=
B

BB
P fMs

fMs
s
Mssw

ω
ωω
2)(  

with 1>f . This is the same weight as 3-16 with 0=A  except that it approaches 1at high 

frequencies, and f gives the frequency range over which we allow a peak. Plot the weight for 

10=f  and 2=M . Derive an upper bound on ∗
Bω for the case with 10=f  and 2=M . 

 

3-3 Consider the weight 
n

B
P sM

sw ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+=

∗ω1)( which requires S  to have a slope of n at low 

frequencies and requires its low-frequency asymptote to cross 1at a frequency ∗
Bω .  Note that 

1=n  yields the weight 3-16 with 0=A . Derive an upper bound on ∗
Bω  when the plant has a RHP-

zero at z. Show that the bound becomes ∞→≤∗ naszBω . 
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3-4 Consider the case of a plant with a RHP zero where we want to limit the sensitivity function 

over some frequency range. To this effect let 

 

This weight is equal to M/1  at low and high frequencies, has a maximum value of about M/10  

at intermediate frequencies, and the asymptote crosses 1 at frequencies 1000/∗
Bω  and ∗

Bω . Thus 

we require “tight” control, 1<S , in the frequency range between  1000/∗∗ = BBL ωω  and ∗∗ = BBH ωω .  

a) Make a sketch of Pw/1  (which provides an upper bound on S ). 

b) Show that the RHP-zero cannot be in the frequency range where we require tight control, and 

that we can achieve tight control either at frequencies below about 2/z  (the usual case) or above 
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about z2 . To see this select 2=M and evaluate )(zwp  for various values of kzB =∗ω , e.g., 

10000,2000,1000,100,10,1,5.0,1.0=k . (you will find that )1(95.0)( ≈=zwp  for 5.0=k  

(corresponding to the requirement 2/zBH <∗ω ) and for 2000=k (corresponding to the requirement 

zBL 2>∗ω )). 

 

3-5 Consider the plant 

⎥
⎥
⎦

⎤

⎢
⎢
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⎡

+
= α

α

1
1

1
)(

s
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a) Find the zero and its output direction. (Answer 11
2 −=

α
z  and ⎥

⎦

⎤
⎢
⎣

⎡−
=

1
α

zy ) 

b) Which values of α  yield a RHP-zero, and which of these values is best/worst in terms of 

achievable performance? (Answer: We have a RHP-zero for 1<α . Best for 0=α with zero at 

infinity: if control at steady-state required then worst for  1=α  with zero at .0=s ) 

c) Suppose 1.0=α . Which output is the most difficult to control? Illustrate your conclusion using 

Theorem 3-2. (Answer: Output 2 is the most difficult since the zero is mainly in that direction; we 

get interaction  20=β  if we want to control 2y  perfectly. 

 

3-6 Repeat the exercise 3-5 for the plant  

⎥
⎦

⎤
⎢
⎣

⎡
−+

−
+

=
αα

α
s

s
s

sG 2)2(
1

1
1)(  

 

3-7 Derive the bound in 3-42 
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