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This chapter introduces the feedback structure and discusses its stability properties. The 

arrangement of this chapter is as follows: Section 3-1 introducing feedback structure and 

describes the general feedback configuration and the well-posedness of the feedback loop is 

defined. Next, the notion of internal stability is introduced and the relationship is established 

between the state space characterization of internal stability and the transfer matrix 

characterization of internal stability in section 3-2. The stable coprime factorizations of rational 

matrices are also introduced in section 3-3. Section 3-4 discusses how to achieve a stabilizing 

controller. 

 

 
3-1 Well-Posedness of Feedback Loop 
 

We will consider the standard feedback configuration shown in figure 3.1. It consists of the 

interconnected plant P and controller K forced by command r, sensor noise n, plant input 
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disturbance di, and plant output disturbance d. In general, all signals are assumed to be 

multivariable, and all transfer matrices are assumed to have appropriate dimensions. 

 
Figure 3.1 Standard feedback configuration 

 

Assume that the plant P and the controller K in Figure 3.1 are fixed real rational proper transfer 

matrices. Then the first question one would ask is whether the feedback interconnection makes 

sense or is physically realizable. To be more specific, consider a simple example where 
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i.e., the transfer functions from the external signals r, n, d and di to u are not proper. Hence, the 

feedback system is not physically realizable! 

Definition 3.1 A feedback system is said to be well-posed if all closed-loop transfer matrices are 

well-defined and proper. 

Now suppose that all the external signals r, n, d and di are specified and that the closed-loop 

transfer matrices from them to u are respectively well-defined and proper. Then, y and all other 

signals are also well-defined and the related transfer matrices are proper. Furthermore, since the 

transfer matrices from d and n to u are the same and differ from the transfer matrix from r to u by 

only a sign, the system is well-posed if and only if the transfer matrix from , di , d, to u exists and 

is proper. 
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Lemma 3.1 The feedback system in figure 3.1 is well-posed if and only if 

)()( ∞∞+ PKI  3-1

is invertible. 

Proof. As we explain the system is well-posed if and only if the transfer matrix from, di , d, to u 

exists and is proper. The transfer matrix from di , d, to u  is: 
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Thus well-posedness is equivalent to the condition that ( ) 1−+ KPI  exists and is proper. But this is 

equivalent to the condition that the constant term of the transfer matrix )()( ∞∞+ PKI is invertible.  

It is straightforward to show that (3.1) is equivalent to either one of the following two conditions: 
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)()( ∞∞+ PKI  is invertible 
3-2

The well-posedness condition is simple to state in terms of state-space realizations. Introduce 

realizations of P and K: 
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3-3

Then DP =∞)( and DK ˆ)( =∞ . For example, well-posedness in (3-2) is equivalent to the condition 

that  
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 is invertible 3-4

Fortunately, in most practical cases we will have D = 0, and hence well-posedness for most 

practical control systems is guaranteed. 

3-2 Internal Stability 
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Consider a system described by the standard block diagram in figure 3.1 and assume the system is 

well-posed. Furthermore, assume that the realizations for P(s) and K(s) given in equation (3-3) are 

stabilizable and detectable. 

Let x and x̂  denote the state vectors for P and K, respectively, and write the state equations in 

figure 3.1 with d, di and n set to zero: 
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Definition 3.2 The system of figure 3.1 is said to be internally stable if the origin (x, x̂ ) = (0, 0) is 

asymptotically stable, i.e., the states (x, x̂ ) go to zero from all initial states when d=0, di=0 and 

n=0. 

Note that internal stability is a state space notion. To get a concrete characterization of internal 

stability, solve equations (3-5) for y and u: 
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Note that the existence of the inverse is guaranteed by the well-posedness condition. Now 

substitute this into (3-5) and (5-8) to get 
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Where 
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Thus internal stability is equivalent to the condition that A~  has all its eigenvalues in the open left-

half plane. In fact, this can be taken as a definition of internal stability. 

Lemma 3.2 The system of figure 3.1 with given stabilizable and detectable realizations for P and 

K is internally stable if and only if A~  is a Hurwitz matrix. 
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It is routine to verify that the above definition of internal stability depends only on P and K, not 

on specific realizations of them as long as the realizations of P and K are both stabilizable and 

detectable, i.e., no extra unstable modes are introduced by the realizations. 

The above notion of internal stability is defined in terms of state-space realizations of P and K. It 

is also important and useful to characterize internal stability from the transfer matrix point of 

view. Note that the feedback system in figure 3.1 is described, in term of transfer matrices, by 

⎥
⎦

⎤
⎢
⎣

⎡
−

=⎥
⎦

⎤
⎢
⎣

⎡

−⎥
⎦

⎤
⎢
⎣

⎡
− r

d
e

u
IP
KI ip  3-9

Note that we ignore d and n as inputs since they produce similar transfer matrices as equation 3-9. 

Now it is intuitively clear that if the system in figure 3.1 is internally stable, then for all bounded 

inputs (di, -r), the outputs (up, - e) are also bounded. The following lemma shows that this idea 

leads to a transfer matrix characterization of internal stability. 

Lemma 3.3 The system in figure 3.1 is internally stable if and only if the transfer matrix 
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from (di, -r) to (up, - e) be a proper and stable transfer matrix. 

Proof. Let stabilizable and detectable realizations of P and K defined as 3-3. Then we have the 

state space equation for the system in figure 3.1 is 
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By substituting this in the states space equation we have 
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Now suppose that this system is internally stable. So the eigenvalues of 
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are in the open left-half plane, it follows that the transfer matrix from (di, -r) to (up,- e)  given in 

(3-10) is stable. 

Conversely, suppose that )( PKI + is invertible and the transfer matrix in (3-10) is stable. Then, in 
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is nonsingular. Now routine calculations give the transfer matrix from (di, -r) to (up, -e) in terms 

of the state space realizations: 
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Since the above transfer matrix is stable, it follows that 
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as a transfer matrix is stable. Finally, since (A, B, C) and )ˆ,ˆ,ˆ( CBA  are stabilizable and detectable, 
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is stabilizable and detectable. It then follows that the eigenvalues of A~  are in the open left-half 

plane.  
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Note that to check internal stability, it is necessary (and sufficient) to test whether each of the four 

transfer matrices in (3-10) is stable. Stability cannot be concluded even if three of the four 

transfer matrices in (3-10) are stable. For example, let an interconnected system transfer function 

be given by 
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which shows that the system is not internally stable although three of the four transfer functions 

are stable. This can also be seen by calculating the closed-loop A-matrix with any stabilizable and 

detectable realizations of P and K. 

.Remark 3.1 It should be noted that internal stability is a basic requirement for a practical 

feedback system. This is because all interconnected systems may be unavoidably subject to some 

nonzero initial conditions and some (possibly small) errors, and it cannot be tolerated in practice 

that such errors at some locations will lead to unbounded signals at some other locations in the 

closed-loop system. Internal stability guarantees that all signals in a system are bounded provided 

that the injected signals (at any locations) are bounded. However, there are some special cases 

under which determining system stability is simple. 

Corollary 3.4 Suppose K is stable. Then the system in figure 3.1 is internally stable iff  

PPKI 1)( −+  is stable. 

Proof. The necessity is obvious. To prove the sufficiency, it is sufficient to show that if 
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This corollary is in fact the basis for the classical control theory where the stability is checked 

only for one closed-loop transfer function with the implicit assumption that the controller itself is 

stable. Also, we have  

Corollary 3.5 Suppose P is stable. Then the system in figure 3.1 is internally stable iff  
1)( −+ PKIK is stable. 

Proof. The necessity is obvious. To prove the sufficiency, it is sufficient to show that if 
1)( −+= PKIKQ  is stable, the other three transfer matrices are also stable since: 
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Corollary 3.6 Suppose P and K are both stable. Then the system in figure 3.1 is internally stable 

iff 1)( −+ PKI  is stable. 

Proof. The necessity is obvious. To prove the sufficiency, it is sufficient to show that if 
1)( −+= PKIQ  is stable, the other three transfer matrices are also stable since: 
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To study the more general case, define 

nc = number of open RHP poles of K(s) 

np = number of open RHP poles of P(s) 

Theorem 3.7 The system in figure 3.1  is internally stable if and only if 

(i) the number of open RHP poles of P(s) K(s) = nc + np(it simply means that there is no RHP pole 

zero cancellation between plant and controller).  

(ii) ))()(det()( sKsPIs +=φ  has all its zeros in the open left-half plane (i.e., 1))()(( −+ sKsPI  is 

stable). 

Proof. See “Robust and Optimal Control By Kemin Zhou” 
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Theorem 3.8 (Nyquist Stability Theorem) The system in figure 3.1 is internally stable if and only 

if condition (i) in Theorem 3.8 is satisfied and the Nyquist plot of )( ωφ j  for ∞≤≤∞− ω  encircles 

the origin, nc + np  times in the counter-clockwise direction. 

Proof. See “Robust and Optimal Control By Kemin Zhou” 

 

3-3 Coprime Factorization over stable transfer functions 
 

Recall that two polynomials m(s) and n(s), with, for example, real coefficients, are said to be 

coprime if their greatest common divisor is 1 (equivalent, they have no common zeros). It follows 

from Euclid's algorithm that two polynomials m and n are coprime if there exist polynomials x(s) 

and y(s) such that xm + yn = 1; such an equation is called a Bezout identity. Similarly, two 

transfer functions m(s) and n(s) in the set of stable transfer functions are said to be coprime over 

stable transfer functions if there exists x,  y in the set of stable transfer functions such that 

xm + yn = 1 

More generally, we have 

Definition 3.3 Two matrices M and N in the set of stable transfer matrices are right coprime over 

the set of stable transfer matrices if they have the same number of columns and if there exist 

matrices Xr and Yr in the set of stable transfer matrices such 

That 

[ ] INYMX
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M

YX rrrr =+=⎥
⎦

⎤
⎢
⎣

⎡  

Similarly, two matrices M~  and N~  in the set of stable transfer matrices are left coprime over the 

set of stable transfer matrices if they have the same number of rows and if there exist two 

matrices Xl and Yl in the set of stable transfer matrices such that 

[ ] IYNXM
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Note that these definitions are equivalent to saying that the matrix ⎥
⎦

⎤
⎢
⎣

⎡
N
M

 is left invertible in the set 

of stable transfer matrices and the matrix [ ]NM ~~  is right-invertible in the set of stable transfer 

matrices. These two equations are often called Bezout identities. 

Now let P be a proper real-rational matrix. A right-coprime factorization (rcf) of P is a 

factorization 1−= NMP  where N and M are right-coprime in the set of stable transfer matrices. 

Similarly, a left-coprime factorization (lcf) has the form NMP ~~ 1−=  where N~  and M~  are left-

coprime over the set of stable transfer matrices. A matrix P(s) in the set of rational proper transfer 

matrices is said to have double coprime factorization if there exist a right coprime factorization 
1−= NMP , a left coprime NMP ~~ 1−=  and Xr, Yr, Xl, Yl  in the set of stable transfer matrices such 

that 
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Of course implicit in these definitions is the requirement that both M and M~ be square and 

nonsingular. 

Theorem 3.9 Suppose P(s) is a proper real-rational matrix and 
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Then NMNMP ~~ 11 −− ==  are rcf and lcf, respectively, and, furthermore, (3.11) is satisfied. 
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The coprime factorization of a transfer matrix can be given a feedback control interpretation. For 

example, right coprime factorization comes out naturally from changing the control variable by a 

state feedback. Consider the state space equations for a plant P in the figure 3.2: 

DuCxy
BuAxx

+=
++&

 

Next, introduce a state feedback and change the variable 

u=v+Fx 

where F is such that A + BF is stable. Then we get  
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Evidently from these equations, the transfer matrix from v to u is 
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and that from v to y is 
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Therefore 

u = Mv, y = Nv 

so that y = NM-1u, i.e., P = NM-1.  
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Figure 3.2 Feedback representation of coprime factorization 

3-4 Stabilizing controllers 
 

In this section we introduce a parameterization known as the Q-parameterization or Youla-

parameterization, of all stabilizing controllers for a plant. By all stabilizing controllers we mean 

all controllers that yield internal stability of the closed loop system. We first consider stable 

plants for which the parameterization is easily derived and then unstable plants where we make 

use of the coprime factorization. 

The following lemma forms the basis for parameterizing all stabilizing controllers for stable 

plants. 

Corollary 3.10 Suppose P is stable. Then the set of all stabilizing controllers in figure 3.1 can be 

described as 
1)( −−= PQIQK  3-12

for any Q in the set of stable transfer matrices and )()( ∞∞− QPI  nonsingular. 

Proof. First we know that if )()( ∞∞− QPI  is nonsingular then 1)( −−= PQIQK  exist and  
11 )()()( −− +=⇒=−⇒−= PKIKQQPQIKPQIQK  

 Since Q is stable so 1)( −+ PKIK is stable so by corollary 3.5 in figure 3.1 is stable. In other 

suppose the system in the figure 3.1 is stable so by corollary 3.5 1)( −+ PKIK  is stable. Define 
1)( −+= PKIKQ  so (note that )()( ∞∞− QPI  is nonsingular)  

v 

+ 

u + x C 

D 

+ 

y 

+ 
B 

A 

∫
+ 

+ 

F 

x&
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1)( −−= PQIQK  

Example 3.1: For the plant  

)2)(1(
1)(

++
=

ss
sP  

Suppose that it is desired to find an internally stabilizing controller so that y asymptotically tracks 

a ramp input. 

Solution: Since the plant is stable the set of all stabilizing controller is derived from 
1)( −−= PQIQK , for any stable Q  such that, )()( ∞∞− QPI is nonsingular. 

Let  

3+
+

=
s

basQ  

We must define the variables a and b such that that y asymptotically tracks a ramp input, so S 

must have two zeros at origin.  

)3)(2)(1(
)3)(2)(1(

)3)(2)(1(
11)(11 1

+++
+−+++

=
+++

+
−=−=+−=−= −

sss
bassss

sss
basPQPKIPKTS  

So we should take 6,11 == ba . This gives 

3
611

+
+

=
s
sQ  

)6(
)22/12)(2)(1(11

2 +
+++

=
ss

sssK . 

However if P(s) is not stable, the parameterization is much more complicated. The result can be 

more conveniently stated using state-space representations. The following theorem shows that a 

proper real-rational plant may be stabilized irrespective of the location of its RHP-poles and RHP-

zeros, provided the plant does not contain unstable hidden modes. 

Corollary 3.11 Let P be a proper real-rational matrix and NMNMP ~~ 11 −− ==  be corresponding 

rcf and lcf over the set of stable transfer matrices. Then there exists a stabilizing controller  

UVVUK 11~~ −− ==  with VUVU ~,~,,  in the set of stable transfer matrices 

( IVMUNIUNVM =+=+ ~~~~, ).  

Furthermore, suppose 
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⎥
⎦

⎤
⎢
⎣

⎡
≅

DC
BA

sP )(  

is a stabilizable and detectable realization of P and let F and L be such that A+BF and A+LC are 

stable. Then a particular set of state space realizations for these matrices can be given by 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

+

−+
=

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡ −

IDDFC
IF

LBBFA

VN

UM
0~

~
 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−

+−+
=⎥

⎦

⎤
⎢
⎣

⎡

− IDC
IF

LLDBLCA

MN

UV
0

)(

~~  

Proof. See “Robust and Optimal Control By Kemin Zhou”. 

The following theorem forms the basis for parameterizing all stabilizing controllers for a proper 

real-rational matrix. 

Theorem 3.12  Let P be a proper real-rational matrix and NMNMP ~~ 11 −− ==  be corresponding 

rcf and lcf over the set of stable transfer matrices. Then the set of all stabilizing controllers in 

figure 3.1 can be described as 

)~()~( 1 MQUNQVK ll +−= −  

 Or 

 1)~)(~( −−+= rr NQVMQUK  

3-13

 

where  lQ  is any stable transfer matrices and )(~)()( ∞∞−∞ NQV l  is nonsingular or  rQ  is any 

stable transfer matrices and )()()(~
∞∞−∞ rQNV . 

Proof. See “Robust Normalized coprime factorization for non-strictly proper systems By 

Vidyasagar”. 

Example 3.2: For the plant  

)2)(1(
1)(

−−
=

ss
sP  

Find a stabilizing controller. 
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Solution: First of all it is clear that 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
−≅

001
132
010

)(sP  

is a stabilizable and detectable realization. Now let ]51[ −=F  and [ ]TL 237 −−= clearly A+BF 

and A+LC are stable. Since the plant is unstable we use corollary 3.11 to derive coprime 

factorization parameters. 

2

2

222 )1(
389~,

)1(
72108~,

)1(
)1)(2(,

)1(
1

+
++

=
+
−

=
+

−−
=

+
=

s
ssV

s
sU

s
ssM

s
N  

2

2

222 )2(
389,

)2(
72108,

)2(
)1)(2(~,

)2(
1~

+
++

=
+
−

=
+

−−
=

+
=

s
ssV

s
sU

s
ssM

s
N  

Now let 0== lr QQ  then by theorem 3.12 one of the stabilizing controllers is: 

389
72108~~

2
1

++
−

== −

ss
sVUK  

Example 3.3: For the plant in figure 3.1 

)2)(1(
1)(

−−
=

ss
sP  

The problem is to find a controller that  

1. The feedback system is internally stable. 

2. The final value of y equals 1 when r is a unit step and d=0. 

3. The final value of y equals zero when d is a sinusoid of 10 rad/s and r=0. 

Solution: The set of all stabilizing controller is: 
1)~)(~( −−+= rr NQVMQUK  

where from the example 3.2 we have 

2

2

222 )1(
389~,

)1(
72108~,

)1(
)1)(2(,

)1(
1

+
++

=
+
−

=
+

−−
=

+
=

s
ssV

s
sU

s
ssM

s
N  

Clearly for any stable Q the condition 1 satisfied. 

To met condition 2 the transfer function from r to y ( )~( rMQUN +  )must satisfy 

5.36)0(1))0()0()0(~)(0( =⇒=+ rr QQMUN  
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To met condition 3 the transfer function from d to y ( )~( rNQVM −  )must satisfy 

jjQjQjNjVjM rr 9062)10(0))10()10()10(~)(10( +−=⇒=−  

Now define  

2321 )1(
1

1
1)(

+
+

+
+=

s
x

s
xxsQr  

And then set x1, x2 and x3 to met the requests. 

3-5 Strong and simultaneous stabilization 
 

Practicing control engineers are reluctant to use unstable controllers, especially when the plant 

itself is stable. Since if a sensor or actuator fails, and the feedback loop opens, overall stability is 

maintained if both plant and controller individually are stable. If the plant itself is unstable, the 

argument against using an unstable controller is less compelling. However, knowledge of when a 

plant is or is not stabilizable with a stable controller is useful for another problem namely, 

simultaneous stabilization, meaning stabilization of several plants by the same controller. 

The issue of simultaneous stabilization arises when a plant is subject to a discrete change, such as 

when a component burns out. Simultaneous stabilization of two plants can also be viewed as an 

example of a problem involving highly structured uncertainty.  

Say that a plant is  strongly stabilizable if internal stabilization can be achieved with a controller 

itself is a stable transfer matrix. Following theorem shows that poles and zeros of P must share a 

certain property in order for P to be strongly stabilizable.  

Theorem 3.13   P is strongly stabilizable if and only if it has an even number of real poles 

between every pairs of real RHP zeros( including zeros at infinity). 

Proof. See “Linear feedback control By Doyle”. 

Example 3.4: Which of the following plant is strongly stabilizable. 

32

22

21 )1()2(
)1()1()(

)2(
1)(

+−
+−−

=
−
−

=
ss

ssssP
ss
ssP  

Solution: P1 is not strongly stabilizable since it has one pole between z=1 and ∞=z  but P2 is 

strongly stabilizable since it has two pole between z=1 and ∞=z . 

Exercises  
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3-1 Find two different lcf's for the following transfer matrix. 

⎥⎦
⎤

⎢⎣
⎡

+
−

+
−

=
2
2

1
1)(

s
s

s
ssG  

3-2 Find a lcf's and a lcf's for the following transfer matrix. 

⎥
⎦

⎤
⎢
⎣

⎡
−

−
+

=
)1(25.4

41
2

1)(
s

s
s

sG  

3-3 Find a lcf's and a lcf's for the following transfer matrix. 

⎥
⎦

⎤
⎢
⎣

⎡
−

−
−+

=
)1(25.4

41
)3)(2(

1)(
s

s
ss

sG  

3-4 Derive a feedback control interpretation for the left coprime factorization. 

3-5 Show that the equation of all stabilizing controller for stable plants (eq. 3.12) is a special case 

of the equation of all stabilizing controller for proper real-rational plants (eq. 3.13). 

3-6 In example 3.3 find x1, x2 and x3. 

3-7 In example 3.3 find the controller and then find the step response of the system. Then suppose 

the input is zero but a sinusoid with frequency of 10 rad/s applied as disturbance, find the 

response of system. 

 

 


