A normed algebra A whose radical is isomorphic to C.

Suppose that $A = \left\{ \begin{pmatrix} a & b \\ 0 & c \end{pmatrix}; a, b, c \in \mathcal{C} \right\}$. Then A is a subalgebra of $M_2(\mathcal{C}) \simeq B(\mathcal{C}^2)$ and the only its characters are $f(\begin{pmatrix} a & b \\ 0 & c \end{pmatrix}) = a$ and $g(\begin{pmatrix} a & b \\ 0 & c \end{pmatrix}) = c$, since

$$\left\{ \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} , \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} , \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \right\}$$

is a basis for A. Therefore $Rad(A)=\{\begin{pmatrix}0&b\\0&0\end{pmatrix};b\in\mathcal{C}\}$ is isometrically isomorphic to \mathcal{C} .