A reflexive Banach algebra whose dual is also a Banach algebra.

The Banach algebra $l^{p1}, 1 has the conjugate <math>l^q, q = \frac{p}{p-1}$, in addition $(l^q)^\# = l^p$.

If $1 \le p < \infty$, then l^p can be regarded as a commutative Banach algebra with coordinatewise multiplication. (For p > 1, $||fg||_p \le ||f||_p ||g||_p$ is a conclusion of Hőlder inequality.) The l^p , $1 \le p < \infty$, with the involution $f \longmapsto \overline{f}$ is an involutive Banach algebra.

Let (Ω, μ) be a measure space and $L^p(\Omega, \mu)$ for $1 \leq p < \infty$ be the set of all complex valued measurable functions f on Ω (we assume f is equal to g if f = g a.e.[μ]) for which $||f||_p = (\int_{\Omega} |f|^p d\mu)^{\frac{1}{p}} < \infty$. $L^p(\Omega, \mu)$ with the norm $||.||_p$ is a Banach space and is a Hilbert space iff p = 2. $L^p(\Omega, \mu)$ denoted by $l^p(\Omega)$ if μ is counting measure. In particular, $l^p(\mathcal{N})$ denoted by l^p .