A Banach algebra A that cannot be a (vector space) direct sum of its radical Rad(A) and a Banach algebra B that is homeomorphically isomorphic with A/Rad(A). *********** Consider the Banach algebra l^2 and the dense subalgebra l_0^2 of l^2 consisting of the sequences which vanish out of a finite set. Let A_0 be the vector space direct sum $l_0^2 \oplus \mathcal{C}$. A_0 is an algebra with $(x,\alpha)(y,\beta)=(xy,0),x,y\in l^2,\alpha,\beta\in\mathcal{C}$. Also $\|(x,\alpha)\|=\max(\|x\|,\|\alpha-\sum_{n=1}^\infty x(n)\|)$ is a norm on A_0 . Let A is the completion of A_0 . $Rad(A)=\mathcal{C}(0,1)$. If $(x,\alpha)\in A_0$ and $[x,\alpha]$ denotes the image of (x,α) in A/Rad(A), then $[x,\alpha]\mapsto x$ defines an isometric isomorphism of $A_0/RadA$ into l_0^2 which can be extended to an isometric isomorphism of A/RadA onto l^2 . Suppose that there exists a homeomorphic isomorphism of l^2 with a subalgebra l^2 0 of l^2 1 of l^2 2. Let l^2 2 denotes l^2 3 denotes l^2 4 denotes the corresponding element of l^2 4. Choose a sequence l^2 4 of l^2 5 in l^2 6 or 1 for all l^2 6. Since l^2 7 or 1 for all l^2 8 and also l^2 9. The elements l^2 9 are pairwise orthogonal idempotents. If l^2 9 in l^2 9 and l^2 9 and l^2 9 and l^2 9. But l^2 9 and doesn't converge in l^2 9. But l^2 9 according to l^2 9. But l^2 9 and doesn't converge in l^2 9. But l^2 9 according to l^2 9 and l^2 9. But l^2 9 and l^2 9 and l^2 9 and l^2 9 and l^2 9. But l^2 9 and l^2 9 are pairwise orthogonal idempotents. ## Ref. [Ric] C.E. Rickart, General theory of Banach algebras, Princeton, Van Nastrand, 1960.