A Banach algebra A such that $\text{Rad}(A)$ is a proper subset of the set
$\{x; r(x) = 0\}$ of all quasi-nilpotent elements.

1. Suppose that H be a Hilbert space with $\dim H \geq 2$. Let $x, y \in H - \{0\}$
and $<x, y> = 0$. The norm of rank one operator $(x \overline{y})(z) = <z, y > x$
is $||x|| ||y||
eq 0$. So $x \overline{y} \neq 0$. Also $(x \overline{y})^2(z) = (x \overline{y})(<z, y > x) = <z, y > x = 0$ so $(x \overline{y})^2 = 0$. Hence it is quasi-nilpotent. But $B(H)$
is semi-simple. Therefore $x \overline{y} \notin \text{Rad}(B(H)) = \{0\}$.

2. Let $A = M_2(\mathbb{C}) \simeq B(\mathbb{C}^2)$. A is a C^*-algebra so $\text{Rad}(A) = \{0\}$.
The element $\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$ has the spectrum $\{0\}$ and so $r(\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}) = 0$. Hence
$\text{Rad}(A)$ is not equal to $\{x; r(x) = 0\}$.