A finite dimensional commutative algebra with nilpotent radical, an identity modulo the radical, but no global identity.

Let $A = \mathcal{C}^2$ with multiplication (a,b)(c,d) = (ac,0) $(a,b,c,d \in \mathcal{C})$. Clearly $A^2 = A$. Its radical is $R = \{(0,b); b \in \mathcal{C}\}$ and $\frac{A}{R} \simeq \mathcal{C}$. The identity of $\frac{A}{R}$ lifts to the idempotent (1,0) in A [Ric, Theorem 2.3.9], but there is no identity in A. Ref.

[Ric] C.E. Rickart, General theory of Banach algebras, Princeton, Van Nastrand, 1960.