A Banach algebra having no bounded approximate identity.

\[\{xy \mid x, y \in \ell^2\} \] is a proper subset of Banach algebra \(\ell^2 \) equipped with the coordinatewise operations. In fact \(\left(\frac{1}{n} \right) \in \ell^2 \) and if \(x_n y_n = \frac{1}{n} \), then there exist an integer \(N \) such that for all \(n > N \), \(|x_n| \geq \frac{1}{\sqrt{n}} \) or for all \(n > N \), \(|y_n| \geq \frac{1}{\sqrt{n}} \), and hence \((x_n) \not\in \ell^2 \) or \((y_n) \not\in \ell^2 \). Now Cohen’s factorization theorem [B&D, §11. Corollary 11] implies that \(\ell^2 \) has no bounded approximate identity.

Comment. Using BA37, we conclude that the Banach algebra \(\ell^2 \) has neither bounded approximate identity nor unbounded one.

Ref.