A semisimple commutative Banach algebra with a closed two-sided ideal I such that $\frac{A}{I}$ isn't semisimple.

Suppose that A is the algebra $C^m([0,1])$ of all m times continously differentiable complex-valued functions on [0,1] with the norm $||f|| = \sum_{k=0}^{m} \frac{1}{k!} \sup_{x \in [0,1]} |f^{(k)}(x)|$. Let $I = \{f \in A; f(0) = f'(0) = 0\}$. Then $\frac{A}{I}$ is not semisimple, since assuming f_{\circ} to be $f_{\circ}(x) = x$, then $f_{\circ}^2 \in I$ and so $(f_{\circ} + I)^2 = f_{\circ}^2 + I = 0$, hence $f_{\circ}(x) = \lim_{n \to \infty} ||f_{\circ}(x)||^{\frac{1}{n}} = 0$. Therefore $f_{\circ}(x) = I$ and $f_{\circ}(x) = I$ but $f_{\circ}(x) = I$. So that $\frac{A}{I}$ is not semisimple.