An (algebrically) simple Banach algebra. ********** In the case commutative, consider the familiar Banach algebra \mathcal{C} . In the non-commutative case, consider the algebra $M_n(\mathcal{C})$ of all $n \times n$ matrices with entries in \mathcal{C} . Identifying $M_n(\mathcal{C})$ with $B(\mathcal{C}^n) = K(\mathcal{C}^n)$ we may regard $M_n(\mathcal{C})$ as a noncommutative C^* -algebra. Suppose that I_{ij} is the matrix with the ij-entry 1 and 0 elswhere. Then $I_{ij}I_{\alpha\beta}=\delta_{j\alpha}I_{i\beta}$, where δ denotes Kronecker's δ . Let Δ be a nontrivial two-sided ideal in $M_n(\mathcal{C})$. There is a nonzero element $A=\sum_{i,j=1}^n a_{ij}I_{ij}$ in Δ , hence $a_{rs}\neq 0$ for some $1\leq r,s\leq n$. But $I_{rs}AI_{sr}=(\sum_{j=1}^n a_{rj}I_{rj})I_{sr}=a_{rs}I_{rr}\in\Delta$. Hence $I_{ij}=I_{is}I_{sr}I_{rj}\in\Delta$ for all $1\leq i,j\leq n$. Therefore $\Delta=M_n(\mathcal{C})$, a contradiction.