Two non-isometrically isomorphic spaces with the same duals. So that a such dual space could not be a W^*-algebra under any multiplication and involution.

\mathcal{C}_0 and \mathcal{C} are both closed subspaces of l^∞. In addition for each $x = (x_n) \in l^1$, $\rho_x : c_0 \rightarrow \mathcal{C}$ given by $(y_n) \mapsto \sum_{n=1}^{\infty} x_n y_n$ is a bounded linear functional on c_0 with the norm $\| \rho_x \| = \| x \|$. Clearly $c_0^\#$ is isometrically isomorphic to l^1. Also for each $x = (x_n) \in l^1$, $\eta_x : c \rightarrow \mathcal{C}$ given by $(y_n) \mapsto x_1 \lim_{n \to \infty} x_n + \sum_{n=1}^{\infty} x_n y_n$ is a bounded linear functional on c with the norm $\| \eta_x \| = \| x \|$. Obviously $c^\#$ is isometrically isomorphic to l^1. But by BA25.DVI the closed unit ball of c_0 has no extreme point while the closed unit ball c contains at least $(1, 1, 1, \ldots)$ as an extreme point (since if $1 = tx_n + (1 - t)y_n$ with $|x_n| \leq 1$ and $|y_n| \leq 1$, then $1 = tRx_n + (1 - t)Ry_n$ for all n, so that $Rx_n = Ry_n = 1$ and hence $x_n = y_n = 1$ for each n). Thus c_0 and c_1 are not isometrically isomorphic.

Now by [Sak1, Corollary 1.13.3], l^1 can not be a W^*-algebra.

Re.