A Hilbert space whose Hamel dimension and Hilbert dimension are different.

The Hilbert space l^2 has the orthonormal basis (e_n) with $e_n(m) = \delta_{mn}$; $m, n \in \mathbb{N}$. Hence its Hilbert dimension is \aleph_0. But the set of all sequences $x_\alpha = \langle 1, \alpha, \alpha^2, \alpha^3, \cdots \rangle$, $0 < \alpha < 1$ is a linearly independent uncountable subset of l^2. Thus the Hamel dimension of l^2 isn’t \aleph_0.

Comment. This Hilbert dimension is probably the only one which this can happen.