A Banach algebra with a proper A Banach algebra with a proper dense two-sided ideal.

******************************

1. Cc(Â) = {f Î C0(Â);   supp(f) =  the  closure  of  {x Î Â; f(x) ¹ 0}   is  compact  } is a dense ideal of C0(Â). Note that the function f defined by
f(x) = ì
ï
ï
ï
ï
í
ï
ï
ï
ï
î
1
1+x
x ³ 0
1
1-x
x < 0
belongs to C0(Â)- Cc(Â).

2. A = {f Î C([0,1]);f(0) = 0} is a closed subalgebra of C([0,1]) not containing the constant function 1. So A is a non-unital Banach algebra. Let f°(t) = t  , t Î [0,1]. I = {f° g ; g Î C[0,1]} is a proper ideal of A (since if
h(t) = ì
ï
ï
í
ï
ï
î
tsin 1
t
t Î (0,1]
0
t = 0
and for some g Î C[0,1], tg(t) = h(t) whenever t Î [0,1] then limt® 0sin[ 1/ t] = g(0), a contradiction). By the Stone-Weierstrass theorem, each f Î A is the uniform limit of a sequence (pn) of polynomials with pn(0) = 0. Moreover t\longmapsto [( pn(t))/ t] belongs to C[0,1] and t[( pn(t))/ t]® f(t) uniformly on [0,1]. So f belongs to the closure of I. Hence I is dense in A.


File translated from TEX by TTH, version 2.70.
On 22 Feb 2001, 00:14.