A closed ideal I of a commutative C^*-algebra A and a closed ideal J of I such that J isn’t an ideal of A.

Let $A = C([0, 1])$, $I = Af$ and $J = Cf + Af^2$, where $f(t) = t; 0 \leq t \leq 1$. Then J is an ideal of I and I is an ideal of A; but $f \in J$ and $f, f^\frac{1}{2} \notin J$ (otherwise, there exist $\lambda \in C$ and $g \in A$ such that $f.f^\frac{1}{2} = \lambda f + gf^2$. So $\lim_{t \to 0} t^\frac{1}{2} = \lambda + \lim_{t \to 0} tg(t)$. Therefore $\lambda = 0$ and $t^\frac{1}{2} = tg$ contradicting the continuity of g. Thus J isn’t an ideal of A.