An involutive Banach algebra A which isn't a C^*-algebra.

Consider $A = A(\Delta)^1$. Then $f^*(z) = \overline{f(z)}$ gives an involution on A such that $||f|| = \sup_{z \in D} |f(z)| = \sup_{z \in D} |f(z)| = ||f^*||$. Consider $f(z) = z^2$ and $g(z) = z$, then g is self-adjoint and $f = gg^*$. So f is positive and we must have $sp(f) \subseteq [0, \infty)$ contradicting $sp(f) = \Delta$. Hence A isn't a C^*-algebra.

1Let Δ denote the closed unit disc $\{z \in \mathbb{C}, |z| \leq 1\}$. Suppose that $A(\Delta)$ denoted the set of all elements of $C(\Delta)$ which are analytic on the interior of Δ. $A(\Delta)$ is a closed subalgebra of $C(\Delta)$.
