A Banach algebra with a unique C^* -involution.

Every C^* -algebra has this property. Indeed if A is a untial Banach algebra which is C^* -algebra with respect to involutions * and #, then if $x = x^*$ and f be a state on A (i.e., by [K&R1, Theorem 4.3.2] is a bounded linear functional satisfying ||f|| = f(1) = 1) then, $f(x) = \overline{f(x^*)} = \overline{f(x)}$, so that $f(i(x - x^\#)) = i(f(x) - \overline{f(x)}) = 0$. Therefore, by [K&R1, Proposition 4.3.3] $sp(i(x - x^\#)) = \{0\}$. Hence $i(x - x^\#) = 0$, by [K&R1, Proposition 4.1.1.(i)]. So $x^\# = x = x^*$. For an arbitrary element x with the real and imaginary parts x_1 and x_2 , we have $x^* = x_1 - ix_2 = x^\#$. (If A doesn't have a unit, it is enough to consider its unitization).

Ref.

[K&R1] R.V. Kadilon, J.R. Ringrase, fundamentals of the theory of operator algebras (I), Acad. Press, 1983.