A closed left ideal of a C^*-algebra without any left approximate identity.

If ξ is a unit vector in a Hilbert space H with dimension at least 2, then $\Delta = \{ T \in B(H); T\xi = 0 \}$ is a closed left ideal in the C^*-algebra $B(H)$. If Δ has a left approximate identity $\{S_\alpha\}$ and $\eta \neq 0$ is a vector in H such that $\langle \xi, \eta \rangle = 0$, then $\xi \otimes \eta \in \Delta$ and so $\lim_\alpha S_\alpha(\xi \otimes \eta) = \xi \otimes \eta$. Thus $\lim_\alpha \| (S_\alpha \xi - \xi) \otimes \eta \| = \lim_\alpha \| S_\alpha \xi - \xi \| \| \eta \| = 0$, hence $0 = \lim_\alpha \| S_\alpha \xi - \xi \| = \| \xi \|$, a contradiction. Thus Δ has no left approximate identity.

Note that for ζ_1 and ζ_2 in H the rank one operator $\zeta_1 \otimes \zeta_2$ is defined by

$$ (\zeta_1 \otimes \zeta_2)(\zeta_3) = \langle \zeta_3, \zeta_2 \rangle \zeta_1. $$