Given a compact subset K of  $\mathcal{C}$  such that  $\overline{K^0}=K$ , there exists an operator T acting on a Hilbert space H such that sp(T)=K and T has no eigenvalue.

\*\*\*\*\*\*\*\*\*\*

Let  $H = L^2(K)$  in which K is equipped with the Lebesgue measure m on  $\mathbb{R}^2$ . Define T on H as the following:

$$(Tf)(\mu) = \mu f(\mu); \ \mu \in K, f \in H.$$

If  $\lambda \notin K$ , then  $\sup\{|\lambda - \mu|^{-1}; \mu \in K\} < \infty$  and so we can define an operator S on H by  $(Sf)(\mu) = (\lambda - \mu)^{-1}f(\mu); f \in H, \mu \in K$ . Hence  $S(T - \lambda I) = (T - \lambda I)S = I$  so that  $\lambda \notin sp(T)$ . If  $\lambda \in K$ ,  $(\lambda I - T)^{-1} \in B(H)$  and f denotes the characteristic function of  $\{\mu; |\lambda - \mu| < \epsilon\}$  multiplied by  $m(\{\mu; |\lambda - \mu| < \epsilon\})^{-1/2}$ , then

$$1 = || f ||_{2} \le || (\lambda I - T)^{-1} || || (\lambda I - T) f ||_{2}$$
$$= || (\lambda I - T)^{-1} || \int_{K} (\lambda - \mu) f(\mu) dm(\mu) \le || (\lambda I - T)^{-1} || \epsilon,$$

a contradiction. Hence  $(\lambda I - T)$  is not invertible. So  $\lambda \in sp(T)$ . It follows that sp(T) = K. In addition, if  $Tf = \alpha f$  for some  $\alpha \in \mathcal{C}$ , then for all  $\mu \in K$ ,  $\mu f(\mu) = \alpha f(\mu)$ . So f = 0 almost every where. Thus T has no eigenvalue.