- (a) A Banach space X and an operator $T \in B(X)$ having no non-trivial invariant subspace.
- (b) A Banach space X and an operator $T \in B(X)$ having a nontrivial invariant subspace.

- (a) C.J. Read showed that if $X = l^1$ then there exists a bounded operator on l^1 having no nontrivial invariant subspace.
- (cf. [C.J. Read, A solution to the invariant subspace problem, Bull. London Math. Soc., 16(1984), 337-401.]
- (b) If $X = \mathcal{C}^n(n > 1)$, $T \in B(\mathcal{C}^n) \mathcal{C}I$ is an arbitrary operator and $\alpha \in \mathcal{C}$ is an eigenvalue of T, then $M = Ker(T \alpha I)$ is a nontrivial subspace of X and $TM \subseteq M$. (I is the identity operator on \mathcal{C}^n)