- (a) An injective operator on a Hilbert space H such that the range of T, R(T), isn't dense in H.
- (b) An operator S such that S is surjective but $Ker(S) \neq \{0\}$.

Let H be a separable Hilbert space with the standard orthonormal basis (e_n) .

- (a) The unilateral shift operator $T(\alpha_1, \alpha_2, \dots) = (0, \alpha_1, \alpha_2, \dots)$ on H is injective and the closure of its range is the closed linear span $\{e_2, e_3, \dots\}$ which doesn't contain e_1 .
- (b) If $S = T^*$, then $S(\alpha_1, \alpha_2, \dots) = (\alpha_2, \alpha_3, \dots)$. So S is surjective but $Ker(S) \neq \{0\}$, since it is the linear span of e_1 .