An operator U on a Hilbert space, other than I, such that $sp(U) = \{1\}$ and $\parallel U \parallel = 1$.

Suppose that $H=L^2(0,1)$ with respect to the Lebesgue measure and $(Tf)(x)=\int_0^x f(t)dt$. It follows from BA15.DVI, sp(T)=0, so that $sp(I+T)=\{1\}$. Hence $U=(I+T)^{-1}\neq I$ is well-defined, moreover $sp(U)=\{\lambda^{-1};\lambda\in sp(I+T)\}=\{1\}$. Therefore

$$1 = r(U) \le \parallel U \parallel .$$

But $||U|| \le 1$, since

$$||U^{-1}\xi||^2 = ||(I+T)\xi||^2 = ||f||^2 + \langle (T+T^*)\xi, \xi \rangle + ||T\xi||^2 \geq ||f||^2$$
.

(Note that $T+T^*$ is a projection onto the space of constant functions, since $(T^*f)(t)=\int_t^1 f(t)dt$.)

Thus ||U||=1.