An unbounded operator on a Hilbert space H annihilating an orthonor $\|U\|=1$.

Suppose that $H = L^2(0,1)$ with respect to the Lebesgue measure and $(Tf)(x) = \int_0^x f(t)dt$. It follows from BA15.DVI, sp(T) = 0, so that $sp(I + T) = \{1\}$. Hence $U = (I + T)^{-1} \neq I$ is well-defined, moreover $sp(U) = \{\lambda^{-1}; \lambda \in sp(I + T)\} = \{1\}$ harphropiection with range $[\xi]$ (If $K \subseteq H$, we denote the closed linear span of K by [K]). Then $T \in B$ iff PTP = TP. B(H) with weak-operator topology is Hausdorff and the mappings $T \longrightarrow PTP$ and $T \longrightarrow TP$ are weak-operator continuous, hence B is weak-operator closed in B(H).

Choose a unit vector $\eta \in H$ orthogonal to ξ . Suppose that Q is the projection onto $[\{\xi,\eta\}]$ and S is the operator defined by $S\eta = \xi, S\xi = 0$ and S(I-Q) = 0. Then P,Q and S are in B. Thus if $T' \in B'$ (the commutant of B), then ξ and η are eigenvectors for T', say $T'\xi = \alpha\xi$ and $T'\eta = \beta\eta$. Since $T'S = ST', \beta\xi = \beta S\eta = ST'\eta = T'\xi = \alpha\xi$ and $\alpha = \beta$. But η is an arbitrary element orthogonal to ξ ; therefore $T' = \alpha I$. Thus $B' = \{\alpha I; \alpha \in \mathcal{C}\}$. (Here I denotes the identity operator on H.)