An unbounded symmetric operator on an inner product space.

Suppose that H is the subspace of l^2 consisting of all sequences (ζ_n) with $\zeta_n = 0$ for all sufficiently larg n. H is not complete (Since (a_n) where $a_n = (1, \frac{1}{2}, \dots, \frac{1}{n}, 0, 0, \dots)_{n \in \mathcal{N}}$ is a Cauchy divergent sequence in H). Let T denote the linear mapping $(\zeta_n) \mapsto (n\zeta_n)$ on H. T is symmetric, for $T((\zeta_n)), (\eta_n) > \sum_{n=1}^{\infty} n\zeta_n \overline{\eta_n} = (\zeta_n), T((\eta_n)) > T$ is unbounded since if (ξ_n) is the orthonormal basis for l^2 , for each $n, \xi_n \in H$, $||\xi_n|| = 1$ and $||T\xi_n|| = n$.