
Optimal Number of Replicas in Data Grid

Environment

Abstract- Data replication is a promising technique for

increasing access performance and data availability in Data

Grid (DG) systems. Current work on data replication in

Grid systems focuses on infrastructure for replication and

mechanisms for creating or deleting replicas. The important

problem of determining minimum number of replicas, as

well as their locations in DG has not been well studied.

In this paper, we propose an algorithm is formulated by

using dynamic programming-based algorithm to find

Optimal Number of Replicas (ONR) of a dataset over DG

systems, such that the read cost (i.e. transferring object over

the Data Grid systems to the end-user)plus the cost of

storage (i.e. site building cost) is minimized. We have also

proposed a sketch of the proof for our algorithm and its

integrity.

I. INTRODUCTION

Grid computing is a novel and emerging paradigm,

whose goal is providing Virtual Organization (VO) of

geographically, distributed users with software/hardware

infrastructures that allow the effective sharing of

computational and storage resources. We distinguish

between computational grid and Data Grid: computational

grids address computationally intensive applications that

deal with complex and the intensive computational

problems usually on relatively small datasets whereas

Data Grids address the needs of data intensive

applications deal with the evaluation and mining of large

amounts of data in the terabyte and Peta byte range.

Therefore, data is the most important resource in a DG,

where user’s jobs require access to a large quantity of data.

One class of grid computing and the focus of this

paper is DG that provides geographically distributed

storage resources to large Computational scientific

applications require accessing, analyzing and storing large

amounts of data. Such applications warrant special

treatment to scale across distributed computing Platforms

like the grid and avid data access bottlenecks. In areas

such as genomics, drug discovery, High Energy physics

(HEP), astrophysics and climate change modeling, large

objects are generated, collected and stored in

geographically distributed locations [1,2,3]. These

objects having large amounts of data, so the cost of

maintaining a local copy of object on each site that

needs the data is extremely expensive. Moreover, these

 Yasser Mansouri Reza Monsefi
Department of Computer Engineering, Department of Computer Engineering,

 Ferdowsi University of Mashhad Ferdowsi University of Mashhad

 E-mail: ya_ma20, @stu-mail.um.ac.ir E-mail: rmonsefi@ferdowsi.um.ac.ir

objects are mostly read-only, since they are input data to

the applications for various purposes, such as

benchmarking, identification and classification. The need

to access and manage several peta byte data in grid

environments and high delay in wide area network, which

is the base most grid systems, access optimization (i.e.

minimizing access cost) and data availability becomes

keys challenges to be addressed.

Data replication is an excellent technique to move and

cache data close to users. Replication reduces access

latency and bandwidth consumption. It also facilitates

load balancing and improves reliability by creating

multiple data copies. There is a fair amount of work on

data replication in DG systems. However, most of the

existing works have focused on infrastructure for

replications and mechanisms for creating/deleting replicas

[4,5,6,7,8,9,10]. We believe that, optimizing overall

access cost and reducing the cost of replication are two

conflicting goals. So, a strategic for determining optimal

number of replicas, as well as their locations; such that

overall access cost to be minimized, is necessary.

Some work exist on the placement of replicas in

parallel and distributed systems with regular network

topologies such as tree, hyper cubes and ring, etc

[11,12,13]. However, these algorithms not be directly

used by DG environments due to hierarchical network

structure and special data access patterns in DG

environments that are not common in traditional parallel

system.

A number of early works have been studied placing

replicas for DG environments. In [14], the author presents

a heuristic algorithm, named proportional share
replication for the placement problem. However, the

algorithm does not guarantee to find optimal placement

for replicas. Liu et al. [15, 16], suggested efficient

algorithm for selecting strategic location for placing the

replica so that the workload among these replicas is

balanced. Also, they proposed algorithm to decide the

minimum number of replicas required when the

maximum workload capacity of each replica server is

known. These algorithms ensure that locality

requirements from the user satisfied. To the best of our

knowledge, none of the existing work, has considered

structure and special data access in DG, for unknown

number of replicas; find optimal number of replicas for

DG tree systems ,such that communication1 and storage

cost is minimized.

However, we present a novel dynamic algorithm on

geographical replications of objects on hierarchical (i.e.

tree structure) DG systems for read-only applications.

This algorithm finds ONR and location of replicas, such

that overall access cost is minimized. The presented

algorithm includes polynomial time and space complexity

as well.

The rest of the paper is organized as follows. Section

2 formulates minimum replication cost problem for

hierarchical DG.A polynomial Optimal Number of

Replicas (ONR) solution to the problem is presented in

section 3. Section 4 presents sketch of the proof for our

algorithm and its numerical example in the next section.

Finally, section 6 concludes the paper.

II. DATA GRID MODEL AND BASIC DEFINITION

First, we describe DG Model: We will consider

hierarchical DG model in this paper, due to its simplicity

and close resemblance to the hierarchical management,

usually found in a grid environment. For instance, in LCG

(World-Wide Large Hardon Collider Computing Grid)[17]

project 150 institutes from 30 countries form in a grid

environment. The grid environment is organized as a

hierarchical structure, with CERN (the European

organization for Nuclear Research) as tier-0, or the root of

grid environment. There are 11 tiers-1 sites that are

connected directly to CERN and are located in different

countries. These sites in tier-1, data are obtained from

CERN in LHC. Other tier-2 sites in LCG hierarchy

receive data from its corresponding tier-1 site.

GriPhyN[18] is another example of hierarchical structure

grid including multiple tiers and initially (first) all data

are produced in tier-o. Tier-1 in this type of data grid

includes several national centers; and below that there are

regional centers. As a result, this paper focuses on tree

topology.

In this model, a user of a local site at the leaf, accesses

an object as follows: First he/she tries to locate the object

replica locally. If the object replica is not present, he/she

goes to the parent node up the tree to find if a replica is

there. That is, the user's request goes up the tree and uses

the first replica encountered along the path toward the

root. If there is no replica along the way, the hub (i.e. the

root of tree) will serve this request. However, in this

article, we assumed that all of the tree nodes, including

the internal nodes, could request data.

Now, we introduced the notations and definitions used

in this paper. Consider M objects hosted by a DG system

whose nodes are connected to form a network represented

by a Tree Tr=(V,E) ,where V is the set of nodes(i.e. server

or client) and E is the set of physical links between the

1
Communication cost and read cost is interchangeable.

nodes. Moreover, r is the root of DG system, which we

name it "original server" (the hub) and assuming that

initially, all M objects are included. Moreover Anc (v) is

the set of ancestors of node v.

Not that, an object replica can be placed in any tree

nodes except the hub r. The entire tree leaves are local

sites, where user can access objects stored in DG system.

Consider for each object i (1 i M), every node v Tr is

associated with a non-negative read rate rv,i , which is the

number of access during a certain period of time, where

node v, requests object i. let d(u,v) be a non-negative cost

assigned to link (u,v) E ,which could be interpreted as

delay, link cost, hop count, etc. a weight Si(v) is

associated with each node v V ,representing the cost of

storing a copy of object i (or site building cost) in node v.

At this time, we are going to calculate total cost of the

system, which is the sum of the overall read cost and the

overall storage cost. Suppose that the nodes of T issue

read request for an object i, and that replicas of that object

i can be stored at multiple nodes of T. The set of nodes at

which replicas of that object i are places is called an

Optimal Location of Replicas for object i (i.e. OLRi).

The read cost of OLRi is the cost of servicing the read

requests issued from all the nodes of T for object i, is

given by:

,
V

. (, (,) (1)
v i i

v

OLRr d v c v

Where we define c(v,OLRi) to be the lowest ancestor of

v Tr that is contained in OLRi, i.e., the first node in OLRi

that is seen while going up from v to root r. This node,

which is c (v, OLRi) may be located in height l, top of the

node v, which denoted with vl and d(v,vl) equal with the

cost sum over l links. Clearly moreover, node containing

replica of object i, does not request data from ancestor.

The storage cost of OLRi is the cost of placing replicas of

that object i at all the nodes in OLRi and is given by:

() (2)
i

v ORLi

S v

Thus, the total cost for an Optimal Location of Replica

(i.e. OLRi) for Tr is:

Costi (OLRi, V) = + (3)
,

V

. (, (,)
v i i

v

OLRr d v c v ()

i

i
v OLR

S v

Therefore, the total cost for M object, which we desire to

be minimum is given by:
M

i 1

cos (,) (4)i

i
OLRt V

Thus, the Optimization Problem (OP) can be formally

defined as follows:

OP: Given a tree network of DG Tr= (V,E)and M

objects, finding ONRi and OLRi for all 1 i M,

OLRi V and r OLRi, such that

minimize , where Cost
M

i 1

cos (O R ,)i
it L V

i (OLRi,V) is

given (3).

III. OPTIMAL NUMBER OF REPLICAS (ONR)

ALGORITHM

In this section, we present a solution to the ONR and

as well as Optimal Location of Replicas (OLR), for object

i in a DG Tree Tr, such that total cost (given in (“3”)) is

minimized. With out of generality, we assume that

initially, all objects are located in root of DG Tree. This

assumption is completely in accordance with general state

of the problem in real world (for instance GriPhyN or

European DG).

At this time, we propose a new dynamic algorithm to

the ONR. As show in fig. (1.a), we consider a more

generalized problem of ONR in a sub-tree rooted at node

v, assuming the lowest ancestor of v that has replica is

node vl. This node (i.e. vl) is located in distance l link

from node v. We assume that, min_cost (v, vl)-value is the

minimum cost of the sub-tree rooted at v, where the next

replica of object i up the tree is at distance l link from v.

Moreover, OLR (v, vl) is an optimal solution for placing

replicas in sub-tree Tv.

In order to determine optimal number of replicas for

object i, in a way that total cost (i.e.” (3)”) to be minimum;

two cases for calculation min_cost (v, vl)-value for all

nodes v Tr and for each vl Anc(V) is considered, as

follows:

Case1: we assume that in sub-tree rooted at v, no replica i

is located in node v. Therefore, in this case value of min-

cost (v,vl) equals to sum of following costs:

1) Replication cost in v’s children, while we have

optimum number of replica and minimum replication

cost. In this case, it's clear that the lowest ancestor of

v’s children is vl, which contains object i and data are

read from it. So, replication cost of children’s v

is where Z (v) be the set of v’s

children.

()

min_ cos (,)l
z child v

t z v

2) Reading cost of node v from the lowest its ancestor

(i.e. vl) which contains object i. So, reading cost of

node v is .. (,),r d v vv i l

Therefore, in this case recurrence function can be as

follows (see fig. 1.a):

min_cost (v,vl)=c1(v,vl)= + (5)
z child(v)

min_cost(z,v)
l

. (,)
, l

r d v v
v i

Above discussion leads to the following algorithm.

Therefore, OLR (v,v

case2: we assume that in sub-tree rooted in v, one replica

of object i is located in node v. Thus, in this case value of

min-cost (v, vl) equals to sum of following costs:

(a) (b)

Figure.1.Description of dynamic programming algorithm for C(v,vl) in

a DG Tree: (a). No replica at node v,(b) replica at node v.

1) Replication cost in v’s children, while we have

optimum number of replica and minimum replication

cost. In this case, the lowest ancestor, which contains

object i and data are read from it by v’s children, is

node v (i.e. data are read from father node).thus, is

.min_cost(z,v)

()z child v

2) Reading cost of node v from the lowest its ancestor

(i.e. vl node) which contains object i. in this case (i.e.

case 2) object i is read once, and is replicated in node

v. Thus, read cost of node v is d(v,vl) .
3) Storage cost object i in node v. that is, Si(v).

Therefore, in case 2 recurrence functions can be follows

(see fig. 1.b):

min_cost (v,vl) = c2(v,vl)= Si(v)+d(v,vl)+

 (6)
z child(v)

min_cost(z ,v)

Now, we consider general DG tree with n node, and

the traversal all the nodes in reverse post-order. That is,

with starting from leaf’s tree, we calculate all min_cost

(v,vl)-values. Notice that, these values, for all DG tree

nodes, considering all ancestors of node, is calculated.

l) is trivial if v is a leaf in Tv. In this

case, if si(v) +d(v,vl) rv,i.d(v,vl),no replica need to be

placed at v. Otherwise, if si(v) +d(v,vl)<rv,i.d(v,vl), a

replica should be placed at v. For each none-leaf (i.e.

internal node) v in Tv, we compare two min-cost(v,vl)

in((“5”)and(“6”)).Thus, if c1(v,vl) c2(v,vl), no replica

need to be placed at v (see case 1); otherwise, if c1(v,vl)

c2(v,vl), a replica should be placed at v. Thus, the

recurrences for dynamic algorithm are given by:

min_cost (v,vl)=

v

l

vl

() vZ v T

v

l

vl

() vZ v T

r . d (v , v) i f v i s a l e a f a n d s (v) d (v ,) r . d (v , v)
, i ,

() (,) i f v i s a

l l

l

v
v i l v i

s v d v v
i ,

l e a f a n d s (v) d (v ,) r . d (v , v)
i

m i n [(() (,) m i n _ c o s t (z ,)) ,
z c h i l d (v)

 (r . d (v , v) m i n _ c o s t (z ,)] i f v i s n o t a l e a f
, z c h i l d (v)

(7)
v i l

l

l l

v
l

s v d v v v
i

v
v i

OLR (v,vl)=

IV. SKETCH OF PROOF

In this section, we present a sketch of proof to the

ONR algorithm. As shown in Fig. 1.a, we consider a more

generalized problem of placing replicas in a sub-tree

rooted at node v, assuming the lowest ancestor of v that

has a replica is node vl. This new problem is formally

defined as follows:

Definition: let node vl be ancestor of node v in tree T and

Tv be the sub-tree of T, which rooted at node v (see

Fig.1.a).Assume a replica of object is located at node vl.

The problem of finding a replication strategy, i.e. a subset

OLR (v, vl) Tv with ONR, such that min_cost(OLR (v,

vl))= + is minimized.This

problem is referred to as (v, v

,
V

. (r d v , (,)
v i i

v

OLRc v ()
i

i
v OLR

S v

l))-optimization problem.

Bye creating a dummy parent p for the root r,a DG

Tree Tr=(V,E) can be converted into a new tree T+(v

{p},E (r,p)), where d(r,p)=0.

Simply, it can be found that the min-cost (v,vl)-values

replica placement problem in T equals to the (r,p)-

optimization problem in T+. Therefore, in order to

develop a dynamic programming algorithm, theorem 1

proves that an optimal solution to the (v,vl)-optimization

problem contain optimal solutions to some sub- problems.

Therome1. Assume three nodes v, vl and z in tree T,

where vl is an ancestor of v and z is a child of node v (see

Fig. 2). Let Tz be the set of nodes in the sub-tree of T
rooted at z. Let OLR(v, vl) , OLR(z,vl) and OLR(z, vl) be

optimal solutions to the (v,vl),(z,v) and (z,vl)-optimization

problems ,respectively.

Therefore, we prove that, (1) if v OLR (v,vl), then the

replication strategy OLR+ = (OLR(v, vl) – Tz) OLR(z, v)

is also an optimal solution to the (v, vl)-optimization

problem; otherwise ,(2) if v OLR(v, vl) , then replication

strategy OLR++(v, vl)=(OLR(v, vl)-Tz) OLR(z, vl) is

also an optimal solution to the(v, vl)-optimization problem.

Proof: To prove claim(1), we show that, min_cost (OLR

(v,vl))=min_cost(OLR+(v,vl)).since OLR(z,v) is an optimal

solution to the (z,v)-optimization problem, we have

min_cost (OLR (z,v) min_cost(OLR(v, OLR(z,v)) Tz)

).Meanwhile, we can consider OLR (v, vl) as two disjoint

subset. It means that, OLR (v,vl)-Tz and OLR(z,v). Thus,

min_cost (OLR+(v,vl)=

 min_cost (OLR (v,vl)-Tz)+min_cost OLR(z,v))

min_cost (OLR (v, vl)-Tz)+min_cost OLR(v,vl) Tz)

 =min_cost (OLR (v, vl)). (9)

Figure.2.

On the other hand, OLR (v, vl) is an optimal solution to

the (v, vl)-optimization problem thus,

min_cost (OLR (v, vl)) min_cost (OLR+(v,vl)). (10)

We conclude from (“9”) and (“10”): min_cost (OLR (v, vl))
=min_cost (OLR+(v, vl).Thus, OLR+ (v, vl) is also an

optimal solution to the (v, vl)-optimization problem.

Proving claim (2) is very similar to that for claim (1).

Considering the assumption of theorem1,OLR(z, vl) is an

optimal solution to the (z, vl)-optimization problem, we

have min_cost(OLR(z, vl)) min_cost(OLR(v, vl) Tz)).

Note that OLR++ can be divided into two disjoint subsets:

OLR(v,vl)-Tz and OLR(z,vl).thus, min_cost(OLR++(v,vl)

 = min_cost (OLR++(v,vl)-Tz)+min_cost(z,vl))

min_cost(OLR(v,vl)- Tz)+min_cost(OLR(v,vl) Tz)

=min_cost(OLR(v,vl). (11)

The optimality of OLR(v,vl) to the (v,vl)-optimization

problem implies that,

min_cost (OLR (v,vl) min_cost(OLR++(v,vl) (12)

with comparison (“11”) and(“12”), we have,

min_cost (OLR (v,vl)= min_cost(OLR++(v,vl).

Therefore, OLR++ is also an optimal solution to the (v, vl)-

optimization problem. Hence, Theorem1 is proven. Now,

we conclude two following properties from theorem 2.

Theorem2.Assume node vl be an ancestrator of node v in

tree T, in which one replica of object i is located, and Z(v)

be the set of v’s children. Let OLR (v, vl) be an optimal

solution to the (v, vl)-optimization problem.

1. if v OLR(v, vl) ,then the replication strategy {V}

()z Z v
OLR (z,v) is also an optimal solution to the (v, vl)-

optimization problem, where OLR(z,v) is an optimal

solution to the (z,v)-optimization problem.

2. Otherwise, if v OLR (v, vl), then the replication

strategy
()z Z v

OLR (z,v) is also an optimal to the (v, vl)-

optimization problem, where OLR(v, vl) is an optimal

solution to the (z, vl)-optimization problem.

Proof: We assume that sub-tree Tv has k children. That

is,Z(v) = {z1,z2,….,zk}. In order to prove properties 1 in

theorem 2, if x OLR(x,y) and by iteratively applying

if v is a leaf and s () d(v,) r .d(v,v)i ,

 if v is a leaf and s (v) d(v,) r .d(v,v)i ,

(,)
()

l l

l l

l

v v v i

v v v i

OLR z v
z Z v

1

1

if v not leaf and c (,) (,) (8)2

(,) if v is not leaf and c (,) (,)2()

l

l l

v v c v vl

v OLR z v v v c v v
z Z v

v

l

vl

z

Tz

claim 1 of theorem1, replication strategies are all optimal

solutions to the (v, vl)-optimization problem as follows:

(OLR(v, vl)-
1ZT) OLR(z,v),

(OLR(x,y)-
1ZT -

2ZT), OLR(z1,v) OLR(z2,v),.....

(OLR (v, vl)-
k

i 1
iZT) (OLR (z

k

i 1
i,v)). (13)

It’s clear that, (OLR (v, vl)-)={v} because

v OLR(v,v

k

i 1
iZT

l).

Therefore, (“13”) = {v} OLR (z
k

i 1
i,v) is an optimal

solution to the(v, vl)-optimization problem, and properties

1 is proven.

Proving properties 2 is completely similar to that for

properties 1. Therefore, assuming that if v OLR (v, vl)

and by iteratively applying claim 2 of theorem 1,

replication strategy are all optimal solution to the (v, vl)-

optimization problem as follows:

(OLR (v, vl)-
1zT) OLR (z,v),

(OLR(v, vl)-
1zT -

2zT), OLR(z1,v) OLR(z2,v)

,.....

(OLR (v, vl)-
k

i 1
iZT) (OLR (z

k

i 1
i,v)). (14)

Since v OLR (v, vl), we have (OLR (v, vl)- (OLR(v, vl)-

)= . Thus, (“14”) = OLR (z
k

i 1
iZT

k

i 1
i,v) is an optimal

solution ,and properties 2 is proven. Hence, the theorem 2

is proven.

Finally, we analysis the complexity of ONR dynamic

algorithm for a DG Tree in the following Theorem.

Theorem3.Let Tr be a DG Tree with n nodes. We can find

optimal number of replicas for Tr in O(n2) time and space

complexity ,such that equations (4) is minimized.

Proof:

ONR algorithm computes each min_cost(v, vl) and OLR(v,
vl) in O(Z(v)) ,where Z(v) is the number of v’s children .

Moreover, it is needed to calculate O(Anc(v)) in the forms

of OLR (v,vl) and min_cost (v,vl) for each v V, where

Anc(v) is the number of v’s ancestrator T+. Therefore, the

total time complexity of ONR algorithm is given by:

O(((). ())
v V

Z v Anc v O(. (
v V

V Anc v))

2
(. ()) ()

v V

V Anc v o V .

Since maximum O(V
2) OLR-entries and min_cost -

values should be calculated. The worst case space

complexity is O (
2

V).

V. NUMRICAL EXAMPLE

We consider an example DG Tree given Fig 3. There

are 11 nodes (including the root begin the server. The link

cost is given as d(u,v) ,which node u is the parent of node

v(for example in Fig. 3,d(N,H)=3). The node read rate (rv)

and storage cost (s(v)) are given as (rv,s(v)), Which is

shown in fig.1.For instance, node E has read rate and

storage cost 2 and 3, respectively (i.e. (rE=2,s(E)=3).

We were interested in finding ONR and OLR for

object i in DG tree Fig.3 .In this DG Tree, we assume

there is one object in tree’s root (i.e. object i). According

to equation 7, our algorithm, calculate min_cost (v,vl)-

values.

Now, let us focus on table 1. As indicated in table 1,

corresponding to each (v,vl)-entry, there is one numeric

value that is min_cost(v,vl). This value is the minimum of

c1(v,vl) and c2(v,vl) values.

For example, min_cost(N,H)-value corresponding to

(N,H)-entry is 3.Since node N is a leaf and

c1(N,H)=s(N)+d(N,H)=5 c2(N,H)=rN .d(N,H)=3.(see

“(7)”).Thus ,no replica of object is located within node N.

So node N reads object from its ancestor (i.e. node H).For

the same node(i.e. v=N) and its ancestor, that is vl=C with

distance l=2 ,min_cost(N,C) shows 5.Since node N is a

leaf and c1(N,C)=s(N)+d(N,C)=7 c2(N,C)=rN . d(N,C)=

5(see “(7)”).So in this case, no replica of object is located

in node N.

Take another example. Consider (K,G)-entry which its

corresponding min_cost(K,G)-value is 4.According to

(“7”) ; node K is a leaf and

c1(K,G)=s(K)+d(K,G)=4 c2(K,G)=rK .d(K,G)=8.Thus ,

one replica of object is located in node K.

Now, look at the internal nodes of DG tree. For

example, min_cost (H,C)-value corresponding to (H,C)-

entry is 15.According to equation (“7”), min_cost (H,C)-

value is calculated as follows:

Since node H is not a leaf, thus min_cost

(H,C)=min(c1(H,C),c2(H,C)) ,whichc1(H,C)=s(H)+d(H,C)

+ =3+2+3(min_cost(M,H))+

3(min_cost(N,H))+4(min_cost(O,H))=15.

min_ cos (,)t z H
z child H

and

c2(H,C)=rH .d(H,C)+ min_ cos (,)
z childH

t z C =2+5(min_

_cost (M,C))+5(min_cost(N,C)) +6 (min_cost (O,C))=18.

Thus, considering min_cost (H,C)-value, one replica is

located within node H. Similarly, according to the (“7”),

we calculate all min_cost (v,vl)-values in table1 by

traversal all nodes in reverse post-order , That is,

beginning with tree leaves.

Now, considering table1, we determine OLR with

breadth-first traversal, from top to the bottom of the tree.

For example, according to (“8”) and min_cost (B,r)=8,one

replica of object is located in node B. Similarly,

considering min_cost (D,r),min_cost(C.r) and (“8”), one

replica of object is placed on nodes C and D. Therefore,

Figure3.General DG Tree example. rating read and storage cost are

given as(rv,Sv)

Table1.The optimal solution for the example General DG Tree

considering min-cost (v,vl)-values in table 1 and (“8”), we

will determine other replicas location.

So, for DG Tree in Fig.3, ONR is 9(except node r) and

OLR shows as “shaded’’ nodes in Fig.3 , which total cost

for replication in this DG tree is 83.

VI. CONCLUTION

In this paper, we have investigated the Optimal

Number of Replicas (ONR) and Optimal Locations of

Replicas (OLR) in a DG Tree system. In particular, we

give a novel dynamic algorithm for ONR and OLR, such

that the read and storage cost is minimized.

We formulate ONR and OLR problems by dynamic

programming-based algorithm. Our algorithm takes time

and space complexity at worst-case O (n2), which n is

number of nodes in the DG Tree.

REFERENCE

[1] B. Allcock, J. Bester, J. Bresnahan, A. L.Chervenak, I.

Foster, C. Kesselman, S. Meder, V. Nefedova, D. Quesnal,

and S. Tuecke, Data management and transfer in high

performance computational grid environments, Parallel

Com-puting Journal 28 (2002), no. 3, 749{771.

[2] D. Bosio, J. Casey, A. Frohner, and L. Guy et al, Next

generation eu datagrid data manage-ment services,

Computing in high energy physics (CHEP2003), March

2003.

[3] A. Chervenak et. al, Giggle: A framework for constructing

scalable replica location services,Proc. of the ACM/ IEEE

SuperComputing Con-ference, November 2002.

[4] A. Chervenak, R. Schuler, C. Kesselman, S. Koranda, and

B. Moe. Wide area data replication for scientific

collaborations. In In Proceedings of the 6th International

Workshop on Grid Computing, November 2005.

[5] W. B. David, D. G. Cameron, L. Capozza, A. P. Millar, K.

Stocklinger, and F. Zini. Simulation of dynamic grid

rdeplication strategies in optorsim. In In Proceedings of 3rd

Intl IEEEWorkshop on Grid Computing, pages 46–57,

2002.

[6] W. B. David. Evaluation of an economy-based file

replication strategy for a data grid. In International

Workshop on Agent based Cluster and Grid Computing,

pages 120–126, 2003.

[7] M. Deris, A. J.H., and H. Suzuri. An efficient replicated data

access approach for large-scale distributed systems. In

IEEE International Symposium on Cluster Computing and

the Grid, April 2004.

[8] H. Lamehamedi, B. Szymanski, Z. Shentu, and E. Deelman.

Data replication strategies in grid environments. In In

Proceedings of 5th International Conference on Algorithms

andArchitecture for Parallel Processing, pages 378–383,

2002.

[9] K. Ranganathan, A. Iamnitchi, and I. Foste. Improving data

availability through dynamic model-driven replication in

large peer-to-peer communities. In In 2nd IEEE/ACM

International Symposium on Cluster Computing and the

Grid, pages 376–381, 2002.

[10] H. Stockinger, A. Samar, B. Allcock, I. Foster, K. Holtman,

and B. Tierney. File and object eplication in data grids.In In

10th IEEE Symposium on High Performance and

Distributed Computing, pages 305–314, 2001.

r

C
D

(v,vl) c1(v,vl) c2(v,vl min_cost(c1,c2)

(O,H) 5 4 4

(O,C) 7 8 7

(O,r) 9 12 9

(N,H) 5 3 3

(N,C) 7 5 5

(N,r) 9 7 7

(M,H) 3 4 3

(M,C) 5 8 5

(M,F) 7 12 7

(L,G) 2 3 2

(L,C) 3 6 3

(L,r) 5 12 5

(K,G) 4 8 4

(K,C) 5 12 5

(K,r) 7 10 7

(F,B) 3 3 3

(F,r) 5 9 5

(E,B) 4 2 2

(E,r) 5 9 5

(J,D) 7 9 7

(J,r) 8 8 8

(I,D) 4 6 4

(I,r) 5 9 5

(H,C) 15 19 15

(H,r) 17 27 17

(G,C) 8 10 8

(G,r) 10 18 10

(B,r) 8 17 8

(C,r) 27 31 27

(D,r) 12 14 12

H
G

B

K L

E F
M

N

O

2 2
1

1 1

2 1

2
3

2

1
2

J
I

(3, 1)

(2, 3) (3, 2)

(2, 1)

(4, 2) (3, 1)

(2, 1)

(1, 2)

(2,3)

(1, 3)

(3, 2)
(2, 4)

(2, 2)
(1, 1)

[11] M. M. Bae and B. Bose. Resource placement in torus-based

networks. IEEE Transactions on Computers, 46(10):1083–

1092, October 1997.

[12] K. Kalpakis, K. Dasgupta, and O. Wolfson. Optimal

placement of replicas in trees with read, write, and storage

costs. IEEE Transactions on Parallel and Distributed

Systems, 12(6):628–637, June 2001.

[13] N.-F. Tzeng and G.-L. Feng. Resource allocation in cube

network systems based on the covering radius. IEEE

Transactions on Parallel and Distributed Systems,

7(4):328–342, April 1996.

[14] J. H. Abawajy. Placement of file replicas in data grid

environments. In ICCS 2004, Lecture Notes in Computer

Science3038, pages 66–73, 2004.

[15] P. Liu and j.j. Wu. Optimal Replica Placement Strategy for

Hierarchical Data Grid Systems. Proceedings of the Sixth

IEEE International Symposium on Cluster Computing and

the Grid (CCGRID'06), Volume 00,2006

[16] P. Liu, Y.-F. Lin, and J.-J. Wu. Optimal placement of

replicas in data grid environments with locality assurance.

In International Conference on Parallel and Distributed

Systems (ICPADS). IEEE Computer Society Press, 2006.

[17] World wide LHC computing

Grid .http//lcg.web.cern.ch./lcg/.

[18] The GriPhyN Project, http://www.Griphyn.org.

