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PROBLEMS

Problem B-4-1

Consider the regions in the s plane shown in Figures 4-65(a) and (b). Draw the
corresponding regions in the z plane. The sampling period T is assumed to be 0.3 sec.
(The sampling frequency is o, = 27/T = 27/0.3 = 20.9 rad/sec.)
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Problem B-4-2
Consider the following characteristic equation:
22+ 2.12° + 1.442 + 032 =0 :
Determine whether or not any of the roots of the characteristic equation lie outside the
unit circle centered at the origin of the z plane.
Problem B-4-3
Determine the stability of the following discrete-time system:
Y(z) z7?
X(z) 1405270 =134z + 024273
Problem B—4—4

Consider the discrete-time closed-loop control system shown in Figure 4-13. Determint
the range of gain K for stability by use of the Jury stability criterion.
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Problem B-4-5

Solve Problem B~4-4 by using the bilinear transformation coupled with the Routh
stability criterion.

Problem B-4-6
Consider the system

Y(z) bo+biz '+ -+ b,z
=G(z) = = ~n
X(z) 1+az7' + +a,z

Suppose that the input sequence {x(k)} is bounded; that is,
|x(k)| = My = constant, k =0,1,2,...

Show that, if all poles of G(z) lie inside the unit circle in the z plane, then the output
y(k) is also bounded; that is,

ly(k)| = M. = constant, k =0,1,2,...
Problem B-4-7

State the conditions for stability, instability, and critical stability in terms of the weight-
ing sequence g(kT) of a linear time-invariant discrete-time control system.

Probiem B—4-8

Consider the digital control system shown in Figure 4-66. Plot the root loci as the gain
Kisvaried from 0 to «o. Determine the critical value of gain K for stability. The sampling
period is 0.1 sec, or T = 0.1. What value of gain K will yield a damping ratio ¢ of the
closed-loop poles equal to 0.57 With gain K set to yield ¢ = 0.5, determine the damped
natural frequency wq and the number of samples per cycle of damped sinusoidal

oscillation.
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Figure 4-66 Digital control system for Problem B—4-8.
Probiem B-4-9

Referring to the digital control system shown in Figure 4-67, design a digital controller
Gp(z) such that the damping ratio { of the dominant closed-loop poles is 0.5 and the
number of samples per cycle of damped sinusoidal oscillation is 8. Assume that the
sampling period is 0.1 sec, or T = 0.1. Determine the static velocity error constant.
Also, determine the response of the designed system to a unit-step input.

Problem B—4-10

Consider the control system shown in Figure 4-68. Design a suitable digital controller
that includes an integral control action. The design specifications are that the damping
ratio {'of the dominant closed-loop poles be 0.5 and that there be at least eight samples
per cycle of damped sinusoidal oscillation. The sampling period is assumed to be 0.2
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Figure 4-68 Digital control system for Problem B-4-10.

sec, or T = 0.2. After the digital controller is designed, determine the static velocit,
error constant K, .

Consider the digital control system shown in Figure 4-69, where the plant is of the ﬁrst :
order and has a dead time of 5 sec. By choosing a reasonable sampling period T, demg
a digital PI controller such that the dominant closed-loop poles have a damping ratio
{0f0.5 and the number of samples per cycle of damped sinusoidal oscillation is 10. Afterk
the controller is designed, determine the response of the system to a unit-step input.
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Figure 4-69 Digital control system for Problem B-4-11.

Design a digital proportional-plus-derivative controller for the plant whose transfef
function is 1/s%, as shown in Figure 4-70. It is desired that the damping ratio { of th
dominant closed-loop poles be 0.5 and the undamped natural frequency be 4 rad/S‘e
The sampling period is 0.1 sec, or T = 0.1. After the controller is designed, determifé.
the number of samples per cycle of damped sinusoidal oscillation. ;
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Figure 4-70 Digital control system for Problem B-4-12.

Problem B-4-13

Referring to the system considered in Problem A—4-9, redesign the digital controller
so that the static velocity error constant K, is 12 sec™?, without appreciably changing
the locations of the dominant closed-loop poles in the z plane. The sampling period is
assumed to be 0.2 sec, or T = 0.2. After the controller is redesigned, obtain the
unit-step response and unit-ramp response of the digital control system.

Problem B-4-14

Consider the digital control system shown in Figure 4-71. Draw a Bode diagram in the
w plane. Set the gain K so that the phase margin becomes equal to 50°. With the gain
K s0 set, determine the gain margin and the static velocity error constant K,. The
sampling period is assumed to be 0.1 sec, or T = 0.1.
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Figare 4-71 Digital control system for Problem B-4-14.
Problem B-4-15

Using the Bode diagram approach in the w plane, design a digital controller for the
system shown in Figure 4-72. The design specifications are that the phase margin be
50°, the gain margin be at least 10 dB, and the static velocity error constant K, be 20
sec™. The sampling period is assumed to be 0.1 sec, or T = 0.1. After the controller
is designed, calculate the number of samples per cycle of damped sinusoidal oscillation.
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Figure 4-72 Digital control system for Problem B—4-15.
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Problem B-4-16

]

Consider. the digital control system shown in Figure 4-73. Using the Bode diagram
approach in the w plane, design a digital controller such that the phase margin is 60°,
the gain margin is 12 dB or more, and the static velocity error constant is 5 sec™". The
sampling period is assumed to be 0.1 sec, or T = 0.1.
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State-Space Analysis

Figure 4-73 Digital control system for Problem B~4-16.
Problem B-4-17

Consider the system shown in Figure 4-74. Design a digital controller using a Bode
diagram in the w plane such that the phase margin is 50° and the gain margin is at least
10 dB. It is desired that the static velocity error constant K, be 10 sec™". The sampling .
period is specified as 0.1 sec, or T = 0.1. After the controlier is designed, determine
the number of samples per cycle of damped sinusoidal oscillation.

-1 INTRODUCTION
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In Chapters 3 and 4 we were concerned with conventional methods for the analysis
and design of control systems. Conventional methods such as the root-locus and
frequency-response methods are useful for dealing with single-input-single-output
systems. Conventional methods are conceptually simple and require only a reason-
able number of computations, but they are applicable only to linear time-invariant
systems having a single input and single output. They are based on the input-output
relationship of the system, that is, the transfer function or the pulse transfer function.
They do not apply to nonlinear systems except in simple cases. Also, the conven-
tional methods do not apply to the design of optimal and adaptive control systems,
which are mostly time varying and/or nonlinear.

A modern control system may have many inputs and many outputs, and these
may be interrelated in a complicated manner. The state-space methods for the
analysis and synthesis of control systems are best suited for dealing with multiple-
input-multiple-output systems that are required to be optimal in some sense.
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Figure 4-74 Digital control system for Problem B-4-17.
Problem B—4-18

Consider the digital control system shown in Figure 4-75. Design a digital controller
Gp(z) such that the system output will exhibit a deadbeat response to a unit step input
(that is, the settling time will be the minimum possible and the steady-state error wil
be zero; also, the system output will not exhibit intersampling ripples after the settling
time is reached). The sampling period T is assumed to be 1 sec,or T = 1.

Concept of the State-Space Method. The state-space method is based on the
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differential equations, which may be combined into a first-order vector-matrix dif-
Gpi2) G,(s) ference equation or differential equation. The use of the vector-matrix notation

greatly simplifies the mathematical representation of the systems of equations.
System design by use of the state-space concept enables the engineer to design

control systems with respect to given performance indexes. In addition, design in

the state space can be carried out for a class of inputs, instead of a specific input

Figure 4-75 Digital control system for Problem B-4-18.
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