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To determine the stability of the origin of the system in the new coordinate system, let

us apply the Liapunov stability equation given by Equation (5-90):

2 0 |pn pell2 057 [pn plz] _ _[9 0 ]

0.5 0.8 Pz Pz 0 08 P12 P2 0 0.35
where we choose Q to be a positive definite matrix having elements that simplify the
computation involved. Solving this last equation for matrix P, we obtain :

P= Pu P -3 5]

Piz Pz 5 10
By applying the Sylvester criterion for positive definiteness, we find that matrix P is not
positive definite. Therefore, the origin (equilibrium state) is not stable.

The instability of the equilibrium state can, of course, be determined by the z
transform approach. Let us first eliminate £, from the state equation. Then we have.

Bk +2) = 2.8%(k + 1) + 1.68:(k) = 0

Problem B-5-4

Obtain a state-space representation of the system described by the equation

vk +2) + y(k + 1) + 0.16y(k) = u(k + 1) + 2u(k)
Problem B-5-5 ’

Obtain the state equation and output equation for the system shown in Figure 5-11.

The characteristic equation for the system in the z plane is x5 (k) %, (k)
72 -282+1.6=0 ulk) = \ [ x%
z P4
|
or l
(z~-2)(z~08)=0
Hence, . <
z =2, z= 0.8
Since pole z = 2 is located outside the unit circle in the z plane, the origin (equilibriu S 1% ]
state) is unstable. T
a3 l
.
PROBLEMS
Figure 5-11 Block diagram of a control system.
Problem B-5-1 Problem B-5-6

Problem B-5-2

Problem B~-5-3

Obtain a state-space representation of the following pulse-transfer-function system
the controllable canonical form.
Y(z)  z'+2:7
Ulz) 1 +4z77+3z72

Obtain the state equation and output equation for the system shown in Figure 5-12.
Problem B-5-7

Obtain the state-space representation of the system shown in Figure 5-13.

Problem B-5-8
Obtain a state-space representation of the following pulse-transfer-function system
the observable canonical form.

Y(z) 277+ 4270
Uz) 1+6z7 +11z7%+627°

Figure 5-14 shows a block diagram of a discrete-time multiple-input-multiple-output
system. Obtain state-space equations for the system by considering x:(k), x.(k), and
x3(k) as shown in the diagram to be state variables. Then define new state variables such
that the state matrix becomes a diagonal matrix.

Problem B-5-9

Obtain a state-space representation of the following pulse-transfer-function systé®

Obtain the state equation and output equation for the system shown in Figure 5-15.
the diagonal canonical form.

Problem B-5-10
Y() 1+627+877
U(z) 1+4z7"+3272

Obtain a state-space representation of the discrete-time control system shown in
Figure 5-16.
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Figure 5-13 Block diagram of the control system of Problem B-5-7.

Problem B-5-11
Obtain a state-space representation of the following system in the diagonal canonica
form.

Y(z) _ 27 42270
Uz) 1+07z71+0.1227°

Problem B-5-12
Obtain a state-space representation of the following pulse-transfer-function syste
that the state matrix is a diagonal matrix:
Y(z) _ 1
Uz) (z+ D@+ +3)
Then obtain the initial state variables x:(0), x2(0), and x5(0) in terms of y(0) 7
and y(2).

1m SUC

a

Chap. 5 Problems 373

uq (k)

uy (k)

2
Xz(k)
- %, (k)
W 27! > 3 + z7t > 2 AV it

P
2

7 >

X3 (k) ya(k)

Figure 5-14 Block diagram of the discrete-time multiple-input-muttiple-
system of Problem B-5-8. PP pleroupit
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Figure 5-15 Block diagram of a control system.




374 State-Space Analysis Chap. 5 Chap. 5 Problems

375

Problem B-5-15

R 1 Y{s)
= 5 : se 2 . Obtain the pulse transfer function of the system defined by the equations
r x(k + 1) = Gx(k) + Hu(k)
G(Z) y(k) = Cx(k) + Du(k)
where

—ar —a; —a3 1

G=] 1 0 0 |, H=10

Figure 5-16 Discrete-time control system. 0 1 0 0

C=[bl“albozbz”azbosb;;“dgbo], D=b0

Problem B-5-16
Problem B-5-13

A state-space representation of the scalar difference equation system
y(k + n) + a(k)yk + n—~1) + - + a,(k)y(k)
= bo(k)u(k + n) + bi(kyu(k + n — 1) + - + b(ku(k)

Find the pulse transfer function of the system defined by
x(k + 1) = Gx(k) + Hu(k)
y(k) = Cx(k) + Du(k)

where o 10 N
. —a 1
where k = 0,1,2,..., may be given by S ao|®
x(k + 1) 0 1 S (] 0 x:1(k) hi(k) —a, 0 0 B
D ? ? N s + ol u(k) c=[1 0 0, D = by
o] |0 0 - 0 1 x| | el Problem B-5-17
xa(k +1) ~an(k) —@u-a(k) -+ —axk) —a(k) ]| xa(k) h, (k)

Obtain a state-space representation for the system defined by the following pulse-trans-

fer- i trix:
y(k) = x;(k) + bo(k — n)u(k) er-function matrix

Determine hy(k), ho(k), . . ., ha(k) in terms of a;(k) and b,(k), where i = 1,2,.. -6"

and j = 0,1,...,n. Determine also the initial values of the state variables xi( );

x2(0), . . ., x,(0) in terms of the input sequence u(0), u(1),...,u(n — 1) and the outpl‘lﬁ

sequence y(0),y(1),...,y(n — 1).
Problem B-5-14

If the minimal polynomial of an n X n matrix G involves only distinct roots, then th?
inverse of zI — G can be given by the following expression:

il

1 1+2z71

v | 1T 1 e
Ya(z) | 1 1427 || Un(z)
1+0627" 1406271

Problem B-5-18
Consider the discrete-time state equation
[xl(k + 1)} _ [ 0 1}[%(1«)}
xa(k + 1) =024 ~1|| x2(k)
Obtain the state transition matrix ¥(k).

Problem B-5-19
Consider the system defined by

m Xk

—_ -1 [t~

(zI - G) z}z —

where m is the degree of the minimal polynomial of G and the X,’s are n X n matrice
determined from

&(G) = g(z)Xa + gi(z)Xa + -+ + gi(27)Xm

where x(k + 1) = Gx(k) + Hu(k)

y(k) = Cx(k) + Du(k)
where matrix G is a stable matrix.
Obtain the steady-state values of x(k) and y(k) when u(k) is a constant vector.
Problem B-5-20

g(G)=(G -z,  glza)=(-z)""

.. : G
where j = 1,2,...,m and z, is any one of the roots of the mlmrpal polynomlal'OfG;
Using Equation (5-145), obtain (zI — G)™" for the following 2 X 2 matriX &

o[s 2]

Consider the system defined by
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x(k + 1) = Gx(k)

where G is a stable matrix. 4 . -
Show that for a positive definite (or positive semidefinite) matrix Q

=3

J = 2 x*(k)Qx(k)
k=0
can be given by
J = x*(0)Px(0)
where P = @ + G*PG.
Problem B-5-21
Determine a Liapunov function V(x) for the following system:

ank+1]_[1 -12 xl(k)]
[xz(k + 1)} B [045 0 ][xz(k)

Problem B-5-22

Determine the stability of the origin of the following discrete-time system:

xi(k + 1) 13 0[xk)
ok +1)|=]-3 -2 =3| xk)
xs(k + 1) 1 0 0} xsk)

Problem B-5-23

Determine the stability of the origin of the following discrete-time system:

[x,((k + 1)T)] _[ cos T sinT][xl(kT)]
x((k + DT)| | —sinT cosT || xokT)

Problem B-5--24
Consider the system defined by the equations
xi(k + 1) = xi(k) + 0.2x(k) + 0.4
xo(k + 1) = 0.5x:(k) — 0.5

Determine the stability of the equilibrium state.

Chap. 5

6

Pole Placement and
Observer Design

INTRODUCTION

In the first part of this chapter we present two fundamental concepts of control
systems: controllability and observability. Controllability is concerned with the
problem of whether it is possible to steer a system from a given initial state to an
arbitrary state: a system is said to be controllable if it is possible by means of an
unbounded control vector to transfer the system from any initial state to any other
state in a finite number of sampling periods. (Thus, the concept of controllability
is concerned with the existence of a control vector that can cause the system’s state
to reach some arbitrary state.)

Observability is concerned with the problem of determining the state of a
dynamic system from observations of the output and control vectors in a finite
number of sampling periods. A system is said to be observable if, with the system
in state %(0), it is possible to determine this state from the observation of the output
and control vectors over a finite number of sampling periods.

The concepts of controllability and observability were introduced by R. E.
Kalman. They play an important role in the optimal control of multivariable systems.
In fact, the conditions of controllability and observability may govern the existence
of a complete solution to an optimal control problem.

In the second part of this chapter we discuss the pole placement design method
and state observers. Note that the concept of controllability is the basis for the
solutions of the pole placement problem and the concept of observability plays an
important role for the design of state observers. The design method based on pole
placement coupled with state observers is one of the fundamental design methods
available to control engineers. If the system is completely state controllable, then
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