

Measurement

Meghdadi Fall 2016

Powers of ten

Namo	Common Notation	Math Notation	Expenset	Profix
Quintillion	1 000 000 000 000 000 000	1018	18	Exa (E)
Quadrillion	000 000 000 000 000	1014	Iδ	Peta (P)
Tillan	1 000 000 000 000	1019	12	Term (T)
Billion	1 000 000 000	100	9	Gim (G)
Millem	1 000 000	104	6	Mern (M)
Thousand	1 000	100	3	Hilo (k)
Hundred	100	109	2	heetu (h)
Tan	ID	101	I	Dees (da)
One	1	100	0	• • •
One Tenth	0.1	10 1	-1	deel (d)
One Hundredth	0.01	10-4	-2	canti (c)
One Thomsodth	0.001	10 4	-3	miTH (m)
One Millionth	0.000 001	10-4	-6	micro (μ)
One Billionth	0.000 000 001	10 9	-0	nano (n)
One Trillionth	0.000 000 000 001	10-19	-12	pica (p)
One Quadrillionth	0.000 000 000 000 001	10-14	-15	formto (f)
One Ordertillionth	0.000 000 000 000 000 001	10-10	-18	atta (a)

The Scale of the Universe 2

Use the scroll bar to zoom in and out.

Click on objects to learn more.

Start

By Cary Huang

Technical support by Michael Huang Copyright & 2012 Cary and Michael Huang http://htwins.net/ Music by Kevin MacLeod (hrsp://incompetisch.com)

The International System of Units (French: Système International d'unités) SI

1	<u>Metre</u>	for Length	
2	Second	for Time	
3	Kilogram	for Mass	
4	Ampere	for Electric current	
(5)	Kelvin	for Temperature	
6	Candela	for Luminous intensity	Y
0	Mole	for Amount of substo	ince

Measuring systems, unit conversion

United States customary units USC	SI units
1 foot (ft)	0.3048 m
1 yard (yd) = 3 ft	0.9144 m
1 mile (mi) = 5280 ft	1.609344 km
1 pound (lb) *	453.59237 g
1 ton = 2000 lb	907.18474 kg
32 Degrees Fahrenheit (°F)	0 °C = 273.15 °K
F=9/5 C + 32	

* Be carefull, pound is the unit of *weight*, while gram is the unit of *mass*.

Dimensional analysis

• The <u>dimension</u> of a quantity is its <u>physical nature</u> and can be defined in different units.

quantity	dimension	unit
length	[L]	Meter
		Foot
		Yard
		Mile
time	[T]	Second
		Minute
		Hour
mass	[M]	Kilogram

- 1. We can divide or multiply any two quantities.
- ✓ [Velocity]=[L]/[T]
- ✓ [Force]=([M].[L])/[T]²
- 2. We can <u>NOT</u> add or subscribe two quantities with different dimensions.
 - [Velocity]+[Force]
- ✓ [Velocity]+[L]/[T]

3. Two sides of an equation should have the same dimension. you can not have apples in one side and oranges on the other side.

Ex2. Finding a formula for a quantity by using its dimension.

 $\mathbf{t} \sim \mathbf{m}^{\alpha} \cdot \mathbf{h}^{\beta} \cdot \mathbf{g}^{\gamma}$

T =<u>C</u>√(h/g)

- t: time of drop m: mass of the ball
- h: height of drop
- g: gravitational acceleration of the Earth

www.clipartof.com · 1418583

C is a dimensionless constant Which can be found by experiment. What if you had chosen another group of quantities?

 $t \sim m^{\alpha}$. h^{β} . M_{Earth}^{γ}

 $[T] = [M]^{\alpha} [L]^{\beta} [M]^{\gamma}$

"t" would not be independent from "m" which is wrong.

One can <u>NOT</u> always find the correct formula by having the dimension.