

Position

- The position of a point mass would be defined vs an origin.
- The positive direction can be chosen as desired.
- The position is a vector quantity. It means that it has both a direction and a magnitude.

Displacement vsTraveled distance

$$
\begin{aligned}
& \Delta \mathrm{X}_{1}=\Delta \mathrm{X}_{2}=\Delta \mathrm{X}_{3}=\mathrm{X}_{\mathrm{B}}-\mathrm{X}_{\mathrm{A}} \\
& \Delta \mathrm{X}_{\mathrm{O}}=\Delta \mathrm{X}_{\mathrm{O}} \\
& \Delta \mathrm{X}_{\mathrm{O}}=-\Delta \mathrm{X}_{\mathrm{O}} "
\end{aligned}
$$

Displacement is independent of path.
Displacement is independent of origin.

0

Average velocity vs Average Speed

(b)

Average Velocity ${ }_{A F}=V_{A F}=\left(X_{F}-X_{A}\right) /\left(t_{F}-t_{A}\right)$

$$
=(-50-30) /(50-0)=-1.6 \mathrm{~m} / \mathrm{s}
$$

Average Speed $_{\text {AF }}($ path 1$)=($ length of Path 1$) /\left(\mathrm{t}_{\mathrm{F}}-\mathrm{t}_{\mathrm{A}}\right)$
(path2) $=$ (length of Path2) $/\left(\mathrm{t}_{\mathrm{F}}-\mathrm{t}_{\mathrm{A}}\right.$)
(path3) $=$ (length of Path3)/($t_{F}-t_{A}$)
The Average Speed depends on the path.

The sponta neous velocity

$$
\begin{aligned}
& V_{A F}=\left(X_{F}-X_{A}\right) /\left(t_{F}-t_{A}\right)<0 \\
& V_{A E}=\left(X_{E}-X_{A}\right) /\left(t_{E}-t_{A}\right)<0 \\
& V_{A D}=\left(X_{D}-X_{A}\right) /\left(t_{D}-t_{A}\right)<0 \\
& V_{A C}=\left(X_{C}-X_{A}\right) /\left(t_{C}-t_{A}\right)=0 \\
& V_{A B}=\left(X_{B}-X_{A}\right) /\left(t_{B}-t_{A}\right)>0
\end{aligned}
$$

$$
\begin{aligned}
V_{A} & =\lim _{\Delta t \rightarrow 0}\left(X_{t+\Delta t}-X_{t}\right) / \Delta t \\
& =\mathrm{dX}(\mathrm{t}) / \mathrm{dt}
\end{aligned}
$$

The sponta neous speed

 The Speed of a particle is ALWAYS positive, while its velocity
Speed $_{A}=\left|V_{A}\right| \square$ can be both Positive or negative.

Ex.

$$
V_{A}=-80 \mathrm{~m} / \mathrm{s}
$$

$$
V_{B}=20 \mathrm{~m} / \mathrm{s}
$$

Average acceleration

$$
\begin{gathered}
\overline{\mathrm{a}}_{\mathrm{i} 2,11}=\left(\mathrm{V}_{2}-\mathrm{V}_{1}\right) /\left(\mathrm{t}_{2}-\mathrm{t}_{1}\right) \\
\mathrm{V}_{\mathrm{A}}>0 \quad \mathrm{~V}_{\mathrm{B}}=0 \\
\overline{\mathrm{a}}_{\mathrm{AB}}=\left(\mathrm{V}_{\mathrm{B}}-\mathrm{V}_{\mathrm{A}}\right) /\left(\mathrm{t}_{\mathrm{B}}-\mathrm{t}_{\mathrm{A}}\right)<0 \\
\mathrm{~V}_{\mathrm{E}}<0 \quad \mathrm{~V}_{\mathrm{F}}=0 \\
\overline{\mathrm{a}}_{\mathrm{FE}}=\left(\mathrm{V}_{\mathrm{F}}-\mathrm{V}_{\mathrm{E}}\right) /\left(\mathrm{t}_{\mathrm{F}}-\mathrm{t}_{\mathrm{E}}\right)>0 \\
{ }^{60} \\
-60 \\
0
\end{gathered}
$$

$$
\bar{a}_{B F}=\left(V_{F}-V_{B}\right) /\left(t_{F}-t_{E}\right)=0
$$

1.Make a reasonable guess...

$$
\left|V_{D}\right| \approx\left|V_{B}\right|=5 \mathrm{~m} / \mathrm{s}
$$

$$
\Delta t_{\text {impact }}=10^{-2} \mathrm{sec}
$$

$$
\xrightarrow{\text { Positive direction }}
$$

A tennis ball drops ...

What's the impact acceleration?
2. Choose a positive direction
3. $\bar{a}_{\text {impact }}=\left[V_{B}-V_{D}\right] / \Delta t$

$$
=[5-(-5)] / 10^{-2}=10^{3} \mathrm{~m} / \mathrm{s}^{2}
$$

What if we change the positive direction?
$\bar{a}_{\text {impact }}=[5-5] / 10^{-2}=-10^{3} \mathrm{~m} / \mathrm{s}$

No matter what the sign would be, an egg can not tolerate such an acceleration and it would be smashed.

Drop an egg and a tomato!
They will not bounce back...
What's the impact acceleration?
$\overline{\mathrm{a}}_{\text {impact }}=\left[\mathrm{V}_{\text {final }}-\mathrm{V}_{\text {Drop }}\right] / \Delta t= \pm 20 \mathrm{~m} / \mathrm{s}^{2}$

The sign depends on the choose of positive direction

Spontaneous acceleration

$$
\begin{aligned}
a_{t} & =\lim _{\Delta t \rightarrow 0}\left(V_{t+\Delta t}-V_{t}\right) / \Delta t \\
& =d V(t) / d t
\end{aligned}
$$

Figure 1 : Displacement, Velocity, and Acceleration Curves Red curve $=$ displacement $=x(t)$ Blue curve $=$ velocity $=u(t)$
Magenta curve $=$ acceleration $=a(t)$

```
Ex.
X(t)=asin(\betat)
V(t)=dX(t)/d(t)=a\betacos(\betat)
a(t)=dV(t)/dt=-a\mp@subsup{\beta}{}{2}}\operatorname{sin}(\betat
```

Scaled Sample Sinusoidal Functions

The equations of constant acceleration.

Constant acceleration
$\mathrm{v}=\int \mathrm{adt}=\mathrm{at}+$ constant
$\mathrm{t}=0 \rightarrow \mathrm{v}=\mathrm{v}_{0} \quad$ so:

$$
\begin{align*}
\mathrm{v} & =\mathrm{v}_{0}+\mathrm{at} \tag{i}\\
\mathrm{x} & =\int \mathrm{vdt} \\
& =\int \mathrm{v}_{0}+\text { at } \mathrm{dt} \\
& =\mathrm{v}_{0} \mathrm{t}+\frac{1}{2} \mathrm{at}{ }^{2}+\text { constant }
\end{align*}
$$

at $\mathrm{t}=0, \mathrm{x}=\mathrm{x}_{0} \quad$ so:
$x=x_{0}+v_{0} t+\frac{1}{2} a t^{2}$

The equations of constant acceleration.

Constant acceleration

$$
\begin{align*}
& \mathrm{v}=\mathrm{v}_{0}+\mathrm{at} \tag{i}\\
& \mathrm{x}=\int \mathrm{vdt} \\
& =\int \mathrm{v}_{0}+\mathrm{at} \mathrm{dt} \\
& =\mathrm{v}_{0} \mathrm{t}+\frac{1}{2} \mathrm{at}{ }^{2}+\text { constant } \\
& \text { at } \mathrm{t}=0, \mathrm{x}=\mathrm{x}_{0} \quad \text { so: } \\
& x=x_{0}+v_{0} t+\frac{1}{2} a t^{2} \tag{ii}
\end{align*}
$$

$$
\begin{aligned}
& \begin{array}{lll}
V(t)=a t+V_{0} & V\left(t_{i}\right)=V_{i}=a t_{i}+V_{0} \\
V\left(t_{i}\right)=V_{f}=a t_{f}+V_{0}
\end{array} \quad V_{f}-V_{i}=a\left(t_{f}-t_{i}\right) \quad V_{f}=a \Delta t+V_{i} \\
& V(t)=a t+V_{0} \quad t=\left(V-V_{0}\right) / a \quad X(t)=1 / 2 a\left[\left(V-V_{0}\right) / a\right]^{2}+V_{0}\left(V-V_{0}\right) / a+X_{0} \\
& X(t)=1 / 2 a^{2}+V_{0}+{ }^{+} X_{0} \\
& =\left(V^{2}-V_{0}{ }^{2}\right) / 2 a+X_{0} \\
& \mathrm{~V}^{2}=\mathrm{V}_{0}{ }^{2}+2 \mathrm{a} \Delta \mathrm{X} \\
& \mathrm{~V}(\mathrm{t})=\mathrm{at}+\mathrm{V}_{0} \quad \mathrm{a}=\left(\mathrm{V}-\mathrm{V}_{0}\right) / \mathrm{t} \\
& X(t)=1 / 2 a^{2}+V_{0}++X_{0} \\
& \rightarrow \mathrm{X}(\mathrm{t})=1 / 2\left[\left(\mathrm{~V}-\mathrm{V}_{0}\right) / \mathrm{t}\right] \dagger^{2}+\mathrm{V}_{0} \mathrm{t}+\mathrm{X}_{0} \\
& X(t)=\left(V+V_{0}\right) t / 2+X_{0}
\end{aligned}
$$

So, Which equation should I use???

$$
\begin{aligned}
& \mid X(t)=1 / 2 a t^{2}+V_{0} t+X_{0} \\
& \hline V(t)=a t+V_{0} \\
& \hline V_{f}=a \Delta t+V_{i} \\
& V^{2}=V_{0}^{2}+2 a \Delta X \\
& \hline
\end{aligned}
$$

$$
X(t)=\left(V+V_{0}\right) t / 2+X_{0}
$$

It depends on the problem.

Included quanitilies: (given/asked)	Not included quantilies:	Appropriate equation:
$X(t), ~ a, ~, ~ v_{0}, X_{0}$	$V(t)$	$X(t)=1 / 2 a^{2}+V_{0} t+X_{0}$
$\mathrm{V}(\mathrm{t}), \mathrm{a}, \mathrm{t}, \mathrm{V}_{0}$	$\mathrm{X}(\mathrm{t}), \mathrm{X}_{0}$	$V(t)=a t+V_{0}$
$\mathbf{V}_{\mathrm{f}}, \mathrm{V}_{\mathrm{i}}, \mathrm{a}, \Delta \mathrm{t}$	$\mathrm{X}(\mathrm{t}), \mathrm{X}$	$\mathrm{V}_{\mathrm{f}}=\mathbf{a} \Delta t+\mathrm{V}_{\mathrm{i}}$
$\Delta X(t), a, v, v_{0}$	\dagger	$\mathrm{V}^{2}=\mathrm{V}_{0}{ }^{2}+2 \mathrm{a} \Delta \mathrm{X}$
$X(t), V(t), t, V_{0}, X_{0}$	a	$\mathrm{X}(\mathrm{t})=\left(\mathrm{V}+\mathrm{V}_{0}\right) \mathrm{t} / 2+\mathrm{X}_{0}$

Before starting to solve make sure you've checked following points:

1. Make sure the unils are consistient:
if $X(i): m \Rightarrow V(i): m / s, a(i): m / s^{2}$
2.Choose a coordinale systiem; Draw a díagram; Find the inifial and final points, Choose a posilive direction.
2. Make a list of given and asked quanilites.
3. Think about the physical concepis umi restrictions of the problem and then. choose the appropriaie equation.
4. Check the answers to be reasonable.

$X=1.87 \mathrm{~mm}=1.87 \times 10^{-3} \mathrm{~m}$

The beak stops.

The beak makes its first contact with the tree

Given quantities	Asked quantity	Appropriate equation
$V_{0}, V_{f}, \Delta X$	a	$V^{2}=V_{0}{ }^{2}+2 a \Delta X$

$$
0=7.49^{2}+2 a \times 1.87 \times 10^{-3} \quad \Rightarrow \quad a=-1.5 \times 10^{4} \mathrm{~m} / \mathrm{s}^{2}
$$

disc overmagazine.com
By the dimensional analysis, we found out that the the time of drop for free fall is independent of the mass We are going to reach the same result by the equations of motion.

If you break:

Constant Speed
REACTION

Constant Acceleration

Reaction:

$\mathrm{x}=\mathrm{vt}+\mathrm{x}_{0}$

$$
x-x_{0}=D_{r}=V_{0} T_{r}
$$

Breaking:

$$
V^{2}-V_{0}^{2}=2 a \Delta X \quad 0-v_{0}^{2}=2 a_{b} D_{b} \quad D_{b}=-v_{0}^{2} / 2 a_{b}
$$

a) $D_{t} \cong 34 \mathrm{~m}<D_{\text {intersection }}=40 \mathrm{~m}$ it can break.
$D_{\text {total }}=D_{r}+D_{b}$
b) $D_{t} \cong 34 \mathrm{~m}>D_{\text {intersection }}=32 \mathrm{~m}$ it can Not break.

If you continue to drive:

Constant Speed
CONTINUE
$D_{\text {intersection }}=D_{i}$
V_{0}

Intersection:
$\mathrm{x}=\mathrm{vt}+\mathrm{x}_{0}$

$$
x-x_{0}=D_{i}=v_{0} T_{i}
$$

$$
T_{i}=D_{i} / v_{0}
$$

a) $\mathrm{T}_{\mathrm{i}} \cong 2.61 \mathrm{~s}<\mathrm{T}_{\text {yellow }}=2.8 \mathrm{~s}$ it can pass.
b) $\mathrm{T}_{\mathrm{i}} \cong 2.09 \mathrm{~s}>\mathrm{T}_{\text {yellow }}=1.8 \mathrm{~s}$ it can Not pas.

