

Scalar

Vector

1. value
2. Appropriate units

1. value

2. Appropriate units
3. direction

Ex. Mass: 5kg
Temp: 21° C
Speed: 65 mph

Ex.	
Acceleration:	
$9.8 \mathrm{~m} / \mathrm{s}^{2} \quad$ down	
Velocity:	
$25 \mathrm{mph} \quad$ West	

More about Vectors

A vector is represented on paper by an arrow.

The length represents magnitude.

A vector can be "picked up" and moved on the paper as long as the length and direction its pointing does not change.

$$
\overrightarrow{\mathrm{A}}=\overrightarrow{\mathrm{B}}=\overrightarrow{\mathrm{C}}=\overrightarrow{\mathrm{D}}
$$

Two ways to specify a vector:

It is either given by

- a magnitude $A=\sqrt{ }\left(A_{x}{ }^{2}+A_{y}{ }^{2}\right) \quad x$
-and a direction $\theta=\tan ^{-1} A_{y} / A_{x}$

Or it is given in the
x and y components as

- $A_{\mathrm{x}}=\mathrm{A} \cos \theta$
- $A_{y}=A \sin \theta$

Vector Addition:

$$
\begin{aligned}
& \mathrm{A}=(10,2) \\
& \mathrm{B}=(2,-5)
\end{aligned}
$$

$$
\begin{aligned}
A+B & =(10+2,2-5) \\
& =(12,-3)
\end{aligned}
$$

Pa rallelogram method of addition (ta iltota il)

The magnitude of the resultant depends on the relative directions of the vectors

EX. 1.

A hiker walks 1 km west, then $2 \mathbf{k m}$ south, then $3 \mathbf{k m}$ west. What is the sum of his
 distance traveled? What is his displacement?

Traveled distance $=1+2+3=6 \mathrm{~km}$
Displacement $=|(-1,0)+(0,-2)+(-3,0)| \quad, \theta=\tan ^{-1} 1 / 2$

$$
=|(-4,-2)|
$$

$$
=\sqrt{ } 20
$$

Ex.2.

Another hiker walks 2 km south and 4 km west. What is the sum of her distance traveled using a graphical representation? How does it compare
 to hiker \#1?

Traveled distance $=2+4=6 \mathrm{~km}$
Displacement

$$
\begin{aligned}
& =|(0,-2)+(-4,0)|, \theta=\tan ^{-1} 1 / 2 \\
& =|(-4,-2)| \\
& =\sqrt{ } 20
\end{aligned}
$$

Multiplication of a Vector by Scalar

$$
\begin{aligned}
A & =\left(\mathbf{X}_{\mathrm{A}}, \mathbf{Y}_{\mathrm{A}}\right) \\
\boldsymbol{\alpha A} & =\left(\boldsymbol{\alpha} \mathbf{X}_{\mathrm{A}}, \boldsymbol{\alpha} \mathbf{Y}_{\mathrm{A}}\right)
\end{aligned}
$$

Unit Vectors

Unit vectors are dimensionless and their magnitude is equal to $\underline{1}$

Cartesian unit vectors:
\widehat{i} : a unit vector pointing in the x direction
\hat{j} :a unit vector pointing in the y direction
\widehat{k} : a unit vector pointing in the z direction

$$
|\hat{i}|=|\hat{j}|=|\hat{k}|=1
$$

Dot product (scalar) of two vectors:

$$
\overrightarrow{\mathrm{A}} \cdot \overrightarrow{\mathrm{~B}}=|\overrightarrow{\mathrm{A}}||\overrightarrow{\mathrm{B}}| \cos \theta
$$

$$
\begin{aligned}
\vec{A} \cdot \vec{B} & =\vec{B} \cdot \vec{A} \\
& =A_{x} B_{x}+A_{y} B_{y}+A_{z} B_{z}
\end{aligned}
$$

Cross product(vector)of two vectors

$$
|\overrightarrow{\mathrm{C}}|=|\overrightarrow{\mathrm{A}} \mathbf{x} \overrightarrow{\mathrm{~B}}|=|\overrightarrow{\mathrm{A}}||\overrightarrow{\mathrm{B}}| \sin \theta
$$

1. the vector product creates a new vector.

2. this vector is normal to the plane defined by the original vectors and its direction is found by using the right hand rule
