We dedicate this book
to our colleague Jerry S. Faughn, whose dedication
to all aspects of the project and tireless efforts through the years
are deeply appreciated.
CONTENTS OVERVIEW

PART 1 Mechanics
CHAPTER 1 Introduction 1
CHAPTER 2 Motion in One Dimension 24
CHAPTER 3 Vectors and Two-Dimensional Motion 54
CHAPTER 4 The Laws of Motion 83
CHAPTER 5 Energy 119
CHAPTER 6 Momentum and Collisions 161
CHAPTER 7 Rotational Motion and the Law of Gravity 190
CHAPTER 8 Rotational Equilibrium and Rotational Dynamics 228
CHAPTER 9 Solids and Fluids 268

PART 2 Thermodynamics
CHAPTER 10 Thermal Physics 322
CHAPTER 11 Energy in Thermal Processes 352
CHAPTER 12 The Laws of Thermodynamics 385

PART 3 Vibrations and Waves
CHAPTER 13 Vibrations and Waves 425
CHAPTER 14 Sound 459

PART 4 Electricity and Magnetism
CHAPTER 15 Electric Forces and Electric Fields 497
CHAPTER 16 Electrical Energy and Capacitance 531
CHAPTER 17 Current and Resistance 570
CHAPTER 18 Direct-Current Circuits 594
CHAPTER 19 Magnetism 626
CHAPTER 20 Induced Voltages and Inductance 663
CHAPTER 21 Alternating-Current Circuits and Electromagnetic Waves 696

PART 5 Light and Optics
CHAPTER 22 Reflection and Refraction of Light 732
CHAPTER 23 Mirrors and Lenses 759
CHAPTER 24 Wave Optics 790
CHAPTER 25 Optical Instruments 823

PART 6 Modern Physics
CHAPTER 26 Relativity 847
CHAPTER 27 Quantum Physics 870
CHAPTER 28 Atomic Physics 891
CHAPTER 29 Nuclear Physics 913
CHAPTER 30 Nuclear Energy and Elementary Particles 937

APPENDIX A Mathematics Review A.1
APPENDIX B An Abbreviated Table of Isotopes A.14
APPENDIX C Some Useful Tables A.19
APPENDIX D SI Units A.21
APPENDIX E MCAT Skill Builder Study Guide A.22

Answers to Quick Quizzes, Example Questions, Odd-Numbered Multiple-Choice Questions, Conceptual Questions, and Problems A.52

Index I.1
CHAPTER 12	The Laws of Thermodynamics	385
12.1	Work in Thermodynamic Processes	385
12.2	The First Law of Thermodynamics	388
12.3	Heat Engines and the Second Law of Thermodynamics	390
12.4	Entropy	408
12.5	Human Metabolism	413
Summary	416	

| Part 3: Vibrations and Waves |
CHAPTER 13	Vibrations and Waves	425
13.1	Hooke’s Law	425
13.2	Elastic Potential Energy	428
13.3	Comparing Simple Harmonic Motion with Uniform Circular Motion	432
13.4	Position, Velocity, and Acceleration as a Function of Time	436
13.5	Motion of a Pendulum	439
13.6	Damped Oscillations	442
13.7	Waves	443
13.8	Frequency, Amplitude, and Wavelength	445
13.9	The Speed of Waves on Strings	447
13.10	Interference of Waves	448
13.11	Reflection of Waves	449
Summary	450	

CHAPTER 14	Sound	459
14.1	Producing a Sound Wave	459
14.2	Characteristics of Sound Waves	460
14.3	The Speed of Sound	461
14.4	Energy and Intensity of Sound Waves	463
14.5	Spherical and Plane Waves	466
14.6	The Doppler Effect	468
14.7	Interference of Sound Waves	473
14.8	Standing Waves	475
14.9	Forced Vibrations and Resonance	479
14.10	Standing Waves in Air Columns	480
14.11	Beats	484
14.12	Quality of Sound	486
14.13	The Ear	487
Summary	489	

| Part 4: Electricity and Magnetism |
CHAPTER 15	Electric Forces and Electric Fields	497
15.1	Properties of Electric Charges	497
15.2	Insulators and Conductors	499
15.3	Coulomb’s Law	500
15.4	The Electric Field	505
15.5	Electric Field Lines	510
15.6	Conductors in Electrostatic Equilibrium	513
15.7	The Millikan Oil-Drop Experiment	515
15.8	The Van de Graaff Generator	516
15.9	Electric Flux and Gauss’s Law	517
Summary	523	

CHAPTER 16	Electrical Energy and Capacitance	531
16.1	Potential Difference and Electric Potential	531
16.2	Electric Potential and Potential Energy Due to Point Charges	538
16.3	Potentials and Charged Conductors	542
16.4	Equipotential Surfaces	543
16.5	Applications	544
16.6	Capacitance	546

CHAPTER 17	Current and Resistance	570
17.1	Electric Current	570
17.2	A Microscopic View: Current and Drift Speed	572
17.3	Current and Voltage Measurements in Circuits	574
17.4	Resistance, Resistivity, and Ohm’s Law	575
17.5	Temperature Variation of Resistance	579
17.6	Electrical Energy and Power	580
17.7	Superconductors	584
17.8	Electrical Activity in the Heart	585
Summary	588	

CHAPTER 18	Direct-Current Circuits	594
18.1	Sources of emf	594
18.2	Resistors in Series	595
18.3	Resistors in Parallel	598
18.4	Kirchhoff’s Rules and Complex DC Circuits	603
18.5	RC Circuits	607
18.6	Household Circuits	611
18.7	Electrical Safety	612
18.8	Conduction of Electrical Signals by Neurons	613
Summary	615	

CHAPTER 19	Magnetism	626
19.1	Magnets	626
19.2	Earth’s Magnetic Field	628
19.3	Magnetic Fields	630
19.4	Magnetic Force on a Current-Carrying Conductor	633
19.5	Torque on a Current Loop and Electric Motors	636
19.6	Motion of a Charged Particle in a Magnetic Field	639
19.7	Magnetic Field of a Long, Straight Wire and Ampère’s Law	642
19.8	Magnetic Force Between Two Parallel Conductors	645
19.9	Magnetic Fields of Current Loops and Solenoids	646
19.10	Magnetic Domains	650
Summary	652	

CHAPTER 20	Induced Voltages and Inductance	663
20.1	Induced emf and Magnetic Flux	663
20.2	Faraday’s Law of Induction	666
20.3	Motional emf	670
20.4	Lenz’s Law Revisited (The Minus Sign in Faraday’s Law)	674
20.5	Generators	676
20.6	Self-Inductance	680
20.7	RL Circuits	683
20.8	Energy Stored in a Magnetic Field	686
Summary	687	

CHAPTER 21	Alternating-Current Circuits and Electromagnetic Waves	696
21.1	Resistors in an AC Circuit	696
21.2	Capacitors in an AC Circuit	699
21.3	Inductors in an AC Circuit	701
21.4	The RLC Series Circuit	702
21.5	Power in an AC Circuit	707
21.6	Resonance in a Series RLC Circuit	708
21.7	The Transformer	710
21.8	Maxwell’s Predictions	712
21.9	Hertz’s Confirmation of Maxwell’s Predictions	713
21.10	Production of Electromagnetic Waves by an Antenna	714
Contents

21.11 Properties of Electromagnetic Waves 715
21.12 The Spectrum of Electromagnetic Waves 720
21.13 The Doppler Effect for Electromagnetic Waves 722
Summary 723

Part 5: Light and Optics

CHAPTER 22
Reflection and Refraction of Light 732
22.1 The Nature of Light 732
22.2 Reflection and Refraction 733
22.3 The Law of Refraction 737
22.4 Dispersion and Prisms 742
22.5 The Rainbow 745
22.6 Huygens’s Principle 746
22.7 Total Internal Reflection 748
Summary 751

CHAPTER 23
Mirrors and Lenses 759
23.1 Flat Mirrors 759
23.2 Images Formed by Concave Mirrors 762
23.3 Convex Mirrors and Sign Conventions 764
23.4 Images Formed by Refraction 769
23.5 Atmospheric Refraction 772
23.6 Thin Lenses 773
23.7 Lens and Mirror Aberrations 781
Summary 782

CHAPTER 24
Wave Optics 790
24.1 Conditions for Interference 790
24.2 Young’s Double-Slit Experiment 791
24.3 Change of Phase Due to Reflection 795
24.4 Interference in Thin Films 796
24.5 Using Interference to Read CDs and DVDs 800
24.6 Diffraction 802
24.7 Single-Slit Diffraction 803
24.8 The Diffraction Grating 805
24.9 Polarization of Light Waves 808
Summary 815

CHAPTER 25
Optical Instruments 823
25.1 The Camera 823
25.2 The Eye 824
25.3 The Simple Magnifier 829
25.4 The Compound Microscope 830
25.5 The Telescope 832
25.6 Resolution of Single-Slit and Circular Apertures 835
25.7 The Michelson Interferometer 840
Summary 841

Part 6: Modern Physics

CHAPTER 26
Relativity 847
26.1 Galilean Relativity 847
26.2 The Speed of Light 848
26.3 Einstein’s Principle of Relativity 850
26.4 Consequences of Special Relativity 851
26.5 Relativistic Momentum 858
26.6 Relativistic Energy and the Equivalence of Mass and Energy 859
26.7 General Relativity 863
Summary 865

CHAPTER 27
Quantum Physics 870
27.1 Blackbody Radiation and Planck’s Hypothesis 870
27.2 The Photoelectric Effect and the Particle Theory of Light 872
27.3 X-Rays 875
27.4 Diffraction of X-Rays by Crystals 876
27.5 The Compton Effect 879
27.6 The Dual Nature of Light and Matter 880
27.7 The Wave Function 883
27.8 The Uncertainty Principle 884
Summary 886

CHAPTER 28
Atomic Physics 891
28.1 Early Models of the Atom 891
28.2 Atomic Spectra 892
28.3 The Bohr Model 894
28.4 Quantum Mechanics and the Hydrogen Atom 899
28.5 The Exclusion Principle and the Periodic Table 902
28.6 Characteristic X-Rays 905
28.7 Atomic Transitions and Lasers 906
Summary 908

CHAPTER 29
Nuclear Physics 913
29.1 Some Properties of Nuclei 913
29.2 Binding Energy 916
29.3 Radioactivity 918
29.4 The Decay Processes 921
29.5 Natural Radioactivity 926
29.6 Nuclear Reactions 927
29.7 Medical Applications of Radiation 929
Summary 931

CHAPTER 30
Nuclear Energy and Elementary Particles 937
30.1 Nuclear Fission 937
30.2 Nuclear Fusion 941
30.3 Elementary Particles and the Fundamental Forces 943
30.4 Positrons and Other Antiparticles 944
30.5 Classification of Particles 945
30.6 Conservation Laws 947
30.7 The Eightfold Way 949
30.8 Quarks and Color 950
30.9 Electroweak Theory and the Standard Model 952
30.10 The Cosmic Connection 954
30.11 Problems and Perspectives 955
Summary 956

Appendix A: Mathematics Review A.1
Appendix B: An Abbreviated Table of Isotopes A.14
Appendix C: Some Useful Tables A.19
Appendix D: SI Units A.21
Appendix E: MCAT Skill Builder Study Guide A.22

Answers to Quick Quizzes, Example Questions, Odd-Numbered Multiple-Choice Questions, Conceptual Questions, and Problems A.52

Index I.1
Raymond A. Serway received his doctorate at Illinois Institute of Technology and is Professor Emeritus at James Madison University. In 1990 he received the Madison Scholar Award at James Madison University, where he taught for 17 years. Dr. Serway began his teaching career at Clarkson University, where he conducted research and taught from 1967 to 1980. He was the recipient of the Distinguished Teaching Award at Clarkson University in 1977 and of the Alumni Achievement Award from Utica College in 1985. As Guest Scientist at the IBM Research Laboratory in Zurich, Switzerland, he worked with K. Alex Müller, 1987 Nobel Prize recipient. Dr. Serway also was a visiting scientist at Argonne National Laboratory, where he collaborated with his mentor and friend, Sam Marshall. In addition to earlier editions of this textbook, Dr. Serway is the coauthor of *Principles of Physics*, fourth edition; *Physics for Scientists and Engineers*, seventh edition; *Essentials of College Physics*, and *Modern Physics*, third edition. He also is the coauthor of the high school textbook *Physics*, published by Holt, Rinehart and Winston. In addition, Dr. Serway has published more than 40 research papers in the field of condensed matter physics and has given more than 70 presentations at professional meetings. Dr. Serway and his wife, Elizabeth, enjoy traveling, golf, gardening, singing in a church choir, and spending time with their four children and eight grandchildren.

Chris Vuille is an associate professor of physics at Embry-Riddle Aeronautical University (ERAU), Daytona Beach, Florida, the world’s premier institution for aviation higher education. He received his doctorate in physics from the University of Florida in 1989 and moved to Daytona after a year at ERAU’s Prescott, Arizona, campus. Although he has taught courses at all levels, including postgraduate, his primary interest has been the delivery of introductory physics. He has received several awards for teaching excellence, including the Senior Class Appreciation Award (three times). He conducts research in general relativity and quantum theory, and was a participant in the JOVE program, a special three-year NASA grant program during which he studied neutron stars. His work has appeared in a number of scientific journals, and he has been a featured science writer in *Analog Science Fiction/Science Fact* magazine. In addition to this textbook, he is coauthor of *Essentials of College Physics*. Dr. Vuille enjoys tennis, swimming, and playing classical piano, and he is a former chess champion of St. Petersburg and Atlanta. In his spare time he writes fiction and goes to the beach. His wife, Dianne Kowing, is an optometrist for a local Veterans’ Administration clinic. His daughter, Kira Vuille-Kowing, is a meteorology/communications double major at ERAU and a graduate of her father’s first-year physics course. He has two sons, Christopher, a cellist and fisherman, and James, avid reader of Disney comics.

Jerry S. Faughn earned his doctorate at the University of Mississippi. He is Professor Emeritus and former chair of the Department of Physics and Astronomy at Eastern Kentucky University. Dr. Faughn has also written a microprocessor interfacing text for upper-division physics students. He is coauthor of a nonmathematical physics text and a physical science text for general education students, and (with Dr. Serway) the high-school textbook *Physics*, published by Holt, Rinehart and Winston. He has taught courses ranging from the lower division to the graduate level, but his primary interest is in students just beginning to learn physics. Dr. Faughn has a wide variety of hobbies, among which are reading, travel, genealogy, and old-time radio. His wife, Mary Ann, is an avid gardener, and he contributes to her efforts by staying out of the way. His daughter, Laura, is in family practice, and his son, David, is an attorney.
College Physics is written for a one-year course in introductory physics usually taken by students majoring in biology, the health professions, and other disciplines including environmental, earth, and social sciences, and technical fields such as architecture. The mathematical techniques used in this book include algebra, geometry, and trigonometry, but not calculus.

This textbook, which covers the standard topics in classical physics and 20th-century physics, is divided into six parts. Part 1 (Chapters 1–9) deals with Newtonian mechanics and the physics of fluids; Part 2 (Chapters 10–12) is concerned with heat and thermodynamics; Part 3 (Chapters 13 and 14) covers wave motion and sound; Part 4 (Chapters 15–21) develops the concepts of electricity and magnetism; Part 5 (Chapters 22–25) treats the properties of light and the field of geometric and wave optics; and Part 6 (Chapters 26–30) provides an introduction to special relativity, quantum physics, atomic physics, and nuclear physics.

OBJECTIVES
The main objectives of this introductory textbook are twofold: to provide the student with a clear and logical presentation of the basic concepts and principles of physics, and to strengthen an understanding of the concepts and principles through a broad range of interesting applications to the real world. To meet those objectives, we have emphasized sound physical arguments and problem-solving methodology. At the same time, we have attempted to motivate the student through practical examples that demonstrate the role of physics in other disciplines.

CHANGES TO THE EIGHTH EDITION
A number of changes and improvements have been made to this edition. Based on comments from users of the seventh edition and reviewers’ suggestions, a major effort was made to increase the emphasis on conceptual understanding, to add new end-of-chapter questions and problems that are informed by research, and to improve the clarity of the presentation. The new pedagogical features added to this edition are based on current trends in science education. The following represent the major changes in the eighth edition.

Questions and Problems
We have substantially revised the end-of-chapter questions and problems for this edition. Three new types of questions and problems have been added:

- **Multiple-Choice Questions** have been introduced with several purposes in mind. Some require calculations designed to facilitate students’ familiarity with the equations, the variables used, the concepts the variables represent, and the relationships between the concepts. The rest are conceptual and are designed to encourage conceptual thinking. Finally, many students are required to take multiple-choice tests, so some practice with that form of question is desirable. Here is an example of a multiple-choice question:

 12. A truck loaded with sand accelerates along a highway. The driving force on the truck remains constant. What happens to the acceleration of the truck as its trailer leaks sand at a constant rate through a hole in its bottom? (a) It decreases at a steady rate. (b) It increases at a steady rate. (c) It increases and then decreases. (d) It decreases and then increases. (e) It remains constant.
The instructor may select multiple-choice questions to assign as homework or use them in the classroom, possibly with “peer instruction” methods or in conjunction with “clicker” systems. More than 350 multiple-choice questions are included in this edition. Answers to odd-numbered multiple-choice questions are included in the Answers section at the end of the book, and answers to all questions are found in the Instructor's Solutions Manual and on the instructor’s PowerLecture CD-ROM.

Enhanced Content problems require symbolic or conceptual responses from the student.

A symbolic Enhanced Content problem requires the student to obtain an answer in terms of symbols. In general, some guidance is built into the problem statement. The goal is to better train the student to deal with mathematics at a level appropriate to this course. Most students at this level are uncomfortable with symbolic equations, which is unfortunate because symbolic equations are the most efficient vehicle for presenting relationships between physics concepts. Once students understand the physical concepts, their ability to solve problems is greatly enhanced. As soon as the numbers are substituted into an equation, however, all the concepts and their relationships to one another are lost, melded together in the student’s calculator. The symbolic Enhanced Content problems train students to postpone substitution of values, facilitating their ability to think conceptually using the equations. An example of a symbolic Enhanced Content problem is provided here:

14. An object of mass \(m \) is dropped from the roof of a building of height \(h \). While the object is falling, a wind blowing parallel to the face of the building exerts a constant horizontal force \(F \) on the object. (a) How long does it take the object to strike the ground? Express the time \(t \) in terms of \(g \) and \(h \). (b) Find an expression in terms of \(m \) and \(F \) for the acceleration \(a_x \) of the object in the horizontal direction (taken as the positive \(x \)-direction). (c) How far is the object displaced horizontally before hitting the ground? Answer in terms of \(m \), \(g \), \(F \), and \(h \). (d) Find the magnitude of the object’s acceleration while it is falling, using the variables \(F \), \(m \), and \(g \).

A conceptual Enhanced Content problem encourages the student to think verbally and conceptually about a given physics problem rather than rely solely on computational skills. Research in physics education suggests that standard physics problems requiring calculations may not be entirely adequate in training students to think conceptually. Students learn to substitute numbers for symbols in the equations without fully understanding what they are doing or what the symbols mean. The conceptual Enhanced Content problem combats this tendency by asking for answers that require something other than a number or a calculation. An example of a conceptual Enhanced Concept problem is provided here:

4. A shopper in a supermarket pushes a cart with a force of 35 N directed at an angle of 25° below the horizontal. The force is just sufficient to overcome various frictional forces, so the cart moves at constant speed. (a) Find the work done by the shopper as she moves down a 50.0-m length aisle. (b) What is the net work done on the cart? Why? (c) The shopper goes down the next aisle, pushing horizontally and maintaining the same speed as before. If the work done by frictional forces doesn’t change, would the shopper’s applied force be larger, smaller, or the same? What about the work done on the cart by the shopper?
Guided Problems help students break problems into steps. A physics problem typically asks for one physical quantity in a given context. Often, however, several concepts must be used and a number of calculations are required to get that final answer. Many students are not accustomed to this level of complexity and often don’t know where to start. A Guided Problem breaks a standard problem into smaller steps, enabling students to grasp all the concepts and strategies required to arrive at a correct solution. Unlike standard physics problems, guidance is often built into the problem statement. For example, the problem might say “Find the speed using conservation of energy” rather than only asking for the speed. In any given chapter there are usually two or three problem types that are particularly suited to this problem form. The problem must have a certain level of complexity, with a similar problem-solving strategy involved each time it appears. Guided Problems are reminiscent of how a student might interact with a professor in an office visit. These problems help train students to break down complex problems into a series of simpler problems, an essential problem-solving skill. An example of a Guided Problem is provided here:

32. Two blocks of masses \(m_1 \) and \(m_2 (m_1 > m_2) \) are placed on a frictionless table in contact with each other. A horizontal force of magnitude \(F \) is applied to the block of mass \(m_1 \) in Figure P4.32. (a) If \(P \) is the magnitude of the contact force between the blocks, draw the free-body diagrams for each block. (b) What is the net force on the system consisting of both blocks? (c) What is the net force acting on \(m_1 \)? (d) What is the net force acting on \(m_2 \)? (e) Write the \(x \)-component of Newton’s second law for each block. (f) Solve the resulting system of two equations and two unknowns, expressing the acceleration \(a \) and contact force \(P \) in terms of the masses and force. (g) How would the answers change if the force had been applied to \(m_2 \) instead? (Hint: use symmetry; don’t calculate!) Is the contact force larger, smaller, or the same in this case? Why?

In addition to these three new question and problem types, we carefully reviewed all other questions and problems for this revision to improve their variety, interest, and pedagogical value while maintaining their clarity and quality. Approximately 30% of the questions and problems in this edition are new.

Examples
In the last edition all in-text worked examples were reconstituted in a two-column format to better aid student learning and help reinforce physical concepts. For this eighth edition we have reviewed all the worked examples, made improvements, and added a new Question at the end of each worked example. The Questions usually require a conceptual response or determination, or estimates requiring knowledge of the relationships between concepts. The answers for the new Questions can be found at the back of the book. A sample of an in-text worked example follows on the next page, with an explanation of each of the example’s main parts:
EXAMPLE 13.7 Measuring the Value of g

Goal Determine g from pendulum motion.

Problem Using a small pendulum of length 0.171 m, a geophysicist counts 72.0 complete swings in a time of 60.0 s. What is the value of g in this location?

Strategy First calculate the period of the pendulum by dividing the total time by the number of complete swings. Solve Equation 13.15 for g and substitute values.

Solution Calculate the period by dividing the total elapsed time by the number of complete oscillations:

$$T = \frac{\text{time}}{\# \text{ of oscillations}} = \frac{60.0 \text{ s}}{72.0} = 0.833 \text{ s}$$

Solve Equation 13.15 for g and substitute values:

$$T = 2\pi \sqrt{\frac{L}{g}}$$

$$g = \frac{4\pi^2 L}{T^2} = \frac{4\pi^2 (0.171 \text{ m})}{(0.833 \text{ s})^2} = 9.73 \text{ m/s}^2$$

Remark Measuring such a vibration is a good way of determining the local value of the acceleration of gravity.

QUESTION 13.7

True or False: A simple pendulum of length 0.50 m has a larger frequency of vibration than a simple pendulum of length 1.0 m.

EXERCISE 13.7

What would be the period of the 0.171-m pendulum on the Moon, where the acceleration of gravity is 1.62 m/s2?

Answer 2.04 s

Exercise/Answer Every worked example is followed immediately by an exercise with an answer. These exercises allow students to reinforce their understanding by working a similar or related problem, with the answers giving them instant feedback. At the option of the instructor, the exercises can also be assigned as homework. Students who work through these exercises on a regular basis will find the end-of-chapter problems less intimidating.

Many Worked Examples are also available to be assigned as Active Examples in the Enhanced WebAssign homework management system (visit www.serwayphysics.com for more details).
Online Homework

It is now easier to assign online homework with Serway and Vuille using the widely acclaimed program Enhanced WebAssign. All end-of-chapter problems, active figures, quick quizzes, and most questions and worked examples in this book are available in WebAssign. Most problems include hints and feedback to provide instantaneous reinforcement or direction for that problem. We have also added math remediation tools to help students get up to speed in algebra and trigonometry, animated Active Figure simulations to strengthen students' visualization skills, and video to help students better understand the concepts. Visit www.serwayphysics.com to view an interactive demo of this innovative online homework solution.

Content Changes

The text has been carefully edited to improve clarity of presentation and precision of language. We hope that the result is a book both accurate and enjoyable to read. Although the overall content and organization of the textbook are similar to the seventh edition, a few changes were implemented.

- Chapter 1, Introduction, has a new biological example involving an estimate.
- Chapter 2, Motion in One Dimension, has an improved first example. Quick Quiz 2.1 was given another part so that students would understand the distinction between average speed and average velocity. Quick Quiz 2.2 was completely rewritten to improve its effectiveness. An extra part was added to Example 2.4, and an example from the last edition was eliminated because it was not sufficiently illustrative and somewhat redundant. It was replaced with a new symbolic example.
- Chapter 3, Vectors and Two-Dimensional Motion, features a new symbolic example on the range equation.
- Chapter 4, The Laws of Motion, contains several improved Quick Quizzes and a revised and improved example. The first three quick quizzes were combined into one master quick quiz, requiring the student to answer five related true–false questions on the concept of a force. Quick Quizzes 4.4 and 4.5 were rewritten, and Example 4.6 was improved.
- In Chapter 5, Energy, two definitions of work and the definitions of average power and instantaneous power were clarified. The Problem-Solving Strategy on conservation of energy was improved, resulting in positive changes to Example 5.5. A new part was added to Example 5.14 to enhance student comprehension of instantaneous as opposed to average power.
- In Chapter 6, Momentum and Collisions, the connection between kinetic energy and momentum was made explicit early in the chapter and then used in a Quick Quiz and elsewhere in the problem set.
- In Chapter 7, Rotational Motion and the Law of Gravity, the definitions of the radian and radian measure were clarified. A new part was added to Example 7.1, dealing with arc length.
- Chapter 9, Solids and Fluids, features a new discussion of dark matter and dark energy in Section 9.1, States of Matter. Example 9.2 is a new biological example about sports injuries.
- Chapter 12, The Laws of Thermodynamics, has been reorganized slightly, and a new section (Section 12.3, Thermal Processes) has been added. Another equivalent statement of the second law of thermodynamics was included along with further explanation.
- Chapter 14, Sound, has a new, more instructive Example 14.1, replacing the previous example.
- Chapter 15, Electric Forces and Electric Fields, has two worked examples that were upgraded with new parts.
- Chapter 16, Electrical Energy and Capacitance, has a new worked example that illustrates particle dynamics and electric potential. Three other worked examples were upgraded with new parts, and two new quick quizzes were added.
Chapter 17, Current and Resistance, was reorganized slightly, putting the subsection on power ahead of superconductivity. It also has two new quick quizzes.

Chapter 18, Direct-Current Circuits, has both a new and a reorganized quick quiz.

Chapter 19, Magnetism, has a new section on types of magnetic materials as well as a new quick quiz.

Chapter 20, Induced Voltages and Inductance, has new material on RL circuits, along with a new example and quick quiz.

Chapter 21, Alternating-Current Circuits and Electromagnetic Waves, has a new series of four quick quizzes that were added to drill the fundamentals of AC circuits. The problem-solving strategy for RLC circuits was completely revised, and a new physics application on using alternating electric fields in cancer treatment was added.

Chapter 24, Wave Optics, has an improved example and two new quick quizzes.

Chapter 26, Relativity, no longer covers relativistic addition of velocities. Three new quick quizzes were added to the chapter.

Chapter 27, Quantum Physics, was rewritten and streamlined. Two superfluous worked examples were eliminated (old Examples 27.1 and 27.2) because both are discussed adequately in the text. One of two worked examples on the Heisenberg uncertainty principle was deleted and a new quick quiz was added. The scanning tunneling microscope application was deleted.

Chapter 28, Atomic Physics, was rewritten and streamlined, and the subsection on spin was transferred to the section on quantum mechanics. The section on electron clouds was shortened and made into a subsection. The sections on atomic transitions and lasers were combined into a single, shorter section.

Chapter 29, Nuclear Physics, was reduced in size by deleting less essential worked examples. Old worked examples 29.1 (Sizing a Neutron Star), 29.4 (Radon Gas), 29.6 (The Beta Decay of Carbon-14), and 29.9 (Synthetic Elements) were eliminated because they were similar to other examples already in the text. The medical application of radiation was shortened, and a new quick quiz was developed.

Chapter 30, Nuclear Energy and Elementary Particles, was rewritten and streamlined. The section on nuclear reactors was combined with the one on nuclear fission. The historical section and old Section 30.7 on the meson were eliminated, and the beginning of the section on particle physics was eliminated. The section on strange particles and strangeness was combined with the section on conservation laws. The sections on quarks and colored quarks were also combined into Section 30.8, Quarks and Color.

TEXTBOOK FEATURES

Most instructors would agree that the textbook assigned in a course should be the student’s primary guide for understanding and learning the subject matter. Further, the textbook should be easily accessible and written in a style that facilitates instruction and learning. With that in mind, we have included many pedagogical features that are intended to enhance the textbook’s usefulness to both students and instructors. The following features are included.

QUICK QUIZZES All the Quick Quizzes (see example below) are cast in an objective format, including multiple-choice, true–false, matching, and ranking questions. Quick Quizzes provide students with opportunities to test their understanding of the physical concepts presented. The questions require students to make decisions on the basis of sound reasoning, and some have been written to help students overcome common misconceptions. Answers to all Quick Quiz questions are found at the end of the textbook, and answers with detailed explanations are provided in the *Instructor’s Solutions Manual*. Many instructors choose to use Quick Quiz questions in a “peer instruction” teaching style.
QUICK QUIZ 4.3 A small sports car collides head-on with a massive truck. The greater impact force (in magnitude) acts on (a) the car, (b) the truck, (c) neither, the force is the same on both. Which vehicle undergoes the greater magnitude acceleration? (d) the car, (e) the truck, (f) the accelerations are the same.

PROBLEM-SOLVING STRATEGIES A general problem-solving strategy to be followed by the student is outlined at the end of Chapter 1. This strategy provides students with a structured process for solving problems. In most chapters more specific strategies and suggestions (see example below) are included for solving the types of problems featured in both the worked examples and the end-of-chapter problems. This feature helps students identify the essential steps in solving problems and increases their skills as problem solvers.

PROBLEM-SOLVING STRATEGY

NEWTON'S SECOND LAW

Problems involving Newton's second law can be very complex. The following protocol breaks the solution process down into smaller, intermediate goals:

1. **Read** the problem carefully at least once.

2. **Draw** a picture of the system, identify the object of primary interest, and indicate forces with arrows.

3. **Label** each force in the picture in a way that will bring to mind what physical quantity the label stands for (e.g., T for tension).

4. **Draw** a free-body diagram of the object of interest, based on the labeled picture. If additional objects are involved, draw separate free-body diagrams for them. Choose convenient coordinates for each object.

5. **Apply Newton's second law.** The x- and y-components of Newton's second law should be taken from the vector equation and written individually. This usually results in two equations and two unknowns.

6. **Solve** for the desired unknown quantity, and substitute the numbers.

BIOMEDICAL APPLICATIONS For biology and pre-med students, icons point the way to various practical and interesting applications of physical principles to biology and medicine. Whenever possible, more problems that are relevant to these disciplines are included.

MCAT SKILL BUILDER STUDY GUIDE The eighth edition of *College Physics* contains a special skill-building appendix (Appendix E) to help premed students prepare for the MCAT exam. The appendix contains examples written by the text authors that help students build conceptual and quantitative skills. These skill-building examples are followed by MCAT-style questions written by test prep experts to make sure students are ready to ace the exam.

MCAT TEST PREPARATION GUIDE Located after the “To the Student” section in the front of the book, this guide outlines 12 concept-based study courses for the physics part of the MCAT exam. Students can use the guide to prepare for the MCAT exam, class tests, or homework assignments.

APPLYING PHYSICS The Applying Physics features provide students with an additional means of reviewing concepts presented in that section. Some Applying Physics examples demonstrate the connection between the concepts presented in that chapter and other scientific disciplines. These examples also serve as models for students when assigned the task of responding to the Conceptual Questions
presented at the end of each chapter. For examples of Applying Physics boxes, see Applying Physics 9.5 (Home Plumbing) on page 299 and Applying Physics 13.1 (Bungee Jumping) on page 435.

TIPS Placed in the margins of the text, Tips address common student misconceptions and situations in which students often follow unproductive paths (see example at the left). More than ninety-five Tips are provided in this edition to help students avoid common mistakes and misunderstandings.

MARGINAL NOTES Comments and notes appearing in the margin (see example at the left) can be used to locate important statements, equations, and concepts in the text.

APPLICATIONS Although physics is relevant to so much in our modern lives, it may not be obvious to students in an introductory course. Application margin notes (see example at the left) make the relevance of physics to everyday life more obvious by pointing out specific applications in the text. Some of these applications pertain to the life sciences and are marked with a \(\text{\textbullet} \) icon.

MULTIPLE-CHOICE QUESTIONS New to this edition are end-of-chapter multiple-choice questions. The instructor may select items to assign as homework or use them in the classroom, possibly with “peer instruction” methods or with “clicker” systems. More than 350 multiple-choice questions are included in this edition. Answers to odd-numbered multiple-choice questions are included in the answer section at the end of the book, and answers to all questions are found in the Instructor’s Solutions Manual.

CONCEPTUAL QUESTIONS At the end of each chapter there are 10–15 conceptual questions. The Applying Physics examples presented in the text serve as models for students when conceptual questions are assigned and show how the concepts can be applied to understanding the physical world. The conceptual questions provide the student with a means of self-testing the concepts presented in the chapter. Some conceptual questions are appropriate for initiating classroom discussions. Answers to odd-numbered conceptual questions are included in the Answers section at the end of the book, and answers to all questions are found in the Instructor’s Solutions Manual.

PROBLEMS An extensive set of problems is included at the end of each chapter (in all, almost 2,000 problems are provided in this edition). Answers to odd-numbered problems are given at the end of the book. For the convenience of both the student and instructor, about two-thirds of the problems are keyed to specific sections of the chapter. The remaining problems, labeled “Additional Problems,” are not keyed to specific sections. The three levels of problems are graded according to their difficulty. Straightforward problems are numbered in black, intermediate-level problems are numbered in blue, and the most challenging problems are numbered in magenta. The \(\text{\textbullet} \) icon identifies problems dealing with applications to the life sciences and medicine. Solutions to approximately 12 problems in each chapter are in the Student Solutions Manual/Study Guide.

STYLE To facilitate rapid comprehension, we have attempted to write the book in a style that is clear, logical, relaxed, and engaging. The somewhat informal and relaxed writing style is designed to connect better with students and enhance their reading enjoyment. New terms are carefully defined, and we have tried to avoid the use of jargon.

INTRODUCTIONS All chapters begin with a brief preview that includes a discussion of the chapter’s objectives and content.
UNITS The international system of units (SI) is used throughout the text. The
U.S. customary system of units is used only to a limited extent in the chapters on
mechanics and thermodynamics.

PEDAGOGICAL USE OF COLOR Readers should consult the pedagogical color
chart (inside the front cover) for a listing of the color-coded symbols used in the
text diagrams. This system is followed consistently throughout the text.

IMPORTANT STATEMENTS AND EQUATIONS Most important statements and
definitions are set in boldface type or are highlighted with a background screen
for added emphasis and ease of review. Similarly, important equations are high-
lighted with a tan background screen to facilitate location.

ILLUSTRATIONS AND TABLES The readability and effectiveness of the text mater-
ial, worked examples, and end-of-chapter conceptual questions and problems are
enhanced by the large number of figures, diagrams, photographs, and tables. Full
color adds clarity to the artwork and makes illustrations as realistic as possible.
Three-dimensional effects are rendered with the use of shaded and lightened
areas where appropriate. Vectors are color coded, and curves in graphs are drawn
in color. Color photographs have been carefully selected, and their accompanying
captions have been written to serve as an added instructional tool. A complete
description of the pedagogical use of color appears on the inside front cover.

SUMMARY The end-of-chapter Summary is organized by individual section
headings for ease of reference.

SIGNIFICANT FIGURES Significant figures in both worked examples and end-
of-chapter problems have been handled with care. Most numerical examples and
problems are worked out to either two or three significant figures, depending on
the accuracy of the data provided. Intermediate results presented in the examples
are rounded to the proper number of significant figures, and only those digits are
carried forward.

APPENDICES AND ENDPAPERS Several appendices are provided at the end of
the textbook. Most of the appendix material represents a review of mathematical
concepts and techniques used in the text, including scientific notation, algebra,
geometry, trigonometry, differential calculus, and integral calculus. Reference
to these appendices is made as needed throughout the text. Most of the math-
ematical review sections include worked examples and exercises with answers. In
addition to the mathematical review, some appendices contain useful tables that
supplement textual information. For easy reference, the front endpapers contain a
chart explaining the use of color throughout the book and a list of frequently used
conversion factors.

ACTIVE FIGURES Many diagrams from the text have been animated to become
Active Figures (identified in the figure legend), part of the Enhanced WebAssign
online homework system. By viewing animations of phenomena and processes that
cannot be fully represented on a static page, students greatly increase their con-
ceptual understanding. In addition to viewing animations of the figures, students
can see the outcome of changing variables to see the effects, conduct suggested
explorations of the principles involved in the figure, and take and receive feedback
on quizzes related to the figure. All Active Figures are included on the instructor’s
PowerLecture CD-ROM for in-class lecture presentation.

TEACHING OPTIONS
This book contains more than enough material for a one-year course in introduc-
tory physics, which serves two purposes. First, it gives the instructor more flexibility
in choosing topics for a specific course. Second, the book becomes more useful as a resource for students. On average, it should be possible to cover about one chapter each week for a class that meets three hours per week. Those sections, examples, and end-of-chapter problems dealing with applications of physics to life sciences are identified with the DNA icon. We offer the following suggestions for shorter courses for those instructors who choose to move at a slower pace through the year.

Option A: If you choose to place more emphasis on contemporary topics in physics, you could omit all or parts of Chapter 8 (Rotational Equilibrium and Rotational Dynamics), Chapter 21 (Alternating-Current Circuits and Electromagnetic Waves), and Chapter 25 (Optical Instruments).

Option B: If you choose to place more emphasis on classical physics, you could omit all or parts of Part 6 of the textbook, which deals with special relativity and other topics in 20th-century physics.

The *Instructor's Solutions Manual* offers additional suggestions for specific sections and topics that may be omitted without loss of continuity if time presses.

COURSE SOLUTIONS THAT FIT YOUR TEACHING GOALS AND YOUR STUDENTS’ LEARNING NEEDS

Recent advances in educational technology have made homework management systems and audience response systems powerful and affordable tools to enhance the way you teach your course. Whether you offer a more traditional text-based course, are interested in using or are currently using an online homework management system such as WebAssign, or are ready to turn your lecture into an interactive learning environment with an audience response system, you can be confident that the text’s proven content provides the foundation for each and every component of our technology and ancillary package.

VISUALIZE WHERE YOU WANT TO TAKE YOUR COURSE

WE PROVIDE YOU WITH THE FOUNDATION TO GET THERE

Serway/Vuille, College Physics, 8e
Homework Management Systems

ENHANCED WEBASSIGN Enhanced WebAssign is the perfect solution to your homework management needs. Designed by physicists for physicists, this system is a reliable and user-friendly teaching companion. Enhanced WebAssign is available for *College Physics*, giving you the freedom to assign:

- every end-of-chapter Problem, Multiple-Choice Question, and Conceptual Question, enhanced with hints and feedback
- most worked examples, enhanced with hints and feedback, to help strengthen students' problem-solving skills
- every Quick Quiz, giving your students ample opportunity to test their conceptual understanding
- animated Active Figures, enhanced with hints and feedback, to help students develop their visualization skills
- a math review to help students brush up on key quantitative concepts

Please visit www.serwayphysics.com to view an interactive demonstration of Enhanced WebAssign.

The text is also supported by the following Homework Management Systems. Contact your local sales representative for more information.

- The University of Texas Homework Service

Audience Response Systems

AUDIENCE RESPONSE SYSTEM CONTENT Regardless of the response system you are using, we provide the tested content to support it. Our ready-to-go content includes all the questions from the Quick Quizzes, all the end-of-chapter Multiple-Choice Questions, test questions, and a selection of end-of-chapter questions to provide helpful conceptual checkpoints to drop into your lecture. Our Active Figure animations have also been enhanced with multiple-choice questions to help test students' observational skills.

We also feature the Assessing to Learn in the Classroom content from the University of Massachusetts. This collection of 250 advanced conceptual questions has been tested in the classroom for more than ten years and takes peer learning to a new level. Contact your local sales representative to learn more about our audience response software and hardware.

Visit www.serwayphysics.com to download samples of our audience response system content.

Lecture Presentation Resources

The following resources provide support for your presentations in lecture.

POWERLECTURE CD-ROM An easy-to-use multimedia lecture tool, the PowerLecture CD-ROM allows you to quickly assemble art, animations, digital video, and database files with notes to create fluid lectures. The two-volume set (Volume 1: Chapters 1–14; Volume 2: Chapters 15–30) includes prebuilt PowerPoint® lectures, a database of animations, video clips, and digital art from the text as well as editable electronic files of the Instructor’s Solutions Manual. Also included is the easy-to-use test generator ExamView, which features all the questions from the printed Test Bank in an editable format.

TRANSPARENCY ACETATES Each volume contains approximately 100 transparency acetates featuring art from the text. Volume 1 contains Chapters 1 through 14, and Volume 2 contains Chapters 15 through 30.
Assessment and Course Preparation Resources:
A number of the resources listed below will help assist with your assessment and preparation processes, and are available to qualified adopters. Please contact your local Cengage • Brooks/Cole sales representative for details. Ancillaries offered in two volumes are split as follows: Volume 1 contains Chapters 1 through 14, and Volume 2 contains Chapters 15 through 30.

INSTRUCTOR’S SOLUTIONS MANUAL by Charles Teague and Jerry S. Faughn. Available in two volumes, the Instructor’s Solutions Manual consists of complete solutions to all the problems, multiple-choice questions, and conceptual questions in the text, and full answers with explanations to the Quick Quizzes. An editable version of the complete instructor’s solutions is also available electronically on the PowerLecture CD-ROM.

PRINTED TEST BANK by Ed Oberhofer. This test bank contains approximately 1,750 multiple-choice problems and questions. Answers are provided in a separate key. The test bank is provided in print form (in two volumes) for the instructor who does not have access to a computer, and instructors may duplicate pages for distribution to students. These questions are also available on the PowerLecture CD-ROM as either editable Word® files (with complete answers and solutions) or via the ExamView test software.

WEBCT AND BLACKBOARD CONTENT For users of either course management system, we provide our test bank questions in proper WebCT and Blackboard content format for easy upload into your online course.

INSTRUCTOR’S COMPANION WEB SITE Consult the instructor’s Web site at www.serwayphysics.com for additional Quick Quiz questions, a problem correlation guide, images from the text, and sample PowerPoint® lectures. Instructors adopting the eighth edition of College Physics may download these materials after securing the appropriate password from their local Brooks/Cole sales representative.

Student Resources
Brooks/Cole offers several items to supplement and enhance the classroom experience. These ancillaries allow instructors to customize the textbook to their students’ needs and to their own style of instruction. One or more of the following ancillaries may be shrink-wrapped with the text at a reduced price:

STUDENT SOLUTIONS MANUAL/STUDY GUIDE by John R. Gordon, Charles Teague, and Raymond A. Serway. Now offered in two volumes, the Student Solutions Manual/Study Guide features detailed solutions to approximately 12 problems per chapter. Boxed numbers identify those problems in the textbook for which complete solutions are found in the manual. The manual also features a skills section, important notes from key sections of the text, and a list of important equations and concepts. Volume 1 contains Chapters 1 through 14, and Volume 2 contains Chapters 15 through 30.

PHYSICS LABORATORY MANUAL, 3rd edition by David Loyd. The Physics Laboratory Manual supplements the learning of basic physical principles while introducing laboratory procedures and equipment. Each chapter of the manual includes a prelaboratory assignment, objectives, an equipment list, the theory behind the experiment, experimental procedures, graphs, and questions. A laboratory report is provided for each experiment so that the student can record data, calculations, and experimental results. To develop their ability to judge the validity of their results, students are encouraged to apply statistical analysis to their data. A complete instructor’s manual is also available to facilitate use of this manual.
ACKNOWLEDGMENTS

In preparing the eighth edition of this textbook, we have been guided by the expertise of many people who have reviewed manuscript or provided prerevision suggestions. We wish to acknowledge the following reviewers and express our sincere appreciation for their helpful suggestions, criticism, and encouragement.

Eighth edition reviewers:

Gary Blanpieid, University of South Carolina
Gardner Friedlander, University School of Milwaukee
Dolores Gende, Parish Episcopal School
Grant W. Hart, Brigham Young University
Joey Huston, Michigan State University
Mark James, Northern Arizona University
Teruki Kamon, Texas A & M University

College Physics, eighth edition, was carefully checked for accuracy by Philip W. Adams, Louisiana State University; Grant W. Hart, Brigham Young University; Thomas K. Hemmick, Stony Brook University; Ed Oberhofer, Lake Sumner Community College; M. Anthony Reynolds, Embry-Riddle Aeronautical University; Eugene Surdutovich, Wayne State University; and David P. Young, Louisiana State University. Although responsibility for any remaining errors rests with us, we thank them for their dedication and vigilance.

Prior to our work on this revision, we conducted a survey of professors to gauge how they used student assessment in their classroom. We were overwhelmed not only by the number of professors who wanted to take part in the survey, but also by their insightful comments. Their feedback and suggestions helped shape the revision of the end-of-chapter questions and problems in this edition, and so we would like to thank the survey participants:

Elise Adamson, Wayland Baptist University; Rhett Allain, Southeastern Louisiana University; Michael Anderson, University of California, San Diego; James Andrews, Youngstown State University; Bradley Antanaitis, Lafayette College; Robert Astalos, Adams State College; Charles Archley, Sauk Valley Community College; Kandiah Balachandran, Kalamazoo Valley Community College; Colley Baldwin, St. John’s University; Mahmoud Basharat, Houston Community College East; Terri Batahla, Evangeline Valley College; Natalie Batalha, San Jose State University; Charles Benes, Wesley College; Raymond Bengt, Tarrant County College Northeast; Lee Benjamin, Marywood University; Edgar Bering, University of Houston; Ron Bin-gaman, Indiana University East; Jennifer Birriel, Monroe State University; Earl Bledgett, University of Wisconsin–River Falls; Anthony Bloom, University of North Alabama; Jeff Bordart, Chipola College; Ken Bolland, The Ohio State University; Roscoe Bowen, Campbellsville University; Shane Brown, Grove City College; Charles Burkhardt, St. Louis Community College; Richard Cardenas, St. Mary’s University; Kelly Casey, Yakima Valley Community College; Cliff Castle, Jefferson College; Marco Cavaglia, University of Mississippi; Eugene Chaffin, Bob Jones University; Chang Chang, Drexel University; Jing Chang, Culver-Stockton College; Hirenendra Chatterjee, Camden County College; Soumitra Chattopadhyay, Georgia Highlands College; Anastasia Chapelas, University of Washington; Krishna Chowdary, Bucknell University; Kelvin Chu, University of Vermont; Alice D. Churukian, Concordia College; David Cinabro, Wayne State University; Gary Copeland, Old Dominion University; Sean Cordry, Northwestern College of Iowa; Victor Coronel, SUNY Rockland Community College; Douglas Corteville, Iowa Western Community College; Randy Criss, Saint Leo University; John Crutchfield, Rockingham Community College; Danielle Dalavace, College of New Jersey; Lawrence Day, Dixa College; Joe DeLeone, Cuyahoga Community College; Tony DeLia, North Florida Community College; Duygu Demirdiloga, Holy Names University; Sandra Desmarais, Daytona Beach Community College; Gregory Dolise, Harrisburg Area Community College; Duane Doyle, Arkansas State University–Newport; James Dunn, Albertson College of Idaho; Tim Duman, University of Indianapolis; Arthur Eggers, Community College of Southern Nevada; Robert Egger, North Carolina State University; Steve Ellis, University of Kentucky; Terry Ellis, Jacksonville University; Ted Elizoroth, Elgin Community College; Martin Epstein, California State University, Los Angeles; Florence Etop, Virginia State University; Mike Eydenberg, New Mexico State University at Alamogordo; Davene Eyres, North Seattle Community College; Brett Fadem, Muhlenberg College; Greg Falabella, Wagner College; Michael Faleski, Delta College; Jacqueline Faridani, Shipensburg University; Abu Fasihuddin, University of Connecticut; Scott Fedorchak, Campbell University; Frank Ferrone, Drexel
University: Hurland Fish, Kalamazoo Valley Community College; Kent Fisher, Columbus State Community College; Allen Flora, Hood College; James Friedrichsen, Austin Community College; Jan D. Goluch, Austin Community College of Northern Colorado; Tieu Gamale, Arkansas State University–LR; Andy Gavrin, Indiana University Purdue University Indianapolis; Michael Giangrande, Oakland Community College; Wells Gordon, Ohio Valley University; Charles Grabowski, Carroll Community College; Robert Gramer, Lake City Community College; Janusz Grebowicz, University of Houston–Downtown; Morris Greenwood, San Jacinto College Central; David Groh, Gannon University; Fred Grose, Susquehanna University; Harvey Haag, Penn State DuBois; Piotr Habdas, Saint Joseph's University; Robert Hagood, Washburn Community College; Heath Hutche, University of Massachusetts Amherst; Dennis Hawk, Navarro College; George Hazelon, Chouin University; Qifang He, Arkansas State University at Beebe; Randall Headrick, University of Vermont; Todd Holden, Brooklyn College; Susanne Holmes-Koetter; Dong Ingram, Texas Christian University; Dwain Ingram, Texas State Technical College; Rex Isam, Sam Houston State University; Herbernt Juerger, Miami University; Mohnsen Janatpour, College of San Mateo; Peter Jeschonig, Colorado Mountain College; Lana Jordan, Mercer College; Teruki Kamon, Texas A & M University; Charles Kao, Columbus State University; David Kardelis, College of Eastern Utah; Edward Kearns, Boston University; Robert Keefer, Lake Sumter Community College; Mamadou Keita, Sheridan College, Gillette Campus; Luke Keller, Ibach College; Andrew Kerr, University of Findlay; Kinney Kim, North Carolina Central University; Kevin Kimberlin, Bradley University; George Knott, Converse College; Corinne Krauss, Dickinson State University; Christopher Kulp, Eastern Kentucky University; A. Anil Kumar, Prairie View A & M University; Josephine Lamela, Middlesex County College; Eric Lane, University of Tennessee; Gregory Lapicki, East Carolina University; Byron Leles, Seattle State Community College; David Lieberman, Queensborough Community College; Marilyn Listvan, Normandale Community College; Rafael Lopez-Mobilia, University of Texas at San Antonio; Jose Losano, Bradley University; Mark Lucas, Ohio University; Ntumwa Maasha, Coastal Georgia Community College; Keith MacAdam, University of Kentucky; Kevin Mackay, Grove City College; Steve Maier, Northwestern Oklahoma State University; Helen Major, Lincoln University; Igor Makasyuk, San Francisco State University; Gary Malek, Johnson County Community College; Frank Mann, Emmanuel College; Ronald Marks, North Greenville University; Perry Mason, Lubbock Christian University; Mark Mattson, James Madison University; John McClain, Plymouth College; James McDonald, University of Hartford; Linda McDonald, North Park University; Ralph V. McGrew, Bronx Community College; Janet McLarty-Schroeder, Cerro Cos University; Rahul Mehta, University of Central Arkansas; Mike Mikhaiel, Passaic County Community College; Laney Mills, College of Charleston; John Milton, DePaul University; Stephen Mimick, Kent State University, Tuscarawas Campus; Dominick Misciaccio, Mercer County Community College; Arthur Mittler, University of Massachusetts Lowell; Glenn Modrak, Bronx Community College; Toby Moleki, Michigan Community College; G. David Moore, Reinhardt College; Hassan Moore, Johnson C. Smith University; David Moran, Breyer State University; Laurie Morgus, Drew University; David Murdock, Tennessee Technological University; Dennis Nemeschansky, University of Southern California; Bob Nerb, University of South Carolina Sumter; Lorin Neufeld, Fresno Pacific University; K. W. Nicholson, Central Alabama Community College; Charles Nickles, University of Massachusetts Dartmouth; Paul Niemaber, Saint Mary's University of Minnesota; Ralph Oberly, Marshall University; Terry F. O'Dwyer, Nassau Community College; Don Olive, Gardner-Webb University; Jacqueline Omland, Northern State University; Paige Ozuts, Lauder University; Vaheribhai Patel, Toms Hall College; Bijoy Patnaik, Halifax Community College; Philip Patterson, Southern Polytechnic State University; James Pazur, Pfeiffer University; Chuck Pearson, Austin Peay; Delaware Technical & Community College; Frederick Philips, Central Michigan University; Robert Phiblin, Trinidad State Junior College; Joshua Phiri, Florence Darlington Technical College; Cu Phung, Methodist College; Alberto Pinkas, New Jersey City University; Ali Piran, Stephen F. Austin State University; Marie Plumb, James-town Community College; Dwight Portman, Miami University Middletown; Rose Rakers, Trinity Christian College; Perasamy Ramalingam, Albany State University; Arnie Randle, Long Island University; Tom Richardson, Marian College; Herbert Ringel, Borough of Manhattan Community College; Salvatore Rodano, Harford Community College; John Rollino, Rutgers University–Newark; Fernando Romero-Borja, Houston Community College–Central; Michael Rulison, Ogletorpe University; Marylyn Russ, Marygrove College; Craig Rutan, Santiago Canyon College; Joyanta San, Delaware Technical & Community College; Charles Sawicki, North Dakota State University; Daniel Schoun, Kettering College of Medical Arts; Andria Schwartz, Quinnipiac Community College; David Seely, Albion College; Ross Setze, Pearl River Community College; Bart Sheinberg; Peter Sheldon, Randolph-Macon Woman's College; Wen Shen, Community College of Southern Nevada; Anwar Sheik, Dine College; Marlin Simon, Auburn University; Don Sparks, Pierce College; Philip Spickler, Bridgewater College; Fletcher Srygley, Lipscomb University; Scott Steckelrider, Illinois College; Donna Stokes, University of Houston; Laurence Stone, Dakota County Technical College; Yang Sun, University of Notre Dame; Gregory Suran, Marymount Valley Community College; Vahe Tatoian, Mt. San Antonio College; Alem Tekli, College of Charleston; Paul Testa, Tompkins Cortland Community College; Michael Thackston, Southern Polytechnic State University; Melody Thomas, Northwest Arkansas Community College; Cheng Ting, Houston Community College–Southeast; Domm Townsend, Penn State Shenango; Herman Trivillino; Gajendra Tulian, Daytona Beach Community College; Reza Urtij, Boston College; Daniel Van Wingerden, Eastern Michigan University; Ashok Vaseashta, Marshall University; Robert Vaugn, Graceland University; Robert Warasila, Suffolk County Community College; Robert Webb, Texas A & M University; Zodiac Webster, Columbus State University; Brian Weiner, Penn State DuBois; Jack Wells, Thomas More College; Ronnie Whitten, Tri-County Community College; Tom Wilbur, Anne Arundel Community College; Sam Wiley, California State University, Dominguez Hills; Judith Williams, William Penn University; Mark Williams; Don William, Chadron State College; Neil Wisely, College of Southern Maryland;
Lowell Wood, University of Houston; Jaihu Shi; Pei Xiong-Skiba, Austin Peay State University; Ming Yin, Benedict College; David Young, Louisiana State University; Douglas Young, Mercer University; T. Waldek Zerda, Texas Christian University; Peizhen Zhao, Edison Community College; Steven Zales, Wolford College; and Ulrich Zurcher, Cleveland State University.

Finally, we would like to thank the following people for their suggestions and assistance during the preparation of earlier editions of this textbook:

Gary B. Adams, Arizona State University; Marilyn Akins, Broome Community College; Ricardo Alarcon, Arizona State University; Albert Altman, University of Lowell; John Anderson, University of Pittsburgh; Lawrence Anderson-Huang, University of Toledo; Subhash Antani, Edgewood College; Neil W. Ashcroft, Cornell University; Charles R. Bacon, Ferris State University; Dilip Balamore, Nassau Community College; Ralph Barnett, Florenceville Community College; Lois Barrett, Western Washington University; Natalie Batalha, San Jose State University; Paul D. Beale, University of Colorado at Boulder; Paul Bender, Washington State University; David H. Bemnum, University of Nevada at Reno; Ken Bolland, The Ohio State University; Jeffery Braun, University of Evansville; John Brennan, University of Central Florida; Michael Bretz, University of Michigan; Ann Arbor; Michael E. Bronne, University of Idaho; Joseph Cantazarate, Cypress College; Ronald W. Canterna, University of Wyoming; Clinton M. Case, Western Nevada Community College; Neal M. Casor, University of Notre Dame; Kapila Clara Castoldi, Oakland University; Roger W. Clapp, University of South Florida; Giuseppe Colaccio, University of South Florida; Lattie F. Collins, East Tennessee State University; Lawrence B. Colman, University of California, Davis; Andrew Cornelius, University of Nevada, Las Vegas; Jorge Corso, Miami Dade Community College; Terry T. Crow, Mississippi State College; Yeim Darici, Florida International University; Stephen D. Davis, University of Arkansas at Little Rock; John DeFord, University of Utah; Chris J. DeMarco, Jackson Community College; Michael Dennin, University of California, Irvine; N. John DiNardo, Drexel University; Steve Ellis, University of Kentucky; Robert J. Endorf, University of Cincinnati; Steve Ellis, University of Kentucky; Hasan Fakhruddin, Ball State University/Indiana Academy.

Paul Feldker, Florenceville Community College; Leonard X. Fingold, Drexel University; Emily Flynn; Lewis Ford, Texas A & M University; Tom French, Montgomery County Community College; Albert Thomas Fromhhold, Jr., Auburn University; Lothar Fromhhold, University of Texas at Austin; Eric Ganz, University of Minnesota; Teymoo Gedayaloo, California Polytechnic State University; Simon George, California State University, Long Beach; James R. Goff, Penna Community College; Yadin Y. Goldschmidt, University of Pittsburgh; John R. Gordon, James Madison University; George W. Greenlee, University of Minnesota; Wlodzimierz Gunry, Brookhaven National Laboratory; Steve Hagen, University of Florida; Raymond Hall, California State University, Fresno; Patrick Hamill, San Jose State University; Joel Handle, James Harmon, Oklahoma State University; Grant W. Hart, Brigham Young University; James E. Heath, Austin Community College; Grady Hendricks, Blinn College; Christopher Herbert, New Jersey City University; Rhett Herman, Radford University; John Hsu, State University of New York at Buffalo; Aleksey Holloway, University of Nebraska at Omaha; Murshed Hussain, Roanoke College; Robert C. Hudson, Roanoke College; Joe Huston, Michigan State University; Fred Inman, Mankato State University; Mark James, Northern Arizona University; Ronald E. Jodoin, Rochester Institute of Technology; Randall Jones, Loyola College in Maryland; Drasko Jovanovic, Fermalale; George W. Kattawar, Texas A & M University; Joseph Keane, St. Thomas Aquinas College; Frank Kolt, Trenton State University; Dorina Kostin, University of Missouri–Columbia; Joan P. Kowalski, George Mason University; Jean Kramer, University of Maryland, Baltimore County; Sol Krasner, University of Chicago; Karl F. Kuhn, Eastern Kentucky University; David Lamp, Texas Tech University; Harvey S. Leff, California State Polytechnic University; Joel Levine, Orange Coast College; Michael Lieber, University of Arkansas; Martha Lietz, Niles West High School; James Linbald, Saddleback Community College; Edwin Lee; Bill Lochot, Pennsylvania State University; Rafael Lopez-Mohalia, University of Texas at San Antonio; Michael LoPrete, Henry Ford Community College; Bo Lou, Ferris State University; Jeffrey V. Mallow, Loyola University of Chicago; David Markowitz, University of Connecticut; Joe McCanley, Jr., University of Houston; Steven McCanley, California State Polytechnic University, Pomona; Ralph V. McGrew, Broome Community College; Bill F. Melton, University of North Carolina at Charlotte; John A. Milson, University of Arizona; Monty Mola, Humboldt State University; H. Kent Moore, James Madison University; John Morack, University of Alaska, Fairbanks; Steven Morris, Los Angeles Harbor College; Charles W. Mykes, Texas Tech University; Carl R. Nave, Georgia State University; Martin Nikolo, Saint Louis University; Blaine Norum, University of Virginia; M. E. Oakes, University of Texas at Austin; Lewis J. Oakland, University of Minnesota; Ed Oberhofer, Lake Sumter Community College; Lewis O’Kelly, Menlo State University; David G. Oon, University of Delaware; John Opany, Wayne State University; Chris Pearson, University of Michigan–Flint; Alexey A. Petrov, Wayne State University; T. A. K. Pillai, University of Wisconsin, La Crosse; Lawrence S. Pinsky, University of Houston; William D. Plouge, The Ohio State University; Patrick Polley, Beloit College; Brooke M. Pridmore, Clayton State University; Joseph Priest, Miami University; James Purcell, Georgia State University; W. Steve Quon, Ventura College; Michael Ram, State University of New York at Buffalo; Kurt Reibel, The Ohio State University; M. Anthony Reynolds, Embry-Riddle Aeronautical University; Barry Roberson, Queen’s University; Virginia Roundy, California State University, Fullerton; Larry Rowan, University of North Carolina, Chapel Hill; Dubravka Rupnik, Louisiana State University; William R. Savage, University of Iowa; Reinhard A. Schumacher, Carnegie Mellon University; Surajit Sen, State University of New York at Buffalo; John Simon, University of Toledo; Marlin L. Simon, Auburn University; Matthew Sirocky; Donald D. Snyder, Indiana University at South Bend; George Strobel, University of Georgia; Carey E. Stromach, Virginia State University; Thomas W. Taylor, Cleveland State University; Perry A. Tompkins, Samford University; Scott M. Tompkins, Embry-Riddle Aeronautical University; Brian Trybus, University of Texas at San Antonio; Michael M. Tyree, California State University, Fullerton; John J. Uhl, University of Houston; Maria Umpierrez, Boise State University; Garrett V. Uppendahl, Florida Atlantic University; A. Fabian Urrutia, University of Miami; Brian J. Vagnini, Western Michigan University; Stephen Valadez, Chico State University; Robert A. Vasc, University of Illinois, Urbana; Gary E. Voss, California State Polytechnic University, Pomona; Ken Wagenet, University of Kentucky; John A. Wallick, Drexel University; Anthony Wall, University of Illinois; Robert Walter, University of California, Los Angeles; Carl Weck, Southern Illinois University; Steven Weiss, University of Nebraska–Oma};
Gerd Kortemeyer and Randall Jones contributed several end-of-chapter problems, especially those of interest to the life sciences. Edward F. Redish of the University of Maryland graciously allowed us to list some of his problems from the Activity Based Physics Project.

We are extremely grateful to the publishing team at the Brooks/Cole Publishing Company for their expertise and outstanding work in all aspects of this project. In particular, we thank Ed Dodd, who tirelessly coordinated and directed our efforts in preparing the manuscript in its various stages, and Sylvia Krick, who transmitted all the print ancillaries. Jane Sanders Miller, the photo researcher, did a great job finding photos of physical phenomena, Sam Subity coordinated the media program for the text, and Rob Hugel helped translate our rough sketches into accurate, compelling art. Katherine Wilson of Lachina Publishing Services managed the difficult task of keeping production moving and on schedule. Mark Santee, Teri Hyde, and Chris Hall also made numerous valuable contributions. Mark, the book’s marketing manager, was a tireless advocate for the text. Teri coordinated the entire production and manufacturing of the text, in all its various incarnations, from start to finish. Chris provided just the right amount of guidance and vision throughout the project. We also thank David Harris, a great team builder and motivator with loads of enthusiasm and an infectious sense of humor. Finally, we are deeply indebted to our wives and children for their love, support, and long-term sacrifices.

Raymond A. Serway
St. Petersburg, Florida

Chris Vuille
Daytona Beach, Florida
Although physics is relevant to so much in our modern lives, it may not be obvious to students in an introductory course. In this eighth edition of College Physics, we continue a design feature begun in the seventh edition. This feature makes the relevance of physics to everyday life more obvious by pointing out specific applications in the form of a marginal note. Some of these applications pertain to the life sciences and are marked with the DNA icon — the list below is not intended to be a complete listing of all the applications of the principles of physics found in this textbook. Many other applications are to be found within the text and especially in the worked examples, conceptual questions, and end-of-chapter problems.

ENGAGING APPLICATIONS

Chapter 3
The long jump, p. 66

Chapter 4
Seat belts, p. 86
Helicopter flight, p. 93
Colliding vehicles, p. 94
Skydiving, p. 108

Chapter 5
Flagellar movement; bioluminescence, p. 142
Asteroid impact, p. 142

Chapter 6
Boxing and brain injury, p. 163
Injury to passengers in car collisions, p. 165
Glaucoma testing, p. 169
Professor Goddard was right all along: Rockets work in space! p. 178
Multistage rockets, p. 179

Chapter 7
ESA launch sites, p. 197
Phonograph records and compact discs, p. 198
Artificial gravity, p. 203
Banked roadways, p. 205
Why is the Sun hot? p. 213
Geosynchronous orbit and telecommunications satellites, p. 217

Chapter 8
A weighted forearm, p. 237
Bicycle gears, p. 241
Warming up, p. 244
Figure skating, p. 250
Aerial somersaults, p. 250
Rotating neutron stars, p. 251

Chapter 9
Arch structures in buildings, p. 275
Snowshoes, p. 277
Bed of nails trick, p. 278
Hydraulic lifts, p. 281
Building the pyramids, pp. 282–283
Measuring blood pressure, p. 283–284
Ballpoint pens, p. 284
Swim bladders in fish, p. 286
Cerebrospinal fluid, p. 286
Testing your car’s antifreeze, p. 286
Checking the battery charge, p. 287
Flight of a golf ball, p. 296
‘Atomizers’ in perfume bottles and paint sprayers, p. 297
Vascular flutter and aneurysms, p. 297
Lift on aircraft wings, p. 297
Sailing upwind, p. 298
Home plumbing, p. 299
Rocket engines, p. 299
Air sac surface tension, p. 301
Detergents and waterproofing agents, p. 303

Chapter 10
Skin temperature, p. 327
Thermal expansion joints, p. 328
Pyrex glass, p. 329
Bimetallic strips and thermostats, pp. 330–331
Rising sea level, p. 333
Bursting water pipes in winter, p. 334
Expansion and temperature, p. 344

Chapter 11
Working off breakfast, p. 354
Physiology of exercise, p. 357
Sea breezes and thermals, p. 355
Home insulation, pp. 368–369
Staying warm in the arctic, p. 370
Cooling automobile engines, p. 371
Algal blooms in ponds and lakes, p. 371
Body temperature, p. 372
Light-colored summer clothing, p. 373
Thermography, p. 373
Radiation thermometers for measuring body temperature, p. 373
Thermal radiation and night vision, p. 374
Thermos bottles, p. 375
Global warming and greenhouse gases, p. 375

Chapter 12
Refrigerators and heat pumps, pp. 402–403
‘Perpetual motion’ machines, p. 409
The direction of time, p. 412
Human metabolism, pp. 413–416

Chapter 13
Archery, p. 429
Pistons and drive wheels, p. 433
Bungee jumping, p. 435
Pendulum clocks, p. 440
Use of pendulum in prospecting, p. 440
Shock absorbers, p. 442
Bass guitar strings, p. 447

Chapter 14
Medical uses of ultrasound, p. 460
Caviar ultrasonic surgical aspirator, p. 461
Ultrasonic ranging unit for cameras, p. 461
The sounds heard during a storm, pp. 462–463

Chapter 15
Measuring atmospheric electric fields, p. 512
Lightning rods, p. 514
Driver safety during electrical storms, p. 515

Chapter 16
Automobile batteries, p. 537
The electrostatic precipitator, p. 544
The electrostatic air cleaner, p. 545
Xerographic copiers, p. 545
Laser printers, p. 546
Camera flash attachments, p. 547
Computer keyboards, p. 547
Electrostatic confinement, p. 547
Defibrillators, p. 556
Stud finders, p. 559

Chapter 17
Dimming of aging lightbulbs, p. 578
Lightbulb failures, p. 582
Electrical activity in the heart, pp. 585–587
Electrocardiograms, p. 585
Cardiac pacemakers, p. 586
Implanted cardioverter defibrillators, p. 586

Chapter 18
Christmas lights in series, p. 596
Circuit breakers, p. 600
Three-way lightbulbs, p. 601
Timed windshield wipers, p. 608
Bacterial growth, p. 608
Roadway flashers, p. 608
Fuses and circuit breakers, p. 612
Third wire on consumer appliances, p. 612
Conduction of electrical signals by neurons, pp. 613–615

Chapter 19
Dusting for fingerprints, p. 628
Magnetic bacteria, p. 629
Labeling airport runways, p. 629
Compasses down under, p. 630
Loudspeaker operation, p. 634
Electromagnetic pumps for artificial hearts and kidneys, p. 635
Lightning strikes, p. 635
Electric motors, p. 638
Mass spectrometers, p. 641

Chapter 20
Ground fault interrupters, p. 668
Electric guitar pickups, p. 669
List of Active Figures

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Active Figures</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.6 and 1.7</td>
</tr>
<tr>
<td>2</td>
<td>2.2, 2.12, 2.13, and 2.15</td>
</tr>
<tr>
<td>3</td>
<td>3.3, 3.14, and 3.15</td>
</tr>
<tr>
<td>4</td>
<td>4.6, 4.18, and 4.19</td>
</tr>
<tr>
<td>5</td>
<td>5.5, 5.15, 5.20, and 5.29</td>
</tr>
<tr>
<td>6</td>
<td>6.7, 6.10, 6.13, and 6.15</td>
</tr>
<tr>
<td>7</td>
<td>7.5, 7.17, and 7.21</td>
</tr>
<tr>
<td>8</td>
<td>8.25</td>
</tr>
<tr>
<td>9</td>
<td>9.3, 9.5, 9.6, 9.19, and 9.20</td>
</tr>
<tr>
<td>10</td>
<td>10.10, 10.12, and 10.15</td>
</tr>
<tr>
<td>11</td>
<td>12.1, 12.9, 12.12, 12.15, and 12.16</td>
</tr>
<tr>
<td>13</td>
<td>14.8, 14.10, 14.18, and 14.25</td>
</tr>
<tr>
<td>14</td>
<td>15.6, 15.11, 15.16, 15.21, and 15.28</td>
</tr>
<tr>
<td>15</td>
<td>16.7, 16.18, and 16.20</td>
</tr>
<tr>
<td>16</td>
<td>17.4 and 17.9</td>
</tr>
<tr>
<td>17</td>
<td>18.1, 18.2, 18.6, 18.16, and 18.17</td>
</tr>
<tr>
<td>21</td>
<td>22.4, 22.6, 22.7, 22.20, and 22.25</td>
</tr>
<tr>
<td>22</td>
<td>23.2, 23.13, 23.16, and 23.25</td>
</tr>
<tr>
<td>23</td>
<td>24.1, 24.16, 24.20, 24.21, and 24.26</td>
</tr>
<tr>
<td>24</td>
<td>25.7, 25.8, and 25.15</td>
</tr>
<tr>
<td>25</td>
<td>26.4, 26.6, and 26.9</td>
</tr>
<tr>
<td>26</td>
<td>27.2, 27.3, and 27.4</td>
</tr>
<tr>
<td>27</td>
<td>28.7, 28.8, and 28.17</td>
</tr>
<tr>
<td>28</td>
<td>29.1, 29.6, and 29.7</td>
</tr>
<tr>
<td>29</td>
<td>30.2 and 30.8</td>
</tr>
</tbody>
</table>
As a student, it’s important that you understand how to use this book most effectively and how best to go about learning physics. Scanning through the preface will acquaint you with the various features available, both in the book and online. Awareness of your educational resources and how to use them is essential. Although physics is challenging, it can be mastered with the correct approach.

HOW TO STUDY

Students often ask how best to study physics and prepare for examinations. There is no simple answer to this question, but we’d like to offer some suggestions based on our own experiences in learning and teaching over the years.

First and foremost, maintain a positive attitude toward the subject matter. Like learning a language, physics takes time. Those who keep applying themselves on a daily basis can expect to reach understanding and succeed in the course. Keep in mind that physics is the most fundamental of all natural sciences. Other science courses that follow will use the same physical principles, so it is important that you understand and are able to apply the various concepts and theories discussed in the text. They’re relevant!

CONCEPTS AND PRINCIPLES

Students often try to do their homework without first studying the basic concepts. It is essential that you understand the basic concepts and principles before attempting to solve assigned problems. You can best accomplish this goal by carefully reading the textbook before you attend your lecture on the covered material. When reading the text, you should jot down those points that are not clear to you. Also be sure to make a diligent attempt at answering the questions in the Quick Quizzes as you come to them in your reading. We have worked hard to prepare questions that help you judge for yourself how well you understand the material. Pay careful attention to the many Tips throughout the text. They will help you avoid misconceptions, mistakes, and misunderstandings as well as maximize the efficiency of your time by minimizing adventures along fruitless paths. During class, take careful notes and ask questions about those ideas that are unclear to you. Keep in mind that few people are able to absorb the full meaning of scientific material after only one reading. Your lectures and laboratory work supplement your textbook and should clarify some of the more difficult material. You should minimize rote memorization of material. Successful memorization of passages from the text, equations, and derivations does not necessarily indicate that you understand the fundamental principles.

Your understanding will be enhanced through a combination of efficient study habits, discussions with other students and with instructors, and your ability to solve the problems presented in the textbook. Ask questions whenever you think clarification of a concept is necessary.

STUDY SCHEDULE

It is important for you to set up a regular study schedule, preferably a daily one. Make sure you read the syllabus for the course and adhere to the schedule set by your instructor. As a general rule, you should devote about two hours of study time for every one hour you are in class. If you are having trouble with the course, seek the advice of the instructor or other students who have taken the course. You
may find it necessary to seek further instruction from experienced students. Very often, instructors offer review sessions in addition to regular class periods. It is important that you avoid the practice of delaying study until a day or two before an exam. One hour of study a day for 14 days is far more effective than 14 hours the day before the exam. “Cramming” usually produces disastrous results, especially in science. Rather than undertake an all-night study session immediately before an exam, briefly review the basic concepts and equations and get a good night’s rest. If you think you need additional help in understanding the concepts, in preparing for exams, or in problem solving, we suggest you acquire a copy of the *Student Solutions Manual/Study Guide* that accompanies this textbook; this manual should be available at your college bookstore.

USE THE FEATURES

You should make full use of the various features of the text discussed in the preface. For example, marginal notes are useful for locating and describing important equations and concepts, and **boldfaced** type indicates important statements and definitions. Many useful tables are contained in the appendices, but most tables are incorporated in the text where they are most often referenced. Appendix A is a convenient review of mathematical techniques.

Answers to all Quick Quizzes and Example Questions, as well as odd-numbered multiple-choice questions, conceptual questions, and problems, are given at the end of the textbook. Answers to selected end-of-chapter problems are provided in the *Student Solutions Manual/Study Guide*. Problem-Solving Strategies included in selected chapters throughout the text give you additional information about how you should solve problems. The contents provides an overview of the entire text, and the index enables you to locate specific material quickly. Footnotes sometimes are used to supplement the text or to cite other references on the subject discussed.

After reading a chapter, you should be able to define any new quantities introduced in that chapter and to discuss the principles and assumptions used to arrive at certain key relations. The chapter summaries and the review sections of the *Student Solutions Manual/Study Guide* should help you in this regard. In some cases, it may be necessary for you to refer to the index of the text to locate certain topics. You should be able to correctly associate with each physical quantity the symbol used to represent that quantity and the unit in which the quantity is specified. Further, you should be able to express each important relation in a concise and accurate prose statement.

PROBLEM SOLVING

R. P. Feynman, Nobel laureate in physics, once said, “You do not know anything until you have practiced.” In keeping with this statement, we strongly advise that you develop the skills necessary to solve a wide range of problems. Your ability to solve problems will be one of the main tests of your knowledge of physics, so you should try to solve as many problems as possible. It is essential that you understand basic concepts and principles before attempting to solve problems. It is good practice to try to find alternate solutions to the same problem. For example, you can solve problems in mechanics using Newton’s laws, but very often an alternate method that draws on energy considerations is more direct. You should not deceive yourself into thinking you understand a problem merely because you have seen it solved in class. You must be able to solve the problem and similar problems on your own. We have cast the examples in this book in a special, two-column format to help you in this regard. After studying an example, see if you can cover up the right-hand side and do it yourself, using only the written descriptions on the left as hints. Once you succeed at that, try solving the example completely on your own. Finally, answer the question and solve the exercise. Once you have accomplished
all these steps, you will have a good mastery of the problem, its concepts, and mathematical technique. After studying all the Example Problems in this way, you are ready to tackle the problems at the end of the chapter. Of these, the Guided Problems provide another aid to learning how to solve some of the more complex problems.

The approach to solving problems should be carefully planned. A systematic plan is especially important when a problem involves several concepts. First, read the problem several times until you are confident you understand what is being asked. Look for any key words that will help you interpret the problem and perhaps allow you to make certain assumptions. Your ability to interpret a question properly is an integral part of problem solving. Second, you should acquire the habit of writing down the information given in a problem and those quantities that need to be found; for example, you might construct a table listing both the quantities given and the quantities to be found. This procedure is sometimes used in the worked examples of the textbook. After you have decided on the method you think is appropriate for a given problem, proceed with your solution. Finally, check your results to see if they are reasonable and consistent with your initial understanding of the problem. General problem-solving strategies of this type are included in the text and are highlighted with a surrounding box. If you follow the steps of this procedure, you will find it easier to come up with a solution and will also gain more from your efforts.

Often, students fail to recognize the limitations of certain equations or physical laws in a particular situation. It is very important that you understand and remember the assumptions underlying a particular theory or formalism. For example, certain equations in kinematics apply only to a particle moving with constant acceleration. These equations are not valid for describing motion whose acceleration is not constant, such as the motion of an object connected to a spring or the motion of an object through a fluid.

EXPERIMENTS

Because physics is a science based on experimental observations, we recommend that you supplement the text by performing various types of “hands-on” experiments, either at home or in the laboratory. For example, the common Slinky™ toy is excellent for studying traveling waves, a ball swinging on the end of a long string can be used to investigate pendulum motion, various masses attached to the end of a vertical spring or rubber band can be used to determine their elastic nature, an old pair of Polaroid sunglasses and some discarded lenses and a magnifying glass are the components of various experiments in optics, and the approximate measure of the free-fall acceleration can be determined simply by measuring with a stopwatch the time it takes for a ball to drop from a known height. The list of such experiments is endless. When physical models are not available, be imaginative and try to develop models of your own.

An Invitation to Physics

It is our hope that you too will find physics an exciting and enjoyable experience and that you will profit from this experience, regardless of your chosen profession. Welcome to the exciting world of physics!

*To see the World in a Grain of Sand
And a Heaven in a Wild Flower,
Hold infinity in the palm of your hand
And Eternity in an hour.*

—William Blake, “Auguries of Innocence”
Welcome to your MCAT Test Preparation Guide

The MCAT Test Preparation Guide makes your copy of *College Physics*, eighth edition, the most comprehensive MCAT study tool and classroom resource in introductory physics. The grid, which begins below and continues on the next two pages, outlines 12 concept-based study courses for the physics part of your MCAT exam. Use it to prepare for the MCAT, class tests, and your homework assignments.

Vectors

Skill Objectives: To calculate distance, angles between vectors, and magnitudes.

Review Plan:
- **Distance and Angles:**
 - Chapter 1, Sections 1.7, 1.8
 - Active Figure 1.6
 - Chapter Problems 35, 41, 44
- **Using Vectors:**
 - Chapter 3, Sections 3.1, 3.2
 - Quick Quizzes 3.1, 3.2
 - Examples 3.1–3.3
 - Active Figure 3.3
 - Chapter Problems 8, 13

Motion

Skill Objectives: To understand motion in two dimensions and to calculate speed and velocity, centripetal acceleration, and acceleration in free-fall problems.

Review Plan:
- **Motion in One Dimension:**
 - Chapter 2, Sections 2.1–2.6
 - Quick Quizzes 2.1–2.8
 - Examples 2.1–2.10
 - Active Figure 2.15
 - Chapter Problems 3, 10, 23, 31, 50, 59
- **Motion in Two Dimensions:**
 - Chapter 3, Sections 3.3, 3.4
 - Quick Quizzes 3.4–3.7
 - Examples 3.3–3.7
 - Active Figures 3.14, 3.15
 - Chapter Problems 27, 33
- **Centripetal Acceleration:**
 - Chapter 7, Section 7.4
 - Quick Quizzes 7.6, 7.7
 - Example 7.6

Force

Skill Objectives: To know and understand Newton’s laws and to calculate resultant forces and weight.

Review Plan:
- **Newton’s Laws:**
 - Chapter 4, Sections 4.1–4.4
 - Quick Quizzes 4.1, 4.3
 - Examples 4.1–4.4
 - Active Figure 4.6
 - Chapter Problems 5, 7, 11
- **Resultant Forces:**
 - Chapter 4, Section 4.5
 - Quick Quizzes 4.4, 4.5
 - Examples 4.7, 4.9, 4.10
 - Chapter Problems 19, 27, 37

Equilibrium

Skill Objectives: To calculate momentum and impulse, center of gravity, and torque.

Review Plan:
- **Momentum:**
 - Chapter 6, Sections 6.1–6.3
 - Quick Quizzes 6.2–6.6
 - Examples 6.1–6.4, 6.6
 - Active Figures 6.7, 6.10, 6.13
 - Chapter Problems 20, 23
- **Torque:**
 - Chapter 8, Sections 8.1–8.4
 - Examples 8.1–8.7
 - Chapter Problems 5, 9
Work

Skill Objectives: To calculate friction, work, kinetic energy, potential energy, and power.

Review Plan:
- **Friction:**
 - Chapter 4, Section 4.6
 - Quick Quizzes 4.6–4.8
 - Active Figure 4.19
- **Work:**
 - Chapter 5, Section 5.1
 - Quick Quiz 5.1
 - Example 5.1
 - Active Figure 5.5
 - Chapter Problem 17
- **Energy:**
 - Chapter 5, Sections 5.2, 5.3
 - Examples 5.4, 5.5
 - Quick Quizzes 5.2, 5.3
- **Power:**
 - Chapter 5, Section 5.6
 - Examples 5.12, 5.13

Waves

Skill Objectives: To understand interference of waves and to calculate basic properties of waves, properties of springs, and properties of pendulums.

Review Plan:
- **Wave Properties:**
 - Chapters 13, Sections 13.1–13.4, 13.7–13.11
 - Quick Quizzes 13.1–13.6
 - Examples 13.1, 13.6, 13.8–13.10
 - Chapter Problems 11, 17, 25, 33, 45, 55, 61
- **Pendulum:**
 - Chapter 13, Section 13.5
 - Quick Quizzes 13.7–13.9
 - Example 13.7
 - Active Figures 13.15, 13.16
 - Chapter Problem 39

Matter

Skill Objectives: To calculate pressure, density, specific gravity, and flow rates.

Review Plan:
- **Properties:**
 - Chapter 9, Sections 9.1–9.3
 - Quick Quiz 9.1
 - Examples 9.1, 9.3, 9.4
 - Active Figure 9.3
 - Chapter Problem 7
- **Pressure:**
 - Chapter 9, Sections 9.3–9.6
 - Quick Quizzes 9.2–9.6
 - Examples 9.4–9.9
 - Active Figures 9.19, 9.20
 - Chapter Problems 25, 43
- **Flow Rates:**
 - Chapter 9, Sections 9.7, 9.8
 - Quick Quiz 9.7
 - Examples 9.11–9.14
 - Chapter Problem 46

Sound

Skill Objectives: To understand interference of waves and to calculate properties of waves, the speed of sound, Doppler shifts, and intensity.

Review Plan:
- **Sound Properties:**
 - Chapter 14, Sections 14.1–14.4, 14.6
 - Quick Quizzes 14.1, 14.2
 - Examples 14.1, 14.2, 14.4, 14.5
 - Active Figures 14.6, 14.11
 - Chapter Problems 7, 27
- **Interference/Beats:**
 - Chapter 14, Sections 14.7, 14.8, 14.11
 - Quick Quiz 14.7
 - Examples 14.6, 14.11
 - Active Figures 14.18, 14.25
 - Chapter Problems 37, 41, 57
Light

Skill Objectives: To understand mirrors and lenses, to calculate the angles of reflection, to use the index of refraction, and to find focal lengths.

Review Plan:

- **Reflection and Refraction:**
 - Chapter 22, Sections 22.1–22.4
 - Quick Quizzes 22.2–22.4
 - Examples 22.1–22.4
 - Active Figures 22.4, 22.6, 22.7
 - Chapter Problems 11, 17, 19, 25

- **Mirrors and Lenses:**
 - Chapter 23, Sections 23.1–23.6
 - Quick Quizzes 23.1, 23.2, 23.4–23.6
 - Examples 23.7, 23.8, 23.9
 - Active Figures 23.2, 23.16, 23.25
 - Chapter Problems 25, 31, 35, 39

Electrostatics

Skill Objectives: To understand and calculate the electric field, the electrostatic force, and the electric potential.

Review Plan:

- **Coulomb’s Law:**
 - Chapter 15, Sections 15.1–15.3
 - Quick Quiz 15.2
 - Examples 15.1–15.3
 - Active Figure 15.6
 - Chapter Problems 11

- **Electric Field:**
 - Chapter 15, Sections 15.4, 15.5
 - Quick Quizzes 15.3–15.6
 - Examples 15.4, 15.5
 - Active Figures 15.11, 15.16
 - Chapter Problems 19, 23, 27

- **Potential:**
 - Chapter 16, Sections 16.1–16.3
 - Quick Quizzes 16.1, 16.3–16.7
 - Examples 16.1, 16.4
 - Active Figure 16.7
 - Chapter Problems 7, 15

Circuits

Skill Objectives: To understand and calculate current, resistance, voltage, power, and energy and to use circuit analysis.

Review Plan:

- **Ohm’s Law:**
 - Chapter 17, Sections 17.1–17.4
 - Quick Quizzes 17.1, 17.3, 17.5
 - Example 17.1
 - Chapter Problem 15

- **Power and Energy:**
 - Chapter 17, Section 17.6
 - Quick Quizzes 17.7–17.9
 - Example 17.5
 - Active Figure 17.9
 - Chapter Problem 38

- **Circuits:**
 - Chapter 18, Sections 18.2, 18.3
 - Quick Quizzes 18.3, 18.5, 18.6
 - Examples 18.1–18.3
 - Active Figures 18.2, 18.6

Atoms

Skill Objectives: To calculate half-life and to understand decay processes and nuclear reactions.

Review Plan:

- **Atoms:**
 - Chapter 29, Sections 29.1, 29.2

- **Radioactive Decay:**
 - Chapter 29, Sections 29.3–29.5
 - Examples 29.2, 29.5
 - Active Figures 29.6, 29.7
 - Chapter Problems 15, 19, 25, 31

- **Nuclear Reactions:**
 - Chapter 29, Section 29.6
 - Quick Quiz 29.4
 - Example 29.6
 - Chapter Problems 35, 39
INTRODUCTION

The goal of physics is to provide an understanding of the physical world by developing theories based on experiments. A physical theory is essentially a guess, usually expressed mathematically, about how a given physical system works. The theory makes certain predictions about the physical system which can then be checked by observations and experiments. If the predictions turn out to correspond closely to what is actually observed, then the theory stands, although it remains provisional. No theory to date has given a complete description of all physical phenomena, even within a given subdiscipline of physics. Every theory is a work in progress.

The basic laws of physics involve such physical quantities as force, velocity, volume, and acceleration, all of which can be described in terms of more fundamental quantities. In mechanics, the three most fundamental quantities are length (L), mass (M), and time (T); all other physical quantities can be constructed from these three.

1.1 STANDARDS OF LENGTH, MASS, AND TIME

To communicate the result of a measurement of a certain physical quantity, a unit for the quantity must be defined. If our fundamental unit of length is defined to be 1.0 meter, for example, and someone familiar with our system of measurement reports that a wall is 2.0 meters high, we know that the height of the wall is twice the fundamental unit of length. Likewise, if our fundamental unit of mass is defined as 1.0 kilogram and we are told that a person has a mass of 75 kilograms, then that person has a mass 75 times as great as the fundamental unit of mass.

In 1960 an international committee agreed on a standard system of units for the fundamental quantities of science, called SI (Système International). Its units of length, mass, and time are the meter, kilogram, and second, respectively.

Length

In 1799 the legal standard of length in France became the meter, defined as one ten-millionth of the distance from the equator to the North Pole. Until 1960,
the official length of the meter was the distance between two lines on a specific bar of platinum-iridium alloy stored under controlled conditions. This standard was abandoned for several reasons, the principal one being that measurements of the separation between the lines are not precise enough. In 1960 the meter was defined as 1 650 763.73 wavelengths of orange-red light emitted from a krypton-86 lamp. In October 1983 this definition was abandoned also, and the meter was redefined as the distance traveled by light in vacuum during a time interval of 1/299 792 458 second. This latest definition establishes the speed of light at 299 792 458 meters per second.

Mass

The SI unit of mass, the kilogram, is defined as the mass of a specific platinum-iridium alloy cylinder kept at the International Bureau of Weights and Measures at Sèvres, France (similar to that shown in Fig. 1.1a). As we’ll see in Chapter 4, mass is a quantity used to measure the resistance to a change in the motion of an object. It’s more difficult to cause a change in the motion of an object with a large mass than an object with a small mass.

Time

Before 1960, the time standard was defined in terms of the average length of a solar day in the year 1900. (A solar day is the time between successive appearances of the Sun at the highest point it reaches in the sky each day.) The basic unit of time, the second, was defined to be \(\frac{1}{60} \times \frac{1}{60} \times \frac{1}{24} \) of the average solar day. In 1967 the second was redefined to take advantage of the high precision attainable with an atomic clock, which uses the characteristic frequency of the light emitted from the cesium-133 atom as its “reference clock.” The second is now defined as 9 192 631 700 times the period of oscillation of radiation from the cesium atom. The newest type of cesium atomic clock is shown in Figure 1.1b.

Approximate Values for Length, Mass, and Time Intervals

Approximate values of some lengths, masses, and time intervals are presented in Tables 1.1, 1.2, and 1.3, respectively. Note the wide ranges of values. Study these tables to get a feel for a kilogram of mass (this book has a mass of about 2 kilograms), a time interval of \(10^{10} \) seconds (one century is about \(3 \times 10^9 \) seconds), or two meters of length (the approximate height of a forward on a basketball
Appendix A reviews the notation for powers of 10, such as the expression of the number 50,000 in the form 5×10^4.

Systems of units commonly used in physics are the Système International, in which the units of length, mass, and time are the meter (m), kilogram (kg), and second (s); the cgs, or Gaussian, system, in which the units of length, mass, and time are the centimeter (cm), gram (g), and second; and the U.S. customary system, in which the units of length, mass, and time are the foot (ft), slug, and second. SI units are almost universally accepted in science and industry, and will be used throughout the book. Limited use will be made of Gaussian and U.S. customary units.

Some of the most frequently used “metric” (SI and cgs) prefixes representing powers of 10 and their abbreviations are listed in Table 1.4. For example, 10^{-3} m is

Table 1.1

<table>
<thead>
<tr>
<th>Approximate Values of Some Measured Lengths</th>
<th>Length (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Distance from Earth to most remote known quasar</td>
<td>1×10^{26}</td>
</tr>
<tr>
<td>Distance from Earth to most remote normal galaxies</td>
<td>4×10^{25}</td>
</tr>
<tr>
<td>Distance from Earth to nearest large galaxy (M31, the Andromeda galaxy)</td>
<td>2×10^{22}</td>
</tr>
<tr>
<td>Distance from Earth to nearest star (Proxima Centauri)</td>
<td>4×10^{16}</td>
</tr>
<tr>
<td>One light year</td>
<td>9×10^{15}</td>
</tr>
<tr>
<td>Mean orbit radius of Earth about Sun</td>
<td>2×10^{11}</td>
</tr>
<tr>
<td>Mean distance from Earth to Moon</td>
<td>4×10^{8}</td>
</tr>
<tr>
<td>Mean radius of Earth</td>
<td>6×10^6</td>
</tr>
<tr>
<td>Typical altitude of satellite orbiting Earth</td>
<td>2×10^5</td>
</tr>
<tr>
<td>Length of football field</td>
<td>5×10^{-3}</td>
</tr>
<tr>
<td>Length of housefly</td>
<td>1×10^{-4}</td>
</tr>
<tr>
<td>Size of smallest dust particles</td>
<td>1×10^{-4}</td>
</tr>
<tr>
<td>Size of cells in most living organisms</td>
<td>1×10^{-5}</td>
</tr>
<tr>
<td>Diameter of hydrogen atom</td>
<td>1×10^{-10}</td>
</tr>
<tr>
<td>Diameter of atomic nucleus</td>
<td>1×10^{-14}</td>
</tr>
<tr>
<td>Diameter of proton</td>
<td>1×10^{-15}</td>
</tr>
</tbody>
</table>

Table 1.2

<table>
<thead>
<tr>
<th>Approximate Values of Some Masses</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mass (kg)</td>
</tr>
<tr>
<td>Observable Universe</td>
</tr>
<tr>
<td>Milky Way galaxy</td>
</tr>
<tr>
<td>Sun</td>
</tr>
<tr>
<td>Earth</td>
</tr>
<tr>
<td>Moon</td>
</tr>
<tr>
<td>Shark</td>
</tr>
<tr>
<td>Human</td>
</tr>
<tr>
<td>Frog</td>
</tr>
<tr>
<td>Mosquito</td>
</tr>
<tr>
<td>Bacterium</td>
</tr>
<tr>
<td>Hydrogen atom</td>
</tr>
<tr>
<td>Electron</td>
</tr>
</tbody>
</table>

Table 1.3

<table>
<thead>
<tr>
<th>Approximate Values of Some Time Intervals</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time Interval (s)</td>
</tr>
<tr>
<td>Age of Universe</td>
</tr>
<tr>
<td>Age of Earth</td>
</tr>
<tr>
<td>Average age of college student</td>
</tr>
<tr>
<td>One year</td>
</tr>
<tr>
<td>One day</td>
</tr>
<tr>
<td>Time between normal heartbeats</td>
</tr>
<tr>
<td>Period of audible sound waves</td>
</tr>
<tr>
<td>Period of typical radio waves</td>
</tr>
<tr>
<td>Period of vibration of atom in solid</td>
</tr>
<tr>
<td>Period of visible light waves</td>
</tr>
<tr>
<td>Duration of nuclear collision</td>
</tr>
<tr>
<td>Time required for light to travel across a proton</td>
</tr>
</tbody>
</table>

A period is defined as the time required for one complete vibration.
equivalent to 1 millimeter (mm), and \(10^3\) m is 1 kilometer (km). Likewise, 1 kg is equal to \(10^3\) g, and 1 megavolt (MV) is \(10^6\) volts (V).

1.2 THE BUILDING BLOCKS OF MATTER

A 1-kg (≈ 2.2 lb) cube of solid gold has a length of about 3.73 cm (≈ 1.5 in.) on a side. If the cube is cut in half, the two resulting pieces retain their chemical identity as solid gold. But what happens if the pieces of the cube are cut again and again, indefinitely? The Greek philosophers Leucippus and Democritus couldn’t accept the idea that such cutting could go on forever. They speculated that the process ultimately would end when it produced a particle that could no longer be cut. In Greek, *atomos* means “not sliceable.” From this term comes our English word *atom*, once believed to be the smallest particle of matter but since found to be a composite of more elementary particles.

The atom can be naively visualized as a miniature Solar System, with a dense, positively charged nucleus occupying the position of the Sun and negatively charged electrons orbiting like planets. This model of the atom, first developed by the great Danish physicist Niels Bohr nearly a century ago, led to the understanding of certain properties of the simpler atoms such as hydrogen but failed to explain many fine details of atomic structure.

Notice the size of a hydrogen atom, listed in Table 1.1, and the size of a proton—the nucleus of a hydrogen atom—one hundred thousand times smaller. If the proton were the size of a Ping Pong ball, the electron would be a tiny speck about the size of a bacterium, orbiting the proton a kilometer away! Other atoms are similarly constructed. So there is a surprising amount of empty space in ordinary matter.

After the discovery of the nucleus in the early 1900s, questions arose concerning its structure. The exact composition of the nucleus hasn’t been defined completely even today, but by the early 1930s scientists determined that two basic entities—protons and neutrons—occupy the nucleus. The *proton* is nature’s fundamental carrier of positive charge, equal in magnitude but opposite in sign to the charge on the electron. The number of protons in a nucleus determines what the element is. For instance, a nucleus containing only one proton is the nucleus of an atom of hydrogen, regardless of how many neutrons may be present. Extra neutrons correspond to different isotopes of hydrogen—deuterium and tritium—which react chemically in exactly the same way as hydrogen, but are more massive. An atom having two protons in its nucleus, similarly, is always helium, although again, differing numbers of neutrons are possible.

The existence of *neutrons* was verified conclusively in 1932. A neutron has no charge and has a mass about equal to that of a proton. One of its primary purposes is to act as a “glue” to hold the nucleus together. If neutrons were not present, the repulsive electrical force between the positively charged protons would cause the nucleus to fly apart.

The division doesn’t stop here; it turns out that protons, neutrons, and a zoo of other exotic particles are now thought to be composed of six particles called *quarks* (rhymes with “forks,” though some rhyme it with “sharks”). These particles have been given the names *up, down, strange, charm, bottom, and top*. The up, charm, and top quarks each carry a charge equal to \(+\frac{2}{3}\) that of the proton, whereas the down, strange, and bottom quarks each carry a charge equal to \(-\frac{1}{3}\) the proton charge. The proton consists of two up quarks and one down quark (see Fig. 1.2), giving the correct charge for the proton, \(+1\). The neutron is composed of two down quarks and one up quark and has a net charge of zero.

The up and down quarks are sufficient to describe all normal matter, so the existence of the other four quarks, indirectly observed in high-energy experiments, is something of a mystery. It’s also possible that quarks themselves have internal
structure. Many physicists believe that the most fundamental particles may be tiny loops of vibrating string.

1.3 DIMENSIONAL ANALYSIS

In physics the word dimension denotes the physical nature of a quantity. The distance between two points, for example, can be measured in feet, meters, or furlongs, which are different ways of expressing the dimension of length.

The symbols used in this section to specify the dimensions of length, mass, and time are L, M, and T, respectively. Brackets [] will often be used to denote the dimensions of a physical quantity. In this notation, for example, the dimensions of velocity \(v \) are written \([v] = L/T\), and the dimensions of area \(A \) are \([A] = L^2\). The dimensions of area, volume, velocity, and acceleration are listed in Table 1.5, along with their units in the three common systems. The dimensions of other quantities, such as force and energy, will be described later as they are introduced.

In physics it’s often necessary either to derive a mathematical expression or equation or to check its correctness. A useful procedure for doing this is called dimensional analysis, which makes use of the fact that dimensions can be treated as algebraic quantities. Such quantities can be added or subtracted only if they have the same dimensions. It follows that the terms on the opposite sides of an equation must have the same dimensions. If they don’t, the equation is wrong. If they do, the equation is probably correct, except for a possible constant factor.

To illustrate this procedure, suppose we wish to derive a formula for the distance \(x \) traveled by a car in a time \(t \) if the car starts from rest and moves with constant acceleration \(a \). The quantity \(x \) has the dimension length: \([x] = L\). Time \(t \), of course, has dimension \([t] = T\). Acceleration is the change in velocity \(v \) with time. Because \(v \) has dimensions of length per unit time, or \([v] = L/T\), acceleration must have dimensions \([a] = L/T^2\). We organize this information in the form of an equation:

\[
[a] = \frac{[v]}{[t]} = \frac{L/T}{T} = \frac{L}{T^2} = \frac{[x]}{[t]^2}
\]

Looking at the left- and right-hand sides of this equation, we might now guess that

\[
a = \frac{x}{t^2} \quad \rightarrow \quad x = at^2
\]

This expression is not quite correct, however, because there’s a constant of proportionality—a simple numerical factor—that can’t be determined solely through dimensional analysis. As will be seen in Chapter 2, it turns out that the correct expression is \(x = \frac{1}{2}at^2 \).

When we work algebraically with physical quantities, dimensional analysis allows us to check for errors in calculation, which often show up as discrepancies in units. If, for example, the left-hand side of an equation is in meters and the right-hand side is in meters per second, we know immediately that we’ve made an error.

TABLE 1.5

Dimensions and Some Units of Area, Volume, Velocity, and Acceleration

<table>
<thead>
<tr>
<th>System</th>
<th>Area (L(^2))</th>
<th>Volume (L(^3))</th>
<th>Velocity (L/T)</th>
<th>Acceleration (L/T(^2))</th>
</tr>
</thead>
<tbody>
<tr>
<td>SI</td>
<td>m(^2)</td>
<td>m(^3)</td>
<td>m/s</td>
<td>m/s(^2)</td>
</tr>
<tr>
<td>cgs</td>
<td>cm(^2)</td>
<td>cm(^3)</td>
<td>cm/s</td>
<td>cm/s(^2)</td>
</tr>
<tr>
<td>U.S. customary</td>
<td>ft(^2)</td>
<td>ft(^3)</td>
<td>ft/s</td>
<td>ft/s(^2)</td>
</tr>
</tbody>
</table>
EXAMPLE 1.1 Analysis of an Equation

Goal Check an equation using dimensional analysis.

Problem Show that the expression \(v/v_0 + at \) is dimensionally correct, where \(v \) and \(v_0 \) represent velocities, \(a \) is acceleration, and \(t \) is a time interval.

Strategy Analyze each term, finding its dimensions, and then check to see if all the terms agree with each other.

Solution
Find dimensions for \(v \) and \(v_0 \):
\[
[v] = \frac{L}{T}, \\
[v_0] = \frac{L}{T}
\]

Find the dimensions of \(at \):
\[
[at] = \frac{L}{T^2} (T) = \frac{L}{T}
\]

Remarks All the terms agree, so the equation is dimensionally correct.

QUESTION 1.1
True or False. An equation that is dimensionally correct is always physically correct, up to a constant of proportionality.

EXERCISE 1.1
Determine whether the equation \(x = vt \) is dimensionally correct. If not, provide a correct expression, up to an overall constant of proportionality.

Answer Incorrect. The expression \(x = vt \) is dimensionally correct.

EXAMPLE 1.2 Find an Equation

Goal Derive an equation by using dimensional analysis.

Problem Find a relationship between a constant acceleration \(a \), speed \(v \), and distance \(r \) from the origin for a particle traveling in a circle.

Strategy Start with the term having the most dimensionality, \(a \). Find its dimensions, and then rewrite those dimensions in terms of the dimensions of \(v \) and \(r \). The dimensions of time will have to be eliminated with \(v \), because that's the only quantity in which the dimension of time appears.

Solution
Write down the dimensions of \(a \):
\[
[a] = \frac{L}{T^2}
\]

Solve the dimensions of speed for \(T \):
\[
[v] = \frac{L}{T} \quad \rightarrow \quad T = \frac{L}{[v]}
\]

Substitute the expression for \(T \) into the equation for \([a]\):
\[
[a] = \frac{L}{T^2} = \frac{L}{(L/[v])^2} = \frac{[v]^2}{L}
\]

Substitute \(L = [r] \), and guess at the equation:
\[
[a] = \frac{[v]^2}{[r]} \quad \rightarrow \quad a = \frac{v^2}{r}
\]

Remarks This is the correct equation for centripetal acceleration—acceleration towards the center of motion—to be discussed in Chapter 7. In this case it isn’t necessary to introduce a numerical factor. Such a factor is often displayed explicitly as a constant \(k \) in front of the right-hand side—for example, \(a = kv^2/r \). As it turns out, \(k = 1 \) gives the correct expression.
1.4 Uncertainty in Measurement and Significant Figures

Physics is a science in which mathematical laws are tested by experiment. No physical quantity can be determined with complete accuracy because our senses are physically limited, even when extended with microscopes, cyclotrons, and other gadgets.

Knowing the experimental uncertainties in any measurement is very important. Without this information, little can be said about the final measurement. Using a crude scale, for example, we might find that a gold nugget has a mass of 3 kilograms. A prospective client interested in purchasing the nugget would naturally want to know about the accuracy of the measurement, to ensure paying a fair price. He wouldn’t be happy to find that the measurement was good only to within a kilogram, because he might pay for three kilograms and get only two. Of course, he might get four kilograms for the price of three, but most people would be hesitant to gamble that an error would turn out in their favor.

Accuracy of measurement depends on the sensitivity of the apparatus, the skill of the person carrying out the measurement, and the number of times the measurement is repeated. There are many ways of handling uncertainties, and here we’ll develop a basic and reliable method of keeping track of them in the measurement itself and in subsequent calculations.

Suppose that in a laboratory experiment we measure the area of a rectangular plate with a meter stick. Let’s assume that the accuracy to which we can measure a particular dimension of the plate is \(\pm 0.1 \) cm. If the length of the plate is measured to be 16.3 cm, we can claim only that it lies somewhere between 16.2 cm and 16.4 cm. In this case, we say that the measured value has three significant figures. Likewise, if the plate’s width is measured to be 4.5 cm, the actual value lies between 4.4 cm and 4.6 cm. This measured value has only two significant figures. We could write the measured values as \(16.3 \pm 0.1 \) cm and \(4.5 \pm 0.1 \) cm. In general, a significant figure is a reliably known digit (other than a zero used to locate a decimal point).

Suppose we would like to find the area of the plate by multiplying the two measured values together. The final value can range between \((16.3 - 0.1 \text{ cm})(4.5 - 0.1 \text{ cm}) = (16.2 \text{ cm})(4.4 \text{ cm}) = 71.28 \text{ cm}^2\) and \((16.3 + 0.1 \text{ cm})(4.5 + 0.1 \text{ cm}) = (16.4 \text{ cm})(4.6 \text{ cm}) = 75.44 \text{ cm}^2\). Claiming to know anything about the hundredths place, or even the tenths place, doesn’t make any sense, because it’s clear we can’t even be certain of the units place, whether it’s the 1 in 71, the 5 in 75, or somewhere in between. The tenths and the hundredths places are clearly not significant. We have some information about the units place, so that number is significant. Multiplying the numbers at the middle of the uncertainty ranges gives \((16.3 \text{ cm})(4.5 \text{ cm}) = 73.35 \text{ cm}^2\), which is also in the middle of the area’s uncertainty range. Because the hundredths and tenths are not significant, we drop them and take the answer to be 73 cm\(^2\), with an uncertainty of \(\pm 2 \text{ cm}^2\). Note that the answer has two significant figures, the same number of figures as the least accurately known quantity being multiplied, the 4.5-cm width.

QUESTION 1.2
True or False: Replacing \(v \) by \(r/t \) in the final answer also gives a dimensionally correct equation.

EXERCISE 1.2
In physics, energy \(E \) carries dimensions of mass times length squared divided by time squared. Use dimensional analysis to derive a relationship for energy in terms of mass \(m \) and speed \(v \), up to a constant of proportionality. Set the speed equal to \(c \), the speed of light, and the constant of proportionality equal to 1 to get the most famous equation in physics.

Answer \(E = kmv^2 \) \(\rightarrow \) \(E = mc^2 \) when \(k = 1 \) and \(v = c \).
There are two useful rules of thumb for determining the number of significant figures. The first, concerning multiplication and division, is as follows: **In multiplying (dividing) two or more quantities, the number of significant figures in the final product (quotient) is the same as the number of significant figures in the least accurate of the factors being combined, where least accurate means having the lowest number of significant figures.**

To get the final number of significant figures, it’s usually necessary to do some rounding. If the last digit dropped is less than 5, simply drop the digit. If the last digit dropped is greater than or equal to 5, raise the last retained digit by one.

EXAMPLE 1.3 Installing a Carpet

Goal Apply the multiplication rule for significant figures.

Problem A carpet is to be installed in a room of length 12.71 m and width 3.46 m. Find the area of the room, retaining the proper number of significant figures.

Strategy Count the significant figures in each number. The smaller result is the number of significant figures in the answer.

Solution

Count significant figures:

- 12.71 m → 4 significant figures
- 3.46 m → 3 significant figures

Multiply the numbers, keeping only three digits:

\[12.71 \text{ m} \times 3.46 \text{ m} = 43.976 \text{ m}^2 \rightarrow 44.0 \text{ m}^2\]

Remarks In reducing 43.976 to three significant figures, we used our rounding rule, adding 1 to the 9, which made 10 and resulted in carrying 1 to the unit’s place.

QUESTION 1.3

What would the answer have been if the width were given as 3.460 m?

EXERCISE 1.3

Repeat this problem, but with a room measuring 9.72 m long by 5.3 m wide.

Answer 52 m²

TIP 1.2 Using Calculators

Calculators were designed by engineers to yield as many digits as the memory of the calculator chip permitted, so be sure to round the final answer down to the correct number of significant figures.

Zeros may or may not be significant figures. Zeros used to position the decimal point in such numbers as 0.03 and 0.007 5 are not significant (but are useful in avoiding errors). Hence, 0.03 has one significant figure, and 0.007 5 has two.

When zeros are placed after other digits in a whole number, there is a possibility of misinterpretation. For example, suppose the mass of an object is given as 1 500 g. This value is ambiguous, because we don’t know whether the last two zeros are being used to locate the decimal point or whether they represent significant figures in the measurement.

Using scientific notation to indicate the number of significant figures removes this ambiguity. In this case, we express the mass as $1.5 \times 10^3 \text{ g}$ if there are two significant figures in the measured value, $1.50 \times 10^3 \text{ g}$ if there are three significant figures, and $1.500 \times 10^3 \text{ g}$ if there are four. Likewise, $0.000 15$ is expressed in scientific notation as 1.5×10^{-4} if it has two significant figures or as 1.50×10^{-4} if it has three significant figures. The three zeros between the decimal point and the digit 1 in the number 0.000 15 are not counted as significant figures because they only locate the decimal point. In this book, most of the numerical examples and end-of-chapter problems will yield answers having two or three significant figures.
For addition and subtraction, it’s best to focus on the number of decimal places in the quantities involved rather than on the number of significant figures. When numbers are added (subtracted), the number of decimal places in the result should equal the smallest number of decimal places of any term in the sum (difference). For example, if we wish to compute 123 (zero decimal places) + 5.35 (two decimal places), the answer is 128 (zero decimal places) and not 128.35. If we compute the sum 1.000 1 (four decimal places) + 0.000 3 (four decimal places) = 1.000 4, the result has the correct number of decimal places, namely four. Observe that the rules for multiplying significant figures don’t work here because the answer has five significant figures even though one of the terms in the sum, 0.000 3, has only one significant figure. Likewise, if we perform the subtraction 1.002 − 0.998 = 0.004, the result has three decimal places because each term in the subtraction has three decimal places.

To show why this rule should hold, we return to the first example in which we added 123 and 5.35, and rewrite these numbers as 123.xxx and 5.35x. Digits written with an x are completely unknown and can be any digit from 0 to 9. Now we line up 123.xxx and 5.35x relative to the decimal point and perform the addition, using the rule that an unknown digit added to a known or unknown digit yields an unknown:

\[
\begin{align*}
123.xxx & \\
+ & 5.35x \\
\hline
128.xxx
\end{align*}
\]

The answer of 128.xxx means that we are justified only in keeping the number 128 because everything after the decimal point in the sum is actually unknown. The example shows that the controlling uncertainty is introduced into an addition or subtraction by the term with the smallest number of decimal places.

In performing any calculation, especially one involving a number of steps, there will always be slight discrepancies introduced by both the rounding process and the algebraic order in which steps are carried out. For example, consider 2.35 × 5.89/1.57. This computation can be performed in three different orders. First, we have 2.35 × 5.89 = 13.842, which rounds to 13.8, followed by 13.8/1.57 = 8.789 8, rounding to 8.79. Second, 5.89/1.57 = 3.751 6, which rounds to 3.75, resulting in 2.35 × 3.75 = 8.812 5, rounding to 8.81. Finally, 2.35/1.57 = 1.496 8 rounds to 1.50, and 1.50 × 5.89 = 8.835 rounds to 8.84. So three different algebraic orders, following the rules of rounding, lead to answers of 8.79, 8.81, and 8.84, respectively. Such minor discrepancies are to be expected, because the last significant digit is only one representative from a range of possible values, depending on experimental uncertainty. The discrepancies can be reduced by carrying one or more extra digits during the calculation. In our examples, however, intermediate results will be rounded off to the proper number of significant figures, and only those digits will be carried forward. In experimental work, more sophisticated techniques are used to determine the accuracy of an experimental result.

1.5 Conversion of Units

Sometimes it’s necessary to convert units from one system to another. Conversion factors between the SI and U.S. customary systems for units of length are as follows:

- 1 mile = 1 609 m = 1.609 km
- 1 m = 39.37 in. = 5.281 ft
- 1 ft = 0.304 8 m = 30.48 cm
- 1 in. = 0.025 4 m = 2.54 cm

A more extensive list of conversion factors can be found on the inside front cover of this book.

Units can be treated as algebraic quantities that can “cancel” each other. We can make a fraction with the conversion that will cancel the units we don’t want.
and multiply that fraction by the quantity in question. For example, suppose we want to convert 15.0 in. to centimeters. Because 1 in. = 2.54 cm, we find that

\[
15.0 \text{ in.} \times \left(\frac{2.54 \text{ cm}}{1.00 \text{ in.}} \right) = 38.1 \text{ cm}
\]

The next two examples show how to deal with problems involving more than one conversion and with powers.

EXAMPLE 1.4 Pull Over, Buddy!

Goal Convert units using several conversion factors.

Problem If a car is traveling at a speed of 28.0 m/s, is the driver exceeding the speed limit of 55.0 mi/h?

Strategy Meters must be converted to miles and seconds to hours, using the conversion factors listed on the inside front cover of the book. Here, three factors will be used.

Solution

Convert meters to miles:

\[
28.0 \text{ m/s} \times \left(\frac{1.00 \text{ mi}}{1609 \text{ m}} \right) = 1.74 \times 10^{-2} \text{ mi/s}
\]

Convert seconds to hours:

\[
1.74 \times 10^{-2} \text{ mi/s} = \left(1.74 \times 10^{-2} \frac{\text{mi}}{\text{s}} \right) \left(60.0 \frac{\text{s}}{\text{min}} \right) \left(60.0 \frac{\text{min}}{\text{h}} \right) = 62.6 \text{ mi/h}
\]

Remarks The driver should slow down because he’s exceeding the speed limit.

QUESTION 1.4

Repeat the conversion, using the relationship 1.00 m/s = 2.24 mi/h. Why is the answer slightly different?

EXERCISE 1.4

Convert 152 mi/h to m/s.

Answer 68.0 m/s

EXAMPLE 1.5 Press the Pedal to the Metal

Goal Convert a quantity featuring powers of a unit.

Problem The traffic light turns green, and the driver of a high-performance car slams the accelerator to the floor. The accelerometer registers 22.0 m/s². Convert this reading to km/min².

Strategy Here we need one factor to convert meters to kilometers and another two factors to convert seconds squared to minutes squared.

Solution

Multiply by the three factors:

\[
\frac{22.0 \text{ m}}{1.00 \text{ s}^2} \left(\frac{1.00 \text{ km}}{1.00 \times 10^3 \text{ m}} \right) \left(\frac{60.0 \text{ s}}{1.00 \text{ min}} \right)^2 = 79.2 \frac{\text{km}}{\text{min}^2}
\]

Remarks Notice that in each conversion factor the numerator equals the denominator when units are taken into account. A common error in dealing with squares is to square the units inside the parentheses while forgetting to square the numbers!
1.6 ESTIMATES AND ORDER-OF-MAGNITUDE CALCULATIONS

Getting an exact answer to a calculation may often be difficult or impossible, either for mathematical reasons or because limited information is available. In these cases, estimates can yield useful approximate answers that can determine whether a more precise calculation is necessary. Estimates also serve as a partial check if the exact calculations are actually carried out. If a large answer is expected but a small exact answer is obtained, there’s an error somewhere.

For many problems, knowing the approximate value of a quantity—within a factor of 10 or so—is sufficient. This approximate value is called an order-of-magnitude estimate, and requires finding the power of 10 that is closest to the actual value of the quantity. For example, 75 kg \(\sim 10^2\) kg, where the symbol \(\sim\) means “is on the order of” or “is approximately.” Increasing a quantity by three orders of magnitude means that its value increases by a factor of \(10^3 = 1000\).

Occasionally the process of making such estimates results in fairly crude answers, but answers ten times or more too large or small are still useful. For example, suppose you’re interested in how many people have contracted a certain disease. Any estimates under ten thousand are small compared with Earth’s total population, but a million or more would be alarming. So even relatively imprecise information can provide valuable guidance.

In developing these estimates, you can take considerable liberties with the numbers. For example, \(\pi \sim 1, 27 \sim 10,\) and \(65 \sim 100.\) To get a less crude estimate, it’s permissible to use slightly more accurate numbers (e.g., \(\pi \sim 3, 27 \sim 30, 65 \sim 70\)). Better accuracy can also be obtained by systematically underestimating as many numbers as you overestimate. Some quantities may be completely unknown, but it’s standard to make reasonable guesses, as the examples show.

EXAMPLE 1.6 Brain Cells Estimate

Goal Develop a simple estimate.

Problem Estimate the number of cells in the human brain.

Strategy Estimate the volume of a human brain and divide by the estimated volume of one cell. The brain is located in the upper portion of the head, with a volume that could be approximated by a cube \(\ell = 20\) cm on a side.

Solution

Estimate of the volume of a human brain:

\[V_{\text{brain}} = \ell^3 = (0.2\,\text{m})^3 = 8 \times 10^{-3}\,\text{m}^3 = 1 \times 10^{-2}\,\text{m}^3 \]

Estimate the volume of a cell:

\[V_{\text{cell}} = d^3 = (10 \times 10^{-6}\,\text{m})^3 = 1 \times 10^{-15}\,\text{m}^3 \]

Divide the volume of a brain by the volume of a cell:

\[\frac{V_{\text{brain}}}{V_{\text{cell}}} = \frac{0.01\,\text{m}^3}{1 \times 10^{-15}\,\text{m}^3} = 1 \times 10^{13}\,\text{cells} \]

Brain cells, consisting of about 10% neurons and 90% glia, vary greatly in size, with dimensions ranging from a few microns to a meter or so. As a guess, take \(d = 10\) microns as a typical dimension and consider a cell to be a cube with each side having that length.
Remarks Notice how little attention was paid to obtaining precise values. That’s the nature of an estimate.

QUESTION 1.6
Would 10^{12} cells also be a reasonable estimate? What about 10^9 cells? Explain.

EXERCISE 1.6
Estimate the total number of cells in the human body.

Answer 10^{14} (Answers may vary.)

EXAMPLE 1.7 Stack One-Dollar Bills to the Moon

Goal Estimate the number of stacked objects required to reach a given height.

Problem How many one-dollar bills, stacked one on top of the other, would reach the Moon?

Strategy The distance to the Moon is about 400,000 km. Guess at the number of dollar bills in a millimeter, and multiply the distance by this number, after converting to consistent units.

Solution We estimate that ten stacked bills form a layer of 1 mm. Convert mm to km:

\[
\frac{10 \text{ bills}}{1 \text{ mm}} \cdot \left(\frac{10^3 \text{ mm}}{1 \text{ m}}\right) \cdot \left(\frac{10^3 \text{ m}}{1 \text{ km}}\right) = \frac{10^7 \text{ bills}}{1 \text{ km}}
\]

Multiply this value by the approximate lunar distance:

\[
\# \text{ of dollar bills} \sim (4 \times 10^5 \text{ km}) \cdot \left(\frac{10^7 \text{ bills}}{1 \text{ km}}\right) = 4 \times 10^{12} \text{ bills}
\]

Remarks That’s the same order of magnitude as the U.S. national debt!

QUESTION 1.7
Based on the answer, about how many stacked pennies would reach the Moon?

EXERCISE 1.7
How many pieces of cardboard, typically found at the back of a bound pad of paper, would you have to stack up to match the height of the Washington monument, about 170 m tall?

Answer $\sim 10^5$ (Answers may vary.)

EXAMPLE 1.8 Number of Galaxies in the Universe

Goal Estimate a volume and a number density, and combine.

Problem Given that astronomers can see about 10 billion light years into space and that there are 14 galaxies in our local group, 2 million light years from the next local group, estimate the number of galaxies in the observable universe. (Note: One light year is the distance traveled by light in one year, about 9.5×10^{15} m.) (See Fig. 1.3.)

Strategy From the known information, we can estimate the number of galaxies per unit volume. The local group of 14 galaxies is contained in a sphere a million light years in radius, with the Andromeda group in a similar sphere, so there are about 10 galaxies within a volume of radius 1 million light years. Multiply that number density by the volume of the observable universe.

Solution Compute the approximate volume V_L of the local group of galaxies:

\[
V_L = \frac{4}{3} \pi r^3 \sim (10^6 \text{ ly})^3 = 10^{18} \text{ ly}^3
\]
1.7 Coordinate Systems

Many aspects of physics deal with locations in space, which require the definition of a coordinate system. A point on a line can be located with one coordinate, a point in a plane with two coordinates, and a point in space with three.

A coordinate system used to specify locations in space consists of the following:

- A fixed reference point \(O\), called the origin.
- A set of specified axes, or directions, with an appropriate scale and labels on the axes.
- Instructions on labeling a point in space relative to the origin and axes.

One convenient and commonly used coordinate system is the Cartesian coordinate system, sometimes called the rectangular coordinate system. Such a system in two dimensions is illustrated in Figure 1.4. An arbitrary point in this system is labeled with the coordinates \((x, y)\). For example, the point \(P\) in the figure has coordinates \((5, 3)\). If we start at the origin \(O\), we can reach \(P\) by moving 5 meters horizontally to the right and then 3 meters vertically upwards. In the same way, the point \(Q\) has coordinates \((-3, 4)\), which corresponds to going 3 meters horizontally to the left of the origin and 4 meters vertically upwards from there.

Positive \(x\) is usually selected as right of the origin and positive \(y\) upward from the origin, but in two dimensions this choice is largely a matter of taste. (In three dimensions, however, there are “right-handed” and “left-handed” coordinates, which lead to minus sign differences in certain operations. These will be addressed as needed.)

Remarks
Notice the approximate nature of the computation, which uses \(\frac{4\pi}{3} \approx 1\) on two occasions and \(14 - 10\) for the number of galaxies in the local group. This is completely justified: Using the actual numbers would be pointless, because the other assumptions in the problem—the size of the observable universe and the idea that the local galaxy density is representative of the density everywhere—are also very rough approximations. Further, there was nothing in the problem that required using volumes of spheres rather than volumes of cubes. Despite all these arbitrary choices, the answer still gives useful information, because it rules out a lot of reasonable possible answers. Before doing the calculation, a guess of a billion galaxies might have seemed plausible.

Example
Estimate the density of galaxies:

\[
\text{density of galaxies} = \frac{\# \text{ of galaxies}}{V_g} \\
\approx \frac{10 \text{ galaxies}}{10^{10} \text{ ly}^3} = 10^{-17} \frac{\text{galaxies}}{\text{ly}^3}
\]

Compute the approximate volume of the observable universe:

\[
V_u = \frac{4}{3} \pi r^3 \approx (10^{10} \text{ ly})^3 = 10^{30} \text{ ly}^3
\]

Multiply the density of galaxies by \(V_u\):

\[
\# \text{ of galaxies} \approx (\text{density of galaxies})V_u
\]

\[
= \left(10^{-17} \frac{\text{galaxies}}{\text{ly}^3}\right)(10^{30} \text{ ly}^3)
\]

\[
= 10^{13} \text{ galaxies}
\]

Remarks
Notice the approximate nature of the computation, which uses \(\frac{4\pi}{3} \approx 1\) on two occasions and \(14 - 10\) for the number of galaxies in the local group. This is completely justified: Using the actual numbers would be pointless, because the other assumptions in the problem—the size of the observable universe and the idea that the local galaxy density is representative of the density everywhere—are also very rough approximations. Further, there was nothing in the problem that required using volumes of spheres rather than volumes of cubes. Despite all these arbitrary choices, the answer still gives useful information, because it rules out a lot of reasonable possible answers. Before doing the calculation, a guess of a billion galaxies might have seemed plausible.

Example
Estimate the number of galaxies not dwarfs in the universe:

\[
\text{# of galaxies not dwarf galaxies} \approx (10^{12} \text{ galaxies})(1 - 0.07)
\]

\[
= 10^{12} \times 0.93 = 9.3 \times 10^{11}
\]

Example
Approximate the volume of the observable universe:

\[
V_u = \frac{4}{3} \pi r^3 \approx (10^{10} \text{ ly})^3 = 10^{30} \text{ ly}^3
\]

Multiply the density of galaxies by \(V_u\):

\[
\text{# of galaxies} \approx (\text{density of galaxies})V_u
\]

\[
= \left(10^{-17} \frac{\text{galaxies}}{\text{ly}^3}\right)(10^{30} \text{ ly}^3)
\]

\[
= 10^{13} \text{ galaxies}
\]

Remark
Notice the approximate nature of the computation, which uses \(\frac{4\pi}{3} \approx 1\) on two occasions and \(14 - 10\) for the number of galaxies in the local group. This is completely justified: Using the actual numbers would be pointless, because the other assumptions in the problem—the size of the observable universe and the idea that the local galaxy density is representative of the density everywhere—are also very rough approximations. Further, there was nothing in the problem that required using volumes of spheres rather than volumes of cubes. Despite all these arbitrary choices, the answer still gives useful information, because it rules out a lot of reasonable possible answers. Before doing the calculation, a guess of a billion galaxies might have seemed plausible.

Example
Estimate the number of galaxies not dwarfs in the universe:

\[
\# \text{ of galaxies} \approx (10^{12} \text{ galaxies})(1 - 0.07) = 9.3 \times 10^{11}
\]

Exercise
Given that the nearest star is about 4 light years away and that the galaxy is roughly a disk 100,000 light years across and a thousand light years thick, estimate the number of stars in the Milky Way galaxy.

Answer

\[
\approx 10^{12} \text{ stars (Estimates will vary. The actual answer is probably close to } 4 \times 10^{11} \text{ stars.)}
\]

Figure 1.4
Designation of points in a two-dimensional Cartesian coordinate system. Every point is labeled with coordinates \((x, y)\).
Sometimes it’s more convenient to locate a point in space by its plane polar coordinates \((r, \theta)\), as in Figure 1.5. In this coordinate system, an origin \(O\) and a reference line are selected as shown. A point is then specified by the distance \(r\) from the origin to the point and by the angle \(\theta\) between the reference line and a line drawn from the origin to the point. The standard reference line is usually selected to be the positive \(x\)-axis of a Cartesian coordinate system. The angle \(\theta\) is considered positive when measured counterclockwise from the reference line and negative when measured clockwise. For example, if a point is specified by the polar coordinates 3 m and 60°, we locate this point by moving out 3 m from the origin at an angle of 60° above (counterclockwise from) the reference line. A point specified by polar coordinates 3 m and \(-60^\circ\) is located 3 m out from the origin and 60° below (clockwise from) the reference line.

1.8 TRIGONOMETRY

Consider the right triangle shown in Active Figure 1.6, where side \(y\) is opposite the angle \(\theta\), side \(x\) is adjacent to the angle \(\theta\), and side \(r\) is the hypotenuse of the triangle. The basic trigonometric functions defined by such a triangle are the ratios of the lengths of the sides of the triangle. These relationships are called the sine (sin), cosine (cos), and tangent (tan) functions. In terms of \(\theta\), the basic trigonometric functions are as follows:

\[
\sin \theta = \frac{\text{opposite}}{\text{hypotenuse}} = \frac{y}{r} \\
\cos \theta = \frac{\text{adjacent}}{\text{hypotenuse}} = \frac{x}{r} \\
\tan \theta = \frac{\text{opposite}}{\text{adjacent}} = \frac{y}{x}
\]

For example, if the angle \(\theta\) is equal to 30°, then the ratio of \(y\) to \(r\) is always 0.50; that is, \(\sin 30^\circ = 0.50\). Note that the sine, cosine, and tangent functions are quantities without units because each represents the ratio of two lengths.

Another important relationship, called the **Pythagorean theorem**, exists between the lengths of the sides of a right triangle:

\[
r^2 = x^2 + y^2
\]

Finally, it will often be necessary to find the values of inverse relationships. For example, suppose you know that the sine of an angle is 0.866, but you need to know the value of the angle itself. The inverse sine function may be expressed as \(\sin^{-1}\) (0.866), which is a shorthand way of asking the question “What angle has a sine of 0.866?” Punching a couple of buttons on your calculator reveals that this angle is 60.0°. Try it for yourself and show that \(\tan^{-1} (0.400) = 21.8^\circ\). Be sure that your calculator is set for degrees and not radians. In addition, the inverse tangent function can return only values between \(-90^\circ\) and \(+90^\circ\), so when an angle is in the second or third quadrant, it’s necessary to add 180° to the answer in the calculator window.

The definitions of the trigonometric functions and the inverse trigonometric functions, as well as the Pythagorean theorem, can be applied to any right triangle, regardless of whether its sides correspond to \(x\)- and \(y\)-coordinates. These results from trigonometry are useful in converting from rectangular coordinates to polar coordinates, or vice versa, as the next example shows.

1. Many people use the mnemonic **SOHCAHTOA** to remember the basic trigonometric formulas: Sine = Opposite/Hypotenuse, Cosine = Adjacent/Hypotenuse, and Tangent = Opposite/Adjacent. (Thanks go to Professor Don Chodrow for pointing this out.)
EXAMPLE 1.9 Cartesian and Polar Coordinates

Goal Understand how to convert from plane rectangular coordinates to plane polar coordinates and vice versa.

Problem (a) The Cartesian coordinates of a point in the xy-plane are \((x, y) = (-3.50 \text{ m}, -2.50 \text{ m})\), as shown in Active Figure 1.7. Find the polar coordinates of this point. (b) Convert \((r, \theta) = (5.00 \text{ m}, 37.0^\circ)\) to rectangular coordinates.

Strategy Apply the trigonometric functions and their inverses, together with the Pythagorean theorem.

Solution
(a) Cartesian to Polar

Take the square root of both sides of Equation 1.2 to find the radial coordinate:

\[
r = \sqrt{x^2 + y^2} = \sqrt{(-3.50 \text{ m})^2 + (-2.50 \text{ m})^2} = 4.30 \text{ m}
\]

Use Equation 1.1 for the tangent function to find the angle with the inverse tangent, adding 180° because the angle is actually in third quadrant:

\[
\theta = \tan^{-1}\left(\frac{y}{x}\right) = \tan^{-1}\left(\frac{-2.50 \text{ m}}{-3.50 \text{ m}}\right) = 35.5^\circ + 180^\circ = 216^\circ
\]

(b) Polar to Cartesian

Use the trigonometric definitions, Equation 1.1.

\[
x = r \cos \theta = (5.00 \text{ m}) \cos 37.0^\circ = 3.99 \text{ m}
\]

\[
y = r \sin \theta = (5.00 \text{ m}) \sin 37.0^\circ = 3.01 \text{ m}
\]

Remarks When we take up vectors in two dimensions in Chapter 3, we will routinely use a similar process to find the direction and magnitude of a given vector from its components, or, conversely, to find the components from the vector’s magnitude and direction.

QUESTION 1.9 Starting with the answers to part (b), work backwards to recover the given radius and angle. Why are there slight differences from the original quantities?

EXERCISE 1.9 (a) Find the polar coordinates corresponding to \((x, y) = (3.25 \text{ m}, 1.50 \text{ m})\). (b) Find the Cartesian coordinates corresponding to \((r, \theta) = (4.00 \text{ m}, 53.0^\circ)\)

Answers (a) \((r, \theta) = (3.58 \text{ m}, 155^\circ)\) (b) \((x, y) = (2.41 \text{ m}, 3.19 \text{ m})\)

EXAMPLE 1.10 How High Is the Building?

Goal Apply basic results of trigonometry.

Problem A person measures the height of a building by walking out a distance of 46.0 m from its base and shining a flashlight beam toward the top. When the beam is elevated at an angle of 39.0° with respect to the horizontal, as shown in Figure 1.8, the beam just strikes the top of the building. Find the height of the building and the distance the flashlight beam has to travel before it strikes the top of the building.

Strategy Refer to the right triangle shown in the figure. We know the angle, 39.0°, and the length of the side adjacent to it. Because the height of the building is the side opposite the angle, we can use the tangent function. With the adjacent and opposite sides known, we can then find the hypotenuse with the Pythagorean theorem.
1.9 PROBLEM-SOLVING STRATEGY

Most courses in general physics require the student to learn the skills used in solving problems, and examinations usually include problems that test such skills. This brief section presents some useful suggestions that will help increase your success in solving problems. An organized approach to problem solving will also enhance your understanding of physical concepts and reduce exam stress. Throughout the book, there will be a number of sections labeled “Problem-Solving Strategy,” many of them just a specializing of the list given below (and illustrated in Fig. 1.9).

General Problem-Solving Strategy

1. **Read** the problem carefully at least twice. Be sure you understand the nature of the problem before proceeding further.
2. **Draw** a diagram while rereading the problem.
3. **Label** all physical quantities in the diagram, using letters that remind you what the quantity is (e.g., \(m \) for mass). Choose a coordinate system and label it.
4. **Identify** physical principles, the knowns and unknowns, and list them. Put circles around the unknowns.
5. **Equations**, the relationships between the labeled physical quantities, should be written down next. Naturally, the selected equations should be consistent with the physical principles identified in the previous step.
6. **Solve** the set of equations for the unknown quantities in terms of the known. Do this algebraically, without substituting values until the next step, except where terms are zero.
7. **Substitute** the known values, together with their units. Obtain a numerical value with units for each unknown.
8. **Check** your answer. Do the units match? Is the answer reasonable? Does the plus or minus sign make sense? Is your answer consistent with an order of magnitude estimate?

This same procedure, with minor variations, should be followed throughout the course. The first three steps are extremely important, because they get you men-

Solution

Use the tangent of the given angle:

\[\tan 39.0^\circ = \frac{\text{height}}{46.0 \text{ m}} \]

Solve for the height:

\[\text{Height} = (\tan 39.0^\circ)(46.0 \text{ m}) = (0.810)(46.0 \text{ m}) = 37.3 \text{ m} \]

Find the hypotenuse of the triangle:

\[r = \sqrt{x^2 + y^2} = \sqrt{(37.3 \text{ m})^2 + (46.0 \text{ m})^2} = 59.2 \text{ m} \]

Remarks

In a later chapter, right-triangle trigonometry is often used when working with vectors.

QUESTION 1.10

Could the distance traveled by the light beam be found without using the Pythagorean Theorem? How?

EXERCISE 1.10

While standing atop a building 50.0 m tall, you spot a friend standing on a street corner. Using a protractor and dangling a plumb bob, you find that the angle between the horizontal and the direction to the spot on the sidewalk where your friend is standing is 25.0°. Your eyes are located 1.75 m above the top of the building. How far away from the foot of the building is your friend?

Answer

111 m

FIGURE 1.9 A guide to problem solving.
tally oriented. Identifying the proper concepts and physical principles assists you in choosing the correct equations. The equations themselves are essential, because when you understand them, you also understand the relationships between the physical quantities. This understanding comes through a lot of daily practice.

Equations are the tools of physics: To solve problems, you have to have them at hand, like a plumber and his wrenches. Know the equations, and understand what they mean and how to use them. Just as you can’t have a conversation without knowing the local language, you can’t solve physics problems without knowing and understanding the equations. This understanding grows as you study and apply the concepts and the equations relating them.

Carrying through the algebra for as long as possible, substituting numbers only at the end, is also important, because it helps you think in terms of the physical quantities involved, not merely the numbers that represent them. Many beginning physics students are eager to substitute, but once numbers are substituted it’s harder to understand relationships and easier to make mistakes.

The physical layout and organization of your work will make the final product more understandable and easier to follow. Although physics is a challenging discipline, your chances of success are excellent if you maintain a positive attitude and keep trying.

EXAMPLE 1.11 A Round Trip by Air

Goal Illustrate the Problem-Solving Strategy.

Problem An airplane travels 4.50×10^2 km due east and then travels an unknown distance due north. Finally, it returns to its starting point by traveling a distance of 525 km. How far did the airplane travel in the northerly direction?

Strategy We’ve finished reading the problem (step 1), and have drawn a diagram (step 2) in Figure 1.10 and labeled it (step 3). From the diagram, we recognize a right triangle and identify (step 4) the principle involved: the Pythagorean theorem. Side y is the unknown quantity, and the other sides are known.

Solution

Write the Pythagorean theorem (step 5):

$$r^2 = x^2 + y^2$$

Solve symbolically for y (step 6):

$$y^2 = r^2 - x^2 \quad \rightarrow \quad y = \sqrt{r^2 - x^2}$$

Substitute the numbers, with units (step 7):

$$y = \sqrt{(525 \text{ km})^2 - (4.50 \times 10^2 \text{ km})^2} = 270 \text{ km}$$

Remarks Note that the negative solution has been disregarded, because it’s not physically meaningful. In checking (step 8), note that the units are correct and that an approximate answer can be obtained by using the easier quantities, 500 km and 400 km. Doing so gives an answer of 300 km, which is approximately the same as our calculated answer of 270 km.

QUESTION 1.11

What is the answer if both the distance traveled due east and the direct return distance are both doubled?

EXERCISE 1.11

A plane flies 345 km due south, then turns and flies 615 km at a heading 45.0° north of east, until it’s due east of its starting point. If the plane now turns and heads for home, how far will it have to go?

Answer 509 km
SUMMARY

1.1 Standards of Length, Mass, and Time
The physical quantities in the study of mechanics can be expressed in terms of three fundamental quantities: length, mass, and time, which have the SI units meters (m), kilograms (kg), and seconds (s), respectively.

1.2 The Building Blocks of Matter
Matter is made of atoms, which in turn are made up of a relatively small nucleus of protons and neutrons within a cloud of electrons. Protons and neutrons are composed of still smaller particles, called quarks.

1.3 Dimensional Analysis
Dimensional analysis can be used to check equations and to assist in deriving them. When the dimensions on both sides of the equation agree, the equation is often correct up to a numerical factor. When the dimensions don’t agree, the equation must be wrong.

1.4 Uncertainty in Measurement and Significant Figures
No physical quantity can be determined with complete accuracy. The concept of significant figures affords a basic method of handling these uncertainties. A significant figure is a reliably known digit, other than a zero, used to locate the decimal point. The two rules of significant figures are as follows:

1. When multiplying or dividing using two or more quantities, the result should have the same number of significant figures as the quantity having the fewest significant figures.
2. When quantities are added or subtracted, the number of decimal places in the result should be the same as in the quantity with the fewest decimal places.

Use of scientific notation can avoid ambiguity in significant figures. In rounding, if the last digit dropped is less than 5, simply drop the digit, otherwise raise the last retained digit by one.

1.5 Conversion of Units
Units in physics equations must always be consistent. In solving a physics problem, it’s best to start with consistent units, using the table of conversion factors on the inside front cover as necessary.

Converting units is a matter of multiplying the given quantity by a fraction, with one unit in the numerator and its equivalent in the other units in the denominator, arranged so the unwanted units in the given quantity are cancelled out in favor of the desired units.

1.6 Estimates and Order-of-Magnitude Calculations
Sometimes it’s useful to find an approximate answer to a question, either because the math is difficult or because information is incomplete. A quick estimate can also be used to check a more detailed calculation. In an order-of-magnitude calculation, each value is replaced by the closest power of ten, which sometimes must be guessed or estimated when the value is unknown. The computation is then carried out. For quick estimates involving known values, each value can first be rounded to one significant figure.

1.7 Coordinate Systems
The Cartesian coordinate system consists of two perpendicular axes, usually called the x-axis and y-axis, with each axis labeled with all numbers from negative infinity to positive infinity. Points are located by specifying the x- and y-values. Polar coordinates consist of a radial coordinate r which is the distance from the origin, and an angular coordinate θ which is the angular displacement from the positive x-axis.

1.8 Trigonometry
The three most basic trigonometric functions of a right triangle are the sine, cosine, and tangent, defined as follows:

\[
\sin \theta = \frac{\text{side opposite } \theta}{\text{hypotenuse}} = \frac{y}{r} \\
\cos \theta = \frac{\text{side adjacent to } \theta}{\text{hypotenuse}} = \frac{x}{r} \tag{1.1}
\]
\[
\tan \theta = \frac{\text{side opposite } \theta}{\text{side adjacent to } \theta} = \frac{y}{x}
\]

The Pythagorean theorem is an important relationship between the lengths of the sides of a right triangle:

\[
r^2 = x^2 + y^2 \tag{1.2}
\]

where \(r\) is the hypotenuse of the triangle and \(x\) and \(y\) are the other two sides.

MULTIPLE-CHOICE QUESTIONS

1. Newton’s second law of motion (Chapter 4) says that the mass of an object times its acceleration is equal to the net force on the object. Which of the following gives the correct units for force? (a) kg m/s² (b) kg m²/s² (c) kg/m s² (d) kg m²/s (e) none of these

2. Suppose two quantities, \(A\) and \(B\), have different dimensions. Determine which of the following arithmetic operations could be physically meaningful. (a) \(A + B\) (b) \(B - A\) (c) \(A - B\) (d) \(A/B\) (e) \(AB\)
3. A rectangular airstrip measures 32.30 m by 210 m, with the width measured more accurately than the length. Find the area, taking into account significant figures. (a) 6.783×10^3 m2 (b) 6.783×10^4 m2 (c) 6.78×10^3 m2 (d) 6.8×10^3 m2 (e) 7×10^3 m2

4. Use the rules for significant figures to find the answer to the addition problem $21.4 + 15 + 17.17 + 4.003$. (a) 57.573 (b) 57.57 (c) 57.6 (d) 58 (e) 60

5. The Roman cubitus is an ancient unit of measure equivalent to about 445 mm. Convert the 2.00-m-height of a basketball forward to cubiti. (a) 2.52 cubiti (b) 3.12 cubiti (c) 4.49 cubiti (d) 5.33 cubiti (e) none of these

6. A house is advertised as having 1,420 square feet under roof. What is the area of this house in square meters? (a) 115 m2 (b) 132 m2 (c) 176 m2 (d) 222 m2 (e) none of these

7. Which of the following is the best estimate for the mass of all the people living on Earth? (a) 2×10^8 kg (b) 1×10^9 kg (c) 2×10^9 kg (d) 3×10^1 kg (e) 4×10^{12} kg

8. Find the polar coordinates corresponding to a point located at $(-5.00, 12.00)$ in Cartesian coordinates. (a) $(13.0, -67.4°)$ (b) $(13.0, 113°)$ (c) $(14.2, -67.4°)$ (d) $(14.2, 113°)$ (e) $(10, -72.5°)$

9. At a horizontal distance of 45 m from a tree, the angle of elevation to the top of the tree is 26°. How tall is the tree? (a) 22 m (b) 31 m (c) 45 m (d) 16 m (e) 11 m

10. What is the approximate number of breaths a person takes over a period of 70 years? (a) 3×10^6 breaths (b) 3×10^8 breaths (c) 3×10^6 breaths (d) 3×10^8 breaths (e) 3×10^{10} breaths

11. Which of the following relationships is dimensionally consistent with an expression yielding a value for acceleration? Acceleration has the units of distance divided by time squared. In these equations, x is a distance, t is time, and v is velocity with units of distance divided by time. (a) v/t^2 (b) v/x^2 (c) v^2/t (d) v^2/x (e) none of these

CONCEPTUAL QUESTIONS

1. Estimate the order of magnitude of the length, in meters, of each of the following: (a) a mouse, (b) a pool cue, (c) a basketball court, (d) an elephant, (e) a city block.

2. What types of natural phenomena could serve as time standards?

3. Find the order of magnitude of your age in seconds.

4. An object with a mass of 1 kg weighs approximately 2 lb. Use this information to estimate the mass of the following objects: (a) a baseball; (b) your physics textbook; (c) a pickup truck.

5. (a) Estimate the number of times your heart beats in a month. (b) Estimate the number of human heartbeats in an average lifetime.

6. Estimate the number of atoms in 1 cm3 of a solid. (Note that the diameter of an atom is about 10^{-10}m.)

7. The height of a horse is sometimes given in units of “hands.” Why is this a poor standard of length?

8. How many of the lengths or time intervals given in Tables 1.2 and 1.3 could you verify, using only equipment found in a typical dormitory room?

9. If an equation is dimensionally correct, does this mean that the equation must be true? If an equation is not dimensionally correct, does this mean that the equation can’t be true?

10. Why is the metric system of units considered superior to most other systems of units?

11. How can an estimate be of value even when it is off by an order of magnitude? Explain and give an example.

PROBLEMS

The Problems for this chapter may be assigned online at WebAssign.

1. Δ 3 = straightforward, intermediate, challenging

- G = denotes guided problem
- E = denotes enhanced content problem
- SA = biomedical application
- Full = denotes full solution available in Student Solutions Manual/
 Study Guide

SECTION 1.3 DIMENSIONAL ANALYSIS

1. The period of a simple pendulum, defined as the time necessary for one complete oscillation, is measured in time units and is given by

$$T = 2\pi \sqrt{\frac{l}{g}}$$

where l is the length of the pendulum and g is the acceleration due to gravity, in units of length divided by time squared. Show that this equation is dimensionally consistent. (You might want to check the formula using your keys at the end of a string and a stopwatch.)

2. (a) Suppose that the displacement of an object is related to time according to the expression $x = Bt^2$. What are the dimensions of B? (b) A displacement is related to time as $x = A \sin(2\pi f t)$, where A and f are constants. Find the dimensions of A. (Hint: A trigonometric function appearing in an equation must be dimensionless.)
3. A shape that covers an area A and has a uniform height h has a volume \(V = Ah \). (a) Show that \(V = Ah \) is dimensionally correct. (b) Show that the volumes of a cylinder and of a rectangular box can be written in the form \(V = Ah \), identifying A in each case. (Note that A, sometimes called the “footprint” of the object, can have any shape and that the height can, in general, be replaced by the average thickness of the object.)

4. Each of the following equations was given by a student during an examination:
\[
\frac{1}{2}mv^2 = \frac{1}{2}mv_0^2 + \sqrt{\frac{mg}{2h} \quad v = v_0 + at^2 \quad ma = v^2}
\]
Do a dimensional analysis of each equation and explain why the equation can’t be correct.

5. Newton’s law of universal gravitation is represented by
\[
F = \frac{GMm}{r^2}
\]
where \(F \) is the gravitational force, \(M \) and \(m \) are masses, and \(r \) is a length. Force has the SI units kg · m/s². What are the SI units of the proportionality constant \(G \)?

6. Kinetic energy \(KE \) (Chapter 5) has dimensions kg · m²/s². It can be written in terms of the momentum \(p \) (Chapter 6) and mass \(m \) as
\[
KE = \frac{p^2}{2m}
\]
(a) Determine the proper units for momentum using dimensional analysis. (b) Refer to Problem 5. Given the units of force, write a simple equation relating a constant force \(F \) exerted on an object, an interval of time \(t \) during which the force is applied, and the resulting momentum of the object, \(p \).

SECTION 1.4 UNCERTAINTY IN MEASUREMENT
AND SIGNIFICANT FIGURES

7. A fisherman catches two striped bass. The smaller of the two has a measured length of 93.46 cm (two decimal places, four significant figures), and the larger fish has a measured length of 135.3 cm (one decimal place, four significant figures). What is the total length of fish caught for the day?

8. A rectangular plate has a length of \(21.3 \pm 0.2 \) cm and a width of \(9.8 \pm 0.1 \) cm. Calculate the area of the plate, including its uncertainty.

9. How many significant figures are there in (a) \(78.9 \pm 0.2 \), (b) \(3.788 \times 10^5 \), (c) \(2.46 \times 10^{-3} \), (d) 0.003 2

10. The speed of light is now defined to be \(2.997 \times 10^8 \) m/s. Express the speed of light to (a) three significant figures, (b) five significant figures, and (c) seven significant figures.

11. A block of gold has length 5.62 cm, width 6.35 cm, and height 2.78 cm. (a) Calculate the length times the width and round the answer to the appropriate number of significant figures. (b) Now multiply the rounded result of part (a) by the height and again round, obtaining the volume. (c) Repeat the process, first finding the width times the height, rounding it, and then obtaining the volume by multiplying by the length. (d) Explain why the answers don’t agree in the third significant figure.

12. The radius of a circle is measured to be \((10.5 \pm 0.2) \) m. Calculate (a) the area and (b) the circumference of the circle, and give the uncertainty in each value.

13. Carry out the following arithmetic operations: (a) the sum of the measured values 756, 37.2, 0.83, and 2.5; (b) the product 0.003 2 \times 356.3; (c) the product 5.620 \times \pi.

14. (a) Using your calculator, find, in scientific notation with appropriate rounding, (a) the value of \((2.437 \times 10^4) \times 3.21 \times 10^6 \) and (b) the value of \(3.14159 \times 10^5 / (27.01 \times 10^4) / 1234 \times 10^3 \).

SECTION 1.5 CONVERSION OF UNITS

15. A fathom is a unit of length, usually reserved for measuring the depth of water. A fathom is approximately 6 ft in length. Take the distance from Earth to the Moon to be 250,000 miles, and use the given approximation to find the distance in fathoms.

16. A furlong is an old British unit of length equal to 0.125 mi, derived from the length of a furrow in an acre of plowed land. A fortnight is a unit of time corresponding to two weeks, or 14 days and nights. Find the speed of light in megafurlongs per fortnight. (One megafurlong equals a million furlongs.)

17. A firkin is an old British unit of volume equal to 9 gallons. How many cubic meters are there in 6.00 firkins?

18. Find the height or length of these natural wonders in kilometers, meters, and centimeters: (a) The longest cave in the world is Mammoth Cave system in Central Kentucky, with a mapped length of 348 miles. (b) In the United States, the waterfall with the greatest single drop is Ribbon Falls in California, which drops 1,612 ft. (c) At 20,320 feet, Mount McKinley in Alaska is America’s highest mountain. (d) The deepest canyon in the United States is King’s Canyon in California, with a depth of 8,200 ft.

19. A rectangular building lot measures 1.00 × 10² ft by 1.50 × 10² ft. Determine the area of this lot in square meters (m²).

20. Using the data in Table 1.3 and the appropriate conversion factors, find the age of Earth in years.

21. Using the data in Table 1.1 and the appropriate conversion factors, find the distance to the nearest star in feet.

22. Suppose your hair grows at the rate of 1/32 inch per day. Find the rate at which it grows in nanometers per second. Because the distance between atoms in a molecule is on the order of 0.1 nm, your answer suggests how rapidly atoms are assembled in this protein synthesis.

23. The speed of light is about 3.00 × 10⁸ m/s. Convert this figure to miles per hour.

24. A house is 50.0 ft long and 26 ft wide and has 8.0-ft-high ceilings. What is the volume of the interior of the house in cubic meters and in cubic centimeters?

25. The amount of water in reservoirs is often measured in acre-ft. One acre-ft is a volume that covers an area of one acre to a depth of one foot. An acre is 43,560 ft². Find the
A quart container of ice cream is to be made in the form of a cube. What should be the length of a side, in centimeters? (Use the conversion 1 gallon = 3.786 liters.)

SECTION 1.6 ESTIMATES AND ORDER-OF-MAGNITUDE CALCULATIONS

Note: In developing answers to the problems in this section, you should state your important assumptions, including the numerical values assigned to parameters used in the solution.

26. The base of a pyramid covers an area of 13.0 acres (1 acre = 43 560 ft²) and has a height of 481 ft (Fig. P1.26). If the volume of a pyramid is given by the expression \(V = \frac{bh}{3} \), where \(b \) is the area of the base and \(h \) is the height, find the volume of this pyramid in cubic meters.

27. A quart container of ice cream is to be made in the form of a cube. What should be the length of a side, in centimeters? (Use the conversion 1 gallon = 3.786 liters.)

SECTION 1.7 COORDINATE SYSTEMS

34. Bacteria and other prokaryotes are found deep underground, in water, and in the air. One micron (10⁻⁶ m) is a typical length scale associated with these microbes. (a) Estimate the total number of bacteria and other prokaryotes in the biosphere of the Earth. (b) Estimate the total mass of all such microbes. (c) Discuss the relative importance of humans and microbes to the ecology of planet Earth. Can Homo sapiens survive without them?

SECTION 1.8 TRIGONOMETRY

35. A point is located in a polar coordinate system by the coordinates \(r = 2.5 \, \text{m} \) and \(\theta = 55° \). Find the \(x \) - and \(y \) -coordinates of this point, assuming that the two coordinate systems have the same origin.

36. A certain corner of a room is selected as the origin of a rectangular coordinate system. If a fly is crawling on an adjacent wall at a point having coordinates (2.0, 1.0), where the units are meters, what is the distance of the fly from the corner of the room?

37. Express the location of the fly in Problem 36 in polar coordinates.

38. Two points in a rectangular coordinate system have the coordinates (5.0, 3.0) and (−3.0, 4.0), where the units are centimeters. Determine the distance between these points.

39. Two points are given in polar coordinates by \((r_1, \theta_1) = (2.00 \, \text{m}, 50.0°) \) and \((r_2, \theta_2) = (5.00 \, \text{m}, −50.0°) \), respectively. What is the distance between them?

40. Given points \((r_1, \theta_1) \) and \((r_2, \theta_2) \) in polar coordinates, obtain a general formula for the distance between them. Simplify it as much as possible using the identity \(\cos^2 \theta + \sin^2 \theta = 1 \). Hint: Write the expressions for the two points in Cartesian coordinates and substitute into the usual distance formula.

Problems

21. An automobile tire is rated to last for 50 000 miles. Estimate the number of revolutions the tire will make in its lifetime.
at the edge of the pool and uses a protractor to gauge the angle of elevation at the bottom of the fountain to be 55.0°. How high is the fountain?

![Figure P1.43](image-url)

FIGURE P1.43

44. A right triangle has a hypotenuse of length 3.00 m, and one of its angles is 30.0°. What are the lengths of (a) the side opposite the 30.0° angle and (b) the side adjacent to the 30.0° angle?

45. In Figure P1.45, find (a) the side opposite \(\theta \), (b) the side adjacent to \(\phi \), (c) \(\cos \theta \), (d) \(\sin \phi \), and (e) \(\tan \phi \).

![Figure P1.45](image-url)

FIGURE P1.45

46. In a certain right triangle, the two sides that are perpendicular to each other are 5.00 m and 7.00 m long. What is the length of the third side of the triangle?

47. In Problem 46, what is the tangent of the angle for which 5.00 m is the opposite side?

48. A woman measures the angle of elevation of a mountaintop as 12.0°. After walking 1.00 km closer to the mountain on level ground, she finds the angle to be 14.0°. (a) Draw a picture of the problem, neglecting the height of the woman's eyes above the ground. Hint: Use two triangles. (b) Select variable names for the mountain height (suggestion: \(y \)) and the woman's original distance from the mountain (suggestion: \(x \)) and label the picture. (c) Using the labeled picture and the tangent function, write two trigonometric equations relating the two selected variables. (d) Find the height \(y \) of the mountain by first solving one equation for \(x \) and substituting the result into the other equation.

49. A surveyor measures the distance across a straight river by the following method: Starting directly across from a tree on the opposite bank, he walks 100 m along the riverbank to establish a baseline. Then he sights across to the tree. The angle from his baseline to the tree is 35.0°. How wide is the river?

50. Refer to Problem 48. Suppose the mountain height is \(y \), the woman's original distance from the mountain is \(x \), and the angle of elevation she measures from the horizontal to the top of the mountain is \(\theta \). If she moves a distance \(d \) closer to the mountain and measures an angle of elevation \(\phi \), find a general equation for the height of the mountain \(y \) in terms of \(d \), \(\phi \), and \(\theta \), neglecting the height of her eyes above the ground.

ADDITIONAL PROBLEMS

51. (a) One of the fundamental laws of motion states that the acceleration of an object is directly proportional to the resultant force on it and inversely proportional to its mass. If the proportionality constant is defined to have no dimensions, determine the dimensions of force. (b) The newton is the SI unit of force. According to the results for (a), how can you express a force having units of newtons by using the fundamental units of mass, length, and time?

52. (a) Find a conversion factor to convert from miles per hour to kilometers per hour. (b) For a while, federal law mandated that the maximum highway speed would be 55 mi/h. Use the conversion factor from part (a) to find the speed in kilometers per hour. (c) The maximum highway speed has been raised to 65 mi/h in some places. In kilometers per hour, how much of an increase is this over the 55-mi/h limit?

53. One cubic centimeter (1.0 cm³) of water has a mass of 1.0 × 10⁻³ kg. (a) Determine the mass of 1.0 m³ of water. (b) Assuming that biological substances are 98% water, estimate the masses of a cell with a diameter of 1.0 μm, a human kidney, and a fly. Take a kidney to be roughly a sphere with a radius of 4.0 cm and a fly to be roughly a cylinder 4.0 mm long and 2.0 mm in diameter.

54. Soft drinks are commonly sold in aluminum containers. To an order of magnitude, how many such containers are thrown away or recycled each year by U.S. consumers? How many tons of aluminum does this represent? In your solution, state the quantities you measure or estimate and the values you take for them.

55. The displacement of an object moving under uniform acceleration is some function of time and the acceleration. Suppose we write this displacement as \(s = km^a t^n \), where \(k \) is a dimensionless constant. Show by dimensional analysis that this expression is satisfied if \(m = 1 \) and \(n = 2 \). Can the analysis give the value of \(k \)?

56. Compute the order of magnitude of the mass of (a) a bathtub filled with water and (b) a bathtub filled with pennies. In your solution, list the quantities you estimate and the value you estimate for each.

57. You can obtain a rough estimate of the size of a molecule by the following simple experiment: Let a droplet of oil spread out on a smooth surface of water. The resulting oil slick will be approximately one molecule thick. Given an oil droplet of mass 9.00 × 10⁻² kg and density 918 kg/m³ that spreads out into a circle of radius 41.8 cm on the water surface, what is the order of magnitude of the diameter of an oil molecule?
58. \textit{Sphere 1} has surface area A_1 and volume V_1, and \textit{sphere 2} has surface area A_2 and volume V_2. If the radius of sphere 2 is double the radius of sphere 1, what is the ratio of (a) the areas, A_2/A_1, and (b) the volumes, V_2/V_1?

59. Estimate the number of piano tuners living in New York City. This question was raised by the physicist Enrico Fermi, who was well known for making order-of-magnitude calculations.

60. In 2007, the U.S. national debt was about 9 trillion. (a) If payments were made at the rate of 1000 per second, how many years would it take to pay off the debt, assuming that no interest were charged? (b) A dollar bill is about 15.5 cm long. If nine trillion dollar bills were laid end to end around the Earth’s equator, how many times would they encircle the planet? Take the radius of the Earth at the equator to be 6378 km. (\textit{Note: Before doing any of these calculations, try to guess at the answers. You may be very surprised.})

61. (a) How many seconds are there in a year? (b) If one micrometeorite (a sphere with a diameter on the order of 10^{-6} m) struck each square meter of the Moon each second, estimate the number of years it would take to cover the Moon with micrometeorites to a depth of one meter. (\textit{Hint: Consider a cubic box, 1 m on a side, on the Moon, and find how long it would take to fill the box.})

62. Imagine that you are the equipment manager of a professional baseball team. One of your jobs is to keep baseballs on hand for games. Balls are sometimes lost when players hit them into the stands as either home runs or foul balls. Estimate how many baseballs you have to buy per season in order to make up for such losses. Assume that your team plays an 81-game home schedule in a season.
Craig Breedlove, five times world land speed record holder, accelerates across the Black Rock Desert in Gerlach, Nevada, in his jet-powered car, Spirit of America, on its first test run on September 6, 1997. Subsequent jet-powered cars have broken the sound barrier on land.

2.1 Displacement

2.2 Velocity

2.3 Acceleration

2.4 Motion Diagrams

2.5 One-Dimensional Motion with Constant Acceleration

2.6 Freely Falling Objects

MOTION IN ONE DIMENSION

Life is motion. Our muscles coordinate motion microscopically to enable us to walk and jog. Our hearts pump tirelessly for decades, moving blood through our bodies. Cell wall mechanisms move select atoms and molecules in and out of cells. From the prehistoric chase of antelopes across the savanna to the pursuit of satellites in space, mastery of motion has been critical to our survival and success as a species.

The study of motion and of physical concepts such as force and mass is called **dynamics**. The part of dynamics that describes motion without regard to its causes is called **kinematics**. In this chapter the focus is on kinematics in one dimension: motion along a straight line. This kind of motion—and, indeed, any motion—involves the concepts of displacement, velocity, and acceleration. Here, we use these concepts to study the motion of objects undergoing constant acceleration. In Chapter 3 we will repeat this discussion for objects moving in two dimensions.

The first recorded evidence of the study of mechanics can be traced to the people of ancient Sumeria and Egypt, who were interested primarily in understanding the motions of heavenly bodies. The most systematic and detailed early studies of the heavens were conducted by the Greeks from about 300 B.C. to A.D. 300. Ancient scientists and laypeople regarded the Earth as the center of the Universe. This **geocentric model** was accepted by such notables as Aristotle (384–322 B.C.) and Claudius Ptolemy (about A.D. 140). Largely because of the authority of Aristotle, the geocentric model became the accepted theory of the Universe until the 17th century.

About 250 B.C., the Greek philosopher Aristarchus worked out the details of a model of the Solar System based on a spherical Earth that rotated on its axis and revolved around the Sun. He proposed that the sky appeared to turn westward because the Earth was turning eastward. This model wasn’t given much consideration because it was believed that a turning Earth would generate powerful winds as it moved through the air. We now know that the Earth carries the air and everything else with it as it rotates.

The Polish astronomer Nicolaus Copernicus (1473–1543) is credited with initiating the revolution that finally replaced the geocentric model. In his system, called the **heliocentric model**, Earth and the other planets revolve in circular orbits around the Sun.
This early knowledge formed the foundation for the work of Galileo Galilei (1564–1642), who stands out as the dominant facilitor of the entrance of physics into the modern era. In 1609 he became one of the first to make astronomical observations with a telescope. He observed mountains on the Moon, the larger satellites of Jupiter, spots on the Sun, and the phases of Venus. Galileo’s observations convinced him of the correctness of the Copernican theory. His quantitative study of motion formed the foundation of Newton’s revolutionary work in the next century.

2.1 DISPLACEMENT

Motion involves the displacement of an object from one place in space and time to another. Describing motion requires some convenient coordinate system and a specified origin. A frame of reference is a choice of coordinate axes that defines the starting point for measuring any quantity, an essential first step in solving virtually any problem in mechanics (Fig. 2.1). In Active Figure 2.2a, for example, a car moves along the x-axis. The coordinates of the car at any time describe its position in space and, more importantly, its displacement at some given time of interest.

The displacement \(\Delta x \) of an object is defined as its change in position, and is given by

\[
\Delta x = x_f - x_i
\]

where the initial position of the car is labeled \(x_i \) and the final position is \(x_f \). (The indices \(i \) and \(f \) stand for initial and final, respectively.)

SI unit: meter (m)

We will use the Greek letter delta, \(\Delta \), to denote a change in any physical quantity. From the definition of displacement, we see that \(\Delta x \) (read “delta ex”) is positive if \(x_f \) is greater than \(x_i \) and negative if \(x_f \) is less than \(x_i \). For example, if the car moves from point \(\mathbb{A} \) to point \(\mathbb{B} \) so that the initial position is \(x_i = 30 \text{ m} \) and the final position is \(x_f = 52 \text{ m} \), the displacement is \(\Delta x = x_f - x_i = 52 \text{ m} - 30 \text{ m} = +22 \text{ m} \). However, if the car moves from point \(\mathbb{C} \) to point \(\mathbb{D} \), then the initial position is \(x_i = 38 \text{ m} \) and the final position is \(x_f = -53 \text{ m} \), and the displacement is \(\Delta x = x_f - x_i = -53 \text{ m} - 38 \text{ m} = -91 \text{ m} \). A positive answer indicates a displacement in the positive x-direction, whereas a negative answer indicates a displacement in the negative x-direction. Active Figure 2.2b displays the graph of the car’s position as a function of time.

Because displacement has both a magnitude (size) and a direction, it’s a vector quantity, as are velocity and acceleration. In general, a vector quantity is characterized by having both a magnitude and a direction. By contrast, a scalar quantity
has magnitude, but no direction. Scalar quantities such as mass and temperature are completely specified by a numeric value with appropriate units; no direction is involved.

Vector quantities will be usually denoted in boldface type with an arrow over the top of the letter. For example, \(\mathbf{v} \) represents velocity and \(\mathbf{a} \) denotes an acceleration, both vector quantities. In this chapter, however, it won’t be necessary to use that notation because in one-dimensional motion an object can only move in one of two directions, and these directions are easily specified by plus and minus signs.

2.2 VELOCITY

In everyday usage the terms speed and velocity are interchangeable. In physics, however, there’s a clear distinction between them: Speed is a scalar quantity, having only magnitude, whereas velocity is a vector, having both magnitude and direction.

Why must velocity be a vector? If you want to get to a town 70 km away in an hour’s time, it’s not enough to drive at a speed of 70 km/h; you must travel in the correct direction as well. This is obvious, but shows that velocity gives considerably more information than speed, as will be made more precise in the formal definitions.

The average speed of an object over a given time interval is the total distance traveled divided by the total time elapsed:

\[
\text{Average speed} = \frac{\text{total distance}}{\text{total time}}
\]

The SI unit: meter per second (m/s)

In symbols, this equation might be written \(\frac{d}{t} \), with the letter \(v \) understood in context to be the average speed, not a velocity. Because total distance and total time are always positive, the average speed will be positive, also. The definition of average speed completely ignores what may happen between the beginning and the end of the motion. For example, you might drive from Atlanta, Georgia, to St. Petersburg, Florida, a distance of about 500 miles, in 10 hours. Your average speed is 500 mi/10 h = 50 mi/h. It doesn’t matter if you spent two hours in a traffic jam traveling only 5 mi/h and another hour at a rest stop. For average speed, only the total distance traveled and total elapsed time are important.

EXAMPLE 2.1 The Tortoise and the Hare

Goal Apply the concept of average speed.

Problem A turtle and a rabbit engage in a footrace over a distance of 4.00 km. The rabbit runs 0.500 km and then stops for a 90.0-min nap. Upon awakening, he remembers the race and runs twice as fast. Finishing the course in a total time of 1.75 h, the rabbit wins the race. (a) Calculate the average speed of the rabbit. (b) What was his average speed before he stopped for a nap?

Strategy Finding the overall average speed in part (a) is just a matter of dividing the total distance by the total time. Part (b) requires two equations and two unknowns, the latter turning out to be the two different average speeds: \(v_1 \) before the nap and \(v_2 \) after the nap. One equation is given in the statement of the problem (\(v_2 = 2v_1 \)), whereas the other comes from the fact the rabbit ran only 15 minutes because he napped for 90 minutes.

Solution

(a) Find the rabbit’s overall average speed.

Apply the equation for average speed:

\[
\text{Average speed} = \frac{\text{total distance}}{\text{total time}} = \frac{4.00 \text{ km}}{1.75 \text{ h}} = 2.29 \text{ km/h}
\]
Unlike average speed, average velocity is a vector quantity, having both a magnitude and a direction. Consider again the car of Figure 2.2, moving along the road (the x-axis). Let the car’s position be x_i at some time t_i and x_f at a later time t_f.

In the time interval $t_f - t_i$, the displacement of the car is $x_f - x_i$.

The average velocity v during a time interval Δt is the displacement Δx divided by Δt:

$$ v = \frac{\Delta x}{\Delta t} = \frac{x_f - x_i}{t_f - t_i} \quad [2.2] $$

SI unit: meter per second (m/s)

Unlike the average speed, which is always positive, the average velocity of an object in one dimension can be either positive or negative, depending on the sign of the displacement. (The time interval Δt is always positive.) In Figure 2.2a, for example, the average velocity of the car is positive in the upper illustration, a positive sign indicating motion to the right along the x-axis. Similarly, a negative average velocity for the car in the lower illustration of the figure indicates that it moves to the left along the x-axis.

As an example, we can use the data in Table 2.1 to find the average velocity in the time interval from point a to point b (assume two digits are significant):

$$ v = \frac{\Delta x}{\Delta t} = \frac{52 \text{ m} - 30 \text{ m}}{10 \text{ s} - 0 \text{ s}} = 2.2 \text{ m/s} $$

Aside from meters per second, other common units for average velocity are feet per second (ft/s) in the U.S. customary system and centimeters per second (cm/s) in the cgs system.

To further illustrate the distinction between speed and velocity, suppose we’re watching a drag race from the Goodyear blimp. In one run we see a car follow the straight-line path from a to b shown in Figure 2.3 during the time interval Δt.

(b) Find the rabbit’s average speed before his nap.

Sum the running times, and set the sum equal to 0.25 h: $t_1 + t_2 = 0.250 \text{ h}$

Substitute $t_1 = d_1/v_1$ and $t_2 = d_2/v_2$:

$$ \frac{d_1}{v_1} + \frac{d_2}{v_2} = 0.250 \text{ h} \quad (1) $$

Substitute $v_2 = 2v_1$ and the values of d_1 and d_2 into Equation (1):

$$ \frac{0.500 \text{ km}}{v_1} + \frac{3.50 \text{ km}}{2v_1} = 0.250 \text{ h} \quad (2) $$

Solve Equation (2) for v_1:

$$ v_1 = \frac{9.00 \text{ km/h}}{} $$

Remark: As seen in this example, average speed can be calculated regardless of any variation in speed over the given time interval.

QUESTION 2.1

Does a doubling of an object’s average speed always double the magnitude of its displacement in a given amount of time? Explain.

EXERCISE 2.1

Estimate the average speed of the Apollo spacecraft in meters per second, given that the craft took five days to reach the Moon from Earth. (The Moon is 3.8×10^8 m from Earth.)

Answer ~ 900 m/s

TABLE 2.1 Position of the Car at Various Times

<table>
<thead>
<tr>
<th>Position</th>
<th>t (s)</th>
<th>x (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>0</td>
<td>30</td>
</tr>
<tr>
<td>b</td>
<td>10</td>
<td>52</td>
</tr>
<tr>
<td>c</td>
<td>20</td>
<td>38</td>
</tr>
<tr>
<td>d</td>
<td>30</td>
<td>0</td>
</tr>
<tr>
<td>e</td>
<td>40</td>
<td>-37</td>
</tr>
<tr>
<td>f</td>
<td>50</td>
<td>-53</td>
</tr>
</tbody>
</table>

FIGURE 2.3 A drag race viewed from a blimp. One car follows the red straight-line path from a to b, and a second car follows the blue curved path.
and in a second run a car follows the curved path during the same interval. From the definition in Equation 2.2, the two cars had the same average velocity because they had the same displacement \(\Delta x = x_f - x_i\) during the same time interval \(\Delta t\). The car taking the curved route, however, traveled a greater distance and had the higher average speed.

QUICK QUIZ 2.1 Figure 2.4 shows the unusual path of a confused football player. After receiving a kickoff at his own goal, he runs downfield to within inches of a touchdown, then reverses direction and races back until he’s tackled at the exact location where he first caught the ball. During this run, which took 25 s, what is (a) the total distance he travels, (b) his displacement, and (c) his average velocity in the \(x\)-direction? (d) What is his average speed?

Graphical Interpretation of Velocity

If a car moves along the \(x\)-axis from \(\text{①}\) to \(\text{②}\), and so forth, we can plot the positions of these points as a function of the time elapsed since the start of the motion. The result is a **position vs. time graph** like those of Figure 2.5. In Figure 2.5a, the graph is a straight line because the car is moving at constant velocity. The same displacement \(\Delta x\) occurs in each time interval \(\Delta t\). In this case, the average velocity is always the same and is equal to \(\Delta x/\Delta t\). Figure 2.5b is a graph of the data in Table 2.1. Here, the position vs. time graph is not a straight line because the velocity of the car is changing. Between any two points, however, we can draw a straight line just as in Figure 2.5a, and the slope of that line is the average velocity \(\Delta x/\Delta t\) in that time interval. In general, the **average velocity of an object during the time interval \(\Delta t\) is equal to the slope of the straight line joining the initial and final points on a graph of the object’s position versus time.**

From the data in Table 2.1 and the graph in Figure 2.5b, we see that the car first moves in the positive \(x\)-direction as it travels from \(\text{①}\) to \(\text{③}\), reaches a position of 52 m at time \(t = 10\) s, then reverses direction and heads backwards. In the first 10 s of its motion, as the car travels from \(\text{①}\) to \(\text{③}\), its average velocity is 2.2 m/s, as previously calculated. In the first 40 seconds, as the car goes from \(\text{①}\) to \(\text{⑤}\), its displacement is \(\Delta x = -37\) m – \(30\) m = \(-67\) m. So the average velocity in this interval, which equals the slope of the blue line in Figure 2.5b from \(\text{①}\) to \(\text{⑤}\), is \(v = \Delta x/\Delta t = (-67\) m)/\((40\) s\) = \(-1.7\) m/s. In general, there will be a different average velocity between any distinct pair of points.

Instantaneous Velocity

Average velocity doesn’t take into account the details of what happens during an interval of time. On a car trip, for example, you may speed up or slow down a number of times in response to the traffic and the condition of the road, and on rare occasions even pull over to chat with a police officer about your speed. What is most important to the police (and to your own safety) is the speed of your car and the direction it was going at a particular instant in time, which together determine the car’s **instantaneous velocity.**
So in driving a car between two points, the average velocity must be computed over an interval of time, but the magnitude of instantaneous velocity can be read on the car’s speedometer.

The instantaneous velocity \(v \) is the limit of the average velocity as the time interval \(\Delta t \) becomes infinitesimally small:

\[
v = \lim_{\Delta t \to 0} \frac{\Delta x}{\Delta t}
\]

\[\text{[2.3]}\]

The notation \(\lim_{\Delta t \to 0} \) means that the ratio \(\Delta x/\Delta t \) is repeatedly evaluated for smaller and smaller time intervals \(\Delta t \). As \(\Delta t \) gets extremely close to zero, the ratio \(\Delta x/\Delta t \) gets closer and closer to a fixed number, which is defined as the instantaneous velocity.

To better understand the formal definition, consider data obtained on our vehicle via radar (Table 2.2). At \(t = 1.00 \) s, the car is at \(x = 5.00 \) m, and at \(t = 3.00 \) s, it’s at \(x = 52.5 \) m. The average velocity computed for this interval \(\Delta x/\Delta t = (52.5 \text{ m} - 5.00 \text{ m})/(3.00 \text{ s} - 1.00 \text{ s}) = 23.8 \text{ m/s} \). This result could be used as an estimate for the velocity at \(t = 1.00 \) s, but it wouldn’t be very accurate because the speed changes considerably in the two-second time interval. Using the rest of the data, we can construct Table 2.3. As the time interval gets smaller, the average velocity more closely approaches the instantaneous velocity. Using the final interval of only 0.010 0 s, we find that the average velocity is \(\bar{v} = \Delta x/\Delta t = 0.470 \text{ m/s} \). Because 0.010 0 s is a very short time interval, the actual instantaneous velocity is probably very close to this latter average velocity, given the limits on the car’s ability to accelerate. Finally using the conversion factor on the inside front cover of the book, we see that this is 105 mi/h, a likely violation of the speed limit.
As can be seen in Figure 2.6, the chords formed by the blue lines gradually approach a tangent line as the time interval becomes smaller. The slope of the line tangent to the position vs. time curve at “a given time” is defined to be the instantaneous velocity at that time.

The instantaneous speed of an object, which is a scalar quantity, is defined as the magnitude of the instantaneous velocity. Like average speed, instantaneous speed (which we will usually call, simply, “speed”) has no direction associated with it and hence carries no algebraic sign. For example, if one object has an instantaneous velocity of $+15 \text{ m/s}$ along a given line and another object has an instantaneous velocity of -15 m/s along the same line, both have an instantaneous speed of 15 m/s.

EXAMPLE 2.2 Slowly Moving Train

Goal Obtain average and instantaneous velocities from a graph.

Problem A train moves slowly along a straight portion of track according to the graph of position versus time in Figure 2.7a. Find (a) the average velocity for the total trip, (b) the average velocity during the first 4.00 s of motion, (c) the average velocity during the next 4.00 s of motion, (d) the instantaneous velocity at $t = 2.00 \text{ s}$, and (e) the instantaneous velocity at $t = 9.00 \text{ s}$.

Strategy The average velocities can be obtained by substituting the data into the definition. The instantaneous velocity at $t = 2.00 \text{ s}$ is the same as the average velocity at that point because the position vs. time graph is a straight line, indicating constant velocity. Finding the instantaneous velocity when $t = 9.00 \text{ s}$ requires sketching a line tangent to the curve at that point and finding its slope.

Solution

(a) Find the average velocity from \odot to \odot.

Calculate the slope of the dashed blue line:

$$\bar{v} = \frac{\Delta x}{\Delta t} = \frac{10.0 \text{ m}}{12.0 \text{ s}} = +0.833 \text{ m/s}$$

(b) Find the average velocity during the first 4 seconds of the train’s motion.

Again, find the slope:

$$\bar{v} = \frac{\Delta x}{\Delta t} = \frac{4.00 \text{ m}}{4.00 \text{ s}} = +1.00 \text{ m/s}$$

(c) Find the average velocity during the next 4 seconds.

Here, there is no change in position, so the displacement Δx is zero:

$$\bar{v} = \frac{\Delta x}{\Delta t} = \frac{0 \text{ m}}{4.00 \text{ s}} = 0 \text{ m/s}$$
2.3 Acceleration

Going from place to place in your car, you rarely travel long distances at constant velocity. The velocity of the car increases when you step harder on the gas pedal and decreases when you apply the brakes. The velocity also changes when you round a curve, altering your direction of motion. The changing of an object’s velocity with time is called acceleration.

Average Acceleration

A car moves along a straight highway as in Figure 2.8. At time \(t_i \) it has a velocity of \(v_i \), and at time \(t_f \) its velocity is \(v_f \), with \(\Delta v = v_f - v_i \) and \(\Delta t = t_f - t_i \).

The average acceleration \(\bar{a} \) during the time interval \(\Delta t \) is the change in velocity \(\Delta v \) divided by \(\Delta t \):

\[
\bar{a} = \frac{\Delta v}{\Delta t} = \frac{v_f - v_i}{t_f - t_i} \tag{2.4}
\]

SI unit: meter per second per second (m/s²)

For example, suppose the car shown in Figure 2.8 accelerates from an initial velocity of \(v_i = +10 \text{ m/s} \) to a final velocity of \(v_f = +20 \text{ m/s} \) in a time interval of \(2 \text{ s} \). (Both velocities are toward the right, selected as the positive direction.) These values can be inserted into Equation 2.4 to find the average acceleration:

\[
\bar{a} = \frac{\Delta v}{\Delta t} = \frac{20 \text{ m/s} - 10 \text{ m/s}}{2 \text{ s}} = +5 \text{ m/s}²
\]

Acceleration is a vector quantity having dimensions of length divided by the time squared. Common units of acceleration are meters per second per second ((m/s)/s), which is usually written m/s² and feet per second per second ((ft/s)/s). An

(d) Find the instantaneous velocity at \(t = 2.00 \text{ s} \).

This is the same as the average velocity found in (b), \(v = 1.00 \text{ m/s} \) because the graph is a straight line:

(e) Find the instantaneous velocity at \(t = 9.00 \text{ s} \).

The tangent line appears to intercept the \(x \)-axis at \((3.0 \text{ s}, 0 \text{ m}) \) and graze the curve at \((9.0 \text{ s}, 4.5 \text{ m}) \). The instantaneous velocity at \(t = 9.00 \text{ s} \) equals the slope of the tangent line through these points:

\[
v = \frac{\Delta x}{\Delta t} = \frac{4.5 \text{ m} - 0 \text{ m}}{9.0 \text{ s} - 3.0 \text{ s}} = 0.75 \text{ m/s}
\]

Remarks From the origin to \(\mathbb{A} \), the train moves at constant speed in the positive \(x \)-direction for the first 4.00 s, because the position vs. time curve is rising steadily toward positive values. From \(\mathbb{A} \) to \(\mathbb{B} \), the train stops at \(x = 4.00 \text{ m} \) for 4.00 s. From \(\mathbb{B} \) to \(\mathbb{C} \), the train travels at increasing speed in the positive \(x \)-direction.

QUESTION 2.2

Would a vertical line in a graph of position versus time make sense? Explain.

EXERCISE 2.2

Figure 2.7b graphs another run of the train. Find (a) the average velocity from \(\mathbb{D} \) to \(\mathbb{E} \); (b) the average and instantaneous velocities from \(\mathbb{D} \) to \(\mathbb{A} \); (c) the approximate instantaneous velocity at \(t = 6.0 \text{ s} \); and (d) the average and instantaneous velocity at \(t = 9.0 \text{ s} \).

Answers (a) 0 m/s (b) both are +0.5 m/s (c) 2 m/s (d) both are −2.5 m/s

2.3 Acceleration

Going from place to place in your car, you rarely travel long distances at constant velocity. The velocity of the car increases when you step harder on the gas pedal and decreases when you apply the brakes. The velocity also changes when you round a curve, altering your direction of motion. The changing of an object’s velocity with time is called acceleration.

Average Acceleration

A car moves along a straight highway as in Figure 2.8. At time \(t_i \) it has a velocity of \(v_i \), and at time \(t_f \) its velocity is \(v_f \), with \(\Delta v = v_f - v_i \) and \(\Delta t = t_f - t_i \).

The average acceleration \(\bar{a} \) during the time interval \(\Delta t \) is the change in velocity \(\Delta v \) divided by \(\Delta t \):

\[
\bar{a} = \frac{\Delta v}{\Delta t} = \frac{v_f - v_i}{t_f - t_i} \tag{2.4}
\]

SI unit: meter per second per second (m/s²)

For example, suppose the car shown in Figure 2.8 accelerates from an initial velocity of \(v_i = +10 \text{ m/s} \) to a final velocity of \(v_f = +20 \text{ m/s} \) in a time interval of \(2 \text{ s} \). (Both velocities are toward the right, selected as the positive direction.) These values can be inserted into Equation 2.4 to find the average acceleration:

\[
\bar{a} = \frac{\Delta v}{\Delta t} = \frac{20 \text{ m/s} - 10 \text{ m/s}}{2 \text{ s}} = +5 \text{ m/s}²
\]

Acceleration is a vector quantity having dimensions of length divided by the time squared. Common units of acceleration are meters per second per second ((m/s)/s), which is usually written m/s² and feet per second per second ((ft/s)/s). An

(d) Find the instantaneous velocity at \(t = 2.00 \text{ s} \).

This is the same as the average velocity found in (b), \(v = 1.00 \text{ m/s} \) because the graph is a straight line:

(e) Find the instantaneous velocity at \(t = 9.00 \text{ s} \).

The tangent line appears to intercept the \(x \)-axis at \((3.0 \text{ s}, 0 \text{ m}) \) and graze the curve at \((9.0 \text{ s}, 4.5 \text{ m}) \). The instantaneous velocity at \(t = 9.00 \text{ s} \) equals the slope of the tangent line through these points:

\[
v = \frac{\Delta x}{\Delta t} = \frac{4.5 \text{ m} - 0 \text{ m}}{9.0 \text{ s} - 3.0 \text{ s}} = 0.75 \text{ m/s}
\]

Remarks From the origin to \(\mathbb{A} \), the train moves at constant speed in the positive \(x \)-direction for the first 4.00 s, because the position vs. time curve is rising steadily toward positive values. From \(\mathbb{A} \) to \(\mathbb{B} \), the train stops at \(x = 4.00 \text{ m} \) for 4.00 s. From \(\mathbb{B} \) to \(\mathbb{C} \), the train travels at increasing speed in the positive \(x \)-direction.

QUESTION 2.2

Would a vertical line in a graph of position versus time make sense? Explain.

EXERCISE 2.2

Figure 2.7b graphs another run of the train. Find (a) the average velocity from \(\mathbb{D} \) to \(\mathbb{E} \); (b) the average and instantaneous velocities from \(\mathbb{D} \) to \(\mathbb{A} \); (c) the approximate instantaneous velocity at \(t = 6.0 \text{ s} \); and (d) the average and instantaneous velocity at \(t = 9.0 \text{ s} \).

Answers (a) 0 m/s (b) both are +0.5 m/s (c) 2 m/s (d) both are −2.5 m/s

2.3 Acceleration

Going from place to place in your car, you rarely travel long distances at constant velocity. The velocity of the car increases when you step harder on the gas pedal and decreases when you apply the brakes. The velocity also changes when you round a curve, altering your direction of motion. The changing of an object’s velocity with time is called acceleration.

Average Acceleration

A car moves along a straight highway as in Figure 2.8. At time \(t_i \) it has a velocity of \(v_i \), and at time \(t_f \) its velocity is \(v_f \), with \(\Delta v = v_f - v_i \) and \(\Delta t = t_f - t_i \).

The average acceleration \(\bar{a} \) during the time interval \(\Delta t \) is the change in velocity \(\Delta v \) divided by \(\Delta t \):

\[
\bar{a} = \frac{\Delta v}{\Delta t} = \frac{v_f - v_i}{t_f - t_i} \tag{2.4}
\]

SI unit: meter per second per second (m/s²)

For example, suppose the car shown in Figure 2.8 accelerates from an initial velocity of \(v_i = +10 \text{ m/s} \) to a final velocity of \(v_f = +20 \text{ m/s} \) in a time interval of \(2 \text{ s} \). (Both velocities are toward the right, selected as the positive direction.) These values can be inserted into Equation 2.4 to find the average acceleration:

\[
\bar{a} = \frac{\Delta v}{\Delta t} = \frac{20 \text{ m/s} - 10 \text{ m/s}}{2 \text{ s}} = +5 \text{ m/s}²
\]

Acceleration is a vector quantity having dimensions of length divided by the time squared. Common units of acceleration are meters per second per second ((m/s)/s), which is usually written m/s² and feet per second per second ((ft/s)/s). An
TIP 2.5 Negative Acceleration
Negative acceleration doesn’t necessarily mean an object is slowing down. If the acceleration is negative and the velocity is also negative, the object is speeding up! (See Tip 2.3.)

TIP 2.6 Deceleration
The word deceleration means a reduction in speed, a slowing down. Some confuse it with a negative acceleration, which can speed something up. (See Tip 2.5.)

Instantaneous Acceleration
The value of the average acceleration often differs in different time intervals, so it’s useful to define the instantaneous acceleration, which is analogous to the instantaneous velocity discussed in Section 2.2.

The instantaneous acceleration \(a \) is the limit of the average acceleration as the time interval \(\Delta t \) goes to zero:

\[
\lim_{\Delta t \to 0} \frac{\Delta v}{\Delta t} = a
\]

SI unit: meter per second per second (m/s²)

Here again, the notation \(\lim \) means that the ratio \(\Delta v/\Delta t \) is evaluated for smaller and smaller values of \(\Delta t \). The closer \(\Delta t \) gets to zero, the closer the ratio gets to a fixed number, which is the instantaneous acceleration.

Figure 2.9, a velocity vs. time graph, plots the velocity of an object against time. The graph could represent, for example, the motion of a car along a busy street. The average acceleration of the car between times \(t_i \) and \(t_f \) can be found by determining the slope of the line joining points \(B \) and \(C \). If we imagine that point \(C \) is brought closer and closer to point \(B \), the line comes closer and closer to becoming tangent at \(B \). The instantaneous acceleration of an object at a given time equals the slope of the tangent to the velocity vs. time graph at that time. From now on, we will use the term acceleration to mean “instantaneous acceleration.”

In the special case where the velocity vs. time graph of an object’s motion is a straight line, the instantaneous acceleration of the object at any point is equal to its average acceleration. This also means that the tangent line to the graph overlaps the graph itself. In that case, the object’s acceleration is said to be uniform, which means that it has a constant value. Constant acceleration problems are important in kinematics and will be studied extensively in this and the next chapter.
QUICK QUIZ 2.3 Parts (a), (b), and (c) of Figure 2.10 represent three graphs of the velocities of different objects moving in straight-line paths as functions of time. The possible accelerations of each object as functions of time are shown in parts (d), (e), and (f). Match each velocity vs. time graph with the acceleration vs. time graph that best describes the motion.

EXAMPLE 2.3 Catching a Fly Ball

Goal Apply the definition of instantaneous acceleration.

Problem A baseball player moves in a straight-line path in order to catch a fly ball hit to the outfield. His velocity as a function of time is shown in Figure 2.11a. Find his instantaneous acceleration at points A, B, and C.

Strategy At each point, the velocity vs. time graph is a straight line segment, so the instantaneous acceleration will be the slope of that segment. Select two points on each segment and use them to calculate the slope.

Solution

Acceleration at A.

The acceleration at A equals the slope of the line connecting the points (0 s, 0 m/s) and (2.0 s, 4.0 m/s):

$$a = \frac{\Delta v}{\Delta t} = \frac{4.0 \text{ m/s} - 0}{2.0 \text{ s} - 0} = +2.0 \text{ m/s}^2$$

Acceleration at B.

$$\Delta v = 0$$, because the segment is horizontal:

$$a = \frac{\Delta v}{\Delta t} = \frac{4.0 \text{ m/s} - 4.0 \text{ m/s}}{3.0 \text{ s} - 2.0 \text{ s}} = 0 \text{ m/s}^2$$

Acceleration at C.

The acceleration at C equals the slope of the line connecting the points (3.0 s, 4.0 m/s) and (4.0 s, 2.0 m/s):

$$a = \frac{\Delta v}{\Delta t} = \frac{2.0 \text{ m/s} - 4.0 \text{ m/s}}{4.0 \text{ s} - 3.0 \text{ s}} = -2.0 \text{ m/s}^2$$

Remarks Assume the player is initially moving in the positive x-direction. For the first 2.0 s, the ballplayer moves in the positive x-direction (the velocity is positive) and steadily accelerates (the curve is steadily rising) to a maximum speed of 4.0 m/s. He moves for 1.0 s at a steady speed of 4.0 m/s and then slows down in the last second (the v vs. t curve is falling), still moving in the positive x-direction (v is always positive).

QUESTION 2.3 Can the tangent line to a velocity vs. time graph ever be vertical? Explain.

EXERCISE 2.3 Repeat the problem, using Figure 2.11b.

Answer The accelerations at A, B, and C are -3.0 m/s^2, 1.0 m/s^2, and 0 m/s^2, respectively.
2.4 MOTION DIAGRAMS

Velocity and acceleration are sometimes confused with each other, but they’re very different concepts, as can be illustrated with the help of motion diagrams. A motion diagram is a representation of a moving object at successive time intervals, with velocity and acceleration vectors sketched at each position, red for velocity vectors and violet for acceleration vectors, as in Active Figure 2.12. The time intervals between adjacent positions in the motion diagram are assumed equal.

A motion diagram is analogous to images resulting from a stroboscopic photograph of a moving object. Each image is made as the strobe light flashes. Active Figure 2.12 represents three sets of stroboscopic photographs of cars moving along a straight roadway from left to right. The time intervals between flashes of the stroboscope are equal in each diagram.

In Active Figure 2.12a, the images of the car are equally spaced: The car moves the same distance in each time interval. This means that the car moves with constant positive velocity and has zero acceleration. The red arrows are all the same length (constant velocity) and there are no violet arrows (zero acceleration).

In Active Figure 2.12b, the images of the car become farther apart as time progresses and the velocity vector increases with time, because the car’s displacement between adjacent positions increases as time progresses. The car is moving with a positive velocity and a constant positive acceleration. The red arrows are successively longer in each image, and the violet arrows point to the right.

In Active Figure 2.12c, the car slows as it moves to the right because its displacement between adjacent positions decreases with time. In this case, the car moves initially to the right with a constant negative acceleration. The velocity vector decreases in time (the red arrows get shorter) and eventually reaches zero, as would happen when the brakes are applied. Note that the acceleration and velocity vectors are not in the same direction. The car is moving with a positive velocity, but with a negative acceleration.

Try constructing your own diagrams for various problems involving kinematics.

QUICK QUIZ 2.4 The three graphs in Active Figure 2.13 represent the position vs. time for objects moving along the x-axis. Which, if any, of these graphs is not physically possible?
QUICK QUIZ 2.5 Figure 2.14a is a diagram of a multiflash image of an air puck moving to the right on a horizontal surface. The images sketched are separated by equal time intervals, and the first and last images show the puck at rest. (a) In Figure 2.14b, which color graph best shows the puck’s position as a function of time? (b) In Figure 2.14c, which color graph best shows the puck’s velocity as a function of time? (c) In Figure 2.14d, which color graph best shows the puck’s acceleration as a function of time?

2.5 ONE-DIMENSIONAL MOTION WITH CONSTANT ACCELERATION

Many applications of mechanics involve objects moving with constant acceleration. This type of motion is important because it applies to numerous objects in nature, such as an object in free fall near Earth’s surface (assuming air resistance can be neglected). A graph of acceleration versus time for motion with constant acceleration is shown in Active Figure 2.15a. When an object moves with constant acceleration, the instantaneous acceleration at any point in a time interval is equal to the value of the average acceleration over the entire time interval. Consequently, the velocity increases or decreases at the same rate throughout the motion, and a plot of \(v \) versus \(t \) gives a straight line with either positive, zero, or negative slope.

Because the average acceleration equals the instantaneous acceleration when \(a \) is constant, we can eliminate the bar used to denote average values from our defining equation for acceleration, writing \(a = \frac{v_f - v_i}{t_f - t_i} \), so that Equation 2.4 becomes

\[
a = \frac{v_f - v_i}{t_f - t_i}
\]

or

\[
v = v_i + at \quad \text{(for constant } a \text{)} \quad [2.6]
\]

Equation 2.6 states that the acceleration \(a \) steadily changes the initial velocity \(v_i \) by an amount \(at \). For example, if a car starts with a velocity of \(+2.0 \text{ m/s} \) to the right and accelerates to the right with \(a = +6.0 \text{ m/s}^2 \), it will have a velocity of \(+14 \text{ m/s} \) after \(2.0 \text{ s} \) have elapsed:

\[
v = v_i + at = +2.0 \text{ m/s} + (6.0 \text{ m/s}^2)(2.0 \text{ s}) = +14 \text{ m/s}
\]

The graphical interpretation of \(v \) is shown in Active Figure 2.15b. The velocity varies linearly with time according to Equation 2.6, as it should for constant acceleration.

Because the velocity is increasing or decreasing uniformly with time, we can express the average velocity in any time interval as the arithmetic average of the initial velocity \(v_i \) and the final velocity \(v_f \):

\[
\bar{v} = \frac{v_i + v_f}{2} \quad \text{(for constant } a \text{)} \quad [2.7]
\]

Remember that this expression is valid only when the acceleration is constant, in which case the velocity increases uniformly.

We can now use this result along with the defining equation for average velocity, Equation 2.2, to obtain an expression for the displacement of an object as a

\[
x = x_i + \bar{v}t \quad \text{(for constant } a \text{)}
\]
function of time. Again, we choose $t_i = 0$ and $t_f = t$, and for convenience, we write $\Delta x = x_f - x_i = x - x_0$. This results in

$$\Delta x = \bar{v}t = \left(\frac{v_0 + v}{2}\right)t$$

$$\Delta x = \frac{1}{2}(v_0 + v)t \quad \text{(for constant } a\text{)} \tag{2.8}$$

We can obtain another useful expression for displacement by substituting the equation for v (Eq. 2.6) into Equation 2.8:

$$\Delta x = \frac{1}{2}(v_0 + v + at)t$$

$$\Delta x = v_0 t + \frac{1}{2}at^2 \quad \text{(for constant } a\text{)} \tag{2.9}$$

This equation can also be written in terms of the position x, since $\Delta x = x - x_0$. Active Figure 2.15c shows a plot of x versus t for Equation 2.9, which is related to the graph of velocity vs. time: The area under the curve in Active Figure 2.15b is equal to $v_0 t + \frac{1}{2}at^2$, which is equal to the displacement Δx. In fact, the area under the graph of v versus t for any object is equal to the displacement Δx of the object.

Finally, we can obtain an expression that doesn’t contain time by solving Equation 2.6 for t and substituting into Equation 2.8, resulting in

$$\Delta x = \left(v + v_0\right)\left(\frac{v - v_0}{a}\right) = \frac{v^2 - v_0^2}{2a}$$

$$v^2 = v_0^2 + 2a\Delta x \quad \text{(for constant } a\text{)} \tag{2.10}$$

Equations 2.6 and 2.9 together can solve any problem in one-dimensional motion with constant acceleration, but Equations 2.7, 2.8, and, especially, 2.10 are sometimes convenient. The three most useful equations—Equations 2.6, 2.9, and 2.10—are listed in Table 2.4.

The best way to gain confidence in the use of these equations is to work a number of problems. There is usually more than one way to solve a given problem, depending on which equations are selected and what quantities are given. The difference lies mainly in the algebra.

TABLE 2.4

<table>
<thead>
<tr>
<th>Equation</th>
<th>Information Given by Equation</th>
</tr>
</thead>
<tbody>
<tr>
<td>$v = v_0 + at$</td>
<td>Velocity as a function of time</td>
</tr>
<tr>
<td>$\Delta x = v_0 t + \frac{1}{2}at^2$</td>
<td>Displacement as a function of time</td>
</tr>
<tr>
<td>$v^2 = v_0^2 + 2a\Delta x$</td>
<td>Velocity as a function of displacement</td>
</tr>
</tbody>
</table>

Note: Motion is along the x-axis. At $t = 0$, the velocity of the particle is v_0.

PROBLEM-SOLVING STRATEGY

ACCELERATED MOTION

The following procedure is recommended for solving problems involving accelerated motion.

1. **Read** the problem.
2. **Draw** a diagram, choosing a coordinate system, labeling initial and final points, and indicating directions of velocities and accelerations with arrows.
3. **Label** all quantities, circling the unknowns. Convert units as needed.
4. **Equations** from Table 2.4 should be selected next. All kinematics problems in this chapter can be solved with the first two equations, and the third is often convenient.

5. **Solve** for the unknowns. Doing so often involves solving two equations for two unknowns. It’s usually more convenient to substitute all known values before solving.

6. **Check** your answer, using common sense and estimates.

Most of these problems reduce to writing the kinematic equations from Table 2.4 and then substituting the correct values into the constants \(a \), \(v_0 \), and \(x_0 \) from the given information. Doing this produces two equations—one linear and one quadratic—for two unknown quantities.

EXAMPLE 2.4 The Daytona 500

Goal Apply the basic kinematic equations.

Problem (a) A race car starting from rest accelerates at a constant rate of 5.00 m/s\(^2\). What is the velocity of the car after it has traveled 1.00 \(\times \) 10\(^2 \) ft? (b) How much time has elapsed?

Strategy (a) We’ve read the problem, drawn the diagram in Figure 2.16, and chosen a coordinate system (steps 1 and 2). We’d like to find the velocity \(v \) after a certain known displacement \(\Delta x \). The acceleration \(a \) is also known, as is the initial velocity \(v_0 \) (step 3, labeling, is complete), so the third equation in Table 2.4 looks most useful for solving part (a). Given the velocity, the first equation in Table 2.4 can then be used to find the time in part (b).

Solution

(a) Convert units of \(\Delta x \) to SI, using the information in the inside front cover.

\[1.00 \times 10^2 \text{ ft} = (1.00 \times 10^2 \text{ ft}) \left(\frac{1 \text{ m}}{3.28 \text{ ft}} \right) = 30.5 \text{ m} \]

Write the kinematics equation for \(v^2 \) (step 4):

\[v^2 = v_0^2 + 2a \Delta x \]

Solve for \(v \), taking the positive square root because the car moves to the right (step 5):

\[v = \sqrt{v_0^2 + 2a \Delta x} \]

Substitute \(v_0 = 0 \), \(a = 5.00 \text{ m/s}^2 \), and \(\Delta x = 30.5 \text{ m} \):

\[v = \sqrt{0^2 + 2 \times 5.00 \text{ m/s}^2 \times 30.5 \text{ m}} \]

\[= 17.5 \text{ m/s} \]

(b) How much time has elapsed?

Apply the first equation of Table 2.4:

\[v = at + v_0 \]

Substitute values and solve for time \(t \):

\[17.5 \text{ m/s} = (5.00 \text{ m/s}^2)t \]

\[t = \frac{17.5 \text{ m/s}}{5.0 \text{ m/s}^2} = 3.50 \text{ s} \]

Remarks The answers are easy to check. An alternate technique is to use \(\Delta x = v_0 t + \frac{1}{2}at^2 \) to find \(t \) and then use the equation \(v = v_0 + at \) to find \(v \).

QUESTION 2.4

What is the final speed if the displacement is increased by a factor of 4?
EXERCISE 2.4
Suppose the driver in this example now slams on the brakes, stopping the car in 4.00 s. Find (a) the acceleration and (b) the distance the car travels while braking, assuming the acceleration is constant.

Answers
(a) \(a = -4.38 \text{ m/s}^2 \)
(b) \(d = 55.0 \text{ m} \)

EXAMPLE 2.5 Car Chase

Goal Solve a problem involving two objects, one moving at constant acceleration and the other at constant velocity.

Problem A car traveling at a constant speed of 24.0 m/s passes a trooper hidden behind a billboard, as in Figure 2.17. One second after the speeding car passes the billboard, the trooper sets off in chase with a constant acceleration of 3.00 m/s².
(a) How long does it take the trooper to overtake the speeding car?
(b) How fast is the trooper going at that time?

Strategy Solving this problem involves two simultaneous kinematics equations of position, one for the trooper and the other for the car. Choose \(t = 0 \) to correspond to the time the trooper takes up the chase, when the car is at \(x_{\text{car}} = 24.0 \text{ m} \) because of its head start (24.0 m/s × 1.00 s). The trooper catches up with the car when their positions are the same, which suggests setting \(x_{\text{trooper}} = x_{\text{car}} \) and solving for time, which can then be used to find the trooper’s speed in part (b).

Solution
(a) How long does it take the trooper to overtake the car?

Write the equation for the car’s displacement:
\[\Delta x_{\text{car}} = x_{\text{car}} - x_0 = v_0 t + \frac{1}{2} a_{\text{car}} t^2 \]

Take \(x_0 = 24.0 \text{ m}, v_0 = 24.0 \text{ m/s} \) and \(a_{\text{car}} = 0 \). Solve for \(x_{\text{car}} \):

\[x_{\text{car}} = x_0 + v_0 t = 24.0 \text{ m} + (24.0 \text{ m/s}) t \]

Write the equation for the trooper’s position, taking \(x_0 = 0, v_0 = 0, \) and \(a_{\text{trooper}} = 3.00 \text{ m/s}^2 \):

\[x_{\text{trooper}} = \frac{1}{2} a_{\text{trooper}} t^2 = \frac{1}{2} (3.00 \text{ m/s}^2) t^2 = (1.50 \text{ m/s}^2) t^2 \]

Set \(x_{\text{trooper}} = x_{\text{car}} \) and solve the quadratic equation. (The quadratic formula appears in Appendix A, Equation A.8.) Only the positive root is meaningful.

\[(1.50 \text{ m/s}^2) t^2 = 24.0 \text{ m} + (24.0 \text{ m/s}) t \]

\[(1.50 \text{ m/s}^2) t^2 - (24.0 \text{ m/s}) t - 24.0 \text{ m} = 0 \]

\[t = 16.9 \text{ s} \]

(b) Find the trooper’s speed at this time.

Substitute the time into the trooper’s velocity equation:

\[v_{\text{trooper}} = v_0 + a_{\text{trooper}} t = 0 + (3.00 \text{ m/s}^2)(16.9 \text{ s}) \]

\[= 50.7 \text{ m/s} \]

Remarks The trooper, traveling about twice as fast as the car, must swerve or apply his brakes strongly to avoid a collision! This problem can also be solved graphically by plotting position versus time for each vehicle on the same graph. The intersection of the two graphs corresponds to the time and position at which the trooper overtakes the car.
QUESTION 2.5
The graphical solution corresponds to finding the intersection of what two types of curves in the xt-plane?

EXERCISE 2.5
A motorist with an expired license tag is traveling at 10.0 m/s down a street, and a policeman on a motorcycle, taking another 5.00 s to finish his donut, gives chase at an acceleration of 2.00 m/s². Find (a) the time required to catch the car and (b) the distance the trooper travels while overtaking the motorist.

Answers
(a) 13.7 s (b) 188 m

EXAMPLE 2.6 Runway Length

Goal
Apply kinematics to horizontal motion with two phases.

Problem
A typical jetliner lands at a speed of 160 mi/h and decelerates at the rate of (10 mi/h)/s. If the plane travels at a constant speed of 160 mi/h for 1.0 s after landing before applying the brakes, what is the total displacement of the aircraft between touchdown on the runway and coming to rest?

Strategy
See Figure 2.18. First, convert all quantities to SI units. The problem must be solved in two parts, or phases, corresponding to the initial coast after touchdown, followed by braking. Using the kinematic equations, find the displacement during each part and add the two displacements.

Solution
Convert units of speed and acceleration to SI:

\[v_0 = \frac{160 \text{ mi/h}}{1.00 \text{ mi/h}} \times \frac{5280 \text{ ft}}{1 \text{ mi}} \times \frac{1 \text{ h}}{3600 \text{ s}} = 71.5 \text{ m/s} \]

\[a = (-10.0 \text{ (mi/h)/s}) \times \frac{0.447 \text{ m/s}}{1.00 \text{ mi/h}} = -4.47 \text{ m/s}^2 \]

Taking \(a = 0 \), \(v_0 = 71.5 \text{ m/s} \), and \(t = 1.00 \text{ s} \), find the displacement while the plane is coasting:

\[\Delta x_{\text{coasting}} = v_0 t + \frac{1}{2} at^2 = (71.5 \text{ m/s})(1.00 \text{ s}) + 0 = 71.5 \text{ m} \]

Use the time-independent kinematic equation to find the displacement while the plane is braking.

\[v^2 = v_0^2 + 2a\Delta x_{\text{braking}} \]

Take \(a = -4.47 \text{ m/s}^2 \) and \(v_0 = 71.5 \text{ m/s} \). The negative sign on \(a \) means that the plane is slowing down.

\[\Delta x_{\text{braking}} = \frac{v^2 - v_0^2}{2a} = \frac{0 - (71.5 \text{ m/s})^2}{2(-4.47 \text{ m/s}^2)} = 572 \text{ m} \]

Sum the two results to find the total displacement:

\[\Delta x_{\text{total}} = \Delta x_{\text{coasting}} + \Delta x_{\text{braking}} = 72 \text{ m} + 572 \text{ m} = 644 \text{ m} \]

Remarks
To find the displacement while braking, we could have used the two kinematics equations involving time, namely, \(\Delta x = v_0 t + \frac{1}{2} at^2 \) and \(v = v_0 + at \), but because we weren’t interested in time, the time-independent equation was easier to use.

QUESTION 2.6
How would the answer change if the plane coasted for 2.0 s before the pilot applied the brakes?

EXERCISE 2.6
A jet lands at 80.0 m/s, the pilot applying the brakes 2.00 s after landing. Find the acceleration needed to stop the jet within 5.00 \times 10^2 m.

Answer
\(a = -9.41 \text{ m/s}^2 \)
EXAMPLE 2.7 The Acela: The Porsche of American Trains

Goal Find accelerations and displacements from a velocity vs. time graph.

Problem The sleek high-speed electric train known as the Acela (pronounced ah-sell-ah) is currently in service on the Washington-New York-Boston run. The Acela consists of two power cars and six coaches and can carry 304 passengers at speeds up to 170 mi/h. In order to negotiate curves comfortably at high speeds, the train carriages tilt as much as 6° from the vertical, preventing passengers from being pushed to the side. A velocity vs. time graph for the Acela is shown in Figure 2.19a.

(a) Describe the motion of the Acela. From about −50 s to 50 s, the Acela cruises at a constant velocity in the +x-direction. Then the train accelerates in the +x-direction from 50 s to 200 s, reaching a top speed of about 170 mi/h, whereupon it brakes to rest at 350 s and reverses, steadily gaining speed in the −x-direction.

(b) Find the peak acceleration. Calculate the slope of the steepest tangent line, which connects the points (50 s, 50 mi/h) and (100 s, 150 mi/h) (the light blue line in Figure 2.19b):

\[
a = \text{slope} = \frac{\Delta v}{\Delta t} = \frac{(1.5 \times 10^2 - 5.0 \times 10^1) \text{ mi/h}}{(1.0 \times 10^2 - 5.0 \times 10^1) \text{ s}} = 2.0 \text{ (mi/h)/s}
\]

(c) Find the displacement between 0 s and 200 s. Using triangles and rectangles, approximate the area in Figure 2.19c:

\[
\Delta x_{0 \rightarrow 200} = \text{area}_1 + \text{area}_2 + \text{area}_3 + \text{area}_4 + \text{area}_5 = (5.0 \times 10^1 \text{ mi/h})(5.0 \times 10^1 \text{ s}) + (5.0 \times 10^1 \text{ mi/h})(5.0 \times 10^1 \text{ s}) + (1.6 \times 10^2 \text{ mi/h})(1.0 \times 10^2 \text{ s}) + \frac{1}{2}(5.0 \times 10^1 \text{ s})(1.0 \times 10^2 \text{ mi/h}) + \frac{1}{2}(1.0 \times 10^2 \text{ s})(1.7 \times 10^2 \text{ mi/h} - 1.6 \times 10^2 \text{ mi/h}) = 2.4 \times 10^4 \text{ (mi/h)s}
\]

Convert units to miles by converting hours to seconds:

\[
\Delta x_{0 \rightarrow 200} = 2.4 \times 10^4 \text{ mi/s} \frac{1 \text{ h}}{3600 \text{ s}} = 6.7 \text{ mi}
\]

(d) Find the average acceleration from 200 s to 300 s, and find the displacement. The slope of the green line is the average acceleration from 200 s to 300 s (Fig. 2.19b):

\[
\bar{a} = \text{slope} = \frac{\Delta v}{\Delta t} = \frac{(1.0 \times 10^1 - 1.7 \times 10^2) \text{ mi/h}}{1.0 \times 10^2 \text{ s}} = -1.6 \text{ (mi/h)/s}
\]

Solution

(a) Describe the motion. From about −50 s to 50 s, the Acela cruises at a constant velocity in the +x-direction. Then the train accelerates in the +x-direction from 50 s to 200 s, reaching a top speed of about 170 mi/h, whereupon it brakes to rest at 350 s and reverses, steadily gaining speed in the −x-direction.

(b) Find the peak acceleration.

Calculate the slope of the steepest tangent line, which connects the points (50 s, 50 mi/h) and (100 s, 150 mi/h) (the light blue line in Figure 2.19b):

\[
a = \text{slope} = \frac{\Delta v}{\Delta t} = \frac{(1.5 \times 10^2 - 5.0 \times 10^1) \text{ mi/h}}{(1.0 \times 10^2 - 5.0 \times 10^1) \text{ s}} = 2.0 \text{ (mi/h)/s}
\]

(c) Find the displacement between 0 s and 200 s. Using triangles and rectangles, approximate the area in Figure 2.19c:

\[
\Delta x_{0 \rightarrow 200} = \text{area}_1 + \text{area}_2 + \text{area}_3 + \text{area}_4 + \text{area}_5 = (5.0 \times 10^1 \text{ mi/h})(5.0 \times 10^1 \text{ s}) + (5.0 \times 10^1 \text{ mi/h})(5.0 \times 10^1 \text{ s}) + (1.6 \times 10^2 \text{ mi/h})(1.0 \times 10^2 \text{ s}) + \frac{1}{2}(5.0 \times 10^1 \text{ s})(1.0 \times 10^2 \text{ mi/h}) + \frac{1}{2}(1.0 \times 10^2 \text{ s})(1.7 \times 10^2 \text{ mi/h} - 1.6 \times 10^2 \text{ mi/h}) = 2.4 \times 10^4 \text{ (mi/h)s}
\]

Convert units to miles by converting hours to seconds:

\[
\Delta x_{0 \rightarrow 200} = 2.4 \times 10^4 \text{ mi/s} \frac{1 \text{ h}}{3600 \text{ s}} = 6.7 \text{ mi}
\]

(d) Find the average acceleration from 200 s to 300 s, and find the displacement. The slope of the green line is the average acceleration from 200 s to 300 s (Fig. 2.19b):

\[
\bar{a} = \text{slope} = \frac{\Delta v}{\Delta t} = \frac{(1.0 \times 10^1 - 1.7 \times 10^2) \text{ mi/h}}{1.0 \times 10^2 \text{ s}} = -1.6 \text{ (mi/h)/s}
\]
The displacement from 200 s to 300 s is equal to area 5, which is the area of a triangle plus the area of a very narrow rectangle beneath the triangle:

\[
\Delta x_{200 \to 300} = \frac{1}{2}(1.0 \times 10^2 \text{ s})(1.7 \times 10^2 - 1.0 \times 10^1) \text{ mi/h} + (1.0 \times 10^1 \text{ mi/h})(1.0 \times 10^2 \text{ s}) = 9.0 \times 10^2 \text{ mi/h}(\text{s}) = 2.5 \text{ mi}
\]

(e) Find the total displacement from 0 s to 400 s.

The total displacement is the sum of all the individual displacements. We still need to calculate the displacements for the time intervals from 300 s to 350 s and from 350 s to 400 s. The latter is negative because it's below the time axis.

Find the total displacement by summing the parts:

\[
\begin{align*}
\Delta x_{300 \to 350} &= \frac{1}{2}(5.0 \times 10^1 \text{ s})(1.0 \times 10^1 \text{ mi/h}) = 2.5 \times 10^2 \text{ mi/h}(\text{s}) \\
\Delta x_{350 \to 400} &= \frac{1}{2}(5.0 \times 10^1 \text{ s})(-5.0 \times 10^1 \text{ mi/h}) = -1.3 \times 10^2 \text{ mi/h}(\text{s}) \\
\Delta x_0 \to 400 &= (2.4 \times 10^4 + 9.0 \times 10^3 + 2.5 \times 10^2 - 1.3 \times 10^3) \text{ mi/h}(\text{s}) = 8.9 \text{ mi}
\end{align*}
\]

Remarks There are a number of ways to find the approximate area under a graph. Choice of technique is a personal preference.

QUESTION 2.7
According to the graph in Figure 2.19a, at what different times is the acceleration zero?

EXERCISE 2.7
Suppose the velocity vs. time graph of another train is given in Figure 2.19d. Find (a) the maximum instantaneous acceleration and (b) the total displacement in the interval from 0 s to 4.00 \times 10^2 s.

Answers (a) 1.0 (mi/h)/s (b) 4.7 mi
2.6 FREELY FALLING OBJECTS

When air resistance is negligible, all objects dropped under the influence of gravity near Earth's surface fall toward Earth with the same constant acceleration. This idea may seem obvious today, but it wasn’t until about 1600 that it was accepted. Prior to that time, the teachings of the great philosopher Aristotle (384–322 B.C.) had held that heavier objects fell faster than lighter ones.

According to legend, Galileo discovered the law of falling objects by observing that two different weights dropped simultaneously from the Leaning Tower of Pisa hit the ground at approximately the same time. Although it’s unlikely that this particular experiment was carried out, we know that Galileo performed many systematic experiments with objects moving on inclined planes. In his experiments he rolled balls down a slight incline and measured the distances they covered in successive time intervals. The purpose of the incline was to reduce the acceleration and enable Galileo to make accurate measurements of the intervals. (Some people refer to this experiment as “diluting gravity.”) By gradually increasing the slope of the incline he was finally able to draw mathematical conclusions about freely falling objects, because a falling ball is equivalent to a ball going down a vertical incline. Galileo’s achievements in the science of mechanics paved the way for Newton in his development of the laws of motion, which we will study in Chapter 4.

Try the following experiment: Drop a hammer and a feather simultaneously from the same height. The hammer hits the floor first because air drag has a greater effect on the much lighter feather. On August 2, 1971, this same experiment was conducted on the Moon by astronaut David Scott, and the hammer and feather fell with exactly the same acceleration, as expected, hitting the lunar surface at the same time. In the idealized case where air resistance is negligible, such motion is called free fall.

The expression freely falling object doesn’t necessarily refer to an object dropped from rest. A freely falling object is any object moving freely under the influence of gravity alone, regardless of its initial motion. Objects thrown upward or downward and those released from rest are all considered freely falling.

We denote the magnitude of the free-fall acceleration by the symbol \(g \). The value of \(g \) decreases with increasing altitude, and varies slightly with latitude as well. At Earth’s surface, the value of \(g \) is approximately 9.80 m/s\(^2\). Unless stated otherwise, we will use this value for \(g \) in doing calculations. For quick estimates, use \(g \approx 10 \text{ m/s}^2 \).

If we neglect air resistance and assume that the free-fall acceleration doesn’t vary with altitude over short vertical distances, then the motion of a freely falling object is the same as motion in one dimension under constant acceleration. This means that the kinematics equations developed in Section 2.6 can be applied. It’s conventional to define “up” as the \(+\) y-direction and to use \(y \) as the position variable. In that case the acceleration is \(a = -g = -9.80 \text{ m/s}^2 \). In Chapter 7, we study the variation in \(g \) with altitude.

QUICK QUIZ 2.6 A tennis player on serve tosses a ball straight up. While the ball is in free fall, does its acceleration (a) increase, (b) decrease, (c) increase and then decrease, (d) decrease and then increase, or (e) remain constant?

QUICK QUIZ 2.7 As the tennis ball of Quick Quiz 2.6 travels through the air, does its speed (a) increase, (b) decrease, (c) decrease and then increase, (d) increase and then decrease, or (e) remain the same?

QUICK QUIZ 2.8 A skydiver jumps out of a hovering helicopter. A few seconds later, another skydiver jumps out, so they both fall along the same vertical line relative to the helicopter. Both skydivers fall with the same acceleration. Does the vertical distance between them (a) increase, (b) decrease, or (c) stay the same? Does the difference in their velocities (d) increase, (e) decrease, or (f) stay the same? (Assume \(g \) is constant.)
EXAMPLE 2.8 Not a Bad Throw for a Rookie!

Goal Apply the kinematic equations to a freely falling object with a nonzero initial velocity.

Problem A stone is thrown from the top of a building with an initial velocity of 20.0 m/s straight upward, at an initial height of 50.0 m above the ground. The stone just misses the edge of the roof on its way down, as shown in Figure 2.20. Determine (a) the time needed for the stone to reach its maximum height, (b) the maximum height, (c) the time needed for the stone to return to the height from which it was thrown and the velocity of the stone at that instant, (d) the time needed for the stone to reach the ground, and (e) the velocity and position of the stone at \(t = 5.00 \) s.

Strategy The diagram in Figure 2.20 establishes a coordinate system with \(y_0 = 0 \) at the level at which the stone is released from the thrower’s hand, with \(y \) positive upward. Write the velocity and position kinematic equations for the stone, and substitute the given information. All the answers come from these two equations by using simple algebra or by just substituting the time. In part (a), for example, the stone comes to rest for an instant at its maximum height, so set \(v = 0 \) at this point and solve for time. Then substitute the time into the displacement equation, obtaining the maximum height.

Solution

(a) Find the time when the stone reaches its maximum height.

Write the velocity and position kinematic equations:

\[
\begin{align*}
v & = at + v_0 \\
\Delta y & = y - y_0 = v_0 t + \frac{1}{2} at^2
\end{align*}
\]

Substitute \(a = -9.80 \text{ m/s}^2 \), \(v_0 = 20.0 \text{ m/s} \), and \(y_0 = 0 \) into the preceding two equations:

\[
\begin{align*}
v & = (-9.80 \text{ m/s}^2)t + 20.0 \text{ m/s} \\
y & = (20.0 \text{ m/s})t - (4.90 \text{ m/s}^2)t^2
\end{align*}
\]

Substitute \(v = 0 \), the velocity at maximum height, into Equation (1) and solve for time:

\[
t = \frac{-20.0 \text{ m/s}}{-9.80 \text{ m/s}^2} = 2.04 \text{ s}
\]

(b) Determine the stone’s maximum height.

Substitute the time \(t = 2.04 \text{ s} \) into Equation (2):

\[
y_{\text{max}} = (20.0 \text{ m/s})(2.04 \text{ s}) - (4.90 \text{ m/s}^2)(2.04 \text{ s})^2 = 20.4 \text{ m}
\]
(c) Find the time the stone takes to return to its initial position, and find the velocity of the stone at that time.
Set \(y = 0 \) in Equation (2) and solve for \(t \):
\[
0 = (20.0 \text{ m/s})t - (4.90 \text{ m/s}^2)t^2
\]
\[
= t(20.0 \text{ m/s} - 4.90 \text{ m/s}^2t)
\]
\[
t = 4.08 \text{ s}
\]
Substitute the time into Equation (1) to get the velocity:
\[
v = 20.0 \text{ m/s} + (-9.80 \text{ m/s}^2)(4.08 \text{ s}) = -20.0 \text{ m/s}
\]

(d) Find the time required for the stone to reach the ground.
In Equation (2), set \(y = -50.0 \text{ m} \):
\[
-50.0 \text{ m} = (20.0 \text{ m/s})t - (4.90 \text{ m/s}^2)t^2
\]
Apply the quadratic formula and take the positive root:
\[
t = 5.83 \text{ s}
\]

(e) Find the velocity and position of the stone at \(t = 5.00 \text{ s} \).
Substitute values into Equations (1) and (2):
\[
v = (20.0 \text{ m/s})(5.00 \text{ s}) + (-9.80 \text{ m/s}^2)(5.00 \text{ s}) = -29.0 \text{ m/s}
\]
\[
y = (20.0 \text{ m/s})(5.00 \text{ s}) - (4.90 \text{ m/s}^2)(5.00 \text{ s})^2 = -22.5 \text{ m}
\]

Remarks Notice how everything follows from the two kinematic equations. Once they are written down and the constants correctly identified as in Equations (1) and (2), the rest is relatively easy. If the stone were thrown downward, the initial velocity would have been negative.

QUESTION 2.8
How would the answer to part (b), the maximum height, change if the person throwing the ball jumped upward at the instant he released the ball?

EXERCISE 2.8
A projectile is launched straight up at 60.0 m/s from a height of 80.0 m, at the edge of a sheer cliff. The projectile falls, just missing the cliff and hitting the ground below. Find (a) the maximum height of the projectile above the point of firing, (b) the time it takes to hit the ground at the base of the cliff, and (c) its velocity at impact.

Answers
(a) 184 m (b) 13.5 s (c) 72.3 m/s

EXAMPLE 2.9 Maximum Height Derived

Goal Find the maximum height of a thrown projectile using symbols.

Problem Refer to Example 2.8. Use symbolic manipulation to find (a) the time \(t_{\text{max}} \) it takes the ball to reach its maximum height and (b) an expression for the maximum height that doesn't depend on time. Answers should be expressed in terms of the quantities \(v_0, g, \) and \(y_0 \) only.

Strategy When the ball reaches its maximum height, its velocity is zero, so for part (a) solve the kinematics velocity equation for time \(t \) and set \(v = 0 \). For part (b), substitute the expression for time found in part (a) into the displacement equation, solving it for the maximum height.

Solution
(a) Find the time it takes the ball to reach its maximum height.

Write the velocity kinematics equation:
\[
v = at + v_0
\]
Move \(v_0 \) to the left side of the equation:
\[
v - v_0 = at
\]
Divide both sides by \(a \):
\[
\frac{v - v_0}{a} = \frac{at}{a} = t
\]
Turn the equation around so that \(t \) is on the left and substitute \(v = 0 \), corresponding to the velocity at maximum height:

\[
 t = \frac{-v_0}{a} \tag{1}
\]

Replace \(t \) by \(t_{\text{max}} \) and substitute \(\frac{v_0}{H_1} \), corresponding to the velocity at maximum height:

\[
 t_{\text{max}} = \frac{v_0}{g} \tag{2}
\]

(b) Find the maximum height.

Write the equation for the position \(y \) at any time:

\[
y = y_0 + v_0 t + \frac{1}{2} a t^2
\]

Substitute \(t = -\frac{v_0}{a} \), which corresponds to the time it takes to reach \(y_{\text{max}} \), the maximum height:

\[
y_{\text{max}} = y_0 + v_0 \left(-\frac{v_0}{a} \right) + \frac{1}{2} a \left(-\frac{v_0}{a} \right)^2
\]

Combine the last two terms and substitute \(a = -g \):

\[
y_{\text{max}} = y_0 + \frac{v_0^2}{2g} \tag{3}
\]

Remarks Notice that \(g = +9.8 \text{ m/s}^2 \), so the second term is positive overall. Equations (1)–(3) are much more useful than a numerical answer because the effect of changing one value can be seen immediately. For example, doubling the initial velocity \(v_0 \) quadruples the displacement above the point of release. Notice also that \(y_{\text{max}} \) could be obtained more readily from the time-independent equation, \(v^2 - v_0^2 = 2a \Delta y \).

QUESTION 2.9
By what factor would the maximum displacement above the rooftop be increased if the building were transported to the Moon, where \(a = -0.162 g \)?

EXERCISE 2.9
(a) Using symbols, find the time \(t_E \) it takes for a ball to reach the ground on Earth if released from rest at height \(y_0 \).
(b) In terms of \(t_E \), how much time \(t_M \) would be required if the building were on Mars, where \(a = -0.385 g \)?

Answers (a) \(t_E = \sqrt{\frac{2y_0}{g}} \) (b) \(t_M = 1.61 t_E \)

EXAMPLE 2.10 A Rocket Goes Ballistic

Goal Solve a problem involving a powered ascent followed by free-fall motion.

Problem A rocket moves straight upward, starting from rest with an acceleration of \(+29.4 \text{ m/s}^2\). It runs out of fuel at the end of 4.00 s and continues to coast upward, reaching a maximum height before falling back to Earth. (a) Find the rocket’s velocity and position at the end of 4.00 s. (b) Find the maximum height the rocket reaches. (c) Find the velocity the instant before the rocket crashes on the ground.

Strategy Take \(y = 0 \) at the launch point and \(y \) positive upward, as in Figure 2.21. The problem consists of two phases. In phase 1 the rocket has a net upward acceleration of \(29.4 \text{ m/s}^2 \), and we can use the kinematic equations with constant acceleration \(a \) to find the height and velocity of the rocket at the end of phase 1, when the fuel is burned up. In phase 2 the rocket is in free fall and has an acceleration of \(-9.80 \text{ m/s}^2 \), with initial velocity and position given by the results of phase 1. Apply the kinematic equations for free fall.
Solution

(a) Phase 1: Find the rocket’s velocity and position after 4.00 s.

Write the velocity and position kinematic equations:

\[v = v_0 + at \]
\[\Delta y = y - y_0 = v_0 t + \frac{1}{2} at^2 \]

Adapt these equations to phase 1, substituting \(a = 29.4 \text{ m/s}^2 \), \(v_0 = 0 \), and \(y_0 = 0 \):

\[v = (29.4 \text{ m/s}^2)t \]
\[y = \frac{1}{2}(29.4 \text{ m/s}^2)t^2 = (14.7 \text{ m/s}^2)t^2 \]

Substitute \(t = 4.00 \text{ s} \) into Equations (3) and (4) to find the rocket’s velocity \(v_b \) and position \(y_b \) at the time of burnout. These will be called \(v_b \) and \(y_b \), respectively.

\[v_b = 118 \text{ m/s} \] and \(y_b = 235 \text{ m} \)

(b) Phase 2: Find the maximum height the rocket attains.

Adapt Equations (1) and (2) to phase 2, substituting \(a = -9.8 \text{ m/s}^2 \), \(v_0 = v_b = 118 \text{ m/s} \), and \(y_0 = y_b = 235 \text{ m} \):

\[v = (-9.8 \text{ m/s}^2)t + 118 \text{ m/s} \]
\[y = 235 \text{ m} + (118 \text{ m/s})t - (4.90 \text{ m/s}^2)t^2 \]

Substitute \(v = 0 \) (the rocket’s velocity at maximum height) in Equation (5) to get the time it takes the rocket to reach its maximum height:

\[0 = (-9.8 \text{ m/s}^2)t + 118 \text{ m/s} \quad \rightarrow \quad t = \frac{118 \text{ m/s}}{9.80 \text{ m/s}^2} = 12.0 \text{ s} \]

Substitute this value of \(t \) into Equation (6) to find the rocket’s maximum height:

\[y_{\text{max}} = 235 \text{ m} + (118 \text{ m/s})(12.0 \text{ s}) - (4.90 \text{ m/s}^2)(12.0 \text{ s})^2 \]
\[= 945 \text{ m} \]

(c) Phase 2: Find the velocity of the rocket just prior to impact.

Find the time to impact by setting \(y = 0 \) in Equation (6) and using the quadratic formula:

\[0 = 235 \text{ m} + (118 \text{ m/s})t - (4.90 \text{ m/s}^2)t^2 \]
\[t = 25.9 \text{ s} \]

Substitute this value of \(t \) into Equation (5):

\[v = (-9.80 \text{ m/s}^2)(25.9 \text{ s}) + 118 \text{ m/s} = -136 \text{ m/s} \]

Remarks You may think that it is more natural to break this problem into three phases, with the second phase ending at the maximum height and the third phase a free fall from maximum height to the ground. Although this approach gives the correct answer, it’s an unnecessary complication. Two phases are sufficient, one for each different acceleration.

QUESTION 2.10
If, instead, some fuel remains, at what height should the engines be fired again to brake the rocket’s fall and allow a perfectly soft landing? (Assume the same acceleration as during the initial ascent.)

EXERCISE 2.10
An experimental rocket designed to land upright falls freely from a height of \(2.00 \times 10^2 \text{ m} \), starting at rest. At a height of 80.0 m, the rocket’s engines start and provide constant upward acceleration until the rocket lands. What acceleration is required if the speed on touchdown is to be zero? (Neglect air resistance.)

Answer 14.7 m/s²
SUMMARY

2.1 Displacement
The displacement of an object moving along the x-axis is defined as the change in position of the object,
\[\Delta x = x_f - x_i \] \hspace{1cm} \text{[2.1]} \]
where \(x_i \) is the initial position of the object and \(x_f \) is its final position.

A vector quantity is characterized by both a magnitude and a direction. A scalar quantity has a magnitude only.

2.2 Velocity
The average speed of an object is given by
\[\text{Average speed} = \frac{\text{total distance}}{\text{total time}} \]
The average velocity \(\bar{v} \) during a time interval \(\Delta t \) is the displacement \(\Delta x \) divided by \(\Delta t \).
\[\bar{v} = \frac{\Delta x}{\Delta t} = \frac{x_f - x_i}{t_f - t_i} \] \hspace{1cm} \text{[2.2]} \]
The average velocity is equal to the slope of the straight line joining the initial and final points on a graph of the position of the object versus time.

The slope of the line tangent to the position vs. time curve at some point is equal to the instantaneous velocity at that time. The instantaneous speed of an object is defined as the magnitude of the instantaneous velocity.

2.3 Acceleration
The average acceleration \(\bar{a} \) of an object undergoing a change in velocity \(\Delta v \) during a time interval \(\Delta t \) is
\[\bar{a} = \frac{\Delta v}{\Delta t} = \frac{v_f - v_i}{t_f - t_i} \] \hspace{1cm} \text{[2.4]} \]
The instantaneous acceleration of an object at a certain time equals the slope of a velocity vs. time graph at that instant.

2.5 One-Dimensional Motion with Constant Acceleration
The most useful equations that describe the motion of an object moving with constant acceleration along the x-axis are as follows:
\[v = v_i + at \] \hspace{1cm} \text{[2.6]} \]
\[\Delta x = v_i t + \frac{1}{2}at^2 \] \hspace{1cm} \text{[2.9]} \]
\[v^2 = v_i^2 + 2a\Delta x \] \hspace{1cm} \text{[2.10]} \]
All problems can be solved with the first two equations alone, the last being convenient when time doesn’t explicitly enter the problem. After the constants are properly identified, most problems reduce to one or two equations in as many unknowns.

2.6 Freely Falling Objects
An object falling in the presence of Earth’s gravity exhibits a free-fall acceleration directed toward Earth’s center. If air friction is neglected and if the altitude of the falling object is small compared with Earth’s radius, then we can assume that the free-fall acceleration \(g = 9.8 \, \text{m/s}^2 \) is constant over the range of motion. Equations 2.6, 2.9, and 2.10 apply, with \(a = -g \).

FOR ADDITIONAL STUDENT RESOURCES, GO TO WWW.SERWAYPHYSICS.COM

MULTIPLE-CHOICE QUESTIONS

1. An arrow is shot straight up in the air at an initial speed of 15.0 m/s. After how much time is the arrow heading downward at a speed of 8.00 m/s? (a) 0.714 s (b) 1.24 s (c) 1.87 s (d) 2.35 s (e) 3.22 s

2. A cannon shell is fired straight up in the air at an initial speed of 225 m/s. After how much time is the shell at a height of 6.20 m and heading downward at a speed of 8.00 m/s? (a) 0.714 s (b) 1.24 s (c) 1.87 s (d) 2.35 s (e) 3.22 s

3. When applying the equations of kinematics for an object moving in one dimension, which of the following statements must be true? (a) The velocity of the object must remain constant. (b) The acceleration of the object must remain constant. (c) The velocity of the object must increase with time. (d) The position of the object must increase with time. (e) The velocity of the object must always be in the same direction as its acceleration.

4. A juggler throws a bowling pin straight up in the air. After the pin leaves his hand and while it is in the air, which statement is true? (a) The velocity of the pin is always in the same direction as its acceleration. (b) The velocity of the pin is never in the same direction as its acceleration. (c) The acceleration of the pin is zero. (d) The velocity of the pin is opposite its acceleration on the way up. (e) The velocity of the pin is in the same direction as its acceleration on the way up.

5. A racing car starts from rest and reaches a final speed \(v \) in a time \(t \). If the acceleration of the car is constant during this time, which of the following statements must be true? (a) The car travels a distance \(vt \). (b) The average speed of the car is \(v/2 \). (c) The acceleration of the car is \(v/t \). (d) The velocity of the car remains constant. (e) None of these

6. A pebble is dropped from rest from the top of a tall cliff and falls 4.9 m after 1.0 s has elapsed. How much farther does it drop in the next 2.0 seconds? (a) 9.8 m (b) 19.6 m (c) 39 m (d) 44 m (e) 27 m

7. An object moves along the x-axis, its position measured at each instant of time. The data are organized into an accurate graph of \(x \) vs. \(t \). Which of the following quantities cannot be obtained from this graph? (a) the velocity at any instant (b) the acceleration at any instant (c) the displacement during some time interval (d) the average...
velocity during some time interval (e) the speed of the particle at any instant

8. People become uncomfortable in an elevator if it accelerates from rest at a rate such that it attains a speed of about 6 m/s after descending ten stories (about 30 m). What is the approximate magnitude of its acceleration? (Choose the closest answer.) (a) 10 m/s² (b) 0.3 m/s² (c) 0.6 m/s² (d) 1 m/s² (e) 0.8 m/s²

9. Races are timed to an accuracy of 1/1 000 of a second. What distance could a person rollerblading at a speed of 8.5 m/s travel in that period of time? (a) 85 mm (b) 85 cm (c) 8.5 m (d) 8.5 mm (e) 8.5 km

10. A student at the top of a building throws a red ball upward with speed \(v_0 \) and then throws a blue ball downward with the same initial speed \(v_0 \). Immediately before the two balls reach the ground, which of the following statements are true? (Choose all correct statements; neglect air friction.) (a) The speed of the red ball is less than that of the blue ball. (b) The speed of the red ball is greater than that of the blue ball. (c) Their velocities are equal. (d) The speed of each ball is greater than \(v_0 \). (e) The acceleration of the blue ball is greater than that of the red ball.

11. A rock is thrown downward from the top of a 40.0 m tower with an initial speed of 12 m/s. Assuming negligible air resistance, what is the speed of the rock just before hitting the ground? (a) 28 m/s (b) 30 m/s (c) 56 m/s (d) 784 m/s (e) More information is needed.

12. A ball is thrown straight up in the air. For which situation are both the instantaneous velocity and the acceleration zero? (a) on the way up (b) at the top of the flight path (c) on the way down (d) halfway up and halfway down (e) none of these

CONCEPTUAL QUESTIONS

1. If the velocity of a particle is nonzero, can the particle’s acceleration be zero? Explain.

2. If the velocity of a particle is zero, can the particle’s acceleration be zero? Explain.

3. If a car is traveling eastward, can its acceleration be westward? Explain.

4. Can the equations of kinematics be used in a situation where the acceleration varies with time? Can they be used when the acceleration is zero?

5. If the average velocity of an object is zero in some time interval, what can you say about the displacement of the object during that interval?

6. Figure CQ2.6 shows strobe photographs taken of a disk moving from left to right under different conditions. The time interval between images is constant. Taking the direction to the right to be positive, describe the motion of the disk in each case. For which case is

- (a) the acceleration positive? (b) the acceleration negative? (c) the velocity constant?

7. Can the instantaneous velocity of an object at an instant of time ever be greater in magnitude than the average velocity over a time interval containing that instant? Can it ever be less?

8. A ball is thrown vertically upward. (a) What are its velocity and acceleration when it reaches its maximum altitude? (b) What is the acceleration of the ball just before it hits the ground?

9. Consider the following combinations of signs and values for the velocity and acceleration of a particle with respect to a one-dimensional \(x \)-axis:

<table>
<thead>
<tr>
<th>Velocity</th>
<th>Acceleration</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. Positive</td>
<td>Positive</td>
</tr>
<tr>
<td>b. Positive</td>
<td>Negative</td>
</tr>
<tr>
<td>c. Positive</td>
<td>Zero</td>
</tr>
<tr>
<td>d. Negative</td>
<td>Positive</td>
</tr>
<tr>
<td>e. Negative</td>
<td>Negative</td>
</tr>
<tr>
<td>f. Negative</td>
<td>Zero</td>
</tr>
<tr>
<td>g. Zero</td>
<td>Positive</td>
</tr>
<tr>
<td>h. Zero</td>
<td>Negative</td>
</tr>
</tbody>
</table>

Describe what the particle is doing in each case and give a real-life example for an automobile on an east–west one-dimensional axis, with east considered the positive direction.

10. A ball rolls in a straight line along the horizontal direction. Using motion diagrams (or multiflash photographs), describe the velocity and acceleration of the ball for each of the following situations: (a) The ball moves to the right at a constant speed. (b) The ball moves from right to left and continually slows down. (c) The ball moves from right to left and continually speeds up. (d) The ball moves to the right, first speeding up at a constant rate and then slowing down at a constant rate.
The Problems for this chapter may be assigned online at WebAssign.

1. The speed of a nerve impulse in the human body is about 100 m/s. If you accidentally stub your toe in the dark, estimate the time it takes the nerve impulse to travel to your brain.

2. Light travels at a speed of about 3×10^8 m/s. How many miles does a pulse of light travel in a time interval of 0.1 s, which is about the blink of an eye? Compare this distance to the diameter of Earth.

3. A person travels by car from one city to another with different constant speeds between pairs of cities. She drives for 30.0 min at 80.0 km/h, 12.0 min at 100 km/h, and 45.0 min at 40.0 km/h and spends 15.0 min eating lunch and buying gas. (a) Determine the average speed for the trip. (b) Determine the distance between the initial and final cities along the route.

4. (a) Sand dunes on a desert island move as sand is swept up the windward side to settle in the leeward side. Such “walking” dunes have been known to travel 20 feet in a year and can travel as much as 100 feet per year in particularly windy times. Calculate the average speed in each case in meters per second. (b) Fingernails grow at the rate of drifting continents, about 10 mm/yr. Approximately how long did it take for North America to separate from Europe, a distance of about 3,000 mi?

5. Two boats start together and race across a 60-km-wide lake and back. Boat A goes across at 60 km/h and returns at 60 km/h. Boat B goes across at 30 km/h, and its crew, realizing how far behind it is getting, returns at 90 km/h. Turnaround times are negligible, and the boat that completes the round trip first wins. (a) Which boat wins and by how much? (Or is it a tie?) (b) What is the average velocity of the winning boat?

6. A graph of position versus time for a certain particle moving along the x-axis is shown in Figure P2.6. Find the average velocity in the time intervals from (a) 0 to 2.00 s, (b) 0 to 4.00 s, (c) 2.00 s to 4.00 s, (d) 4.00 s to 7.00 s, and (e) 0 to 8.00 s.

7. A motorist drives north for 35.0 minutes at 85.0 km/h and then stops for 15.0 minutes. He then continues north, traveling 130 km in 2.00 h. (a) What is his total displacement? (b) What is his average velocity?

8. A tennis player moves in a straight-line path as shown in Figure P2.8. Find her average velocity in the time intervals from (a) 0 to 1.0 s, (b) 0 to 4.0 s, (c) 1.0 s to 5.0 s, and (d) 0 to 5.0 s.

9. Find the instantaneous velocities of the tennis player of Figure P2.8 at (a) 0.50 s, (b) 2.0 s, (c) 3.0 s, and (d) 4.5 s.

10. Two cars travel in the same direction along a straight highway, one at a constant speed of 55 mi/h and the other at 70 mi/h. (a) Assuming they start at the same point, how much sooner does the faster car arrive at a destination 10 mi away? (b) How far must the faster car travel before it has a 15-min lead on the slower car?

11. If the average speed of an orbiting space shuttle is 19,800 mi/h, determine the time required for it to circle Earth. Make sure you consider that the shuttle is orbiting about 122 mi above Earth’s surface and assume that Earth’s radius is 3,963 miles.

12. An athlete swims the length L of a pool in a time t_1 and makes the return trip to the starting position in a time t_2. If she is swimming initially in the positive x-direction, determine her average velocities symbolically in (a) the first half of the swim, (b) the second half of the swim, and (c) the round trip. (d) What is her average speed for the round trip?

13. A person takes a trip, driving with a constant speed of 89.5 km/h, except for a 22.0-min rest stop. If the person’s average speed is 77.8 km/h, how much time is spent on the trip and how far does the person travel?

14. A tortoise can run with a speed of 0.10 m/s, and a hare can run 20 times as fast. In a race, they both start at the same time, but the hare stops to rest for 2.0 minutes. The tortoise wins by a shell (20 cm). (a) How long does the race take? (b) What is the length of the race?

15. To qualify for the finals in a racing event, a race car must achieve an average speed of 250 km/h on a track with a total length of 1,600 m. If a particular car covers the first half of the track at an average speed of 230 km/h, what minimum average speed must it have in the second half of the event in order to qualify?
One athlete in a race running on a long, straight track with a constant speed \(v_1 \) is a distance \(d \) behind a second athlete running with a constant speed \(v_2 \). (a) Under what circumstances is the first athlete able to overtake the second athlete? (b) Find the time \(t \) it takes the first athlete to overtake the second athlete, in terms of \(d, v_1, \) and \(v_2 \). (c) At what minimum distance \(d_L \) from the leading athlete must the finish line be located so that the trailing athlete can at least tie for first place? Express \(d_L \) in terms of \(d, v_1, \) and \(v_2 \) by using the result of part (b).

A graph of position versus time for a certain particle moving along the \(x \)-axis is shown in Figure P2.6. Find the instantaneous velocity at the instants (a) \(t = 1.00 \) s, (b) \(t = 3.00 \) s, (c) \(t = 4.50 \) s, and (d) \(t = 7.50 \) s.

A race car moves such that its position fits the relationship
\[
x = (5.0 \text{ m/s})t + (0.75 \text{ m/s}^2)t^3
\]
where \(x \) is measured in meters and \(t \) in seconds. (a) Plot a graph of the car’s position versus time. (b) Determine the instantaneous velocity of the car at \(t = 4.0 \) s, using time intervals of 0.40 s, 0.20 s, and 0.10 s. (c) Compare the average velocity during the first 4.0 s with the results of part (b).

Runner A is initially 4.0 mi west of a flagpole and is running with a constant velocity of 6.0 mi/h due east. Runner B is initially 3.0 mi east of the flagpole and is running with a constant velocity of 5.0 mi/h due west. How far are the runners from the flagpole when they meet?

SECTION 2.3 ACCELERATION

Assume a canister in a straight tube moves with a constant acceleration of \(-4.00 \text{ m/s}^2\) and has a velocity of 15.0 m/s at \(t = 0 \). (a) What is its velocity at \(t = 1.00 \) s? (b) At \(t = 2.00 \) s? (c) At \(t = 2.50 \) s? (d) At \(t = 4.00 \) s? (e) Describe the shape of the canister’s velocity versus time graph. (f) What two things must be known at a given time to predict the canister’s velocity at any later time?

Secretariat ran the Kentucky Derby with times of 25.2 s, 24.0 s, 23.8 s, 25.2 s, and 25.8 s for the quarter mile. (a) Find his average speed during each quarter-mile segment in ft/s. (b) Assuming that Secretariat’s instantaneous speed at the finish line was the same as his average speed during the final quarter mile, find his average acceleration for the entire race in \(\text{ft/s}^2 \). (Hint: Recall that horses in the Derby start from rest.)

The average person passes out at an acceleration of 7g (that is, seven times the gravitational acceleration on Earth). Suppose a car is designed to accelerate at this rate. How much time would be required for the car to accelerate from rest to 60.0 miles per hour? (The car would need rocket boosters!)

A certain car is capable of accelerating at a rate of 10.60 m/s\(^2\). How long does it take for this car to go from a speed of 55 mi/h to a speed of 60 mi/h?

The velocity vs. time graph for an object moving along a straight path is shown in Figure P2.24. (a) Find the average acceleration of the object during the time intervals 0 to 5.0 s, 5.0 s to 15 s, and 0 to 20 s. (b) Find the instantaneous acceleration at 2.0 s, 10 s, and 18 s.

A steam catapult launches a jet aircraft from the aircraft carrier John C. Stennis, giving it a speed of 175 mi/h in 2.50 s. (a) Find the average acceleration of the plane. (b) Assuming the acceleration is constant, find the distance the plane moves.

SECTION 2.5 ONE-DIMENSIONAL MOTION WITH CONSTANT ACCELERATION

A car is traveling due east at 25.0 m/s at some instant. (a) If its constant acceleration is 0.750 m/s\(^2\) due east, find its velocity after 8.50 s have elapsed. (b) If its constant acceleration is 0.750 m/s\(^2\) due west, find its velocity after 8.50 s have elapsed.

A car traveling east at 40.0 m/s passes a trooper hiding at the roadside. The driver uniformly reduces his speed to 25.0 m/s in 3.50 s. (a) What is the magnitude and direction of the car’s acceleration as it slows down? (b) How far does the car travel in the 3.5-s time period?

In 1865 Jules Verne proposed sending men to the Moon by firing a space capsule from a 220-m-long cannon with final speed of 10.97 km/s. What would have been the unrealistically large acceleration experienced by the space travelers during their launch? (A human can stand an acceleration of \(15g\) for a short time.) Compare your answer with the free-fall acceleration, 9.80 m/s\(^2\).

A truck covers 40.0 m in 8.50 s while smoothly slowing down to a final velocity of 2.80 m/s. (a) Find the truck’s original speed. (b) Find its acceleration.

A speedboat increases its speed uniformly from \(v_i = 20.0 \text{ m/s} \) to \(v_f = 30.0 \text{ m/s} \) in a distance of \(2.00 \times 10^2 \text{ m} \). (a) Draw a coordinate system for this situation and label the relevant quantities, including vectors. (b) For the given information, what single equation is most appropriate for finding the acceleration? (c) Solve the equation selected in part (b) symbolically for the boat’s acceleration in terms of \(v_i, v_f, \) and \(\Delta x \). (d) Substitute given values, obtaining that acceleration. (e) Find the time it takes the boat to travel the given distance.

A Cessna aircraft has a liftoff speed of 120 km/h. (a) What minimum constant acceleration does the aircraft require if it is to be airborne after a takeoff run of 240 m? (b) How long does it take the aircraft to become airborne?

A truck on a straight road starts from rest and accelerates at 2.0 m/s\(^2\) until it reaches a speed of 20 m/s. Then the
In a test run, a certain car accelerates uniformly.

A jet plane lands with a speed of 100 m/s and can accelerate at a maximum rate of 7.40 m/s² as it comes to rest. (a) From the instant the plane touches the runway, what is the minimum time needed before it can come to rest? (b) Can this plane land on a small tropical island airport where the runway is 0.800 km long?

A car starts from rest and travels for 5.0 s with a uniform acceleration of 1.5 m/s². If the brakes are applied for 3.0 s, (a) how fast is the car going at the end of the braking period, and (b) how far has the car gone?

A car starts from rest and travels for 5.0 s with a uniform acceleration of 1.5 m/s². If the brakes are applied for 3.0 s, (a) how fast is the car going at the end of the braking period, and (b) how far has the car gone?

A car starts from rest and travels for 5.0 s with a uniform acceleration of 1.5 m/s². If the brakes are applied for 3.0 s, (a) how fast is the car going at the end of the braking period, and (b) how far has the car gone?

A car starts from rest and travels for 5.0 s with a uniform acceleration of 1.5 m/s². If the brakes are applied for 3.0 s, (a) how fast is the car going at the end of the braking period, and (b) how far has the car gone?

A train is traveling down a straight track at 20 m/s when it enters a one-lane tunnel. She then observes a slow-moving van 155 m ahead traveling at 5.00 m/s. Sue applies her brakes but can accelerate only at −2.00 m/s² because the road is wet. Will there be a collision? State how you decide. If yes, determine how far into the tunnel and at what time the collision occurs. If no, determine the distance of closest approach between Sue’s car and the van.

A record of travel along a straight path is as follows:

1. Start from rest with a constant acceleration of 2.77 m/s² for 15.0 s.
2. Maintain a constant velocity for the next 2.05 min.
3. Apply a constant negative acceleration of −9.47 m/s² for 4.39 s.

(a) What was the total displacement for the trip? (b) What were the average speeds for legs 1, 2, and 3 of the trip, as well as for the complete trip?

A train 400 m long is moving on a straight track with a constant speed of 100 m/s. (a) If friction is neglected, how high would an arrow launched at this speed rise if shot straight up? (b) How far would the arrow be in the air?

SECTION 2.6 FREELY FALLING OBJECTS

A ball is thrown vertically upward with a speed of 25.0 m/s. (a) How high does it rise? (b) How long does it take to reach its highest point? (c) How high does the ball take to hit the ground after it reaches its highest point? (d) What is its velocity when it returns to the level from which it started?

It is possible to shoot an arrow at a speed as high as 100 m/s. (a) If friction is neglected, how high would an arrow launched at this speed rise if shot straight up? (b) How long would the arrow be in the air?

A certain freely falling object requires 1.50 s to travel the last 30.0 m before it hits the ground. From what height above the ground did it fall?

An attacker at the base of a castle wall 3.65 m high throws a rock straight up with speed 7.40 m/s at a height of 1.55 m above the ground. (a) Will the rock reach the top of the wall? (b) If so, what is the rock’s speed at the top? If not, what initial speed must the rock have to reach the top? (c) Find the change in the speed of a rock thrown straight down from the top of the wall at an initial speed of 7.40 m/s and moving between the same two points. (d) Does the change in speed of the downward-moving rock agree with the magnitude of the speed change of the rock moving upward between the same elevations? Explain physically why or why not.
49. Traumatic brain injury such as concussion results when the head undergoes a very large acceleration. Generally, an acceleration greater than 1000 m/s² lasting for at least 1 ms will cause injury. Suppose a small child rolls off a bed that is 0.40 m above the floor. If the floor is hardwood, the child’s head is brought to rest in approximately 2.0 m/s. If the floor is carpeted, this stopping distance is increased to about 1.0 m. Calculate the magnitude and duration of the deceleration in both cases, to determine the risk of injury. Assume the child remains horizontal during the fall to the floor. Note that a more complicated fall could result in a head velocity greater or less than the speed you calculate.

50. A small mailbag is released from a helicopter that is descending steadily at 1.50 m/s. After 2.00 s, (a) what is the speed of the mailbag, and (b) how far is it below the helicopter? (c) What are your answers to parts (a) and (b) if the helicopter is rising steadily at 1.50 m/s²?

51. A tennis player tosses a tennis ball straight up and then catches it 2.0 s after it is released at the same height as the point of release. (a) What is the acceleration of the ball while it is in flight? (b) What is the velocity of the ball when it reaches its maximum height? Find (c) the initial velocity of the ball and (d) the maximum height it reaches.

52. A package is dropped from a helicopter that is descending steadily at a speed \(v_0 \). After \(t \) seconds have elapsed, (a) what is the speed of the package in terms of \(v_0, g, \) and \(t \)? (b) What distance \(d \) is it from the helicopter in terms of \(g \) and \(t \)? (c) What are the answers to parts (a) and (b) if the helicopter is rising steadily at the same speed?

53. A model rocket is launched straight upward with an initial speed of 50.0 m/s. It accelerates with a constant upward acceleration of 2.00 m/s² until its engines stop at an altitude of 150 m. (a) What can you say about the motion of the rocket after its engines stop? (b) What is the maximum height reached by the rocket? (c) How long after liftoff does the rocket reach its maximum height? (d) How long is the rocket in the air?

54. A parachutist with a camera descends in free fall at a speed of 10 m/s. The parachutist releases the camera at an altitude of 50 m. (a) How long does it take the camera to reach the ground? (b) What is the velocity of the camera just before it hits the ground?

ADDITIONAL PROBLEMS

55. A truck tractor pulls two trailers, one behind the other, at a constant speed of 100 km/h. It takes 0.600 s for the big rig to completely pass onto a bridge 400 m long. For what duration of time is all or part of the truck–trailer combination on the bridge?

56. A speedboat moving at 30.0 m/s approaches a no-wake buoy marker 100 m ahead. The pilot slows the boat with a constant acceleration of \(-3.50 \text{ m/s}^2\) by reducing the throttle. (a) How long does it take the boat to reach the buoy? (b) What is the velocity of the boat when it reaches the buoy?

57. A bullet is fired through a board 10.0 cm thick in such a way that the bullet’s line of motion is perpendicular to the face of the board. If the initial speed of the bullet is 400 m/s and it emerges from the other side of the board with a speed of 300 m/s, find (a) the acceleration of the bullet as it passes through the board and (b) the total time the bullet is in contact with the board.

58. An indestructible bullet 20.0 cm long is fired straight through a board that is 10.0 cm thick. The bullet strikes the board with a speed of 420 m/s and emerges with a speed of 280 m/s. (a) What is the average acceleration of the bullet through the board? (b) What is the total time that the bullet is in contact with the board? (c) What thickness of board (calculated to 0.1 cm) would it take to stop the bullet, assuming the acceleration through all boards is the same?

59. A student throws a set of keys vertically upward to his fraternity brother, who is in a window 4.00 m above. The brother’s outstretched hand catches the keys 1.50 s later. (a) With what initial velocity were the keys thrown? (b) What was the velocity of the keys just before they were caught?

60. A student throws a set of keys vertically upward to his fraternity brother, who is in a window a distance \(h \) above. The brother’s outstretched hand catches the keys on their way up a time \(t \) later. (a) With what initial velocity were the keys thrown? (b) What was the velocity of the keys just before they were caught? (Answers should be in terms of \(h, g, \) and \(t \))

61. It has been claimed that an insect called the frog hopper (Philaeus spumarius) is the best jumper in the animal kingdom. This insect can accelerate at 4 000 m/s² over a distance of 2.0 mm as it straightens its specially designed “jumping legs.” (a) Assuming a uniform acceleration, what is the velocity of the insect after it has accelerated through this short distance, and how long did it take to reach that velocity? (b) How high would the insect jump if air resistance could be ignored? Note that the actual height obtained is about 0.7 m, so air resistance is important here.

62. A ranger in a national park is driving at 35.0 mi/h when a deer jumps into the road 200 ft ahead of the vehicle. After a reaction time \(t \), the ranger applies the brakes to produce an acceleration \(a = -9.00 \text{ ft/s}^2 \). What is the maximum reaction time allowed if she is to avoid hitting the deer?

63. A ball is thrown upward from the ground with an initial speed of 25 m/s; at the same instant, another ball is dropped from a building 15 m high. After how long will the balls be at the same height?

64. To pass a physical education class at a university, a student must run 1.0 mi in 12 min. After running for 10 min, she still has 500 yd to go. If her maximum acceleration is 0.15 m/s², can she make it? If the answer is no, determine what acceleration she would need to be successful.

65. Two students are on a balcony 19.6 m above the street. One student throws a ball vertically downward at 14.7 m/s; at the same instant, the other student throws a ball ver-
Two students are on a balcony a distance \(h \) above the street. One student throws a ball vertically downward at a speed \(v_n \) at the same time, the other student throws a ball vertically upward at the same speed. Answer the following symbolically in terms of \(v_n, g, h, \) and \(t. \) (a) Write the kinematic equation for the \(y \)-coordinate of each ball. (b) Set the equations found in part (a) equal to height 0 and solve each for \(t \) symbolically using the quadratic formula. What is the difference in the two balls’ time in the air? (c) Use the time-independent kinematics equation to find the velocity of each ball as it strikes the ground. (d) How far apart are the balls at a time \(t \) after they are released and before they strike the ground?

You drop a ball from a window on an upper floor of a building and it is caught by a friend on the ground when the ball is moving with speed \(v_f \) exactly at the same time that you drop your ball from the window. The two balls are initially separated by 28.7 m. (a) At what time do they pass each other? (b) At what location do they pass each other relative to the window?

The driver of a truck slams on the brakes when he sees a tree blocking the road. The truck slows down uniformly with an acceleration of \(-5.60 \text{ m/s}^2\) for 4.20 s, making skid marks 62.4 m long that end at the tree. With what speed does the truck then strike the tree?

Emily challenges her husband, David, to catch a $1 bill as follows. She holds the bill vertically as in Figure P2.69, with the center of the bill between David’s index finger and thumb. David must catch the bill after Emily releases it without moving his hand downward. If his reaction time is 0.2 s, will he succeed? Explain your reasoning. (This challenge is a good trick you might want to try with your friends.)

A mountain climber stands at the top of a 50.0-m cliff that overhangs a calm pool of water. She throws two stones vertically downward 1.00 s apart and observes that they cause a single splash. The first stone had an initial velocity of \(-2.00 \text{ m/s}\). (a) How long after release of the first stone did the two stones hit the water? (b) What initial velocity must the second stone have had, given that they hit the water simultaneously? (c) What was the velocity of each stone at the instant it hit the water?

An ice sled powered by a rocket engine starts from rest on a large frozen lake and accelerates at \(+40 \text{ ft/s}^2\). After some time \(t_1 \), the rocket engine is shut down and the sled moves with constant velocity \(v \) for a time \(t_2 \). If the total distance traveled by the sled is 17 500 ft and the total time is 90 s, find (a) the times \(t_1 \) and \(t_2 \) and (b) the velocity \(v \). At the 17 500-ft mark, the sled begins to accelerate at \(-20 \text{ ft/s}^2\). (c) What is the final position of the sled when it comes to rest? (d) How long does it take to come to rest?

In Bosnia, the ultimate test of a young man’s courage used to be to jump off a 400-year-old bridge (now destroyed) into the River Neretva, 23 m below the bridge. (a) How long did the jump last? (b) How fast was the jumper traveling upon impact with the river? (c) If the speed of sound in air is 340 m/s, how long after the jumper took off did a spectator on the bridge hear the splash?

A person sees a lightning bolt pass close to an airplane that is flying in the distance. The person hears thunder 5.0 s after seeing the bolt and sees the airplane overhead 10 s after hearing the thunder. The speed of sound in air is 1 100 ft/s. (a) Find the distance of the airplane from the person at the instant of the bolt. (Neglect the time it takes the light to travel from the bolt to the eye.) (b) Assuming the plane travels with a constant speed toward the person, find the velocity of the airplane. (c) Look up the speed of light in air and defend the approximation used in part (a).

A glider on an air track carries a flag of length \(\ell \) through a stationary photogate, which measures the time interval \(\Delta t \) during which the flag blocks a beam of infrared light passing across the photogate. The ratio \(v_2 = \ell/\Delta t \) is the average velocity of the glider over this part of its motion. Suppose the glider moves with constant acceleration. (a) Is \(v_2 \) necessarily equal to the instantaneous velocity of the glider when it is halfway through the photogate in space? Explain. (b) Is \(v_2 \) equal to the instantaneous velocity of the glider when it is halfway through the photogate in time? Explain.

A stuntman sitting on a tree limb wishes to drop vertically onto a horse galloping under the tree. The constant speed of the horse is 10.0 m/s, and the man is initially 3.00 m above the level of the saddle. (a) What must be the horizontal distance between the saddle and the limb when the man makes his move? (b) How long is he in the air?
3

VECTORS AND TWO-DIMENSIONAL MOTION

In our discussion of one-dimensional motion in Chapter 2, we used the concept of vectors only to a limited extent. In our further study of motion, manipulating vector quantities will become increasingly important, so much of this chapter is devoted to vector techniques. We’ll then apply these mathematical tools to two-dimensional motion, especially that of projectiles, and to the understanding of relative motion.

3.1 VECTORS AND THEIR PROPERTIES

Each of the physical quantities we will encounter in this book can be categorized as either a **vector quantity** or a **scalar quantity**. As noted in Chapter 2, a vector has both direction and magnitude (size). A scalar can be completely specified by its magnitude with appropriate units; it has no direction. An example of each kind of quantity is shown in Figure 3.1.

As described in Chapter 2, displacement, velocity, and acceleration are vector quantities. Temperature is an example of a scalar quantity. If the temperature of an object is \(-5^\circ C\), that information completely specifies the temperature of the object; no direction is required. Masses, time intervals, and volumes are scalars as well. Scalar quantities can be manipulated with the rules of ordinary arithmetic. Vectors can also be added and subtracted from each other, and multiplied, but there are a number of important differences, as will be seen in the following sections.

When a vector quantity is handwritten, it is often represented with an arrow over the letter (\(\vec{A}\)). As mentioned in Section 2.1, a vector quantity in this book will be represented by boldface type with an arrow on top (for example, \(\vec{A}\)). The magnitude of the vector \(\vec{A}\) will be represented by italic type, as \(A\). Italic type will also be used to represent scalars.
Equality of Two Vectors. Two vectors \(\vec{A} \) and \(\vec{B} \) are equal if they have the same magnitude and the same direction. This property allows us to translate a vector parallel to itself in a diagram without affecting the vector. In fact, for most purposes, any vector can be moved parallel to itself without being affected. (See Fig. 3.2.)

Adding Vectors. When two or more vectors are added, they must all have the same units. For example, it doesn’t make sense to add a velocity vector, carrying units of meters per second, to a displacement vector, carrying units of meters. Scalars obey the same rule: It would be similarly meaningless to add temperatures to volumes or masses to time intervals.

Vectors can be added geometrically or algebraically. (The latter is discussed at the end of the next section.) To add vector \(\vec{B} \) to vector \(\vec{A} \) geometrically, first draw \(\vec{A} \) on a piece of graph paper to some scale, such as 1 cm = 1 m, so that its direction is specified relative to a coordinate system. Then draw vector \(\vec{B} \) to the same scale with the tail of \(\vec{B} \) starting at the tip of \(\vec{A} \), as in Active Figure 3.3a. Vector \(\vec{B} \) must be drawn along the direction that makes the proper angle relative vector \(\vec{A} \). The resultant vector \(\vec{R} = \vec{A} + \vec{B} \) is the vector drawn from the tail of \(\vec{A} \) to the tip of \(\vec{B} \). This procedure is known as the triangle method of addition.

When two vectors are added, their sum is independent of the order of the addition: \(\vec{A} + \vec{B} = \vec{B} + \vec{A} \). This relationship can be seen from the geometric construction in Active Figure 3.3b, and is called the commutative law of addition.

This same general approach can also be used to add more than two vectors, as is done in Figure 3.4 (page 56) for four vectors. The resultant vector sum \(\vec{R} = \vec{A} + \vec{B} + \vec{C} + \vec{D} \) is the vector drawn from the tail of the first vector to the tip of the last. Again, the order in which the vectors are added is unimportant.

Negative of a Vector. The negative of the vector \(\vec{A} \) is defined as the vector that gives zero when added to \(\vec{A} \). This means that \(\vec{A} \) and \(-\vec{A} \) have the same magnitude but opposite directions.

Subtracting Vectors. Vector subtraction makes use of the definition of the negative of a vector. We define the operation \(\vec{A} - \vec{B} \) as the vector \(-\vec{B} \) added to the vector \(\vec{A} \):

\[
\vec{A} - \vec{B} = \vec{A} + (-\vec{B}) \tag{3.1}
\]

Vector subtraction is really a special case of vector addition. The geometric construction for subtracting two vectors is shown in Figure 3.5 (page 56).

Multiplying or Dividing a Vector by a Scalar. Multiplying or dividing a vector by a scalar gives a vector. For example, if vector \(\vec{A} \) is multiplied by the scalar number 3, the result, written \(3\vec{A} \), is a vector with a magnitude three times that of \(\vec{A} \) and pointing in the same direction. If we multiply vector \(\vec{A} \) by the scalar \(-3\), the result...
EXAMPLE 3.1

Goal Find the sum of two vectors by using a graph.

Problem A car travels 20.0 km due north and then 35.0 km in a direction 60° west of north, as in Figure 3.6. Using a graph, find the magnitude and direction of a single vector that gives the net effect of the car’s trip. This vector is called the car’s resultant displacement.

Strategy Draw a graph and represent the displacement vectors as arrows. Graphically locate the vector resulting from the sum of the two displacement vectors. Measure its length and angle with respect to the vertical.

Solution Let \(\vec{A} \) represent the first displacement vector, 20.0 km north, and \(\vec{B} \) the second displacement vector, extending west of north. Carefully graph the two vectors, drawing a resultant vector \(\vec{R} \) with its base touching the base of \(\vec{A} \) and extending to the tip of \(\vec{B} \). Measure the length of this vector, which turns out to be about 48 km. The angle \(\beta \), measured with a protractor, is about 39° west of north.

Remarks Notice that ordinary arithmetic doesn’t work here: the correct answer of 48 km is not equal to 20.0 km + 35.0 km = 55.0 km!

QUESTION 3.1

Suppose two vectors are added. Under what conditions would the sum of the magnitudes of the vectors equal the magnitude of the resultant vector?

EXERCISE 3.1

Graphically determine the magnitude and direction of the displacement if a man walks 30.0 km 45° north of east and then walks due east 20.0 km.

Answer 46 km, 27° north of east
3.2 COMPONENTS OF A VECTOR

One method of adding vectors makes use of the projections of a vector along the axes of a rectangular coordinate system. These projections are called components. Any vector can be completely described by its components.

Consider a vector \vec{A} in a rectangular coordinate system, as shown in Figure 3.7. \vec{A} can be expressed as the sum of two vectors: \vec{A}_x, parallel to the x-axis; and \vec{A}_y, parallel to the y-axis. Mathematically,

$$\vec{A} = \vec{A}_x + \vec{A}_y$$

where \vec{A}_x and \vec{A}_y are the component vectors of \vec{A}. The projection of \vec{A} along the x-axis, A_x, is called the x-component of \vec{A}, and the projection of along the y-axis, A_y, is called the y-component of \vec{A}. These components can be either positive or negative numbers with units. From the definitions of sine and cosine, we see that $\cos \theta = A_x/A$ and $\sin \theta = A_y/A$, so the components of \vec{A} are

$$A_x = A \cos \theta$$
$$A_y = A \sin \theta$$

These components form two sides of a right triangle having a hypotenuse with magnitude A. It follows that \vec{A}’s magnitude and direction are related to its components through the Pythagorean theorem and the definition of the tangent:

$$A = \sqrt{A_x^2 + A_y^2}$$
$$\tan \theta = \frac{A_y}{A_x}$$

To solve for the angle θ, which is measured from the positive x-axis by convention, we can write Equation 3.4 in the form

$$\theta = \tan^{-1}\left(\frac{A_y}{A_x}\right)$$

This formula gives the right answer only half the time! The inverse tangent function returns values only from -90° to $+90^\circ$, so the answer in your calculator window will only be correct if the vector happens to lie in the first or fourth quadrant. If it lies in the second or third quadrant, adding 180° to the number in the calculator window will always give the right answer. The angle in Equations 3.2 and 3.4 must be measured from the positive x-axis. Other choices of reference line are possible, but certain adjustments must then be made. (See Tip 3.2 and Fig. 3.8.)

If a coordinate system other than the one shown in Figure 3.7 is chosen, the components of the vector must be modified accordingly. In many applications it’s more convenient to express the components of a vector in a coordinate system having axes that are not horizontal and vertical, but are still perpendicular to each other. Suppose a vector \vec{B} makes an angle θ' with the x'-axis defined in Figure 3.9 (page 58).
The rectangular components of \vec{B} along the axes of the figure are given by $B_x = B \cos \theta'$ and $B_y = B \sin \theta'$, as in Equations 3.2. The magnitude and direction of \vec{B} are then obtained from expressions equivalent to Equations 3.3 and 3.4.

QUICK QUIZ 3.2

Figure 3.10 shows two vectors lying in the xy-plane. Determine the signs of the x- and y-components of \vec{A}, \vec{B}, and $\vec{A} + \vec{B}$, and place your answers in the following table:

<table>
<thead>
<tr>
<th>Vector</th>
<th>x-component</th>
<th>y-component</th>
</tr>
</thead>
<tbody>
<tr>
<td>\vec{A}</td>
<td></td>
<td></td>
</tr>
<tr>
<td>\vec{B}</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\vec{A} + \vec{B}$</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

EXAMPLE 3.2 Help Is on the Way!

Goal Find vector components, given a magnitude and direction, and vice versa.

Problem (a) Find the horizontal and vertical components of the 1.00×10^2 m displacement of a superhero who flies from the top of a tall building along the path shown in Figure 3.11a. (b) Suppose instead the superhero leaps in the other direction along a displacement vector \vec{B} to the top of a flagpole where the displacement components are given by $B_x = -25.0$ m and $B_y = 10.0$ m. Find the magnitude and direction of the displacement vector.

Strategy (a) The triangle formed by the displacement and its components is shown in Figure 3.11b. Simple trigonometry gives the components relative to the standard x-y coordinate system: $A_x = A \cos \theta$ and $A_y = A \sin \theta$ (Eqs. 3.2). Note that $\theta = -30.0^\circ$, negative because it’s measured clockwise from the positive x-axis. (b) Apply Equations 3.3 and 3.4 to find the magnitude and direction of the vector.

Solution

(a) Find the vector components of \vec{A} from its magnitude and direction.

Use Equations 3.2 to find the components of the displacement vector \vec{A}:

- $A_x = A \cos \theta = (1.00 \times 10^2 \text{ m}) \cos (-30.0^\circ) = +86.6 \text{ m}$
- $A_y = A \sin \theta = (1.00 \times 10^2 \text{ m}) \sin (-30.0^\circ) = -50.0 \text{ m}$
Adding Vectors Algebraically

The graphical method of adding vectors is valuable in understanding how vectors can be manipulated, but most of the time vectors are added algebraically in terms of their components. Suppose $\mathbf{R} = \mathbf{A} + \mathbf{B}$. Then the components of the resultant vector \mathbf{R} are given by

\[
\begin{align*}
R_x &= A_x + B_x \quad \text{[3.5a]} \\
R_y &= A_y + B_y \quad \text{[3.5b]}
\end{align*}
\]

So x-components are added only to x-components, and y-components only to y-components. The magnitude and direction of \mathbf{R} can subsequently be found with Equations 3.3 and 3.4.

Subtracting two vectors works the same way because it’s a matter of adding the negative of one vector to another vector. You should make a rough sketch when adding or subtracting vectors, in order to get an approximate geometric solution as a check.

(b) Find the magnitude and direction of the displacement vector \mathbf{B} from its components.

Compute the magnitude of \mathbf{B} from the Pythagorean theorem:

\[
B = \sqrt{B_x^2 + B_y^2} = \sqrt{(-25.0 \text{ m})^2 + (10.0 \text{ m})^2} = 26.9 \text{ m}
\]

Calculate the direction of \mathbf{B} using the inverse tangent, remembering to add 180° to the answer in your calculator window, because the vector lies in the second quadrant:

\[
\theta = \tan^{-1} \left(\frac{B_y}{B_x} \right) = \tan^{-1} \left(\frac{10.0}{-25.0} \right) = -21.8°
\]

Remarks In part (a), note that $\cos (\theta) = \cos (\theta)$; however, $\sin (\theta) = -\sin (\theta)$. The negative sign of A_y reflects the fact that displacement in the y-direction is downward.

QUESTION 3.2
What other functions, if any, can be used to find the angle in part (b)?

EXERCISE 3.2
(a) Suppose the superhero had flown 150 m at a 120° angle with respect to the positive x-axis. Find the components of the displacement vector. (b) Suppose instead the superhero had leaped with a displacement having an x-component of 32.5 m and a y-component of 24.3 m. Find the magnitude and direction of the displacement vector.

Answers (a) $A_x = -75 \text{ m}, A_y = 130 \text{ m}$ (b) 40.6 m, 36.8°

Adding Vectors Algebraically

The graphical method of adding vectors is valuable in understanding how vectors can be manipulated, but most of the time vectors are added algebraically in terms of their components. Suppose $\mathbf{R} = \mathbf{A} + \mathbf{B}$. Then the components of the resultant vector \mathbf{R} are given by

\[
\begin{align*}
R_x &= A_x + B_x \quad \text{[3.5a]} \\
R_y &= A_y + B_y \quad \text{[3.5b]}
\end{align*}
\]

So x-components are added only to x-components, and y-components only to y-components. The magnitude and direction of \mathbf{R} can subsequently be found with Equations 3.3 and 3.4.

Subtracting two vectors works the same way because it’s a matter of adding the negative of one vector to another vector. You should make a rough sketch when adding or subtracting vectors, in order to get an approximate geometric solution as a check.

EXAMPLE 3.3 Take a Hike

Goal Add vectors algebraically and find the resultant vector.

Problem A hiker begins a trip by first walking 25.0 km 45.0° south of east from her base camp. On the second day she walks 40.0 km in a direction 60.0° north of east, at which point she discovers a forest ranger’s tower. (a) Determine the components of the hiker’s displacements in the first and second days. (b) Determine the components of the hiker’s total displacement for the trip. (c) Find the

FIGURE 3.12 (Example 3.3) (a) Hiker’s path and the resultant vector. (b) Components of the hiker’s total displacement from camp.
3.3 DISPLACEMENT, VELOCITY, AND ACCELERATION IN TWO DIMENSIONS

In one-dimensional motion, as discussed in Chapter 2, the direction of a vector quantity such as a velocity or acceleration can be taken into account by specifying whether the quantity is positive or negative. The velocity of a rocket, for example, is positive if the rocket is going up and negative if it’s going down. This simple solu-
tion is no longer available in two or three dimensions. Instead, we must make full use of the vector concept.

Consider an object moving through space as shown in Figure 3.13. When the object is at some point \(\mathbf{r}_i \) at time \(t_i \), its position is described by the position vector \(\mathbf{r}_i \), drawn from the origin to \(\mathbf{r}_i \). When the object has moved to some other point \(\mathbf{r}_f \) at time \(t_f \), its position vector is \(\mathbf{r}_f \). From the vector diagram in Figure 3.13, the final position vector is the sum of the initial position vector and the displacement \(\Delta \mathbf{r} \): \(\mathbf{r}_f = \mathbf{r}_i + \Delta \mathbf{r} \). From this relationship, we obtain the following one:

\[
\Delta \mathbf{r} = \mathbf{r}_f - \mathbf{r}_i
\]

SI unit: meter \((m) \)

We now present several generalizations of the definitions of velocity and acceleration given in Chapter 2.

An object’s displacement is defined as the change in its position vector, or

\[
\Delta \mathbf{r} = \mathbf{r}_f - \mathbf{r}_i
\]

SI unit: meter \((m) \)

An object’s average velocity during a time interval \(\Delta t \) is its displacement divided by \(\Delta t \):

\[
\mathbf{v}_m = \frac{\Delta \mathbf{r}}{\Delta t}
\]

SI unit: meter per second \((m/s) \)

Because the displacement is a vector quantity and the time interval is a scalar quantity, we conclude that the average velocity is a vector quantity directed along \(\Delta \mathbf{r} \).

An object’s instantaneous velocity \(\mathbf{v} \) is the limit of its average velocity as \(\Delta t \) goes to zero:

\[
\mathbf{v} = \lim_{\Delta t \to 0} \frac{\Delta \mathbf{r}}{\Delta t}
\]

SI unit: meter per second \((m/s) \)

The direction of the instantaneous velocity vector is along a line that is tangent to the object’s path and in the direction of its motion.

An object’s average acceleration during a time interval \(\Delta t \) is the change in its velocity \(\Delta \mathbf{v} \) divided by \(\Delta t \), or

\[
\mathbf{a}_m = \frac{\Delta \mathbf{v}}{\Delta t}
\]

SI unit: meter per second squared \((m/s^2) \)

An object’s instantaneous acceleration vector \(\mathbf{a} \) is the limit of its average acceleration vector as \(\Delta t \) goes to zero:

\[
\mathbf{a} = \lim_{\Delta t \to 0} \frac{\Delta \mathbf{v}}{\Delta t}
\]

SI unit: meter per second squared \((m/s^2) \)

It’s important to recognize that an object can accelerate in several ways. First, the magnitude of the velocity vector (the speed) may change with time. Second, the direction of the velocity vector may change with time, even though the speed is
constant, as can happen along a curved path. Third, both the magnitude and the direction of the velocity vector may change at the same time.

QUICK QUIZ 3.3 Which of the following objects can’t be accelerating? (a) An object moving with a constant speed; (b) an object moving with a constant velocity; (c) an object moving along a curve.

QUICK QUIZ 3.4 Consider the following controls in an automobile: gas pedal, brake, steering wheel. The controls in this list that cause an acceleration of the car are (a) all three controls, (b) the gas pedal and the brake, (c) only the brake, or (d) only the gas pedal.

3.4 Motion in Two Dimensions

In Chapter 2 we studied objects moving along straight-line paths, such as the x-axis. In this chapter, we look at objects that move in both the x- and y-directions simultaneously under constant acceleration. An important special case of this two-dimensional motion is called **projectile motion**.

Anyone who has tossed any kind of object into the air has observed projectile motion. If the effects of air resistance and the rotation of Earth are neglected, the path of a projectile in Earth’s gravity field is curved in the shape of a parabola, as shown in Active Figure 3.14.

The positive x-direction is horizontal and to the right, and the y-direction is vertical and positive upward. The most important experimental fact about projectile motion in two dimensions is that the **horizontal and vertical motions are completely independent of each other**. This means that motion in one direction has no effect on motion in the other direction. If a baseball is tossed in a parabolic path, as in Active Figure 3.14, the motion in the y-direction will look just like a ball tossed straight up under the influence of gravity. Active Figure 3.15 shows the effect of various initial angles; note that complementary angles give the same horizontal range.

In general, the equations of constant acceleration developed in Chapter 2 follow separately for both the x-direction and the y-direction. An important difference is that the initial velocity now has two components, not just one as in that chapter. We assume that at $t = 0$ the projectile leaves the origin with an initial velocity \mathbf{v}_0. If the velocity vector makes an angle θ_0 with the horizontal, where θ_0 is called the **projection angle**, then from the definitions of the cosine and sine functions and Active Figure 3.14 we have

$$v_{0x} = v_0 \cos \theta_0 \quad \text{and} \quad v_{0y} = v_0 \sin \theta_0$$

where v_{0x} is the initial velocity (at $t = 0$) in the x-direction and v_{0y} is the initial velocity in the y-direction.

TIP 3.4 Acceleration at the Highest Point

The acceleration in the y-direction is not zero at the top of a projectile’s trajectory. Only the y-component of the velocity is zero there. If the acceleration were zero, too, the projectile would never come down!

ACTIVE FIGURE 3.14

The parabolic trajectory of a particle that leaves the origin with a velocity of \mathbf{v}_0. Note that \mathbf{v} changes with time. However, the x-component of the velocity, v_x, remains constant in time. Also, $v_y = 0$ at the peak of the trajectory, but the acceleration is always equal to the free-fall acceleration and acts vertically downward.
Now, Equations 2.6, 2.9, and 2.10 developed in Chapter 2 for motion with constant acceleration in one dimension carry over to the two-dimensional case; there is one set of three equations for each direction, with the initial velocities modified as just discussed. In the x-direction, with a_x constant, we have

\[\begin{align*}
 v_x &= v_{0x} + a_x t \\
 \Delta x &= v_{0x} t + \frac{1}{2} a_x t^2 \\
 v_x^2 &= v_{0x}^2 + 2 a_x \Delta x
\end{align*} \]

where $v_{0x} = v_0 \cos \theta_0$. In the y-direction, we have

\[\begin{align*}
 v_y &= v_{0y} + a_y t \\
 \Delta y &= v_{0y} t + \frac{1}{2} a_y t^2 \\
 v_y^2 &= v_{0y}^2 + 2 a_y \Delta y
\end{align*} \]

where $v_{0y} = v_0 \sin \theta_0$ and a_y is constant. The object’s speed v can be calculated from the components of the velocity using the Pythagorean theorem:

\[v = \sqrt{v_x^2 + v_y^2} \]

The angle that the velocity vector makes with the x-axis is given by

\[\theta = \tan^{-1} \left(\frac{v_y}{v_x} \right) \]

This formula for θ, as previously stated, must be used with care, because the inverse tangent function returns values only between -90° and $+90^\circ$. Adding 180° is necessary for vectors lying in the second or third quadrant.

The kinematic equations are easily adapted and simplified for projectiles close to the surface of the Earth. In that case, assuming air friction is negligible, the acceleration in the x-direction is 0 (because air resistance is neglected). This means that $a_x = 0$, and the projectile’s velocity component along the x-direction remains constant. If the initial value of the velocity component in the x-direction is $v_{0x} = v_0 \cos \theta_0$, then this is also the value of v at any later time, so

\[v_x = v_{0x} = v_0 \cos \theta_0 = \text{constant} \]

whereas the horizontal displacement is simply

\[\Delta x = v_{0x} t = (v_0 \cos \theta_0) t \]

For the motion in the y-direction, we make the substitution $a_y = -g$ and $v_{0y} = v_0 \sin \theta_0$ in Equations 3.12, giving

\[\begin{align*}
 v_y &= v_0 \sin \theta_0 - gt \\
 \Delta y &= (v_0 \sin \theta_0) t - \frac{1}{2} gt^2 \\
 v_y^2 &= (v_0 \sin \theta_0)^2 - 2g \Delta y
\end{align*} \]
The important facts of projectile motion can be summarized as follows:

1. Provided air resistance is negligible, the horizontal component of the velocity v_x remains constant because there is no horizontal component of acceleration.
2. The vertical component of the acceleration is equal to the free-fall acceleration $-g$.
3. The vertical component of the velocity v_y and the displacement in the y-direction are identical to those of a freely falling body.
4. Projectile motion can be described as a superposition of two independent motions in the x- and y-directions.

EXAMPLE 3.4 Projectile Motion with Diagrams

Goal Approximate answers in projectile motion using a motion diagram.

Problem A ball is thrown so that its initial vertical and horizontal components of velocity are 40 m/s and 20 m/s, respectively. Use a motion diagram to estimate the ball’s total time of flight and the distance it traverses before hitting the ground.

Strategy Use the diagram, estimating the acceleration of gravity as -10 m/s^2. By symmetry, the ball goes up and comes back down to the ground at the same y-velocity as when it left, except with opposite sign. With this fact and the fact that the acceleration of gravity decreases the velocity in the y-direction by 10 m/s every second, we can find the total time of flight and then the horizontal range.

Solution In the motion diagram shown in Figure 3.16, the acceleration vectors are all the same, pointing downward with magnitude of nearly 10 m/s^2. By symmetry, we know that the ball will hit the ground at the same speed in the y-direction as when it was thrown, so the velocity in the y-direction goes from 40 m/s to -40 m/s in steps of -10 m/s every second; hence, approximately 8 seconds elapse during the motion.

The velocity vector constantly changes direction, but the horizontal velocity never changes because the acceleration in the horizontal direction is zero. Therefore, the displacement of the ball in the x-direction is given by Equation 3.13b, $\Delta x = v_{0x}t = (20 \text{ m/s})(8 \text{ s}) = 160 \text{ m}$.

Remarks This example emphasizes the independence of the x- and y-components in projectile motion problems.

QUESTION 3.4 Is the magnitude of the velocity vector at impact greater than, less than, or equal to the magnitude of the initial velocity vector? Why?

EXERCISE 3.4 Estimate the maximum height in this same problem.

Answer 80 m

QUICK QUIZ 3.5 Suppose you are carrying a ball and running at constant speed, and wish to throw the ball and catch it as it comes back down. Should you (a) throw the ball at an angle of about 45° above the horizontal and maintain the same speed, (b) throw the ball straight up in the air and slow down to catch it, or (c) throw the ball straight up in the air and maintain the same speed?

QUICK QUIZ 3.6 As a projectile moves in its parabolic path, the velocity and acceleration vectors are perpendicular to each other (a) everywhere along the projectile’s path, (b) at the peak of its path, (c) nowhere along its path, or (d) not enough information is given.
PROBLEM-SOLVING STRATEGY

PROJECTILE MOTION

1. Select a coordinate system and sketch the path of the projectile, including initial and final positions, velocities, and accelerations.
2. Resolve the initial velocity vector into x- and y-components.
3. Treat the horizontal motion and the vertical motion independently.
4. Follow the techniques for solving problems with constant velocity to analyze the horizontal motion of the projectile.
5. Follow the techniques for solving problems with constant acceleration to analyze the vertical motion of the projectile.

EXAMPLE 3.5 Stranded Explorers

Goal Solve a two-dimensional projectile motion problem in which an object has an initial horizontal velocity.

Problem An Alaskan rescue plane drops a package of emergency rations to a stranded hiker, as shown in Figure 3.17. The plane is traveling horizontally at 40.0 m/s at a height of 1.00 × 10^2 m above the ground. (a) Where does the package strike the ground relative to the point at which it was released? (b) What are the horizontal and vertical components of the velocity of the package just before it hits the ground?

Strategy Here, we’re just taking Equations 3.13 and 3.14, filling in known quantities, and solving for the remaining unknown quantities. Sketch the problem using a coordinate system as in Figure 3.17. In part (a), set the y-component of the displacement equations equal to −1.00 × 10^2 m—the ground level where the package lands—and solve for the time it takes the package to reach the ground. Substitute this time into the displacement equation for the x-component to find the range. In part (b), substitute the time found in part (a) into the velocity components. Notice that the initial velocity has only an x-component, which simplifies the math.

Solution

(a) Find the range of the package.

Use Equation 3.14b to find the y-displacement:

\[\Delta y = y - y_0 = v_0 t - \frac{1}{2} gt^2 \]

Substitute \(y_0 = 0 \) and \(v_{0y} = 0 \), set \(y = -1.00 \times 10^2 \) m—the final vertical position of the package relative the airplane—and solve for time:

\[y = -(4.90 \text{ m/s}^2)t^2 = -1.00 \times 10^2 \text{ m} \]

\[t = 4.52 \text{ s} \]

Use Equation 3.13b to find the x-displacement:

\[\Delta x = x - x_0 = v_{0x} t \]

Substitute \(x_0 = 0 \), \(v_{0x} = 40.0 \text{ m/s} \), and the time:

\[x = (40.0 \text{ m/s})(4.52 \text{ s}) = 181 \text{ m} \]

(b) Find the components of the package’s velocity at impact:

Find the x-component of the velocity at the time of impact:

\[v_x = v_0 \cos \theta = (40.0 \text{ m/s}) \cos 0^\circ = 40.0 \text{ m/s} \]

Find the y-component of the velocity at the time of impact:

\[v_y = v_0 \sin \theta - gt = 0 - (9.80 \text{ m/s}^2)(4.52 \text{ s}) = -44.3 \text{ m/s} \]
Remarks Notice how motion in the x-direction and motion in the y-direction are handled separately.

QUESTION 3.5
Neglecting air friction effects, what path does the package travel as observed by the pilot? Why?

EXERCISE 3.5
A bartender slides a beer mug at 1.50 m/s toward a customer at the end of a frictionless bar that is 1.20 m tall. The customer makes a grab for the mug and misses, and the mug sails off the end of the bar. (a) How far away from the end of the bar does the mug hit the floor? (b) What are the speed and direction of the mug at impact?

Answers
(a) 0.742 m (b) 5.08 m/s, $\theta = -72.8^\circ$

EXAMPLE 3.6 The Long Jump

Goal Solve a two-dimensional projectile motion problem involving an object starting and ending at the same height.

Problem A long jumper (Fig. 3.18) leaves the ground at an angle of 20.0° to the horizontal and at a speed of 11.0 m/s. (a) How long does it take for him to reach maximum height? (b) What is the maximum height? (c) How far does he jump? (Assume his motion is equivalent to that of a particle, disregarding the motion of his arms and legs.) (d) Use Equation 3.14c to find the maximum height he reaches.

Strategy Again, we take the projectile equations, fill in the known quantities, and solve for the unknowns. At the maximum height, the velocity in the y-direction is zero, so setting Equation 3.14a equal to zero and solving gives the time it takes him to reach his maximum height. By symmetry, given that his trajectory starts and ends at the same height, doubling this time gives the total time of the jump.

Solution
(a) Find the time t_{max} taken to reach maximum height.

Set $v_y = 0$ in Equation 3.14b and solve for t_{max}:

$$v_y = v_0 \sin \theta_0 - gt_{\text{max}} = 0$$

$$t_{\text{max}} = \frac{v_0 \sin \theta_0}{g} = \frac{(11.0 \text{ m/s})(\sin 20.0^\circ)}{9.80 \text{ m/s}^2}$$

$$t_{\text{max}} = 0.384 \text{ s}$$

(b) Find the maximum height he reaches.

Substitute the time t_{max} into the equation for the y-displacement:

$$y_{\text{max}} = (v_0 \sin \theta_0) t_{\text{max}} - \frac{1}{2} g (t_{\text{max}})^2$$

$$y_{\text{max}} = (11.0 \text{ m/s})(\sin 20.0^\circ)(0.384 \text{ s})$$

$$y_{\text{max}} = -\frac{1}{2}(9.80 \text{ m/s}^2)(0.384 \text{ s})^2$$

$$y_{\text{max}} = 0.722 \text{ m}$$

(c) Find the horizontal distance he jumps.

First find the time for the jump, which is twice t_{max}:

$$t = 2t_{\text{max}} = 2(0.384 \text{ s}) = 0.768 \text{ s}$$

Substitute this result into the equation for the x-displacement:

$$\Delta x = (v_0 \cos \theta_0) t = (11.0 \text{ m/s})(\cos 20.0^\circ)(0.768 \text{ s})$$

$$\Delta x = 7.94 \text{ m}$$

(d) Use an alternate method to find the maximum height.

Use Equation 3.14c, solving for Δy:

$$v_y^2 - v_{y0}^2 = -2g \Delta y$$

$$\Delta y = \frac{v_y^2 - v_{y0}^2}{-2g}$$
Substitute $v_y = 0$ at maximum height, and the fact that

$$v_0 = \frac{(11.0 \text{ m/s}) \sin 20.0^\circ}{2(9.80 \text{ m/s}^2)} = 0.722 \text{ m}$$

Remarks Although modeling the long jumper’s motion as that of a projectile is an oversimplification, the values obtained are reasonable.

QUESTION 3.6

True or False: Because the x-component of the displacement doesn’t depend explicitly on g, the horizontal distance traveled doesn’t depend on the acceleration of gravity.

EXERCISE 3.6

A grasshopper jumps a horizontal distance of 1.00 m from rest, with an initial velocity at a 45.0° angle with respect to the horizontal. Find (a) the initial speed of the grasshopper and (b) the maximum height reached.

Answers (a) 3.13 m/s (b) 0.250 m

EXAMPLE 3.7 The Range Equation

Goal Find an equation for the maximum horizontal displacement of a projectile fired from ground level.

Problem An athlete participates in a long-jump competition, leaping into the air with a velocity v_0 at an angle θ_0 with the horizontal. Obtain an expression for the length of the jump in terms of v_0, θ_0, and g.

Strategy Use the results of Example 3.6, eliminating the time t from Equations (1) and (2).

Solution

Use Equation (1) of Example 3.6 to find the time of flight, t:

$$t = 2\frac{v_0 \sin \theta_0}{g}$$

Substitute this expression for t into Equation (2) of Example 3.6:

$$\Delta x = \left(v_0 \cos \theta_0 \right) t = \left(v_0 \cos \theta_0 \right) \left(2\frac{v_0 \sin \theta_0}{g} \right)$$

Simplify:

$$\Delta x = \frac{2v_0^2 \cos \theta_0 \sin \theta_0}{g}$$

Substitute the identity $2 \cos \theta_0 \sin \theta_0 = \sin 2\theta_0$ to reduce the foregoing expression to a single trigonometric function:

$$\Delta x = \frac{v_0^2 \sin 2\theta_0}{g}$$

Remarks The use of a trigonometric identity in the final step isn’t necessary, but it makes Question 3.7 easier to answer.

QUESTION 3.7

What angle θ_0 produces the longest jump?

EXERCISE 3.7

Obtain an expression for the athlete’s maximum displacement in the vertical direction, Δy_{max} in terms of v_0, θ_0, and g.

Answer

$$\Delta y_{\text{max}} = \frac{v_0^2 \sin^2 \theta_0}{2g}$$
EXAMPLE 3.8 That’s Quite an Arm

Goal Solve a two-dimensional kinematics problem with a nonhorizontal initial velocity, starting and ending at different heights.

Problem A stone is thrown upward from the top of a building at an angle of 30.0° to the horizontal and with an initial speed of 20.0 m/s, as in Figure 3.19. The point of release is 45.0 m above the ground. (a) How long does it take for the stone to hit the ground? (b) Find the stone’s speed at impact. (c) Find the horizontal range of the stone. Neglect air resistance.

Strategy Choose coordinates as in the figure, with the origin at the point of release. (a) Fill in the constants of Equation 3.14b for the y-displacement and set the displacement equal to -45.0 m, the y-displacement when the stone hits the ground. Using the quadratic formula, solve for the time. To solve part (b), substitute the time from part (a) into the components of the velocity, and substitute the same time into the equation for the x-displacement to solve part (c).

Solution

(a) Find the time of flight.

Find the initial x- and y-components of the velocity:

$$v_{0x} = v_0 \cos \theta_0 = (20.0 \text{ m/s})(\cos 30.0°) = +17.3 \text{ m/s}$$
$$v_{0y} = v_0 \sin \theta_0 = (20.0 \text{ m/s})(\sin 30.0°) = +10.0 \text{ m/s}$$

Find the y-displacement, taking $y_0 = 0$, $y = -45.0 \text{ m}$, and $v_{0y} = 10.0 \text{ m/s}$:

$$\Delta y = y - y_0 = v_{0y} t - \frac{1}{2}gt^2$$
$$-45.0 \text{ m} = (10.0 \text{ m/s})t - (4.90 \text{ m/s}^2)t^2$$

Reorganize the equation into standard form and use the quadratic formula (see Appendix A) to find the positive root:

$$t = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} = \frac{-10.0 \pm \sqrt{(10.0)^2 - 4(-4.90)(-45.0)}}{2(-4.90)} = 4.22 \text{ s}$$

(b) Find the speed at impact.

Substitute the value of t found in part (a) into Equation 3.14a to find the y-component of the velocity at impact:

$$v_y = v_{0y} - gt = 10.0 \text{ m/s} - (9.80 \text{ m/s}^2)(4.22 \text{ s}) = -31.4 \text{ m/s}$$

Use this value of v_y, the Pythagorean theorem, and the fact that $v_x = v_{0x} = 17.3 \text{ m/s}$ to find the speed of the stone at impact:

$$v = \sqrt{v_x^2 + v_y^2} = \sqrt{(17.3 \text{ m/s})^2 + (-31.4 \text{ m/s})^2} = 35.9 \text{ m/s}$$

(c) Find the horizontal range of the stone.

Substitute the time of flight into the range equation:

$$\Delta x = x - x_0 = (v_{0x} \cos \theta)t = (20.0 \text{ m/s})(\cos 30.0°)(4.22 \text{ s}) = 73.1 \text{ m}$$

Remarks The angle at which the ball is thrown affects the velocity vector throughout its subsequent motion, but doesn’t affect the speed at a given height. This is a consequence of the conservation of energy, described in Chapter 5.

QUESTION 3.8

True or False: All other things being equal, if the ball is thrown at half the given speed it will travel half as far.
EXERCISE 3.8
Suppose the stone is thrown from the same height as in the example at an angle of 30.0° degrees below the horizontal. If it strikes the ground 57.0 m away, find (a) the time of flight, (b) the initial speed, and (c) the speed and the angle of the velocity vector with respect to the horizontal at impact. (Hint: For part (a), use the equation for the x-displacement to eliminate \(v_0 t \) from the equation for the y-displacement.)

Answers
(a) 1.57 s
(b) 41.9 m/s
(c) 51.3 m/s, -45.0°

So far we have studied only problems in which an object with an initial velocity follows a trajectory determined by the acceleration of gravity alone. In the more general case, other agents, such as air drag, surface friction, or engines, can cause accelerations. These accelerations, taken together, form a vector quantity with components \(a_x \) and \(a_y \). When both components are constant, we can use Equations 3.11 and 3.12 to study the motion, as in the next example.

EXAMPLE 3.9 The Rocket

Goal Solve a problem involving accelerations in two directions.

Problem A jet plane traveling horizontally at \(1.00 \times 10^2 \) m/s drops a rocket from a considerable height. (See Fig. 3.20.) The rocket immediately fires its engines, accelerating at 20.0 m/s\(^2\) in the \(x \)-direction while falling under the influence of gravity in the \(y \)-direction. When the rocket has fallen 1.00 km, find (a) its velocity in the \(y \)-direction, (b) its velocity in the \(x \)-direction, and (c) the magnitude and direction of its velocity. Neglect air drag and aerodynamic lift.

Strategy Because the rocket maintains a horizontal orientation (say, through gyroscopes), the \(x \)- and \(y \)-components of acceleration are independent of each other. Use the time-independent equation for the velocity in the \(y \)-direction to find the \(y \)-component of the velocity after the rocket falls 1.00 km. Then calculate the time of the fall and use that time to find the velocity in the \(x \)-direction.

Solution
(a) Find the velocity in the \(y \)-direction.

Use Equation 3.14c:
\[
v_y^2 = v_{0y}^2 - 2g \Delta y
\]
Substitute \(v_{0y} = 0 \), \(g = -9.80 \text{ m/s}^2 \), and \(\Delta y = -1.00 \times 10^3 \text{ m} \), and solve for \(v_y \):
\[
v_y^2 = 0 - 2(-9.8 \text{ m/s}^2)(-1.00 \times 10^3 \text{ m})
\]
\[
v_y = -1.40 \times 10^2 \text{ m/s}
\]

(b) Find the velocity in the \(x \)-direction.

Find the time it takes the rocket to drop \(1.00 \times 10^3 \text{ m} \), using the \(y \)-component of the velocity:
\[
v_y = v_{0y} + a_y t
\]
\[-1.40 \times 10^2 \text{ m/s} = 0 - (9.8 \text{ m/s}^2) t \rightarrow t = 14.3 \text{ s}
\]
Substitute \(t \), \(v_{0x} \), and \(a_x \) into Equation 3.11a to find the velocity in the \(x \)-direction:
\[
v_x = v_{0x} + a_x t = 1.00 \times 10^2 \text{ m/s} + (20.0 \text{ m/s}^2)(14.3 \text{ s})
\]
\[
= 386 \text{ m/s}
\]

(c) Find the magnitude and direction of the velocity.

Find the magnitude using the Pythagorean theorem and the results of parts (a) and (b):
\[
v = \sqrt{v_x^2 + v_y^2} = \sqrt{(-1.40 \times 10^2 \text{ m/s})^2 + (386 \text{ m/s})^2}
\]
\[
= 411 \text{ m/s}
\]
Chapter 3 Vectors and Two-Dimensional Motion

In a stunt similar to that described in Exercise 3.9, motorcycle daredevil Evel Knievel tried to vault across Hells Canyon, part of the Snake River system in Idaho, on his rocket-powered Harley-Davidson X-2 “Skycycle.” (See the chapter-opening photo on page 54). He lost consciousness at takeoff and released a lever, prematurely deploying his parachute and falling short of the other side. He landed safely in the canyon.

3.5 RELATIVE VELOCITY

Relative velocity is all about relating the measurements of two different observers, one moving with respect to the other. The measured velocity of an object depends on the velocity of the observer with respect to the object. On highways, for example, cars moving in the same direction are often moving at high speed relative to Earth, but relative to each other they hardly move at all. To an observer at rest at the side of the road, a car might be traveling at 60 mi/h, but to an observer in a truck traveling in the same direction at 50 mi/h, the car would appear to be traveling only 10 mi/h.

So measurements of velocity depend on the reference frame of the observer. Reference frames are just coordinate systems. Most of the time, we use a stationary frame of reference relative to Earth, but occasionally we use a moving frame of reference associated with a bus, car, or plane moving with constant velocity relative to Earth.

In two dimensions relative velocity calculations can be confusing, so a systematic approach is important and useful. Let E be an observer, assumed stationary with respect to Earth. Let two cars be labeled A and B, and introduce the following notation (see Fig. 3.21):

- \(\mathbf{r}_{AE} \) = the position of Car A as measured by E (in a coordinate system fixed with respect to Earth).
- \(\mathbf{r}_{BE} \) = the position of Car B as measured by E.
- \(\mathbf{r}_{AB} \) = the position of Car A as measured by an observer in Car B.

According to the preceding notation, the first letter tells us what the vector is pointing at and the second letter tells us where the position vector starts. The position vectors of Car A and Car B relative to E, \(\mathbf{r}_{AE} \) and \(\mathbf{r}_{BE} \), are given in the figure. How do we find \(\mathbf{r}_{AB} \), the position of Car A as measured by an observer in Car B? We simply draw an arrow pointing from Car B to Car A, which can be obtained by subtracting \(\mathbf{r}_{BE} \) from \(\mathbf{r}_{AE} \).

 Remarks Notice the symmetry: The kinematic equations for the x- and y-directions are handled in exactly the same way. Having a nonzero acceleration in the x-direction doesn’t greatly increase the difficulty of the problem.

QUESTION 3.9

True or False: Neglecting air friction, a projectile with a horizontal acceleration stays in the air longer than a projectile that is freely falling.

EXERCISE 3.9

Suppose a rocket-propelled motorcycle is fired from rest horizontally across a canyon 1.00 km wide. (a) What minimum constant acceleration in the x-direction must be provided by the engines so the cycle crosses safely if the opposite side is 0.750 km lower than the starting point? (b) At what speed does the motorcycle land if it maintains this constant horizontal component of acceleration? Neglect air drag, but remember that gravity is still acting in the negative y-direction.

Answers (a) 13.1 m/s² (b) 202 m/s
Now, the rate of change of these quantities with time gives us the relationship between the associated velocities:

\[\mathbf{v}_{AB} = \mathbf{v}_{AE} - \mathbf{v}_{BE} \] \[3.16\]

The coordinate system of observer E need not be fixed to Earth, although it often is. Take careful note of the pattern of subscripts; rather than memorize Equation 3.16, it’s better to study the short derivation based on Figure 3.21. Note also that the equation doesn’t work for observers traveling a sizable fraction of the speed of light, when Einstein’s theory of special relativity comes into play.

PROBLEM-SOLVING STRATEGY

RELATIVE VELOCITY

1. Label each object involved (usually three) with a letter that reminds you of what it is (for example, E for Earth).
2. Look through the problem for phrases such as “The velocity of A relative to B” and write the velocities as \(\mathbf{v}_{AB} \). When a velocity is mentioned but it isn’t explicitly stated as relative to something, it’s almost always relative to Earth.
3. Take the three velocities you’ve found and assemble them into an equation just like Equation 3.16, with subscripts in an analogous order.
4. There will be two unknown components. Solve for them with the \(x \)- and \(y \)-components of the equation developed in step 3.

EXAMPLE 3.10 Pitching Practice on the Train

Goal Solve a one-dimensional relative velocity problem.

Problem A train is traveling with a speed of 15.0 m/s relative to Earth. A passenger standing at the rear of the train pitches a baseball with a speed of 15.0 m/s relative to the train off the back end, in the direction opposite the motion of the train. What is the velocity of the baseball relative to Earth?

Strategy Solving these problems involves putting the proper subscripts on the velocities and arranging them as in Equation 3.16. In the first sentence of the problem statement, we are informed that the train travels at “15.0 m/s relative to Earth.” This quantity is \(\mathbf{v}_{TE} \), with T for train and E for Earth. The passenger throws the baseball at “15 m/s relative to the train,” so this quantity is \(\mathbf{v}_{BT} \), where B stands for baseball. The second sentence asks for the velocity of the baseball relative to Earth, \(\mathbf{v}_{BE} \). The rest of the problem can be solved by identifying the correct components of the known quantities and solving for the unknowns, using an analog of Equation 3.16.

Solution

Write the \(x \)-components of the known quantities:

\[(\mathbf{v}_{TE})_x = +15 \text{ m/s} \]
\[(\mathbf{v}_{BT})_x = -15 \text{ m/s} \]

Follow Equation 3.16:

\[(\mathbf{v}_{BT})_x = (\mathbf{v}_{BE})_x - (\mathbf{v}_{TE})_x \]

Insert the given values and solve:

\[-15 \text{ m/s} = (\mathbf{v}_{BE})_x - 15 \text{ m/s} \]

\[(\mathbf{v}_{BE})_x = 0 \]

QUESTION 3.10

Describe the motion of the ball as related by an observer on the ground.
EXERCISE 3.10
A train is traveling at 27 m/s relative to Earth, and a passenger standing in the train throws a ball at 15 m/s relative to the train in the same direction as the train's motion. Find the speed of the ball relative to Earth.

Answer 42 m/s

EXAMPLE 3.11 Crossing a River

Goal Solve a simple two-dimensional relative motion problem.

Problem The boat in Figure 3.22 is heading due north as it crosses a wide river with a velocity of 10.0 km/h relative to the water. The river has a uniform velocity of 5.00 km/h due east. Determine the velocity of the boat with respect to an observer on the riverbank.

Strategy Again, we look for key phrases. “The boat (has) . . . a velocity of 10.0 km/h relative to the water” gives \mathbf{v}_{BR}. “The river has a uniform velocity of 5.00 km/h due east” gives \mathbf{v}_{RE}, because this implies velocity with respect to Earth. The observer on the riverbank is in a reference frame at rest with respect to Earth. Because we're looking for the velocity of the boat with respect to that observer, this last velocity is designated \mathbf{v}_{BE}. Take east to be the $+x$-direction, north the $+y$-direction.

Solution

Arrange the three quantities into the proper relative velocity equation: $\mathbf{v}_{\text{BR}} = \mathbf{v}_{\text{BE}} - \mathbf{v}_{\text{RE}}$.

Write the velocity vectors in terms of their components. For convenience, these are organized in the following table:

<table>
<thead>
<tr>
<th>Vector</th>
<th>x-Component (km/h)</th>
<th>y-Component (km/h)</th>
</tr>
</thead>
<tbody>
<tr>
<td>\mathbf{v}_{BR}</td>
<td>0</td>
<td>10.0</td>
</tr>
<tr>
<td>\mathbf{v}_{BE}</td>
<td>v_x</td>
<td>v_y</td>
</tr>
<tr>
<td>\mathbf{v}_{RE}</td>
<td>5.00</td>
<td>0</td>
</tr>
</tbody>
</table>

Find the x-component of velocity: $0 = v_x - 5.00$ km/h $\rightarrow v_x = 5.00$ km/h

Find the y-component of velocity: 10.0 km/h $= v_y - 0$ $\rightarrow v_y = 10.0$ km/h

Find the magnitude of \mathbf{v}_{BE}: $v_{\text{BE}} = \sqrt{v_x^2 + v_y^2}$

$= \sqrt{(5.00 \text{ km/h})^2 + (10.0 \text{ km/h})^2} = 11.2$ km/h

Find the direction of \mathbf{v}_{BE}: $\theta = \tan^{-1}\left(\frac{v_x}{v_y}\right) = \tan^{-1}\left(\frac{5.00 \text{ m/s}}{10.0 \text{ m/s}}\right) = 26.6^\circ$

Remark The boat travels at a speed of 11.2 km/h in the direction 26.6° east of north with respect to Earth.

QUESTION 3.11
If the speed of the boat relative to the water is increased, what happens to the angle?

EXERCISE 3.11
Suppose the river is flowing east at 3.00 m/s and the boat is traveling south at 4.00 m/s with respect to the river. Find the speed and direction of the boat relative to Earth.

Answer 5.00 m/s, 53.1° south of east
EXAMPLE 3.12 Bucking the Current

Goal Solve a complex two-dimensional relative motion problem.

Problem If the skipper of the boat of Example 3.11 moves with the same speed of 10.0 km/h relative to the water but now wants to travel due north, as in Figure 3.23, in what direction should he head? What is the speed of the boat, according to an observer on the shore? The river is flowing east at 5.00 km/h.

Strategy Proceed as in the previous example. In this situation, we must find the heading of the boat and its velocity with respect to the water, using the fact that the boat travels due north.

Solution Arrange the three quantities, as before:

Organize a table of velocity components:

<table>
<thead>
<tr>
<th>Vector</th>
<th>x-Component (km/h)</th>
<th>y-Component (km/h)</th>
</tr>
</thead>
<tbody>
<tr>
<td>\vec{v}_{BR}</td>
<td>$-(10.0 \text{ km/h}) \sin \theta$</td>
<td>$(10.0 \text{ km/h}) \cos \theta$</td>
</tr>
<tr>
<td>\vec{v}_{BE}</td>
<td>0</td>
<td>v</td>
</tr>
<tr>
<td>\vec{v}_{RE}</td>
<td>5.00 km/h</td>
<td>0</td>
</tr>
</tbody>
</table>

The x-component of the relative velocity equation can be used to find θ:

$$-(10.0 \text{ m/s}) \sin \theta = 0 - 5.00 \text{ km/h}$$

$$\sin \theta = \frac{5.00 \text{ km/h}}{10.0 \text{ km/h}} = 0.50$$

$$\theta = \sin^{-1} \left(\frac{1.00}{2.00} \right) = 30.0^\circ$$

Apply the inverse sine function and find θ, which is the boat’s heading, east of north:

The y-component of the relative velocity equation can be used to find v:

$$(10.0 \text{ km/h}) \cos \theta = v \rightarrow v = 8.66 \text{ km/h}$$

Remarks From Figure 3.23, we see that this problem can be solved with the Pythagorean theorem, because the problem involves a right triangle: the boat’s x-component of velocity exactly cancels the river’s velocity. When this is not the case, a more general technique is necessary, as shown in the following exercise. Notice that in the x-component of the relative velocity equation a minus sign had to be included in the term $-(10.0 \text{ km/h}) \sin \theta$ because the x-component of the boat’s velocity with respect to the river is negative.

QUESTION 3.12
The speeds in this example are the same as in Example 3.11. Why isn’t the angle the same as before?

EXERCISE 3.12
Suppose the river is moving east at 5.00 km/h and the boat is traveling 45.0° south of east with respect to Earth. Find (a) the speed of the boat with respect to Earth and (b) the speed of the boat with respect to the river if the boat’s heading in the water is 60.0° south of east. (See Fig. 3.23b.) You will have to solve two equations with two unknowns.

Answers (a) 16.7 km/h (b) 13.7 km/h
The negative of a vector \(\mathbf{A} \) is a vector with the same magnitude as \(\mathbf{A} \), but pointing in the opposite direction. A vector can be multiplied by a scalar, changing its magnitude, and its direction if the scalar is negative.

3.2 Components of a Vector

A vector \(\mathbf{A} \) can be split into two components, one pointing in the \(x \)-direction and the other in the \(y \)-direction. These components form two sides of a right triangle having a hypotenuse with magnitude \(A \) and are given by

\[
A_x = A \cos \theta \\
A_y = A \sin \theta
\]

The magnitude and direction of \(\mathbf{A} \) are related to its components through the Pythagorean theorem and the definition of the tangent:

\[
A = \sqrt{A_x^2 + A_y^2} \\
\tan \theta = \frac{A_y}{A_x}
\]

If \(\mathbf{R} = \mathbf{A} + \mathbf{B} \), then the components of the resultant vector \(\mathbf{R} \) are

\[
R_x = A_x + B_x \\
R_y = A_y + B_y
\]

3.3 Displacement, Velocity, and Acceleration in Two Dimensions

The displacement of an object in two dimensions is defined as the change in the object’s position vector:

\[
\Delta \mathbf{r} = \mathbf{r}_f - \mathbf{r}_i
\]

The average velocity of an object during the time interval \(\Delta t \) is

\[
\mathbf{v}_{av} = \frac{\Delta \mathbf{r}}{\Delta t}
\]

Taking the limit of this expression as \(\Delta t \) gets arbitrarily small gives the instantaneous velocity \(\mathbf{v} \):

\[
\mathbf{v} = \lim_{\Delta t \to 0} \frac{\Delta \mathbf{r}}{\Delta t}
\]

The direction of the instantaneous velocity vector is along a line that is tangent to the path of the object and in the direction of its motion.

The average acceleration of an object with a velocity changing by \(\Delta \mathbf{v} \) in the time interval \(\Delta t \) is

\[
\mathbf{a}_{av} = \frac{\Delta \mathbf{v}}{\Delta t}
\]

Taking the limit of this expression as \(\Delta t \) gets arbitrarily small gives the instantaneous acceleration vector \(\mathbf{a} \):

\[
\mathbf{a} = \lim_{\Delta t \to 0} \frac{\Delta \mathbf{v}}{\Delta t}
\]

3.4 Motion in Two Dimensions

The general kinematic equations in two dimensions for objects with constant acceleration are, for the \(x \)-direction,

\[
v_x = v_{0x} + a_x t \\
\Delta x = v_{0x} t + \frac{1}{2} a_x t^2
\]

where \(v_{0x} = v_0 \cos \theta_0 \) and, for the \(y \)-direction,

\[
v_y = v_{0y} + a_y t \\
\Delta y = v_{0y} t + \frac{1}{2} a_y t^2
\]

The kinematic equations are easily adapted and simplified for projectiles close to the surface of the Earth. The equations for the motion in the horizontal or \(x \)-direction are

\[
v_x = v_{0x} = v_0 \cos \theta_0 = \text{constant} \quad \text{[3.13a]} \\
\Delta x = v_{0x} t = (v_0 \cos \theta_0) t \quad \text{[3.13b]}
\]

while the equations for the motion in the vertical or \(y \)-direction are

\[
v_y = v_{0y} - gt \\
\Delta y = (v_{0y} \sin \theta_0) t - \frac{1}{2} gt^2
\]

Problems are solved by algebraically manipulating one or more of these equations, which often reduces the system to two equations and two unknowns.

3.5 Relative Velocity

Let \(E \) be an observer, and \(B \) a second observer traveling with velocity \(\mathbf{v}_{BE} \) as measured by \(E \). If \(E \) measures the velocity of an object \(A \) as \(\mathbf{v}_{AE} \), then \(B \) will measure \(A \)'s velocity as

\[
\mathbf{v}_{AB} = \mathbf{v}_{AE} - \mathbf{v}_{BE}
\]

Solving relative velocity problems involves identifying the velocities properly and labeling them correctly, substituting into Equation 3.16, and then solving for unknown quantities.
MULTIPLE-CHOICE QUESTIONS

1. A catapult launches a large stone at a speed of 45.0 m/s at an angle of 55.0° with the horizontal. What maximum height does the stone reach? (Neglect air friction.)
 (a) 45.7 m (b) 32.7 m (c) 69.3 m (d) 83.2 m (e) 102 m

2. A skier leaves the end of a horizontal ski jump at 22.0 m/s and falls 3.20 m before landing. Neglecting friction, how far horizontally does the skier travel in the air before landing? (a) 9.8 m (b) 12.2 m (c) 14.5 m (d) 17.8 m (e) 21.6 m

3. A cruise ship sails due north at 4.50 m/s while a coast guard patrol boat heads 45.0° north of west at 5.20 m/s. What is the velocity of the cruise ship relative to the patrol boat? (a) \(v_x = 3.68 \text{ m/s} \) (b) \(v_y = 8.18 \text{ m/s} \) (c) \(v_z = 3.68 \text{ m/s} \) (d) \(v_x = 8.18 \text{ m/s} \) (e) \(v_y = -3.68 \text{ m/s} \)

4. A vector lying in the xy-plane has components of opposite sign. The vector must lie in which quadrant? (a) the first quadrant (b) the second quadrant (c) the third quadrant (d) the fourth quadrant (e) either the second or the fourth quadrant

5. An athlete runs three-fourths of the way around a circular track. Which of the following statements is true? (a) His average speed is greater than the magnitude of his average velocity. (b) The magnitude of his average velocity is greater than his average speed. (c) His average speed is equal to the magnitude of his average velocity. (d) His average speed is the same as the magnitude of his average velocity if his instantaneous speed is constant. (e) None of statements (a) through (d) is true.

6. A car moving around a circular track with constant speed (a) has zero acceleration, (b) has an acceleration component in the direction of its velocity, (c) has an acceleration directed away from the center of its path, (d) has an acceleration directed toward the center of its path, or (e) has an acceleration with a direction that cannot be determined from the information given.

7. A NASA astronaut hits a golf ball on the Moon. Which of the following quantities, if any, remain constant as the ball travels through the lunar vacuum? (a) speed (b) acceleration (c) velocity (d) horizontal component of velocity (e) vertical component of velocity

8. A projectile is launched from Earth's surface at a certain initial velocity at an angle above the horizontal, reaching maximum height after time \(t_{\text{max}} \). Another projectile is launched with the same initial velocity and angle from the surface of the Moon, where the acceleration of gravity is one-sixth that of Earth. Neglecting air resistance (on Earth) and variations in the acceleration of gravity with height, how long does it take the projectile on the Moon to reach its maximum height?
 (a) \(t_{\text{max}} \) (b) \(t_{\text{max}} /6 \) (c) \(\sqrt{6}t_{\text{max}} \) (d) \(6t_{\text{max}} \) (e) \(102t_{\text{max}} \)

9. A sailor drops a wrench from the top of a sailboat’s vertical mast while the boat is moving rapidly and steadily forward. Where will the wrench hit the deck? (a) ahead of the base of the mast (b) at the base of the mast (c) behind the base of the mast (d) on the windward side of the base of the mast (e) None of choices (a) through (d) is correct.

10. A baseball is thrown from the outfield toward the catcher. When the ball reaches its highest point, which statement is true? (a) Its velocity and its acceleration are both zero. (b) Its velocity is not zero, but its acceleration is zero. (c) Its velocity is perpendicular to its acceleration. (d) Its acceleration depends on the angle at which the ball was thrown. (e) None of statements (a) through (d) is true.

11. A student throws a heavy red ball horizontally from a balcony of a tall building with an initial speed \(v_0 \). At the same time, a second student drops a lighter blue ball from the same balcony. Neglecting air resistance, which statement is true? (a) The blue ball reaches the ground first. (b) The balls reach the ground at the same instant. (c) The red ball reaches the ground first. (d) Both balls hit the ground with the same speed. (e) None of statements (a) through (d) is true.

12. As an apple tree is transported by a truck moving to the right with a constant velocity, one of its apples shakes loose and falls toward the bed of the truck. Of the curves shown in Figure MCQ3.12, (i) which best describes the path followed by the apple as seen by a stationary observer on the ground, who observes the truck moving from his left to his right? (ii) Which best describes the path as seen by an observer sitting in the truck?

13. Which of the following quantities are vectors? (a) the velocity of a sports car (b) temperature (c) the volume of water in a can (d) the displacement of a tennis player from the baseline of the court to the net (e) the height of a building

CONCEPTUAL QUESTIONS

1. If \(\mathbf{B} \) is added to \(\mathbf{A} \), under what conditions does the resultant vector have a magnitude equal to \(\mathbf{A} + \mathbf{B} \)? Under what conditions is the resultant vector equal to zero?

2. Under what circumstances would a vector have components that are equal in magnitude?

3. As a projectile moves in its path, is there any point along the path where the velocity and acceleration vectors are (a) perpendicular to each other? (b) Parallel to each other?

4. Two vectors have unequal magnitudes. Can their sum be zero? Explain.
5. Explain whether the following particles do or do not have an acceleration: (a) a particle moving in a straight line with constant speed and (b) a particle moving around a curve with constant speed.

6. A ball is projected horizontally from the top of a building. One second later, another ball is projected horizontally from the same point with the same velocity. At what point in the motion will the balls be closest to each other? Will the first ball always be traveling faster than the second? What will be the time difference between them when the balls hit the ground? Can the horizontal projection velocity of the second ball be changed so that the balls arrive at the ground at the same time?

7. A spacecraft drifts through space at a constant velocity. Suddenly, a gas leak in the side of the spacecraft causes it to constantly accelerate in a direction perpendicular to the initial velocity. The orientation of the spacecraft does not change, so the acceleration remains perpendicular to the original direction of the velocity. What is the shape of the path followed by the spacecraft?

8. Determine which of the following moving objects obey the equations of projectile motion developed in this chapter: (a) A ball is thrown in an arbitrary direction. (b) A jet airplane crosses the sky with its engines thrusting the plane forward. (c) A rocket leaves the launch pad. (d) A rocket moves through the sky after its engines have failed. (e) A stone is thrown under water.

9. Two projectiles are thrown with the same initial speed, one at an angle θ with respect to the level ground and the other at angle $90^\circ - \theta$. Both projectiles strike the ground at the same distance from the projection point. Are both projectiles in the air for the same length of time?

10. A ball is thrown upward in the air by a passenger on a train that is moving with constant velocity. (a) Describe the path of the ball as seen by the passenger. Describe the path as seen by a stationary observer outside the train. (b) How would these observations change if the train were accelerating along the track?

SECTION 3.1 VECTORS AND THEIR PROPERTIES

1. Vector \mathbf{A} has a magnitude of 29 units and points in the positive y-direction. When vector \mathbf{B} is added to \mathbf{A}, the resultant vector $\mathbf{A} + \mathbf{B}$ points in the negative y-direction with a magnitude of 14 units. Find the magnitude and direction of \mathbf{B}.

2. Vector \mathbf{A} has a magnitude of 8.00 units and makes an angle of 45.0° with the positive x-axis. Vector \mathbf{B} also has a magnitude of 8.00 units and is directed along the negative x-axis. Using graphical methods, find (a) the vector sum $\mathbf{A} + \mathbf{B}$ and (b) the vector difference $\mathbf{A} - \mathbf{B}$.

3. Vector \mathbf{A} is 3.00 units in length and points along the positive x-axis. Vector \mathbf{B} is 4.00 units in length and points along the negative y-axis. Use graphical methods to find the magnitude and direction of the vectors (a) $\mathbf{A} + \mathbf{B}$ and (b) $\mathbf{A} - \mathbf{B}$.

4. Each of the displacement vectors \mathbf{A} and \mathbf{B} shown in Figure P3.4 has a magnitude of 3.00 m. Graphically find (a) $\mathbf{A} + \mathbf{B}$, (b) $\mathbf{A} - \mathbf{B}$, (c) $\mathbf{B} - \mathbf{A}$, and (d) $\mathbf{A} - 2\mathbf{B}$.

5. A roller coaster moves 200 ft horizontally and then rises 135 ft at an angle of 30.0° above the horizontal. Next, it travels 135 ft at an angle of 40.0° below the horizontal. Use graphical techniques to find the roller coaster’s displacement from its starting point to the end of this movement.

6. An airplane flies 200 km due west from city A to city B and then 300 km in the direction of 30.0° north of west from city B to city C. (a) In straight-line distance, how far is city C from city A? (b) Relative to city A, in what direction is city C? (c) Why is the answer only approximately correct?

7. A plane flies from base camp to lake A, a distance of 280 km at a direction of 20.0° north of east. After dropping off supplies, the plane flies to lake B, which is 190 km and 30.0° west of north from lake A. Graphically determine the distance and direction from lake B to the base camp.

8. A jogger runs 100 m due west, then changes direction for the second leg of the run. At the end of the run, she is 175 m away from the starting point at an angle of 15.0° north of west. What were the direction and length of her second displacement? Use graphical techniques.

9. A man lost in a maze makes three consecutive displacements so that at the end of his travel he is right back where he started. The first displacement is 8.00 m westward, and the second is 13.0 m northward. Use the graphical method to find the magnitude and direction of the third displacement.

SECTION 3.2 COMPONENTS OF A VECTOR

10. The magnitude of vector \mathbf{A} is 35.0 units and points in the direction 325° counterclockwise from the positive x-axis. Calculate the x- and y-components of this vector.

11. A golfer takes two puts to get his ball into the hole once he is on the green. The first putt displaces the ball 6.00 m east, the second 5.40 m south. What displacement would have been needed to get the ball into the hole on the first putt?
12. A figure skater glides along a circular path of radius 5.00 m. If she coasts around one half of the circle, find (a) the magnitude of the displacement vector and (b) what distance she skated. (c) What is the magnitude of the displacement if she skates all the way around the circle?

13. A girl delivering newspapers covers her route by traveling 3.00 blocks west, 4.00 blocks north, and then 6.00 blocks east. (a) What is her resultant displacement? (b) What is the total distance she travels?

14. A hiker starts at his camp and moves the following distances while exploring his surroundings: 75.0 m north, 2.50×10^2 m east, 1.25×10^2 m at an angle 30.0° north of east, and 1.50×10^2 m south. (a) Find his resultant displacement from camp. (Take east as the positive x-direction and north as the positive y-direction.) (b) Would changes in the order in which the hiker makes the given displacements alter his final position? Explain.

15. A vector has an x-component of -25.0 units and a y-component of 40.0 units. Find the magnitude and direction of the vector.

16. A quarterback takes the ball from the line of scrimmage, runs backwards for 10.0 yards, then runs sideways parallel to the line of scrimmage for 15.0 yards. At this point, he throws a 50.0-yard forward pass straight downfield, perpendicular to the line of scrimmage. What is the magnitude of the football’s resultant displacement?

17. The eye of a hurricane passes over Grand Bahama Island in a direction 60.0° north of west with a speed of 41.0 km/h. Three hours later the course of the hurricane suddenly shifts due north, and its speed slows to 25.0 km/h. How far from Grand Bahama is the hurricane 4.50 h after it passes over the island?

18. A small map shows Atlanta to be 730 miles in a direction 5° north of east from Dallas. The same map shows that Chicago is 560 miles in a direction 21° west of north from Atlanta. Assume a flat Earth and use the given information to find the displacement from Dallas to Chicago.

19. A commuter airplane starts from an airport and takes the route shown in Figure P3.19. The plane first flies to city A, located 175 km away in a direction 30.0° north of east. Next, it flies for 150 km 20.0° west of north, to city B. Finally, the plane flies 190 km due west, to city C. Find the location of city C relative to the location of the starting point.

20. The helicopter view in Figure P3.20 shows two people pulling on a stubborn mule. Find (a) the single force that is equivalent to the two forces shown and (b) the force a third person would have to exert on the mule to make the net force equal to zero. The forces are measured in units of newtons (N).

21. A novice golfer on the green takes three strokes to sink the ball. The successive displacements of the ball are 4.00 m to the north, 2.00 m at 45.0° north of east, and 1.00 m at 30.0° west of south. Starting at the same initial point, an expert golfer could make the hole in what single displacement?
below the cliff? (f) With what speed and angle of impact does the stone land?

28. \(\text{GP} \) From the window of a building, a ball is tossed from a height \(y_0 \) above the ground with an initial velocity of 8.00 m/s and angle of 20.0° below the horizontal. It strikes the ground 3.00 s later. (a) If the base of the building is taken to be the origin of the coordinates, with upward the positive \(y \)-direction, what are the initial coordinates of the ball? (b) With the positive \(x \)-direction chosen to be out the window, find the \(x \) - and \(y \)-components of the initial velocity. (c) Find the equations for the \(x \) - and \(y \)-components of the position as functions of time. (d) How far horizontally from the base of the building does the ball strike the ground? (e) Find the height from which the ball was thrown. (f) How long does it take the ball to reach a point 10.0 m below the level of launching?

29. A brick is thrown upward from the top of a building at an angle of 25° to the horizontal and with an initial speed of 15 m/s. If the brick is in flight for 3.0 s, how tall is the building?

30. An artillery shell is fired with an initial velocity of 300 m/s at 55.0° above the horizontal. To clear an avalanche, it explodes on a mountainside 42.0 s after firing. What are the \(x \) - and \(y \)-coordinates of the shell where it explodes, relative to its firing point?

31. A car is parked on a cliff overlooking the ocean on an incline that makes an angle of 24.0° below the horizontal. The negligent driver leaves the car in neutral, and the emergency brakes are defective. The car rolls from rest down the incline with a constant acceleration of 4.00 m/s² for a distance of 50.0 m to the edge of the cliff, which is 30.0 m above the ocean. Find (a) the car’s position relative to the base of the cliff when the car lands in the ocean and (b) the length of time the car is in the air.

32. A fireman 50.0 m away from a burning building directs a stream of water from a ground-level fire hose at an angle of 30.0° above the horizontal. If the speed of the stream as it leaves the hose is 40.0 m/s, at what height will the stream of water strike the building?

33. A projectile is launched with an initial speed of 60.0 m/s at an angle of 30.0° above the horizontal. The projectile lands on a hillside 4.00 s later. Neglect air friction. (a) What is the projectile’s velocity at the highest point of its trajectory? (b) What is the straight-line distance from where the projectile was launched to where it hits its target?

34. A soccer player kicks a rock horizontally off a 40.0-m-high cliff into a pool of water. If the player hears the sound of the splash 3.00 s later, what was the initial speed given to the rock? Assume the speed of sound in air to be 343 m/s.

SECTION 3.5 RELATIVE VELOCITY

35. \(\text{GP} \) A jet airliner moving initially at \(3.00 \times 10^5 \) mi/h due east enters a region where the wind is blowing \(1.00 \times 10^5 \) mi/h in a direction 30° north of east. (a) Find the components of the velocity of the jet airliner relative to the air, \(\mathbf{v}_{EA} \). (b) Find the components of the velocity of the air relative to Earth, \(\mathbf{v}_{AE} \). (c) Write an equation analo-
gous to Equation 3.16 for the velocities \(\mathbf{v}_{A}, \mathbf{v}_{W}, \text { and } \mathbf{v}_{B} \).

(d) What is the speed and direction of the aircraft relative to the ground?

36. A boat moves through the water of a river at 10 m/s relative to the water, regardless of the boat's direction. If the water in the river is flowing at 1.5 m/s, how long does it take the boat to make a round trip consisting of a 300-m displacement downstream followed by a 300-m displacement upstream?

37. A chinook (king) salmon (genus Oncorhynchus) can jump out of water with a speed of 6.26 m/s. (See Problem 4.9, page 111 for an investigation of how the fish can leave the water at a higher speed than it can swim underwater.) If the salmon is in a stream with water speed equal to 1.50 m/s, how high in the air can the fish jump if it leaves the water traveling vertically upwards relative to the Earth?

38. A river flows due east at 1.50 m/s. A boat crosses the river from the south shore to the north shore by maintaining a constant velocity of 10.0 m/s due north relative to the water. (a) What is the velocity of the boat relative to the shore? (b) If the river is 300 m wide, how far downstream has the boat moved by the time it reaches the north shore?

39. A rowboat crosses a river with a velocity of 3.30 mi/h at an angle 62.5° north of west relative to the water. The river is 0.505 mi wide and carries an eastward current of 1.25 mi/h. How far upstream is the boat when it reaches the opposite shore?

40. Suppose a chinook salmon needs to jump a waterfall that is 1.50 m high. If the fish starts from a distance 1.00 m from the base of the ledge over which the waterfall flows, find the \(x \) - and \(y \) -components of the initial velocity the salmon would need to just reach the ledge at the top of its trajectory. Can the fish make this jump? (Remember that a chinook salmon can jump out of the water with a speed of 6.26 m/s.)

41. A river has a steady speed of 0.500 m/s. A student swims upstream a distance of 1.00 km and swims back to the starting point. (a) If the student can swim at a speed of 1.20 m/s in still water, how long does the trip take? (b) How much time is required in still water for the same length swim? (c) Intuitively, why does the swim take longer when there is a current?

42. A river has a steady speed of \(v_r \). A student swims upstream a distance \(d \) and back to the starting point. (a) If the student can swim at a speed of \(v \) in still water, how much time \(t_{up} \) does it take the student to swim upstream a distance \(d \)? Express the answer in terms of \(d, v, \text { and } v_r \). (b) Using the same variables, how much time \(t_{down} \) does it take to swim back downstream to the starting point? (c) Sum the answers found in parts (a) and (b) and show that the time \(t_s \) required for the whole trip can be written as

\[
t_s = \frac{2d/v}{1 - v^2/v_r^2}
\]

(d) How much time \(t_s \) does the trip take in still water? (e) Which is larger, \(t_s \) or \(t_r \)? Is it always larger?

43. A bomber is flying horizontally over level terrain at a speed of 275 m/s relative to the ground and at an altitude of 5.00 km. (a) The bombardier releases one bomb. How far does the bomb travel horizontally between its release and its impact on the ground? Ignore the effects of air resistance. (b) Firing from the people on the ground suddenly incapacitates the bombardier before he can call, “Bombs away!” Consequently, the pilot maintains the plane’s original course, altitude, and speed through a storm of flak. Where is the plane relative to the bomb’s point of impact when the bomb hits the ground? (c) The plane has a telescopic bombsight set so that the bomb hits the target seen in the sight at the moment of release. At what angle from the vertical was the bombsight set?

ADDITIONAL PROBLEMS

44. A moving walkway at an airport has a speed \(v_1 \) and a length \(L \). A woman stands on the walkway as it moves from one end to the other, while a man in a hurry to reach his flight walks on the walkway with a speed of \(v_2 \) relative to the moving walkway. (a) How long does it take the woman to travel the distance \(L \)? (b) How long does it take the man to travel this distance?

45. How long does it take an automobile traveling in the left lane of a highway at 60.0 km/h to overtake (become even with) another car that is traveling in the right lane at 40.0 km/h when the cars’ front bumpers are initially 100 m apart?

46. You can use any coordinate system you like to solve a projectile motion problem. To demonstrate the truth of this statement, consider a ball thrown off the top of a building with a velocity \(\mathbf{v} \) at an angle \(\theta \) with respect to the horizontal. Let the building be 50.0 m tall, the initial horizontal velocity be 9.00 m/s, and the initial vertical velocity be 12.0 m/s. Choose your coordinates such that the positive \(y \)-axis is upward, the \(x \)-axis is to the right, and the origin is at the point where the ball is released. (a) With these choices, find the ball’s maximum height above the ground and the time it takes to reach the maximum height. (b) Repeat your calculations choosing the origin at the base of the building.

47. A Nordic jumper goes off a ski jump at an angle of 10.0° below the horizontal, traveling 108 m horizontally and 55.0 m vertically before landing. (a) Ignoring friction and aerodynamic effects, calculate the speed needed by the skier on leaving the ramp. (b) Olympic Nordic jumpers can make such jumps with a jump speed of 23.0 m/s, which is considerably less than the answer found in part (a). Explain how that is possible.

48. In a local diner, a customer slides an empty coffee cup down the counter for a refill. The cup slides off the counter and strikes the floor at distance \(d \) from the base of the counter. If the height of the counter is \(h \), (a) find an expression for the time \(t \) it takes the cup to fall to the floor in terms of the variables \(h \) and \(g \). (b) With what speed does the mug leave the counter? Answer in terms of the variables \(d \), \(g \), and \(h \). (c) In the same terms, what is the speed of the cup immediately before it hits the floor? (d) In terms of \(h \) and \(d \), what is the direction of the cup’s velocity immediately before it hits the floor?
49. Towns A and B in Figure P3.49 are 80.0 km apart. A couple arranges to drive from town A and meet a couple driving from town B at the lake, L. The two couples leave simultaneously and drive for 2.50 h in the directions shown. Car 1 has a speed of 90.0 km/h. If the cars arrive simultaneously at the lake, what is the speed of car 2?

50. A chinook salmon has a maximum underwater speed of 3.58 m/s, but it can jump out of water with a speed of 6.26 m/s. To move upstream past a waterfall, the salmon does not need to jump to the top of the fall, but only to a point in the fall where the water speed is less than 3.58 m/s; it can then swim up the fall for the remaining distance. Because the salmon must make forward progress in the water, let's assume it can swim to the top if the water speed is 3.00 m/s. If water has a speed of 1.50 m/s as it passes over a ledge, how far below the ledge will the water be moving with a speed of 3.00 m/s? (Note that water undergoes projectile motion once it leaves the ledge.) If the salmon is able to jump vertically upward from the base of the fall, what is the maximum height of waterfall that the salmon can clear?

51. A rocket is launched at an angle of 53.0° above the horizontal with an initial speed of 100 m/s. The rocket moves for 3.00 s along its initial line of motion with an acceleration of 30.0 m/s². At this time, its engines fail and the rocket proceeds to move as a projectile. Find (a) the maximum altitude reached by the rocket, (b) its total time of flight, and (c) its horizontal range.

52. Two canoeists in identical canoes exert the same effort paddling and hence maintain the same speed relative to the water. One paddles directly upstream (and moves upstream), whereas the other paddles directly downstream. With downstream as the positive direction, an observer on shore determines the velocities of the two canoes to be -1.2 m/s and +2.9 m/s, respectively. (a) What is the speed of the water relative to the shore? (b) What is the speed of each canoe relative to the water?

53. If a person can jump a maximum horizontal distance (by using a 45° projection angle) of 3.0 m on Earth, what would be his maximum range on the Moon, where the free-fall acceleration is \(\frac{g}{6} \) and \(g = 9.80 \text{ m/s}^2 \)? Repeat for Mars, where the acceleration due to gravity is \(0.38g \).

54. A daredevil decides to jump a canyon. Its walls are equally high and 10 m apart. He takes off by driving a motorcycle up a short ramp sloped at an angle of 15°. What minimum speed must he have in order to clear the canyon?

55. A home run is hit in such a way that the baseball just clears a wall 21 m high, located 130 m from home plate. The ball is hit at an angle of 35° to the horizontal, and air resistance is negligible. Find (a) the initial speed of the ball, (b) the time it takes the ball to reach the wall, and (c) the velocity components and the speed of the ball when it reaches the wall. (Assume the ball is hit at a height of 1.0 m above the ground.)

56. A ball is thrown straight upward and returns to the thrower’s hand after 3.00 s in the air. A second ball is thrown at an angle of 30.0° with the horizontal. At what speed must the second ball be thrown so that it reaches the same height as the one thrown vertically?

57. A quarterback throws a football toward a receiver with an initial speed of 20 m/s at an angle of 30° above the horizontal. At that instant the receiver is 20 m from the quarterback. In what direction and with what constant speed should the receiver run in order to catch the football at the level at which it was thrown?

58. A 2.00-m-tall basketball player is standing on the floor 10.0 m from the basket, as in Figure P3.58. If he shoots the ball at a 40.0° angle with the horizontal, at what initial speed must he throw the basketball so that it goes through the hoop without striking the backboard? The height of the basket is 3.05 m.

59. In a very popular lecture demonstration, a projectile is fired at a falling target as in Figure P3.59. The projectile leaves the gun at the same instant the target is
dropped from rest. Assuming the gun is initially aimed at the target, show that the projectile will hit the target. (One restriction of this experiment is that the projectile must reach the target before the target strikes the floor.)

60. A student decides to measure the muzzle velocity 1
By throwing a ball at an angle of 45°, a girl can
The equation of a parabola is
When baseball outfielders throw the ball, they
[110x177]64.
[110x331]62.
[110x712]60.
[126x89]bounce as a ball thrown upward at 45.0° with no bounce?
[126x100]be thrown in order to go the same dis-
[126x111]with one
[126x122]half its speed. (a) Assuming that the ball is always thrown
[126x133]after the bounce, the ball rebounds at the same angle
[126x155]the ball arrives at its target sooner that way. Suppose that,
[126x690]The displacements
[126x701]tions between the male (m) and female (f) anatomies.
[126x739](One restriction of this experiment is that the projectile
[126x750]at the target, show that the projectile will hit the target.
[126x348]in each case. (Is this assumption valid?)
[126x370]on a
[126x381]throw the ball a maximum horizontal distance
[126x381]R
[126x381]on a
[126x381]throw the ball vertically
[126x679]feet to the navel have magnitudes of 104 cm and 84.0 cm,
[126x276]t
[126x287]are the components of the initial velocity. (a) Eliminate
[126x591]sums.
[126x602]part (a). Then fi nd the vector difference between the two
[126x613]mon height of 200 cm and re-form the vector sums as in
[126x635](b) The male fi gure is 180 cm tall, the female 168 cm.
[126x646]vector sum of the displacements
[126x657]tudes of 50.0 cm and 43.0 cm, respectively. (a) Find the
[126x668]S
[206x674]S
[242x331]y

FIGURE P3.60

By throwing a ball at an angle of 45°, a girl can
throw the ball a maximum horizontal distance R on a
level field. How far can she throw the same ball vertically
upward? Assume her muscles give the ball the same speed
in each case. (Is this assumption valid?)

62. The equation of a parabola is \(y = ax^2 + bx + c \), where
\(a, b, \) and \(c \) are constants. The \(x \) and \(y \)coordinates of a projectile launched from the origin as a function of time
are given by \(x = v_{0x}t \) and \(y = v_{0y}t - \frac{1}{2}gt^2 \), where \(v_{0x} \) and \(v_{0y} \)
are the components of the initial velocity. (a) Eliminate
\(t \) from these two equations and show that the path of a
projectile is a parabola and has the form \(y = ax + bx^2 \).
(b) What are the values of \(a, b, \) and \(c \) for the projectile?

63. A hunter wishes to cross a river that is 1.5 km wide and
flows with a speed of 5.0 km/h parallel to its banks. The
hunter uses a small powerboat that moves at a maximum
speed of 12 km/h with respect to the water. What is the
minimum time necessary for crossing?

64. When baseball outfielders throw the ball, they
usually allow it to take one bounce, on the theory that
the ball arrives at its target sooner that way. Suppose that,
after the bounce, the ball rebounds at the same angle \(\theta \)
that it had when it was released (as in Fig. P3.64), but loses
half its speed. (a) Assuming that the ball is always thrown
with the same initial speed, at what angle \(\theta \) should the ball
be thrown in order to go the same distance \(D \) with one
bounce as a ball thrown upward at 45.0° with no bounce?

(b) Determine the ratio of the times for the one-bounce
and no-bounce throws.

65. A daredevil is shot out of a cannon at 45.0° to the
horizontal with an initial speed of 25.0 m/s. A net is posi-
tioned a horizontal distance of 50.0 m from the cannon.
At what height above the cannon should the net be placed
in order to catch the daredevil?

66. Chinook salmon are able to move upstream faster
by jumping out of the water periodically; this behavior
is called porpoising. Suppose a salmon swimming in still
water jumps out of the water with a speed of 6.26 m/s
at an angle of 45°, sails through the air a distance \(L \)
before returning to the water, and then swims a distance
\(L \) underwater at a speed of 3.58 m/s before beginning
another porpoising maneuver. Determine the average
speed of the fish.

67. A student decides to measure the muzzle velocity
of a pellet shot from his gun. He points the gun horizon-
tally. He places a target on a vertical wall a distance \(x \) away
from the gun. The pellet hits the target at a vertical distance
\(y \) below the gun. (a) Show that the position of the pellet
during air friction, what
\(\theta \)
when traveling through the air is given by \(y = Ax^2 \), where
\(A \) is a constant. (b) Express the constant \(A \) in terms of the
initial (muzzle) velocity and the free-fall acceleration. (c) If
\(x = 3.00 \) m and \(y = 0.210 \) m, what is the initial speed of
the pellet?

68. A sailboat is heading directly north at a speed of
20 knots (1 knot = 0.514 m/s). The wind is blowing
towards the east with a speed of 17 knots. Determine the
magnitude and direction of the wind velocity as measured
on the boat. What is the component of the wind velocity
in the direction parallel to the motion of the boat? (See
Problem 4.58 for an explanation of how a sailboat can
move “into the wind.”)

69. A golf ball with an initial speed of 50.0 m/s lands
exactly 240 m downrange on a level course. (a) Neglect-
ing air friction, what two projection angles would achieve
this result? (b) What is the maximum height reached by
the ball, using the two angles determined in part (a)?

70. A landscape architect is planning an artificial water-
fall in a city park. Water flowing at 0.750 m/s leaves the
end of a horizontal channel at the top of a vertical wall
2.35 m high and falls into a pool. (a) How far from the
wall will the water land? Will the space behind the water-
fall be wide enough for a pedestrian walkway? (b) To sell
her plan to the city council, the architect wants to build a
model to standard scale, one-twelfth actual size. How fast
should the water flow in the channel in the model?
71. One strategy in a snowball fight is to throw a snowball at a high angle over level ground. Then, while your opponent is watching that snowball, you throw a second one at a low angle timed to arrive before or at the same time as the first one. Assume both snowballs are thrown with a speed of 25.0 m/s. The first is thrown at an angle of 70.0° with respect to the horizontal. (a) At what angle should the second snowball be thrown to arrive at the same point as the first? (b) How many seconds later should the second snowball be thrown after the first in order for both to arrive at the same time?

72. A dart gun is fired while being held horizontally at a height of 1.00 m above ground level and while it is at rest relative to the ground. The dart from the gun travels a horizontal distance of 5.00 m. A college student holds the same gun in a horizontal position while sliding down a 45.0° incline at a constant speed of 2.00 m/s. How far will the dart travel if the student fires the gun when it is 1.00 m above the ground?

73. The determined Wile E. Coyote is out once more to try to capture the elusive roadrunner. The coyote wears a new pair of Acme power roller skates, which provide a constant horizontal acceleration of 15 m/s², as shown in Figure P3.73. The coyote starts off at rest 70 m from the edge of a cliff at the instant the roadrunner zips by in the direction of the cliff. (a) If the roadrunner moves with constant speed, find the minimum speed the roadrunner must have to reach the cliff before the coyote. (b) If the cliff is 100 m above the base of a canyon, find where the coyote lands in the canyon. (Assume his skates are still in operation when he is in “flight” and that his horizontal component of acceleration remains constant at 15 m/s².)
Forces exerted by Earth, wind, and water, properly channeled by the strength and skill of these windsurfers, combine to create a non-zero net force on their surfboards, driving them forward through the waves.

4.1 Forces
4.2 Newton’s First Law
4.3 Newton’s Second Law
4.4 Newton’s Third Law
4.5 Applications of Newton’s Laws
4.6 Forces of Friction

THE LAWS OF MOTION

Classical mechanics describes the relationship between the motion of objects found in our everyday world and the forces acting on them. As long as the system under study doesn’t involve objects comparable in size to an atom or traveling close to the speed of light, classical mechanics provides an excellent description of nature.

This chapter introduces Newton’s three laws of motion and his law of gravity. The three laws are simple and sensible. The first law states that a force must be applied to an object in order to change its velocity. Changing an object’s velocity means accelerating it, which implies a relationship between force and acceleration. This relationship, the second law, states that the net force on an object equals the object’s mass times its acceleration. Finally, the third law says that whenever we push on something, it pushes back with equal force in the opposite direction. These are the three laws in a nutshell.

Newton’s three laws, together with his invention of calculus, opened avenues of inquiry and discovery that are used routinely today in virtually all areas of mathematics, science, engineering, and technology. Newton’s theory of universal gravitation had a similar impact, starting a revolution in celestial mechanics and astronomy that continues to this day. With the advent of this theory, the orbits of all the planets could be calculated to high precision and the tides understood. The theory even led to the prediction of “dark stars,” now called black holes, more than two centuries before any evidence for their existence was observed.1 Newton’s three laws of motion, together with his law of gravitation, are considered among the greatest achievements of the human mind.

4.1 FORCES

A force is commonly imagined as a push or a pull on some object, perhaps rapidly, as when we hit a tennis ball with a racket. (See Fig. 4.1.) We can hit the ball at different speeds and direct it into different parts of the opponent’s court. This means that we can control the magnitude of the applied force and also its direction, so force is a vector quantity, just like velocity and acceleration.

1In 1783, John Michell combined Newton’s theory of light and theory of gravitation, predicting the existence of “dark stars” from which light itself couldn’t escape.
If you pull on a spring (Fig. 4.2a), the spring stretches. If you pull hard enough on a wagon (Fig. 4.2b), the wagon moves. When you kick a football (Fig. 4.2c), it deforms briefly and is set in motion. These are all examples of contact forces, so named because they result from physical contact between two objects.

Another class of forces doesn’t involve any direct physical contact. Early scientists, including Newton, were uneasy with the concept of forces that act between two disconnected objects. Nonetheless, Newton used this “action-at-a-distance” concept in his law of gravity, whereby a mass at one location, such as the Sun, affects the motion of a distant object such as Earth despite no evident physical connection between the two objects. To overcome the conceptual difficulty associated with action at a distance, Michael Faraday (1791–1867) introduced the concept of a field. The corresponding forces are called field forces. According to this approach, an object of mass M, such as the Sun, creates an invisible influence that stretches throughout space. A second object of mass m, such as Earth, interacts with the field of the Sun, not directly with the Sun itself. So the force of gravitational attraction between two objects, illustrated in Figure 4.2d, is an example of a field force. The force of gravity keeps objects bound to Earth and also gives rise to what we call the weight of those objects.

Another common example of a field force is the electric force that one electric charge exerts on another (Fig. 4.2e). A third example is the force exerted by a bar magnet on a piece of iron (Fig. 4.2f).

The known fundamental forces in nature are all field forces. These are, in order of decreasing strength, (1) the strong nuclear force between subatomic particles, (2) the electromagnetic forces between electric charges, (3) the weak nuclear force, which arises in certain radioactive decay processes, and (4) the gravitational force between objects. The strong force keeps the nucleus of an atom from flying apart due to the repulsive electric force of the protons. The weak force is involved in most radioactive processes and plays an important role in the nuclear reactions that generate the Sun’s energy output. The strong and weak forces operate only on the nuclear scale, with a very short range on the order of 10^{-15} m. Outside this range, they have no influence. Classical physics, however, deals only with gravitational and electromagnetic forces, which have infinite range.

Forces exerted on an object can change the object’s shape. For example, striking a tennis ball with a racket, as in Figure 4.1, deforms the ball to some extent. Even objects we usually consider rigid and inflexible are deformed under the action of external forces. Often the deformations are permanent, as in the case of a collision between automobiles.
4.2 NEWTON’S FIRST LAW

Consider a book lying on a table. Obviously, the book remains at rest if left alone. Now imagine pushing the book with a horizontal force great enough to overcome the force of friction between the book and the table, setting the book in motion. Because the magnitude of the applied force exceeds the magnitude of the friction force, the book accelerates. When the applied force is withdrawn, friction soon slows the book to a stop.

Now imagine pushing the book across a smooth, waxed floor. The book again comes to rest once the force is no longer applied, but not as quickly as before. Finally, if the book is moving on a horizontal frictionless surface, it continues to move in a straight line with constant velocity until it hits a wall or some other obstruction.

Before about 1600, scientists felt that the natural state of matter was the state of rest. Galileo, however, devised thought experiments—such as an object moving on a frictionless surface, as just described—and concluded that it’s not the nature of an object to stop, once set in motion, but rather to continue in its original state of motion. This approach was later formalized as Newton’s first law of motion:

An object moves with a velocity that is constant in magnitude and direction, unless acted on by a nonzero net force.

The net force on an object is defined as the vector sum of all external forces exerted on the object. External forces come from the object’s environment. If an object’s velocity isn’t changing in either magnitude or direction, then its acceleration and the net force acting on it must both be zero.

Internal forces originate within the object itself and can’t change the object’s velocity (although they can change the object’s rate of rotation, as described in Chapter 8). As a result, internal forces aren’t included in Newton’s second law. It’s not really possible to “pull yourself up by your own bootstraps.”

A consequence of the first law is the feasibility of space travel. After just a few moments of powerful thrust, the spacecraft coasts for months or years, its velocity only slowly changing with time under the relatively faint influence of the distant sun and planets.

Mass and Inertia

Imagine hitting a golf ball off a tee with a driver. If you’re a good golfer, the ball will sail over two hundred yards down the fairway. Now imagine teeing up a bowling ball and striking it with the same club (an experiment we don’t recommend). Your club would probably break, you might sprain your wrist, and the bowling ball, at best, would fall off the tee, take half a roll, and come to rest.

From this thought experiment, we conclude that although both balls resist changes in their state of motion, the bowling ball offers much more effective resistance. The tendency of an object to continue in its original state of motion is called inertia.

Although inertia is the tendency of an object to continue its motion in the absence of a force, mass is a measure of the object’s resistance to changes in its motion due to a force. The greater the mass of a body, the less it accelerates under the action of a given applied force. The SI unit of mass is the kilogram. Mass is a scalar quantity that obeys the rules of ordinary arithmetic.

Inertia can be used to explain the operation of one type of seat belt mechanism. In the event of an accident, the purpose of the seat belt is to hold the passenger firmly in place relative to the car, to prevent serious injury. Figure 4.3 (page 86) illustrates how one type of shoulder harness operates. Under normal conditions, the ratchet turns freely to allow the harness to wind on or unwind from the pulley as the passenger moves. In an accident, the car undergoes a large acceleration and
rapidly comes to rest. Because of its inertia, the large block under the seat continues to slide forward along the tracks. The pin connection between the block and the rod causes the rod to pivot about its center and engage the ratchet wheel. At this point, the ratchet wheel locks in place and the harness no longer unwinds.

4.3 NEWTON’S SECOND LAW

Newton’s first law explains what happens to an object that has no net force acting on it: The object either remains at rest or continues moving in a straight line with constant speed. Newton’s second law answers the question of what happens to an object that does have a net force acting on it.

Imagine pushing a block of ice across a frictionless horizontal surface. When you exert some horizontal force on the block, it moves with an acceleration of, say, 2 m/s². If you apply a force twice as large, the acceleration doubles to 4 m/s². Pushing three times as hard triples the acceleration, and so on. From such observations, we conclude that the **acceleration of an object is directly proportional to the net force acting on it**.

Mass also affects acceleration. Suppose you stack identical blocks of ice on top of each other while pushing the stack with constant force. If the force applied to one block produces an acceleration of 2 m/s², then the acceleration drops to half that value, 1 m/s², when two blocks are pushed, to one-third the initial value when three blocks are pushed, and so on. We conclude that the **acceleration of an object is inversely proportional to its mass**. These observations are summarized in Newton’s second law:

Newton’s second law

\[
\vec{a} = \sum \frac{\vec{F}}{m}
\]

The constant of proportionality is equal to one, so in mathematical terms the preceding statement can be written

\[
\sum \vec{F} = ma
\]
Physicists commonly refer to this equation as \(F = ma \). The second law is a vector equation, equivalent to the following three component equations:

\[\sum F_x = ma_x \]
\[\sum F_y = ma_y \]
\[\sum F_z = ma_z \] \[4.2\]

When there is no net force on an object, its acceleration is zero, which means the velocity is constant.

Units of Force and Mass

The SI unit of force is the *newton*. When 1 newton of force acts on an object that has a mass of 1 kg, it produces an acceleration of 1 m/s\(^2\) in the object. From this definition and Newton’s second law, we see that the newton can be expressed in terms of the fundamental units of mass, length, and time as

\[1 \text{ N} = 1 \text{ kg} \cdot \text{m/s}^2 \] \[4.3\]

In the U.S. customary system, the unit of force is the *pound*. The conversion from newtons to pounds is given by

\[1 \text{ N} = 0.225 \text{ lb} \] \[4.4\]

The units of mass, acceleration, and force in the SI and U.S. customary systems are summarized in Table 4.1.

QUICK QUIZ 4.1 Which of the following statements are true? (a) An object can move even when no force acts on it. (b) If an object isn’t moving, no external forces act on it. (c) If a single force acts on an object, the object accelerates. (d) If an object accelerates, a force is acting on it. (e) If an object isn’t accelerating, no external force is acting on it. (f) If the net force acting on an object is in the positive \(x \)-direction, the object moves only in the positive \(x \)-direction.

TABLE 4.1

Units of Mass, Acceleration, and Force

<table>
<thead>
<tr>
<th>System</th>
<th>Mass</th>
<th>Acceleration</th>
<th>Force</th>
</tr>
</thead>
<tbody>
<tr>
<td>SI</td>
<td>kg</td>
<td>m/s(^2)</td>
<td>N = kg\cdot m/s(^2)</td>
</tr>
<tr>
<td>U.S. customary</td>
<td>slug</td>
<td>ft/s(^2)</td>
<td>lb = slug\cdot ft/s(^2)</td>
</tr>
</tbody>
</table>

EXAMPLE 4.1 Airboat

Goal Apply Newton’s law in one dimension, together with the equations of kinematics.

Problem An airboat with mass \(3.50 \times 10^2 \) kg, including passengers, has an engine that produces a net horizontal force of \(7.70 \times 10^2 \) N, after accounting for forces of resistance (see Fig. 4.4). (a) Find the acceleration of the airboat. (b) Starting from rest, how long does it take the airboat to reach a speed of 12.0 m/s? (c) After reaching this speed, the pilot turns off the engine and drifts to a stop over a distance of 50.0 m. Find the resistance force, assuming it’s constant.

Strategy In part (a), apply Newton’s second law to find the acceleration, and in part (b) use this acceleration in the one-dimensional kinematics equation for the velocity. When the engine is turned off in part (c), only the resistance forces act on the boat, so their net acceleration can be found from \(v^2 - v_0^2 = 2a \Delta x \). Then Newton’s second law gives the resistance force.
Chapter 4 The Laws of Motion

Solution
(a) Find the acceleration of the airboat.

Apply Newton’s second law and solve for the acceleration:

\[m \frac{a}{\text{m}} = F_{\text{net}} \rightarrow a = \frac{F_{\text{net}}}{m} = \frac{7.70 \times 10^2 \text{ N}}{3.50 \times 10^2 \text{ kg}} = 2.20 \text{ m/s}^2 \]

(b) Find the time necessary to reach a speed of 12.0 m/s.

Apply the kinematics velocity equation:

\[v = at + v_0 = (2.20 \text{ m/s})t = 12.0 \text{ m/s} \rightarrow t = 5.45 \text{ s} \]

(c) Find the resistance force after the engine is turned off.

Using kinematics, find the net acceleration due to resistance forces:

\[v^2 - v_0^2 = 2a \Delta x \]

\[0 - (12.0 \text{ m/s})^2 = 2a(50.0 \text{ m}) \rightarrow a = -1.44 \text{ m/s}^2 \]

Substitute the acceleration into Newton’s second law, finding the resistance force:

\[F_{\text{resist}} = ma = (3.50 \times 10^2 \text{ kg})(-1.44 \text{ m/s}^2) = -504 \text{ N} \]

Remarks The propeller exerts a force on the air, pushing it backwards behind the boat. At the same time, the air exerts a force on the propellers and consequently on the airboat. Forces always come in pairs of this kind, which are formalized in the next section as Newton’s third law of motion. The negative answer for the acceleration in part (c) means that the airboat is slowing down.

QUESTION 4.1
What other forces act on the airboat? Describe them.

EXERCISE 4.1
Suppose the pilot, starting again from rest, opens the throttle partway. At a constant acceleration, the airboat then covers a distance of 60.0 m in 10.0 s. Find the net force acting on the boat.

Answer 4.20 \times 10^2 \text{ N}

EXAMPLE 4.2 Horses Pulling a Barge

Goal Apply Newton’s second law in a two-dimensional problem.

Problem Two horses are pulling a barge with mass 2.00 \times 10^3 \text{ kg} along a canal, as shown in Figure 4.5. The cable connected to the first horse makes an angle of 30.0° with respect to the direction of the canal, while the cable connected to the second horse makes an angle of 45.0°. Find the initial acceleration of the barge, starting at rest, if each horse exerts a force of magnitude 6.00 \times 10^2 \text{ N} on the barge. Ignore forces of resistance on the barge.

Strategy Using trigonometry, find the vector force exerted by each horse on the barge. Add the x-components together to get the x-component of the resultant force, and then do the same with the y-components. Divide by the mass of the barge to get the accelerations in the x- and y-directions.

FIGURE 4.5 (Example 4.2)
The Gravitational Force

The gravitational force is the mutual force of attraction between any two objects in the Universe. Although the gravitational force can be very strong between very large objects, it’s the weakest of the fundamental forces. A good demonstration of how weak it is can be carried out with a small balloon. Rubbing the balloon in your hair gives the balloon a tiny electric charge. Through electric forces, the balloon then adheres to a wall, resisting the gravitational pull of the entire Earth!
In addition to contributing to the understanding of motion, Newton studied gravity extensively. **Newton’s law of universal gravitation** states that every particle in the Universe attracts every other particle with a force that is directly proportional to the product of the masses of the particles and inversely proportional to the square of the distance between them. If the particles have masses \(m_1 \) and \(m_2 \) and are separated by a distance \(r \), as in Active Figure 4.6, the magnitude of the gravitational force, \(F_g \), is

\[
F_g = G \frac{m_1 m_2}{r^2}
\]

where \(G = 6.67 \times 10^{-11} \text{ N} \cdot \text{m}^2/\text{kg}^2 \) is the **universal gravitation constant**. We examine the gravitational force in more detail in Chapter 7.

Weight

The magnitude of the gravitational force acting on an object of mass \(m \) near Earth’s surface is called the **weight**, \(w \), of the object, given by

\[
w = mg
\]

where \(g \) is the acceleration of gravity.

SI unit: newton (N)

From Equation 4.5, an alternate definition of the weight of an object with mass \(m \) can be written as

\[
w = G \frac{M_E m}{r^2}
\]

where \(M_E \) is the mass of Earth and \(r \) is the distance from the object to Earth’s center. If the object is at rest on Earth’s surface, then \(r \) is equal to Earth’s radius \(R_E \).

Since \(r \) is in the denominator of Equation 4.7, the weight decreases with increasing \(r \). So the weight of an object on a mountaintop is less than the weight of the same object at sea level.

Comparing Equations 4.6 and 4.7, we see that

\[
g = G \frac{M_E}{r^2}
\]

Unlike mass, weight is not an inherent property of an object because it can take different values, depending on the value of \(g \) in a given location. If an object has a mass of 70.0 kg, for example, then its weight at a location where \(g = 9.80 \text{ m/s}^2 \) is \(mg = 686 \text{ N} \). In a high-altitude balloon, where \(g \) might be 9.76 m/s\(^2 \), the object’s weight would be 683 N. The value of \(g \) also varies slightly due to the density of material in a given locality.

Equation 4.8 is a general result that can be used to calculate the acceleration of an object falling near the surface of any massive object if the more massive object’s radius and mass are known. Using the values in Table 7.3 (p. 217), you should be able to show that \(g_{\text{Sun}} = 274 \text{ m/s}^2 \) and \(g_{\text{Moon}} = 1.62 \text{ m/s}^2 \). An important fact is that for spherical bodies, distances are calculated from the centers of the objects, a consequence of Gauss’s law (explained in Chapter 15), which holds for both gravitational and electric forces.

QUICK QUIZ 4.2 Which has greater value, a newton of gold won on Earth or a newton of gold won on the Moon? (a) The newton of gold on the Earth. (b) The newton of gold on the Moon. (c) The value is the same, regardless.
EXAMPLE 4.3 Forces of Distant Worlds

Goal Calculate the magnitude of a gravitational force using Newton’s law of gravitation.

Problem Find the gravitational force exerted by the Sun on a 70.0-kg man located on Earth. The distance from the Sun to the Earth is about 1.50×10^{11} m, and the Sun’s mass is 1.99×10^{30} kg.

Strategy Substitute numbers into Newton’s law of gravitation, Equation 4.5, making sure to use the correct units.

Solution Apply Equation 4.5, substituting values:

$$F_{\text{Sun}} = \frac{GMm}{r^2}$$

$$= (6.67 \times 10^{-11} \text{ kg}^{-1}\text{m}^3\text{s}^{-2}) \left(\frac{(70.0 \text{ kg})(1.99 \times 10^{30} \text{ kg})}{(1.50 \times 10^{11} \text{ m})^2} \right)$$

$$= 0.413 \text{ N}$$

Remarks The gravitational attraction between the Sun and objects on Earth is easily measurable and has been exploited in experiments to determine whether gravitational attraction depends on the composition of the object. As the exercise shows, the gravitational force on Earth due to the Sun is much weaker than the gravitational force on Earth due to the Sun. Paradoxically, the Moon’s effect on the tides is over twice that of the Sun because the tides depend on differences in the gravitational force across the Earth, and those differences are greater for the Moon’s gravitational force because the Moon is much closer to Earth than the Sun.

QUESTION 4.3 Mars is about one and a half times as far from the Sun as Earth. To one significant digit, what is the gravitational force of the Sun on a 70.0-kg man standing on Mars? (Hint: Use the result of part (a) and the inverse square nature of the force.)

EXERCISE 4.3 To one significant digit, find the force exerted by the Moon on a 70-kg man on Earth. The Moon has a mass of 7.36×10^{22} kg and is 3.84×10^8 m from Earth.

Answer $F_{\text{Moon}} = 0.002 \text{ N}$

EXAMPLE 4.4 Weight on Planet X

Goal Understand the effect of a planet’s mass and radius on the weight of an object on the planet’s surface.

Problem An astronaut on a space mission lands on a planet with three times the mass and twice the radius of Earth. What is her weight w_X on this planet as a multiple of her Earth weight w_E?

Strategy Write M_X and r_X, the mass and radius of the planet, in terms of M_E and R_E, the mass and radius of Earth, respectively, and substitute into the law of gravitation.

Solution From the statement of the problem, we have the following relationships:

$$M_X = 3M_E \quad r_X = 2R_E$$

Substitute the preceding expressions into Equation 4.5 and simplify, algebraically associating the terms giving the weight on Earth:

$$w_X = \frac{G M_X m}{r_X^2} = \frac{G 3M_E m}{(2R_E)^2} = \frac{3}{4} \frac{G M_E m}{R_E^2} = \frac{3}{4} w_E$$

Remarks This problem shows the interplay between a planet’s mass and radius in determining the weight of objects on its surface. Because of Earth’s much smaller radius, the weight of an object on Jupiter is only 2.64 times its weight on Earth, despite the fact that Jupiter has over 300 times as much mass.
4.4 NEWTON'S THIRD LAW

In Section 4.1 we found that a force is exerted on an object when it comes into contact with some other object. Consider the task of driving a nail into a block of wood, for example, as illustrated in Figure 4.7a. To accelerate the nail and drive it into the block, the hammer must exert a net force on the nail. Newton recognized, however, that a single isolated force (such as the force exerted by the hammer on the nail) couldn't exist. Instead, forces in nature always exist in pairs. According to Newton, as the nail is driven into the block by the force exerted by the hammer, the hammer is slowed down and stopped by the force exerted by the nail. Newton described such paired forces with his third law:

If object 1 and object 2 interact, the force F_{12} exerted by object 1 on object 2 is equal in magnitude but opposite in direction to the force F_{21} exerted by object 2 on object 1.

This law, which is illustrated in Figure 4.7b, states that a single isolated force can't exist. The force F_{12} exerted by object 1 on object 2 is sometimes called the action force, and the force F_{21} exerted by object 2 on object 1 is called the reaction force. In reality, either force can be labeled the action or reaction force. The action force is equal in magnitude to the reaction force and opposite in direction. In all cases, the action and reaction forces act on different objects. For example, the force acting on a freely falling projectile is the force exerted by Earth on the projectile, F_{Eg}, and the magnitude of this force is its weight mg. The reaction to force F_{Eg} is the force exerted by the projectile on Earth, $F_{g'} = -F_{Eg}$. The reaction force $F_{g'}$ must accelerate the Earth towards the projectile, just as the action force F_{Eg} accelerates the projectile towards the Earth. Because the

TIP 4.4 Action–Reaction Pairs

In applying Newton's third law, remember that an action and its reaction force always act on different objects. Two external forces acting on the same object, even if they are equal in magnitude and opposite in direction, can't be an action–reaction pair.

FIGURE 4.7 Newton's third law. (a) The force exerted by the hammer on the nail is equal in magnitude and opposite in direction to the force exerted by the nail on the hammer. (b) The force F_{12} exerted by object 1 on object 2 is equal in magnitude and opposite in direction to the force F_{21} exerted by object 2 on object 1.

QUESTION 4.4

Suppose one world is made of ice whereas another world with the same radius is made of rock. If g is the acceleration of gravity on the surface of the ice world, what is the approximate acceleration of gravity on the rock world? (Hint: Estimate the mass of a rock in terms of the mass of an ice cube having the same size.)

EXERCISE 4.4

An astronaut lands on Ganymede, a giant moon of Jupiter that is larger than the planet Mercury. Ganymede has one-fortieth the mass of Earth and two-fifths the radius. Find the weight of the astronaut standing on Ganymede in terms of his Earth weight w_E.

Answer $w_G = (5/32)w_E$
Earth has such a large mass, however, its acceleration due to this reaction force is
negligibly small.

Newton’s third law constantly affects our activities in everyday life. Without it,
no locomotion of any kind would be possible, whether on foot, on a bicycle, or in a
motorized vehicle. When walking, for example, we exert a frictional force against
the ground. The reaction force of the ground against our foot propels us forward.
In the same way, the tires on a bicycle exert a frictional force against the ground,
and the reaction of the ground pushes the bicycle forward. As we’ll see shortly,
friction plays a large role in such reaction forces.

For another example of Newton’s third law, consider the helicopter. Most heli-
copters have a large set of blades rotating in a horizontal plane above the body
of the vehicle and another, smaller set rotating in a vertical plane at the back.
Other helicopters have two large sets of blades above the body rotating in oppo-
site directions. Why do helicopters always have two sets of blades? In the first type
of helicopter, the engine applies a force to the blades, causing them to change
their rotational motion. According to Newton’s third law, however, the blades must
exert a force on the engine of equal magnitude and in the opposite direction. This
force would cause the body of the helicopter to rotate in the direction opposite
the blades. A rotating helicopter would be impossible to control, so a second set of
blades is used. The small blades in the back provide a force opposite to that tend-
ing to rotate the body of the helicopter, keeping the body oriented in a stable posi-
tion. In helicopters with two sets of large counterrotating blades, engines apply
forces in opposite directions, so there is no net force rotating the helicopter.

As mentioned earlier, the Earth exerts a force \(\mathbf{F}_g \) on any object. If the object is
a TV at rest on a table, as in Figure 4.8a, the reaction force to \(\mathbf{F}_g \) is the force the
TV exerts on the Earth, \(\mathbf{F}_{gr} \). The TV doesn’t accelerate downward because it’s held
up by the table. The table therefore exerts an upward force \(\mathbf{n} \), called the normal
force, on the TV. (Normal, a technical term from mathematics, means “perpendicu-
lar” in this context.) The normal force is an elastic force arising from the cohe-
sion of matter and is electromagnetic in origin. It balances the gravitational force
acting on the TV, preventing the TV from falling through the table, and can have
any value needed, up to the point of breaking the table. The reaction to \(\mathbf{n} \) is the
force exerted by the TV on the table, \(\mathbf{n}_r \). Therefore,
\[
\mathbf{F}_g = -\mathbf{F}_{gr} \quad \text{and} \quad \mathbf{n} = -\mathbf{n}_r
\]

The forces \(\mathbf{n} \) and \(\mathbf{n}_r \) both have the same magnitude as \(\mathbf{F}_g \). Note that the forces act-
ing on the TV are \(\mathbf{F}_g \) and \(\mathbf{n} \), as shown in Figure 4.8b. The two reaction forces, \(\mathbf{F}_{gr} \)
and \(\mathbf{n}_r \), are exerted by the TV on objects other than the TV. Remember that the
two forces in an action–reaction pair always act on two different objects.

APPLICATION

Helicopter Flight

FIGURE 4.8 When a TV set is sitting
on a table, the forces acting on the set
are the normal force \(\mathbf{n} \) exerted by the
table and the force of gravity, \(\mathbf{F}_g \), as
illustrated in (b). The reaction to \(\mathbf{n} \)
is the force exerted by the TV set on
the table, \(\mathbf{n}_r \). The reaction to \(\mathbf{F}_g \)
is the force exerted by the TV set on
Earth, \(\mathbf{F}_{gr} \).
Because the TV is not accelerating in any direction ($\vec{a} = 0$), it follows from Newton's second law that $m\vec{a} = 0 = \vec{F}_g + \vec{n}$. However, $F_g = -mg$, so $n = mg$: a useful result.

QUICK QUIZ 4.3

A small sports car collides head-on with a massive truck. The greater impact force (in magnitude) acts on (a) the car, (b) the truck, (c) neither, the force is the same on both. Which vehicle undergoes the greater magnitude acceleration? (d) the car, (e) the truck, (f) the accelerations are the same.

4.5 APPLICATIONS OF NEWTON’S LAWS

This section applies Newton’s laws to objects moving under the influence of constant external forces. We assume that objects behave as particles, so we need not consider the possibility of rotational motion. We also neglect any friction effects and the masses of any ropes or strings involved. With these approximations, the magnitude of the force exerted along a rope, called the tension, is the same at all points in the rope. This is illustrated by the rope in Figure 4.9, showing the forces \vec{T} and \vec{n} acting on it. If the rope has mass m, then Newton’s second law applied to the rope gives $T - T' = ma$. If the mass m is taken to be negligible, however, as in the upcoming examples, then $T = T'$.

When we apply Newton’s law to an object, we are interested only in those forces which act on the object. For example, in Figure 4.8b, the only external forces acting on the TV are \vec{n} and \vec{F}_g. The reactions to these forces, \vec{n}' and \vec{F}_g', act on the table and on Earth, respectively, and don’t appear in Newton’s second law applied to the TV.

Consider a crate being pulled to the right on a frictionless, horizontal surface, as in Figure 4.10a. Suppose you wish to find the acceleration of the crate and the force the surface exerts on it. The horizontal force exerted on the crate acts through the rope. The force that the rope exerts on the crate is denoted by \vec{T} (because it’s a tension force). The magnitude of \vec{T} is equal to the tension in the rope. What we mean by the word “tension in the rope” is just the force read by a spring scale when the rope in question has been cut and the scale inserted between the cut ends. A dashed circle is drawn around the crate in Figure 4.10a to emphasize the importance of isolating the crate from its surroundings.

Because we are interested only in the motion of the crate, we must be able to identify all forces acting on it. These forces are illustrated in Figure 4.10b. In addition to displaying the force \vec{T}, the force diagram for the crate includes the force of gravity \vec{F}_g exerted by Earth and the normal force \vec{n} exerted by the floor. Such a force diagram is called a free-body diagram because the environment is replaced by a series of forces on an otherwise free body. The construction of a correct free-body diagram is an essential step in applying Newton’s laws. An incorrect diagram will most likely lead to incorrect answers.

The reactions to the forces we have listed—namely, the force exerted by the rope on the hand doing the pulling, the force exerted by the crate on Earth, and the force exerted by the crate on the floor—aren’t included in the free-body diagram because they act on other objects and not on the crate. Consequently, they don’t directly influence the crate’s motion. Only forces acting directly on the crate are included.

Now let’s apply Newton’s second law to the crate. First we choose an appropriate coordinate system. In this case it’s convenient to use the one shown in Figure 4.10b, with the x-axis horizontal and the y-axis vertical. We can apply Newton’s second law in the x-direction, y-direction, or both, depending on what we’re asked
to find in a problem. Newton’s second law applied to the crate in the x- and y-
directions yields the following two equations:

$$ma_x = T \quad ma_y = n - mg = 0$$

From these equations, we find that the acceleration in the x-direction is constant,
given by $a_x = T/m$, and that the normal force is given by $n = mg$. Because the accel-
eration is constant, the equations of kinematics can be applied to obtain further
information about the velocity and displacement of the object.

PROBLEM-SOLVING STRATEGY

NEWTON’S SECOND LAW

Problems involving Newton’s second law can be very complex. The following
protocol breaks the solution process down into smaller, intermediate goals:

1. Read the problem carefully at least once.
2. Draw a picture of the system, identify the object of primary interest, and
 indicate forces with arrows.
3. Label each force in the picture in a way that will bring to mind what physi-
cal quantity the label stands for (e.g., T for tension).
4. Draw a free-body diagram of the object of interest, based on the labeled
 picture. If additional objects are involved, draw separate free-body diagrams
 for them. Choose convenient coordinates for each object.
5. Apply Newton’s second law. The x- and y-components of Newton’s second
 law should be taken from the vector equation and written individually. This
 usually results in two equations and two unknowns.
6. Solve for the desired unknown quantity, and substitute the numbers.

In the special case of equilibrium, the foregoing process is simplified because the
acceleration is zero.

Objects in Equilibrium

Objects that are either at rest or moving with constant velocity are said to be in
equilibrium. Because $\vec{a} = 0$, Newton’s second law applied to an object in equilib-
rium gives

$$\sum \vec{F} = 0 \quad [4.9]$$

This statement signifies that the vector sum of all the forces (the net force) acting
on an object in equilibrium is zero. Equation 4.9 is equivalent to the set of compo-
nent equations given by

$$\sum F_x = 0 \quad \text{and} \quad \sum F_y = 0 \quad [4.10]$$

We won’t consider three-dimensional problems in this book, but the extension
of Equation 4.10 to a three-dimensional problem can be made by adding a third
equation: $\sum F_z = 0$.

QUICK QUIZ 4.4 Consider the two situations shown in Figure 4.11, in
which there is no acceleration. In both cases the men pull with a force of
magnitude F. Is the reading on the scale in part (i) of the figure (a) greater
than, (b) less than, or (c) equal to the reading in part (ii)?
Example 4.5 A Traffic Light at Rest

Goal Use the second law in an equilibrium problem requiring two free-body diagrams.

Problem A traffic light weighing 1.00×10^2 N hangs from a vertical cable tied to two other cables that are fastened to a support, as in Figure 4.12a. The upper cables make angles of 37.0° and 53.0° with the horizontal. Find the tension in each of the three cables.

Strategy There are three unknowns, so we need to generate three equations relating them, which can then be solved. One equation can be obtained by applying Newton’s second law to the traffic light, which has forces in the y-direction only. Two more equations can be obtained by applying the second law to the knot joining the cables—one equation from the x-component and one equation from the y-component.

Solution Find T_3 from Figure 4.12b, using the condition of equilibrium:

\[\sum F_y = 0 \rightarrow T_3 - F_g = 0 \]
\[T_3 = F_g = 1.00 \times 10^2 \text{ N} \]

Using Figure 4.12c, resolve all three tension forces into components and construct a table for convenience:

<table>
<thead>
<tr>
<th>Force</th>
<th>x-Component</th>
<th>y-Component</th>
</tr>
</thead>
<tbody>
<tr>
<td>T_1</td>
<td>$-T_1 \cos 37.0°$</td>
<td>$T_1 \sin 37.0°$</td>
</tr>
<tr>
<td>T_2</td>
<td>$T_2 \cos 53.0°$</td>
<td>$T_2 \sin 53.0°$</td>
</tr>
<tr>
<td>T_3</td>
<td>0</td>
<td>$-1.00 \times 10^2 \text{ N}$</td>
</tr>
</tbody>
</table>

Apply the conditions for equilibrium to the knot, using the components in the table:

1. \[\sum F_x = -T_1 \cos 37.0° + T_2 \cos 53.0° = 0 \]
2. \[\sum F_y = T_1 \sin 37.0° + T_2 \sin 53.0° - 1.00 \times 10^2 \text{ N} = 0 \]

There are two equations and two remaining unknowns. Solve Equation (1) for T_2:

\[T_2 = T_1 \left(\frac{\cos 37.0°}{\cos 53.0°} \right) = T_1 \left(\frac{0.799}{0.602} \right) = 1.33T_1 \]

Substitute the result for T_2 into Equation (2):

\[T_1 \sin 37.0° + (1.33T_1)(\sin 53.0°) - 1.00 \times 10^2 \text{ N} = 0 \]
\[T_1 = 60.1 \text{ N} \]
\[T_2 = 1.33T_1 = 1.33(60.0 \text{ N}) = 79.9 \text{ N} \]

Remarks It’s very easy to make sign errors in this kind of problem. One way to avoid them is to always measure the angle of a vector from the positive x-direction. The trigonometric functions of the angle will then automatically give the correct signs for the components. For example, T_1 makes an angle of 180° − 37° = 143° with respect to the positive x-axis, and its x-component, $T_1 \cos 143°$, is negative, as it should be.

Question 4.5 How would the answers change if a second traffic light were attached beneath the first?

Exercise 4.5
Suppose the traffic light is hung so that the tensions T_1 and T_2 are both equal to 80.0 N. Find the new angles they make with respect to the x-axis. (By symmetry, these angles will be the same.)

Answer Both angles are 38.7°.
EXAMPLE 4.6 Sled on a Frictionless Hill

Goal Use the second law and the normal force in an equilibrium problem.

Problem A sled is tied to a tree on a frictionless, snow-covered hill, as shown in Figure 4.13a. If the sled weighs 77.0 N, find the force exerted by the rope on the sled and the magnitude of the force $\mathbf{\vec{n}}$ exerted by the hill on the sled.

Strategy When an object is on a slope, it’s convenient to use tilted coordinates, as in Figure 4.13b, so that the normal force $\mathbf{\vec{n}}$ is in the y-direction and the tension force \mathbf{T} is in the x-direction. In the absence of friction, the hill exerts no force on the sled in the x-direction. Because the sled is at rest, the conditions for equilibrium, $\sum F_x = 0$ and $\sum F_y = 0$, apply, giving two equations for the two unknowns—the tension and the normal force.

Solution Apply Newton’s second law to the sled, with $\mathbf{a} = 0$:
$$\sum F = \mathbf{T} + \mathbf{n} + \mathbf{F}_g = 0$$

Extract the x-component from this equation to find T:
$$\sum F_x = T + 0 - mg \sin \theta = T - (77.0 \text{ N}) \sin 30.0^\circ = 0$$

$T = 38.5 \text{ N}$

Write the y-component of Newton’s second law. The y-component of the tension is zero, so this equation will give the normal force.

$$\sum F_y = 0 + n - mg \cos \theta = n - (77.0 \text{ N})(\cos 30.0^\circ) = 0$$

$n = 66.7 \text{ N}$

Remarks Unlike its value on a horizontal surface, n is less than the weight of the sled when the sled is on the slope. This is because only part of the force of gravity (the x-component) is acting to pull the sled down the slope. The y-component of the force of gravity balances the normal force.

QUESTION 4.6

Consider the same scenario on a hill with a steeper slope. Would the magnitude of the tension in the rope get larger, smaller, or remain the same as before? How would the normal force be affected?

EXERCISE 4.6

Suppose a child of weight w climbs onto the sled. If the tension force is measured to be 60.0 N, find the weight of the child and the magnitude of the normal force acting on the sled.

Answers $w = 43.0 \text{ N}$, $n = 104 \text{ N}$

QUICK QUIZ 4.5 For the woman being pulled forward on the toboggan in Figure 4.14, is the magnitude of the normal force exerted by the ground on the toboggan (a) equal to the total weight of the woman plus the toboggan, (b) greater than the total weight, (c) less than the total weight, or (d) possibly greater than or less than the total weight, depending on the size of the weight relative to the tension in the rope?

Accelerating Objects and Newton’s Second Law

When a net force acts on an object, the object accelerates, and we use Newton’s second law to analyze the motion.
EXAMPLE 4.7 Moving a Crate

Goal Apply the second law of motion for a system not in equilibrium, together with a kinematics equation.

Problem The combined weight of the crate and dolly in Figure 4.15 is \(3.00 \times 10^2\) N. If the man pulls on the rope with a constant force of 20.0 N, what is the acceleration of the system (crate plus dolly), and how far will it move in 2.00 s? Assume the system starts from rest and that there are no friction forces opposing the motion.

Strategy We can find the acceleration of the system from Newton’s second law. Because the force exerted on the system is constant, its acceleration is constant. Therefore, we can apply a kinematics equation to find the distance traveled in 2.00 s.

Solution Find the mass of the system from the definition of weight, \(w = mg\):

\[
m = \frac{w}{g} = \frac{3.00 \times 10^2 \text{ N}}{9.80 \text{ m/s}^2} = 30.6 \text{ kg}
\]

Find the acceleration of the system from the second law:

\[
a_x = \frac{F_x}{m} = \frac{20.0 \text{ N}}{30.6 \text{ kg}} = 0.654 \text{ m/s}^2
\]

Use kinematics to find the distance moved in 2.00 s, \(\Delta x = \frac{1}{2} a_x t^2 = \frac{1}{2} (0.654 \text{ m/s}^2)(2.00 \text{ s})^2 = 1.31 \text{ m}\) with \(v_0 = 0\):

Remarks Note that the constant applied force of 20.0 N is assumed to act on the system at all times during its motion. If the force were removed at some instant, the system would continue to move with constant velocity and hence zero acceleration. The rollers have an effect that was neglected, here.

QUESTION 4.7 What effect does doubling the weight have on the acceleration and the displacement?

EXERCISE 4.7 A man pulls a 50.0-kg box horizontally from rest while exerting a constant horizontal force, displacing the box 3.00 m in 2.00 s. Find the force the man exerts on the box. (Ignore friction.)

Answer 75.0 N

EXAMPLE 4.8 The Runaway Car

Goal Apply the second law and kinematic equations to a problem involving an object moving on an incline.

Problem (a) A car of mass \(m\) is on an icy driveway inclined at an angle \(\theta = 20.0^\circ\), as in Figure 4.16a. Determine the acceleration of the car, assuming the incline is frictionless. (b) If the length of the driveway is 25.0 m and the car starts from rest at the top, how long does it take to travel to the bottom? (c) What is the car’s speed at the bottom?

Strategy Choose tilted coordinates as in Figure 4.16b so that the normal force \(\mathbf{n}\) is in the positive \(y\)-direction, perpendicular to the driveway, and the positive \(x\)-axis is down the slope. The force of gravity \(\mathbf{F}_g\) then has an \(x\)-component, \(mg \cos \theta\), and a \(y\)-component, \(-mg \sin \theta\). The components of Newton’s second law form a system of two equations and two unknowns for the acceleration down the slope, \(a_x\), and the normal force. Parts (b) and (c) can be solved with the kinematics equations.
4.5 Applications of Newton’s Laws

Solution
(a) Find the acceleration of the car.

Apply Newton’s second law:

\[m\ddot{a} = \sum \vec{F} = \vec{F}_g + \vec{n} \]

Extract the \(x\)- and \(y\)-components from the second law:

\[(1) \quad ma_x = \sum F_x = mg \sin \theta \]
\[(2) \quad 0 = \sum F_y = -mg \cos \theta + n \]

Divide Equation (1) by \(m\) and substitute the given values:

\[a_x = g \sin \theta = (9.80 \text{ m/s}^2) \sin 20.0^\circ = 3.35 \text{ m/s}^2 \]

(b) Find the time taken for the car to reach the bottom.

Use Equation 3.11b for displacement, with \(v_0 = 0\):

\[\Delta x = \frac{1}{2} a_x t^2 \quad \rightarrow \quad \frac{1}{2}(3.35 \text{ m/s}^2) t^2 = 25.0 \text{ m} \]

\[t = 3.86 \text{ s} \]

(c) Find the speed of the car at the bottom of the driveway.

Use Equation 3.11a for velocity, again with \(v_0 = 0\):

\[v_x = a_x t = (3.35 \text{ m/s}^2)(3.86 \text{ s}) = 12.9 \text{ m/s} \]

Remarks Notice that the final answer for the acceleration depends only on \(g\) and the angle \(\theta\), not the mass. Equation (2), which gives the normal force, isn’t useful here, but is essential when friction plays a role.

QUESTION 4.8
If the car is parked on a more gentle slope, how will the time required for it to slide to the bottom of the hill be affected? Explain.

EXERCISE 4.8
(a) Suppose a hockey puck slides down a frictionless ramp with an acceleration of 5.00 m/s\(^2\). What angle does the ramp make with respect to the horizontal? (b) If the ramp has a length of 6.00 m, how long does it take the puck to reach the bottom? (c) Now suppose the mass of the puck is doubled. What’s the puck’s new acceleration down the ramp?

Answer (a) 30.7° (b) 1.55 s (c) unchanged, 5.00 m/s\(^2\)

EXAMPLE 4.9 Weighing a Fish in an Elevator

Goal Explore the effect of acceleration on the apparent weight of an object.

Problem A man weighs a fish with a spring scale attached to the ceiling of an elevator, as shown in Figure 4.17a. While the elevator is at rest, he measures a weight of 40.0 N. (a) What weight does the scale read if the elevator accelerates upward at 2.00 m/s\(^2\)? (b) What does the scale read if the elevator accelerates downward at 2.00 m/s\(^2\), as in Figure 4.17b? (c) If the elevator cable breaks, what does the scale read?

Strategy Write down Newton’s second law for the fish, including the force \(\vec{T}\) exerted by the spring scale and the force of gravity, \(mg\). The scale doesn’t measure the true weight, it measures the force \(\vec{T}\) that it exerts on the fish, so in each case solve for this force, which is the apparent weight as measured by the scale.

FIGURE 4.17 (Example 4.9)
Remarks

Notice how important it is to have correct signs in this problem! Accelerations can increase or decrease the apparent weight of an object. Astronauts experience very large changes in apparent weight, from several times normal weight during ascent to weightlessness in free fall.

QUESTION 4.9

Starting from rest, an elevator accelerates upward, reaching and maintaining a constant velocity thereafter until it reaches the desired floor, when it begins to slow down. Describe the scale reading during this time.

EXERCISE 4.9

Find the initial acceleration of a rocket if the astronauts on board experience eight times their normal weight during an initial vertical ascent. (Hint: In this exercise, the scale force is replaced by the normal force.)

Answer 68.6 m/s²

EXAMPLE 4.10 Atwood’s Machine

Goal Use the second law to solve a simple two-body problem symbolically.

Problem Two objects of mass m_1 and m_2, with $m_2 > m_1$, are connected by a light, inextensible cord and hung over a frictionless pulley, as in Active Figure 4.18a. Both cord and pulley have negligible mass. Find the magnitude of the acceleration of the system and the tension in the cord.

Strategy The heavier mass, m_2, accelerates downward, in the negative y-direction. Because the cord can’t be stretched, the accelerations of the two masses are equal in magnitude, but opposite in direction, so that a_1 is positive and a_2 is negative, and $a_2 = -a_1$. Each mass is acted on by a force of tension T in the upward direction and a force of gravity in the downward direction. Active Figure 4.18b shows free-body diagrams for the two masses. Newton’s second law for each mass, together with the equation relating the accelerations, constitutes a set of three equations for the three unknowns—a_1, a_2, and T.
Solution

Apply the second law to each of the two masses individually:

1. \(m_1a_1 = T - m_1g \)
2. \(m_2a_2 = T - m_2g \)

Substitute \(a_2 = -a_1 \) into Equation (2) and multiply both sides by \(-1\):

3. \(m_2a_1 = -T + m_2g \)

Add Equations (1) and (3), and solve for \(a_1 \):

\[
(\text{mass}_1 + \text{mass}_2)a_1 = m_2g - m_1g
\]

\[
a_1 = \left(\frac{m_2 - m_1}{m_1 + m_2} \right)g
\]

Substitute this result into Equation (1) to find \(T \):

\[
T = \left(\frac{2m_1m_2}{m_1 + m_2} \right)g
\]

Remarks

The acceleration of the second block is the same as that of the first, but negative. When \(m_2 \) gets very large compared with \(m_1 \), the acceleration of the system approaches \(g \), as expected, because \(m_2 \) is falling nearly freely under the influence of gravity. Indeed, \(m_2 \) is only slightly restrained by the much lighter \(m_1 \).

QUESTION 4.10

How could this simple machine be used to raise objects too heavy for a person to lift?

EXERCISE 4.10

Suppose in the same Atwood setup another string is attached to the bottom of \(m_1 \) and a constant force \(f \) is applied, retarding the upward motion of \(m_1 \). If \(m_1 = 5.00 \text{ kg} \) and \(m_2 = 10.00 \text{ kg} \), what value of \(f \) will reduce the acceleration of the system by 50%?

Answer 24.5 N

4.6 FORCES OF FRICTION

An object moving on a surface or through a viscous medium such as air or water encounters resistance as it interacts with its surroundings. This resistance is called friction. Forces of friction are essential in our everyday lives. Friction makes it possible to grip and hold things, drive a car, walk, and run. Even standing in one spot would be impossible without friction, as the slightest shift would instantly cause you to slip and fall.

Imagine that you've filled a plastic trash can with yard clippings and want to drag the can across the surface of your concrete patio. If you apply an external horizontal force \(\vec{F} \) to the can, acting to the right as shown in Active Figure 4.19a (page 102), the can remains stationary if \(\vec{F} \) is small. The force that counteracts \(\vec{F} \) and keeps the can from moving acts to the left, opposite the direction of \(\vec{F} \), and is called the force of static friction, \(\vec{f}_s \). As long as the can isn't moving, \(\vec{f}_s = -\vec{F} \). If \(\vec{F} \) is increased, \(\vec{f}_s \) also increases. Likewise, if \(\vec{F} \) decreases, \(\vec{f}_s \) decreases. Experiments show that the friction force arises from the nature of the two surfaces: Because of their roughness, contact is made at only a few points, as shown in the magnified view of the surfaces in Active Figure 4.19a.

If we increase the magnitude of \(\vec{F} \), as in Active Figure 4.19b, the trash can eventually slips. When the can is on the verge of slipping, \(f_s \) is a maximum, as shown in Figure 4.19c. When \(F \) exceeds \(f_{s\text{max}} \), the can accelerates to the right. When the can is in motion, the friction force is less than \(f_{s\text{max}} \) (Fig. 4.19c). We call the friction force for an object in motion the force of kinetic friction, \(f_k \). The net force \(F - f_k \) in the x-direction produces an acceleration to the right, according to Newton's
second law. If \(F = 0 \), the acceleration is zero, and the can moves to the right with constant speed. If the applied force is removed, the friction force acting to the left provides an acceleration of the can in the \(-x\)-direction and eventually brings it to rest, again consistent with Newton’s second law.

Experimentally, to a good approximation, both \(f_{s,\text{max}} \) and \(f_k \) for an object on a surface are proportional to the normal force exerted by the surface on the object. The experimental observations can be summarized as follows:

- The magnitude of the force of static friction between any two surfaces in contact can have the values
 \[
 f_s = \mu_s n \tag{4.11}
 \]
 where the dimensionless constant \(\mu_s \) is called the coefficient of static friction and \(n \) is the magnitude of the normal force exerted by one surface on the other. Equation 4.11 also holds for \(f_s = f_{s,\text{max}} = \mu_s n \) when an object is on the verge of slipping. This situation is called impending motion. The strict inequality holds when the component of the applied force parallel to the surfaces is less than \(\mu_s n \).

- The magnitude of the force of kinetic friction acting between two surfaces is
 \[
 f_k = \mu_k n \tag{4.12}
 \]
 where \(\mu_k \) is the coefficient of kinetic friction.

- The values of \(\mu_s \) and \(\mu_k \) depend on the nature of the surfaces, but \(\mu_k \) is generally less than \(\mu_s \). Table 4.2 lists some reported values.
- The direction of the friction force exerted by a surface on an object is opposite the actual motion (kinetic friction) or the impending motion (static friction) of the object relative to the surface.
- The coefficients of friction are nearly independent of the area of contact between the surfaces.

Although the coefficient of kinetic friction varies with the speed of the object, we will neglect any such variations. The approximate nature of Equations 4.11 and 4.12 is easily demonstrated by trying to get an object to slide down an incline at constant acceleration. Especially at low speeds, the motion is likely to be characterized by alternate stick and slip episodes.
TABLE 4.2

<table>
<thead>
<tr>
<th>Coefficients of Frictiona</th>
<th>μ_s</th>
<th>μ_k</th>
</tr>
</thead>
<tbody>
<tr>
<td>Steel on steel</td>
<td>0.74</td>
<td>0.57</td>
</tr>
<tr>
<td>Aluminum on steel</td>
<td>0.61</td>
<td>0.47</td>
</tr>
<tr>
<td>Copper on steel</td>
<td>0.53</td>
<td>0.36</td>
</tr>
<tr>
<td>Rubber on concrete</td>
<td>1.0</td>
<td>0.8</td>
</tr>
<tr>
<td>Wood on wood</td>
<td>0.25–0.5</td>
<td>0.2</td>
</tr>
<tr>
<td>Glass on glass</td>
<td>0.94</td>
<td>0.4</td>
</tr>
<tr>
<td>Waxied wood on wet snow</td>
<td>0.14</td>
<td>0.1</td>
</tr>
<tr>
<td>Waxied wood on dry snow</td>
<td>—</td>
<td>0.04</td>
</tr>
<tr>
<td>Metal on metal (lubricated)</td>
<td>0.15</td>
<td>0.06</td>
</tr>
<tr>
<td>Ice on ice</td>
<td>0.1</td>
<td>0.03</td>
</tr>
<tr>
<td>Teflon on Teflon</td>
<td>0.04</td>
<td>0.04</td>
</tr>
<tr>
<td>Synovial joints in humans</td>
<td>0.01</td>
<td>0.003</td>
</tr>
</tbody>
</table>

aAll values are approximate.

QUICK QUIZ 4.6 If you press a book flat against a vertical wall with your hand, in what direction is the friction force exerted by the wall on the book? (a) downward (b) upward (c) out from the wall (d) into the wall

QUICK QUIZ 4.7 A crate is sitting in the center of a flatbed truck. As the truck accelerates to the east, the crate moves with it, not sliding on the bed of the truck. In what direction is the friction force exerted by the bed of the truck on the crate? (a) To the west. (b) To the east. (c) There is no friction force, because the crate isn’t sliding.

QUICK QUIZ 4.8 Suppose your friend is sitting on a sled and asks you to move her across a flat, horizontal field. You have a choice of (a) pushing her from behind by applying a force downward on her shoulders at 30° below the horizontal (Fig. 4.20a) or (b) attaching a rope to the front of the sled and pulling with a force at 30° above the horizontal (Fig 4.20b). Which option would be easier and why?

EXAMPLE 4.11 A Block on a Ramp

Goal Apply the concept of static friction to an object resting on an incline.

Problem Suppose a block with a mass of 2.50 kg is resting on a ramp. If the coefficient of static friction between the block and ramp is 0.350, what maximum angle can the ramp make with the horizontal before the block starts to slip down?

Strategy This is an application of Newton’s second law involving an object in equilibrium. Choose tilted coordinates, as in Figure 4.21. Use the fact that the block is just about to slip when the force of static friction takes its maximum value, $f_s = \mu_s n$.

Solution

Write Newton’s laws for a static system in component form. The gravity force has two components, just as in Examples 4.6 and 4.8.

1. $\sum F_x = mg \sin \theta - \mu_s n = 0$
2. $\sum F_y = n - mg \cos \theta = 0$
Rearrange Equation (2) to get an expression for the normal force n:

$$n = mg \cos \theta$$

Substitute the expression for n into Equation (1) and solve for $\tan \theta$:

$$\tan \theta = \frac{F_x}{mg \sin \theta - \mu_mg \cos \theta}$$

Apply the inverse tangent function to get the answer:

$$\tan \theta = 0.350 \Rightarrow \theta = \tan^{-1}(0.350) = 19.3^\circ$$

Remark

It’s interesting that the final result depends only on the coefficient of static friction. Notice also how similar Equations (1) and (2) are to the equations developed in Examples 4.6 and 4.8. Recognizing such patterns is key to solving problems successfully.

QUESTIONS 4.11

(a) How would a larger static friction coefficient affect the maximum angle?

(b) Find the maximum static friction force that acts on the block.

Answer

(a) 0.577
(b) 12.2 N

EXAMPLE 4.12 The Sliding Hockey Puck

Goal
Apply the concept of kinetic friction.

Problem
The hockey puck in Figure 4.22, struck by a hockey stick, is given an initial speed of 20.0 m/s on a frozen pond. The puck remains on the ice and slides 1.20×10^2 m, slowing down steadily until it comes to rest. Determine the coefficient of kinetic friction between the puck and the ice.

Strategy
The puck slows “steadily,” which means that the acceleration is constant. Consequently, we can use the kinematic equation $v^2 = v_0^2 + 2a \Delta x$ to find a, the acceleration in the x-direction. The x- and y-components of Newton’s second law then give two equations and two unknowns for the coefficient of kinetic friction, μ_k, and the normal force n.

Solution
Solve the time-independent kinematic equation for the acceleration a:

$$v^2 = v_0^2 + 2a \Delta x$$

$$a = \frac{v^2 - v_0^2}{2 \Delta x}$$

Substitute $v = 0$, $v_0 = 20.0$ m/s, and $\Delta x = 1.20 \times 10^2$ m. Note the negative sign in the answer: a is opposite v:

$$a = \frac{0 - (20.0 \text{ m/s})^2}{2(1.20 \times 10^2 \text{ m})} = -1.67 \text{ m/s}^2$$

Find the normal force from the y-component of the second law:

$$\sum F_y = F_y - mg = 0$$

$$n = mg$$

Obtain an expression for the force of kinetic friction, and substitute it into the x-component of the second law:

$$f_k = \mu_k n = \mu_k mg$$

$$ma = \sum F_x = -f_k = -\mu_k mg$$

FIGURE 4.22

After the puck is given an initial velocity to the right, the external forces acting on it are the force of gravity F_y, the normal force n, and the force of kinetic friction, f_k.

EXERCISE 4.11

The ramp in Example 4.11 is roughed up and the experiment repeated. (a) What is the new coefficient of static friction if the maximum angle turns out to be 30.0°? (b) Find the maximum static friction force that acts on the block.

Answer
(a) 0.577
(b) 12.2 N
Solve for \(\mu_k \) and substitute values:

\[
\mu_k = -\frac{a}{g} = \frac{1.67 \text{ m/s}^2}{9.80 \text{ m/s}^2} = 0.170
\]

Remarks Notice how the problem breaks down into three parts: kinematics, Newton’s second law in the \(y \)-direction, and then Newton’s law in the \(x \)-direction.

QUESTION 4.12
How would the answer be affected if the puck were struck by an astronaut on a patch of ice on Mars, where the acceleration of gravity is \(0.35g \), with all other given quantities remaining the same?

EXERCISE 4.12
An experimental rocket plane lands on skids on a dry lake bed. If it’s traveling at 80.0 m/s when it touches down, how far does it slide before coming to rest? Assume the coefficient of kinetic friction between the skids and the lake bed is 0.600.

Answer 544 m

Two-body problems can often be treated as single objects and solved with a system approach. When the objects are rigidly connected—say, by a string of negligible mass that doesn’t stretch—this approach can greatly simplify the analysis. When the two bodies are considered together, one or more of the forces end up becoming forces that are internal to the system, rather than external forces affecting each of the individual bodies. Both approaches will be used in Example 4.13.

EXAMPLE 4.13 Connected Objects

Goal Use both the general method and the system approach to solve a connected two-body problem involving gravity and friction.

Problem (a) A block with mass \(m_1 = 4.00 \text{ kg} \) and a ball with mass \(m_2 = 7.00 \text{ kg} \) are connected by a light string that passes over a frictionless pulley, as shown in Figure 4.23a. The coefficient of kinetic friction between the block and the surface is 0.300. Find the acceleration of the two objects and the tension in the string. (b) Check the answer for the acceleration by using the system approach.

Strategy Connected objects are handled by applying Newton’s second law separately to each object. The free-body diagrams for the block and the ball are shown in Figure 4.23b, with the +\(x \)-direction to the right and the +\(y \)-direction upwards. The magnitude of the acceleration for both objects has the same value, \(|a_1| = |a_2| = a \). The block with mass \(m_1 \) moves in the positive \(x \)-direction, and the ball with mass \(m_2 \) moves in the negative \(y \)-direction, so \(a_1 = -a_2 \). Using Newton’s second law, we can develop two equations involving the unknowns \(T \) and \(a \) that can be solved simultaneously. In part (b), treat the two masses as a single object, with the gravity force on the ball increasing the combined object’s speed and the friction force on the block retarding it. The tension forces then become internal and don’t appear in the second law.

Solution (a) Find the acceleration of the objects and the tension in the string.

Write the components of Newton’s second law for the block of mass \(m_1 \):

\[
\sum F_x = T - f_k = m_1 a_1 \quad \sum F_y = n - m_1 g = 0
\]

The equation for the \(y \)-component gives \(n = m_1 g \). Substitute this value for \(n \) and \(f_k = \mu_k n \) into the equation for the \(x \)-component:

\[
T - \mu_k m_1 g = m_1 a_1
\]
Apply Newton’s second law to the ball, recalling that \(a_2 = -a_1 \):

\[
\sum F_j = -m_2g + T = m_2a_2 = -m_2a_1
\]

Subtract Equation (2) from Equation (1), eliminating \(T \) and leaving an equation that can be solved for \(a_1 \):

\[
m_2g - \mu m_1g = (m_1 + m_2)a_1
\]

\[
a_1 = \frac{m_2g - \mu m_1g}{m_1 + m_2}
\]

Substitute the given values to obtain the acceleration:

\[
a_1 = \frac{(7.00 \text{ kg})(9.80 \text{ m/s}^2) - (0.300)(4.00 \text{ kg})(9.80 \text{ m/s}^2)}{(4.00 \text{ kg} + 7.00 \text{ kg})}
\]

\[
= 5.17 \text{ m/s}^2
\]

Substitute the value for \(a_1 \) into Equation (1) to find the tension \(T \):

\[
T = 32.4 \text{ N}
\]

(b) Find the acceleration using the system approach, where the system consists of the two blocks.

Apply Newton’s second law to the system and solve for \(a \):

\[
(m_1 + m_2)a = m_2g - \mu m_1n = m_2g - \mu m_1g
\]

\[
a = \frac{m_2g - \mu m_1g}{m_1 + m_2}
\]

Remarks Although the system approach appears quick and easy, it can be applied only in special cases and can’t give any information about the internal forces, such as the tension. To find the tension, you must consider the free-body diagram of one of the blocks separately.

QUESTION 4.13

If mass \(m_2 \) is increased, does the acceleration of the system increase, decrease, or remain the same? Does the tension increase, decrease, or remain the same?

EXERCISE 4.13

What if an additional mass is attached to the ball in Example 4.13? How large must this mass be to increase the downward acceleration by 50%? Why isn’t it possible to add enough mass to double the acceleration?

Answer 14.0 kg. Doubling the acceleration to 10.3 m/s\(^2\) isn’t possible simply by suspending more mass because all objects, regardless of their mass, fall freely at 9.8 m/s\(^2\) near the Earth’s surface.

EXAMPLE 4.14 Two Blocks and a Cord

Goal Apply Newton’s second law and static friction in a two-body system.

Problem A block of mass 5.00 kg rides on top of a second block of mass 10.0 kg. A person attaches a string to the bottom block and pulls the system horizontally across a frictionless surface, as in Figure 4.24a. Friction between the two blocks keeps the 5.00-kg block from slipping off. If the coefficient of static friction is 0.350, what maximum force can be exerted by the string on the 10.0-kg block without causing the 5.00-kg block to slip?

Strategy Draw a free-body diagram for each block. The static friction force causes the top block to move horizontally, and the maximum such force corresponds to \(f_s = \mu n \). This same static friction retards the motion of the bottom block. As long as the top block isn’t slipping, the acceleration of both blocks is the same. Write Newton’s second law for each block, and eliminate the acceleration \(a \) by substitution, solving for the tension \(T \).
Solution

Write the two components of Newton’s second law for the top block:

- \(x \)-component: \(ma = \mu_n n_1 \)
- \(y \)-component: \(0 = n_1 - mg \)

Solve the \(y \)-component for \(n_1 \), substitute the result into the \(x \)-component, and then solve for \(a \):

\[
\begin{align*}
 n_1 &= mg \\
 ma &= \mu_n mg \\
 a &= \mu_n g
\end{align*}
\]

Write the \(x \)-component of Newton’s second law for the bottom block:

\[
M a = -\mu_n mg + T
\]

Substitute the expression for \(a = \mu_n g \) into Equation (1) and solve for the tension \(T \):

\[
M \mu_n g = T - \mu_n mg \\
T = (m + M) \mu_n g
\]

Now evaluate to get the answer:

\[
T = (5.00 \text{ kg} + 10.0 \text{ kg})(0.350)(9.80 \text{ m/s}^2) = 51.5 \text{ N}
\]

Remarks

Notice that the \(y \)-component for the 10.0-kg block wasn’t needed because there was no friction between that block and the underlying surface. It’s also interesting to note that the top block was accelerated by the force of static friction.

QUESTION 4.14

What would happen if the tension force exceeded 51.5 N?

EXERCISE 4.14

Suppose instead the string is attached to the top block in Example 14.4 (see Fig. 4.24b). Find the maximum force that can be exerted by the string on the block without causing the top block to slip.

Answer 25.7 N

APPLYING PHYSICS 4.1 CARS AND FRICTION

Forces of friction are important in the analysis of the motion of cars and other wheeled vehicles. How do such forces both help and hinder the motion of a car?

Explanation

There are several types of friction forces to consider, the main ones being the force of friction between the tires and the road surface and the retarding force produced by air resistance.

Assuming the car is a four-wheel-drive vehicle of mass \(m \), as each wheel turns to propel the car forward, the tire exerts a rearward force on the road. The reaction to this rearward force is a forward force \(\vec{f} \) exerted by the road on the tire (Fig. 4.25). If we assume the same forward force \(\vec{f} \) is exerted on each tire, the net forward force on the car is \(4 \vec{f} \), and the car’s acceleration is therefore \(\vec{a} = 4 \vec{f}/m \).

The friction between the moving car’s wheels and the road is normally static friction, unless the car is skidding.

When the car is in motion, we must also consider the force of air resistance, \(\vec{R} \), which acts in the direction opposite the velocity of the car. The net force exerted on the car is therefore \(4 \vec{f} - \vec{R} \), so the car’s acceleration is \(\vec{a} = (4 \vec{f} - \vec{R})/m \). At normal driving speeds, the magnitude of \(\vec{R} \) is proportional to the first power of the speed, \(R = b v \), where \(b \) is a constant, so the force of air resistance increases with increasing speed. When \(R \) is equal to \(4 \vec{f} \), the acceleration is zero and the car moves at a constant speed. To minimize this resistive force, racing cars often have very low profiles and streamlined contours.
Air resistance isn’t always undesirable. What are some applications that depend on it?

Explanation Consider a skydiver plunging through the air, as in Figure 4.26. Despite falling from a height of several thousand meters, she never exceeds a speed of around 120 miles per hour. This is because, aside from the downward force of gravity \(mg \), there is also an upward force of air resistance, \(R \). Before she reaches a final constant speed, the magnitude of \(R \) is less than her weight. As her downward speed increases, the force of air resistance increases. The vector sum of the force of gravity and the force of air resistance gives a total force that decreases with time, so her acceleration decreases. Once the two forces balance each other, the net force is zero, so the acceleration is zero, and she reaches a terminal speed.

Terminal speed is generally still high enough to be fatal on impact, although there have been amazing stories of survival. In one case, a man fell flat on his back in a freshly plowed field and survived. (He did, however, break virtually every bone in his body.) In another case, a flight attendant survived a fall from thirty thousand feet into a snowbank. In neither case would the person have had any chance of surviving without the effects of air drag.

Parachutes and paragliders create a much larger drag force due to their large area and can reduce the terminal speed to a few meters per second. Some sports enthusiasts have even developed special suits with wings, allowing a long glide to the ground. In each case, a larger cross-sectional area intercepts more air, creating greater air drag, so the terminal speed is lower.

Air drag is also important in space travel. Without it, returning to Earth would require a considerable amount of fuel. Air drag helps slow capsules and spaceships, and aerocapture techniques have been proposed for trips to other planets. These techniques significantly reduce fuel requirements by using air drag to slow the spacecraft down.
4.4 Newton’s Third Law
Newton’s third law states that if two objects interact, the force \vec{F}_{12} exerted by object 1 on object 2 is equal in magnitude and opposite in direction to the force \vec{F}_{21} exerted by object 2 on object 1:

$$\vec{F}_{12} = -\vec{F}_{21}$$

An isolated force can never occur in nature.

4.5 Applications of Newton’s Laws
An object in equilibrium has no net external force acting on it, and the second law, in component form, implies that these two equations are useful for solving problems in statics, in which the object is at rest or moving at constant velocity.

An object under acceleration requires the same two equations, but with the acceleration terms included: $\Sigma F_x = ma_x$ and $\Sigma F_y = ma_y$. When the acceleration is constant, the equations of kinematics can supplement Newton’s second law.

4.6 Forces of Friction
The magnitude of the maximum force of static friction, $f_{s_{\text{max}}}$, between an object and a surface is proportional to the magnitude of the normal force acting on the object. This maximum force occurs when the object is on the verge of slipping. In general,

$$f_s \leq \mu_s n$$

where μ_s is the coefficient of static friction. When an object slides over a surface, the direction of the force of kinetic friction, f_k, on the object is opposite the direction of the motion of the object relative to the surface and proportional to the magnitude of the normal force. The magnitude of f_k is

$$f_k = \mu_k n$$

where μ_k is the coefficient of kinetic friction. In general, $\mu_k < \mu_s$.

Solving problems that involve friction is a matter of using these two friction forces in Newton’s second law. The static friction force must be handled carefully because it refers to a maximum force, which is not always called upon in a given problem.

MULTIPLE-CHOICE QUESTIONS

1. A horizontal force of 95.0 N is applied to a 60.0-kg crate on a rough, level surface. If the crate accelerates at 1.20 m/s², what is the magnitude of the force of kinetic friction acting on the crate? (a) 23.0 N (b) 45.0 N (c) 16.0 N (d) 33.0 N (e) 8.80 N

2. A 70.0-kg man stands on a pedestal of mass 27.0 kg, which rests on a level surface. What is the normal force exerted by the ground on the pedestal? (a) 265 N (b) 368 N (c) 478 N (d) 624 N (e) 951 N

3. Two monkeys of equal mass are holding onto a single vine of negligible mass that hangs vertically from a tree, with one monkey a few meters higher than the other. What is the ratio of the tension in the vine above the upper monkey to the tension in the vine between the two monkeys? (a) $\frac{1}{2}$ (b) 1 (c) 1.5 (d) 2 (e) More information is required.

4. A force of 70.0 N is exerted at an angle of 30.0° below the horizontal on a block of mass 8.00 kg that is resting on a table. What is the magnitude of the normal force acting on the block? (a) 43.4 N (b) 78.4 N (c) 113 N (d) 126 N (e) 92.4 N

5. If Earth’s mass and radius both suddenly doubled, what would be the new value of the acceleration of gravity near Earth’s surface? (a) 9.80 m/s² (b) 4.90 m/s² (c) 2.45 m/s² (d) 19.6 m/s² (e) 12.6 m/s²

6. A crate remains stationary after it has been placed on a ramp inclined at an angle with the horizontal. Which of the following statements must be true about the magnitude of the frictional force that acts on the crate? (a) It is larger than the weight of the crate. (b) It is at least equal to the weight of the crate. (c) It is equal to $\mu_k n$. (d) It is greater than the component of the gravitational force acting down the ramp. (e) It is equal to the component of the gravitational force acting down the ramp.

7. A thrown rock hits a window, breaking the glass, and ends up on the floor inside the room. Which of the following statements are true? (a) The force of the rock on the glass was bigger than the force of the glass on the rock. (b) The force of the rock on the glass had the same magnitude as the force of the glass on the rock. (c) The force of the rock on the glass was less than the force of the glass on the rock. (d) The rock didn’t slow down as it broke the glass. (e) None of these statements is true.

8. A manager of a restaurant pushes horizontally with a force of magnitude 150 N on a box of melons. The box moves across the floor with a constant acceleration in the same direction as the applied force. Which statement is most accurate concerning the magnitude of the force of kinetic friction acting on the box? (a) It is greater than 150 N. (b) It is less than 150 N. (c) It is equal to 150 N. (d) The kinetic friction force is steadily decreasing. (e) The kinetic friction force must be zero.

9. Four forces act on an object, given by $\vec{A} = 40$ N east, $\vec{B} = 50$ N north, $\vec{C} = 70$ N west, and $\vec{D} = 90$ N south.
What is the magnitude of the net force on the object?
(a) 50 N (b) 70 N (c) 131 N (d) 170 N (e) 250 N

10. If an object of mass \(m \) moves with constant velocity \(v \), the net force on the object is (a) \(mg \) (b) \(mv \) (c) \(ma \) (d) 0 (e) None of these answers is correct.

11. If an object is in equilibrium, which of the following statements is not true? (a) The speed of the object remains constant. (b) The acceleration of the object is zero. (c) The net force acting on the object is zero. (d) The object must be at rest. (e) The velocity is constant.

12. A truck loaded with sand accelerates along a highway. The driving force on the truck remains constant. What happens to the acceleration of the truck as its trailer leaks sand at a constant rate through a hole in its bottom? (a) It decreases at a steady rate. (b) It increases at a steady rate. (c) It increases and then decreases. (d) It decreases and then increases. (e) It remains constant.

13. A large crate of mass \(m \) is placed on the back of a truck but not tied down. As the truck accelerates forward with an acceleration \(a \), the crate remains at rest relative to the truck. What force causes the crate to accelerate forward? (a) the normal force (b) the force of gravity (c) the force of friction between the crate and the floor of the truck (d) the “ma” force (e) none of these

14. Which of the following statements are true? (a) An astronaut’s weight is the same on the Moon as on Earth. (b) An astronaut’s mass is the same on the International Space Station as it is on Earth. (c) Earth’s gravity has no effect on astronauts inside the International Space Station. (d) An astronaut’s mass is greater on Earth than on the Moon. (e) None of these statements are true.

15. Two objects are connected by a string that passes over a frictionless pulley as in Active Figure 4.18, where \(m_1 < m_2 \) and \(a_1 \) and \(a_2 \) are the respective magnitudes of the accelerations. Which mathematical statement is true concerning the magnitude of the acceleration \(a_2 \) of mass \(m_2 ? \) (a) \(a_2 < g \) (b) \(a_2 > g \) (c) \(a_2 = g \) (d) \(a_2 < a_1 \) (e) \(a_2 > a_1 \)

16. An object of mass \(m \) undergoes an acceleration \(\vec{a} \) down a rough incline. Which of the following forces should not appear in the free-body diagram for the object? Choose all correct answers. (a) the force of gravity (b) \(ma \) (c) the normal force of the incline on the object (d) the force of friction down the incline (e) the force of friction up the incline (f) the force of the object on the incline

CONCEPTUAL QUESTIONS

1. A ball is held in a person’s hand. (a) Identify all the external forces acting on the ball and the reaction to each. (b) If the ball is dropped, what force is exerted on it while it is falling? Identify the reaction force in this case. (Neglect air resistance.)

2. If gold were sold by weight, would you rather buy it in Denver or in Death Valley? If it were sold by mass, in which of the two locations would you prefer to buy it? Why?

3. If you push on a heavy box that is at rest, you must exert some force to start its motion. However, once the box is sliding, you can apply a smaller force to maintain its motion. Why?

4. A space explorer is moving through space far from any planet or star. He notices a large rock, taken as a specimen from an alien planet, floating around the cabin of the ship. Should he push it gently or should he kick it toward the storage compartment? Why?

5. A passenger sitting in the rear of a bus claims that she was injured as the driver slammed on the brakes, causing a suitcase to come flying toward her from the front of the bus. If you were the judge in this case, what disposition would you make? Why?

6. A weight lifter stands on a bathroom scale. She pumps a barbell up and down. What happens to the reading on the scale? Suppose she is strong enough to actually throw the barbell upward. How does the reading on the scale vary now?

7. What force causes an automobile to move? A propeller-driven airplane? A rowboat?

8. Analyze the motion of a rock dropped in water in terms of its speed and acceleration as it falls. Assume a resistive force is acting on the rock that increases as the velocity of the rock increases.

9. In the motion picture It Happened One Night (Columbia Pictures, 1934), Clark Gable is standing inside a stationary bus in front of Claudette Colbert, who is seated. The bus suddenly starts moving forward and Clark falls into Claudette’s lap. Why did this happen?

10. As a rocket is fired from a launching pad, its speed and acceleration increase with time as its engines continue to operate. Explain why this occurs even though the thrust of the engines remains constant.

11. In a tug-of-war between two athletes, each pulls on the rope with a force of 200 N. What is the tension in the rope? If the rope doesn’t move, what horizontal force does each athlete exert against the ground?

12. Draw a free-body diagram for each of the following objects: (a) a projectile in motion in the presence of air resistance, (b) a rocket leaving the launch pad with its engines operating, (c) an athlete running along a horizontal track.

13. Identify the action–reaction pairs in the following situations: (a) a man takes a step, (b) a snowball hits a girl in the back, (c) a baseball player catches a ball, (d) a gust of wind strikes a window.

14. Suppose you are driving a car at a high speed. Why should you avoid slamming on your brakes when you want to stop in the shortest possible distance? (Newer cars have antilock brakes that avoid this problem.)
SECTION 4.1 FORCES

1. The heaviest invertebrate is the giant squid, which is estimated to have a weight of about 2 tons spread out over its length of 70 feet. What is its weight in newtons?

2. A football punter accelerates a football from rest to a speed of 10 m/s during the time in which his toe is in contact with the ball (about 0.20 s). If the football has a mass of 0.50 kg, what average force does the punter exert on the ball?

3. A 6.0-kg object undergoes an acceleration of 2.0 m/s². (a) What is the magnitude of the resultant force acting on it? (b) If this same force is applied to a 4.0-kg object, what acceleration is produced?

4. One or more external forces are exerted on each object enclosed in a dashed box shown in Figure 4.2. Identify the reaction to each of these forces.

5. A bag of sugar weighs 5.00 lb on Earth. What would it weigh in newtons on the Moon, where the free-fall acceleration is one-sixth that on Earth? Repeat for Jupiter, where \(g \) is 2.64 times that on Earth. Find the mass of the bag of sugar in kilograms at each of the three locations.

6. A freight train has a mass of \(1.5 \times 10^3 \) kg. If the locomotive can exert a constant pull of \(7.5 \times 10^5 \) N, how long does it take to increase the speed of the train from rest to 80 km/h?

7. The air exerts a forward force of 10 N on the propeller of a 0.20-kg model airplane. If the plane accelerates forward at 2.0 m/s², what is the magnitude of the resistive force exerted by the air on the airplane?

8. Consider a solid metal sphere (S) a few centimeters in diameter and a feather (F). For each quantity in the list that follows, indicate whether the quantity is the same, greater, or lesser in the case of S or in that of F. Explain in each case why you gave the answer you did. Here is the list: (a) the gravitational force, (b) the time it will take to fall a given distance in air, (c) the time it will take to fall a given distance in vacuum, (d) the total force on the object when falling in vacuum.

9. A chinook salmon has a maximum underwater speed of 5.0 m/s, and can jump out of the water vertically with a speed of 6.0 m/s. A record salmon has a length of 1.5 m and a mass of 61 kg. When swimming upward at constant speed, and neglecting buoyancy, the fish experiences three forces: an upward force \(F \) exerted by the tail fin, the downward drag force of the water, and the downward force of gravity. As the fish leaves the surface of the water, however, it experiences a net upward force causing it to accelerate from 3.0 m/s to 6.0 m/s. Assuming the drag force disappears as soon as the head of the fish breaks the surface and \(F \) is exerted until two-thirds of the fish’s length has left the water, determine the magnitude of \(F \).

10. A 5.0-g bullet leaves the muzzle of a rifle with a speed of 320 m/s. What force (assumed constant) is exerted on the bullet while it is traveling down the 0.82-m-long barrel of the rifle?

11. A boat moves through the water with two forces acting on it. One is a 2 000-N forward push by the water on the propeller, and the other is a 1 800-N resistive force due to the water around the bow. (a) What is the acceleration of the 1000-kg boat? (b) If it starts from rest, how far will the boat move in 10.0 s? (c) What will its velocity be at the end of that time?

12. Two forces are applied to a car in an effort to move it, as shown in Figure P4.12. (a) What is the resultant of these two forces? (b) If the car has a mass of 3 000 kg, what acceleration does it have? Ignore friction.

13. A 65.0-kg skydiver reaches a terminal speed of 55.0 m/s with her parachute undeployed. Suppose the drag force acting on her is proportional to the speed squared, or \(F_{\text{drag}} = k v^2 \). (a) What is the constant of proportionality \(k \)? (Assume the gravitational acceleration is 9.80 m/s².) (b) What was the magnitude of her acceleration when she was falling at half terminal speed?

14. An object of mass \(m \) is dropped from the roof of a building of height \(h \). While the object is falling, a wind blowing parallel to the face of the building exerts a constant horizontal force \(F \) on the object. (a) How long does it take the object to strike the ground? Express the time \(t \) in terms of \(g \) and \(h \). (b) Find an expression in terms of \(m \) and \(F \) for the acceleration \(a_h \) of the object in the horizontal direction (taken as the positive \(x \)-direction). (c) How
far is the object displaced horizontally before hitting the ground? Answer in terms of \(m \), \(g \), \(F \), and \(h \). (d) Find the magnitude of the object’s acceleration while it is falling, using the variables \(F \), \(m \), and \(g \).

15. After falling from rest from a height of 30 m, a 0.50-kg ball rebounds upward, reaching a height of 20 m. If the contact between ball and ground lasted 2.0 ms, what average force was exerted on the ball?

16. The force exerted by the wind on the sails of a sailboat is 390 N north. The water exerts a force of 180 N east. If the boat (including its crew) has a mass of 270 kg, what are the magnitude and direction of its acceleration?

SECTION 4.5 APPLICATIONS OF NEWTON’S LAWS

17. (a) Find the tension in each cable supporting the 600-N cat burglar in Figure P4.17. (b) Suppose the horizontal cable were reattached higher up on the wall. Would the tension in the other cable increase, decrease, or stay the same? Why?

18. A certain orthodontist uses a wire brace to align a patient’s crooked tooth as in Figure P4.18. The tension in the wire is adjusted to have a magnitude of 18.0 N. Find the magnitude of the net force exerted by the wire on the crooked tooth.

19. A 150-N bird feeder is supported by three cables as shown in Figure P4.19. Find the tension in each cable.

20. The leg and cast in Figure P4.20 weigh 220 N \((w_1) \). Determine the weight \(w_2 \) and the angle \(\alpha \) needed so that no force is exerted on the hip joint by the leg plus the cast.

21. Two blocks each of mass 3.50 kg are fastened to the top of an elevator as in Figure P4.21. (a) If the elevator accelerates upward at 1.60 m/s\(^2\), find the tensions \(T_1 \) and \(T_2 \) in the upper and lower strings. (b) If the strings can withstand a maximum tension of 85.0 N, what maximum acceleration can the elevator have before the first string breaks?

22. Two blocks each of mass \(m \) are fastened to the top of an elevator as in Figure P4.21. The elevator has an upward acceleration \(a \). The strings have negligible mass. (a) Find the tensions \(T_1 \) and \(T_2 \) in the upper and lower strings in terms of \(m \), \(a \), and \(g \). (b) Compare the two tensions and determine which string would break first if \(a \) is made sufficiently large. (c) What are the tensions if the elevator cable breaks?

23. The distance between two telephone poles is 50.0 m. When a 1.00-kg bird lands on the telephone wire midway between the poles, the wire sags 0.200 m. Draw a free-body diagram of the bird. How much tension does the bird produce in the wire? Ignore the weight of the wire.

24. Two people are pulling a boat through the water as in Figure P4.24. Each exerts a force of 600 N directed at a 30.0° angle relative to the forward motion of the boat. If the boat moves with constant velocity, find the resistive force \(\vec{F} \) exerted by the water on the boat.

25. A 5.0-kg bucket of water is raised from a well by a rope. If the upward acceleration of the bucket is 3.0 m/s\(^2\), find the force exerted by the rope on the bucket.

26. A shopper in a supermarket pushes a loaded cart with a horizontal force of 10 N. The cart has a mass of 30 kg. (a) How far will it move in 3.0 s, starting from rest? (Ignore friction.) (b) How far will it move in 3.0 s if the
shopper places his 30-N child in the cart before he begins to push it?

27. A 2000-kg car is slowed down uniformly from 20.0 m/s to 5.00 m/s in 4.00 s. (a) What average force acted on the car during that time, and (b) how far did the car travel during that time?

28. Two packing crates of masses 10.0 kg and 5.00 kg are connected by a light string that passes over a frictionless pulley as in Figure P4.28. The 5.00-kg crate lies on a smooth incline of angle 40.0°. Find the acceleration of the 5.00-kg crate and the tension in the string.

29. Assume the three blocks portrayed in Figure P4.29 move on a frictionless surface and a 42-N force acts as shown on the 3.0-kg block. Determine (a) the acceleration given this system, (b) the tension in the cord connecting the 3.0-kg and the 1.0-kg blocks, and (c) the force exerted by the 1.0-kg block on the 2.0-kg block.

30. An object of mass 2.0 kg starts from rest and slides down an inclined plane 80 cm long in 0.50 s. What net force is acting on the object along the incline?

31. A setup similar to the one shown in Figure P4.31 is often used in hospitals to support and apply a traction force to an injured leg. (a) Determine the force of tension in the rope supporting the leg, (b) What is the traction force exerted on the leg? Assume the traction force is horizontal.

32. Two blocks of masses \(m_1 \) and \(m_2 \) (\(m_1 > m_2 \)) are placed on a frictionless table in contact with each other. A horizontal force of magnitude \(F \) is applied to the block of mass \(m_1 \) in Figure P4.32. (a) If \(F \) is the magnitude of the contact force between the blocks, draw the free-body diagrams for each block. (b) What is the net force on the system consisting of both blocks? (c) What is the net force acting on \(m_1 \)? (d) What is the net force acting on \(m_2 \)? (e) Write the x-component of Newton’s second law for each block. (f) Solve the resulting system of two equations and two unknowns, expressing the acceleration \(a \) and contact force \(F \) in terms of the masses and force. (g) How would the answers change if the force had been applied to \(m_2 \) instead? (Hint: use symmetry; don’t calculate!) Is the contact force larger, smaller, or the same in this case? Why?

33. An 80-kg stuntman jumps from a window of a building situated 30 m above a catching net. Assuming air resistance exerts a 100-N force on the stuntman as he falls, determine his velocity just before he hits the net.

34. In Figure P4.34, the light, taut, unstretchable cord B joins block 1 and the larger-mass block 2. Cord A exerts a force on block 1 to make it accelerate forward. (a) How does the magnitude of the force exerted by cord A on block 1 compare with the magnitude of the force exerted by cord B on block 2? (b) How does the acceleration of block 1 compare with the acceleration of block 2? (c) Does cord B exert a force on block 1? Explain your answer.

35. (a) An elevator of mass \(m \) moving upward has two forces acting on it: the upward force of tension in the cable and the downward force due to gravity. When the elevator is accelerating upward, which is greater, \(T \) or \(w \)? (b) When the elevator is moving at a constant velocity upward, which is greater, \(T \) or \(w \)? (c) When the elevator is moving upward, but the acceleration is downward, which is greater, \(T \) or \(w \)? (d) Let the elevator have a mass of 1500 kg and an upward acceleration of 2.5 m/s\(^2\). Find \(T \). Is your answer consistent with the answer to part (a)? (e) The elevator of part (d) now moves with a constant upward velocity of 10 m/s. Find \(T \). Is your answer consistent with your answer to part (b)? (f) Having initially moved upward with a constant velocity, the elevator begins to accelerate downward at 1.50 m/s\(^2\). Find \(T \). Is your answer consistent with your answer to part (c)?

36. An object with mass \(m_1 = 5.00 \text{ kg} \) rests on a frictionless horizontal table and is connected to a cable that passes over a pulley and is then fastened to a hanging object with mass \(m_2 = 10.0 \text{ kg} \), as shown in Figure P4.36. Find the acceleration of each object and the tension in the cable.
37. A 1000-kg car is pulling a 300-kg trailer. Together, the car and trailer have an acceleration of 2.15 m/s² in the forward direction. Neglecting frictional forces on the trailer, determine (a) the net force on the car, (b) the net force on the trailer, (c) the force exerted by the trailer on the car, and (d) the resultant force exerted by the car on the road.

38. Two objects with masses of 3.00 kg and 5.00 kg are connected by a light string that passes over a frictionless pulley, as in Figure P4.38. Determine (a) the tension in the string, (b) the acceleration of each object, and (c) the distance each object will move in the first second of motion if both objects start from rest.

SECTION 4.6 FORCES OF FRICTION

39. A dockworker loading crates on a ship finds that a 20-kg crate, initially at rest on a horizontal surface, requires a 75-N horizontal force to set it in motion. However, after the crate is in motion, a horizontal force of 60 N is required to keep it moving with a constant speed. Find the coefficients of static and kinetic friction between crate and floor.

40. In Figure P4.36, \(m_1 = 10 \text{ kg} \) and \(m_2 = 4.0 \text{ kg} \). The coefficient of static friction between \(m_1 \) and the horizontal surface is 0.50, and the coefficient of kinetic friction is 0.30. (a) If the system is released from rest, what will its acceleration be? (b) If the system is set in motion with \(m_2 \) moving downward, what will be the acceleration of the system?

41. A 1000-N crate is being pushed across a level floor at a constant speed by a force \(\mathbf{F} \) of 300 N at an angle of 20.0° below the horizontal, as shown in Figure P4.41a. (a) What is the coefficient of kinetic friction between the crate and the floor? (b) If the 300-N force is instead pulling the block at an angle of 20.0° above the horizontal, as shown in Figure P4.41b, what will be the acceleration of the crate? Assume that the coefficient of friction is the same as that found in part (a).

42. A hockey puck is hit on a frozen lake and starts moving with a speed of 12.0 m/s. Five seconds later, its speed is 6.00 m/s. (a) What is its average acceleration? (b) What is the average value of the coefficient of kinetic friction between puck and ice? (c) How far does the puck travel during the 5.00-s interval?

43. Consider a large truck carrying a heavy load, such as steel beams. A significant hazard for the driver is that the load may slide forward, crushing the cab, if the truck stops suddenly in an accident or even in braking. Assume, for example, a 10 000-kg load sits on the flatbed of a 20 000-kg truck moving at 12.0 m/s. Assume the load is not tied down to the truck and has a coefficient of static friction of 0.500 with the truck bed. (a) Calculate the minimum stopping distance for which the load will not slide forward relative to the truck. (b) Is any piece of data unnecessary for the solution?

44. A crate of mass 45.0 kg is being transported on the flatbed of a pickup truck. The coefficient of static friction between the crate and the truck’s flatbed is 0.350, and the coefficient of kinetic friction is 0.320. (a) The truck accelerates forward on level ground. What is the maximum acceleration the truck can have so that the crate does not slide relative to the truck’s flatbed? (b) The truck barely exceeds this acceleration and then moves with constant acceleration, with the crate sliding along its bed. What is the acceleration of the crate relative to the ground?

45. Objects with masses \(m_1 = 10.0 \text{ kg} \) and \(m_2 = 5.00 \text{ kg} \) are connected by a light string that passes over a frictionless pulley as in Figure P4.36. If, when the system starts from rest, \(m_2 \) falls 1.00 m in 1.20 s, determine the coefficient of kinetic friction between \(m_1 \) and the table.

46. A hockey puck struck by a hockey stick is given an initial speed \(v_0 \) in the positive x-direction. The coefficient of kinetic friction between the ice and the puck is \(\mu_k \). (a) Obtain an expression for the acceleration of the puck. (b) Use the result of part (a) to obtain an expression for the distance \(d \) the puck slides. The answer should be in terms of the variables \(v_0, \mu_k \), and \(g \).

47. The coefficient of static friction between the 3.00-kg crate and the 35.0° incline of Figure P4.47 is 0.300. What minimum force \(\mathbf{F} \) must be applied to the crate perpendicular to the incline to prevent the crate from sliding down the incline?

48. A student decides to move a box of books into her dormitory room by pulling on a rope attached to the box. She pulls with a force of 80.0 N at an angle of 25.0° above the horizontal. The box has a mass of 25.0 kg, and the coefficient of kinetic friction between box and floor is 0.300. (a) Find the acceleration of the box. (b) The student now starts moving the box up a 10.0° incline, keeping her 80.0 N force directed at 25.0° above the line of the incline. If the coefficient of friction is unchanged, what is the new acceleration of the box?

49. An object falling under the pull of gravity is acted upon by a frictional force of air resistance. The magnitude of this force is approximately proportional to the
speed of the object, which can be written as \(f = bv \). Assume \(b = 15 \) kg/s and \(m = 50 \) kg. (a) What is the terminal speed the object reaches while falling? (b) Does your answer to part (a) depend on the initial speed of the object? Explain.

50. A car is traveling at 50.0 km/h on a flat highway. (a) If the coefficient of friction between road and tires on a rainy day is 0.100, what is the minimum distance in which the car will stop? (b) What is the stopping distance when the surface is dry and the coefficient of friction is 0.600?

51. A 3.00-kg block starts from rest at the top of a 30.0° incline and slides 2.00 m down the incline in 1.50 s. Find (a) the acceleration of the block, (b) the coefficient of kinetic friction between the block and the incline, (c) the frictional force acting on the block, and (d) the speed of the block after it has slid 2.00 m.

52. A 2.00-kg block is held in equilibrium on an incline of angle \(\theta = 60.0° \) by a horizontal force \(F \) applied in the direction shown in Figure P4.52. If the coefficient of static friction between block and incline is \(\mu_s = 0.300 \), determine (a) the minimum value of \(F \) and (b) the normal force exerted by the incline on the block.

ADDITIONAL PROBLEMS

56. As a protest against the umpire’s calls, a baseball pitcher throws a ball straight up into the air at a speed of 20.0 m/s. In the process, he moves his hand through a distance of 1.50 m. If the ball has a mass of 0.150 kg, find the force he exerts on the ball to give it this upward speed.

57. Three objects are connected on a table as shown in Figure P4.57. The rough table has a coefficient of kinetic friction of 0.350. The objects have masses of 4.00 kg, 1.00 kg, and 2.00 kg as shown, and the pulleys are frictionless. (a) Draw a free-body diagram for each object. (b) Determine the acceleration of each object and each object’s directions. (c) Determine the tensions in the two cords. (d) If the tabletop were smooth, would the tensions increase, decrease, or remain the same? Explain.

58. The force exerted by the wind on a sailboat is approximately perpendicular to the sail and proportional to the component of the wind velocity perpendicular to the sail. For the 800-kg sailboat shown in Figure P4.58, the proportionality constant is

\[
F_{\text{wind}} = \left(\frac{550}{\text{m/s}} \right) v_{\text{wind}}.
\]

Water exerts a force along the keel (bottom) of the boat that prevents it from moving sideways, as shown in the
figure. Once the boat starts moving forward, water also exerts a drag force backwards on the boat, opposing the forward motion. If a 17-knot wind (1 knot = 0.514 m/s) is blowing to the east, what is the initial acceleration of the sailboat?

59. (a) What is the resultant force exerted by the two cables supporting the traffic light in Figure P4.59? (b) What is the weight of the light?

60. (a) What is the minimum force of friction required to hold the system of Figure P4.60 in equilibrium? (b) What coefficient of static friction between the 100-N block and the table ensures equilibrium? (c) If the coefficient of kinetic friction between the 100-N block and the table is 0.250, what hanging weight should replace the 50.0-N weight to allow the system to move at a constant speed once it is set in motion?

61. A boy coasts down a hill on a sled, reaching a level surface at the bottom with a speed of 7.0 m/s. If the coefficient of friction between the sled's runners and the snow is 0.050 and the boy and sled together weigh 600 N, how far does the sled travel on the level surface before coming to rest?

62. A 4.00-kg block is pushed along the ceiling with a constant applied force of 85.0 N that acts at an angle of 55.0° with the horizontal, as in Figure P4.62. The block accelerates to the right at 6.00 m/s². Determine the coefficient of kinetic friction between block and ceiling.

63. A box rests on the back of a truck. The coefficient of static friction between the box and the bed of the truck is 0.300. (a) When the truck accelerates forward, what force accelerates the box? (b) Find the maximum acceleration the truck can have before the box slides.

64. Three objects are connected by light strings as shown in Figure P4.64. The string connecting the 4.00-kg object and the 5.00-kg object passes over a light frictionless pulley. Determine (a) the acceleration of each object and (b) the tension in the two strings.

65. A frictionless plane is 10.0 m long and inclined at 35.0°. A sled starts at the bottom with an initial speed of 5.00 m/s up the incline. When the sled reaches the point at which it momentarily stops, a second sled is released from the top of the incline with an initial speed

66. A high diver of mass 70.0 kg jumps off a board 10.0 m above the water. If her downward motion is stopped 2.00 s after she enters the water, what average upward force did the water exert on her?

67. A 2.00-kg aluminum block and a 6.00-kg copper block are connected by a light string over a frictionless pulley. The two blocks are allowed to move on a fixed steel block wedge (of angle \(\theta \)) as shown in Figure P4.67. Making use of Table 4.2, determine (a) the acceleration of the two blocks and (b) the tension in the string.

68. A 3.0-kg object hangs at one end of a rope that is attached to a support on a railroad car. When the car accelerates to the right, the rope makes an angle of 4.0° with the vertical, as shown in Figure P4.68. Find the acceleration of the car.
70. Measuring coefficients of friction A coin is placed near one edge of a book lying on a table, and that edge of the book is lifted until the coin just slips down the incline as shown in Figure P4.70. The angle of the incline, \(\theta_c \), called the critical angle, is measured. (a) Draw a free-body diagram for the coin when it is on the verge of slipping and identify all forces acting on it. Your free-body diagram should include a force of static friction acting up the incline. (b) Is the magnitude of the friction force equal to \(m_s \sin \theta \) for angles less than \(\theta_c \)? Explain. What can you definitely say about the magnitude of the friction force for any angle \(\theta > \theta_c \)? (c) Show that the coefficient of static friction is given by \(\mu_s = \tan \theta_c \). (d) Once the coin starts to slide down the incline, the angle can be adjusted to a new value \(\theta' \) such that the coins moves down the incline with constant speed. How does observation enable you to obtain the coefficient of kinetic friction?

71. A fisherman poles a boat as he searches for his next catch. He pushes parallel to the length of the light pole, exerting a force of 240 N on the bottom of a shallow lake. The pole lies in the vertical plane containing the boat's keel. At one moment, the pole makes an angle of 35.0° with the vertical and the water exerts a horizontal drag force of 47.5 N on the boat, opposite to its forward velocity of magnitude 0.857 m/s. The mass of the boat including its cargo and the worker is 370 kg. (a) The water exerts a buoyant force vertically upward on the boat. Find the magnitude of this force. (b) Assume the forces are constant over a short interval of time. Find the velocity of the boat 0.450 s after the moment described. (c) If the angle of the pole with respect to the vertical increased but the exerted force against the bottom remained the same, what would happen to buoyant force and the acceleration of the boat?

72. A rope with mass \(m_r \) is attached to a block with mass \(m_b \) as in Figure P4.72. Both the rope and the block rest on a horizontal, frictionless surface. The rope does not stretch. The free end of the rope is pulled to the right with a horizontal force \(F \). (a) Draw free-body diagrams for the rope and the block, noting that the tension in the rope is not uniform. (b) Find the acceleration of the system in terms of \(m_r, m_b, \) and \(F \). (c) Find the magnitude of the force the rope exerts on the block. (d) What happens to the force on the block as the rope’s mass approaches zero? What can you state about the tension in a light cord joining a pair of moving objects?

73. A van accelerates down a hill (Fig. P4.73), going from rest to 30.0 m/s in 6.00 s. During the acceleration, a toy (\(m = 0.100 \) kg) hangs by a string from the van’s ceiling. The acceleration is such that the string remains perpendicular to the ceiling. Determine (a) the angle \(\theta \) and (b) the tension in the string.

74. An inquisitive physics student, wishing to combine pleasure with scientific inquiry, rides on a roller coaster sitting on a bathroom scale. (Do not try this yourself on a roller coaster that forbids loose, heavy packages.) The bottom of the seat in the roller-coaster car is in a plane parallel to the track. The seat has a perpendicular back and a seat belt that fits around the student’s chest in a plane parallel to the bottom of the seat. The student lifts his feet from the floor so that the scale reads his weight, 200 lb, when the car is horizontal. At one point during the ride, the car zooms with negligible friction down a straight slope inclined at 30.0° below the horizontal. What does the scale read at that point?
75. The parachute on a race car of weight 8820 N opens at the end of a quarter-mile run when the car is traveling at 35 m/s. What total retarding force must be supplied by the parachute to stop the car in a distance of 1000 m?

76. On an airplane’s takeoff, the combined action of the air around the engines and wings of an airplane exerts an 8000-N force on the plane, directed upward at an angle of 65.0° above the horizontal. The plane rises with constant velocity in the vertical direction while continuing to accelerate in the horizontal direction. (a) What is the weight of the plane? (b) What is its horizontal acceleration?

77. The board sandwiched between two other boards in Figure P4.77 weighs 95.5 N. If the coefficient of friction between the boards is 0.663, what must be the magnitude of the compression forces (assumed to be horizontal) acting on both sides of the center board to keep it from slipping?

78. A sled weighing 60.0 N is pulled horizontally across snow so that the coefficient of kinetic friction between sled and snow is 0.100. A penguin weighing 70.0 N rides on the sled, as in Figure P4.78. If the coefficient of static friction between penguin and sled is 0.700, find the maximum horizontal force that can be exerted on the sled before the penguin begins to slide off.

79. A 72-kg man stands on a spring scale in an elevator. Starting from rest, the elevator ascends, attaining its maximum speed of 1.2 m/s in 0.80 s. The elevator travels with this constant speed for 5.0 s, undergoes a uniform negative acceleration for 1.5 s, and then comes to rest. What does the spring scale register (a) before the elevator starts to move? (b) During the first 0.80 s of the elevator’s ascent? (c) While the elevator is traveling at constant speed? (d) During the elevator’s negative acceleration?

80. A magician pulls a tablecloth from under a 200-g mug located 30.0 cm from the edge of the cloth. The cloth exerts a friction force of 0.100 N on the mug and is pulled with a constant acceleration of 3.00 m/s². How far does the mug move relative to the horizontal tabletop before the cloth is completely out from under it? Note that the cloth must move more than 30 cm relative to the tabletop during the process.

81. An inventive child wants to reach an apple in a tree without climbing the tree. Sitting in a chair connected to a rope that passes over a frictionless pulley (Fig. P4.81), the child pulls on the loose end of the rope with such a force that the spring scale reads 250 N. The child’s true weight is 320 N, and the chair weighs 160 N. (a) Show that the acceleration of the system is upward and find its magnitude. (b) Find the force the child exerts on the chair.

82. A fire helicopter carries a 620-kg bucket of water at the end of a 20.0-m-long cable. Flying back from a fire at a constant speed of 40.0 m/s, the cable makes an angle of 40.0° with respect to the vertical. Determine the force exerted by air resistance on the bucket.
ENERGY

Energy is one of the most important concepts in the world of science. In everyday use energy is associated with the fuel needed for transportation and heating, with electricity for lights and appliances, and with the foods we consume. These associations, however, don’t tell us what energy is, only what it does, and that producing it requires fuel. Our goal in this chapter, therefore, is to develop a better understanding of energy and how to quantify it.

Energy is present in the Universe in a variety of forms, including mechanical, chemical, electromagnetic, and nuclear energy. Even the inert mass of everyday matter contains a very large amount of energy. Although energy can be transformed from one kind to another, all observations and experiments to date suggest that the total amount of energy in the Universe never changes. This is also true for an isolated system—a collection of objects that can exchange energy with each other, but not with the rest of the Universe. If one form of energy in an isolated system decreases, then another form of energy in the system must increase. For example, if the system consists of a motor connected to a battery, the battery converts chemical energy to electrical energy and the motor converts electrical energy to mechanical energy. Understanding how energy changes from one form to another is essential in all the sciences.

In this chapter the focus is mainly on mechanical energy, which is the sum of kinetic energy—the energy associated with motion—and potential energy—the energy associated with relative position. Using an energy approach to solve certain problems is often much easier than using forces and Newton’s three laws. These two very different approaches are linked through the concept of work.

5.1 WORK

Work has a different meaning in physics than it does in everyday usage. In the physics definition, a programmer does very little work typing away at a computer. A mason, by contrast, may do a lot of work laying concrete blocks. In physics, work is done only if an object is moved through some displacement while a force is applied.
to it. If either the force or displacement is doubled, the work is doubled. Double them both, and the work is quadrupled. Doing work involves applying a force to an object while moving it a given distance.

Figure 5.1 shows a block undergoing a displacement \(\Delta \mathbf{x} \) along a straight line while acted on by a constant force \(\mathbf{F} \) in the same direction. We have the following definition:

The work \(W \) done on an object by a constant force \(\mathbf{F} \) during a linear displacement is given by

\[
W = F \Delta x
\]
[5.1]

where \(F \) is the magnitude of the force, \(\Delta x \) is the magnitude of the displacement, and \(\mathbf{F} \) and \(\Delta \mathbf{x} \) point in the same direction.

\[\text{SI unit: joule (J) = newton·meter = kg·m}^2/\text{s}^2 \]

It’s easy to see the difference between the physics definition and the everyday definition of work. The programmer exerts very little force on the keys of a keyboard, creating only small displacements, so relatively little physics work is done. The mason must exert much larger forces on the concrete blocks and move them significant distances, and so performs a much greater amount of work. Even very tiring tasks, however, may not constitute work according to the physics definition. A truck driver, for example, may drive for several hours, but if he doesn’t exert a force, then \(F = 0 \) in Equation 5.1 and he doesn’t do any work. Similarly, a student pressing against a wall for hours in an isometric exercise also does no work, because the displacement in Equation 5.1, \(\Delta x \), is zero.\(^1\) Atlas, of Greek mythology, bore the world on his shoulders, but that, too, wouldn’t qualify as work in the physics definition.

Work is a scalar quantity—a number rather than a vector—and consequently is easier to handle. No direction is associated with it. Further, work doesn’t depend explicitly on time, which can be an advantage in problems involving only velocities and positions. Because the units of work are those of force and distance, the SI unit is the newton-meter (N·m). Another name for the newton-meter is the joule (J) (rhymes with “pool”). The U.S. customary unit of work is the foot-pound, because distances are measured in feet and forces in pounds in that system.

Complications in the definition of work occur when the force exerted on an object is not in the same direction as the displacement (Fig. 5.2). The force, however, can always be split into two components—one parallel and the other perpendicular to the direction of displacement. Only the component parallel to the direction of displacement does work on the object. This fact can be expressed in the following more general definition:

The work \(W \) done on an object by a constant force \(\mathbf{F} \) during a linear displacement is given by

\[
W = (F \cos \theta) \Delta x
\]
[5.2]

where \(F \) is the magnitude of the force, \(\Delta x \) is the magnitude of the object’s displacement, and \(\theta \) is the angle between the directions of \(\mathbf{F} \) and \(\Delta \mathbf{x} \).

\[\text{SI unit: joule (J)} \]

In Figure 5.3 a man carries a bucket of water horizontally at constant velocity. The upward force exerted by the man’s hand on the bucket is perpendicular to the direction of motion, so it does no work on the bucket. This can also be seen from Equation 5.2 because the angle between the force exerted by the hand and

\(^1\)Actually, you do expend energy while doing isometric exercises because your muscles are continuously contracting and relaxing in the process. This internal muscular movement qualifies as work according to the physics definition.
the direction of motion is 90°, giving $\cos 90^\circ = 0$ and $W = 0$. Similarly, the force of gravity does no work on the bucket.

Work always requires a system of more than just one object. A nail, for example, can’t do work on itself, but a hammer can do work on the nail by driving it into a board. In general, an object may be moving under the influence of several external forces. In that case, the total work done on the object as it undergoes some displacement is just the sum of the amount of work done by each force.

Work can be either positive or negative. In the definition of work in Equation 5.2, F and Δx are magnitudes, which are never negative. Work is therefore positive or negative depending on whether $\cos \theta$ is positive or negative. This, in turn, depends on the direction of \vec{F} relative the direction of $\Delta \vec{x}$. When these vectors are pointing in the same direction the angle between them is 0°, so $\cos 0^\circ = +1$ and the work is positive. For example, when a student lifts a box as in Figure 5.4, the work he does on the box is positive because the force he exerts on the box is upward, in the same direction as the displacement. In lowering the box slowly back down, however, the student still exerts an upward force on the box, but the motion of the box is downwards. Because the vectors \vec{F} and $\Delta \vec{x}$ are now in opposite directions, the angle between them is 180°, and $\cos 180^\circ = -1$ and the work done by the student is negative. In general, when the part of \vec{F} parallel to $\Delta \vec{x}$ points in the same direction as $\Delta \vec{x}$, the work is positive; otherwise, it’s negative.

Because Equations 5.1 and 5.2 assume a force constant in both direction and size, they are only special cases of a more general definition of work—that done by a varying force—treated briefly in Section 5.7.

QUICK QUIZ 5.1 In Active Figure 5.5 (a)–(d), a block moves to the right in the positive x-direction through the displacement Δx while under the influence of a force with the same magnitude F. Which of the following is the correct order of the amount of work done by the force \vec{F}, from most positive to most negative? (A) d, c, a, b (B) c, a, b, d (C) c, a, d, b

ACTIVE FIGURE 5.5 (Quick Quiz 5.1) A force \vec{F} is exerted on an object that undergoes a displacement to the right. Both the magnitude of the force and the displacement are the same in all four cases.

EXAMPLE 5.1 Sledding Through the Yukon

Goal Apply the basic definitions of work done by a constant force.

Problem An Eskimo returning from a successful fishing trip pulls a sled loaded with salmon. The total mass of the sled and salmon is 50.0 kg, and the Eskimo exerts a force of 1.20×10^2 N on the sled by pulling on the rope. (a) How much work does he do on the sled if the rope is horizontal to the ground ($\theta = 0^\circ$ in Fig. 5.6) and he pulls the sled 5.00 m? (b) How much work does he do on the sled if $\theta = 30.0^\circ$ and he pulls the sled the same distance? (Treat the sled as a point particle, so details such as the point of attachment of the rope make no difference.)

Strategy Substitute the given values of F and Δx into the basic equations for work, Equations 5.1 and 5.2.

FIGURE 5.6 (Examples 5.1 and 5.2) An Eskimo pulling a sled with a rope at an angle θ to the horizontal.
Chapter 5
Energy

E n e r g y

Work and Dissipative Forces

Frictional work is extremely important in everyday life because doing almost any other kind of work is impossible without it. The Eskimo in the last example, for instance, depends on surface friction to pull his sled. Otherwise, the rope would slip in his hands and exert no force on the sled, while his feet slid out from underneath him and he fell flat on his face. Cars wouldn’t work without friction, nor could conveyor belts, nor even our muscle tissue.

The work done by pushing or pulling an object is the application of a single force. Friction, on the other hand, is a complex process caused by numerous microscopic interactions over the entire area of the surfaces in contact. Consider a metal block sliding over a metal surface. Microscopic “teeth” in the block encounter equally microscopic irregularities in the underlying surface. Pressing against each other, the teeth deform, get hot, and weld to the opposite surface. Work must be done breaking these temporary bonds, and this comes at the expense of the energy of motion of the block, to be discussed in the next section. The energy lost by the block goes into heating both the block and its environment, with some energy converted to sound.

The friction force of two objects in contact and in relative motion to each other always dissipates energy in these relatively complex ways. For our purposes, the phrase “work done by friction” will denote the effect of these processes on mechanical energy alone.

EXERCISE 5.1
Suppose the Eskimo is pushing the same 50.0-kg sled across level terrain with a force of 50.0 N.
(a) If he does 4.00 × 10^2 J of work on the sled while exerting the force horizontally, through what distance must he have pushed it?
(b) If he exerts the same force at an angle of 45.0° with respect to the horizontal and moves the sled through the same distance, how much work does he do on the sled?

Answers
(a) 8.00 m
(b) 283 J

EXAMPLE 5.2
More Sledding

Goal
Calculate the work done by friction when an object is acted on by an applied force.

Problem
Suppose that in Example 5.1 the coefficient of kinetic friction between the loaded 50.0-kg sled and snow is 0.200.
(a) The Eskimo again pulls the sled 5.00 m, exerting a force of 1.20 × 10^2 N at an angle of 0°. Find the work done on the sled by friction, and the net work.
(b) Repeat the calculation if the applied force is exerted at an angle of 30.0° with the horizontal.

Remarks
The normal force \(\vec{n} \), the gravitational force \(mg \), and the upward component of the applied force do no work on the sled because they’re perpendicular to the displacement. The mass of the sled didn’t come into play here, but it is important when the effects of friction must be calculated and in the next section, where we introduce the work–energy theorem.

QUESTION 5.1
How does the answer for the work done by the applied force change if the load is doubled? Explain.

EXERCISE 5.1
Suppose the Eskimo is pushing the same 50.0-kg sled across level terrain with a force of 50.0 N.
(a) If he does 4.00 × 10^2 J of work on the sled while exerting the force horizontally, through what distance must he have pushed it?
(b) If he exerts the same force at an angle of 45.0° with respect to the horizontal and moves the sled through the same distance, how much work does he do on the sled?

Answers
(a) 8.00 m
(b) 283 J

Work and Dissipative Forces
Frictional work is extremely important in everyday life because doing almost any other kind of work is impossible without it. The Eskimo in the last example, for instance, depends on surface friction to pull his sled. Otherwise, the rope would slip in his hands and exert no force on the sled, while his feet slid out from underneath him and he fell flat on his face. Cars wouldn’t work without friction, nor could conveyor belts, nor even our muscle tissue.

The work done by pushing or pulling an object is the application of a single force. Friction, on the other hand, is a complex process caused by numerous microscopic interactions over the entire area of the surfaces in contact. Consider a metal block sliding over a metal surface. Microscopic “teeth” in the block encounter equally microscopic irregularities in the underlying surface. Pressing against each other, the teeth deform, get hot, and weld to the opposite surface. Work must be done breaking these temporary bonds, and this comes at the expense of the energy of motion of the block, to be discussed in the next section. The energy lost by the block goes into heating both the block and its environment, with some energy converted to sound.

The friction force of two objects in contact and in relative motion to each other always dissipates energy in these relatively complex ways. For our purposes, the phrase “work done by friction” will denote the effect of these processes on mechanical energy alone.

EXAMPLE 5.2
More Sledding

Goal
Calculate the work done by friction when an object is acted on by an applied force.

Problem
Suppose that in Example 5.1 the coefficient of kinetic friction between the loaded 50.0-kg sled and snow is 0.200.
(a) The Eskimo again pulls the sled 5.00 m, exerting a force of 1.20 × 10^2 N at an angle of 0°. Find the work done on the sled by friction, and the net work.
(b) Repeat the calculation if the applied force is exerted at an angle of 30.0° with the horizontal.

Remarks
The normal force \(\vec{n} \), the gravitational force \(mg \), and the upward component of the applied force do no work on the sled because they’re perpendicular to the displacement. The mass of the sled didn’t come into play here, but it is important when the effects of friction must be calculated and in the next section, where we introduce the work–energy theorem.

QUESTION 5.1
How does the answer for the work done by the applied force change if the load is doubled? Explain.

EXERCISE 5.1
Suppose the Eskimo is pushing the same 50.0-kg sled across level terrain with a force of 50.0 N.
(a) If he does 4.00 × 10^2 J of work on the sled while exerting the force horizontally, through what distance must he have pushed it?
(b) If he exerts the same force at an angle of 45.0° with respect to the horizontal and moves the sled through the same distance, how much work does he do on the sled?

Answers
(a) 8.00 m
(b) 283 J

Work and Dissipative Forces
Frictional work is extremely important in everyday life because doing almost any other kind of work is impossible without it. The Eskimo in the last example, for instance, depends on surface friction to pull his sled. Otherwise, the rope would slip in his hands and exert no force on the sled, while his feet slid out from underneath him and he fell flat on his face. Cars wouldn’t work without friction, nor could conveyor belts, nor even our muscle tissue.

The work done by pushing or pulling an object is the application of a single force. Friction, on the other hand, is a complex process caused by numerous microscopic interactions over the entire area of the surfaces in contact. Consider a metal block sliding over a metal surface. Microscopic “teeth” in the block encounter equally microscopic irregularities in the underlying surface. Pressing against each other, the teeth deform, get hot, and weld to the opposite surface. Work must be done breaking these temporary bonds, and this comes at the expense of the energy of motion of the block, to be discussed in the next section. The energy lost by the block goes into heating both the block and its environment, with some energy converted to sound.

The friction force of two objects in contact and in relative motion to each other always dissipates energy in these relatively complex ways. For our purposes, the phrase “work done by friction” will denote the effect of these processes on mechanical energy alone.

EXAMPLE 5.2
More Sledding

Goal
Calculate the work done by friction when an object is acted on by an applied force.

Problem
Suppose that in Example 5.1 the coefficient of kinetic friction between the loaded 50.0-kg sled and snow is 0.200.
(a) The Eskimo again pulls the sled 5.00 m, exerting a force of 1.20 × 10^2 N at an angle of 0°. Find the work done on the sled by friction, and the net work.
(b) Repeat the calculation if the applied force is exerted at an angle of 30.0° with the horizontal.

Remarks
The normal force \(\vec{n} \), the gravitational force \(mg \), and the upward component of the applied force do no work on the sled because they’re perpendicular to the displacement. The mass of the sled didn’t come into play here, but it is important when the effects of friction must be calculated and in the next section, where we introduce the work–energy theorem.

QUESTION 5.1
How does the answer for the work done by the applied force change if the load is doubled? Explain.

EXERCISE 5.1
Suppose the Eskimo is pushing the same 50.0-kg sled across level terrain with a force of 50.0 N.
(a) If he does 4.00 × 10^2 J of work on the sled while exerting the force horizontally, through what distance must he have pushed it?
(b) If he exerts the same force at an angle of 45.0° with respect to the horizontal and moves the sled through the same distance, how much work does he do on the sled?

Answers
(a) 8.00 m
(b) 283 J

Work and Dissipative Forces
Frictional work is extremely important in everyday life because doing almost any other kind of work is impossible without it. The Eskimo in the last example, for instance, depends on surface friction to pull his sled. Otherwise, the rope would slip in his hands and exert no force on the sled, while his feet slid out from underneath him and he fell flat on his face. Cars wouldn’t work without friction, nor could conveyor belts, nor even our muscle tissue.

The work done by pushing or pulling an object is the application of a single force. Friction, on the other hand, is a complex process caused by numerous microscopic interactions over the entire area of the surfaces in contact. Consider a metal block sliding over a metal surface. Microscopic “teeth” in the block encounter equally microscopic irregularities in the underlying surface. Pressing against each other, the teeth deform, get hot, and weld to the opposite surface. Work must be done breaking these temporary bonds, and this comes at the expense of the energy of motion of the block, to be discussed in the next section. The energy lost by the block goes into heating both the block and its environment, with some energy converted to sound.

The friction force of two objects in contact and in relative motion to each other always dissipates energy in these relatively complex ways. For our purposes, the phrase “work done by friction” will denote the effect of these processes on mechanical energy alone.

EXAMPLE 5.2
More Sledding

Goal
Calculate the work done by friction when an object is acted on by an applied force.

Problem
Suppose that in Example 5.1 the coefficient of kinetic friction between the loaded 50.0-kg sled and snow is 0.200.
(a) The Eskimo again pulls the sled 5.00 m, exerting a force of 1.20 \times 10^2 N at an angle of 0°. Find the work done on the sled by friction, and the net work.
(b) Repeat the calculation if the applied force is exerted at an angle of 30.0° with the horizontal.
Remark The most important thing to notice here is that exerting the applied force at different angles can dramatically affect the work done on the sled. Pulling at the optimal angle (11.3° in this case) will result in the most net work for the same applied force.

QUESTION 5.2
How does the net work change in each case if the displacement is doubled?

EXERCISE 5.2
(a) The Eskimo pushes the same 50.0-kg sled over level ground with a force of 1.75 \times 10^2 \text{ N} exerted horizontally, moving it a distance of 6.00 m over new terrain. If the net work done on the sled is 1.50 \times 10^2 \text{ J}, find the coefficient of kinetic friction. (b) Repeat the exercise if the applied force is upwards at a 45.0° angle with the horizontal.

Answer (a) 0.306 (b) 0.270
5.2 KINETIC ENERGY AND THE WORK–ENERGY THEOREM

Solving problems using Newton’s second law can be difficult if the forces involved are complicated. An alternative is to relate the speed of an object to the net work done on it by external forces. If the net work can be calculated for a given displacement, the change in the object’s speed is easy to evaluate.

Figure 5.7 shows an object of mass \(m \) moving to the right under the action of a constant net force \(F_{\text{net}} \), also directed to the right. Because the force is constant, we know from Newton’s second law that the object moves with constant acceleration \(\mathbf{a} \). If the object is displaced by \(\Delta x \), the work done by \(F_{\text{net}} \) on the object is

\[
W_{\text{net}} = F_{\text{net}} \Delta x = (ma) \Delta x
\]

[5.3]

In Chapter 2, we found that the following relationship holds when an object undergoes constant acceleration:

\[
v^2 = v_0^2 + 2a\Delta x \quad \text{or} \quad a \Delta x = \frac{v^2 - v_0^2}{2}
\]

We can substitute this expression into Equation 5.3 to get

\[
W_{\text{net}} = m \left(\frac{v^2 - v_0^2}{2} \right)
\]

or

\[
W_{\text{net}} = \frac{1}{2}mv^2 - \frac{1}{2}mv_0^2
\]

[5.4]

So the net work done on an object equals a change in a quantity of the form \(\frac{1}{2}mv^2 \). Because this term carries units of energy and involves the object’s speed, it can be interpreted as energy associated with the object’s motion, leading to the following definition:

Kinetic energy

The **kinetic energy** \(KE \) of an object of mass \(m \) moving with a speed \(v \) is

\[
KE = \frac{1}{2}mv^2
\]

[5.5]

SI unit: joule (J) = kg \cdot m^2/s^2

Like work, kinetic energy is a scalar quantity. Using this definition in Equation 5.4, we arrive at an important result known as the **work–energy theorem**:

Work–energy theorem

The net work done on an object is equal to the change in the object’s kinetic energy:

\[
W_{\text{net}} = KE_f - KE_i = \Delta KE
\]

[5.6]

where the change in the kinetic energy is due entirely to the object’s change in speed.

The proviso on the speed is necessary because work that deforms or causes the object to warm up invalidates Equation 5.6, although under most circumstances it remains approximately correct. From that equation, a positive net work \(W_{\text{net}} \) means that the final kinetic energy \(KE_f \) is greater than the initial kinetic energy \(KE_i \). This, in turn, means that the object’s final speed is greater than its initial speed. So positive net work increases an object’s speed, and negative net work decreases its speed.

We can also turn the equation around and think of kinetic energy as the work a moving object can do in coming to rest. For example, suppose a hammer is on the verge of striking a nail, as in Figure 5.8. The moving hammer has kinetic energy
and can therefore do work on the nail. The work done on the nail is \(F \Delta x \), where \(F \) is the average net force exerted on the nail and \(\Delta x \) is the distance the nail is driven into the wall. This work, plus small amounts of energy carried away by heat and sound, is equal to the change in kinetic energy of the hammer, \(\Delta KE \).

For convenience, the work-energy theorem was derived under the assumption that the net force acting on the object was constant. A more general derivation, using calculus, would show that Equation 5.6 is valid under all circumstances, including the application of a variable force.

APPLYING PHYSICS 5.1 LEAVING SKID MARKS

Suppose a car traveling at a speed \(v \) skids a distance \(d \) after its brakes lock. Estimate how far it would skid if it were traveling at speed \(2v \) when its brakes locked.

Explanation Assume for simplicity that the force of kinetic friction between the car and the road surface is constant and the same at both speeds. From the work-energy theorem, the net force exerted on the car times the displacement of the car, \(F_{\text{net}} \Delta x \), is equal in magnitude to its initial kinetic energy, \(\frac{1}{2}mv^2 \). When the speed is doubled, the kinetic energy of the car is quadrupled. So for a given applied friction force, the distance traveled must increase fourfold when the initial speed is doubled, and the estimated distance the car skids is \(4d \).

EXAMPLE 5.3 Collision Analysis

Goal Apply the work-energy theorem with a known force.

Problem The driver of a \(1.00 \times 10^3 \) kg car traveling on the interstate at 35.0 m/s (nearly 80.0 mph) slams on his brakes to avoid hitting a second vehicle in front of him, which had come to rest because of congestion ahead (Fig. 5.9). After the brakes are applied, a constant friction force of \(8.00 \times 10^3 \) N acts on the car. Ignore air resistance. (a) At what minimum distance should the brakes be applied to avoid a collision with the other vehicle? (b) If the distance between the vehicles is initially only 30.0 m, at what speed would the collision occur?

Strategy Compute the net work, which involves just the kinetic friction, because the normal and gravity forces are perpendicular to the motion. Then set the net work equal to the change in kinetic energy. To get the minimum distance in part (a), we take the final speed \(v_f \) to be zero just as the braking vehicle reaches the rear of the vehicle at rest. Solve for the unknown, \(\Delta x \). For part (b) proceed similarly, except that the unknown is the final velocity \(v_f \).

Solution

(a) Find the minimum necessary stopping distance.

Apply the work-energy theorem to the car:

\[
W_{\text{net}} = \frac{1}{2}mv_f^2 - \frac{1}{2}mv_i^2
\]

Substitute an expression for the frictional work and set \(v_f = 0 \):

\[
-f_k \Delta x = 0 - \frac{1}{2}mv_i^2
\]

Substitute \(v_i = 35.0 \) m/s, \(f_k = 8.00 \times 10^3 \) N, and \(m = 1.00 \times 10^3 \) kg. Solve for \(\Delta x \):

\[
-(8.00 \times 10^3 \text{ N}) \Delta x = -\frac{1}{2}(1.00 \times 10^3 \text{ kg})(35.0 \text{ m/s})^2
\]

\[
\Delta x = 76.6 \text{ m}
\]

(b) At the given distance of 30.0 m, the car is too close to the other vehicle. Find the speed at impact.

Write down the work-energy theorem:

\[
W_{\text{net}} = W_{\text{fric}} = -f_k \Delta x = \frac{1}{2}mv_f^2 - \frac{1}{2}mv_i^2
\]
Remarks This calculation illustrates how important it is to remain alert on the highway, allowing for an adequate stopping distance at all times. It takes about a second to react to the brake lights of the car in front of you. On a high-speed highway, your car may travel more than 30 meters before you can engage the brakes. Bumper-to-bumper traffic at high speed, as often exists on the highways near big cities, is extremely unsafe.

QUESTION 5.3
Qualitatively, how would the answer for the final velocity change in part (b) if it’s raining during the incident? Explain.

EXERCISE 5.3
A police investigator measures straight skid marks 27 m long in an accident investigation. Assuming a friction force and car mass the same as in the previous problem, what was the minimum speed of the car when the brakes locked?

Answer 20.8 m/s

Conservative and Nonconservative Forces

It turns out there are two general kinds of forces. The first is called a conservative force. Gravity is probably the best example of a conservative force. To understand the origin of the name, think of a diver climbing to the top of a 10-meter platform. The diver has to do work against gravity in making the climb. Once at the top, however, he can recover the work—as kinetic energy—by taking a dive. His speed just before hitting the water will give him a kinetic energy equal to the work he did against gravity in climbing to the top of the platform—minus the effect of some nonconservative forces, such as air drag and internal muscular friction.

A nonconservative force is generally dissipative, which means that it tends to randomly disperse the energy of bodies on which it acts. This dispersal of energy often takes the form of heat or sound. Kinetic friction and air drag are good examples. Propulsive forces, like the force exerted by a jet engine on a plane or by a propeller on a submarine, are also nonconservative.

Work done against a nonconservative force can’t be easily recovered. Dragging objects over a rough surface requires work. When the Eskimo in Example 5.2 dragged the sled across terrain having a nonzero coefficient of friction, the net work was smaller than in the frictionless case. The missing energy went into warming the sled and its environment. As will be seen in the study of thermodynamics, such losses can’t be avoided, nor all the energy recovered, so these forces are called nonconservative.

Another way to characterize conservative and nonconservative forces is to measure the work done by a force on an object traveling between two points along different paths. The work done by gravity on someone going down a frictionless slide, as in Figure 5.10, is the same as that done on someone diving into the water from the same height. This equality doesn’t hold for nonconservative forces. For example, sliding a book directly from point A to point B in Figure 5.11 requires a certain amount of work against friction, but sliding the book along the three other legs of the square, from A to C, C to E, and finally E to G, requires three times as much work. This observation motivates the following definition of a conservative force:
A force is conservative if the work it does moving an object between two points is the same no matter what path is taken.

Nonconservative forces, as we’ve seen, don’t have this property. The work–energy theorem, Equation 5.6, can be rewritten in terms of the work done by conservative forces W_c and the work done by nonconservative forces W_{nc} because the net work is just the sum of these two:

$$W_{nc} + W_c = \Delta KE$$ \[5.7\]

It turns out that conservative forces have another useful property: The work they do can be recast as something called potential energy, a quantity that depends only on the beginning and end points of a curve, not the path taken.

5.3 GRAVITATIONAL POTENTIAL ENERGY

An object with kinetic energy (energy of motion) can do work on another object, just like a moving hammer can drive a nail into a wall. A brick on a high shelf can also do work; it can fall off the shelf, accelerate downwards, and hit a nail squarely, driving it into the floorboards. The brick is said to have potential energy associated with it, because from its location on the shelf it can potentially do work.

Potential energy is a property of a system, rather than of a single object, because it’s due to a physical position in space relative to a center of force, like the falling diver and the Earth of Figure 5.10. In this chapter we define a system as a collection of objects interacting via forces or other processes that are internal to the system. It turns out that potential energy is another way of looking at the work done by conservative forces.

Gravitational Work and Potential Energy

Using the work–energy theorem in problems involving gravitation requires computing the work done by gravity. For most trajectories—say, for a ball traversing a parabolic arc—finding the gravitational work done on the ball requires sophisticated techniques from calculus. Fortunately, for conservative fields there’s a simple alternative: potential energy.

Gravity is a conservative force, and for every conservative force a special expression called a potential energy function can be found. Evaluating that function at any two points in an object’s path of motion and finding the difference will give the negative of the work done by that force between those two points. It’s also advantageous that potential energy, like work and kinetic energy, is a scalar quantity.

Our first step is to find the work done by gravity on an object when it moves from one position to another. The negative of that work is the change in the gravitational potential energy of the system, and from that expression, we’ll be able to identify the potential energy function.
In Figure 5.12, a book of mass \(m \) falls from a height \(y_i \) to a height \(y_f \), where the positive \(y \)-coordinate represents position above the ground. We neglect the force of air friction, so the only force acting on the book is gravitation. How much work is done? The magnitude of the force is \(mg \) and that of the displacement is \(\Delta y = y_f - y_i \) (a positive number), while both \(F \) and \(\Delta \vec{y} \) are pointing downwards, so the angle between them is zero. We apply the definition of work in Equation 5.2:

\[
W_g = F \Delta y \cos \theta = mg(y_f - y_i) \cos 0^\circ = -mg(y_f - y_i)
\]

Factoring out the minus sign was deliberate, to clarify the coming connection to potential energy. Equation 5.8 for gravitational work holds for any object, regardless of its trajectory in space, because the gravitational force is conservative. Now, \(W_g \) will appear as the work done by gravity in the work–energy theorem. For the rest of this section, assume for simplicity that we are dealing only with systems involving gravity and nonconservative forces. Then Equation 5.7 can be written as

\[
W_{\text{net}} = W_g + W_{nc} = \Delta KE
\]

where \(W_{nc} \) is the work done by the nonconservative forces. Substituting the expression for \(W_g \) from Equation 5.8, we obtain

\[
W_{nc} = mg(y_f - y_i) = \Delta KE
\]

Next, we add \(mg(y_f - y_i) \) to both sides:

\[
W_{nc} = \Delta KE + mg(y_f - y_i)
\]

Now, by definition, we’ll make the connection between gravitational work and gravitational potential energy.

The gravitational potential energy of a system consisting of Earth and an object of mass \(m \) near Earth’s surface is given by

\[
PE = mgy
\]

where \(g \) is the acceleration of gravity and \(y \) is the vertical position of the mass relative the surface of Earth (or some other reference point).

In this definition, \(y = 0 \) is usually taken to correspond to Earth’s surface, but this is not strictly necessary, as discussed in the next subsection. It turns out that only differences in potential energy really matter.

So the gravitational potential energy associated with an object located near the surface of Earth is the object’s weight \(mg \) times its vertical position \(y \) above Earth. From this definition, we have the relationship between gravitational work and gravitational potential energy:

\[
W_g = -(PE_f - PE_i) = -(mg y_f - mg y_i)
\]

The work done by gravity is one and the same as the negative of the change in gravitational potential energy.

Finally, using the relationship in Equation 5.11 in Equation 5.9b, we obtain an extension of the work–energy theorem:

\[
W_{nc} = (KE_f - KE_i) + (PE_f - PE_i)
\]

This equation says that the work done by nonconservative forces, \(W_{nc} \), is equal to the change in the kinetic energy plus the change in the gravitational potential energy.

Equation 5.12 will turn out to be true in general, even when other conservative forces besides gravity are present. The work done by these additional conservative forces will again be recast as changes in potential energy and will appear on the right-hand side along with the expression for gravitational potential energy.
Reference Levels for Gravitational Potential Energy

In solving problems involving gravitational potential energy, it’s important to choose a location at which to set that energy equal to zero. Given the form of Equation 5.10, this is the same as choosing the place where \(y = 0 \). The choice is completely arbitrary because the important quantity is the difference in potential energy, and this difference will be the same regardless of the choice of zero level. However, once this position is chosen, it must remain fixed for a given problem.

While it’s always possible to choose the surface of Earth as the reference position for zero potential energy, the statement of a problem will usually suggest a convenient position to use. As an example, consider a book at several possible locations, as in Figure 5.13. When the book is at \(\text{\textcircled{A}} \), a natural zero level for potential energy is the surface of the desk. When the book is at \(\text{\textcircled{B}} \), the floor might be a more convenient reference level. Finally, a location such as \(\text{\textcircled{C}} \), where the book is held out a window, would suggest choosing the surface of Earth as the zero level of potential energy. The choice, however, makes no difference: Any of the three reference levels could be used as the zero level, regardless of whether the book is at \(\text{\textcircled{A}}, \text{\textcircled{B}}, \) or \(\text{\textcircled{C}} \). Example 5.4 illustrates this important point.

Example 5.4 Wax Your Skis

Goal Calculate the change in gravitational potential energy for different choices of reference level.

Problem A 60.0-kg skier is at the top of a slope, as shown in Figure 5.14. At the initial point \(\text{\textcircled{A}} \), she is 10.0 m vertically above point \(\text{\textcircled{B}} \).

(a) Setting the zero level for gravitational potential energy at \(\text{\textcircled{B}} \), find the gravitational potential energy of this system when the skier is at \(\text{\textcircled{A}} \) and then at \(\text{\textcircled{B}} \). Finally, find the change in potential energy of the skier–Earth system as the skier goes from point \(\text{\textcircled{A}} \) to point \(\text{\textcircled{B}} \).

(b) Repeat this problem with the zero level at point \(\text{\textcircled{A}} \).

(c) Repeat again, with the zero level 2.00 m higher than point \(\text{\textcircled{B}} \).

Strategy Follow the definition and be careful with signs. \(\text{\textcircled{A}} \) is the initial point, with gravitational potential energy \(PE_i \), and \(\text{\textcircled{B}} \) is the final point, with gravitational potential energy \(PE_f \). The location chosen for \(y = 0 \) is also the zero point for the potential energy, because \(PE = mg\gamma \).

Solution

(a) Let \(y = 0 \) at \(\text{\textcircled{B}} \). Calculate the potential energy at \(\text{\textcircled{A}} \) and at \(\text{\textcircled{B}} \), and calculate the change in potential energy.

Find \(PE_i \), the potential energy at \(\text{\textcircled{A}} \), from Equation 5.10: \[PE_i = mg\gamma_i = (60.0 \text{ kg})(9.80 \text{ m/s}^2)(10.0 \text{ m}) = 5.88 \times 10^3 \text{ J} \]

\(PE_f = 0 \) at \(\text{\textcircled{B}} \) by choice. Find the difference in potential energy between \(\text{\textcircled{A}} \) and \(\text{\textcircled{B}} \):

\[PE_f - PE_i = 0 - 5.88 \times 10^3 \text{ J} = -5.88 \times 10^3 \text{ J} \]

(b) Repeat the problem if \(y = 0 \) at \(\text{\textcircled{A}} \), the new reference point, so that \(PE = 0 \) at \(\text{\textcircled{A}} \).

Find \(PE_f \), noting that point \(\text{\textcircled{B}} \) is now at \(y = -10.0 \text{ m} \):

\[PE_f = mg\gamma_f = (60.0 \text{ kg})(9.80 \text{ m/s}^2)(-10.0 \text{ m}) \]

\[= -5.88 \times 10^3 \text{ J} \]

\[PE_f - PE_i = -5.88 \times 10^3 \text{ J} - 0 = -5.88 \times 10^3 \text{ J} \]
Remarks These calculations show that the change in the gravitational potential energy when the skier goes from the top of the slope to the bottom is \(\frac{1}{1000^2} \times 5.88 \times 10^3 \) J, regardless of the zero level selected.

QUESTION 5.4
If the angle of the slope is increased, does the change of gravitational potential energy between two heights (a) increase, (b) decrease, (c) remain the same?

EXERCISE 5.4
If the zero level for gravitational potential energy is selected to be midway down the slope, 5.00 m above point \(\mathbb{Q} \), find the initial potential energy, the final potential energy, and the change in potential energy as the skier goes from point \(\mathbb{P} \) to \(\mathbb{Q} \) in Figure 5.14.

Answer 2.94 kJ, −2.94 kJ, −5.88 kJ

Gravity and the Conservation of Mechanical Energy

Conservation principles play a very important role in physics. When a physical quantity is conserved the numeric value of the quantity remains the same throughout the physical process. Although the form of the quantity may change in some way, its final value is the same as its initial value.

The kinetic energy \(KE \) of an object falling only under the influence of gravity is constantly changing, as is the gravitational potential energy \(PE \). Obviously, then, these quantities aren’t conserved. Because all nonconservative forces are assumed absent, however, we can set \(W_{nc} = 0 \) in Equation 5.12. Rearranging the equation, we arrive at the following very interesting result:

\[
KE_i + PE_i = KE_f + PE_f
\]

According to this equation, the sum of the kinetic energy and the gravitational potential energy remains constant at all times and hence is a conserved quantity. We denote the total mechanical energy by \(E = KE + PE \), and say that the total mechanical energy is conserved.

To show how this concept works, think of tossing a rock off a cliff, ignoring the drag forces. As the rock falls, its speed increases, so its kinetic energy increases. As the rock approaches the ground, the potential energy of the rock–Earth system decreases. Whatever potential energy is lost as the rock moves downward appears as kinetic energy, and Equation 5.13 says that in the absence of nonconservative forces like air drag, the trading of energy is exactly even. This is true for all conservative forces, not just gravity.

In any isolated system of objects interacting only through conservative forces, the total mechanical energy \(E = KE + PE \), of the system, remains the same at all times.
If the force of gravity is the *only* force doing work within a system, then the principle of conservation of mechanical energy takes the form

\[\frac{1}{2}mv_i^2 + mgy_i = \frac{1}{2}mv_f^2 + mgy_f. \]

[5.14]

This form of the equation is particularly useful for solving problems involving only gravity. Further terms have to be added when other conservative forces are present, as we’ll soon see.

QUICK QUIZ 5.2 Three identical balls are thrown from the top of a building, all with the same initial speed. The first ball is thrown horizontally, the second at some angle above the horizontal, and the third at some angle below the horizontal, as in Active Figure 5.15. Neglecting air resistance, rank the speeds of the balls as they reach the ground, from fastest to slowest. (a) 1, 2, 3 (b) 2, 1, 3 (c) 3, 1, 2 (d) All three balls strike the ground at the same speed.

QUICK QUIZ 5.3 Bob, of mass \(m \), drops from a tree limb at the same time that Esther, also of mass \(m \), begins her descent down a frictionless slide. If they both start at the same height above the ground, which of the following is true about their kinetic energies as they reach the ground? (a) Bob’s kinetic energy is greater than Esther’s. (b) Esther’s kinetic energy is greater than Bob’s. (c) They have the same kinetic energy. (d) The answer depends on the shape of the slide.

PROBLEM-SOLVING STRATEGY

APPLYING CONSERVATION OF MECHANICAL ENERGY

Take the following steps when applying conservation of mechanical energy to problems involving gravity:

1. **Define the system**, including all interacting bodies. Verify the absence of nonconservative forces.

2. **Choose a location for \(y = 0 \)**, the zero point for gravitational potential energy.

3. **Select the body of interest and identify two points**—one point where you have given information and the other point where you want to find out something about the body of interest.

4. **Write down the conservation of energy equation**, Equation 5.14, for the system. **Identify the unknown quantity** of interest.

5. **Solve for the unknown quantity**, which is usually either a speed or a position, and substitute known values.

As previously stated, it’s usually best to do the algebra with symbols rather than substituting known numbers first, because it’s easier to check the symbols for possible errors. The exception is when a quantity is clearly zero, in which case immediate substitution greatly simplifies the ensuing algebra.
EXAMPLE 5.5 Platform Diver

Goal Use conservation of energy to calculate the speed of a body falling straight down in the presence of gravity.

Problem A diver of mass \(m \) drops from a board 10.0 m above the water’s surface, as in Figure 5.16. Neglect air resistance. (a) Use conservation of mechanical energy to find his speed 5.00 m above the water’s surface. (b) Find his speed as he hits the water.

Strategy Refer to the problem-solving strategy. Step 1: The system consists of the diver and the Earth. As the diver falls, only the force of gravity acts on him (neglecting air drag), so the mechanical energy of the system is conserved and we can use conservation of energy for both parts (a) and (b). Step 2: Choose \(y = 0 \) for the water’s surface. Step 3: In part (a), \(y = 10.0 \text{ m} \) and \(y = 5.00 \text{ m} \) are the points of interest, while in part (b), \(y = 10.0 \text{ m} \) and \(y = 0 \text{ m} \) are of interest.

Solution

(a) Find the diver’s speed halfway down, at \(y = 5.00 \text{ m} \).

Step 4: We write the energy conservation equation and supply the proper terms:

\[KE_i + PE_i = KE_f + PE_f \]

\[\frac{1}{2}mv_i^2 + mgy_i = \frac{1}{2}mv_f^2 + mgy_f \]

Step 5: Substitute \(v_i = 0 \), cancel the mass \(m \) and solve for \(v_f \):

\[v_f = \sqrt{2g(y - y_i)} = \sqrt{2(9.80 \text{ m/s}^2)(10.0 \text{ m} - 5.00 \text{ m})} \]

\[v_f = 9.90 \text{ m/s} \]

(b) Find the diver’s speed at the water’s surface, \(y = 0 \).

Use the same procedure as in part (a), taking \(y_f = 0 \):

\[0 + mg(y_i) = \frac{1}{2}mv_f^2 + 0 \]

\[v_f = \sqrt{2gy_i} = \sqrt{2(9.80 \text{ m/s}^2)(10.0 \text{ m})} = 14.0 \text{ m/s} \]

Remark Notice that the speed halfway down is not half the final speed.

QUESTION 5.5

Qualitatively, how will the answers change if the diver takes a running dive off the end of the board?

EXERCISE 5.5

Suppose the diver vaults off the springboard, leaving it with an initial speed of 3.50 m/s upward. Use energy conservation to find his speed when he strikes the water.

Answer 14.4 m/s

EXAMPLE 5.6 The Jumping Bug

Goal Use conservation of mechanical energy and concepts from ballistics in two dimensions to calculate a speed.

Problem A powerful grasshopper launches itself at an angle of 45° above the horizontal and rises to a maximum height of 1.00 m during the leap. (See Fig. 5.17.) With what speed \(v_i \) did it leave the ground? Neglect air resistance.

Strategy This problem can be solved with conservation of energy and the relation between the initial velocity and its \(x \)-component. Aside from the origin, the other point of interest is the maximum height \(y = 1.00 \text{ m} \), where the grasshopper has a velocity \(v_y \) in the \(x \)-direction only. Energy conservation then gives one equation with two unknowns: the initial speed \(v_i \) and speed at maximum height, \(v_y \). Because there are no forces in the \(x \)-direction, however, \(v_x \) is the same as the \(x \)-component of the initial velocity.
5.3 Gravitational Potential Energy

Solution

Use energy conservation:
\[
\frac{1}{2}mv_f^2 + mgy_f = \frac{1}{2}mv_i^2 + mgy_i
\]

Substitute \(y_i = 0, \ v_f = v_x, \) and \(y_f = h \):
\[
\frac{1}{2}mv_f^2 = \frac{1}{2}mv_i^2 + mgh
\]

Multiply each side by \(2/m \), obtaining one equation and two unknowns:

(1) \(v_i^2 = v_x^2 + 2gh \)

Eliminate \(v_x \) by substituting \(v_x = v_i \cos 45^\circ \) into Equation (1), solving for \(v_i \), and substituting known values:
\[
v_i = 2\sqrt{gh} = 2\sqrt{(9.80 \text{ m/s}^2)(1.00 \text{ m})} = 6.26 \text{ m/s}
\]

Remarks The final answer is a surprisingly high value and illustrates how strong insects are relative to their size.

QUESTION 5.6
All other given quantities remaining the same, how would the answer change if the initial angle were smaller? Why?

EXERCISE 5.6
A catapult launches a rock at a 30.0° angle with respect to the horizontal. Find the maximum height attained if the speed of the rock at its highest point is 30.0 m/s.

Answer 15.3 m

Gravity and Nonconservative Forces

When nonconservative forces are involved along with gravitation, the full work–energy theorem must be used, often with techniques from Chapter 4. Solving problems requires the basic procedure of the problem-solving strategy for conservation-of-energy problems in the previous section. The only difference lies in substituting Equation 5.12, the work–energy equation with potential energy, for Equation 5.14.

EXAMPLE 5.7 Der Stuka!

Goal Use the work–energy theorem with gravitational potential energy to calculate the work done by a nonconservative force.

Problem Waterslides are nearly frictionless, hence can provide bored students with high-speed thrills (Fig. 5.18). One such slide, Der Stuka, named for the terrifying German dive bombers of World War II, is 72.0 feet high (21.9 m), found at Six Flags in Dallas, Texas and at Wet’n Wild in Orlando, Florida. (a) Determine the speed of a 60.0-kg woman at the bottom of such a slide, assuming no friction is present. (b) If the woman is clocked at 18.0 m/s at the bottom of the slide, find the work done on the woman by friction.

Strategy The system consists of the woman, the Earth, and the slide. The normal force, always perpendicular to the displacement, does no work. Let \(y = 0 \) m represent the bottom of the slide. The two points of interest are \(y = 0 \) m and \(y = 21.9 \) m. Without friction, \(W_{nc} = 0 \), and we can apply conservation of mechanical energy, Equation 5.14. For part (b), use Equation 5.12, substitute two velocities and heights, and solve for \(W_{nc} \).
Solution
(a) Find the woman's speed at the bottom of the slide, assuming no friction.

Write down Equation 5.14, for conservation of energy:
\[
\frac{1}{2}mv_i^2 + mg y_i = \frac{1}{2}mv_f^2 + mg y_f
\]

Insert the values \(v_i = 0\) and \(v_f = 0\):
\[
0 + mg y_i = \frac{1}{2}mv_f^2 + 0
\]

Solve for \(v_f\) and substitute values for \(g\) and \(y_i\):
\[
v_f = \sqrt{2gy_i} = \sqrt{2(9.80 \text{ m/s}^2)(21.9 \text{ m})} = 20.7 \text{ m/s}
\]

(b) Find the work done on the woman by friction if \(v_f = 18.0 \text{ m/s}\).

Write Equation 5.12, substituting expressions for the kinetic and potential energies:
\[
W_{nc} = (KE_f - KE_i) + (PE_f - PE_i)
\]
\[
= \left(\frac{1}{2}mv_f^2 - \frac{1}{2}mv_i^2\right) + (mg y_f - mg y_i)
\]

Substitute \(m = 60.0 \text{ kg}, v_f = 18.0 \text{ m/s},\) and \(v_i = 0,\) and solve for \(W_{nc}\):
\[
W_{nc} = \left[\frac{1}{2} \times 60.0 \text{ kg} \times (18.0 \text{ m/s})^2 - 0\right]
\]
\[
+ [0 - 60.0 \text{ kg} \times (9.80 \text{ m/s}^2) \times 21.9 \text{ m}]
\]
\[
W_{nc} = -3.16 \times 10^3 \text{ J}
\]

Remarks The speed found in part (a) is the same as if the woman fell vertically through a distance of 21.9 m, consistent with our intuition in Quick Quiz 5.3. The result of part (b) is negative because the system loses mechanical energy. Friction transforms part of the mechanical energy into thermal energy and mechanical waves, absorbed partly by the system and partly by the environment.

QUESTION 5.7
If the slide were not frictionless, would the shape of the slide affect the final answer? Explain.

EXERCISE 5.7
Suppose a slide similar to Der Stuka is 35.0 meters high, but is a straight slope, inclined at 45.0° with respect to the horizontal. (a) Find the speed of a 60.0-kg woman at the bottom of the slide, assuming no friction. (b) If the woman has a speed of 20.0 m/s at the bottom, find the change in mechanical energy due to friction and (c) the magnitude of the force of friction, assumed constant.

Answers (a) 26.2 m/s (b) \(-8.58 \times 10^3 \text{ J}\) (c) 173 N

EXAMPLE 5.8 Hit the Ski Slopes

Goal Combine conservation of mechanical energy with the work–energy theorem involving friction on a horizontal surface.

Problem A skier starts from rest at the top of a frictionless incline of height 20.0 m, as in Figure 5.19. At the bottom of the incline, the skier encounters a horizontal surface where the coefficient of kinetic friction between skis and snow is 0.210. (a) Find the skier’s speed at the bottom. (b) How far does the skier travel on the horizontal surface before coming to rest? Neglect air resistance.

Strategy Going down the frictionless incline is physically no different than going down the slide of the previous example and is handled the same way, using conservation of mechanical energy to find the speed \(v_{eg}\) at the bottom. On the flat, rough surface, use the work–energy theorem, Equation 5.12, with \(W_{nc} = W_{fric} = -f_kd,\) where \(f_k\) is the magnitude of the force of friction and \(d\) is the distance traveled on the horizontal surface before coming to rest.

FIGURE 5.19 (Example 5.8) The skier slides down the slope and onto a level surface, stopping after traveling a distance \(d\) from the bottom of the hill.
5.4 Spring Potential Energy

Springs are important elements in modern technology. They are found in machines of all kinds, in watches, toys, cars, and trains. Springs will be introduced here, then studied in more detail in Chapter 13.

Work done by an applied force in stretching or compressing a spring can be recovered by removing the applied force, so like gravity, the spring force is conservative. This means a potential energy function can be found and used in the work–energy theorem.

Active Figure 5.20a shows a spring in its equilibrium position, where the spring is neither compressed nor stretched. Pushing a block against the spring as in Active Figure 5.20b compresses it a distance x. Although x appears to be merely a coordinate, for springs it also represents a displacement from the equilibrium position, which for our purposes will always be taken to be at x = 0. Experimentally, it turns out that doubling a given displacement requires double the force, while tripling it takes triple the force. This means the force exerted by the spring, \(F_s \), must be proportional to the displacement x, or

\[
F_s = -kx \quad \text{[5.15]}
\]

where \(k \) is a constant of proportionality, the spring constant, carrying units of newtons per meter. Equation 5.15 is called Hooke's law, after Sir Robert Hooke, who discovered the relationship. The force \(F_s \) is often called a restoring force because the spring always exerts a force in a direction opposite the displacement of its end, tending to restore whatever is attached to the spring to its original position. For positive values of x, the force is negative, pointing back towards equilibrium at \(x = 0 \), and for negative x, the force is positive, again pointing towards \(x = 0 \). For a
flexible spring, \(k \) is a small number (about 100 N/m), whereas for a stiff spring \(k \) is large (about 10,000 N/m). The value of the spring constant \(k \) is determined by how the spring was formed, its material composition, and the thickness of the wire. The minus sign ensures that the spring force is always directed back towards the equilibrium point.

As in the case of gravitation, a potential energy, called the elastic potential energy, can be associated with the spring force. Elastic potential energy is another way of looking at the work done by a spring during motion because it is equal to the negative of the work done by the spring. It can also be considered stored energy arising from the work done to compress or stretch the spring.

Consider a horizontal spring and mass at the equilibrium position. We determine the work done by the spring when compressed by an applied force from equilibrium to a displacement \(x \), as in Active Figure 5.20b. The spring force points in the direction opposite the motion, so we expect the work to be negative. When we studied the constant force of gravity near Earth’s surface, we found the work done on an object by multiplying the gravitational force by the vertical displacement of the object. However, this procedure can’t be used with a varying force such as the spring force. Instead, we use the average force, \(\bar{F} \):

\[
\bar{F} = \frac{F_0 + F_1}{2} = \frac{0 - kx}{2} = -\frac{kx}{2}
\]

Therefore, the work done by the spring force is

\[
W_s = \bar{F}x = -\frac{1}{2}kx^2
\]

In general, when the spring is stretched or compressed from \(x_i \) to \(x_f \), the work done by the spring is

\[
W_s = -(\frac{1}{2}kx_f^2 - \frac{1}{2}kx_i^2)
\]

The work done by a spring can be included in the work–energy theorem. Assume Equation 5.12 now includes the work done by springs on the left-hand side. It then reads

\[
W_{nc} - \frac{1}{2}kx_i^2 = \Delta KE + \Delta PE_g
\]

where \(\Delta PE_g \) is the gravitational potential energy. We now define the elastic potential energy associated with the spring force, \(PE_s \), by

\[
PE_s = \frac{1}{2}kx^2
\]

[5.16]

Inserting this expression into the previous equation and rearranging gives the new form of the work–energy theorem, including both gravitational and elastic potential energy:

\[
W_{nc} = (KE_f - KE_i) + (PE_{fg} - PE_{gi}) + (PE_{qs} - PE_{qi})
\]

[5.17]

where \(W_{nc} \) is the work done by nonconservative forces, \(KE \) is kinetic energy, \(PE_g \) is gravitational potential energy, and \(PE_s \) is the elastic potential energy. \(PE \), formerly used to denote gravitational potential energy alone, will henceforth denote the total potential energy of a system, including potential energies due to all conservative forces acting on the system.

It’s important to remember that the work done by gravity and springs in any given physical system is already included on the right-hand side of Equation 5.17 as potential energy and should not also be included on the left as work.

Active Figure 5.20c shows how the stored elastic potential energy can be recovered. When the block is released, the spring snaps back to its original length and the stored elastic potential energy is converted to kinetic energy of the block. The elastic potential energy stored in the spring is zero when the spring is in the equilibrium position \((x = 0) \). As given by Equation 5.16, potential energy is also stored in the spring when it’s stretched. Further, the elastic potential energy is a maximum when the spring has reached its maximum compression or extension.
Finally, because PE_s is proportional to x^2, the potential energy is always positive when the spring is not in the equilibrium position.

In the absence of nonconservative forces, $W_{nc} = 0$, so the left-hand side of Equation 5.17 is zero, and an extended form for conservation of mechanical energy results:

$$(KE + PE_{\text{g}} + PE_{s})_i = (KE + PE_{\text{g}} + PE_{s})_f$$ \[5.18\]

Problems involving springs, gravity, and other forces are handled in exactly the same way as described in the problem-solving strategy for conservation of mechanical energy, except that the equilibrium point of any spring in the problem must be defined, in addition to the zero point for gravitational potential energy.

EXAMPLE 5.9 A Horizontal Spring

Goal Use conservation of energy to calculate the speed of a block on a horizontal spring with and without friction.

Problem A block with mass of 5.00 kg is attached to a horizontal spring with spring constant $k = 4.00 \times 10^2$ N/m, as in Figure 5.21. The surface the block rests upon is frictionless. If the block is pulled out to $x_i = 0.050$ m and released, (a) find the speed of the block when it first reaches the equilibrium point, (b) find the speed when $x = 0.025$ m, and (c) repeat part (a) if friction acts on the block, with coefficient $\mu = 0.150$.

Strategy In parts (a) and (b) there are no nonconservative forces, so conservation of energy, Equation 5.18, can be applied. In part (c) the definition of work and the work–energy theorem are needed to deal with the loss of mechanical energy due to friction.

Solution

(a) Find the speed of the block at equilibrium point.

Start with Equation 5.18:

$$(KE + PE_{\text{g}} + PE_{s})_i = (KE + PE_{\text{g}} + PE_{s})_f$$

Substitute expressions for the block’s kinetic energy and the potential energy, and set the gravity terms to zero:

1. \(\frac{1}{2}mv_i^2 + \frac{1}{2}kx_i^2 = \frac{1}{2}mv_f^2 + \frac{1}{2}kx_f^2\)

Substitute $v_i = 0$, $x_f = 0$, and multiply by $2/m$:

$$\frac{k}{m}x_i^2 = v_f^2$$

Solve for v_f and substitute the given values:

$$v_f = \sqrt{\frac{k}{m} x_i} = \sqrt{\frac{4.00 \times 10^2 \text{ N/m}}{5.00 \text{ kg}}} (0.050 \text{ m}) = 0.447 \text{ m/s}$$

(b) Find the speed of the block at the halfway point.

Set $v_i = 0$ in Equation (1) and multiply by $2/m$:

$$\frac{kx_i^2}{m} = v_f^2 + \frac{kx_f^2}{m}$$

Solve for v_f and substitute the given values:

$$v_f = \sqrt{\frac{k}{m} (x_i^2 - x_f^2)}$$

$$= \sqrt{\frac{4.00 \times 10^2 \text{ N/m}}{5.00 \text{ kg}}} [(0.050 \text{ m})^2 - (0.025 \text{ m})^2] = 0.387 \text{ m/s}$$
(c) Repeat part (a), this time with friction.

Apply the work–energy theorem. The work done by the force of gravity and the normal force is zero because these forces are perpendicular to the motion.

\[W_{\text{fric}} = \frac{1}{2} mv_f^2 - \frac{1}{2} mv_i^2 + \frac{1}{2} kx_f^2 - \frac{1}{2} kx_i^2 \]

Substitute \(v_i = 0 \), \(x_f = 0 \), and \(W_{\text{fric}} = -\mu_k mgx_i \).

Set \(n = mg \) and solve for \(v_f \):

\[\frac{1}{2} mv_f^2 = \frac{1}{2} kx_f^2 - \mu_k mgx_i \]

\[v_f = \sqrt{\frac{k}{m} x_i^2 - 2\mu_k gx_i} \]

\[v_f = \sqrt{\frac{4.00 \times 10^2 \text{ N/m}}{5.00 \text{ kg}}} \left(0.05 \text{ m} \right)^2 - 2 \left(0.150 \right) \left(9.80 \text{ m/s}^2 \right) \left(0.050 \text{ m} \right) \]

\[v_f = 0.230 \text{ m/s} \]

Remarks Friction or drag from immersion in a fluid damps the motion of an object attached to a spring, eventually bringing the object to rest.

QUESTION 5.9

In the case of friction, what percent of the mechanical energy was lost by the time the mass first reached the equilibrium point? (Hint: use the answers to parts (a) and (c).)

EXERCISE 5.9

Suppose the spring system in the last example starts at \(x = 0 \) and the attached object is given a kick to the right, so it has an initial speed of 0.600 m/s. (a) What distance from the origin does the object travel before coming to rest, assuming the surface is frictionless? (b) How does the answer change if the coefficient of kinetic friction is \(\mu_k = 0.150 \)? (Use the quadratic formula.)

Answer (a) 0.067 1 m (b) 0.051 2 m

EXAMPLE 5.10 Circus Acrobat

Goal Use conservation of mechanical energy to solve a one-dimensional problem involving gravitational potential energy and spring potential energy.

Problem A 50.0-kg circus acrobat drops from a height of 2.00 meters straight down onto a springboard with a force constant of \(8.00 \times 10^3 \text{ N/m} \), as in Figure 5.22. By what maximum distance does she compress the spring?

Strategy Nonconservative forces are absent, so conservation of mechanical energy can be applied. At the two points of interest, the acrobat’s initial position and the point of maximum spring compression, her velocity is zero, so the kinetic energy terms will be zero. Choose \(y = 0 \) as the point of maximum compression, so the final gravitational potential energy is zero. This choice also means that the initial position of the acrobat is \(y_i = h + d \), where \(h \) is the acrobat’s initial height above the platform and \(d \) is the spring’s maximum compression.
5.4 Spring Potential Energy

Solution

Use conservation of mechanical energy:

\[(KE + PE_g + PE_s)_{i} = (KE + PE_g + PE_s)_{f} \]

The only nonzero terms are the initial gravitational potential energy and the final spring potential energy.

\[0 + mg(h + d) + 0 = 0 + 0 + \frac{1}{2}kd^2 \]

\[mg(h + d) = \frac{1}{2}kd^2 \]

Substitute the given quantities and rearrange the equation into standard quadratic form:

\[(50.0 \text{ kg})(9.80 \text{ m/s}^2)(2.00 \text{ m} + d) = \frac{1}{2}(8.00 \times 10^3 \text{ N/m})d^2 \]

\[d^2 - (0.123 \text{ m})d - 0.245 \text{ m}^2 = 0 \]

Solve with the quadratic formula (Equation A.8):

\[d = 0.560 \text{ m} \]

Remarks

The other solution, \(d = -0.437 \text{ m} \), can be rejected because it was chosen to be a positive number at the outset. A change in the acrobat’s center of mass, say, by crouching as she makes contact with the springboard, also affects the spring’s compression, but that effect was neglected. Shock absorbers often involve springs, and this example illustrates how they work. The spring action of a shock absorber turns a dangerous jolt into a smooth deceleration, as excess kinetic energy is converted to spring potential energy.

QUESTION 5.10

Is it possible for the acrobat to rebound to a height greater than her initial height? If so, how?

EXERCISE 5.10

An 8.00-kg block drops straight down from a height of 1.00 m, striking a platform spring having force constant \(1.00 \times 10^3 \text{ N/m} \). Find the maximum compression of the spring.

Answer

\(d = 0.482 \text{ m} \)

EXAMPLE 5.11 A Block Projected up a Frictionless Incline

Goal

Use conservation of mechanical energy to solve a problem involving gravitational potential energy, spring potential energy, and a ramp.

Problem

A 0.500-kg block rests on a horizontal, frictionless surface as in Figure 5.23. The block is pressed back against a spring having a constant of \(k = 625 \text{ N/m} \), compressing the spring by 10.0 cm to point A. Then the block is released. (a) Find the maximum distance \(d \) the block travels up the frictionless incline if \(\theta = 30.0^\circ \). (b) How fast is the block going when halfway to its maximum height?

Strategy

In the absence of other forces, conservation of mechanical energy applies to parts (a) and (b). In part (a), the block starts at rest and is also instantaneously at rest at the top of the ramp, so the kinetic energies at A and C are both zero. Note that the question asks for a distance \(d \) along the ramp, not the height \(h \). In part (b), the system has both kinetic and gravitational potential energy at C.

Solution

(a) Find the distance the block travels up the ramp.

Apply conservation of mechanical energy:

\[\frac{1}{2}mv_i^2 + mgy_i + \frac{1}{2}kx_i^2 = \frac{1}{2}mv_f^2 + mgy_f + \frac{1}{2}kx_f^2 \]

Substitute \(v_i = v_f = 0 \), \(y_i = 0 \), \(y_f = h = d \sin \theta \), and \(x_f = 0 \):

\[\frac{1}{2}kx_i^2 = mgh = mgd \sin \theta \]

Solve for the distance \(d \) and insert the known values:

\[d = \frac{\frac{1}{2}kx_i^2}{mg \sin \theta} = \frac{\frac{1}{2}(625 \text{ N/m})(-0.100 \text{ m})^2}{(0.500 \text{ kg})(9.80 \text{ m/s}^2) \sin (30.0^\circ)} \]

\[= 1.28 \text{ m} \]
(b) Find the velocity at half the height, \(h/2 \). Note that \(h = d \sin \theta = (1.28 \text{ m}) \sin 30.0^\circ = 0.640 \text{ m} \).

Use energy conservation again:

\[
\frac{1}{2}mv_i^2 + mgy_i + \frac{1}{2}kx_i^2 = \frac{1}{2}mv_f^2 + mgy_f + \frac{1}{2}kx_f^2
\]

Take \(v_i = 0, y_i = 0, y_f = \frac{1}{2} h, \) and \(x_f = 0 \), yielding

\[
\frac{1}{2}kx_i^2 = \frac{1}{2}mv_f^2 + mg \left(\frac{1}{2} h \right)
\]

Multiply by \(2/m \) and solve for \(v_f \):

\[
\frac{k}{m} x_i^2 = v_f^2 + gh
\]

\[
v_f = \sqrt{\frac{k}{m} x_i^2 - gh}
\]

\[
= \sqrt{\left(\frac{625 \text{ N/m}}{0.500 \text{ kg}} \right) \left(-0.100 \text{ m} \right)^2 - (9.80 \text{ m/s}^2)(0.640 \text{ m})}
\]

\[
v_f = 2.50 \text{ m/s}
\]

Remark Notice that it wasn’t necessary to compute the velocity gained upon leaving the spring: only the mechanical energy at each of the two points of interest was required, where the block was at rest.

QUESTION 5.11

A real spring will continue to vibrate slightly after the mass has left it. How would this affect the answer to part (a), and why?

EXERCISE 5.11

A 1.00-kg block is shot horizontally from a spring, as in the previous example, and travels 0.500 m up along a frictionless ramp before coming to rest and sliding back down. If the ramp makes an angle of 45.0° with respect to the horizontal, and the spring was originally compressed by 0.120 m, find the spring constant.

Answer 481 N/m

APPLYING PHYSICS 5.2 ACCIDENT RECONSTRUCTION

Sometimes people involved in automobile accidents make exaggerated claims of chronic pain due to subtle injuries to the neck or spinal column. The likelihood of injury can be determined by finding the change in velocity of a car during the accident. The larger the change in velocity, the more likely it is that the person suffered spinal injury resulting in chronic pain. How can reliable estimates for this change in velocity be found after the fact?

Explanation The metal and plastic of an automobile acts much like a spring, absorbing the car’s kinetic energy by flexing during a collision. When the magnitude of the difference in velocity of the two cars is under 5 miles per hour, there is usually no visible damage, because bumpers are designed to absorb the impact and return to their original shape at such low speeds. At greater relative speeds there will be permanent damage to the vehicle. Despite the fact the structure of the car may not return to its original shape, a certain force per meter is still required to deform it, just as it takes a certain force per meter to compress a spring. The greater the original kinetic energy, the more the car is compressed during a collision, and the greater the damage. By using data obtained through crash tests, it’s possible to obtain effective spring constants for all the different models of cars and determine reliable estimates of the change in velocity of a given vehicle during an accident. Medical research has established the likelihood of spinal injury for a given change in velocity, and the estimated velocity change can be used to help reduce insurance fraud.

5.5 SYSTEMS AND ENERGY CONSERVATION

Recall that the work–energy theorem can be written as

\[W_{nc} + W_c = \Delta KE \]

where \(W_{nc} \) represents the work done by nonconservative forces and \(W_c \) is the work done by conservative forces in a given physical context. As we have seen, any work done by conservative forces, such as gravity and springs, can be accounted for by changes in potential energy. The work–energy theorem can therefore be written in the following way:

\[W_{nc} = \Delta KE + \Delta PE = (KE_f - KE_i) + (PE_f - PE_i) \]

[5.19]

where now, as previously stated, \(PE \) includes all potential energies. This equation is easily rearranged to:

\[W_{nc} = (KE_f + PE_f) - (KE_i + PE_i) \]

[5.20]

Recall, however, that the total mechanical energy is given by \(E = KE + PE \). Making this substitution into Equation 5.20, we find that the work done on a system by all nonconservative forces is equal to the change in mechanical energy of that system:

\[W_{nc} = E_f - E_i = \Delta E \]

[5.21]

If the mechanical energy is changing, it has to be going somewhere. The energy either leaves the system and goes into the surrounding environment, or it stays in the system and is converted into a nonmechanical form such as thermal energy.

A simple example is a block sliding along a rough surface. Friction creates thermal energy, absorbed partly by the block and partly by the surrounding environment. When the block warms up, something called internal energy increases. The internal energy of a system is related to its temperature, which in turn is a consequence of the activity of its parts, such as the moving atoms of a gas or the vibration of atoms in a solid. (Internal energy will be studied in more detail in Chapter 12.)

Energy can be transferred between a nonisolated system and its environment. If positive work is done on the system, energy is transferred from the environment to the system. If negative work is done on the system, energy is transferred from the system to the environment.

So far, we have encountered three methods of storing energy in a system: kinetic energy, potential energy, and internal energy. On the other hand, we’ve seen only one way of transferring energy into or out of a system: through work. Other methods will be studied in later chapters, but are summarized here:

- **Work**, in the mechanical sense of this chapter, transfers energy to a system by displacing it with an applied force.
- **Heat** is the process of transferring energy through microscopic collisions between atoms or molecules. For example, a metal spoon resting in a cup of coffee becomes hot because some of the kinetic energy of the molecules in the liquid coffee is transferred to the spoon as internal energy.
- **Mechanical waves** transfer energy by creating a disturbance that propagates through air or another medium. For example, energy in the form of sound leaves your stereo system through the loudspeakers and enters your ears to stimulate the hearing process. Other examples of mechanical waves are seismic waves and ocean waves.
- **Electrical transmission** transfers energy through electric currents. This is how energy enters your stereo system or any other electrical device.
- **Electromagnetic radiation** transfers energy in the form of electromagnetic waves such as light, microwaves, and radio waves. Examples of this method of transfer include cooking a potato in a microwave oven and light energy traveling from the Sun to the Earth through space.
Conservation of Energy in General

The most important feature of the energy approach is the idea that energy is conserved; it can't be created or destroyed, only transferred from one form into another. This is the principle of conservation of energy.

The principle of conservation of energy is not confined to physics. In biology, energy transformations take place in myriad ways inside all living organisms. One example is the transformation of chemical energy to mechanical energy that causes flagella to move and propel an organism. Some bacteria use chemical energy to produce light. (See Fig. 5.24.) Although the mechanisms that produce these light emissions are not well understood, living creatures often rely on this light for their existence. For example, certain fish have sacs beneath their eyes filled with light-emitting bacteria. The emitted light attracts creatures that become food for the fish.

QUICK QUIZ 5.4 A book of mass \(m \) is projected with a speed \(v \) across a horizontal surface. The book slides until it stops due to the friction force between the book and the surface. The surface is now tilted \(30^\circ \), and the book is projected up the surface with the same initial speed \(v \). When the book has come to rest, how does the decrease in mechanical energy of the book–Earth system compare with that when the book slid over the horizontal surface? (a) It's the same. (b) It's larger on the tilted surface. (c) It's smaller on the tilted surface. (d) More information is needed.

APPLICATION Flagellar Movement; Bioluminescence

FIGURE 5.24 This small plant, found in warm southern waters, exhibits bioluminescence, a process in which chemical energy is converted to light. The red areas are chlorophyll, which glows when excited by blue light.

APPLYING PHYSICS 5.3 ASTEROID IMPACT!

An asteroid about a kilometer in radius has been blamed for the extinction of the dinosaurs 65 million years ago. How can a relatively small object, which could fit inside a college campus, inflict such injury on the vast biosphere of the Earth?

Explanation While such an asteroid is comparatively small, it travels at a very high speed relative to the Earth, typically on the order of 40 000 m/s. A roughly spherical asteroid one kilometer in radius and made mainly of rock has a mass of approximately 10 trillion kilograms—a small mountain of matter. The kinetic energy of such an asteroid would be about \(10^{22} \) J, or 10 billion trillion joules. By contrast, the atomic bomb that devastated Hiroshima was equivalent to 15 kilotons of TNT, approximately \(6 \times 10^{13} \) J of energy. On striking the Earth, the asteroid’s enormous kinetic energy changes into other forms, such as thermal energy, sound, and light, with a total energy release greater than 100 million Hiroshima explosions! Aside from the devastation in the immediate blast area and fires across a continent, gargantuan tidal waves would scour low-lying regions around the world and dust would block the sun for decades.

For this reason, asteroid impacts represent a threat to life on Earth. Asteroids large enough to cause widespread extinction hit Earth only every 60 million years or so. Smaller asteroids, of sufficient size to cause serious damage to civilization on a global scale, are thought to strike every five to ten thousand years. There have been several near misses by such asteroids in the last century and even in the last decade. In 1907, a small asteroid or comet fragment struck Tunguska, Siberia, annihilating a region 60 kilometers across. Had it hit northern Europe, millions of people might have perished.

Figure 5.25 is an asteroid map of the inner solar system. More asteroids are being discovered every year.
5.6 Power

The rate at which energy is transferred is important in the design and use of practical devices, such as electrical appliances and engines of all kinds. The issue is particularly interesting for living creatures because the maximum work per second, or power output, of an animal varies greatly with output duration. Power is defined as the rate of energy transfer with time:

If an external force does work W on an object in the time interval Δt, then the average power delivered to the object is the work done divided by the time interval, or

$$\bar{P} = \frac{W}{\Delta t} \quad [5.22]$$

SI unit: watt ($W = J/s$)

It’s sometimes useful to rewrite Equation 5.22 by substituting $W = F \Delta x$ and noticing that $\Delta x/\Delta t$ is the average speed of the object during the time Δt:

$$\bar{P} = \frac{W}{\Delta t} = \frac{F \Delta x}{\Delta t} = F \bar{v} \quad [5.23]$$

According to Equation 5.23, average power is a constant force times the average speed. The force F is the component of force in the direction of the average velocity. A more general definition, called the instantaneous power, can be written down with a little calculus and has the same form as Equation 5.23:

$$\dot{P} = F \bar{v} \quad [5.24]$$

In Equation 5.24 both the force F and the velocity v must be parallel, but can change with time. The SI unit of power is the joule/sec, also called the watt, named after James Watt:

$$1 \text{ W} = 1 \text{ J/s} = 1 \text{ kg} \cdot \text{m}^2/\text{s}^3 \quad [5.25a]$$

The unit of power in the U.S. customary system is the horsepower (hp), where

$$1 \text{ hp} = 550 \text{ ft} \cdot \text{lb/s} = 746 \text{ W} \quad [5.25b]$$

The horsepower was first defined by Watt, who needed a large power unit to rate the power output of his new invention, the steam engine.

The watt is commonly used in electrical applications, but it can be used in other scientific areas as well. For example, European sports car engines are rated in kilowatts.

In electric power generation, it’s customary to use the kilowatt-hour as a measure of energy. One kilowatt-hour (kWh) is the energy transferred in 1 h at the constant rate of 1 kW = 1 000 J/s. Therefore,

$$1 \text{ kWh} = (10^3 \text{ W})(3 600 \text{ s}) = (10^3 \text{ J/s})(3 600 \text{ s}) = 3.60 \times 10^6 \text{ J}$$

It’s important to realize that a kilowatt-hour is a unit of energy, not power. When you pay your electric bill, you’re buying energy, and that’s why your bill lists a charge for electricity of about 10 cents/kWh. The amount of electricity used by an appliance can be calculated by multiplying its power rating (usually expressed in watts and valid only for normal household electrical circuits) by the length of time the appliance is operated. For example, an electric bulb rated at 100 W (= 0.100 kW) “consumes” 5.6×10^5 J of energy in 1 h.
EXAMPLE 5.12 Power Delivered by an Elevator Motor

Goal Apply the force-times-velocity definition of power.

Problem A 1.00 × 10^3-kg elevator carries a maximum load of 8.00 × 10^2 kg. A constant frictional force of 4.00 × 10^3 N retards its motion upward, as in Figure 5.26. What minimum power, in kilowatts and in horsepower, must the motor deliver to lift the fully loaded elevator at a constant speed of 3.00 m/s?

Strategy To solve this problem, we need to determine the force the elevator’s motor must deliver through the force of tension in the cable, \(T \). Substituting this force together with the given speed \(v \) into \(P = Fv \) gives the desired power. The tension in the cable, \(T \), can be found with Newton’s second law.

Solution Apply Newton’s second law to the elevator: \(\sum F = ma \)

The velocity is constant, so the acceleration is zero. The forces acting on the elevator are the force of tension in the cable, \(T \), the friction \(f \), and gravity \(Mg \), where \(M \) is the mass of the elevator.

Write the equation in terms of its components: \(T - f - Mg = 0 \)

Solve this equation for the tension \(T \) and evaluate it: \(T = f + Mg \)

\[T = 4.00 \times 10^3 \text{ N} + (1.80 \times 10^3 \text{ kg})(9.80 \text{ m/s}^2) \]

\[T = 2.16 \times 10^4 \text{ N} \]

Substitute this value of \(T \) for \(F \) in the power equation: \(P = Fv = (2.16 \times 10^4 \text{ N})(3.00 \text{ m/s}) = 6.48 \times 10^4 \text{ W} \)

\[P = 64.8 \text{ kW} = 86.9 \text{ hp} \]

Remarks The friction force acts to retard the motion, requiring more power. For a descending elevator, the friction force can actually reduce the power requirement.

QUESTION 5.12 In general, are the minimum power requirements of an elevator ascending at constant velocity (a) greater than, (b) less than, or (c) equal to the minimum power requirements of an elevator descending at constant velocity?

EXERCISE 5.12 Suppose the same elevator with the same load descends at 3.00 m/s. What minimum power is required? (Here, the motor removes energy from the elevator by not allowing it to fall freely.)

Answer \(4.09 \times 10^4 \text{ W} = 54.9 \text{ hp} \)
EXAMPLE 5.13 Shamu Sprint

Goal Calculate the average power needed to increase an object’s kinetic energy.

Problem Killer whales are known to reach 32 ft in length and have a mass of over 8 000 kg. They are also very quick, able to accelerate up to 30 mi/h in a matter of seconds. Disregarding the considerable drag force of water, calculate the average power a killer whale named Shamu with mass 8.00 \(\times 10^3 \) kg would need to generate to reach a speed of 12.0 m/s in 6.00 s.

Strategy Find the change in kinetic energy of Shamu and use the work–energy theorem to obtain the minimum work Shamu has to do to effect this change. (Internal and external friction forces increase the necessary amount of energy.) Divide by the elapsed time to get the average power.

Solution Calculate the change in Shamu’s kinetic energy. By the work–energy theorem, this equals the minimum work Shamu must do:

\[
\Delta KE = \frac{1}{2}mv_f^2 - \frac{1}{2}mv_i^2 = \frac{1}{2} \cdot 8.00 \times 10^3 \text{ kg} \cdot (12.0 \text{ m/s})^2 - 0 = 5.76 \times 10^5 \text{ J}
\]

Divide by the elapsed time (Eq. 5.22), noting that \(W = \Delta KE \):

\[
\mathcal{P} = \frac{W}{\Delta t} = \frac{5.76 \times 10^5 \text{ J}}{6.00 \text{ s}} = 9.60 \times 10^4 \text{ W}
\]

Remarks This is enough power to run a moderate-sized office building! The actual requirements are larger because of friction in the water and muscular tissues. Something similar can be done with gravitational potential energy, as the exercise illustrates.

QUESTION 5.13
If Shamu could double his velocity in double the time, by what factor would the average power requirement change?

EXERCISE 5.13
What minimum average power must a 35-kg human boy generate climbing up the stairs to the top of the Washington monument? The trip up the nearly 170-m-tall building takes him 10 minutes. Include only work done against gravity, ignoring biological inefficiency.

Answer 97 W

EXAMPLE 5.14 Speedboat Power

Goal Combine power, the work–energy theorem and nonconservative forces with one-dimensional kinematics.

Problem (a) What average power would a 1.00 \(\times 10^3 \)-kg speedboat need to go from rest to 20.0 m/s in 5.00 s, assuming the water exerts a constant drag force of magnitude \(f_d = 5.00 \times 10^2 \) N and the acceleration is constant. (b) Find an expression for the instantaneous power in terms of the drag force \(f_d \), the mass \(m \), acceleration \(a \), and time \(t \).

Strategy The power is provided by the engine, which creates a nonconservative force. Use the work–energy theorem together with the work done by the engine, \(W_{\text{engine}} \), and the work done by the drag force, \(W_{\text{drag}} \), on the left-hand side. Use one-dimensional kinematics to find the acceleration and then the displacement \(\Delta x \). Solve the work–energy theorem for \(W_{\text{engine}} \) and divide by the elapsed time to get the average power. For part (b), use Newton’s second law to obtain an example for \(F_e \), and then substitute into the definition of instantaneous power.

Solution (a) Write the work–energy theorem:

\[
W_{\text{net}} = \Delta KE = \frac{1}{2}mv_f^2 - \frac{1}{2}mv_i^2
\]

(1) \(W_{\text{engine}} + W_{\text{drag}} = \frac{1}{2}mv_f^2 \)

To get the displacement \(\Delta x \), first find the acceleration using the velocity equation of kinematics:

\[
v_f = at + v_i \rightarrow v_f = at
\]

20.0 m/s = \(a \) \((5.00 \text{ s}) \) \(\rightarrow \) \(a = 4.00 \text{ m/s}^2 \)
Substitute a into the time-independent kinematics equation and solve for Δx:

$$v_f^2 - v_i^2 = 2a\Delta x$$

$$v_i = 20.0 \text{ m/s}$$

$$a = -4.00 \text{ m/s}^2$$

$$\Delta x = 50.0 \text{ m}$$

Now that we know Δx, we can find the mechanical energy lost due to the drag force:

$$W_{\text{drag}} = \int f_d x = -(5.00 \times 10^2 \text{ N})(50.0 \text{ m}) = -2.50 \times 10^4 \text{ J}$$

Solve equation (1) for W_{engine}:

$$W_{\text{engine}} = \frac{1}{2}mv_f^2 - W_{\text{drag}}$$

$$W_{\text{engine}} = \frac{1}{2}(1.00 \times 10^3 \text{ kg})(20.0 \text{ m/s})^2 - (-2.50 \times 10^4 \text{ J})$$

$$W_{\text{engine}} = 2.25 \times 10^5 \text{ J}$$

Compute the average power:

$$\mathcal{P} = \frac{W_{\text{engine}}}{\Delta t} = \frac{2.25 \times 10^5 \text{ J}}{5.00 \text{ s}} = 4.50 \times 10^4 \text{ W} = 60.3 \text{ hp}$$

(b) Find a symbolic expression for the instantaneous power.

Use Newton’s second law:

$$ma = F_E - f_d$$

Solve for the force exerted by the engine, F_E:

$$F_E = ma + f_d$$

Substitute the expression for F_E and $v = at$ into Equation 5.25 to obtain the instantaneous power:

$$\mathcal{P} = F_Ev = (ma + f_d)(at)$$

Remarks In fact, drag forces generally get larger with increasing speed.

QUESTION 5.14

How does the instantaneous power at the end of 5.00 s compare to the average power?

EXERCISE 5.14

What average power must be supplied to push a 5.00-kg block from rest to 10.0 m/s in 5.00 s when the coefficient of kinetic friction between the block and surface is 0.250? Assume the acceleration is uniform.

Answer 111 W

Energy and Power in a Vertical Jump

The stationary jump consists of two parts: extension and free flight. In the extension phase the person jumps up from a crouch, straightening the legs and throwing up the arms; the free-flight phase occurs when the jumper leaves the ground. Because the body is an extended object and different parts move with different speeds, we describe the motion of the jumper in terms of the position and velocity of the center of mass (CM), which is the point in the body at which all the mass may be considered to be concentrated. Figure 5.27 shows the position and velocity of the CM at different stages of the jump.

Using the principle of the conservation of mechanical energy, we can find H, the maximum increase in height of the CM, in terms of the velocity v_{CM} of the CM at liftoff. Taking PE_j, the gravitational potential energy of the jumper–Earth system just as the jumper lifts off from the ground to be zero, and noting that the kinetic energy KE_j of the jumper at the peak is zero, we have

$$PE_i + KE_i = PE_j + KE_j$$

$$\frac{1}{2}mv_{CM}^2 = mgH \quad \text{or} \quad H = \frac{v_{CM}^2}{2g}$$

For more information on this topic, see E. J. Offenbacher, American Journal of Physics, 38, 829 (1969).
We can estimate v_{CM} by assuming that the acceleration of the CM is constant during the extension phase. If the depth of the crouch is h and the time for extension is Δt, we find that $v_{CM} = \frac{2h}{\Delta t}$. Measurements on a group of male college students show typical values of $h = 0.40$ m and $\Delta t = 0.25$ s, the latter value being set by the fixed speed with which muscle can contract. Substituting, we obtain

$$v_{CM} = \frac{2(0.40 \text{ m})}{(0.25 \text{ s})} = 3.2 \text{ m/s}$$

and

$$H = \frac{v_{CM}^2}{2g} = \frac{(3.2 \text{ m/s})^2}{2(9.80 \text{ m/s}^2)} = 0.52 \text{ m}$$

Measurements on this same group of students found that H was between 0.45 m and 0.61 m in all cases, confirming the basic validity of our simple calculation.

To relate the abstract concepts of energy, power, and efficiency to humans, it’s interesting to calculate these values for the vertical jump. The kinetic energy given to the body in a jump is $KE = \frac{1}{2}mv_{CM}^2$, and for a person of mass 68 kg, the kinetic energy is

$$KE = \frac{1}{2}(68 \text{ kg})(3.2 \text{ m/s})^2 = 3.5 \times 10^2 \text{ J}$$

Although this may seem like a large expenditure of energy, we can make a simple calculation to show that jumping and exercise in general are not good ways to lose weight, in spite of their many health benefits. Because the muscles are at most 25% efficient at producing kinetic energy from chemical energy (muscles always produce a lot of internal energy and kinetic energy as well as work—that’s why you perspire when you work out), they use up four times the 350 J (about 1 400 J) of chemical energy in one jump. This chemical energy ultimately comes from the food we eat, with energy content given in units of food calories and one food calorie equal to 4 200 J. So the total energy supplied by the body as internal energy and kinetic energy in a vertical jump is only about one-third of a food calorie!

Finally, it’s interesting to calculate the mechanical power that can be generated by the body in strenuous activity for brief periods. Here we find that

$$\mathcal{P} = \frac{KE}{\Delta t} = \frac{3.5 \times 10^2 \text{ J}}{0.25 \text{ s}} = 1.4 \times 10^3 \text{ W}$$

or (1 400 W)(1 hp/746 W) = 1.9 hp. So humans can produce about 2 hp of mechanical power for periods on the order of seconds. Table 5.1 shows the maximum power outputs from humans for various periods while bicycling and rowing, activities in which it is possible to measure power output accurately.

TABLE 5.1

<table>
<thead>
<tr>
<th>Power</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 hp, or 1 500 W</td>
<td>6 s</td>
</tr>
<tr>
<td>1 hp, or 750 W</td>
<td>60 s</td>
</tr>
<tr>
<td>0.35 hp, or 260 W</td>
<td>35 min</td>
</tr>
<tr>
<td>0.2 hp, or 150 W</td>
<td>5 h</td>
</tr>
<tr>
<td>0.1 hp, or 75 W</td>
<td>8 h</td>
</tr>
</tbody>
</table>

(safe daily level)

APPLICATION

Diet Versus Exercise in Weight-loss Programs

5.7 **WORK DONE BY A VARYING FORCE**

Suppose an object is displaced along the x-axis under the action of a force F_x that acts in the x-direction and varies with position, as shown in Figure 5.28. The object
is displaced in the direction of increasing \(x \) from \(x = x_i \) to \(x = x_f \). In such a situation, we can’t use Equation 5.1 to calculate the work done by the force because this relationship applies only when \(\mathbf{F} \) is constant in magnitude and direction. However, if we imagine that the object undergoes the small displacement \(\Delta x \) shown in Figure 5.28a, then the \(x \)-component \(F_x \) of the force is nearly constant over this interval and we can approximate the work done by the force for this small displacement as

\[
W_1 \approx F_x \Delta x \quad [5.26]
\]

This quantity is just the area of the shaded rectangle in Figure 5.28a. If we imagine that the curve of \(F_x \) versus \(x \) is divided into a large number of such intervals, then the total work done for the displacement from \(x_i \) to \(x_f \) is approximately equal to the sum of the areas of a large number of small rectangles:

\[
W \approx F_x \Delta x_1 + F_x \Delta x_2 + F_x \Delta x_3 + \cdots \quad [5.27]
\]

Now imagine going through the same process with twice as many intervals, each half the size of the original \(\Delta x \). The rectangles then have smaller widths and will better approximate the area under the curve. Continuing the process of increasing the number of intervals while allowing their size to approach zero, the number of terms in the sum increases without limit, but the value of the sum approaches a definite value equal to the area under the curve bounded by \(F_x \) and the \(x \)-axis in Figure 5.28b. In other words, the work done by a variable force acting on an object that undergoes a displacement is equal to the area under the graph of \(F_x \) versus \(x \).

A common physical system in which force varies with position consists of a block on a horizontal, frictionless surface connected to a spring, as discussed in Section 5.4. When the spring is stretched or compressed a small distance \(x \) from its equilibrium position \(x = 0 \), it exerts a force on the block given by \(F_x = -kx \), where \(k \) is the force constant of the spring.

Now let’s determine the work done by an external agent on the block as the spring is stretched very slowly from \(x_i = 0 \) to \(x_f = x_{\text{max}} \), as in Active Figure 5.29a. This work can be easily calculated by noting that at any value of the displacement, Newton’s third law tells us that the applied force \(\mathbf{F}_{\text{app}} \) is equal in magnitude to the spring force \(\mathbf{F}_s \) and acts in the opposite direction, so that \(\mathbf{F}_{\text{app}} = -(\mathbf{F}_s) = kx \). A plot of \(\mathbf{F}_{\text{app}} \) versus \(x \) is a straight line, as shown in Active Figure 5.29b. Therefore, the work done by this applied force in stretching the spring from \(x = 0 \) to \(x = x_{\text{max}} \) is the area under the straight line in that figure, which in this case is the area of the shaded triangle:

\[
W_{\text{app}} = \frac{1}{2}kx_{\text{max}}^2
\]

During this same time the spring has done exactly the same amount of work, but that work is negative, because the spring force points in the direction opposite the motion. The potential energy of the system is exactly equal to the work done by the applied force and is the same sign, which is why potential energy is thought of as stored work.
EXAMPLE 5.15 Work Required to Stretch a Spring

Goal Apply the graphical method of finding work.

Problem One end of a horizontal spring \((k = 80.0 \text{ N/m})\) is held fixed while an external force is applied to the free end, stretching it slowly from \(x_0 = 0\) to \(x_f = 4.00\text{ cm}\). *(a)* Find the work done by the applied force on the spring. *(b)* Find the additional work done in stretching the spring from \(x_0 = 4.00\text{ cm}\) to \(x_f = 7.00\text{ cm}\).

Strategy For part *(a)*, simply find the area of the smaller triangle in Figure 5.30, using \(A = \frac{1}{2}bh\), one-half the base times the height. For part *(b)*, the easiest way to find the additional work done from \(x_0 = 4.00\text{ cm}\) to \(x_f = 7.00\text{ cm}\) is to find the area of the new, larger triangle and subtract the area of the smaller triangle.

Solution

(a) Find the work from \(x_0 = 0\) cm to \(x_f = 4.00\text{ cm}\).

Compute the area of the smaller triangle:

\[
W = \frac{1}{2}kx_0^2 = \frac{1}{2}(80.0 \text{ N/m})(0.040 \text{ m})^2 = 0.064 \text{ J}
\]

(b) Find the work from \(x_0 = 4.00\text{ cm}\) to \(x_f = 7.00\text{ cm}\).

Compute the area of the large triangle and subtract the area of the smaller triangle:

\[
W = \frac{1}{2}kx_0^2 - \frac{1}{2}kx_f^2
\]

\[
W = \frac{1}{2}(80.0 \text{ N/m})(0.070 \text{ m})^2 - 0.064 \text{ J}
\]

\[
= 0.196 \text{ J} - 0.064 \text{ J}
\]

\[
= 0.132 \text{ J}
\]

Remarks Only simple geometries—rectangles and triangles—can be solved exactly with this method. More complex shapes require calculus or the square-counting technique in the next worked example.

QUESTION 5.15

True or False: When stretching springs, half the displacement requires half as much work.

EXERCISE 5.15

How much work is required to stretch this same spring from \(x_i = 5.00\text{ cm}\) to \(x_f = 9.00\text{ cm}\)?

Answer 0.224 J

EXAMPLE 5.16 Estimating Work by Counting Boxes

Goal Use the graphical method and counting boxes to estimate the work done by a force.

Problem Suppose the force applied to stretch a thick piece of elastic changes with position as indicated in Figure 5.31a. Estimate the work done by the applied force.

Strategy To find the work, simply count the number of boxes underneath the curve and multiply that number by the area of each box. The curve will pass through the middle of some boxes, in which case only an estimated fractional part should be counted.

FIGURE 5.30 *(Example 5.15)* A graph of the external force required to stretch a spring that obeys Hooke’s law versus the elongation of the spring.

FIGURE 5.31 *(Example 5.16)* *(Exercise 5.16)*
Solution
There are 62 complete or nearly complete boxes under the curve, 6 boxes that are about half under the curve, and a triangular area from \(x = 0 \) m to \(x = 0.10 \) m that is equivalent to 1 box, for a total of about 66 boxes. Because the area of each box is 0.10 J, the total work done is approximately \(66 \times 0.10 \) J = 6.6 J.

Remarks Mathematically, there are a number of other methods for creating such estimates, all involving adding up regions approximating the area. To get a better estimate, make smaller boxes.

QUESTION 5.16
In developing such an estimate, is it necessary for all boxes to have the same length and width?

EXERCISE 5.16
Suppose the applied force necessary to pull the drawstring on a bow is given by Figure 5.31b. Find the approximate work done by counting boxes.

Answer About 50 J. (Individual answers may vary.)

SUMMARY

5.1 Work
The work done on an object by a constant force is

\[
W = (F \cos \theta) \Delta x
\]

where \(F \) is the magnitude of the force, \(\Delta x \) is the object's displacement, and \(\theta \) is the angle between the direction of the force \(F \) and the displacement \(\Delta \mathbf{x} \). Solving simple problems requires substituting values into this equation. More complex problems, such as those involving friction, often require using Newton's second law, \(m \mathbf{a} = \Sigma \mathbf{F} \), to determine forces.

5.2 Kinetic Energy and the Work–Energy Theorem
The kinetic energy of a body with mass \(m \) and speed \(v \) is given by

\[
KE = \frac{1}{2} mv^2
\]

The work–energy theorem states that the net work done on an object of mass \(m \) is equal to the change in its kinetic energy, or

\[
W_{\text{net}} = KE_f - KE_i = \Delta KE
\]

Work and energy of any kind carry units of joules. Solving problems involves finding the work done by each force acting on the object and summing them up, which is \(W_{\text{net}} \), followed by substituting known quantities into Equation 5.6, solving for the unknown quantity.

Conservative forces are special: Work done against them can be recovered—it's conserved. An example is gravity: The work done in lifting an object through a height is effectively stored in the gravity field and can be recovered in the kinetic energy of the object simply by letting it fall. Nonconservative forces, such as surface friction and drag, dissipate energy in a form that can't be readily recovered. To account for such forces, the work–energy theorem can be rewritten as

\[
W_{\text{net}} + W_c = \Delta KE
\]

where \(W_{\text{net}} \) is the work done by nonconservative forces and \(W_c \) is the work done by conservative forces.

5.3 Gravitational Potential Energy
The gravitational force is a conservative field. Gravitational potential energy is another way of accounting for gravitational work \(W_g \):

\[
W_g = -(PE_f - PE_i) = -(mg_y - mg_y)
\]

To find the change in gravitational potential energy as an object of mass \(m \) moves between two points in a gravitational field, substitute the values of the object’s \(y \)-coordinates.

The work–energy theorem can be generalized to include gravitational potential energy:

\[
W_{\text{net}} = (KE_f - KE_i) + (PE_f - PE_i)
\]

Gravitational work and gravitational potential energy should not both appear in the work–energy theorem at the same time, only one or the other, because they're equivalent. Setting the work due to nonconservative forces to zero and substituting the expressions for \(KE \) and \(PE \), a form of the conservation of mechanical energy with gravitation can be obtained:

\[
\frac{1}{2} mv^2 + mgy_f = \frac{1}{2} mv^2 + mgy_i
\]

To solve problems with this equation, identify two points in the system—one where information is known and the other where information is desired. Substitute and solve for the unknown quantity.

The work done by other forces, as when frictional forces are present, isn’t always zero. In that case, identify two points as before, calculate the work due to all other forces, and solve for the unknown in Equation 5.12.

5.4 Spring Potential Energy
The spring force is conservative, and its potential energy is given by

\[
PE_s = \frac{1}{2} kx^2
\]

Spring potential energy can be put into the work–energy theorem, which then reads

\[
W_{\text{net}} = (KE_f - KE_i) + (PE_f - PE_i) + (PE_i - PE_f)
\]
5.5 Systems and Energy Conservation

The principle of the conservation of energy states that energy can't be created or destroyed. It can be transformed, but the total energy content of any isolated system is always constant. The same is true for the universe at large. The principle of the conservation of energy states that energy can't be created or destroyed. It can be transformed, but the total energy content of any isolated system is always constant.

\[W_{nc} = (KE_f + PE_f) - (KE_i + PE_i) = E_f - E_i \] \[5.20-21\]

where \(PE \) represents all potential energies present.

5.6 Power

Average power is the amount of energy transferred divided by the time taken for the transfer:

\[\overline{P} = \frac{W}{\Delta t} \] \[5.22\]

This expression can also be written

\[\overline{P} = F \overline{v} \] \[5.23\]

where \(\overline{v} \) is the object's average speed. The unit of power is the watt (\(W = J/s \)). To solve simple problems, substitute given quantities into one of these equations. More difficult problems usually require finding the work done on the object using the work–energy theorem or the definition of work.

MULTIPLE-CHOICE QUESTIONS

1. A worker pushes a wheelbarrow 5.0 m along a level surface, exerting a constant horizontal force of 50.0 N. If a frictional force of 45 N acts on the wheelbarrow in a direction opposite to that of the worker, what net work is done on the wheelbarrow? (a) 250 J (b) 215 J (c) 35 J (d) 15 J (e) 45 J

2. A skier leaves a ski jump at 15.0 m/s at some angle \(\theta \). At what speed is he traveling at his maximum height of 4.50 m above the level of the end of the ski jump? (Neglect air friction.) (a) 11.7 m/s (b) 16.3 m/s (c) 12.2 m/s (d) 8.55 m/s (e) 17.4 m/s

3. A 40.0-N crate starting at rest slides down a rough 6.00-m-long ramp, inclined at 30.0° with the horizontal. The magnitude of the force of friction between the crate and the ramp is 6.0 N. What is the speed of the crate at the bottom of the incline? (a) 1.60 m/s (b) 3.32 m/s (c) 4.5 m/s (d) 6.42 m/s (e) 7.75 m/s

4. What average mechanical power must be delivered by the muscles of a 70.0-kg mountain climber who climbs a summit of height 325 m in 95.0 min? Note: Due to efficiencies in converting chemical energy to mechanical energy, the amount calculated here is only a fraction of the power that must be produced by the climber's body. See Chapter 12. (a) 39.1 W (b) 54.6 W (c) 25.5 W (d) 67.0 W (e) 88.4 W

5. The work required to accelerate an object on a frictionless surface from a speed \(v \) to a speed \(2v \) is (a) equal to the work required to accelerate the object from \(v = 0 \) to \(v \), (b) twice the work required to accelerate the object from \(v = 0 \) to \(v \), (c) three times the work required to accelerate the object from \(v = 0 \) to \(v \), (d) four times the work required to accelerate the object from \(2v \) to \(3v \), or (e) not known without knowledge of the acceleration.

6. Alex and John are loading identical cement blocks onto a truck. Alex lifts his cabinet straight up from the ground to the bed of the truck, whereas John slides his cabinet up a rough ramp to the truck. Which statement is correct? (a) Alex and John do the same amount of work. (b) Alex does more work than John. (c) John does more work than Alex. (d) None of these statements is necessarily true because the force of friction is unknown. (e) None of these statements is necessarily true because the angle of the incline is unknown.

7. Mark and David are loading identical cement blocks onto David's pickup truck. Mark lifts his block straight up from the ground to the truck, whereas David slides his block up a ramp on massless, frictionless rollers. Which statement is true? (a) Mark does more work than David. (b) Mark and David do the same amount of work. (c) David does more work than Mark. (d) None of these statements is necessarily true because the angle of the incline is unknown. (e) None of these statements is necessarily true because the mass of one block is not given.

8. An athlete jumping vertically on a trampoline leaves the surface with a velocity of 8.5 m/s upward. What maximum height does she reach? (a) 13 m (b) 2.3 m (c) 3.7 m (d) 0.27 m (e) The answer can't be determined because the mass of the athlete isn't given.

9. A certain truck has twice the mass of a car. Both are moving at the same speed. If the kinetic energy of the truck is \(K \), what is the kinetic energy of the car? (a) \(K/4 \) (b) \(K/2 \) (c) \(0.71K \) (d) \(K \) (e) \(2K \)

10. If the speed of a particle is doubled, what happens to its kinetic energy? (a) It becomes four times larger. (b) It becomes two times larger. (c) It becomes \(\sqrt{2} \) times larger. (d) It is unchanged. (e) It becomes half as large.

11. If the net work done on a particle is zero, which of the following statements must be true? (a) The velocity is zero. (b) The velocity is decreased. (c) The velocity is unchanged. (d) The speed is unchanged. (e) More information is needed.
12. A block of mass m is dropped from the fourth floor of an office building, subsequently hitting the sidewalk at speed v. From what floor should the mass be dropped to double that impact speed? (a) the sixth floor (b) the eighth floor (c) the tenth floor (d) the twelfth floor (e) the sixteenth floor

13. A car accelerates uniformly from rest. When does the car require the greatest power? (a) when the car first accelerates from rest (b) just as the car reaches its maximum speed (c) when the car reaches half its maximum speed (d) The question is misleading because the power required is constant. (e) More information is needed.

CONCEPTUAL QUESTIONS

1. Consider a tug-of-war as in Figure Q5.1, in which two teams pulling on a rope are evenly matched so that no motion takes place. Is work done on the rope? On the pullers? On the ground? Is work done on anything?

2. Discuss whether any work is being done by each of the following agents and, if so, whether the work is positive or negative: (a) a chicken scratching the ground, (b) a person studying, (c) a crane lifting a bucket of concrete, (d) the force of gravity on the bucket in part (c), (e) the leg muscles of a person in the act of sitting down.

3. If the height of a playground slide is kept constant, will the length of the slide or whether it has bumps make any difference in the final speed of children playing on it? Assume that the slide is slick enough to be considered frictionless. Repeat this question, assuming that the slide is not frictionless.

4. (a) Can the kinetic energy of a system be negative? (b) Can the gravitational potential energy of a system be negative? Explain.

5. Roads going up mountains are formed into switchbacks, with the road weaving back and forth along the face of the slope such that there is only a gentle rise on any portion of the roadway. Does this configuration require any less work to be done by an automobile climbing the mountain, compared with one traveling on a roadway that is straight up the slope? Why are switchbacks used?

6. A bowling ball is suspended from the ceiling of a lecture hall by a strong cord. The ball is drawn away from its equilibrium position and released from rest at the tip of the demonstrator’s nose, as shown in Figure Q5.6. If the demonstrator remains stationary, explain why the ball does not strike her on its return swing. Would this demonstrator be safe if the ball were given a push from its starting position at her nose?

7. As a simple pendulum swings back and forth, the forces acting on the suspended object are the force of gravity, the tension in the supporting cord, and air resistance. (a) Which of these forces, if any, does no work on the pendulum? (b) Which of these forces does negative work at all times during the pendulum’s motion? (c) Describe the work done by the force of gravity while the pendulum is swinging.

8. During a stress test of the cardiovascular system, a patient walks and runs on a treadmill. (a) Is the energy expended by the patient equivalent to the energy of walking and running on the ground? Explain. (b) What effect, if any, does tilting the treadmill upward have? Discuss.

9. When a punter kicks a football, is he doing any work on the ball while the toe of his foot is in contact with it? Is he doing any work on the ball after it loses contact with his toe? Are any forces doing work on the ball while it is in flight?

10. The driver of a car slams on her brakes to avoid colliding with a deer crossing the highway. What happens to the car’s kinetic energy as it comes to rest?

11. A weight is connected to a spring that is suspended vertically from the ceiling. If the weight is displaced downward from its equilibrium position and released, it will oscillate up and down. If air resistance is neglected, will the total mechanical energy of the system (weight plus Earth plus spring) be conserved? How many forms of potential energy are there for this situation?

12. The feet of a standing person of mass m exert a force equal to mg on the floor, and the floor exerts an equal and opposite force upwards on the feet, which we call the normal force. During the extension phase of a vertical jump (see page 147), the feet exert a force on the floor that is greater than mg, so the normal force is greater than mg. As you learned in Chapter 4, we can
use this result and Newton’s second law to calculate the acceleration of the jumper: \(a = F_{net}/m = (a - mg)/m \).

Using energy ideas, we know that work is performed on the jumper to give him or her kinetic energy. But the normal force can’t perform any work here because the feet don’t undergo any displacement. How is energy transferred to the jumper?

13. Suppose you are reshelving books in a library. You lift a book from the floor to the top shelf. The kinetic energy of the book on the floor was zero, and the kinetic energy of the book on the top shelf is zero, so there is no change in kinetic energy. Yet you did some work in lifting the book. Is the work–energy theorem violated?

PROBLEMS

The Problems for this chapter may be assigned online at WebAssign.

1. 2, 3 = straightforward, intermediate, challenging
2. GP = denotes guided problem
3. ESP = denotes enhanced content problem
4. T = biomedical application
5. E = denotes full solution available in Student Solutions Manual/Study Guide

SECTION 5.1 WORK

1. A weight lifter lifts a 350-N set of weights from ground level to a position over his head, a vertical distance of 2.00 m. How much work does the weight lifter do, assuming he moves the weights at constant speed?

2. In 1990 Walter Arfeuille of Belgium lifted a 281.5-kg object through a distance of 17.1 cm using only his teeth. (a) How much work did Arfeuille do on the object? (b) What magnitude force did he exert on the object during the lift, assuming the force was constant?

3. The record number of boat lifts, including the boat and its ten crew members, was achieved by Sami Heinonen and Juha Räsänen of Sweden in 2000. They lifted a total mass of 653.2 kg approximately 4 in. off the ground a total of 24 times. Estimate the total mechanical work done by the two men in lifting the boat 24 times, assuming they applied the same force to the boat during each lift. (Neglect any work they may have done allowing the boat to drop back to the ground.)

4. A shopper in a supermarket pushes a cart with a force of 35 N directed at an angle of 25° below the horizontal. The force is just sufficient to overcome various frictional forces, so the cart moves at constant speed. (a) Find the work done by the shopper as she moves down a 50.0-m length aisle. (b) What is the net work done on the cart? Why? (c) The shopper goes down the next aisle, pushing horizontally and maintaining the same speed as before. If the work done by frictional forces doesn’t change, would the shopper’s applied force be larger, smaller, or the same? What about the work done on the cart by the shopper?

5. Starting from rest, a 5.00-kg block slides 2.50 m down a rough 30.0° incline. The coefficient of kinetic friction between the block and the incline is \(\mu_k = 0.436 \). Determine (a) the work done by the force of gravity, (b) the work done by the friction force between block and incline, and (c) the work done by the normal force. (d) Qualitatively, how would the answers change if a shorter ramp at a steeper angle were used to span the same vertical height?

6. A horizontal force of 150 N is used to push a 40.0-kg packing crate a distance of 6.00 m on a rough horizontal surface. If the crate moves at constant speed, find (a) the work done by the 150-N force and (b) the coefficient of kinetic friction between the crate and surface.

7. A sledge loaded with bricks has a total mass of 18.0 kg and is pulled at constant speed by a rope inclined at 20.0° above the horizontal. The sledge moves a distance of 20.0 m on a horizontal surface. The coefficient of kinetic friction between the sledge and surface is 0.500. (a) What is the tension in the rope? (b) How much work is done by the rope on the sledge? (c) What is the mechanical energy lost due to friction?

8. A block of mass 2.50 kg is pushed 2.20 m along a frictionless horizontal table by a constant 16.0-N force directed 25.0° below the horizontal. Determine the work done by (a) the applied force, (b) the normal force exerted by the table, (c) the force of gravity, and (d) the net force on the block.

SECTION 5.2 KINETIC ENERGY AND THE WORK–ENERGY THEOREM

9. A mechanic pushes a 2.50 \times 10^3-kg car from rest to a speed of \(v \), doing 5 000 J of work in the process. During this time, the car moves 25.0 m. Neglecting friction between car and road, find (a) \(v \) and (b) the horizontal force exerted on the car.

10. A 7.00-kg bowling ball moves at 3.00 m/s. How fast must a 2.45-g Ping-Pong ball move so that the two balls have the same kinetic energy?

11. A 5.75-kg object is initially moving so that its \(x \)-component of velocity is 6.00 m/s and its \(y \)-component of velocity is \(-2.00 \) m/s. (a) What is the kinetic energy of the object at this time? (b) Find the change in kinetic energy of the object if its velocity changes so that its new \(x \)-component is 8.50 m/s and its new \(y \)-component is 5.00 m/s.
12. **a** A worker pushing a 35.0-kg wooden crate at a constant speed for 12.0 m along a wood floor does 350 J of work by applying a constant horizontal force of magnitude \(F_0 \) on the crate. (a) Determine the value of \(F_0 \). (b) If the worker now applies a force greater than \(F_0 \), describe the subsequent motion of the crate. (c) Describe what would happen to the crate if the applied force is less than \(F_0 \).

13. A 70-kg base runner begins his slide into second base when he is moving at a speed of 4.0 m/s. The coefficient of friction between his clothes and Earth is 0.70. He slides so that his speed is zero just as he reaches the base. (a) How much mechanical energy is lost due to friction acting on the runner? (b) How far does he slide?

14. An outfielder throws a 0.150-kg baseball at a speed of 40.0 m/s and an initial angle of 30.0°. What is the kinetic energy of the ball at the highest point of its motion?

15. A 7.80-g bullet moving at 575 m/s penetrates a tree trunk to a depth of 5.50 cm. (a) Use work and energy considerations to find the average frictional force that stops the bullet. (b) Assuming the frictional force is constant, determine how much time elapses between the moment the bullet enters the tree and the moment it stops moving.

16. A 0.60-kg particle has a speed of 2.0 m/s at point A and a kinetic energy of 7.5 J at point B. What is (a) its kinetic energy at A? (b) Its speed at point B? (c) The total work done on the particle as it moves from A to B?

17. A 2.000-kg car moves down a level highway under the actions of two forces: a 1000-N forward force exerted on the drive wheels by the road and a 950-N resistive force. Use the work–energy theorem to find the speed of the car after it has moved a distance of 20 m, assuming that it starts from rest.

18. On a frozen pond, a 10-kg sled is given a kick that imparts to it an initial speed of \(v_0 = 2.0 \) m/s. The coefficient of kinetic friction between sled and ice is \(\mu_k = 0.10 \). Use the work–energy theorem to find the distance the sled moves before coming to rest.

SECTION 5.3 GRAVITATIONAL POTENTIAL ENERGY

SECTION 5.4 SPRING POTENTIAL ENERGY

19. Find the height from which you would have to drop a ball so that it would have a speed of 9.0 m/s just before it hits the ground.

20. When a 2.50-kg object is hung vertically on a certain light spring described by Hooke’s law, the spring stretches 2.76 cm. (a) What is the force constant of the spring? (b) If the 2.50-kg object is removed, how far will the spring stretch if a 1.25-kg block is hung on it? (c) How much work must an external agent do to stretch the same spring 8.90 cm from its unstretched position?

21. An accelerometer in a control system consists of a 3.65-g object sliding on a horizontal rail. A low-mass spring is connected between the object and a flange at one end of the rail. Grease on the rail makes static friction negligible, but rapidly damps out vibrations of the sliding object. When subject to a steady acceleration of 0.500g, the object must be located 0.350 cm from its equilibrium position. Find the force constant required for the spring.

22. **b** A 60.0-kg athlete leaps straight up into the air from a trampoline with an initial speed of 9.0 m/s. The goal of this problem is to find the maximum height she attains and her speed at half maximum height. (a) What are the interacting objects and how do they interact? (b) Select the height at which the athlete’s speed is 9.0 m/s as \(y = 0 \). What is her kinetic energy at this point? What is the gravitational potential energy associated with the athlete? (c) What is her kinetic energy at maximum height? What is the gravitational potential energy associated with the athlete? (d) Write a general equation for energy conservation in this case and solve for the maximum height. Substitute and obtain a numerical answer. (e) Write the general equation for energy conservation and solve for the velocity at half the maximum height. Substitute and obtain a numerical answer.

23. A 2 300-kg pile driver is used to drive a steel beam into the ground. The pile driver falls 7.50 m before coming into contact with the top of the beam, and it drives the beam 18.0 cm farther into the ground as it comes to rest. Using energy considerations, calculate the average force the beam exerts on the pile driver while the pile driver is brought to rest.

24. A 3.50 \(\times 10^4 \)-N child is in a swing that is attached to ropes 1.75 m long. Find the gravitational potential energy associated with the child relative to her lowest position when (a) the ropes are horizontal, (b) the ropes make a 30.0° angle with the vertical, and (c) the child is at the bottom of the circular arc.

25. A daredevil on a motorcycle leaves the end of a ramp with a speed of 35.0 m/s as in Figure P5.25. If his speed is 33.0 m/s when he reaches the peak of the path, what is the maximum height that he reaches? Ignore friction and air resistance.

26. Truck suspensions often have “helper springs” that engage at high loads. One such arrangement is a leaf spring with a helper coil spring mounted on the axle, as shown in Figure P5.26. When the main leaf spring is compressed by distance \(y_m \), the helper spring engages and then helps to support any additional load. Suppose the leaf spring constant is 3.25 \(\times 10^3 \) N/m, the helper spring constant is 3.60 \(\times 10^3 \) N/m, and \(y_0 = 0.500 \) m. (a) What is the compression of the leaf spring for a load of 5.00 \(\times 10^3 \) N? (b) How much work is done in compressing the springs?
27. The chin-up is one exercise that can be used to strengthen the biceps muscle. This muscle can exert a force of approximately 800 N as it contracts a distance of 7.5 cm in a 75-kg male. How much work can the biceps muscles (one in each arm) perform in a single contraction? Compare this amount of work with the energy required to lift a 75-kg person 40 cm in performing a chin-up. Do you think the biceps muscle is the only muscle involved in performing a chin-up?

28. A flea is able to jump about 0.5 m. It has been said that if a flea were as big as a human, it would be able to jump over a 100-story building! When an animal jumps, it converts work done in contracting muscles into gravitational potential energy (with some steps in between). The maximum force exerted by a muscle is proportional to its cross-sectional area, and the work done by the muscle is this force times the length of contraction. If we magnified a flea by a factor of 1,000, the cross-section of its muscle would increase by 1,000, and the length of contraction would increase by 1,000. How high would this “superflea” be able to jump? (Don’t forget that the mass of the “superflea” increases as well.)

29. A 50.0-kg projectile is fired at an angle of 30.0° above the horizontal with an initial speed of 1.20 \times 10^2 \text{ m/s} from the top of a cliff 142 m above level ground, where the ground is taken to be \(y = 0 \). (a) What is the initial total mechanical energy of the projectile? (b) Suppose the projectile is traveling 85.0 m/s at its maximum height of \(y = 427 \text{ m} \). How much work has been done on the projectile by air friction? (c) What is the speed of the projectile immediately before it hits the ground if air friction does one and a half times as much work on the projectile when it is going down as it did when it was going up?

30. A projectile of mass \(m \) is fired horizontally with an initial speed of \(v_0 \) from a height of \(h \) above a flat, desert surface. Neglecting air friction, at the instant before the projectile hits the ground, find the following in terms of \(m \), \(v_0 \), \(h \), and \(g \): (a) the work done by the force of gravity on the projectile, (b) the change in kinetic energy of the projectile since it was fired, and (c) the final kinetic energy of the projectile. (d) Are any of the answers changed if the initial angle is changed?

31. A horizontal spring attached to a wall has a force constant of 850 N/m. A block of mass 1.00 kg is attached to the spring and oscillates freely on a horizontal, frictionless surface as in Active Figure 5.20. The initial goal of this problem is to find the velocity at the equilibrium point after the block is released. (a) What objects constitute the system, and through what forces do they interact? (b) What are the two points of interest? (c) Find the energy stored in the spring when the mass is stretched 6.00 cm from equilibrium and again when the mass passes through equilibrium after being released from rest. (d) Write the conservation of energy equation for this situation and solve it for the speed of the mass as it passes equilibrium. Substitute to obtain a numerical value. (e) What is the speed at the halfway point? Why isn’t it half the speed at equilibrium?

SECTION 5.5 SYSTEMS AND ENERGY CONSERVATION

32. A 50-kg pole vaulter running at 10 m/s vaults over the bar. Her speed when she is above the bar is 1.0 m/s. Neglect air resistance, as well as any energy absorbed by the pole, and determine her altitude as she crosses the bar.

33. A child and a sled with a combined mass of 50.0 kg slide down a frictionless slope. If the sled starts from rest and has a speed of 5.00 m/s at the bottom, what is the height of the hill?

34. Hooke’s law describes a certain light spring of unstretched length 35.0 cm. When one end is attached to the top of a door frame and a 7.50-kg object is hung from the other end, the length of the spring is 41.5 cm. (a) Find its spring constant. (b) The load and the spring are taken down. Two people pull in opposite directions on the ends of the spring, each with a force of 190 N. Find the length of the spring in this situation.

35. A 0.250-kg block along a horizontal track has a speed of 1.50 m/s immediately before colliding with a light spring of force constant 4.00 N/m located at the end of the track. (a) What is the spring’s maximum compression if the track is frictionless? (b) If the track is not frictionless, would the spring’s maximum compression be greater than, less than, or equal to the value obtained in part (a)?

36. A bead of mass \(m = 5.00 \text{ kg} \) is released from point \(A \) and slides on the frictionless track shown in Figure P5.36. Determine (a) the bead’s speed at points \(B \) and \(C \) and (b) the net work done by the force of gravity in moving the bead from \(A \) to \(C \).

37. Tarzan swings on a 30.0-m-long vine initially inclined at an angle of 37.0° with the vertical. What is his speed at the bottom of the swing (a) if he starts from rest? (b) If he pushes off with a speed of 4.00 m/s?

38. A projectile is launched with a speed of 40 m/s at an angle of 60° above the horizontal. Use conservation of energy to find the maximum height reached by the projectile during its flight.

39. The launching mechanism of a toy gun consists of a spring of unknown spring constant, as shown in Figure P5.39a. If the spring is compressed a distance of 0.120 m and the gun is fired vertically as shown, the gun can launch a 20.0-g projectile from rest to a maximum height of 20.0 m above the starting point of the projectile. Neglecting all resistive forces, (a) describe the mechanical energy transformations that occur from the time the gun is fired until the projectile reaches its maximum height, (b) determine the spring constant, and (c) find the speed of the projectile as it moves through the equilibrium position of the spring (where \(x = 0 \), as shown in Figure P5.39b).

40. A block with a mass \(m \) is pulled along a horizontal surface for a distance \(x \) by a constant force \(\vec{F} \) at an angle \(\theta \) with respect to the horizontal. The coefficient of kinetic friction between block and table is \(\mu_k \). Is the force exerted by friction equal to \(\mu_k mg \)? If not, what is the force exerted by friction? (b) How much work is done by the friction force and by \(\vec{F} \)? (Don't forget the signs.) (c) Identify all the forces that do no work on the block. (d) Let \(m = 2.00 \) kg, \(x = 4.00 \) m, \(\theta = 37.0° \), \(F = 15.0 \) N, and \(\mu_k = 0.400 \), and find the answers to parts (a) and (b).

41. A child slides down a water slide at an amusement park from an initial height \(h \). The slide can be considered frictionless because of the water flowing down it. Can the equation for conservation of mechanical energy be used on the child? (b) Is the mass of the child a factor in determining his speed at the bottom of the slide? (c) The child drops straight down rather than following the curved ramp of the slide. In which case will he be traveling faster at ground level? (d) If friction is present, how would the conservation-of-energy equation be modified? (e) Find the maximum speed of the child when the slide is frictionless if the initial height of the slide is 12.0 m.

42. An airplane of mass 1.50 \(\times \) \(10^4 \) kg is moving at 60.0 m/s. The pilot then increases the engine's thrust to 7.50 \(\times \) \(10^4 \) N. The resistive force exerted by air on the airplane has a magnitude of 4.00 \(\times \) \(10^4 \) N. (a) Is the work done by the engine on the airplane equal to the change in the airplane's kinetic energy after it travels through some distance through the air? Is mechanical energy conserved? Explain. (b) Find the speed of the airplane after it has traveled 5.00 \(\times \) \(10^3 \) m. Assume the airplane is in level flight throughout the motion.

43. A 70-kg diver steps off a 10-m tower and drops from rest straight down into the water. If he comes to rest 5.0 m beneath the surface, determine the average resistive force exerted on him by the water.

44. A 25.0-kg child on a 2.00-m-long swing is released from rest when the ropes of the swing make an angle of 30.0° with the vertical. (a) Neglecting friction, find the child's speed at the lowest position. (b) If the actual speed of the child at the lowest position is 2.00 m/s, what is the mechanical energy lost due to friction?

45. A 2.1 \(\times \) \(10^3 \)-kg car starts from rest at the top of a 5.0-m-long driveway that is inclined at 20° with the horizontal. If an average friction force of 4.0 \(\times \) \(10^3 \) N impedes the motion, find the speed of the car at the bottom of the driveway.

46. A child of mass \(m \) starts from rest and slides without friction from a height \(h \) along a curved waterslide (Fig. P5.46). She is launched from a height \(h/5 \) into the pool. (a) Is mechanical energy conserved? Why? (b) Give the gravitational potential energy associated with the child and her kinetic energy in terms of \(mgh \) at the following positions: the top of the waterslide, the launching point, and the point where she lands in the pool. (c) Determine her initial speed \(v_i \) at the launch point in terms of \(g \) and \(h \). (d) Determine her maximum airborne height \(y_{\text{max}} \) in terms of \(h, g \), and the horizontal speed at that height, \(v_{\text{hor}} \). (e) Use the \(x \)-component of the answer to part (c) to eliminate \(v_i \) from the answer to part (d), giving the height \(y_{\text{max}} \) in terms of \(g, h \), and the launch angle \(\theta \). (f) Would your answers be the same if the waterslide were not frictionless? Explain.
200.0 m. (a) Assuming that the total retarding force on the diver is constant at 50.0 N with the parachute closed and constant at 3,600 N with the parachute open, what is the speed of the diver when he lands on the ground? (b) Do you think the skydiver will get hurt? Explain. (c) At what height should the parachute be opened so that the final speed of the skydiver when he hits the ground is 5.00 m/s? (d) How realistic is the assumption that the total retarding force is constant? Explain.

SECTION 5.6 POWER

50. A skier of mass 70 kg is pulled up a slope by a motor-driven cable. (a) How much work is required to pull him 60 m up a 30° slope (assumed frictionless) at a constant speed of 2.0 m/s? (b) What power must a motor have to perform this task?

51. A 3.50-kN piano is lifted by three workers at constant speed to an apartment 25.0 m above the street using a pulley system fastened to the roof of the building. Each worker is able to deliver 165 W of power, and the pulley system is 75.0% efficient (so that 25.0% of the mechanical energy is lost due to friction in the pulley). Neglecting the mass of the pulley, find the time required to lift the piano from the street to the apartment.

52. While running, a person dissipates about 0.60 J of mechanical energy per step per kilogram of body mass. If a 60-kg person develops a power of 70 W during a race, how fast is the person running? (Assume a running step is 1.5 m long.)

53. The electric motor of a model train accelerates the train from rest to 0.620 m/s in 21.0 ms. The total mass of the train is 875 g. Find the average power delivered to the train during its acceleration.

54. When an automobile moves with constant speed down a highway, most of the power developed by the engine is used to compensate for the mechanical energy loss due to frictional forces exerted on the car by the air and the road. If the power developed by an engine is 175 hp, estimate the total frictional force acting on the car when it is moving at a speed of 29 m/s. One horsepower equals 746 W.

55. An older-model car accelerates from 0 to speed v in 10 s. A newer, more powerful sports car of the same mass accelerates from 0 to 2v in the same time period. Assuming the energy coming from the engine appears only as kinetic energy of the cars, compare the power of the two cars.

56. A certain rain cloud at an altitude of 1.75 km contains 3.20 × 10^5 kg of water vapor. How long would it take for a 2.70-kW pump to raise the same amount of water from Earth’s surface to the cloud’s position?

57. A 1.50 × 10^4-kg car starts from rest and accelerates uniformly to 18.0 m/s in 12.0 s. Assume that air resistance remains constant at 400 N during this time. Find (a) the average power developed by the engine and (b) the instantaneous power output of the engine at t = 12.0 s, just before the car stops accelerating.

58. A 650-kg elevator starts from rest and moves upward for 3.00 s with constant acceleration until it reaches its cruising speed, 1.75 m/s. (a) What is the average power of the elevator motor during this period? (b) How does this amount of power compare with its power during an upward trip with constant speed?

SECTION 5.7 WORK DONE BY A VARYING FORCE

59. The force acting on a particle varies as in Figure P5.59. Find the work done by the force as the particle moves (a) from x = 0 to x = 8.00 m, (b) from x = 8.00 m to x = 10.0 m, and (c) from x = 0 to x = 10.0 m.

60. An object of mass 3.00 kg is subject to a force F_x that varies with position as in Figure P5.60. Find the work done by the force on the object as it moves (a) from x = 0 to x = 5.00 m, (b) from x = 5.00 m to x = 10.0 m, and (c) from x = 10.0 m to x = 15.0 m. (d) If the object has a speed of 0.500 m/s at x = 0, find its speed at x = 5.00 m and its speed at x = 15.0 m.

61. The force acting on an object is given by F_x = (8x - 16) N, where x is in meters. (a) Make a plot of this force versus x from x = 0 to x = 3.00 m. (b) From your graph, find the net work done by the force as the object moves from x = 0 to x = 3.00 m.

ADDITIONAL PROBLEMS

62. A raw egg can be dropped from a third-floor window and land on a foam-rubber pad on the ground without breaking. If a 75.0-g egg is dropped from a window located 32.0 m above the ground and a foam-rubber pad that is 15.0 cm thick stops the egg in 9.20 ms, (a) by how much is the pad compressed? (b) What is the average force exerted on the egg after it strikes the pad? Note: Assume constant upward acceleration as the egg compresses the foam-rubber pad.

63. A person doing a chin-up weighs 700 N, exclusive of the arms. During the first 25.0 cm of the lift, each arm exerts
64. A boy starts at rest and slides down a frictionless slide as in Figure P5.64. The bottom of the track is a height h above the ground. The boy then leaves the track horizontally, striking the ground a distance d as shown. Using energy methods, determine the initial height H of the boy in terms of h and d.

![FIGURE P5.64](image1)

65. A roller-coaster car of mass 1.50×10^3 kg is initially at the top of a rise at point A. It then moves 35.0 m at an angle of 50.0° below the horizontal to a lower point B. (a) Find both the potential energy of the system when the car is at points A and B and the change in potential energy as the car moves from point A to point B, assuming $y = 0$ at point A. (b) Repeat part (a), this time choosing $y = 0$ at point B, which is another 15.0 m down the same slope from point B.

66. A 2.0-m-long pendulum is released from rest when the support string is at an angle of 25° with the vertical. What is the speed of the bob at the bottom of the swing?

67. An archer pulls her bowstring back 0.400 m by exerting a force that increases uniformly from zero to 230 N. (a) What is the equivalent spring constant of the bow? (b) How much work does the archer do in pulling the bow?

68. A block of mass 12.0 kg slides from rest down a frictionless 35.0° incline and is stopped by a strong spring with $k = 3.00 \times 10^3$ N/m. The block slides 3.00 m from the point of release to the point where it comes to rest against the spring. When the block comes to rest, how far has the spring been compressed?

69. (a) A 75-kg man steps out a window and falls (from rest) 1.0 m to a sidewalk. What is his speed just before his feet strike the pavement? (b) If the man falls with his knees and ankles locked, the only cushion for his fall is an approximately 0.50-cm give in the pads of his feet. Calculate the average force exerted on him by the ground in this situation. This average force is sufficient to cause damage to cartilage in the joints or to break bones.

70. A toy gun uses a spring to project a 5.3-g soft rubber sphere horizontally. The spring constant is 8.0 N/m, the barrel of the gun is 15 cm long, and a constant frictional force of 0.032 N exists between barrel and projectile. With what speed does the projectile leave the barrel if the spring was compressed 5.0 cm for this launch?

71. Two objects are connected by a light string passing over a light, frictionless pulley as in Figure P5.71. The 5.00-kg object is released from rest at a point 4.00 m above the floor. (a) Determine the speed of each object when the two pass each other. (b) Determine the speed of each object at the moment the 5.00-kg object hits the floor. (c) How much higher does the 3.00-kg object travel after the 5.00-kg object hits the floor?

72. Two blocks, A and B (with mass 50 kg and 100 kg, respectively), are connected by a string, as shown in Figure P5.72. The pulley is frictionless and of negligible mass. The coefficient of kinetic friction between block A and the incline is $\mu_k = 0.25$. Determine the change in the kinetic energy of block A as it moves from C to B, a distance of 20 m up the incline if the system starts from rest.

![FIGURE P5.71](image2)

73. A 2.00 $\times 10^{-2}$-g particle is released from rest at point A on the inside of a smooth hemispherical bowl of radius $R = 30.0$ cm (Fig. P5.73). Calculate (a) its gravitational potential energy at A relative to B, (b) its kinetic energy at B, (c) its speed at B, (d) its potential energy at C relative to B, and (e) its kinetic energy at C.

![FIGURE P5.73](image3)

74. The particle described in Problem 73 (Fig. P5.73) is released from point A at rest. Its speed at B is 1.50 m/s. (a) What is its kinetic energy at B? (b) How much mechanical energy is lost as a result of friction as the particle goes from A to B? (c) Is it possible to determine μ from these results in a simple manner? Explain.

75. A light spring with spring constant 1.20×10^3 N/m hangs from an elevated support. From its lower end hangs a second light spring, which has spring constant 1.80×10^3 N/m. A 1.50-kg object hangs at rest from the lower end of the second spring. (a) Find the total extension distance of the pair of springs. (b) Find the effective spring constant of the pair of springs as a system. We describe these springs as being in series. *Hint:* Consider the forces on each spring separately.
76. **Symbolic Version of Problem 75** A light spring with spring constant k_1 hangs from an elevated support. From its lower end hangs a second light spring, which has spring constant k_2. An object of mass m hangs at rest from the lower end of the second spring. (a) Find the total extension distance x of the pair of springs in terms of the two displacements x_1 and x_2. (b) Find the effective spring constant of the pair of springs as a system. We describe these springs as being in series.

77. In terms of saving energy, bicycling and walking are far more efficient means of transportation than is travel by automobile. For example, when riding at 10.0 mi/h, a cyclist uses food energy at a rate of about 400 kcal/h above what he would use if he were merely sitting still. (In exercise physiology, power is often measured in kcal/h rather than in watts. Here, 1 kcal = 1 nutritionist’s Calorie = 4 186 J.) Walking at 3.00 mi/h requires about 220 kcal/h. It is interesting to compare these values with the energy consumption required for travel by car. Gasoline yields about 1.30 × 10^5 J/gal. Find the fuel economy in equivalent miles per gallon for a person (a) walking and (b) bicycling.

78. Energy is conventionally measured in Calories as well as in joules. One Calorie in nutrition is 1 kilocalorie, which we define in Chapter 11 as 1 kcal = 4 186 J. Metabolizing 1 gram of fat can release 9.00 kcal. A student decides to try to lose weight by exercising. She plans to run up and down the stairs in a football stadium as fast as she can and as many times as necessary. Is this in itself a practical way to lose weight? To evaluate the program, suppose she runs up a flight of 80 steps, each 0.150 m high, in 65.0 s. For simplicity, ignore the energy she uses in coming down (which is small). Assume that a typical efficiency for human muscles is 20.0%. This means that when your body converts 100 J from metabolizing fat, 20 J goes into doing mechanical work (here, climbing stairs). The remainder goes into internal energy. Assume the student’s mass is 50.0 kg. (a) How many times must she run the flight of stairs to lose 1 pound of fat? (b) What is her average power output, in watts and in horsepower, as she is running up the stairs?

79. A ski jumper starts from rest 50.0 m above the ground on a frictionless track and flies off the track at an angle of 45.0° above the horizontal and at a height of 10.0 m above the level ground. Neglect air resistance. (a) What is her speed when she leaves the track? (b) What is the maximum altitude she attains after leaving the track? (c) Where does she land relative to the end of the track?

80. A 5.0-kg block is pushed 3.0 m up a vertical wall with constant speed by a constant force of magnitude F applied at an angle of $\theta = 30^\circ$ with the horizontal, as shown in Figure P5.80. If the coefficient of kinetic friction between block and wall is 0.30, determine the work done by (a) \vec{F}, (b) the force of gravity, and (c) the normal force between block and wall. (d) By how much does the gravitational potential energy increase during the block’s motion?

81. A child’s pogo stick (Fig. P5.81) stores energy in a spring ($k = 2.50 \times 10^4$ N/m). At position (a) ($x = -0.100$ m), the spring compression is a maximum and the child is momentarily at rest. At position (b) ($x = 0$), the spring is relaxed and the child is moving upward. Assuming that the combined mass of child and pogo stick is 25.0 kg, (a) calculate the total energy of the system if both potential energies are zero at $x = 0$, (b) determine x_1, (c) calculate the speed of the child at $x = 0$, (d) determine the value of x for which the kinetic energy of the system is a maximum, and (e) obtain the child’s maximum upward speed.

82. A hummingbird is able to hover because, as the wings move downwards, they exert a downward force on the air. Newton’s third law tells us that the air exerts an equal and opposite force (upwards) on the wings. The average of this force must be equal to the weight of the bird when it hovers. If the wings move through a distance of 3.5 cm with each stroke, and the wings beat 80 times per second, determine the work performed by the wings on the air in 1 minute if the mass of the hummingbird is 3.0 grams.

83. In the dangerous “sport” of bungee jumping, a daring student jumps from a hot-air balloon with a specially designed elastic cord attached to his waist, as shown in Figure P5.83. The unstretched length of the cord is 25.0 m, the student weighs 700 N, and the balloon is 36.0 m above the surface of a river below. Calculate the required force constant of the cord if the student is to stop safely 4.00 m above the river.

84. The masses of the javelin, discus, and shot are 0.80 kg, 2.0 kg, and 7.2 kg, respectively, and record throws in the corresponding track events are about 98 m, 74 m, and 25 m, respectively. Neglecting air resistance, (a) cal-
culate the minimum initial kinetic energies that would produce these throws, and (b) estimate the average force exerted on each object during the throw, assuming the force acts over a distance of 2.0 m. (c) Do your results suggest that air resistance is an important factor?

85. A truck travels uphill with constant velocity on a highway with a 7.0° slope. A 50-kg package sits on the floor of the back of the truck and does not slide, due to a static frictional force. During an interval in which the truck travels 340 m, what is the net work done on the package? What is the work done on the package by the force of gravity, the normal force, and the friction force?

86. A daredevil wishes to bungee-jump from a hot-air balloon 65.0 m above a carnival midway (Fig. P5.88). He will use a piece of uniform elastic cord tied to a harness around his body to stop his fall at a point 10.0 m above the ground. Model his body as a particle and the cord as having negligible mass and a tension force described by Hooke’s force law. In a preliminary test, hanging at rest from a 5.00-m length of the cord, the jumper finds that his body weight stretches it by 1.50 m. He will drop from rest at the point where the top end of a longer section of the cord is attached to the stationary balloon. (a) What length of cord should he use? (b) What maximum acceleration will he experience?

87. A loaded ore car has a mass of 950 kg and rolls on rails with negligible friction. It starts from rest and is pulled up a mine shaft by a cable connected to a winch. The shaft is inclined at 30.0° above the horizontal. The car accelerates uniformly to a speed of 2.20 m/s in 12.0 s and then continues at constant speed. (a) What power must the winch motor provide when the car is moving at constant speed? (b) What maximum power must the motor provide? (c) What total energy transfers out of the motor by work by the time the car moves off the end of the track, which is of length 1 250 m?

88. (a) An object of mass \(m \) is suspended from the top of a cart by a string of length \(L \) as in Figure P5.88a. The cart and object are initially moving to the right at a constant speed \(v_0 \). The cart comes to rest after colliding and sticking to a bumper, as in Figure P5.88b, and the suspended object swings through an angle \(\theta \). (a) Show that the initial speed is \(v = \sqrt{2gL(1 - \cos \theta)} \). (b) If \(L = 1.20 \text{ m} \) and \(\theta = 35.0^\circ \), find the initial speed of the cart. (Hint: The force exerted by the string on the object does no work on the object.)

89. Three objects with masses \(m_1 = 5.0 \text{ kg} \), \(m_2 = 10 \text{ kg} \), and \(m_3 = 15 \text{ kg} \), respectively, are attached by strings over frictionless pulleys as indicated in Figure P5.89. The horizontal surface exerts a force of friction of 30 N on \(m_2 \). If the system is released from rest, use energy concepts to find the speed of \(m_3 \) after it moves down 4.0 m.

90. A cafeteria tray dispenser supports a stack of trays on a shelf that hangs from four identical spiral springs under tension, one near each corner of the shelf. Each tray has a mass of 580 g and is rectangular, 45.3 cm by 35.6 cm, and 0.450 cm thick. (a) Show that the top tray in the stack can always be at the same height above the floor, however many trays are in the dispenser. (b) Find the spring constant each spring should have in order for the dispenser to function in this convenient way. Is any piece of data unnecessary for this determination?

91. In bicycling for aerobic exercise, a woman wants her heart rate to be between 136 and 166 beats per minute. Assume that her heart rate is directly proportional to her mechanical power output. Ignore all forces on the woman-plus-bicycle system, except for static friction forward on the drive wheel of the bicycle and an air resistance force proportional to the square of the bicyclist’s speed. When her speed is 22.0 km/h, her heart rate is 90.0 beats per minute. In what range should her speed be so that her heart rate will be in the range she wants?

92. In a needle biopsy, a narrow strip of tissue is extracted from a patient with a hollow needle. Rather than being pushed by hand, to ensure a clean cut the needle can be fired into the patient’s body by a spring. Assume the needle has mass 5.60 g, the light spring has force constant 375 N/m, and the spring is originally compressed 8.10 cm to project the needle horizontally without friction. The tip of the needle then moves through 2.40 cm of skin and soft tissue, which exerts a resistive force of 7.60 N on it. Next, the needle cuts 3.50 cm into an organ, which exerts a backward force of 9.20 N on it. Find (a) the maximum speed of the needle and (b) the speed at which a flange on the back end of the needle runs into a stop, set to limit the penetration to 5.90 cm.
A small buck from the massive bull transfers a large amount of momentum to the cowboy, resulting in an involuntary dismount.

MOMENTUM AND COLLISIONS

What happens when two automobiles collide? How does the impact affect the motion of each vehicle, and what basic physical principles determine the likelihood of serious injury? How do rockets work, and what mechanisms can be used to overcome the limitations imposed by exhaust speed? Why do we have to brace ourselves when firing small projectiles at high velocity? Finally, how can we use physics to improve our golf game?

To begin answering such questions, we introduce momentum. Intuitively, anyone or anything that has a lot of momentum is going to be hard to stop. In politics, the term is metaphorical. Physically, the more momentum an object has, the more force has to be applied to stop it in a given time. This concept leads to one of the most powerful principles in physics: conservation of momentum. Using this law, complex collision problems can be solved without knowing much about the forces involved during contact. We’ll also be able to derive information about the average force delivered in an impact. With conservation of momentum, we’ll have a better understanding of what choices to make when designing an automobile or a moon rocket, or when addressing a golf ball on a tee.

6.1 MOMENTUM AND IMPULSE

In physics, momentum has a precise definition. A slowly moving brontosaurus has a lot of momentum, but so does a little hot lead shot from the muzzle of a gun. We therefore expect that momentum will depend on an object’s mass and velocity.

The linear momentum p of an object of mass m moving with velocity \mathbf{v} is the product of its mass and velocity:

$$p = mv$$ \hspace{1cm} [6.1]

SI unit: kilogram-meter per second (kg m/s)

Doubling either the mass or the velocity of an object doubles its momentum; doubling both quantities quadruples its momentum. Momentum is a vector quantity...
with the same direction as the object’s velocity. Its components are given in two dimensions by

\[p_x = mv_x \quad p_y = mv_y \]

where \(p_x \) is the momentum of the object in the \(x \)-direction and \(p_y \) its momentum in the \(y \)-direction.

The magnitude of the momentum \(p \) of an object of mass \(m \) can be related to its kinetic energy \(KE \):

\[KE = \frac{p^2}{2m} \quad [6.2] \]

This relationship is easy to prove using the definitions of kinetic energy and momentum (see Problem 6.6) and is valid for objects traveling at speeds much less than the speed of light. Equation 6.2 is useful in grasping the interplay between the two concepts, as illustrated in Quick Quiz 6.1.

QUICK QUIZ 6.1 Two masses \(m_1 \) and \(m_2 \), with \(m_1 = \frac{1}{3} m_2 \), have equal kinetic energy. How do the magnitudes of their momenta compare?

(a) Not enough information is given.
(b) \(p_1 < p_2 \)
(c) \(p_1 = p_2 \)
(d) \(p_1 > p_2 \)

Changing the momentum of an object requires the application of a force. This is, in fact, how Newton originally stated his second law of motion. Starting from the more common version of the second law, we have

\[\mathbf{F}_{\text{net}} = m \mathbf{a} = m \frac{\Delta \mathbf{v}}{\Delta t} = \frac{\Delta (m \mathbf{v})}{\Delta t} \]

where the mass \(m \) and the forces are assumed constant. The quantity in parentheses is just the momentum, so we have the following result:

The change in an object’s momentum \(\Delta \mathbf{p} \) divided by the elapsed time \(\Delta t \) equals the constant net force \(\mathbf{F}_{\text{net}} \) acting on the object:

\[\frac{\Delta \mathbf{p}}{\Delta t} = \text{change in momentum \over time interval} = \mathbf{F}_{\text{net}} \quad [6.3] \]

This equation is also valid when the forces are not constant, provided the limit is taken as \(\Delta t \) becomes infinitesimally small. Equation 6.3 says that if the net force on an object is zero, the object’s momentum doesn’t change. In other words, the linear momentum of an object is conserved when \(\mathbf{F}_{\text{net}} = 0 \). Equation 6.3 also tells us that changing an object’s momentum requires the continuous application of a force over a period of time \(\Delta t \), leading to the definition of *impulse*:

If a constant force \(\mathbf{F} \) acts on an object, the impulse \(\mathbf{I} \) delivered to the object over a time interval \(\Delta t \) is given by

\[\mathbf{I} = \mathbf{F} \Delta t \quad [6.4] \]

SI unit: kilogram meter per second (kg \cdot m/s)

Impulse is a vector quantity with the same direction as the constant force acting on the object. When a single constant force \(\mathbf{F} \) acts on an object, Equation 6.3 can be written as

\[\mathbf{I} = \mathbf{F} \Delta t = \Delta \mathbf{p} = m \mathbf{v}_f - m \mathbf{v}_i \quad [6.5] \]

This is a special case of the *impulse–momentum theorem*. Equation 6.5 shows that the impulse of the force acting on an object equals the change in momentum of that object. This equality is true even if the force is not constant, as long as the time interval \(\Delta t \) is taken to be arbitrarily small. (The proof of the general case requires concepts from calculus.)
In boxing matches of the 19th century, bare fists were used. In modern boxing, fighters wear padded gloves. How do gloves protect the brain of the boxer from injury? Also, why do boxers often “roll with the punch”?

Explanation

The brain is immersed in a cushioning fluid inside the skull. If the head is struck suddenly by a bare fist, the skull accelerates rapidly. The brain matches this acceleration only because of the large impulsive force exerted by the skull on the brain. This large and sudden force (large \(F_{av} \) and small \(\Delta t \)) can cause severe brain injury. Padded gloves extend the time \(\Delta t \) over which the force is applied to the head. For a given impulse \(F_{av} \Delta t \), a glove results in a longer time interval than a bare fist, decreasing the average force. Because the average force is decreased, the acceleration of the skull is decreased, reducing (but not eliminating) the chance of brain injury. The same argument can be made for “rolling with the punch”: If the head is held steady while being struck, the time interval over which the force is applied is relatively short and the average force is large. If the head is allowed to move in the same direction as the punch, the time interval is lengthened and the average force reduced.

EXAMPLE 6.1

Teeing Off

Goal

Use the impulse–momentum theorem to estimate the average force exerted during an impact.

Problem

A golf ball with mass \(5.0 \times 10^{-2} \) kg is struck with a club as in Figure 6.3. The force on the ball varies from zero when contact is made up to some maximum value (when the ball is maximally deformed) and then back to zero.
when the ball leaves the club, as in the graph of force vs. time in Figure 6.1. Assume that the ball leaves the club face with a velocity of \(44 \, \text{m/s} \). (a) Find the magnitude of the impulse due to the collision. (b) Estimate the duration of the collision and the average force acting on the ball.

Strategy In part (a), use the fact that the impulse is equal to the change in momentum. The mass and the initial and final speeds are known, so this change can be computed. In part (b), the average force is just the change in momentum computed in part (a) divided by an estimate of the duration of the collision. Guess at the distance the ball travels on the face of the club (about 2 cm, roughly the same as the radius of the ball). Divide this distance by the average velocity (half the final velocity) to get an estimate of the time of contact.

Solution

(a) Find the impulse delivered to the ball.

The problem is essentially one dimensional. Note that \(v_i = 0 \), and calculate the change in momentum, which equals the impulse:

\[
I = \Delta p = p_f - p_i = (5.0 \times 10^{-2} \, \text{kg})(44 \, \text{m/s}) - 0 = 2.2 \, \text{kg} \cdot \text{m/s}
\]

(b) Estimate the duration of the collision and the average force acting on the ball.

Estimate the time interval of the collision, \(\Delta t \), using the approximate displacement (radius of the ball) and its average speed (half the maximum speed):

\[
\Delta t = \frac{\Delta x}{v_{av}} = \frac{2.0 \times 10^{-2} \, \text{m}}{22 \, \text{m/s}} = 9.1 \times 10^{-4} \, \text{s}
\]

Estimate the average force from Equation 6.6:

\[
F_{av} = \frac{\Delta p}{\Delta t} = \frac{2.2 \, \text{kg} \cdot \text{m/s}}{9.1 \times 10^{-4} \, \text{s}} = 2.4 \times 10^3 \, \text{N}
\]

Remarks This estimate shows just how large such contact forces can be. A good golfer achieves maximum momentum transfer by shifting weight from the back foot to the front foot, transmitting the body’s momentum through the shaft and head of the club. This timing, involving a short movement of the hips, is more effective than a shot powered exclusively by the arms and shoulders. Following through with the swing ensures that the motion isn’t slowed at the critical instant of impact.

QUESTION 6.1

What average club speed would double the average force?

EXERCISE 6.1

A 0.150-kg baseball, thrown with a speed of 40.0 m/s, is hit straight back at the pitcher with a speed of 50.0 m/s. (a) What is the impulse delivered by the bat to the baseball? (b) Find the magnitude of the average force exerted by the bat on the ball if the two are in contact for \(2.00 \times 10^{-3} \, \text{s} \).

Answer (a) 13.5 kg \cdot \text{m/s} (b) 6.75 kN

EXAMPLE 6.2 How Good Are the Bumpers?

Goal Find an impulse and estimate a force in a collision of a moving object with a stationary object.

Problem In a crash test, a car of mass \(1.50 \times 10^3 \, \text{kg} \) collides with a wall and rebounds as in Figure 6.4a. The initial and final velocities of the car are \(v_i = -15.0 \, \text{m/s} \) and \(v_f = 2.60 \, \text{m/s} \), respectively. If the collision lasts for 0.150 s, find (a) the impulse delivered to the car due to the collision and (b) the size and direction of the average force exerted on the car.

Strategy This problem is similar to the previous example, except that the initial and final momenta...
are both nonzero. Find the momenta and substitute into the impulse–momentum theorem, Equation 6.6, solving for F_{av}.

Solution

Solution

(a) Find the impulse delivered to the car.

Calculate the initial and final momenta of the car:

- Initial momentum: $p_i = mv_i = (1.50 \times 10^3 \text{ kg})(-15.0 \text{ m/s})$
 \[= -2.25 \times 10^4 \text{ kg} \cdot \text{m/s}\]
- Final momentum: $p_f = mv_f = (1.50 \times 10^3 \text{ kg})(+2.60 \text{ m/s})$
 \[= +0.390 \times 10^4 \text{ kg} \cdot \text{m/s}\]

The impulse is just the difference between the final and initial momenta:

\[I = p_f - p_i = +0.390 \times 10^4 \text{ kg} \cdot \text{m/s} - (-2.25 \times 10^4 \text{ kg} \cdot \text{m/s}) = 2.64 \times 10^4 \text{ kg} \cdot \text{m/s}\]

(b) Find the average force exerted on the car.

Apply Equation 6.6, the impulse–momentum theorem:

\[F_{av} = \frac{\Delta p}{\Delta t} = \frac{2.64 \times 10^4 \text{ kg} \cdot \text{m/s}}{0.150 \text{ s}} = +1.76 \times 10^5 \text{ N}\]

Remarks When the car doesn’t rebound off the wall, the average force exerted on the car is smaller than the value just calculated. With a final momentum of zero, the car undergoes a smaller change in momentum.

QUESTION 6.2

When a person is involved in a car accident, why is the likelihood of injury greater in a head-on collision as opposed to being hit from behind? Answer using the concepts of relative velocity, momentum, and average force.

EXERCISE 6.2

Suppose the car doesn’t rebound off the wall, but the time interval of the collision remains at 0.150 s. In this case, the final velocity of the car is zero. Find the average force exerted on the car.

Answer $+1.50 \times 10^5 \text{ N}$

Injury in Automobile Collisions

The main injuries that occur to a person hitting the interior of a car in a crash are brain damage, bone fracture, and trauma to the skin, blood vessels, and internal organs. Here, we compare the rather imprecisely known thresholds for human injury with typical forces and accelerations experienced in a car crash.

A force of about 90 kN (20 000 lb) compressing the tibia can cause fracture. Although the breaking force varies with the bone considered, we may take this value as the threshold force for fracture. It’s well known that rapid acceleration of the head, even without skull fracture, can be fatal. Estimates show that head accelerations of 150g experienced for about 4 ms or 50g for 60 ms are fatal 50% of the time. Such injuries from rapid acceleration often result in nerve damage to the spinal cord where the nerves enter the base of the brain. The threshold for damage to skin, blood vessels, and internal organs may be estimated from whole-body impact data, where the force is uniformly distributed over the entire front surface area of 0.7 m2 to 0.9 m2. These data show that if the collision lasts for less than about 70 ms, a person will survive if the whole-body impact pressure (force per unit area) is less than $1.9 \times 10^5 \text{ N/m}^2$ (28 lb/in.2). Death results in 50% of cases in which the whole-body impact pressure reaches $3.4 \times 10^5 \text{ N/m}^2$ (50 lb/in.2).

Armed with the data above, we can estimate the forces and accelerations in a typical car crash and see how seat belts, air bags, and padded interiors can reduce the chance of death or serious injury in a collision. Consider a typical collision
involving a 75-kg passenger not wearing a seat belt, traveling at 27 m/s (60 mi/h) who comes to rest in about 0.010 s after striking an unpadded dashboard. Using \(F_{\text{av}} \Delta t = m(v_f - v_i) \), we find that

\[
F_{\text{av}} = \frac{m(v_f - v_i)}{\Delta t} = \frac{0 - (75 \text{ kg})(27 \text{ m/s})}{0.010 \text{ s}} = -2.0 \times 10^5 \text{ N}
\]

and

\[
a = \left| \frac{\Delta v}{\Delta t} \right| = \frac{27 \text{ m/s}}{0.010 \text{ s}} = 2700 \text{ m/s}^2 = \frac{2700 \text{ m/s}^2}{9.8 \text{ m/s}^2} g = 280g
\]

If we assume the passenger crashes into the dashboard and windshield so that the head and chest, with a combined surface area of 0.5 m\(^2\), experience the force, we find a whole-body pressure of

\[
\frac{F_{\text{av}}}{A} \approx 4 \times 10^5 \text{ N/m}^2
\]

We see that the force, the acceleration, and the whole-body pressure all exceed the threshold for fatality or broken bones and that an unprotected collision at 60 mi/h is almost certainly fatal.

What can be done to reduce or eliminate the chance of dying in a car crash? The most important factor is the collision time, or the time it takes the person to come to rest. If this time can be increased by 10 to 100 times the value of 0.01 s for a hard collision, the chances of survival in a car crash are much higher because the increase in \(\Delta t \) makes the contact force 10 to 100 times smaller. Seat belts restrain people so that they come to rest in about the same amount of time it takes to stop the car, typically about 0.15 s. This increases the effective collision time by an order of magnitude. Figure 6.5 shows the measured force on a car versus time for a car crash.

Air bags also increase the collision time, absorb energy from the body as they rapidly deflate, and spread the contact force over an area of the body of about 0.5 m\(^2\), preventing penetration wounds and fractures. Air bags must deploy very rapidly (in less than 10 ms) in order to stop a human traveling at 27 m/s before he or she comes to rest against the steering column about 0.3 m away. To achieve this rapid deployment, accelerometers send a signal to discharge a bank of capacitors (devices that store electric charge), which then ignites an explosive, thereby filling the air bag with gas very quickly. The electrical charge for ignition is stored in capacitors to ensure that the air bag continues to operate in the event of damage to the battery or the car’s electrical system in a severe collision.

The important reduction in potentially fatal forces, accelerations, and pressures to tolerable levels by the simultaneous use of seat belts and air bags is summarized as follows: If a 75-kg person traveling at 27 m/s is stopped by a seat belt in 0.15 s, the person experiences an average force of 9.8 kN, an average acceleration of 18g, and a whole-body pressure of \(2.8 \times 10^4 \text{ N/m}^2 \) for a contact area of 0.5 m\(^2\). These values are about one order of magnitude less than the values estimated earlier for an unprotected person and well below the thresholds for life-threatening injuries.

6.2 CONSERVATION OF MOMENTUM

When a collision occurs in an isolated system, the total momentum of the system doesn’t change with the passage of time. Instead, it remains constant both in magnitude and in direction. The momenta of the individual objects in the system may change, but the vector sum of all the momenta will not change. The total momentum is therefore said to be conserved. In this section, we will see how the laws of motion lead us to this important conservation law.

A collision may be the result of physical contact between two objects, as illustrated in Figure 6.6a. This is a common macroscopic event, as when a pair of bil-
liard balls or a baseball and a bat strike each other. By contrast, because contact on a submicroscopic scale is hard to define accurately, the notion of collision must be generalized to that scale. Forces between two objects arise from the electrostatic interaction of the electrons in the surface atoms of the objects. As will be discussed in Chapter 15, electric charges are either positive or negative. Charges with the same sign repel each other, while charges with opposite sign attract each other. To understand the distinction between macroscopic and microscopic collisions, consider the collision between two positive charges, as shown in Figure 6.6b. Because the two particles in the figure are both positively charged, they repel each other. During such a microscopic collision, particles need not touch in the normal sense in order to interact and transfer momentum.

Active Figure 6.7 shows an isolated system of two particles before and after they collide. By “isolated,” we mean that no external forces, such as the gravitational force or friction, act on the system. Before the collision, the velocities of the two particles are \(\mathbf{v}_{1i} \) and \(\mathbf{v}_{2i} \); after the collision, the velocities are \(\mathbf{v}_{1f} \) and \(\mathbf{v}_{2f} \). The impulse–momen tum theorem applied to \(m_1 \) becomes

\[
\mathbf{F}_{12} \Delta t = m_1 \mathbf{v}_{1f} - m_1 \mathbf{v}_{1i},
\]

Likewise, for \(m_2 \), we have

\[
\mathbf{F}_{12} \Delta t = m_2 \mathbf{v}_{2f} - m_2 \mathbf{v}_{2i},
\]

where \(\mathbf{F}_{21} \) is the average force exerted by \(m_2 \) on \(m_1 \) during the collision and \(\mathbf{F}_{12} \) is the average force exerted by \(m_1 \) on \(m_2 \) during the collision, as in Figure 6.6a.

We use average values for \(\mathbf{F}_{21} \) and \(\mathbf{F}_{12} \) even though the actual forces may vary in time in a complicated way, as is the case in Figure 6.8. Newton’s third law states that at all times these two forces are equal in magnitude and opposite in direction: \(\mathbf{F}_{21} = -\mathbf{F}_{12} \). In addition, the two forces act over the same time interval. As a result, we have

\[
\mathbf{F}_{21} \Delta t = -\mathbf{F}_{12} \Delta t
\]

or

\[
m_1 \mathbf{v}_{1f} - m_1 \mathbf{v}_{1i} = -(m_2 \mathbf{v}_{2f} - m_2 \mathbf{v}_{2i})
\]

after substituting the expressions obtained for \(\mathbf{F}_{21} \) and \(\mathbf{F}_{12} \). This equation can be rearranged to give the following important result:

\[
m_1 \mathbf{v}_{1f} + m_2 \mathbf{v}_{2f} = m_1 \mathbf{v}_{1i} + m_2 \mathbf{v}_{2i}
\] \hspace{1cm} [6.7]

This result is a special case of the law of conservation of momentum and is true of isolated systems containing any number of interacting objects.

When no net external force acts on a system, the total momentum of the system remains constant in time.

Defining the isolated system is an important feature of applying this conservation law. A cheerleader jumping upwards from rest might appear to violate conservation of momentum, because initially her momentum is zero and suddenly she’s leaving the ground with velocity \(\mathbf{v} \). The flaw in this reasoning lies in the fact that the cheerleader isn’t an isolated system. In jumping, she exerts a downward force on the Earth, changing its momentum. This change in the Earth’s momentum isn’t noticeable, however, because of the Earth’s gargantuan mass compared to the cheerleader’s. When we define the system to be the cheerleader and the Earth, momentum is conserved.

Action and reaction, together with the accompanying exchange of momentum between two objects, is responsible for the phenomenon known as recoil. Everyone knows that throwing a baseball while standing straight up, without bracing your feet against the Earth, is a good way to fall over backwards. This reaction, an
example of recoil, also happens when you fire a gun or shoot an arrow. Conservation of momentum provides a straightforward way to calculate such effects, as the next example shows.

EXAMPLE 6.3 The Archer

Goal Calculate recoil velocity using conservation of momentum.

Problem An archer stands at rest on frictionless ice and fires a 0.500-kg arrow horizontally at 50.0 m/s. (See Fig. 6.9.) The combined mass of the archer and bow is 60.0 kg. With what velocity does the archer move across the ice after firing the arrow?

Strategy Set up the conservation of momentum equation in the horizontal direction and solve for the final velocity of the archer. The system of the archer (including the bow) and the arrow is not isolated, because the gravitational and normal forces act on it. These forces, however, are perpendicular to the motion of the system and hence do no work on it.

Solution Write the conservation of momentum equation. Let \(v_{1f} \) be the archer’s velocity and \(v_{2f} \) the arrow’s velocity.

\[
p_i = p_f
\]
\[
0 = m_1 v_{1f} + m_2 v_{2f}
\]

Substitute \(m_1 = 60.0 \text{ kg} \), \(m_2 = 0.500 \text{ kg} \), and \(v_{2f} = 50.0 \text{ m/s} \), and solve for \(v_{1f} \):

\[
v_{1f} = -\frac{m_2}{m_1} v_{2f} = -\frac{0.500 \text{ kg}}{60.0 \text{ kg}} (50.0 \text{ m/s})
\]

\[
= -0.417 \text{ m/s}
\]

Remarks The negative sign on \(v_{1f} \) indicates that the archer is moving opposite the direction of motion of the arrow, in accordance with Newton's third law. Because the archer is much more massive than the arrow, his acceleration and consequent velocity are much smaller than the acceleration and velocity of the arrow.

Newton’s second law, \(\Sigma F = ma \), can’t be used in this problem because we have no information about the force on the arrow or its acceleration. An energy approach can’t be used either, because we don’t know how much work is done in pulling the string back or how much potential energy is stored in the bow. Conservation of momentum, however, readily solves the problem.

QUESTION 6.3 Would firing a heavier arrow necessarily increase the recoil velocity? Explain, using the result of Quick Quiz 6.1.

EXERCISE 6.3 A 70.0-kg man and a 55.0-kg woman on ice skates stand facing each other. If the woman pushes the man backwards so that his final speed is 1.50 m/s, at what speed does she recoil?

Answer 1.91 m/s
6.3 COLLISIONS

We have seen that for any type of collision, the total momentum of the system just before the collision equals the total momentum just after the collision as long as the system may be considered isolated. The total kinetic energy, on the other hand, is generally not conserved in a collision because some of the kinetic energy is converted to internal energy, sound energy, and the work needed to permanently deform the objects involved, such as cars in a car crash. **We define an inelastic collision as a collision in which momentum is conserved, but kinetic energy is not.** The collision of a rubber ball with a hard surface is inelastic, because some of the kinetic energy is lost when the ball is deformed during contact with the surface. **When two objects collide and stick together, the collision is called perfectly inelastic.** For example, if two pieces of putty collide, they stick together and move with some common velocity after the collision. If a meteorite collides head on with the Earth, it becomes buried in the Earth and the collision is considered perfectly inelastic. Only in very special circumstances is all the initial kinetic energy lost in a perfectly inelastic collision.

An elastic collision is defined as one in which both momentum and kinetic energy are conserved. Billiard ball collisions and the collisions of air molecules with the walls of a container at ordinary temperatures are highly elastic. Macroscopic collisions such as those between billiard balls are only approximately elastic, because some loss of kinetic energy takes place—for example, in the clicking sound when two balls strike each other. Perfectly elastic collisions do occur, however, between atomic and subatomic particles. Elastic and perfectly inelastic collisions are limiting cases; most actual collisions fall into a range in between them.

As a practical application, an inelastic collision is used to detect glaucoma, a disease in which the pressure inside the eye builds up and leads to blindness by damaging the cells of the retina. In this application, medical professionals use a device called a tonometer to measure the pressure inside the eye. This device releases a puff of air against the outer surface of the eye and measures the speed of the air after reflection from the eye. At normal pressure, the eye is slightly spongy, and the pulse is reflected at low speed. As the pressure inside the eye increases, the outer surface becomes more rigid, and the speed of the reflected pulse increases. In this way, the speed of the reflected puff of air can measure the internal pressure of the eye.

We can summarize the types of collisions as follows:

- In an elastic collision, both momentum and kinetic energy are conserved.
- In an inelastic collision, momentum is conserved but kinetic energy is not.
- In a perfectly inelastic collision, momentum is conserved, kinetic energy is not, and the two objects stick together after the collision, so their final velocities are the same.

In the remainder of this section, we will treat perfectly inelastic collisions and elastic collisions in one dimension.
QUICK QUIZ 6.3 A car and a large truck traveling at the same speed collide head-on and stick together. Which vehicle undergoes the larger change in the magnitude of its momentum? (a) the car (b) the truck (c) the change in the magnitude of momentum is the same for both (d) impossible to determine without more information.

Perfectly Inelastic Collisions

Consider two objects having masses \(m_1\) and \(m_2\) moving with known initial velocity components \(v_{1i}\) and \(v_{2i}\) along a straight line, as in Active Figure 6.10. If the two objects collide head-on, stick together, and move with a common velocity component \(v_f\) after the collision, then the collision is perfectly inelastic. Because the total momentum of the two-object isolated system before the collision equals the total momentum of the combined-object system after the collision, we can solve for the final velocity using conservation of momentum alone:

\[
m_1v_{1i} + m_2v_{2i} = (m_1 + m_2) v_f
\]

\[
v_f = \frac{m_1v_{1i} + m_2v_{2i}}{m_1 + m_2}
\]

It’s important to notice that \(v_{1i}, v_{2i}\), and \(v_f\) represent the \(x\)-components of the velocity vectors, so care is needed in entering their known values, particularly with regard to signs. For example, in Active Figure 6.10, \(v_{1i}\) would have a positive value (\(m_1\) moving to the right), whereas \(v_{2i}\) would have a negative value (\(m_2\) moving to the left). Once these values are entered, Equation 6.9 can be used to find the correct final velocity, as shown in Examples 6.4 and 6.5.

EXAMPLE 6.4 An SUV Versus a Compact

Goal Apply conservation of momentum to a one-dimensional inelastic collision.

Problem An SUV with mass \(1.80 \times 10^3\) kg is traveling eastbound at +15.0 m/s, while a compact car with mass \(9.00 \times 10^2\) kg is traveling westbound at −15.0 m/s. (See Fig. 6.11.) The cars collide head-on, becoming entangled. (a) Find the speed of the entangled cars after the collision. (b) Find the change in the velocity of each car. (c) Find the change in the kinetic energy of the system consisting of both cars.

Strategy The total momentum of the cars before the collision, \(p_i\), equals the total momentum of the cars after the collision, \(p_f\), if we ignore friction and assume the two cars form an isolated system. (This is called the “impulse approximation.”) Solve the momentum conservation equation for the final velocity of the entangled cars. Once the velocities are in hand, the other parts can be solved by substitution.

Solution

(a) Find the final speed after collision.

Let \(m_1\) and \(v_{1i}\) represent the mass and initial velocity of the SUV, while \(m_2\) and \(v_{2i}\) pertain to the compact. Apply conservation of momentum:

\[
p_i = p_f
\]

\[
m_1v_{1i} + m_2v_{2i} = (m_1 + m_2)v_f
\]

Substitute the values and solve for the final velocity, \(v_f\):

\[
(1.80 \times 10^3\) kg)(15.0 m/s) + (9.00 \times 10^2\) kg)(−15.0 m/s) = (1.80 \times 10^3\) kg + 9.00 \times 10^2\) kg\(v_f\)

\[
v_f = +5.00\) m/s
\]
(b) Find the change in velocity for each car.

Change in velocity of the SUV:
\[\Delta v_1 = v_f - v_i = 5.00 \text{ m/s} - 15.0 \text{ m/s} = -10.0 \text{ m/s} \]

Change in velocity of the compact car:
\[\Delta v_2 = v_f - v_i = 5.00 \text{ m/s} - (-15.0 \text{ m/s}) = 20.0 \text{ m/s} \]

(e) Find the change in kinetic energy of the system.

Calculate the initial kinetic energy of the system:
\[KE_i = \frac{1}{2} m_1 v_1^2 + \frac{1}{2} m_2 v_2^2 = \frac{1}{2} (1.80 \times 10^3 \text{ kg}) (15.0 \text{ m/s})^2 \]
\[+ \frac{1}{2} (9.00 \times 10^2 \text{ kg}) (15.0 \text{ m/s})^2 \]
\[= 3.04 \times 10^5 \text{ J} \]

Calculate the final kinetic energy of the system and the change in kinetic energy, \(\Delta KE \):
\[KE_f = \frac{1}{2} (m_1 + m_2) v_f^2 \]
\[= \frac{1}{2} (1.80 \times 10^3 \text{ kg} + 9.00 \times 10^2 \text{ kg}) (5.00 \text{ m/s})^2 \]
\[= 3.38 \times 10^4 \text{ J} \]
\[\Delta KE = KE_f - KE_i = -2.70 \times 10^5 \text{ J} \]

Remarks: During the collision, the system lost almost 90% of its kinetic energy. The change in velocity of the SUV was only 10.0 m/s, compared to twice that for the compact car. This example underscores perhaps the most important safety feature of any car: its mass. Injury is caused by a change in velocity, and the more massive vehicle undergoes a smaller velocity change in a typical accident.

QUESTION 6.4
If the mass of both vehicles were doubled, how would the final velocity be affected? The change in kinetic energy?

EXERCISE 6.4
Suppose the same two vehicles are both traveling eastward, the compact car leading the SUV. The driver of the compact car slams on the brakes suddenly, slowing the vehicle to 6.00 m/s. If the SUV traveling at 18.0 m/s crashes into the compact car, find (a) the speed of the system right after the collision, assuming the two vehicles become entangled, (b) the change in velocity for both vehicles, and (c) the change in kinetic energy of the system, from the instant before impact (when the compact car is traveling at 6.00 m/s) to the instant right after the collision.

Answers
(a) 14.0 m/s (b) SUV: \(\Delta v_1 = -4.0 \text{ m/s} \) Compact car: \(\Delta v_2 = 8.0 \text{ m/s} \) (c) \(-4.32 \times 10^4 \text{ J}\)

EXAMPLE 6.5 The Ballistic Pendulum

Goal: Combine the concepts of conservation of energy and conservation of momentum in inelastic collisions.

Problem: The ballistic pendulum (Fig. 6.12a, page 172) is a device used to measure the speed of a fast-moving projectile such as a bullet. The bullet is fired into a large block of wood suspended from some light wires. The bullet is stopped by the block, and the entire system swings up to a height \(h \). It is possible to obtain the initial speed of the bullet by measuring \(h \) and the two masses. As an example of the technique, assume that the mass of the bullet, \(m_1 \), is 5.00 g, the mass of the pendulum, \(m_2 \), is 1.000 kg, and \(h \) is 5.00 cm. Find the initial speed of the bullet, \(v_{i1} \).

Strategy: First, use conservation of momentum and the properties of perfectly inelastic collisions to find the initial speed of the bullet, \(v_{i1} \), in terms of the final velocity of the block–bullet system, \(v_f \). Second, use conservation of energy and the height reached by the pendulum to find \(v_f \). Finally, substitute this value of \(v_f \) into the previous result to obtain the initial speed of the bullet.
Remarks
Because the impact is inelastic, it would be incorrect to equate the initial kinetic energy of the incom-
ing bullet to the final gravitational potential energy associated with the bullet–block combination. The energy isn’t conserved!

QUESTION 6.5
List three ways mechanical energy can be lost from the system in this experiment.

EXERCISE 6.5
A bullet with mass 5.00 g is fired horizontally into a 2.000-kg block attached to a horizontal spring. The spring has a constant 6.00 × 10² N/m and reaches a maximum compression of 6.00 cm. (a) Find the initial speed of the bullet–block system. (b) Find the speed of the bullet.

Answer (a) 1.04 m/s (b) 417 m/s

QUICK QUIZ 6.4 An object of mass m moves to the right with a speed v. It collides head-on with an object of mass 3m moving with speed v/3 in the opposite direction. If the two objects stick together, what is the speed of the combined object, of mass 4m, after the collision?
(a) 0 (b) v/2 (c) v (d) 2v

QUICK QUIZ 6.5 A skater is using very low friction rollerblades. A friend throws a Frisbee® at her, on the straight line along which she is coasting.
Describe each of the following events as an elastic, an inelastic, or a perfectly inelastic collision between the skater and the Frisbee. (a) She catches the Frisbee and holds it. (b) She tries to catch the Frisbee, but it bounces off her hands and falls to the ground in front of her. (c) She catches the Frisbee and immediately throws it back with the same speed (relative to the ground) to her friend.

QUICK QUIZ 6.6 In a perfectly inelastic one-dimensional collision between two objects, what condition alone is necessary so that all of the original kinetic energy of the system is gone after the collision? (a) The objects must have momenta with the same magnitude but opposite directions. (b) The objects must have the same mass. (c) The objects must have the same velocity. (d) The objects must have the same speed, with velocity vectors in opposite directions.

Elastic Collisions

Now consider two objects that undergo an elastic head-on collision (Active Fig. 6.13). In this situation, both the momentum and the kinetic energy of the system of two objects are conserved. We can write these conditions as

\[m_1 v_{i1} + m_2 v_{i2} = m_1 v_{f1} + m_2 v_{f2} \]
\[\frac{1}{2} m_1 v_{i1}^2 + \frac{1}{2} m_2 v_{i2}^2 = \frac{1}{2} m_1 v_{f1}^2 + \frac{1}{2} m_2 v_{f2}^2 \]

where \(v \) is positive if an object moves to the right and negative if it moves to the left.

In a typical problem involving elastic collisions, there are two unknown quantities, and Equations 6.10 and 6.11 can be solved simultaneously to find them. These two equations are linear and quadratic, respectively. An alternate approach simplifies the quadratic equation to another linear equation, facilitating solution. Canceling the factor \(\frac{1}{2} \) in Equation 6.11, we rewrite the equation as

\[m_1 (v_{i1}^2 - v_{ij}^2) = m_2 (v_{ij}^2 - v_{i2}^2) \]

Here we have moved the terms containing \(m_2 \) to one side of the equation and those containing \(m_2 \) to the other. Next, we factor both sides of the equation:

\[m_1 (v_{i1} - v_{ij})(v_{i1} + v_{ij}) = m_2 (v_{ij} - v_{i2})(v_{ij} + v_{i2}) \]

Now we separate the terms containing \(m_1 \) and \(m_2 \) in the equation for the conservation of momentum (Eq. 6.10) to get

\[m_1 (v_{i1} - v_{ij}) = m_2 (v_{ij} - v_{i2}) \]

To obtain our final result, we divide Equation 6.12 by Equation 6.13, producing

\[v_{i1} + v_{ij} = v_{i2} + v_{ij} \]

Gathering initial and final values on opposite sides of the equation gives

\[v_{i1} - v_{i2} = -(v_{ij} - v_{i2}) \]

This equation, in combination with Equation 6.10, will be used to solve problems dealing with perfectly elastic head-on collisions. According to Equation 6.14, the relative velocity of the two objects before the collision, \(v_{i1} - v_{i2} \), equals the negative of the relative velocity of the two objects after the collision, \(-(v_{ij} - v_{i2}) \). To better understand the equation, imagine that you are riding along on one of the objects. As you measure the velocity of the other object from your vantage point, you will be measuring the relative velocity of the two objects. In your view of the collision, the other object comes toward you and bounces off, leaving the collision with the same speed, but in the opposite direction. This is just what Equation 6.14 states.
PROBLEM-SOLVING STRATEGY

ONE-DIMENSIONAL COLLISIONS

The following procedure is recommended for solving one-dimensional problems involving collisions between two objects:

1. **Coordinates.** Choose a coordinate axis that lies along the direction of motion.
2. **Diagram.** Sketch the problem, representing the two objects as blocks and labeling velocity vectors and masses.
3. **Conservation of Momentum.** Write a general expression for the total momentum of the system of two objects before and after the collision, and equate the two, as in Equation 6.10. On the next line, fill in the known values.
4. **Conservation of Energy.** If the collision is elastic, write a general expression for the total energy before and after the collision, and equate the two quantities, as in Equation 6.11 or (preferably) Equation 6.14. Fill in the known values. (*Skip this step if the collision is not perfectly elastic.*)
5. **Solve** the equations simultaneously. Equations 6.10 and 6.14 form a system of two linear equations and two unknowns. If you have forgotten Equation 6.14, use Equation 6.11 instead.

Steps 1 and 2 of the problem-solving strategy are generally carried out in the process of sketching and labeling a diagram of the problem. This is clearly the case in our next example, which makes use of Figure 6.13. Other steps are pointed out as they are applied.

EXAMPLE 6.6 Let’s Play Pool

Goal Solve an elastic collision in one dimension.

Problem Two billiard balls of identical mass move toward each other as in Active Figure 6.13. Assume that the collision between them is perfectly elastic. If the initial velocities of the balls are \(+30.0\) cm/s and \(-20.0\) cm/s, what is the velocity of each ball after the collision? Assume friction and rotation are unimportant.

Strategy Solution of this problem is a matter of solving two equations, the conservation of momentum and conservation of energy equations, for two unknowns, the final velocities of the two balls. Instead of using Equation 6.11 for conservation of energy, use Equation 6.14, which is linear, hence easier to handle.

Solution

Write the conservation of momentum equation. Because \(m_1 = m_2\), we can cancel the masses, then substitute \(v_{1i} = +30.0\) m/s and \(v_{2i} = -20.0\) cm/s (Step 3).

\[
m_1v_{1i} + m_2v_{2i} = m_1v_{1f} + m_2v_{2f}
\]

\[
30.0 \, \text{cm/s} + (-20.0 \, \text{cm/s}) = v_{1f} + v_{2f}
\]

(1) \(10.0 \, \text{cm/s} = v_{1f} + v_{2f}\)

Next, apply conservation of energy in the form of Equation 6.14 (Step 4):

\[
v_{1i} - v_{2i} = -(v_{1f} - v_{2f})
\]

\[
30.0 \, \text{cm/s} - (-20.0 \, \text{cm/s}) = v_{2f} - v_{1f}
\]

(2) \(50.0 \, \text{cm/s} = v_{2f} - v_{1f}\)

Now solve Equations (1) and (3) simultaneously (Step 5):

\[
v_{1f} = -20.0 \, \text{cm/s} \quad v_{2f} = +30.0 \, \text{cm/s}
\]

Remarks Notice the balls exchanged velocities—almost as if they’d passed through each other. This is always the case when two objects of equal mass undergo an elastic head-on collision.
QUESTION 6.6
In this example, is it possible to adjust the initial velocities of the balls so that both are at rest after the collision? Explain.

EXERCISE 6.6
Find the final velocity of the two balls if the ball with initial velocity \(v_1 = -20.0 \text{ cm/s} \) has a mass equal to one-half that of the ball with initial velocity \(v_1 = +30.0 \text{ cm/s} \).

Answer \(v_1 = -3.33 \text{ cm/s} \); \(v_2 = +46.7 \text{ cm/s} \)

EXAMPLE 6.7 Two Blocks and a Spring

Goal Solve an elastic collision involving spring potential energy.

Problem A block of mass \(m_1 = 1.60 \text{ kg} \), initially moving to the right with a velocity of \(+4.00 \text{ m/s}\) on a frictionless horizontal track, collides with a massless spring attached to a second block of mass \(m_2 = 2.10 \text{ kg} \) moving to the left with a velocity of \(-2.50 \text{ m/s}\), as in Figure 6.14a. The spring has a spring constant of \(6.00 \times 10^2 \text{ N/m} \).

(a) Determine the velocity of block 2 at the instant when block 1 is moving to the right with a velocity of \(+3.00 \text{ m/s}\), as in Figure 6.14b.

(b) Find the compression of the spring.

Strategy We identify the system as the two blocks and the spring. Write down the conservation of momentum equations, and solve for the final velocity of block 2, \(v_2 \). Then use conservation of energy to find the compression of the spring.

Solution

(a) Find the velocity \(v_2 \) when block 1 has velocity \(+3.00 \text{ m/s}\).

Write the conservation of momentum equation for the system and solve for \(v_2 \):

\[
\begin{align*}
 m_1 v_{1i} + m_2 v_{2i} &= m_1 v_{1f} + m_2 v_{2f} \\
 v_{2f} &= \frac{m_1 v_{1i} + m_2 v_{2i} - m_1 v_{1f}}{m_2} \\
 &= \frac{(1.60 \text{ kg})(4.00 \text{ m/s}) + (2.10 \text{ kg})(-2.50 \text{ m/s}) - (1.60 \text{ kg})(3.00 \text{ m/s})}{2.10 \text{ kg}} \\
 &= -1.74 \text{ m/s}
\end{align*}
\]

(b) Find the compression of the spring.

Use energy conservation for the system, noticing that potential energy is stored in the spring when it is compressed a distance \(x \):

\[
E_i = E_f \\
\frac{1}{2}m_1 v_{1i}^2 + \frac{1}{2}m_2 v_{2i}^2 + 0 = \frac{1}{2}m_1 v_{1f}^2 + \frac{1}{2}m_2 v_{2f}^2 + \frac{1}{2}kx^2
\]

Substitute the given values and the result of part (a) into the preceding expression, solving for \(x \):

\[
x = 0.173 \text{ m}
\]

Remarks The initial velocity component of block 2 is \(-2.50 \text{ m/s}\) because the block is moving to the left. The negative value for \(v_{2f} \) means that block 2 is still moving to the left at the instant under consideration.

QUESTION 6.7
Is it possible for both blocks to come to rest while the spring is being compressed? Explain. Hint: Look at the momentum in Equation (1).
EXERCISE 6.7
Find (a) the velocity of block 1 and (b) the compression of the spring at the instant that block 2 is at rest.

Answer
(a) 0.719 m/s to the right
(b) 0.251 m

6.4 GLANCING COLLISIONS

In Section 6.2 we showed that the total linear momentum of a system is conserved when the system is isolated (that is, when no external forces act on the system). For a general collision of two objects in three-dimensional space, the conservation of momentum principle implies that the total momentum of the system in each direction is conserved. However, an important subset of collisions takes place in a plane. The game of billiards is a familiar example involving multiple collisions of objects moving on a two-dimensional surface. We restrict our attention to a single two-dimensional collision between two objects that takes place in a plane, and ignore any possible rotation. For such collisions, we obtain two component equations for the conservation of momentum:

\[
\begin{align*}
 m_1v_{1x} + m_2v_{2x} &= m_1v_{1f} + m_2v_{2f} \\
 m_1v_{1y} + m_2v_{2y} &= m_1v_{1f} + m_2v_{2f}
\end{align*}
\]

We must use three subscripts in this general equation, to represent, respectively, (1) the object in question, and (2) the initial and final values of the components of velocity.

Now, consider a two-dimensional problem in which an object of mass \(m_1 \) collides with an object of mass \(m_2 \) that is initially at rest, as in Active Figure 6.15. After the collision, object 1 moves at an angle \(\theta \) with respect to the horizontal, and object 2 moves at an angle \(\phi \) with respect to the horizontal. This is called a glancing collision. Applying the law of conservation of momentum in component form, and noting that the initial \(y \)-component of momentum is zero, we have

\[
\begin{align*}
 x\text{-component:} & \quad m_1v_{1i} + 0 = m_1v_{1f} \cos \theta + m_2v_{2f} \cos \phi & \text{(6.15)} \\
 y\text{-component:} & \quad 0 + 0 = m_1v_{1f} \sin \theta - m_2v_{2f} \sin \phi & \text{(6.16)}
\end{align*}
\]

If the collision is elastic, we can write a third equation, for conservation of energy, in the form

\[
\frac{1}{2}m_1v_{1i}^2 = \frac{1}{2}m_1v_{1f}^2 + \frac{1}{2}m_2v_{2f}^2 \quad \text{(6.17)}
\]

If we know the initial velocity \(v_{1i} \) and the masses, we are left with four unknowns \((v_{1f}, v_{2f}, \theta, \phi)\). Because we have only three equations, one of the four remaining quantities must be given in order to determine the motion after the collision from conservation principles alone.

If the collision is inelastic, the kinetic energy of the system is not conserved, and Equation 6.17 does not apply.

ACTIVE FIGURE 6.15
(a) Before and (b) after a glancing collision between two balls.
6.4 Glancing Collisions

PROBLEM-SOLVING STRATEGY

TWO-DIMENSIONAL COLLISIONS

To solve two-dimensional collisions, follow this procedure:

1. **Coordinate Axes.** Use both \(x \)- and \(y \)-coordinates. It’s convenient to have either the \(x \)-axis or the \(y \)-axis coincide with the direction of one of the initial velocities.

2. **Diagram.** Sketch the problem, labeling velocity vectors and masses.

3. **Conservation of Momentum.** Write a separate conservation of momentum equation for each of the \(x \)- and \(y \)-directions. In each case, the total initial momentum in a given direction equals the total final momentum in that direction.

4. **Conservation of Energy.** If the collision is elastic, write a general expression for the total energy before and after the collision, and equate the two expressions, as in Equation 6.11. Fill in the known values. (Skip this step if the collision is not perfectly elastic.) The energy equation can’t be simplified as in the one-dimensional case, so a quadratic expression such as Equation 6.11 or 6.17 must be used when the collision is elastic.

5. **Solve** the equations simultaneously. There are two equations for inelastic collisions and three for elastic collisions.

EXAMPLE 6.8 Collision at an Intersection

Goal Analyze a two-dimensional inelastic collision.

Problem A car with mass \(1.50 \times 10^3 \text{ kg} \) traveling east at a speed of 25.0 m/s collides at an intersection with a \(2.50 \times 10^3 \text{ kg} \) van traveling north at a speed of 20.0 m/s, as shown in Figure 6.16. Find the magnitude and direction of the velocity of the wreckage after the collision, assuming that the vehicles undergo a perfectly inelastic collision (that is, they stick together) and assuming that friction between the vehicles and the road can be neglected.

Strategy Use conservation of momentum in two dimensions. (Kinetic energy is not conserved.) Choose coordinates as in Figure 6.16. Before the collision, the only object having momentum in the \(x \)-direction is the car, while the van carries all the momentum in the \(y \)-direction. After the totally inelastic collision, both vehicles move together at some common speed \(v_f \) and angle \(\theta \). Solve for these two unknowns, using the two components of the conservation of momentum equation.

Solution

Find the \(x \)-components of the initial and final total momenta:

\[
\sum p_{xi} = m_{car}v_{car} = (1.50 \times 10^3 \text{ kg})(25.0 \text{ m/s})
\]

\[
= 3.75 \times 10^4 \text{ kg\cdotm/s}
\]

Set the initial \(x \)-momentum equal to the final \(x \)-momentum:

\[
(1) \quad 3.75 \times 10^4 \text{ kg\cdotm/s} = (4.00 \times 10^3 \text{ kg})v_f \cos \theta
\]

Find the \(y \)-components of the initial and final total momenta:

\[
\sum p_{yi} = m_{van}v_{van} = (2.50 \times 10^3 \text{ kg})(20.0 \text{ m/s})
\]

\[
= 5.00 \times 10^4 \text{ kg\cdotm/s}
\]

\[
\sum p_{fy} = (m_{car} + m_{van})v_f \sin \theta = (4.00 \times 10^3 \text{ kg})v_f \sin \theta
\]
6.5 ROCKET PROPULSION

When ordinary vehicles such as cars and locomotives move, the driving force of the motion is friction. In the case of the car, this driving force is exerted by the road on the car, a reaction to the force exerted by the wheels against the road. Similarly, a locomotive “pushes” against the tracks; hence, the driving force is the reaction force exerted by the tracks on the locomotive. However, a rocket moving in space has no road or tracks to push against. How can it move forward?

In fact, reaction forces also propel a rocket. (You should review Newton’s third law, discussed in Chapter 4.) To illustrate this point, we model our rocket with a spherical chamber containing a combustible gas, as in Figure 6.17a. When an explosion occurs in the chamber, the hot gas expands and presses against all sides of the chamber, as indicated by the arrows. Because the sum of the forces exerted on the rocket is zero, it doesn’t move. Now suppose a hole is drilled in the bottom of the chamber, as in Figure 6.17b. When the explosion occurs, the gas presses against the chamber in all directions, but can’t press against anything at the hole, where it simply escapes into space. Adding the forces on the spherical chamber now results in a net force upwards. Just as in the case of cars and locomotives, this is a reaction force. A car’s wheels press against the ground, and the reaction force of the ground on the car pushes it forward. The wall of the rocket’s combustion chamber exerts a force on the gas expanding against it. The reaction force of the gas on the wall then pushes the rocket upward.

In a now infamous article in The New York Times, rocket pioneer Robert Goddard was ridiculed for thinking that rockets would work in space, where, according to the Times, there was nothing to push against. The Times retracted, rather belatedly, during the first Apollo moon landing mission in 1969. The hot gases are not pushing against anything external, but against the rocket itself—and ironically, rockets actually work better in a vacuum. In an atmosphere, the gases have to do work against the outside air pressure to escape the combustion chamber, slowing the exhaust velocity and reducing the reaction force.

Remark It’s also possible to first find the x- and y-components v_x and v_y of the resultant velocity. The magnitude and direction of the resultant velocity can then be found with the Pythagorean theorem, $v_f = \sqrt{v_x^2 + v_y^2}$, and the inverse tangent function $\theta = \tan^{-1}(v_y/v_x)$. Setting up this alternate approach is a simple matter of substituting $v_x = v_f \cos \theta$ and $v_y = v_f \sin \theta$ in Equations (1) and (2).

QUESTION 6.8
If the car and van had identical mass and speed, what would the resultant angle have been?

EXERCISE 6.8
A 3.00-kg object initially moving in the positive x-direction with a velocity of $+5.00 \text{ m/s}$ collides with and sticks to a 2.00-kg object initially moving in the negative y-direction with a velocity of -5.00 m/s. Find the final components of velocity of the composite object.

Answer $v_x = 3.00 \text{ m/s}; v_y = -1.20 \text{ m/s}$

FIGURE 6.17
(a) A rocket reaction chamber without a nozzle has reaction forces pushing equally in all directions, so no motion results.
(b) An opening at the bottom of the chamber removes the downward reaction force, resulting in a net upward reaction force.

Set the initial y-momentum equal to the final y-momentum:

$$5.00 \times 10^4 \text{ kg \cdot m/s} = (4.00 \times 10^3 \text{ kg})v_y \sin \theta$$

Divide Equation (2) by Equation (1) and solve for θ:

$$\tan \theta = \frac{5.00 \times 10^4 \text{ kg \cdot m/s}}{3.75 \times 10^4 \text{ kg \cdot m}} = 1.33$$

$$\theta = 53.1^\circ$$

Substitute this angle back into Equation (2) to find v_f:

$$v_y = \frac{5.00 \times 10^4 \text{ kg \cdot m/s}}{(4.00 \times 10^3 \text{ kg}) \sin 53.1^\circ} = 15.6 \text{ m/s}$$
At the microscopic level, this process is complicated, but it can be simplified by applying conservation of momentum to the rocket and its ejected fuel. In principle, the solution is similar to that in Example 6.3, with the archer representing the rocket and the arrows the exhaust gases.

Suppose that at some time \(t \), the momentum of the rocket plus the fuel is \((M + \Delta m)v\), where \(\Delta m \) is an amount of fuel about to be burned (Fig. 6.18a). This fuel is traveling at a speed \(v \) relative to, say, the Earth, just like the rest of the rocket. During a short time interval \(\Delta t \), the rocket ejects fuel of mass \(\Delta m \), and the rocket’s speed increases to \(v + \Delta v \) (Fig. 6.18b). If the fuel is ejected with exhaust speed \(v_e \) relative to the rocket, the speed of the fuel relative to the Earth is \(v - v_e \). Equating the total initial momentum of the system with the total final momentum, we have

\[
(M + \Delta m)v = M(v + \Delta v) + \Delta m(v - v_e)
\]

Simplifying this expression gives

\[
M \Delta v = v_e \Delta m
\]

The increase \(\Delta m \) in the mass of the exhaust corresponds to an equal decrease in the mass of the rocket, so that \(\Delta m = -\Delta M \). Using this fact, we have

\[
M \Delta v = -v_e \Delta M \tag{6.18}
\]

This result, together with the methods of calculus, can be used to obtain the following equation:

\[
v_f - v_i = v_e \ln \left(\frac{M_f}{M_i} \right) \tag{6.19}
\]

where \(M_i \) is the initial mass of the rocket plus fuel and \(M_f \) is the final mass of the rocket plus its remaining fuel. This is the basic expression for rocket propulsion; it tells us that the increase in velocity is proportional to the exhaust speed \(v_e \) and to the natural logarithm of \(M_f/M_i \). Because the maximum ratio of \(M_f \) to \(M_i \) for a single-stage rocket is about 10:1, the increase in speed can reach \(v_e \ln 10 = 2.3v_e \) or about twice the exhaust speed! For best results, therefore, the exhaust speed should be as high as possible. Currently, typical rocket exhaust speeds are several kilometers per second.

The thrust on the rocket is defined as the force exerted on the rocket by the ejected exhaust gases. We can obtain an expression for the instantaneous thrust by dividing Equation 6.18 by \(\Delta t \):

\[
\text{Instantaneous thrust} = Ma = \frac{M \Delta v}{\Delta t} = \left| \frac{M}{\Delta t} \frac{\Delta M}{\Delta t} \right| \tag{6.20}
\]

The absolute value signs are used for clarity: In Equation 6.18, \(-\Delta M \) is a positive quantity (as is \(v_e \), a speed). Here we see that the thrust increases as the exhaust velocity increases and as the rate of change of mass \(\Delta M/\Delta t \) (the burn rate) increases.

APPLYING PHYSICS 6.2

MULTISTAGE ROCKETS

The current maximum exhaust speed of \(v_e = 4500 \text{ m/s} \) can be realized with rocket engines fueled with liquid hydrogen and liquid oxygen. But this means that the maximum speed attainable for a given rocket with a mass ratio of 10 is \(v_e \ln 10 = 10 000 \text{ m/s} \). To reach the Moon, however, requires a change in velocity of over 11 000 m/s. Further, this change must occur while working against gravity and atmospheric friction. How can that be managed without developing better engines?

Explanation The answer is the multistage rocket. By dropping stages, the spacecraft becomes lighter, so that fuel burned later in the mission doesn’t have to accelerate mass that no longer serves any purpose. Strap-on boosters, as used by the Space Shuttle and a number of other rockets, such as the Titan 4 or Russian Proton, is a similar concept. The boosters are jettisoned after their fuel is exhausted, so the rocket is no longer burdened by their weight.
EXAMPLE 6.9 Single Stage to Orbit (SSTO)

Goal Apply the velocity and thrust equations of a rocket.

Problem A rocket has a total mass of 1.00×10^5 kg and a burnout mass of 1.00×10^4 kg, including engines, shell, and payload. The rocket blasts off from Earth and exhausts all its fuel in 4.00 min, burning the fuel at a steady rate with an exhaust velocity of $v_e = 4.50 \times 10^3$ m/s.
(a) If air friction and gravity are neglected, what is the speed of the rocket at burnout? (b) What thrust does the engine develop at liftoff? (c) What is the initial acceleration of the rocket if gravity is not neglected? (d) Estimate the speed at burnout if gravity isn’t neglected.

Strategy Although it sounds sophisticated, this problem is mainly a matter of substituting values into the appropriate equations. Part (a) requires substituting values into Equation 6.19 for the velocity. For part (b), divide the change in the rocket’s mass by the total time, getting $\frac{\Delta M}{\Delta t}$, then substitute into Equation 6.20 to find the thrust. (c) Using Newton’s second law, the force of gravity, and the result of (b), we can find the initial acceleration. For part (d), the acceleration of gravity is approximately constant over the few kilometers involved, so the velocity found in part (b) will be reduced by roughly $v_g = -gt$. Add this loss to the result of part (a).

Solution
(a) Calculate the velocity at burnout.
Substitute $v_i = 0$, $v_e = 4.50 \times 10^3$ m/s, $M_i = 1.00 \times 10^5$ kg, and $M_f = 1.00 \times 10^4$ kg into Equation 6.19:
$$v_f = v_i + v_e \ln \left(\frac{M_i}{M_f} \right)$$
$$= 0 + (4.50 \times 10^3 \text{ m/s}) \ln \left(\frac{1.00 \times 10^5 \text{ kg}}{1.00 \times 10^4 \text{ kg}} \right)$$
$$v_f = 1.04 \times 10^4 \text{ m/s}$$

(b) Find the thrust at liftoff.
Compute the change in the rocket’s mass:
$$\Delta M = M_f - M_i = 1.00 \times 10^4 \text{ kg} - 1.00 \times 10^5 \text{ kg}$$
$$= -9.00 \times 10^4 \text{ kg}$$

Calculate the rate at which rocket mass changes by dividing the change in mass by the time (where the time interval equals 4.00 min = 2.40×10^2 s):
$$\frac{\Delta M}{\Delta t} = \frac{-9.00 \times 10^4 \text{ kg}}{2.40 \times 10^2 \text{ s}} = -3.75 \times 10^2 \text{ kg/s}$$

Substitute this rate into Equation 6.20, obtaining the thrust:
$$\text{Thrust} = \frac{v_e \Delta M}{\Delta t} = (4.50 \times 10^3 \text{ m/s})(3.75 \times 10^2 \text{ kg/s})$$
$$= 1.69 \times 10^6 \text{ N}$$

(c) Find the initial acceleration.
Write Newton’s second law, where T stands for thrust, and solve for the acceleration a:
$$Ma = \sum F = T - Mg$$
$$a = \frac{T}{M} - g = \frac{1.69 \times 10^6 \text{ N}}{1.00 \times 10^5 \text{ kg}} - 9.80 \text{ m/s}^2$$
$$= 7.10 \text{ m/s}^2$$

(d) Estimate the speed at burnout when gravity is not neglected.
Find the approximate loss of speed due to gravity:
$$\Delta v_g = -g \Delta t = -(9.80 \text{ m/s}^2)(2.40 \times 10^2 \text{ s})$$
$$= -2.35 \times 10^3 \text{ m/s}$$
Add this loss to the result of part (b):
\[v_j = 1.04 \times 10^4 \text{ m/s} - 2.35 \times 10^3 \text{ m/s} = 8.05 \times 10^3 \text{ m/s} \]

Remarks
Even taking gravity into account, the speed is sufficient to attain orbit. Some additional boost may be required to overcome air drag.

QUESTION 6.9
What initial normal force would be exerted on an astronaut of mass \(m \) in a rocket traveling vertically upward with an acceleration \(a \)? Answer symbolically in terms of the positive quantities \(m \), \(g \), and \(a \).

EXERCISE 6.9
A spaceship with a mass of \(5.00 \times 10^4 \text{ kg} \) is traveling at \(6.00 \times 10^3 \text{ m/s} \) relative a space station. What mass will the ship have after it fires its engines in order to reach a relative speed of \(8.00 \times 10^3 \text{ m/s} \), traveling the same direction? Assume an exhaust velocity of \(4.50 \times 10^3 \text{ m/s} \).

Answer
\(3.21 \times 10^4 \text{ kg} \)

SUMMARY

6.1 Momentum and Impulse

The **linear momentum** \(\vec{p} \) of an object of mass \(m \) moving with velocity \(\vec{v} \) is defined as:

\[\vec{p} = m \vec{v} \]

[6.1]

Momentum carries units of \(\text{kg} \cdot \text{m/s} \). The **impulse** \(\vec{I} \) of a constant force \(\vec{F} \) delivered to an object is equal to the product of the force and the time interval during which the force acts:

\[\vec{I} = \vec{F} \Delta t \]

[6.4]

These two concepts are unified in the **impulse–momentum theorem**, which states that the impulse of a constant force delivered to an object is equal to the change in momentum of the object:

\[\vec{I} = \vec{F} \Delta t = \Delta \vec{p} = m \vec{v}_f - m \vec{v}_i \]

[6.5]

Solving problems with this theorem often involves estimating speeds or contact times (or both), leading to an average force.

6.2 Conservation of Momentum

When no net external force acts on an isolated system, the total momentum of the system is constant. This principle is called **conservation of momentum**. In particular, if the isolated system consists of two objects undergoing a collision, the total momentum of the system is the same before and after the collision. Conservation of momentum can be written mathematically for this case as:

\[m_1 \vec{v}_{1i} + m_2 \vec{v}_{2i} = m_1 \vec{v}_{1f} + m_2 \vec{v}_{2f} \]

[6.7]

Collision and recoil problems typically require finding unknown velocities in one or two dimensions. Each vector component gives an equation, and the resulting equations are solved simultaneously.

6.3 Collisions

In an **inelastic collision**, the momentum of the system is conserved, but kinetic energy is not. In a **perfectly inelastic collision**, the colliding objects stick together. In an **elastic collision**, both the momentum and the kinetic energy of the system are conserved.

A one-dimensional **elastic collision** between two objects can be solved by using the conservation of momentum and conservation of energy equations:

\[m_1 v_{1i} + m_2 v_{2i} = m_1 v_{1f} + m_2 v_{2f} \]

[6.10]

\[\frac{1}{2} m_1 v_{1i}^2 + \frac{1}{2} m_2 v_{2i}^2 = \frac{1}{2} m_1 v_{1f}^2 + \frac{1}{2} m_2 v_{2f}^2 \]

[6.11]

The following equation, derived from Equations 6.10 and 6.11, is usually more convenient to use than the original conservation of energy equation:

\[v_{1i} - v_{2i} = -(v_{1f} - v_{2f}) \]

[6.14]

These equations can be solved simultaneously for the unknown velocities. Energy is not conserved in **inelastic collisions**, so such problems must be solved with Equation 6.10 alone.

6.4 Glancing Collisions

In glancing collisions, conservation of momentum can be applied along two perpendicular directions: an \(x \)-axis and a \(y \)-axis. Problems can be solved by using the \(x \)- and \(y \)-components of Equation 6.7. Elastic two-dimensional collisions will usually require Equation 6.11 as well. (Equation 6.14 doesn’t apply to two dimensions.) Generally, one of the two objects is taken to be traveling along the \(x \)-axis, undergoing a deflection at some angle \(\theta \) after the collision. The final velocities and angles can be found with elementary trigonometry.
MOMENTUM AND COLLISIONS

CONCEPTUAL QUESTIONS

1. A batter bunts a pitched baseball, blocking the ball without swinging. (a) Can the baseball deliver more kinetic energy to the bat and batter than the ball carries initially? (b) Can the baseball deliver more momentum to the bat and batter than the ball carries initially? Explain each of your answers.

2. Americans will never forget the terrorist attack on September 11, 2001. One commentator remarked that the force of the explosion at the Twin Towers of the World Trade Center was strong enough to blow glass and parts of the steel structure to small fragments. Yet the television coverage showed thousands of sheets of paper floating down, many still intact. Explain how that could be.

MULTIPLE-CHOICE QUESTIONS

1. A soccer player runs up behind a 0.450-kg soccer ball traveling at 3.20 m/s and kicks it in the same direction as it is moving, increasing its speed to 12.8 m/s. What magnitude impulse did the soccer player deliver to the ball? (a) 2.45 kg·m/s (b) 4.32 kg·m/s (c) 5.61 kg·m/s (d) 7.08 kg·m/s (e) 9.79 kg·m/s

2. A 57.0-g tennis ball is traveling straight at a player at 21.0 m/s. The player volleys the ball straight back at 25.0 m/s. If the ball remains in contact with the racket for 0.060 s, what average force acts on the ball? (a) 22.6 kg (b) 32.5 kg·m/s (c) 43.7 kg·m/s (d) 72.1 kg·m/s (e) 102 kg·m/s

3. A car of mass m traveling in the negative x-direction with speed \(v \) crashes into the rear of a truck of mass 2m that is at rest and in neutral at an intersection. If the collision is perfectly inelastic, what is the speed of the combined car and truck after the collision? (a) \(v \) (b) \(v/2 \) (c) \(v/3 \) (d) \(2v \) (e) None of these

4. A small china bowl having kinetic energy \(E \) is sliding along a frictionless countertop when a server, with perfect timing, places a rice ball into the bowl as it passes him. If the bowl and rice ball have the same mass, what is the kinetic energy of the system thereafter? (a) \(2E \) (b) \(E \) (c) \(E/2 \) (d) \(E/4 \) (e) \(E/8 \)

5. In a game of billiards, a red billiard ball is traveling in the positive x-direction with speed \(v \) and the cue ball is traveling in the negative x-direction with speed \(3v \) when the two balls collide head on. Which statement is true concerning their velocities subsequent to the collision? Neglect any effects of spin. (a) red ball: \(-v\); cue ball: \(3v\) (b) red ball: \(v\); cue ball: \(2v\) (c) red ball: \(-3v\); cue ball: \(v\) (d) red ball: \(v\); cue ball: \(3e\) (e) The velocities can’t be determined without knowing the mass of each ball.

6. A 5-kg cart moving to the right with a speed of 6 m/s collides with a concrete wall and rebounds with a speed of 2 m/s. Is the change in momentum of the cart (a) 0, (b) 40 kg·m/s, (c) –40 kg·m/s, (d) –30 kg·m/s, or (e) –10 kg·m/s?

7. A 0.10-kg object moving initially with a velocity of 0.20 m/s eastward makes an elastic head-on collision with a 0.15-kg object initially at rest. What is the final velocity of the 0.10-kg object after the collision? (a) 0.16 m/s eastward (b) 0.16 m/s westward (c) 0.040 m/s eastward (d) 0.040 m/s westward (e) None of these

8. A 0.004-kg bullet is fired into a 0.200-kg block of wood at rest on a horizontal surface. After impact, the block with the embedded bullet slides 8.00 m before coming to rest. If the coefficient of friction is 0.400, what is the speed of the bullet before impact? (a) 96 m/s (b) 112 m/s (c) 286 m/s (d) 404 m/s (e) 812 m/s

9. The kinetic energy of a rocket is increased by a factor of eight after its engines are fired, whereas its total mass is reduced by half through the burning of fuel. By what factor is the magnitude of its momentum changed? Hint: Use \(KE = p^2/2m \).

10. If two particles have equal momenta, are their kinetic energies equal? (a) yes, always (b) no, never (c) no, except when their masses are equal (d) no, except when their speeds are the same (e) yes, as long as they move along parallel lines

11. If two particles have equal kinetic energies, are their momenta equal? (a) yes, always (b) no, never (c) yes, as long as their masses are equal (d) yes, as long as their masses and directions of motion are the same (e) no, unless they are moving perpendicular to each other

12. A rocket with total mass \(3.00 \times 10^5 \) kg leaves a launch pad at Cape Kennedy, moving vertically with an acceleration of 36.0 m/s². If the speed of the exhausted gases is \(4.50 \times 10^3 \) m/s, at what rate is the rocket increasing its kinetic energy? (a) \(3.05 \times 10^4 \) kg·m/s (b) \(2.40 \times 10^4 \) kg·m/s (c) \(7.50 \times 10^4 \) kg·m/s (d) \(1.50 \times 10^5 \) kg·m/s (e) None of these

3. In perfectly inelastic collisions between two objects, there are events in which all of the original kinetic energy is transformed to forms other than kinetic. Give an example of such an event.

4. If two objects collide and one is initially at rest, is it possible for both to be at rest after the collision? Is it possible for only one to be at rest after the collision? Explain.

5. A ball of clay of mass \(m \) is thrown with a speed \(v \) against a brick wall. The clay sticks to the wall and stops. Is the principle of conservation of momentum violated in this example?
6. A skater is standing still on a frictionless ice rink. Her friend throws a Frisbee straight at her. In which of the following cases is the largest momentum transferred to the skater? (a) The skater catches the Frisbee and holds onto it. (b) The skater catches the Frisbee momentarily, but then drops it vertically downward. (c) The skater catches the Frisbee, holds it momentarily, and throws it back to her friend.

7. A more ordinary example of conservation of momentum than a rocket ship occurs in a kitchen dishwashing machine. In this device, water at high pressure is forced out of small holes on the spray arms. Use conservation of momentum to explain why the arms rotate, directing water to all the dishes.

8. A large bedsheet is held vertically by two students. A third student, who happens to be the star pitcher on the baseball team, throws a raw egg at the sheet. Explain why the egg doesn’t break when it hits the sheet, regardless of its initial speed. (If you try this, make sure the pitcher hits the sheet near its center, and don’t allow the egg to fall on the floor after being caught.)

9. Your physical education teacher throws you a tennis ball at a certain velocity, and you catch it. You are now given the following choice: The teacher can throw you a medicine ball (which is much more massive than the tennis ball) with the same velocity, the same momentum, or the same kinetic energy as the tennis ball. Which option would you choose in order to make the easiest catch, and why?

10. If two automobiles collide, they usually do not stick together. Does this mean the collision is elastic? Explain why a head-on collision is likely to be more dangerous than other types of collisions.

11. A sharpshooter fires a rifle while standing with the butt of the gun against his shoulder. If the forward momentum of a bullet is the same as the backward momentum of the gun, why isn’t it as dangerous to be hit by the gun as by the bullet?

12. An air bag inflates when a collision occurs, protecting a passenger (the dummy in Figure CQ6.12) from serious injury. Why does the air bag soften the blow? Discuss the physics involved in this dramatic photograph.

13. In golf, novice players are often advised to be sure to “follow through” with their swing. Why does this make the ball travel a longer distance? If a shot is taken near the green, very little follow-through is required. Why?

14. An open box slides across a frictionless, icy surface of a frozen lake. What happens to the speed of the box as water from a rain shower falls vertically downward into the box? Explain.

PROBLEMS

The Problems for this chapter may be assigned online at WebAssign.

1. Calculate the magnitude of the linear momentum for the following cases: (a) a proton with mass 1.67×10^{-27} kg, moving with a speed of 5.00×10^{6} m/s; (b) a 15.0-g bullet running with a speed of 10.0 m/s; (c) a 75.0-kg sprinter running with a speed of 10.0 m/s; (d) the Earth (mass $= 5.98 \times 10^{24}$ kg) moving with an orbital speed equal to 2.98×10^{4} m/s.

2. A stroboscopic photo of a club hitting a golf ball, such as the photo shown in Figure 6.3, was made by Harold Edgerton in 1933. The ball was initially at rest, and the club was shown to be in contact with the club for about 0.002 s. Also, the ball was found to end up with a speed of 2.0×10^{6} ft/s. Assuming that the golf ball had a mass of 55 g, find the average force exerted by the club on the ball.

3. A pitcher claims he can throw a 0.145-kg baseball with as much momentum as a 3.00-g bullet moving with a speed of 1.50×10^{3} m/s. (a) What must the baseball’s speed be if the pitcher’s claim is valid? (b) Which has greater kinetic energy, the ball or the bullet?

4. A 0.10-kg ball is thrown straight up into the air with an initial speed of 15 m/s. Find the momentum of the ball (a) at its maximum height and (b) halfway to its maximum height.

5. A baseball player of mass 84.0 kg running at 6.70 m/s slides into home plate. (a) What magnitude impulse is delivered to the player by friction? (b) If the slide lasts 0.750 s, what average friction force is exerted on the player?

6. Show that the kinetic energy of a particle of mass m is related to the magnitude of the momentum p of that particle by $KE = p^2 / 2m$. Note: This expression is invalid for particles traveling at speeds near that of light.

7. An object has a kinetic energy of 275 J and a momentum of magnitude 25.0 kg m/s. Find the speed and mass of the object.

8. An estimated force vs. time curve for a baseball struck by a bat is shown in Figure P6.8. From this curve, determine
(a) the impulse delivered to the ball and (b) the average force exerted on the ball.

16. A force of magnitude F_x acting in the x-direction on a 2.00-kg particle varies in time as shown in Figure P6.16. Find (a) the impulse of the force, (b) the final velocity of the particle if it is initially at rest, and (c) the final velocity of the particle if it is initially moving along the x-axis with a velocity of -2.00 m/s.

17. The forces shown in the force vs. time diagram in Figure P6.17 act on a 1.5-kg particle. Find (a) the impulse for the interval from $t = 0$ to $t = 3.0$ s and (b) the impulse for the interval from $t = 0$ to $t = 5.0$ s. (c) If the forces act on a 1.5-kg particle that is initially at rest, find the particle's speed at $t = 3.0$ s and at $t = 5.0$ s.

18. A 3.00-kg steel ball strikes a massive wall at 10.0 m/s at an angle of 60.0° with the plane of the wall. It bounces off the wall with the same speed and angle (Fig. P6.18). If the ball is in contact with the wall for 0.200 s, what is the average force exerted by the wall on the ball?

19. The front 1.20 m of a 1 400-kg car is designed as a "crumple zone" that collapses to absorb the shock of a collision. If a car traveling 25.0 m/s stops uniformly in 1.20 m, (a) how long does the collision last, (b) what is the magnitude of the average force on the car, and (c) what is the acceleration of the car? Express the acceleration as a multiple of the acceleration of gravity.
20. A pitcher throws a 0.15-kg baseball so that it crosses home plate horizontally with a speed of 20 m/s. The ball is hit straight back at the pitcher with a final speed of 22 m/s. (a) What is the impulse delivered to the ball? (b) Find the average force exerted by the bat on the ball if the two are in contact for 2.0×10^{-5} s.

SECTION 6.2 CONSERVATION OF MOMENTUM

21. High-speed stroboscopic photographs show that the head of a 200-g golf club is traveling at 55 m/s just before it strikes a 46-g golf ball at rest on a tee. After the collision, the club head travels (in the same direction) at 40 m/s. Find the speed of the golf ball just after impact.

22. A rifle with a weight of 30 N fires a 5.0-g bullet with a speed of 300 m/s. (a) Find the recoil speed of the rifle. (b) If a 700-N man holds the rifle firmly against his shoulder, find the recoil speed of the man and rifle.

23. A 45.0-kg girl is standing on a 150-kg plank. The plank, originally at rest, is free to slide on a frozen lake, which is a flat, frictionless surface. The girl begins to walk along the plank at a constant velocity of 1.50 m/s to the right relative to the plank. (a) What is her velocity relative to the surface of the ice? (b) What is the velocity of the plank relative to the surface of the ice?

24. A 730-N man stands in the middle of a frozen pond of radius 5.0 m. He is unable to get to the other side because of a lack of friction between his shoes and the ice. To overcome this difficulty, he throws his 1.2-kg physics textbook horizontally toward the north shore at a speed of 5.0 m/s. How long does it take him to reach the south shore?

25. An astronaut in her space suit has a total mass of 87.0 kg, including suit and oxygen tank. Her tether line loses its attachment to her spacecraft while she’s on a spacewalk. Initially at rest with respect to her spacecraft, she throws her 12.0-kg oxygen tank away from her spacecraft with a speed of 8.00 m/s to propel herself back toward it (Fig. P6.25). (a) Determine the maximum distance she can be from the craft and still return within 2.00 min (the amount of time the air in her helmet remains breathable). (b) Explain in terms of Newton’s laws of motion why this strategy works.

26. A cannon is mounted on a railroad flatcar, the muzzle elevated to 30.0° and pointed in the direction of the track. The cannon fires a 1.00-metric-ton projectile at 1.00 km/s. (a) If the flatcar and cannon together have a mass of 36.0 metric tons (not including the projectile), what is the initial recoil speed of the flatcar? (b) In this problem, it appears that momentum in the y-direction is not conserved. Explain what happens to it.

27. A 65.0-kg person throws a 0.045 kg snowball forward with a ground speed of 30.0 m/s. A second person, with a mass of 60.0 kg, catches the snowball. Both people are on skates. The first person is initially moving forward with a speed of 2.50 m/s, and the second person is initially at rest. What are the velocities of the two people after the snowball is exchanged? Disregard friction between the skates and the ice.

28. Two ice skaters are holding hands at the center of a frozen pond when an argument ensues. Skater A shoves skater B along a horizontal direction. Identify (a) the horizontal forces acting on A and (b) those acting on B. (c) Which force is greater, the force on A or the force on B? (d) Can conservation of momentum be used for the system of A and B? Defend your answer. (e) If A has a mass of 0.900 times that of B, and B begins to move away with a speed of 2.00 m/s, find the speed of A.

SECTION 6.3 COLLISIONS

SECTION 6.4 GLANCING COLLISIONS

29. A man of mass $m_1 = 70.0$ kg is skating at $v_1 = 8.00$ m/s behind his wife of mass $m_2 = 50.0$ kg, who is skating at $v_2 = 4.00$ m/s. Instead of passing her, he inadvertently collides with her. He grabs her around the waist, and they maintain their balance. (a) Sketch the problem with before-and-after diagrams, representing the skaters as blocks. (b) Is the collision best described as elastic, inelastic, or perfectly inelastic? Why? (c) Write the general equation for conservation of momentum in terms of m_1, v_1, m_2, v_2, and final velocity v_f. (d) Solve the momentum equation for v_f. (e) Substitute values, obtaining the numerical value for v_f, their speed after the collision.

30. An archer shoots an arrow toward a 300-g target that is sliding in her direction at a speed of 2.50 m/s on a smooth, slippery surface. The 22.5-g arrow is shot with a speed of 35.0 m/s and passes through the target, which is stopped by the impact. What is the speed of the arrow after passing through the target?

31. Gayle runs at a speed of 4.00 m/s and dives on a sled, initially at rest on the top of a frictionless, snow-covered hill. After she has descended a vertical distance of 5.00 m, her brother, who is initially at rest, hops on her back, and they continue down the hill together. What is their speed at the bottom of the hill if the total vertical drop is 15.0 m? Gayle’s mass is 50.0 kg, the sled has a mass of 5.00 kg, and her brother has a mass of 30.0 kg.

32. A 75.0-kg ice skater moving at 10.0 m/s crashes into a stationary skater of equal mass. After the collision, the two skaters move as a unit at 5.00 m/s. Suppose the average force a skater can experience without breaking a bone is 4 500 N. If the impact time is 0.100 s, does a bone break?
33. A railroad car of mass \(2.00 \times 10^3\) kg moving at 3.00 m/s collides and couples with two coupled railroad cars, each of the same mass as the single car and moving in the same direction at 1.20 m/s. (a) What is the speed of the three coupled cars after the collision? (b) How much kinetic energy is lost in the collision?

34. A railroad car of mass \(M\) moving at a speed \(v_1\) collides and couples with two coupled railroad cars, each of the same mass \(M\) and moving in the same direction at a speed \(v_2\). (a) What is the speed \(v_f\) of the three coupled cars after the collision in terms of \(v_1\) and \(v_2\)? (b) How much kinetic energy is lost in the collision? Answer in terms of \(M\), \(v_1\), and \(v_2\).

35. Consider the ballistic pendulum device discussed in Example 6.5 and illustrated in Figure 6.12. (a) Determine the ratio of the momentum immediately after the collision to the momentum immediately before the collision. (b) Show that the ratio of the kinetic energy immediately after the collision to the kinetic energy immediately before the collision is \(m_1/(m_1 + m_2)\).

36. A 7.0-g bullet is fired into a 1.5-kg ballistic pendulum. The bullet emerges from the block with a speed of 200 m/s, and the block rises to a maximum height of 12 cm. Find the initial speed of the bullet.

37. In a Broadway performance, an 80.0-kg actor swings from a 3.75-m-long cable that is horizontal when he starts. At the bottom of his arc, he picks up his 55.0-kg costar in an inelastic collision. What maximum height do they reach after their upward swing?

38. Two shuffleboard disks of equal mass, one orange and the other yellow, are involved in a perfectly elastic glancing collision. The yellow disk is initially at rest and is struck by the orange disk moving initially to the right at 5.00 m/s. After the collision, the orange disk moves in a direction that makes an angle of 37.0° with its initial direction. Meanwhile, the velocity vector of the yellow disk is perpendicular to the postcollision velocity vector of the orange disk. Determine the speed of each disk after the collision.

39. A 0.030-kg bullet is fired vertically at 200 m/s into a 0.15-kg baseball that is initially at rest. How high does the combined bullet and baseball rise after the collision, assuming the bullet embeds itself in the ball?

40. An 8.00-g bullet is fired into a 250-g block that is initially at rest at the edge of a table of height 1.00 m (Fig. P6.40). The bullet remains in the block, and after the impact the block lands 2.00 m from the bottom of the table. Determine the initial speed of the bullet.

41. A 12.0-g bullet is fired horizontally into a 100-g wooden block that is initially at rest on a frictionless horizontal surface and connected to a spring having spring constant 150 N/m. The bullet becomes embedded in the block. If the bullet–block system compresses the spring by a maximum of 80.0 cm, what was the speed of the bullet at impact with the block?

42. A 1200-kg car traveling initially with a speed of 25.0 m/s in an easterly direction crashes into the rear end of a 9000-kg truck moving in the same direction at 20.0 m/s (Fig. P6.42). The velocity of the car right after the collision is 18.0 m/s to the east. (a) What is the velocity of the truck right after the collision? (b) How much mechanical energy is lost in the collision? Account for this loss in energy.

43. A 5.00-g object moving to the right at 20.0 cm/s makes an elastic head-on collision with a 1.00-g object that is initially at rest. Find (a) the velocity of each object after the collision and (b) the fraction of the initial kinetic energy transferred to the 1.00-g object.

44. A space probe, initially at rest, undergoes an internal mechanical malfunction and breaks into three pieces. One piece of mass \(m_1 = 48.0\) kg travels in the positive x-direction at 12.0 m/s, and a second piece of mass \(m_2 = 62.0\) kg travels in the \(xy\)-plane at an angle of 105° at 15.0 m/s. The third piece has mass \(m_3 = 112\) kg. (a) Sketch a diagram of the situation, labeling the different masses and their velocities. (b) Write the general expression for conservation of momentum in the x- and y-directions in terms of \(m_1\), \(m_2\), \(m_3\), \(v_{1x}\), \(v_{2x}\), \(v_{3x}\), and \(v_{3y}\) and the sines and cosines of the angles, taking \(\theta\) to be the unknown angle. (c) Calculate the final x-components of the momenta of \(m_1\) and \(m_3\). (d) Calculate the final y-components of the momenta of \(m_1\) and \(m_3\). (e) Substitute the known momentum components into the general equations of momentum for the x- and y-directions, along with the known mass \(m_3\). (f) Solve the two momentum equations for \(v_{1y}\) and \(v_{3y}\), respectively, and use the identity \(\cos^2 \theta + \sin^2 \theta = 1\) to obtain \(v_{3y}\). (g) Divide the equation for \(v_{3y}\) by \(\cos \theta\) to obtain \(\tan \theta\), then obtain the angle by taking the inverse tangent of both sides. (h) In general, would three such pieces necessarily have to move in the same plane? Why?

45. A 25.0-g object moving to the right at 20.0 cm/s overtakes and collides elastically with a 10.0-g object moving in the same direction at 15.0 cm/s. Find the velocity of each object after the collision.

46. A billiard ball rolling across a table at 1.50 m/s makes a head-on elastic collision with an identical ball. Find the speed of each ball after the collision (a) when the second ball is initially at rest, (b) when the second ball is moving toward the first at a speed of 1.00 m/s, and (c) when the second ball is moving away from the first at a speed of 1.00 m/s.
47. A 90.0-kg fullback running east with a speed of 5.00 m/s is tackled by a 95.0-kg opponent running north with a speed of 3.00 m/s. (a) Why does the tackle constitute a perfectly inelastic collision? (b) Calculate the velocity of the players immediately after the tackle and (c) determine the mechanical energy that is lost as a result of the collision. Where did the lost energy go?

48. Identical twins, each with mass 55.0 kg, are on ice skates and at rest on a frozen lake, which may be taken as frictionless. Twin A is carrying a backpack of mass 12.0 kg. She throws it horizontally at 3.00 m/s to Twin B. Neglecting any gravity effects, what are the subsequent speeds of Twin A and Twin B?

49. A 2000-kg car moving east at 10.0 m/s collides with a 3000-kg car moving north. The cars stick together and move as a unit after the collision, at an angle of 40.0° north of east and a speed of 5.22 m/s. Find the speed of the 3000-kg car before the collision.

50. Two automobiles of equal mass approach an intersection. One vehicle is traveling with velocity 13.0 m/s toward the east, and the other is traveling north with speed \(v_y \). Neither driver sees the other. The vehicles collide in the intersection and stick together, leaving parallel skid marks at an angle of 55.0° north of east. The speed limit for both roads is 35 mi/h, and the driver of the northward-moving vehicle claims he was within the limit when the collision occurred. Is he telling the truth?

51. A billiard ball moving at 5.00 m/s strikes a stationary ball of the same mass. After the collision, the first ball moves at 4.35 m/s at an angle of 30° with respect to the original line of motion. (a) Find the velocity (magnitude and direction) of the second ball after collision. (b) Was the collision inelastic or elastic?

ADDITIONAL PROBLEMS

52. In research in cardiology and exercise physiology, it is often important to know the mass of blood pumped by a person's heart in one stroke. This information can be obtained by means of a ballistocardiograph. The instrument works as follows: The subject lies on a horizontal pallet floating on a film of air. Friction on the pallet is negligible. Initially, the momentum of the system is zero. When the heart beats, it expels a mass \(m \) of blood into the aorta with speed \(v \), and the body and platform move in the opposite direction with speed \(V \). The speed of the blood can be determined independently (for example, by observing an ultrasound Doppler shift). Assume that the blood's speed is 50.0 cm/s in one typical trial. The mass of the subject plus the pallet is 54.0 kg. The pallet moves 6.00 \(\times \) 10\(^{-5} \) m in 0.160 s after one heartbeat. Calculate the mass of blood that leaves the heart. Assume that the mass of blood is negligible compared with the total mass of the person. This simplified example illustrates the principle of ballistocardiography, but in practice a more sophisticated model of heart function is used.

53. Most of us know intuitively that in a head-on collision between a large dump truck and a subcompact car, you are better off being in the truck than in the car. Why is this? Many people imagine that the collision force exerted on the car is much greater than that exerted on the truck. To substantiate this view, they point out that the car is crushed, whereas the truck is only dented. This idea of unequal forces, of course, is false; Newton's third law tells us that both objects are acted upon by forces of the same magnitude. The truck suffers less damage because it is made of stronger metal. But what about the two drivers? Do they experience the same forces? To answer this question, suppose that each vehicle is initially moving at 8.00 m/s and that they undergo a perfectly inelastic head-on collision. Each driver has mass 80.0 kg. Including the masses of the drivers, the total masses of the vehicles are 800 kg for the car and 4000 kg for the truck. If the collision time is 0.120 s, what force does the seat belt exert on each driver?

54. Consider a frictionless track as shown in Figure P6.54. A block of mass \(m_1 = 5.00\) kg is released from \(\mathbb{A} \). It makes a head-on elastic collision at \(\mathbb{B} \) with a block of mass \(m_2 = 10.0 \) kg that is initially at rest. Calculate the maximum height to which \(m_1 \) rises after the collision.

55. A 2.0-g particle moving at 8.0 m/s makes a perfectly elastic head-on collision with a resting 1.0-g object. (a) Find the speed of each particle after the collision. (b) Find the speed of each particle after the collision if the stationary particle has a mass of 10 g. (c) Find the final kinetic energy of the incident 2.0-g particle in the situations described in parts (a) and (b). In which case does the incident particle lose more kinetic energy?

56. A bullet of mass \(m \) and speed \(v \) passes completely through a pendulum bob of mass \(M \) as shown in Figure P6.56. The bullet emerges with a speed of \(v/2 \). The pendulum bob is suspended by a stiff rod of length \(\ell \) and negligible mass. What is the minimum value of \(v \) such that the bob will barely swing through a complete vertical circle?

57. An 80-kg man standing erect steps off a 3.0-m-high diving platform and begins to fall from rest. The man again comes to a rest 2.0 s after reaching the water. What average force did the water exert on him?

58. A 0.400-kg blue bead slides on a curved frictionless wire, starting from rest at point \(\mathbb{B} \) in Figure P6.58 (page 188).
59. A ball of mass 0.500 kg is dropped from a height of 2.00 m. It bounces against the ground and rises to a height of 1.40 m. If the ball was in contact with the ground for 0.080 s, what average force did the ground exert on the ball?

60. An unstable nucleus of mass 1.7×10^{-26} kg, initially at rest at the origin of a coordinate system, disintegrates into three particles. One particle, having a mass of $m_1 = 5.0 \times 10^{-27}$ kg, moves in the positive y-direction with speed $v_1 = 6.0 \times 10^6$ m/s. Another particle, of mass $m_2 = 8.4 \times 10^{-27}$ kg, moves in the positive x-direction with speed $v_2 = 4.0 \times 10^6$ m/s. Find the magnitude and direction of the velocity of the third particle.

61. Two blocks of masses m_1 and m_2 approach each other on a horizontal table with the same constant speed, v, as measured by a laboratory observer. The blocks undergo a perfectly elastic collision, and it is observed that m_1 stops but m_2 moves opposite its original motion with some constant speed, v. (a) Determine the ratio of the two masses, m_1/m_2. (b) What is the ratio of their speeds, v/v_2?

62. Two blocks of masses $m_1 = 2.00$ kg and $m_2 = 4.00$ kg are each released from rest at a height of 5.00 m on a frictionless track, as shown in Figure P6.62, and undergo an elastic head-on collision. (a) Determine the velocity of each block just before the collision. (b) Determine the velocity of each block immediately after the collision. (c) Determine the maximum heights to which m_1 and m_2 rise after the collision.

63. A 0.500-kg block is released from rest at the top of a frictionless track 2.50 m above the top of a table. It then collides elastically with a 1.00-kg object that is initially at rest on the table, as shown in Figure P6.63. (a) Determine the velocities of the two objects just after the collision. (b) How high up the track does the 0.500-kg object travel back after the collision? (c) How far away from the bottom of the table does the 1.00-kg object land, given that the table is 2.00 m high? (d) How far away from the bottom of the table does the 0.500-kg object eventually land?

64. Two objects of masses m and $3m$ are moving toward each other along the x-axis with the same initial speed v_i. The object with mass m is traveling to the left, and the object with mass $3m$ is traveling to the right. They undergo an elastic glancing collision such that m is moving downward after the collision at right angles from its initial direction. (a) Find the final speeds of the two objects. (b) What is the angle θ at which the object with mass $3m$ is scattered?

65. A small block of mass $m_1 = 0.500$ kg is released from rest at the top of a curved wedge of mass $m_3 = 3.00$ kg, which sits on a frictionless horizontal surface as in Figure P6.65a. When the block leaves the wedge, its velocity is measured to be 4.00 m/s to the right, as in Figure P6.65b. (a) What is the velocity of the wedge after the block reaches the horizontal surface? (b) What is the height h of the wedge?

66. A cue ball traveling at 4.00 m/s makes a glancing, elastic collision with a target ball of equal mass that is initially at rest. The cue ball is deflected so that it makes an angle of 30.0° with its original direction of travel. Find (a) the angle between the velocity vectors of the two balls after the collision and (b) the speed of each ball after the collision.

67. A cannon is rigidly attached to a carriage, which can move along horizontal rails, but is connected to a post by a large spring, initially unstretched and with force constant $k = 2.00 \times 10^4$ N/m, as in Figure P6.67. The cannon...
68. The “force platform” is a tool that is used to analyze the performance of athletes by measuring the vertical force as a function of time that the athlete exerts on the ground in performing various activities. A simplified force vs. time graph for an athlete performing a standing high jump is shown in Figure P6.68. The athlete started the jump at \(t = 0.0 \) s. How high did this athlete jump?

69. A neutron in a reactor makes an elastic head-on collision with a carbon atom that is initially at rest. (The mass of the carbon nucleus is about 12 times that of the neutron.) (a) What fraction of the neutron's kinetic energy is transferred to the carbon nucleus? (b) If the neutron's initial kinetic energy is \(1.6 \times 10^{-13} \) J, find its final kinetic energy and the kinetic energy of the carbon nucleus after the collision.

70. Two blocks collide on a frictionless surface. After the collision, the blocks stick together. Block A has a mass \(M \) and is initially moving to the right at speed \(v \). Block B has a mass \(2M \) and is initially at rest. System C is composed of both blocks. (a) Draw a free-body diagram for each block at an instant during the collision. (b) Rank the magnitudes of the horizontal forces in your diagram. Explain your reasoning. (c) Calculate the change in momentum of block A, block B, and system C. (d) Is kinetic energy conserved in this collision? Explain your answer. (This problem is courtesy of Edward F. Redish. For more such problems, visit http://www.physics.umd.edu/phys121.)

71. (a) A car traveling due east strikes a car traveling due north at an intersection, and the two move together as a unit. A property owner on the southeast corner of the intersection claims that his fence was torn down in the collision. Should he be awarded damages by the insurance company? Defend your answer. (b) Let the eastward-moving car have a mass of 1300 kg and a speed of 30.0 km/h and the northward-moving car a mass of 1100 kg and a speed of 20.0 km/h. Find the velocity after the collision. Are the results consistent with your answer to part (a)?

72. A 60-kg soccer player jumps vertically upwards and heads the 0.45-kg ball as it is descending vertically with a speed of 25 m/s. If the player was moving upward with a speed of 4.0 m/s just before impact, what will be the speed of the ball immediately after the collision? If the ball rebounds vertically upwards and the collision is elastic? If the ball is in contact with the player’s head for 20 ms, what is the average acceleration of the ball? (Note that the force of gravity may be ignored during the brief collision time.)

A tennis ball of mass 57.0 g is held just above a basketball of mass 590 g. With their centers vertically aligned, both balls are released from rest at the same time, to fall through a distance of 1.20 m, as shown in Figure P6.73. (a) Find the magnitude of the downward velocity with which the basketball reaches the ground. (b) Assume that an elastic collision with the ground instantaneously reverses the velocity of the basketball while the tennis ball is still moving down. Next, the two balls meet in an elastic collision. To what height does the tennis ball rebound?

74. A 20.0-kg toboggan with 70.0-kg driver is sliding down a frictionless chute directed 30.0° below the horizontal at 8.00 m/s when a 55.0-kg woman drops from a tree limb straight down behind the driver. If she drops through a vertical displacement of 2.00 m, what is the subsequent velocity of the toboggan immediately after impact?

75. Measuring the speed of a bullet. A bullet of mass \(m \) is fired horizontally into a wooden block of mass \(M \) lying on a table. The bullet remains in the block after the collision. The coefficient of friction between the block and table is \(\mu \), and the block slides a distance \(d \) before stopping. Find the initial speed \(v_0 \) of the bullet in terms of \(M, m, \mu, g \), and \(d \).

76. A flying squid (family Ommastrephidae) is able to “jump” off the surface of the sea by taking water into its body cavity and then ejecting the water vertically downward. A 0.85-kg squid is able to eject 0.30 kg of water with a speed of 20 m/s. (a) What will be the speed of the squid immediately after ejecting the water? (b) How high in the air will the squid rise?

77. A 0.30-kg puck, initially at rest on a frictionless horizontal surface, is struck by a 0.20-kg puck that is initially moving along the \(x \)-axis with a velocity of 2.0 m/s. After the collision, the 0.20-kg puck has a speed of 1.0 m/s at an angle of \(\theta = 53^\circ \) to the positive \(x \)-axis. (a) Determine the velocity of the 0.30-kg puck after the collision. (b) Find the fraction of kinetic energy lost in the collision.

78. A 12.0-g bullet is fired horizontally into a 100-g wooden block initially at rest on a horizontal surface. After impact, the block slides 7.5 m before coming to rest. If the coefficient of kinetic friction between block and surface is 0.650, what was the speed of the bullet immediately before impact?
7

Astronauts fall around the Earth at thousands of meters per second, held by the centripetal force provided by gravity.

7.1 Angular Speed and Angular Acceleration
7.2 Rotational Motion Under Constant Angular Acceleration
7.3 Relations Between Angular and Linear Quantities
7.4 Centripetal Acceleration
7.5 Newtonian Gravitation
7.6 Kepler’s Laws

ROTTATIONAL MOTION AND THE LAW OF GRAVITY

Rotational motion is an important part of everyday life. The rotation of the Earth creates the cycle of day and night, the rotation of wheels enables easy vehicular motion, and modern technology depends on circular motion in a variety of contexts, from the tiny gears in a Swiss watch to the operation of lathes and other machinery. The concepts of angular speed, angular acceleration, and centripetal acceleration are central to understanding the motions of a diverse range of phenomena, from a car moving around a circular racetrack to clusters of galaxies orbiting a common center.

Rotational motion, when combined with Newton’s law of universal gravitation and his laws of motion, can also explain certain facts about space travel and satellite motion, such as where to place a satellite so it will remain fixed in position over the same spot on the Earth. The generalization of gravitational potential energy and energy conservation offers an easy route to such results as planetary escape speed. Finally, we present Kepler’s three laws of planetary motion, which formed the foundation of Newton’s approach to gravity.

7.1 Angular Speed and Angular Acceleration

In the study of linear motion, the important concepts are displacement Δx, velocity v, and acceleration a. Each of these concepts has its analog in rotational motion: angular displacement $\Delta \theta$, angular velocity ω, and angular acceleration α.

The radian, a unit of angular measure, is essential to the understanding of these concepts. Recall that the distance s around a circle is given by $s = 2\pi r$, where r is the radius of the circle. Dividing both sides by r results in $s/r = 2\pi$. This quantity is dimensionless because both s and r have dimensions of length, but the value 2π corresponds to a displacement around a circle. A half circle would give an answer of π, a quarter circle an answer of $\pi/2$. The numbers 2π, π, and $\pi/2$ correspond
to angles of 360°, 180°, and 90°, respectively, so a new unit of angular measure, the radian, can be introduced, with 180° = π rad relating degrees to radians.

The angle θ subtended by an arc length s along a circle of radius r, measured in radians counterclockwise from the positive x-axis, is

\[\theta = \frac{s}{r} \]

(7.1)

The angle θ in Equation 7.1 is actually an angular displacement from the positive x-axis, and s the corresponding displacement along the circular arc, again measured from the positive x-axis. Figure 7.1 illustrates the size of 1 radian, which is approximately 57.3°. Converting from degrees to radians requires multiplying by the ratio (π rad/180°). For example, 45° (π rad/180°) = (π/4) rad.

Generally, angular quantities in physics must be expressed in radians. Be sure to set your calculator to radian mode; neglecting to do so is a common error.

Armed with the concept of radian measure, we can now discuss angular concepts in physics. Consider Figure 7.2a, a top view of a rotating compact disc. Such a disk is an example of a “rigid body,” with each part of the body fixed in position relative to all other parts of the body. When a rigid body rotates through a given angle, all parts of the body rotate through the same angle at the same time. For the compact disc, the axis of rotation is at the center of the disc, O. A point P on the disc is at a distance r from the origin and moves about O in a circle of radius r.

We set up a fixed reference line, as shown in Figure 7.2a, and assume that at time \(t = 0 \) the point P is on that reference line. After a time interval \(\Delta t \) has elapsed, P has advanced to a new position (Fig. 7.2b). In this interval, the line OP has moved through the angle \(\theta \) with respect to the reference line. The angle \(\theta \), measured in radians, is called the angular position and is analogous to the linear position variable x. Likewise, P has moved an arc length s measured along the circumference of the circle.

In Figure 7.3, as a point on the rotating disc moves from \(\oplus \) to \(\odot \) in a time \(\Delta t \), it starts at an angle \(\theta_i \) and ends at an angle \(\theta_f \). The difference \(\theta_f - \theta_i \) is called the angular displacement.

An object’s angular displacement, \(\Delta \theta \), is the difference in its final and initial angles:

\[\Delta \theta = \theta_f - \theta_i \]

(7.2)

SI unit: radian (rad)

For example, if a point on a disc is at \(\theta_i = 4 \) rad and rotates to angular position \(\theta_f = 7 \) rad, the angular displacement is \(\Delta \theta = \theta_f - \theta_i = 7 \) rad - 4 rad = 3 rad. Note that we use angular variables to describe the rotating disc because each point on the disc undergoes the same angular displacement in any given time interval.

Using the definition in Equation 7.2, Equation 7.1 can be written more generally as \(\Delta \theta = \Delta s/r \), where \(\Delta s \) is a displacement along the circular arc subtended by the angular displacement. Having defined angular displacements, it’s natural to define an angular speed:

The average angular speed \(\omega \) of a rotating rigid object during the time interval \(\Delta t \) is the angular displacement \(\Delta \theta \) divided by \(\Delta t \):

\[\omega = \frac{\theta_f - \theta_i}{\Delta t} = \frac{\Delta \theta}{\Delta t} \]

(7.3)

SI unit: radian per second (rad/s)

FIGURE 7.1 For a circle of radius r, one radian is the angle subtended by an arc length equal to r.

FIGURE 7.2 (a) The point P on a rotating compact disc moves from \(\oplus \) to \(\odot \) in a time \(\Delta t \). (b) As the disc rotates, P moves through an arc length s.

FIGURE 7.3 As a point on the compact disc moves from \(\oplus \) to \(\odot \), the disc rotates through the angle \(\Delta \theta \) = \(\theta_f - \theta_i \).
For very short time intervals, the average angular speed approaches the instantaneous angular speed, just as in the linear case.

The instantaneous angular speed \(\omega \) of a rotating rigid object is the limit of the average speed \(\frac{\Delta \theta}{\Delta t} \) as the time interval \(\Delta t \) approaches zero:

\[
\omega = \lim_{\Delta t \to 0} \frac{\Delta \theta}{\Delta t} \quad [7.4]
\]

SI unit: radian per second (rad/s)

We take \(\omega \) to be positive when \(\theta \) is increasing (counterclockwise motion) and negative when \(\theta \) is decreasing (clockwise motion). When the angular speed is constant, the instantaneous angular speed is equal to the average angular speed.

EXAMPLE 7.1 Whirlybirds

Goal Convert an angular speed in revolutions per minute to radians per second.

Problem The rotor on a helicopter turns at an angular speed of \(3.20 \times 10^2 \) revolutions per minute. (In this book, we sometimes use the abbreviation rpm, but in most cases we use rev/min.) (a) Express this angular speed in radians per second. (b) If the rotor has a radius of 2.00 m, what arclength does the tip of the blade trace out in \(3.00 \times 10^2 \) s?

Strategy During one revolution, the rotor turns through an angle of \(2\pi \) radians. Use this relationship as a conversion factor.

Solution

(a) Express this angular speed in radians per second.

Apply the conversion factors \(1 \text{ rev} = 2\pi \text{ rad} \) and \(60 \text{ s} = 1 \text{ min} \):

\[
\omega = 3.20 \times 10^2 \text{ rev/min} \quad \frac{2\pi \text{ rad}}{\text{rev}} \left(\frac{1.00 \text{ min}}{60.0 \text{ s}} \right) = 33.5 \text{ rad/s}
\]

(b) Multiply the angular speed by the time to obtain the angular displacement:

\[
\Delta \theta = \omega t = (33.5 \text{ rad/s})(3.00 \times 10^2 \text{ s}) = 1.01 \times 10^4 \text{ rad}
\]

Multiply the angular displacement by the radius to get the arc length:

\[
\Delta s = r \Delta \theta = (2.00 \text{ m})(1.01 \times 10^4 \text{ rad}) = 2.02 \times 10^4 \text{ m}
\]

Remarks In general, it’s best to express angular speeds in radians per second. Consistent use of radian measure minimizes errors.

QUESTION 7.1

Is it possible to express angular speed in degrees per second? If so, what’s the conversion factor from radians per second?

EXERCISE 7.1

A waterwheel turns at 1 500 revolutions per hour. Express this rate of rotation in units of radians per second.

Answer 2.6 rad/s

QUICK QUIZ 7.1 A rigid body is rotating counterclockwise about a fixed axis. Each of the following pairs of quantities represents an initial angular position and a final angular position of the rigid body. Which of the sets can occur only if the rigid body rotates through more than 180°? (a) 3 rad, 6 rad; (b) −1 rad, 1 rad; (c) 1 rad, 5 rad.
QUICK QUIZ 7.2 Suppose the change in angular position for each of the pairs of values in Quick Quiz 7.1 occurred in 1 s. Which choice represents the lowest average angular speed?

Figure 7.4 shows a bicycle turned upside down so that a repair technician can work on the rear wheel. The bicycle pedals are turned so that at time \(t_i \) the wheel has angular speed \(\omega_i \) (Fig. 7.4a) and at a later time \(t_f \) it has angular speed \(\omega_f \) (Fig. 7.4b). Just as a changing speed leads to the concept of an acceleration, a changing angular speed leads to the concept of an angular acceleration.

An object’s average angular acceleration \(\alpha_\text{avg} \) during the time interval \(\Delta t \) is the change in its angular speed \(\Delta \omega \) divided by \(\Delta t \):

\[
\alpha_\text{avg} = \frac{\omega_f - \omega_i}{t_f - t_i} = \frac{\Delta \omega}{\Delta t} \tag{7.5}
\]

SI unit: radian per second squared (rad/s\(^2\))

As with angular velocity, positive angular accelerations are in the counterclockwise direction, negative angular accelerations in the clockwise direction. If the angular speed goes from 15 rad/s to 9.0 rad/s in 3.0 s, the average angular acceleration during that time interval is

\[
\alpha_\text{avg} = \frac{\Delta \omega}{\Delta t} = \frac{9.0 \text{ rad/s} - 15 \text{ rad/s}}{3.0 \text{ s}} = -2.0 \text{ rad/s}^2
\]

The negative sign indicates that the angular acceleration is clockwise (although the angular speed, still positive but slowing down, is in the counterclockwise direction). There is also an instantaneous version of angular acceleration:

The instantaneous angular acceleration \(\alpha \) is the limit of the average angular acceleration \(\Delta \omega/\Delta t \) as the time interval \(\Delta t \) approaches zero:

\[
\alpha = \lim_{\Delta t \to 0} \frac{\Delta \omega}{\Delta t} \tag{7.6}
\]

SI unit: radian per second squared (rad/s\(^2\))

When a rigid object rotates about a fixed axis, as does the bicycle wheel, every portion of the object has the same angular speed and the same angular acceleration. This fact is what makes these variables so useful for describing rotational motion. In contrast, the tangential (linear) speed and acceleration of the object take different values that depend on the distance from a given point to the axis of rotation.
7.2 ROTATIONAL MOTION UNDER CONSTANT ANGULAR ACCELERATION

A number of parallels exist between the equations for rotational motion and those for linear motion. For example, compare the defining equation for the average angular speed,

$$\omega_{av} = \frac{\theta_f - \theta_i}{t_f - t_i} = \frac{\Delta \theta}{\Delta t}$$

with that of the average linear speed,

$$v_{av} = \frac{x_f - x_i}{t_f - t_i} = \frac{\Delta x}{\Delta t}$$

In these equations, ω takes the place of v and θ takes the place of x, so the equations differ only in the names of the variables. In the same way, every linear quantity we have encountered so far has a corresponding “twin” in rotational motion.

The procedure used in Section 2.5 to develop the kinematic equations for linear motion under constant acceleration can be used to derive a similar set of equations for rotational motion under constant angular acceleration. The resulting equations of rotational kinematics, along with the corresponding equations for linear motion, are as follows:

<table>
<thead>
<tr>
<th>Linear Motion with a Constant Acceleration (Variables: x and v)</th>
<th>Rotational Motion About a Fixed Axis with a Constant Angular Acceleration (Variables: θ and ω)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$v = v_i + at$</td>
<td>$\omega = \omega_i + \alpha t$ [7.7]</td>
</tr>
<tr>
<td>$\Delta x = v_i t + \frac{1}{2}at^2$</td>
<td>$\Delta \theta = \omega_i t + \frac{1}{2}\alpha t^2$ [7.8]</td>
</tr>
<tr>
<td>$v^2 = v_i^2 + 2a \Delta x$</td>
<td>$\omega^2 = \omega_i^2 + 2a \Delta \theta$ [7.9]</td>
</tr>
</tbody>
</table>

Notice that every term in a given linear equation has a corresponding term in the analogous rotational equation.

QUICK QUIZ 7.3 Consider again the pairs of angular positions for the rigid object in Quick Quiz 7.1. If the object starts from rest at the initial angular position, moves counterclockwise with constant angular acceleration, and arrives at the final angular position with the same angular speed in all three cases, for which choice is the angular acceleration the highest?

EXAMPLE 7.2 A Rotating Wheel

Goal Apply the rotational kinematic equations.

Problem A wheel rotates with a constant angular acceleration of 3.50 rad/s2. If the angular speed of the wheel is 2.00 rad/s at $t = 0$, (a) through what angle does the wheel rotate between $t = 0$ and $t = 2.00$ s? Give your answer in radians and in revolutions. (b) What is the angular speed of the wheel at $t = 2.00$ s?

Strategy The angular acceleration is constant, so this problem just requires substituting given values into Equations 7.7 and 7.8.

Solution

(a) Find the angular displacement after 2.00 s, in both radians and revolutions.

Use Equation 7.8, setting $\omega_i = 2.00$ rad/s, $\alpha = 3.5$ rad/s2, and $t = 2.00$ s:

$$\Delta \theta = \omega_i t + \frac{1}{2}\alpha t^2$$

$$= (2.00 \text{ rad/s})(2.00 \text{ s}) + \frac{1}{2}(3.50 \text{ rad/s}^2)(2.00 \text{ s})^2$$

$$= 11.0 \text{ rad}$$

Convert radians to revolutions.
\[\Delta \theta = (11.0 \text{ rad})(1.00 \text{ rev}/2\pi \text{ rad}) = 1.75 \text{ rev} \]

(b) What is the angular speed of the wheel at \(t = 2.00 \text{ s} \)?
Substitute the same values into Equation 7.7:
\[\omega = \omega_i + \alpha t = 2.00 \text{ rad/s} + (3.50 \text{ rad/s}^2)(2.00 \text{ s}) = 9.00 \text{ rad/s} \]

Remarks The result of part (b) could also be obtained from Equation 7.9 and the results of part (a).

QUESTION 7.2
Suppose the radius of the wheel is doubled. Are the answers affected? If so, in what way?

EXERCISE 7.2
(a) Find the angle through which the wheel rotates between \(t = 2.00 \text{ s} \) and \(t = 3.00 \text{ s} \). (b) Find the angular speed when \(t = 3.00 \text{ s} \).

Answer (a) 10.8 rad (b) 12.5 rad/s

EXAMPLE 7.3 Slowing Propellers

Goal Apply the time-independent rotational kinematic equation.

Problem An airplane propeller slows from an initial angular speed of 12.5 \(\text{rev/s} \) to a final angular speed of 5.00 \(\text{rev/s} \). During this process, the propeller rotates through 21.0 revolutions. Find the angular acceleration of the propeller in \(\text{radians per second squared} \), assuming it’s constant.

Strategy The given quantities are the angular speeds and the displacement, which suggests applying Equation 7.9, the time-independent rotational kinematic equation, to find \(\alpha \).

Solution
First, convert the angular displacement to radians and the angular speeds to \(\text{rad/s} \):
\[\Delta \theta = (21.0 \text{ rev})(2\pi \text{ rad/rev}) = 42.0\pi \text{ rad} \]
\[\omega_i = (12.5 \text{ rev/s})(2\pi \text{ rad/rev}) = 25.0\pi \text{ rad/s} \]
\[\omega = (5.00 \text{ rev/s})(2\pi \text{ rad/rev}) = 10.0\pi \text{ rad/s} \]

Substitute these values into Equation 7.9 to find the angular acceleration \(\alpha \):
\[\omega^2 = \omega_i^2 + 2\alpha \Delta \theta \]
\[(10.0\pi \text{ rad/s})^2 = (25.0\pi \text{ rad/s})^2 + 2\alpha (42\pi \text{ rad}) \]
Solve for \(\alpha \):
\[\alpha \approx -6.25\pi \text{ rad/s}^2 \]

Remark Waiting until the end to convert revolutions to radians is also possible and requires only one conversion instead of three.

QUESTION 7.3
If the propeller had rotated through twice as many revolutions during the process, by what factor would the angular acceleration have changed?

EXERCISE 7.3
Suppose, instead, the engine speeds up so that the propeller goes through 28.0 revolutions while the angular speed increases uniformly from 5.00 \(\text{rev/s} \) to 15.0 \(\text{rev/s} \). Find the angular acceleration.

Answer \(7.14\pi \text{ rad/s}^2 \)
Angular variables are closely related to linear variables. Consider the arbitrarily shaped object in Active Figure 7.5 rotating about the z-axis through the point O. Assume the object rotates through the angle $\Delta \theta$, and hence point P moves through the arc length Δs, in the interval Δt. We know from the defining equation for radian measure that

$$\Delta \theta = \frac{\Delta s}{r}$$

Dividing both sides of this equation by Δt, the time interval during which the rotation occurs, yields

$$\frac{\Delta \theta}{\Delta t} = \frac{1}{r} \frac{\Delta s}{\Delta t}$$

When Δt is very small, the angle $\Delta \theta$ through which the object rotates is also small and the ratio $\frac{\Delta \theta}{\Delta t}$ is close to the instantaneous angular speed ω. On the other side of the equation, similarly, the ratio $\frac{\Delta s}{\Delta t}$ approaches the instantaneous linear speed v for small values of Δt. Hence, when Δt gets arbitrarily small, the preceding equation is equivalent to

$$\omega = \frac{v}{r}$$

In Active Figure 7.5, the point P traverses a distance Δs along a circular arc during the time interval Δt at a linear speed of v. The direction of P's velocity vector \vec{v} is **tangent to the circular path**. The magnitude of \vec{v} is the linear speed $v = v_t$, called the **tangential speed** of a particle moving in a circular path, written

$$v_t = r \omega \quad [7.10]$$

The tangential speed of a point on a rotating object equals the distance of that point from the axis of rotation multiplied by the angular speed. Equation 7.10 shows that the linear speed of a point on a rotating object increases as that point is moved outward from the center of rotation toward the rim, as expected; however, **every point on the rotating object has the same angular speed**.

Equation 7.10, derived using the defining equation for radian measure, is valid only when ω is measured in radians per unit time. Other measures of angular speed, such as degrees per second and revolutions per second, shouldn’t be used.

To find a second equation relating linear and angular quantities, refer again to Active Figure 7.5 and suppose the rotating object changes its angular speed by $\Delta \omega$ in the time interval Δt. At the end of this interval, the speed of a point on the object, such as P, has changed by the amount Δv_t. From Equation 7.10 we have

$$\Delta v_t = r \Delta \omega$$

Dividing by Δt gives

$$\frac{\Delta v_t}{\Delta t} = r \frac{\Delta \omega}{\Delta t}$$

As the time interval Δt is taken to be arbitrarily small, $\Delta \omega/\Delta t$ approaches the instantaneous angular acceleration. On the left-hand side of the equation, note that the ratio $\Delta v_t/\Delta t$ tends to the instantaneous linear acceleration, called the **tangential acceleration** of that point, given by

$$a_t = r \alpha \quad [7.11]$$

The tangential acceleration of a point on a rotating object equals the distance of that point from the axis of rotation multiplied by the angular acceleration. Again, radian measure must be used for the angular acceleration term in this equation.
One last equation that relates linear quantities to angular quantities will be derived in the next section.

QUICK QUIZ 7.4 Andrea and Chuck are riding on a merry-go-round. Andrea rides on a horse at the outer rim of the circular platform, twice as far from the center of the circular platform as Chuck, who rides on an inner horse. When the merry-go-round is rotating at a constant angular speed, Andrea's angular speed is (a) twice Chuck's (b) the same as Chuck's (c) half of Chuck's (d) impossible to determine.

QUICK QUIZ 7.5 When the merry-go-round of Quick Quiz 7.4 is rotating at a constant angular speed, Andrea's tangential speed is (a) twice Chuck's (b) the same as Chuck's (c) half of Chuck's (d) impossible to determine.

7.3 Relations between Angular and Linear Quantities

Why is the launch area for the European Space Agency in South America and not in Europe?

Explanation Satellites are boosted into orbit on top of rockets, which provide the large tangential speed necessary to achieve orbit. Due to its rotation, the surface of Earth is already traveling toward the east at a tangential speed of nearly 1700 m/s at the equator. This tangential speed is steadily reduced farther north because the distance to the axis of rotation is decreasing. It finally goes to zero at the North Pole. Launching eastward from the equator gives the satellite a starting initial tangential speed of 1700 m/s, whereas a European launch provides roughly half that speed (depending on the exact latitude).

APPLYING PHYSICS 7.1 ESA LAUNCH SITE

EXAMPLE 7.4 Compact Discs

Goal Apply the rotational kinematics equations in tandem with tangential acceleration and speed.

Problem A compact disc rotates from rest up to an angular speed of 31.4 rad/s in a time of 0.892 s. (a) What is the angular acceleration of the disc, assuming the angular acceleration is uniform? (b) Through what angle does the disc turn while coming up to speed? (c) If the radius of the disc is 4.45 cm, find the tangential speed of a microbe riding on the rim of the disc when \(t = 0.892 \) s. (d) What is the magnitude of the tangential acceleration of the microbe at the given time?

Strategy We can solve parts (a) and (b) by applying the kinematic equations for angular speed and angular displacement (Eqs. 7.7 and 7.8). Multiplying the radius by the angular acceleration yields the tangential acceleration at the rim, whereas multiplying the radius by the angular speed gives the tangential speed at that point.

Solution

(a) Find the angular acceleration of the disc.

Apply the angular velocity equation \(\omega = \omega_i + \alpha t \), taking \(\omega_i = 0 \) at \(t = 0 \): \[
\alpha = \frac{\omega}{t} = \frac{31.4 \text{ rad/s}}{0.892 \text{ s}} = 35.2 \text{ rad/s}^2
\]

(b) Through what angle does the disc turn?

Use Equation 7.8 for angular displacement, with \(t = 0.892 \) s and \(\omega_i = 0 \): \[
\Delta \theta = \omega_i t + \frac{1}{2} \alpha t^2 = \frac{1}{2} (35.2 \text{ rad/s}^2)(0.892 \text{ s})^2 = 14.0 \text{ rad}
\]

(c) Find the final tangential speed of a microbe at \(r = 4.45 \text{ cm} \).

Substitute into Equation 7.10: \[
v_t = r \omega = (0.0445 \text{ m})(31.4 \text{ rad/s}) = 1.40 \text{ m/s}
\]
Before compact discs became the medium of choice for recorded music, phonographs were popular. There are similarities and differences between the rotational motion of phonograph records and that of compact discs. A phonograph record rotates at a constant angular speed. Popular angular speeds were $33\frac{1}{3}$ rev/min for long-playing albums (hence the nickname “LP”), 45 rev/min for “ingles,” and 78 rev/min used in very early recordings. At the outer edge of the record, the pickup needle (stylus) moves over the vinyl material at a faster tangential speed than when the needle is close to the center of the record. As a result, the sound information is compressed into a smaller length of track near the center of the record than near the outer edge.

CDs, on the other hand, are designed so that the disc moves under the laser pickup at a constant tangential speed. Because the pickup moves radially as it follows the tracks of information, the angular speed of the compact disc must vary according to the radial position of the laser. Because the tangential speed is fixed, the information density (per length of track) anywhere on the disc is the same. Example 7.5 demonstrates numerical calculations for both compact discs and phonograph records.

(d) Find the tangential acceleration of the microbe at $r = 4.45$ cm.

Substitute into Equation 7.11:

\[a_t = \alpha r = (0.0445 \text{ m})(35.2 \text{ rad/s}^2) = 1.57 \text{ m/s}^2 \]

Remarks Because $2\pi \text{ rad} = 1 \text{ rev}$, the angular displacement in part (b) corresponds to 2.23 rev. In general, dividing the number of radians by 6 gives a good approximation to the number of revolutions, because $2\pi \approx 6$.

QUESTION 7.4
If the angular acceleration were doubled for the same duration, by what factor would the angular displacement change? Why is the answer true in this case but not in general?

EXERCISE 7.4
(a) What are the angular speed and angular displacement of the disc 0.300 s after it begins to rotate? (b) Find the tangential speed at the rim at this time.

Answers (a) 10.6 rad/s; 1.58 rad (b) 0.472 m/s

APPLICATION

Phonograph Records and Compact Discs

Before compact discs became the medium of choice for recorded music, phonographs were popular. There are similarities and differences between the rotational motion of phonograph records and that of compact discs. A phonograph record rotates at a constant angular speed. Popular angular speeds were $33\frac{1}{3}$ rev/min for long-playing albums (hence the nickname “LP”), 45 rev/min for “ingles,” and 78 rev/min used in very early recordings. At the outer edge of the record, the pickup needle (stylus) moves over the vinyl material at a faster tangential speed than when the needle is close to the center of the record. As a result, the sound information is compressed into a smaller length of track near the center of the record than near the outer edge.

CDs, on the other hand, are designed so that the disc moves under the laser pickup at a constant tangential speed. Because the pickup moves radially as it follows the tracks of information, the angular speed of the compact disc must vary according to the radial position of the laser. Because the tangential speed is fixed, the information density (per length of track) anywhere on the disc is the same. Example 7.5 demonstrates numerical calculations for both compact discs and phonograph records.

EXAMPLE 7.5 Track Length of a Compact Disc

Goal Relate angular to linear variables.

Problem In a compact disc player, as the read head moves out from the center of the disc, the angular speed of the disc changes so that the linear speed at the position of the head remains at a constant value of about 1.3 m/s. (a) Find the angular speed of the compact disc when the read head is at $r = 2.0$ cm and again at $r = 5.6$ cm. (b) An old-fashioned record player rotates at a constant angular speed, so the linear speed of the record groove moving under the detector (the stylus) changes. Find the linear speed of a 45.0-rpm record at points 2.0 and 5.6 cm from the center. (c) In both the CD and phonograph record, information is recorded in a continuous spiral track. Calculate the total length of the track for a CD designed to play for 1.0 h.

Strategy This problem is just a matter of substituting numbers into the appropriate equations. Part (a) requires relating angular and linear speed with Equation 7.10, $v_i = r\omega$, solving for ω and substituting given values. In part (b), convert from rev/min to rad/s and substitute straight into Equation 7.10 to obtain the linear speeds. In part (c), linear speed multiplied by time gives the total distance.

Solution (a) Find the angular speed of the disc when the read head is at $r = 2.0$ cm and $r = 5.6$ cm.
7.4 CENTRIPETAL ACCELERATION

Figure 7.6a shows a car moving in a circular path with constant linear speed \(v \). Even though the car moves at a constant speed, it still has an acceleration. To understand this, consider the defining equation for average acceleration:

\[
\mathbf{a}_{av} = \frac{\mathbf{v}_f - \mathbf{v}_i}{t_f - t_i}
\]

[7.12]

The numerator represents the difference between the velocity vectors \(\mathbf{v}_f \) and \(\mathbf{v}_i \). These vectors may have the same magnitude, corresponding to the same speed, but if they have different directions, their difference can’t equal zero. The direction of the car’s velocity as it moves in the circular path is continually changing, as shown in Figure 7.6b. For circular motion at constant speed, the acceleration vector always points toward the center of the circle. Such an acceleration is called a centripetal (center-seeking) acceleration. Its magnitude is given by

\[
a_c = \frac{v^2}{r}
\]

[7.13]

To derive Equation 7.13, consider Figure 7.7a. An object is first at point \(\bullet \) with velocity \(\mathbf{v}_i \) at time \(t_i \) and then at point \(\bullet \) with velocity \(\mathbf{v}_f \) at a later time \(t_f \). We solve \(v_f = r\omega \) for \(\omega \) and calculate the angular speed at \(r = 2.0 \) cm:

\[
\omega = \frac{v_f}{r} = \frac{1.3 \text{ m/s}}{2.0 \times 10^{-2} \text{ m}} = 65 \text{ rad/s}
\]

Likewise, find the angular speed at \(r = 5.6 \) cm:

\[
\omega = \frac{v_f}{r} = \frac{1.3 \text{ m/s}}{5.6 \times 10^{-2} \text{ m}} = 23 \text{ rad/s}
\]

(b) Find the linear speed in m/s of a 45.0-rpm record at points 2.0 cm and 5.6 cm from the center.

Convert rev/min to rad/s:

\[
45.0 \text{ rev/min} = 45.0 \left(\frac{\text{rev}}{\text{min}} \right) \left(\frac{2\pi \text{ rad}}{\text{rev}} \right) \left(\frac{1.00 \text{ min}}{60.0 \text{ s}} \right) = 4.71 \text{ rad/s}
\]

Calculate the linear speed at \(r = 2.0 \) cm:

\[
v_f = r\omega = (2.0 \times 10^{-2} \text{ m})(4.71 \text{ rad/s}) = 0.094 \text{ m/s}
\]

Calculate the linear speed at \(r = 5.6 \) cm:

\[
v_f = r\omega = (5.6 \times 10^{-2} \text{ m})(4.71 \text{ rad/s}) = 0.26 \text{ m/s}
\]

(c) Calculate the total length of the track for a CD designed to play for 1.0 h.

Multiply the linear speed of the read head by the time in seconds:

\[
d = v_f t = (1.3 \text{ m/s})(3600 \text{ s}) = 4700 \text{ m}
\]

Remark Notice that for the record player in part (b), even though the angular speed is constant at all points along a radial line, the tangential speed steadily increases with increasing \(r \). The calculation for a CD in part (c) is easy only because the linear (tangential) speed is constant. It would be considerably more difficult for a record player, where the tangential speed depends on the distance from the center.

QUESTION 7.5

What is the angular acceleration of a record player while it’s playing a song? Can a CD player have the same angular acceleration as a record player? Explain.

EXERCISE 7.5

Compute the linear speed of a record playing at 33 1/3 revolutions per minute (a) at \(r = 2.00 \) cm and (b) at \(r = 5.60 \) cm.

Answers (a) 0.069 8 m/s (b) 0.195 m/s

7.4 CENTRIPETAL ACCELERATION

Figure 7.6a shows a car moving in a circular path with constant linear speed \(v \). Even though the car moves at a constant speed, it still has an acceleration. To understand this, consider the defining equation for average acceleration:

\[
\mathbf{a}_{av} = \frac{\mathbf{v}_f - \mathbf{v}_i}{t_f - t_i}
\]

[7.12]

The numerator represents the difference between the velocity vectors \(\mathbf{v}_f \) and \(\mathbf{v}_i \). These vectors may have the same magnitude, corresponding to the same speed, but if they have different directions, their difference can’t equal zero. The direction of the car’s velocity as it moves in the circular path is continually changing, as shown in Figure 7.6b. For circular motion at constant speed, the acceleration vector always points toward the center of the circle. Such an acceleration is called a centripetal (center-seeking) acceleration. Its magnitude is given by

\[
a_c = \frac{v^2}{r}
\]

[7.13]

To derive Equation 7.13, consider Figure 7.7a. An object is first at point \(\bullet \) with velocity \(\mathbf{v}_i \) at time \(t_i \) and then at point \(\bullet \) with velocity \(\mathbf{v}_f \) at a later time \(t_f \). We...
assume \(\vec{v}_i \) and \(\vec{v}_f \) differ only in direction; their magnitudes are the same (\(v_i = v_f = v \)). To calculate the acceleration, we begin with Equation 7.12,

\[
\vec{a}_v = \frac{\vec{v}_f - \vec{v}_i}{t_f - t_i} = \frac{\Delta \vec{v}}{\Delta t}
\]

where \(\Delta \vec{v} = \vec{v}_f - \vec{v}_i \) is the change in velocity. When \(\Delta t \) is very small, \(\Delta s \) and \(\Delta \theta \) are also very small. In Figure 7.7b \(\vec{v}_f \) is almost parallel to \(\vec{v}_i \), and the vector \(\Delta \vec{v} \) is approximately perpendicular to them, pointing toward the center of the circle. In the limiting case when \(\Delta t \) becomes vanishingly small, \(\Delta \vec{v} \) points exactly toward the center of the circle, and the average acceleration \(\vec{a}_v \) becomes the instantaneous acceleration \(\vec{a}_c \). From Equation 7.14, \(\vec{a}_v \) and \(\Delta \vec{v} \) point in the same direction (in this limit), so the instantaneous acceleration points to the center of the circle.

The triangle in Figure 7.7a, which has sides \(s \) and \(r \), is similar to the one formed by the vectors in Figure 7.7b, so the ratios of their sides are equal:

\[
\frac{\Delta v}{v} = \frac{\Delta s}{r}
\]

or

\[
\Delta v = \frac{v}{r} \Delta s
\]

Substituting the result of Equation 7.15 into \(a_v = \Delta v / \Delta t \) gives

\[
a_v = \frac{v}{r} \frac{\Delta s}{\Delta t}
\]

But \(\Delta s \) is the distance traveled along the arc of the circle in time \(\Delta t \), and in the limiting case when \(\Delta t \) becomes very small, \(\Delta s / \Delta t \) approaches the instantaneous value of the tangential speed, \(v \). At the same time, the average acceleration \(a_v \) approaches \(a_c \), the instantaneous centripetal acceleration, so Equation 7.16 reduces to Equation 7.13:

\[
a_c = \frac{v^2}{r}
\]

Because the tangential speed is related to the angular speed through the relation \(v_c = r \omega \) (Eq. 7.10), an alternate form of Equation 7.15 is

\[
a_c = \frac{r^2 \omega^2}{r} = r \omega^2
\]

Dimensionally, \([r] = L \) and \([\omega] = 1/T \), so the units of centripetal acceleration are \(L/T^2 \), as they should be. This is a geometric result relating the centripetal acceleration to the angular speed, but physically an acceleration can occur only if some force is present. For example, if a car travels in a circle on flat ground, the force of static friction between the tires and the ground provides the necessary centripetal force.

Note that \(a_c \) in Equations 7.13 and 7.17 represents only the magnitude of the centripetal acceleration. The acceleration itself is always directed towards the center of rotation.

The foregoing derivations concern circular motion at constant speed. When an object moves in a circle but is speeding up or slowing down, a tangential component of acceleration, \(a_t = r a \), is also present. Because the tangential and centripetal components of acceleration are perpendicular to each other, we can find the magnitude of the total acceleration with the Pythagorean theorem:

\[
a = \sqrt{a_t^2 + a_c^2}
\]

QUICK QUIZ 7.6 A racetrack is constructed such that two arcs of radius 80 m at \(\Theta \) and 40 m at \(\Theta' \) are joined by two stretches of straight track as in
Figure 7.8. In a particular trial run, a driver travels at a constant speed of 50 m/s for one complete lap.

1. The ratio of the tangential acceleration at A to that at B is
 (a) \(\frac{1}{2} \) (b) \(\frac{1}{4} \) (c) 2 (d) 4 (e) The tangential acceleration is zero at both points.

2. The ratio of the centripetal acceleration at A to that at B is
 (a) \(\frac{1}{2} \) (b) \(\frac{1}{4} \) (c) 2 (d) 4 (e) The centripetal acceleration is zero at both points.

3. The angular speed is greatest at
 (a) A (b) B (c) It is equal at both A and B.

QUICK QUIZ 7.7 An object moves in a circular path with constant speed \(v \). Which of the following statements is true concerning the object? (a) Its velocity is constant, but its acceleration is changing. (b) Its acceleration is constant, but its velocity is changing. (c) Both its velocity and acceleration are changing. (d) Its velocity and acceleration remain constant.

EXAMPLE 7.6 At the Racetrack

Goal Apply the concepts of centripetal acceleration and tangential speed.

Problem A race car accelerates uniformly from a speed of 40.0 m/s to a speed of 60.0 m/s in 5.00 s while traveling counterclockwise around a circular track of radius \(4.00 \times 10^2 \) m. When the car reaches a speed of 50.0 m/s, find (a) the magnitude of the car’s centripetal acceleration, (b) the angular speed, (c) the magnitude of the tangential acceleration, and (d) the magnitude of the total acceleration.

Strategy Substitute values into the definitions of centripetal acceleration (Eq. 7.13), tangential speed (Eq. 7.10), and total acceleration (Eq. 7.18). Dividing the change in linear speed by the time yields the tangential acceleration.

Solution

(a) Find the magnitude of the centripetal acceleration when \(v = 50.0 \) m/s.

Substitute into Equation 7.13:

\[
a_c = \frac{v^2}{r} = \frac{(50.0 \text{ m/s})^2}{4.00 \times 10^2 \text{ m}} = 6.25 \text{ m/s}^2
\]

(b) Find the angular speed.

Solve Equation 7.10 for \(\omega \) and substitute:

\[
\omega = \frac{v}{r} = \frac{50.0 \text{ m/s}}{4.00 \times 10^2 \text{ m}} = 0.125 \text{ rad/s}
\]

(c) Find the magnitude of the tangential acceleration.

Divide the change in linear speed by the time:

\[
a_t = \frac{v_f - v_i}{\Delta t} = \frac{60.0 \text{ m/s} - 40.0 \text{ m/s}}{5.00 \text{ s}} = 4.00 \text{ m/s}^2
\]

(d) Find the magnitude of the total acceleration.

Substitute into Equation 7.18:

\[
a = \sqrt{a_c^2 + a_t^2} = \sqrt{(6.25 \text{ m/s}^2)^2 + (4.00 \text{ m/s}^2)^2} = 7.42 \text{ m/s}^2
\]

Remarks We can also find the centripetal acceleration by substituting the derived value of \(\omega \) into Equation 7.17.

QUESTION 7.6

If the force causing the centripetal acceleration suddenly vanished, would the car (a) slide away along a radius, (b) proceed along a line tangent to the circular motion, or (c) proceed at an angle intermediate between the tangent and radius?
EXERCISE 7.6
Suppose the race car now slows down uniformly from 60.0 m/s to 30.0 m/s in 4.50 s to avoid an accident, while still traversing a circular path 4.00×10^2 m in radius. Find the car’s (a) centripetal acceleration, (b) angular speed, (c) tangential acceleration, and (d) total acceleration when the speed is 40.0 m/s.

Answers
(a) 4.00 m/s2 (b) 0.100 rad/s (c) −6.67 m/s2 (d) 7.77 m/s2

Angular Quantities Are Vectors
When we discussed linear motion in Chapter 2, we emphasized that displacement, velocity, and acceleration are all vector quantities. In describing rotational motion, angular displacement, angular velocity, and angular acceleration are also vector quantities.

The direction of the angular velocity vector ω can be found with the right-hand rule, as illustrated in Figure 7.9a. Grasp the axis of rotation with your right hand so that your fingers wrap in the direction of rotation. Your extended thumb then points in the direction of ω. Figure 7.9b shows that ω is also in the direction of advance of a rotating right-handed screw.

We can apply this rule to a rotating disk viewed along the axis of rotation, as in Figure 7.10. When the disk rotates clockwise (Fig. 7.10a), the right-hand rule shows that the direction of ω is into the page. When the disk rotates counterclockwise (Fig. 7.10b), the direction of ω is out of the page.

Finally, the directions of the angular acceleration α and the angular velocity ω are the same if the angular speed ω (the magnitude of ω) is increasing with time, and are opposite each other if the angular speed is decreasing with time.

Forces Causing Centripetal Acceleration
An object can have a centripetal acceleration **only** if some external force acts on it. For a ball whirling in a circle at the end of a string, that force is the tension in the string. In the case of a car moving on a flat circular track, the force is friction between the car and track. A satellite in circular orbit around Earth has a centripetal acceleration due to the gravitational force between the satellite and Earth.

Some books use the term “centripetal force,” which can give the mistaken impression that it is a new force of nature. This is not the case: The adjective “centripetal” in “centripetal force” simply means that the force in question acts toward a center. The gravitational force and the force of tension in the string of a yo-yo whirling in a circle are examples of centripetal forces, as is the force of gravity on a satellite circling the Earth.

Consider a ball of mass m that is tied to a string of length r and is being whirled at constant speed in a horizontal circular path, as illustrated in Figure 7.11. Its weight is supported by a frictionless table. Why does the ball move in a circle? Because of its inertia, the tendency of the ball is to move in a straight line; however, the string prevents motion along a straight line by exerting a radial force on the ball—a tension force—that makes it follow the circular path. The tension is directed along the string toward the center of the circle, as shown in the figure.
In general, applying Newton’s second law along the radial direction yields the equation relating the net centripetal force F_c—the sum of the radial components of all forces acting on a given object—with the centripetal acceleration:

$$F_c = ma_c = m\frac{v^2}{r} \quad [7.19]$$

A net force causing a centripetal acceleration acts toward the center of the circular path and effects a change in the direction of the velocity vector. If that force should vanish, the object would immediately leave its circular path and move along a straight line tangent to the circle at the point where the force vanished.

Tip 7.2 Centripetal Force Is a Type of Force, Not a Force in Itself!

“Centripetal force” is a classification that includes forces acting toward a central point, like string tension on a tetherball or gravity on a satellite. A centripetal force must be supplied by some actual, physical force.

APPLYING PHYSICS 7.2 ARTIFICIAL GRAVITY

Astronauts spending lengthy periods of time in space experience a number of negative effects due to weightlessness, such as weakening of muscle tissue and loss of calcium in bones. These effects may make it very difficult for them to return to their usual environment on Earth. How could artificial gravity be generated in space to overcome such complications?

Solution A rotating cylindrical space station creates an environment of artificial gravity. The normal force of the rigid walls provides the centripetal force, which keeps the astronauts moving in a circle (Fig. 7.12). To an astronaut, the normal force can’t be easily distinguished from a gravitational force as long as the radius of the station is large compared with the astronaut’s height. (Otherwise there are unpleasant inner ear effects.) This same principle is used in certain amusement park rides in which passengers are pressed against the inside of a rotating cylinder as it tilts in various directions. The visionary physicist Gerard O’Neill proposed creating a giant space colony a kilometer in radius that rotates slowly, creating Earth-normal artificial gravity for the inhabitants in its interior. These inside-out artificial worlds could enable safe transport on a several-thousand-year journey to another star system.

![FIGURE 7.12 Artificial gravity inside a spinning cylinder is provided by the normal force.](image)

PROBLEM-SOLVING STRATEGY

FORCES THAT CAUSE CENTRIPETAL ACCELERATION

Use the following steps in dealing with centripetal accelerations and the forces that produce them:

1. **Draw a free-body diagram** of the object under consideration, labeling all forces that act on it.

2. **Choose a coordinate system** that has one axis perpendicular to the circular path followed by the object (the radial direction) and one axis tangent to the circular path (the tangential, or angular, direction). The normal direction, perpendicular to the plane of motion, is also often needed.

3. **Find the net force F_r toward the center** of the circular path, $F_r = \Sigma F_r$, where ΣF_r is the sum of the radial components of the forces. This net radial force causes the centripetal acceleration.

4. **Use Newton’s second law for the radial, tangential, and normal directions**, as required, writing $\Sigma F_r = ma_r$, $\Sigma F_t = ma_t$, and $\Sigma F_n = ma_n$. Remember that
the magnitude of the centripetal acceleration for uniform circular motion can always be written \(a_c = \frac{v^2}{r} \).

5. Solve for the unknown quantities.

EXAMPLE 7.7 Buckle Up for Safety

Goal Calculate the frictional force that causes an object to have a centripetal acceleration.

Problem A car travels at a constant speed of 30.0 mi/h (13.4 m/s) on a level circular turn of radius 50.0 m, as shown in the bird's-eye view in Figure 7.13a. What minimum coefficient of static friction, \(\mu_s \), between the tires and roadway will allow the car to make the circular turn without sliding?

Strategy In the car's free-body diagram (Fig. 7.13b) the normal direction is vertical and the tangential direction is into the page (Step 2). Use Newton's second law. The net force acting on the car in the radial direction is the force of static friction toward the center of the circular path, which causes the car to have a centripetal acceleration. Calculating the maximum static friction force requires the normal force, obtained from the normal component of the second law.

Solution (Steps 3, 4) Write the components of Newton's second law. The radial component involves only the maximum static friction force, \(f_{s,\text{max}} \):

\[
m \frac{v^2}{r} = f_{s,\text{max}} = \mu_s n
\]

In the vertical component of the second law, the gravity force and the normal force are in equilibrium:

\[
n - mg = 0 \quad \rightarrow \quad n = mg
\]

(Step 5) Substitute the expression for \(n \) into the first equation and solve for \(\mu_s \):

\[
\mu_s = \frac{v^2}{rg} = \frac{(13.4 \text{ m/s})^2}{(50.0 \text{ m})(9.80 \text{ m/s}^2)} = 0.366
\]

Remarks The value of \(\mu_s \) for rubber on dry concrete is very close to 1, so the car can negotiate the curve with ease. If the road were wet or icy, however, the value for \(\mu_s \) could be 0.2 or lower. Under such conditions, the radial force provided by static friction wouldn't be great enough to keep the car on the circular path, and it would slide off on a tangent, leaving the roadway.

QUESTION 7.7

If the static friction coefficient were increased, would the maximum safe speed be reduced, be increased, or remain the same?

EXERCISE 7.7

At what maximum speed can a car negotiate a turn on a wet road with coefficient of static friction 0.230 without sliding out of control? The radius of the turn is 25.0 m.

Answer 7.51 m/s
EXAMPLE 7.8 Dayona International Speedway

Goal Solve a centripetal force problem involving two dimensions.

Problem The Daytona International Speedway in Daytona Beach, Florida, is famous for its races, especially the Daytona 500, held every spring. Both of its courses feature four-story, 31.0° banked curves, with maximum radius of 316 m. If a car negotiates the curve too slowly, it tends to slip down the incline of the turn, whereas if it’s going too fast, it may begin to slide up the incline. (a) Find the necessary centripetal acceleration on this banked curve so the car won’t slip down or slide up the incline. (Neglect friction.) (b) Calculate the speed of the race car.

Strategy Two forces act on the race car: the force of gravity and the normal force n. (See Fig. 7.14.) Use Newton’s second law in the upward and radial directions to find the centripetal acceleration a_c. Solving $a_c = v^2/r$ for v then gives the race car’s speed.

Solution

(a) Find the centripetal acceleration.

Write Newton’s second law for the car:

$$m \ddot{a} = \sum F = \vec{n} + mg$$

Use the y-component of Newton’s second law to solve for the normal force n:

$$n \cos \theta - mg = 0$$

$$n = \frac{mg}{\cos \theta}$$

Obtain an expression for the horizontal component of \vec{n}, which is the centripetal force F_c in this example:

$$F_c = n \sin \theta = mg \tan \theta$$

Substitute this expression for F_c into the radial component of Newton’s second law and divide by m to get the centripetal acceleration:

$$a_c = \frac{F_c}{m} = g \tan \theta$$

$$a_c = (9.80 \text{ m/s}^2)(\tan 31.0^\circ) = 5.89 \text{ m/s}^2$$

(b) Find the speed of the race car.

Apply Equation 7.13:

$$\frac{v^2}{r} = a_c$$

$$v = \sqrt{a_c r} = \sqrt{(316 \text{ m})(5.89 \text{ m/s}^2)} = 43.1 \text{ m/s}$$

Remarks Both banking and friction assist in keeping the race car on the track.

APPLICATION

Banked Roadways

QUESTION 7.8

What three physical quantities determine a minimum safe speed on a banked racetrack?

EXERCISE 7.8

A racetrack is to have a banked curve with radius of 245 m. What should be the angle of the bank if the normal force alone is to allow safe travel around the curve at 58.0 m/s?

Answer 54.5°
EXAMPLE 7.9 Riding the Tracks

Goal Combine centripetal force with conservation of energy.

Problem Figure 7.15a shows a roller-coaster car moving around a circular loop of radius R. (a) What speed must the car have so that it will just make it over the top without any assistance from the track? (b) What speed will the car subsequently have at the bottom of the loop? (c) What will be the normal force on a passenger at the bottom of the loop if the loop has a radius of 10.0 m?

Strategy This problem requires Newton's second law and centripetal acceleration to find an expression for the car's speed at the top of the loop, followed by conservation of energy to find its speed at the bottom. If the car just makes it over the top, the force n must become zero there, so the only force exerted on the car at that point is the force of gravity, mg. At the bottom of the loop, the normal force acts up toward the center and the gravity force acts down, away from the center. The difference of these two is the centripetal force. The normal force can then be calculated from Newton's second law.

Solution

(a) Find the speed at the top of the loop.

Write Newton's second law for the car:

$$m\ddot{a} = n + mg$$

At the top of the loop, set $n = 0$. The force of gravity acts toward the center and provides the centripetal acceleration $a_c = v^2/R$:

$$m \frac{v_{\text{top}}^2}{R} = mg$$

Solve the foregoing equation for v_{top}:

$$v_{\text{top}} = \sqrt{gR}$$

(b) Find the speed at the bottom of the loop.

Apply conservation of mechanical energy to find the total mechanical energy at the top of the loop:

$$E_{\text{top}} = \frac{1}{2}mv_{\text{top}}^2 + mgh = \frac{1}{2}mgR + mg(2R) = 2.5mgR$$

Find the total mechanical energy at the bottom of the loop:

$$E_{\text{bot}} = \frac{1}{2}mv_{\text{bot}}^2$$

Energy is conserved, so these two energies may be equated and solved for v_{bot}:

$$\frac{1}{2}mv_{\text{bot}}^2 = 2.5mgR$$

$$v_{\text{bot}} = \sqrt{5gR}$$

(c) Find the normal force on a passenger at the bottom. (This is the passenger's perceived weight.)

Use Equation (1). The net centripetal force is $n - mg$:

$$m \frac{v_{\text{bot}}^2}{R} = n - mg$$

Solve for n:

$$n = mg + m \frac{v_{\text{bot}}^2}{R} = mg + m \frac{5gR}{R} = 6mg$$

Remarks The final answer for n shows that the rider experiences a force six times normal weight at the bottom of the loop! Astronauts experience a similar force during space launches.
QUESTION 7.9
Suppose the car subsequently goes over a rise with the same radius of curvature and at the same speed as part (a). What is the normal force in this case?

EXERCISE 7.9
A jet traveling at a speed of 1.20×10^3 m/s executes a vertical loop with a radius of 5.00×10^2 m. (See Fig. 7.15b.) Find the magnitude of the force of the seat on a 70.0-kg pilot at (a) the top and (b) the bottom of the loop.

Answer
(a) 1.33×10^3 N (b) 2.70×10^3 N

Fictitious Forces
Anyone who has ridden a merry-go-round as a child (or as a fun-loving grown-up) has experienced what feels like a “center-fleeing” force. Holding onto the railing and moving toward the center feels like a walk up a steep hill.

Actually, this so-called centrifugal force is fictitious. In reality, the rider is exerting a centripetal force on his body with his hand and arm muscles. In addition, a smaller centripetal force is exerted by the static friction between his feet and the platform. If the rider’s grip slipped, he wouldn’t be flung radially away; rather, he would go off on a straight line, tangent to the point in space where he let go of the railing. The rider lands at a point that is farther away from the center, but not by “fleeing the center” along a radial line. Instead, he travels perpendicular to a radial line, traversing an angular displacement while increasing his radial displacement. (See Fig. 7.16.)

7.5 NEWTONIAN GRAVITATION
Prior to 1686, a great deal of data had been collected on the motions of the Moon and planets, but no one had a clear understanding of the forces affecting them. In that year, Isaac Newton provided the key that unlocked the secrets of the heavens. He knew from the first law that a net force had to be acting on the Moon. If it were not, the Moon would move in a straight-line path rather than in its almost circular orbit around Earth. Newton reasoned that this force arose as a result of an attractive force between the Moon and the Earth, called the force of gravity, and that it was the same kind of force that attracted objects—such as apples—close to the surface of the Earth.

In 1687 Newton published his work on the law of universal gravitation:

If two particles with masses m_1 and m_2 are separated by a distance r, a gravitational force F acts along a line joining them, with magnitude given by

$$ F = G \frac{m_1 m_2}{r^2} $$

where $G = 6.673 \times 10^{-11} \text{ kg}^2 \cdot \text{m}^3 \cdot \text{s}^{-2}$ is a constant of proportionality called the constant of universal gravitation. The gravitational force is always attractive.

7.5 Newtonian Gravitation
This force law is an example of an inverse-square law, in that it varies as one over the square of the separation of the particles. From Newton’s third law, we know that the force exerted by \(m_1 \) on \(m_2 \), designated \(\mathbf{F}_{12} \) in Active Figure 7.17, is equal in magnitude but opposite in direction to the force \(\mathbf{F}_{21} \) exerted by \(m_2 \) on \(m_1 \), forming an action-reaction pair.

Another important fact is that the gravitational force exerted by a uniform sphere on a particle outside the sphere is the same as the force exerted if the entire mass of the sphere were concentrated at its center. This is called Gauss’s law, after the German mathematician and astronomer Karl Friedrich Gauss, and is also true of electric fields, which we will encounter in Chapter 15. Gauss’s law is a mathematical result, true because the force falls off as an inverse square of the separation between the particles.

Near the surface of the Earth, the expression \(\mathbf{F} / m g \) is valid. As shown in Table 7.1, however, the free-fall acceleration \(g \) varies considerably with altitude above the Earth.

QUICK QUIZ 7.8 A ball falls to the ground. Which of the following statements are false? (a) The force that the ball exerts on Earth is equal in magnitude to the force that Earth exerts on the ball. (b) The ball undergoes the same acceleration as Earth. (c) Earth pulls much harder on the ball than the ball pulls on Earth, so the ball falls while Earth remains stationary.

QUICK QUIZ 7.9 A planet has two moons with identical mass. Moon 1 is in a circular orbit of radius \(r \). Moon 2 is in a circular orbit of radius \(2r \). The magnitude of the gravitational force exerted by the planet on Moon 2 is (a) four times as large (b) twice as large (c) the same (d) half as large (e) one-fourth as large as the gravitational force exerted by the planet on Moon 1.

Table 7.1
Free-Fall Acceleration \(g \) at Various Altitudes

<table>
<thead>
<tr>
<th>Altitude (km)</th>
<th>(g) (m/s²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 000</td>
<td>7.33</td>
</tr>
<tr>
<td>2 000</td>
<td>5.68</td>
</tr>
<tr>
<td>3 000</td>
<td>4.53</td>
</tr>
<tr>
<td>4 000</td>
<td>3.70</td>
</tr>
<tr>
<td>5 000</td>
<td>3.08</td>
</tr>
<tr>
<td>6 000</td>
<td>2.60</td>
</tr>
<tr>
<td>7 000</td>
<td>2.23</td>
</tr>
<tr>
<td>8 000</td>
<td>1.93</td>
</tr>
<tr>
<td>9 000</td>
<td>1.69</td>
</tr>
<tr>
<td>10 000</td>
<td>1.49</td>
</tr>
<tr>
<td>50 000</td>
<td>0.13</td>
</tr>
</tbody>
</table>

*aAll figures are distances above Earth’s surface.

Measurement of the Gravitational Constant

The gravitational constant \(G \) in Equation 7.20 was first measured in an important experiment by Henry Cavendish in 1798. His apparatus consisted of two small spheres, each of mass \(m \), fixed to the ends of a light horizontal rod suspended by a thin metal wire, as in Figure 7.18a. Two large spheres, each of mass \(M \), were placed near the smaller spheres. The attractive force between the smaller and larger spheres caused the rod to rotate in a horizontal plane and the wire to twist. The angle through which the suspended rod rotated was measured with a light beam reflected from a mirror attached to the vertical suspension. (Such a moving spot of light is an effective technique for amplifying the motion.) The experiment was carefully repeated with different masses at various separations. In addition to providing a value for \(G \), the results showed that the force is attractive, proportional...
to the product mM, and inversely proportional to the square of the distance r.

Modern forms of such experiments are carried out regularly today in an effort to determine G with greater precision.

EXAMPLE 7.10 Billiards, Anyone?

Goal Use vectors to find the net gravitational force on an object.

Problem (a) Three 0.300-kg billiard balls are placed on a table at the corners of a right triangle, as shown from overhead in Figure 7.19. Find the net gravitational force on the cue ball (designated as m_1) resulting from the forces exerted by the other two balls. (b) Find the components of the gravitational force of m_2 on m_3.

Strategy (a) To find the net gravitational force on the cue ball of mass m_1, we first calculate the force F_{21} exerted by m_2 on m_1. This force is the y-component of the net force acting on m_1. Then we find the force F_{31} exerted by m_3 on m_1, which is the x-component of the net force acting on m_1. With these two components, we can find the magnitude and direction of the net force on the cue ball. (b) In this case, we must use trigonometry to find the components of the force F_{23}.

Solution

(a) Find the net gravitational force on the cue ball.

Find the magnitude of the force F_{21} exerted by m_2 on m_1 using the law of gravitation, Equation 7.20:

$$F_{21} = G \frac{m_2 m_1}{r_{21}^2}$$

$$= \left(6.67 \times 10^{-11} \text{ N} \cdot \text{m}^2/\text{kg}^2\right) \frac{(0.300 \text{ kg})(0.300 \text{ kg})}{(0.400 \text{ m})^2}$$

$$F_{21} = 3.75 \times 10^{-11} \text{ N}$$

Find the magnitude of the force F_{31} exerted by m_3 on m_1, again using Newton’s law of gravity:

$$F_{31} = G \frac{m_3 m_1}{r_{31}^2}$$

$$= \left(6.67 \times 10^{-11} \text{ N} \cdot \text{m}^2/\text{kg}^2\right) \frac{(0.300 \text{ kg})(0.300 \text{ kg})}{(0.500 \text{ m})^2}$$

$$F_{31} = 6.67 \times 10^{-11} \text{ N}$$

The net force has components $F_x = F_{31}$ and $F_y = F_{21}$.

Compute the magnitude of this net force:

$$F = \sqrt{F_x^2 + F_y^2} = \sqrt{(6.67 \times 10^{-11})^2 + (3.75 \times 10^{-11})^2} \times 10^{-11} \text{ N}$$

$$= 7.65 \times 10^{-11} \text{ N}$$

Use the inverse tangent to obtain the direction of \vec{F}:

$$\theta = \tan^{-1}\left(\frac{F_y}{F_x}\right) = \tan^{-1}\left(\frac{3.75 \times 10^{-11} \text{ N}}{6.67 \times 10^{-11} \text{ N}}\right) = 29.3^\circ$$

(b) Find the components of the force of m_2 on m_3.

First, compute the magnitude of F_{23}:

$$F_{23} = G \frac{m_2 m_3}{r_{23}^2}$$

$$= \left(6.67 \times 10^{-11} \text{ kg} \cdot \text{m}^2/\text{s}^2\right) \frac{(0.300 \text{ kg})(0.300 \text{ kg})}{(0.500 \text{ m})^2}$$

$$= 2.40 \times 10^{-11} \text{ N}$$

To obtain the x- and y-components of F_{23}, we need $\cos \varphi$ and $\sin \varphi$. Use the sides of the large triangle in Figure 7.19:

$$\cos \varphi = \frac{\text{adj}}{\text{hyp}} = \frac{0.300 \text{ m}}{0.500 \text{ m}} = 0.600$$

$$\sin \varphi = \frac{\text{opp}}{\text{hyp}} = \frac{0.400 \text{ m}}{0.500 \text{ m}} = 0.800$$
Remarks Notice how small the gravity forces are between everyday objects. Nonetheless, such forces can be measured directly with torsion balances.

QUESTION 7.10
Is the gravity force a significant factor in a game of billiards? Explain.

EXERCISE 7.10
Find magnitude and direction of the force exerted by m_1 and m_3 on m_2.

Answers 5.85×10^{-11} N, -75.8°

EXAMPLE 7.11 Ceres

Goal Relate Newton’s universal law of gravity to mg and show how g changes with position.

Problem An astronaut standing on the surface of Ceres, the largest asteroid, drops a rock from a height of 10.0 m. It takes 8.06 s to hit the ground. (a) Calculate the acceleration of gravity on Ceres. (b) Find the mass of Ceres, given that the radius of Ceres is $R_C = 5.10 \times 10^2$ km. (c) Calculate the gravitational acceleration 50.0 km from the surface of Ceres.

Strategy Part (a) is a review of one-dimensional kinematics. In part (b) the weight of an object, $w = mg$, is the same as the magnitude of the force given by the universal law of gravity. Solve for the unknown mass of Ceres, after which the answer for (c) can be found by substitution into the universal law of gravity, Equation 7.20.

Solution (a) Calculate the acceleration of gravity, g_C, on Ceres.

Apply the kinematics displacement equation to the falling rock:

$$\Delta x = \frac{1}{2}at^2 + v_0t$$

Substitute $\Delta x = -10.0 \text{ m}$, $v_0 = 0$, $a = -g_C$, and $t = 8.06 \text{ s}$, and solve for the gravitational acceleration on Ceres, g_C:

$$-10.0 \text{ m} = -\frac{1}{2}g_C(8.06 \text{ s})^2 \rightarrow g_C = 0.308 \text{ m/s}^2$$

(b) Find the mass of Ceres.

Equate the weight of the rock on Ceres to the gravitational force acting on the rock:

$$mg_C = \frac{G\, M_C\, m}{R_C^2}$$

Solve for the mass of Ceres, M_C:

$$M_C = \frac{g_CR_C^2}{G} = 1.20 \times 10^{21} \text{ kg}$$

(c) Calculate the acceleration of gravity at a height of 50.0 km above the surface of Ceres.

Equate the weight at 50.0 km to the gravitational force:

$$mg'_C = \frac{G\, mM_C}{r^2}$$
Gravitational Potential Energy Revisited

In Chapter 5 we introduced the concept of gravitational potential energy and found that the potential energy associated with an object could be calculated from the equation\[PE = mgh, \] where \(h \) is the height of the object above or below some reference level. This equation, however, is valid only when the object is near Earth’s surface. For objects high above Earth’s surface, such as a satellite, an alternative must be used because \(g \) varies with distance from the surface, as shown in Table 7.1.

The gravitational potential energy associated with an object of mass \(m \) at a distance \(r \) from the center of Earth is\[PE = -\frac{GM_Em}{r^2}, \] where \(M_E \) and \(R_E \) are the mass and radius of Earth, respectively, with \(r > R_E \).

SI units: Joules (J)

As before, gravitational potential energy is a property of a system, in this case the object of mass \(m \) and Earth. Equation 7.21 is valid for the special case where the zero level for potential energy is at an infinite distance from the center of Earth. Recall that the gravitational potential energy associated with an object is nothing more than the negative of the work done by the force of gravity in moving the object. If an object falls under the force of gravity from a great distance (effectively infinity), the change in gravitational potential energy is negative, which corresponds to a positive amount of gravitational work done on the system. This positive work is equal to the (also positive) change in kinetic energy, as the next example shows.

EXAMPLE 7.12 A Near-Earth Asteroid

Goal Use gravitational potential energy to calculate the work done by gravity on a falling object.

Problem An asteroid with mass \(m = 1.00 \times 10^9 \) kg comes from deep space, effectively from infinity, and falls toward Earth. (a) Find the change in potential energy when it reaches a point \(4.00 \times 10^8 \) m from Earth (just beyond the Moon). In addition, find the work done by the force of gravity. (b) Calculate the asteroid’s speed at that point, assuming it was initially at rest when it was arbitrarily far away. (c) How much work would have to be done on the asteroid by some other agent so the asteroid would be traveling at only half the speed found in (b) at the same point?
Strategic Plan Part (a) requires simple substitution into the definition of gravitational potential energy. To find the work done by the force of gravity, recall that the work done on an object by a conservative force is just the negative of the change in potential energy. Part (b) can be solved with conservation of energy, and part (c) is an application of the work–energy theorem.

Solution

(a) Find the change in potential energy and the work done by the force of gravity.

Apply Equation 7.21:

\[\Delta PE = PE_f - PE_i = \frac{GM_em}{r_f} - \left(\frac{GM_em}{r_i} \right) \]

Substitute known quantities. The asteroid’s initial position is effectively infinity, so \(1/r_i \) is zero:

\[\Delta PE = \left(6.67 \times 10^{-11} \text{ kg}^{-1}\text{m}^3/\text{s}^2 \right) (5.98 \times 10^{24} \text{ kg}) \times (1.00 \times 10^9 \text{ kg}) \left(\frac{1}{4.00 \times 10^8 \text{ m}} + 0 \right) \]

\[\Delta PE = -9.97 \times 10^{14} \text{ J} \]

Compute the work done by the force of gravity:

\[W_{grav} = -\Delta PE = 9.97 \times 10^{14} \text{ J} \]

(b) Find the speed of the asteroid when it reaches \(r_f = 4.00 \times 10^8 \text{ m} \).

Use conservation of energy:

\[\Delta KE + \Delta PE = 0 \]

\[\left(\frac{1}{2}mv^2 - 0 \right) - 9.97 \times 10^{14} \text{ J} = 0 \]

\[v = 1.41 \times 10^5 \text{ m/s} \]

(c) Find the work needed to reduce the speed to \(7.05 \times 10^2 \text{ m/s} \) (half the value just found) at this point.

Apply the work–energy theorem:

\[W = \Delta KE + \Delta PE \]

The change in potential energy remains the same as in part (a), but substitute only half the speed in the kinetic-energy term:

\[W = \frac{1}{2}(1.00 \times 10^9 \text{ kg})(7.05 \times 10^2 \text{ m/s})^2 - 9.97 \times 10^{14} \text{ J} \]

\[W = -7.48 \times 10^{14} \text{ J} \]

Remark The amount of work calculated in part (c) is negative because an external agent must exert a force against the direction of motion of the asteroid. It would take a thruster with a megawatt of output about 24 years to slow down the asteroid to half its original speed. An asteroid endangering Earth need not be slowed that much: A small change in its speed, if applied early enough, will cause it to miss Earth. Timeliness of the applied thrust, however, is important. By the time you can look over your shoulder and see the Earth, it’s already far too late, despite how these scenarios play out in Hollywood. Last-minute rescues won’t work!

QUESTION 7.12
As the asteroid approaches Earth, does the gravitational potential energy associated with the asteroid–Earth system (a) increase, (b) decrease, (c) remain the same?
EXERCISE 7.12
Suppose the asteroid starts from rest at a great distance (effectively infinity), falling toward Earth. How much work would have to be done on the asteroid to slow it to 425 m/s by the time it reached a distance of 2.00×10^8 m from Earth?

Answer -1.90×10^{15} J

APPLYING PHYSICS 7.3 WHY IS THE SUN HOT?

Explanation The Sun formed when particles in a cloud of gas coalesced, due to gravitational attraction, into a massive astronomical object. Before this occurred, the particles in the cloud were widely scattered, representing a large amount of gravitational potential energy. As the particles fell closer together, their kinetic energy increased, but the gravitational potential energy of the system decreased, as required by the conservation of energy. With further slow collapse, the cloud became more dense and the average kinetic energy of the particles increased. This kinetic energy is the internal energy of the cloud, which is proportional to the temperature. If enough particles come together, the temperature can rise to a point at which nuclear fusion occurs and the ball of gas becomes a star. Otherwise, the temperature may rise, but not enough to ignite fusion reactions, and the object becomes a brown dwarf (a failed star) or a planet.

On inspecting Equation 7.21, some may wonder what happened to mgh, the gravitational potential energy expression introduced in Chapter 5. That expression is still valid when h is small compared with Earth’s radius. To see this, we write the change in potential energy as an object is raised from the ground to height h, using the general form for gravitational potential energy (see Fig. 7.20):

$$PE_2 - PE_1 = -G \frac{M_E m}{R_E} - \left(-G \frac{M_E m}{R_E} \right)$$

$$= -GM_Em\left[\frac{1}{(R_E + h)} - \frac{1}{R_E} \right]$$

After finding a common denominator and applying some algebra, we obtain

$$PE_2 - PE_1 = \frac{GM_Em h}{R_E(R_E + h)}$$

When the height h is very small compared with R_E, h can be dropped from the second factor in the denominator, yielding

$$\frac{1}{R_E(R_E + h)} \approx \frac{1}{R_E^2}$$

Substituting this into the previous expression, we have

$$PE_2 - PE_1 \approx \frac{GM_E}{R_E^2} mh$$

Now recall from Chapter 4 that the free-fall acceleration at the surface of Earth is given by $g = GM_E/R_E^2$, giving

$$PE_2 - PE_1 \approx mgh$$

Escape Speed

If an object is projected upward from Earth’s surface with a large enough speed, it can soar off into space and never return. This speed is called Earth’s escape speed. (It is also commonly called the escape velocity, but in fact is more properly a speed.)
Earth’s escape speed can be found by applying conservation of energy. Suppose an object of mass \(m \) is projected vertically upward from Earth’s surface with an initial speed \(v_i \). The initial mechanical energy (kinetic plus potential energy) of the object–Earth system is given by

\[
KE_i + PE_i = \frac{1}{2} m v_i^2 - \frac{GM_Em}{r_E}
\]

We neglect air resistance and assume the initial speed is just large enough to allow the object to reach infinity with a speed of zero. This value of \(v_i \) is the escape speed \(v_{esc} \). When the object is at an infinite distance from Earth, its kinetic energy is zero because \(v_f = 0 \), and the gravitational potential energy is also zero because \(1/r \) goes to zero as \(r \) goes to infinity. Hence the total mechanical energy is zero, and the law of conservation of energy gives

\[
\frac{1}{2} m v_{esc}^2 - \frac{GM_Em}{r_E} = 0
\]

so that

\[
v_{esc} = \sqrt{\frac{2GM_E}{r_E}}
\]

[7.22]

The escape speed for Earth is about 11.2 km/s, which corresponds to about 25 000 mi/h. (See Example 7.13.) Note that the expression for \(v_{esc} \) doesn’t depend on the mass of the object projected from Earth, so a spacecraft has the same escape speed as a molecule. Escape speeds for the planets, the Moon, and the Sun are listed in Table 7.2. Escape speed and temperature determine to a large extent whether a world has an atmosphere and, if so, what the constituents of the atmosphere are. Planets with low escape speeds, such as Mercury, generally don’t have atmospheres because the average speed of gas molecules is close to the escape speed. Venus has a very thick atmosphere, but it’s almost entirely carbon dioxide, a heavy gas. The atmosphere of Earth has very little hydrogen or helium, but has retained the much heavier nitrogen and oxygen molecules.

Table 7.2

<table>
<thead>
<tr>
<th>Planet</th>
<th>(v_e) (km/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mercury</td>
<td>4.3</td>
</tr>
<tr>
<td>Venus</td>
<td>10.3</td>
</tr>
<tr>
<td>Earth</td>
<td>11.2</td>
</tr>
<tr>
<td>Moon</td>
<td>2.3</td>
</tr>
<tr>
<td>Mars</td>
<td>5.0</td>
</tr>
<tr>
<td>Jupiter</td>
<td>60.0</td>
</tr>
<tr>
<td>Saturn</td>
<td>36.0</td>
</tr>
<tr>
<td>Uranus</td>
<td>22.0</td>
</tr>
<tr>
<td>Neptune</td>
<td>24.0</td>
</tr>
<tr>
<td>Pluto*</td>
<td>1.1</td>
</tr>
</tbody>
</table>

*In August 2006, the International Astronomical Union adopted a definition of a planet that separates Pluto from the other eight planets. Pluto is now defined as a ‘dwarf planet’ (like the asteroid Ceres).

Example 7.13 From the Earth to the Moon

Goal Apply conservation of energy with the general form of Newton’s universal law of gravity.

Problem In Jules Verne’s classic novel *From the Earth to the Moon*, a giant cannon dug into the Earth in Florida fired a spacecraft all the way to the Moon. (a) If the spacecraft leaves the cannon at escape speed, at what speed is it moving when \(r = 1.50 \times 10^8 \text{ km} \) from the center of Earth? Neglect any friction effects. (b) Approximately what constant acceleration is needed to propel the spacecraft to escape speed through a cannon bore 1.00 km long?

Strategy For part (a), use conservation of energy and solve for the final speed \(v_f \). Part (b) is an application of the time-independent kinematic equation: solve for the acceleration \(a \).

Solution

(a) Find the speed at \(r = 1.50 \times 10^8 \text{ km} \).

Apply conservation of energy:

\[
\frac{1}{2} m v_i^2 - \frac{GM_Em}{r_E} = \frac{1}{2} m v_f^2 - \frac{GM_Em}{r_f}
\]

Multiply by \(2/m \) and rearrange, solving for \(v_f^2 \). Then substitute known values and take the square root.

\[
v_f^2 = v_i^2 + \frac{2GM_E}{r_f} - \frac{2GM_E}{r_f} = v_i^2 + 2GM_E \left(\frac{1}{r_f} - \frac{1}{r_E} \right)
\]

\[
v_f^2 = (1.12 \times 10^4 \text{ m/s})^2 + 2(6.67 \times 10^{-11} \text{ kg m}^2 \text{ s}^{-2})
\]

\[
\times (5.98 \times 10^{24} \text{ kg}) \left(\frac{1}{1.50 \times 10^8 \text{ m}} - \frac{1}{6.37 \times 10^6 \text{ m}} \right)
\]

\[
v_f = 2.35 \times 10^3 \text{ m/s}
\]
Remark: This result corresponds to an acceleration of over 6 000 times the free-fall acceleration on Earth. Such a huge acceleration is far beyond what the human body can tolerate.

QUESTION 7.13

Suppose the spacecraft managed to go into an elliptical orbit around Earth, with a nearest point (perigee) and farthest point (apogee). At which point is the kinetic energy of the spacecraft higher, and why?

EXERCISE 7.13

Using the data in Table 7.3 (see page 217), find (a) the escape speed from the surface of Mars and (b) the speed of a space vehicle when it is 1.25×10^7 m from the center of Mars if it leaves the surface at the escape speed.

Answer
(a) 5.04×10^3 m/s
(b) 2.62×10^3 m/s

7.6 Kepler’s Laws

The movements of the planets, stars, and other celestial bodies have been observed for thousands of years. In early history scientists regarded Earth as the center of the Universe. This **geocentric model** was developed extensively by the Greek astronomer Claudius Ptolemy in the second century A.D. and was accepted for the next 1 400 years. In 1543 Polish astronomer Nicolaus Copernicus (1473–1543) showed that Earth and the other planets revolve in circular orbits around the Sun (the **heliocentric model**). Danish astronomer Tycho Brahe (pronounced Brah or BRAH–huh; 1546–1601) made accurate astronomical measurements over a period of 20 years, providing the data for the currently accepted model of the solar system. Brahe’s precise observations of the planets and 777 stars were carried out with nothing more elaborate than a large sextant and compass; the telescope had not yet been invented.

German astronomer Johannes Kepler, who was Brahe’s assistant, acquired Brahe’s astronomical data and spent about 16 years trying to deduce a mathematical model for the motions of the planets. After many laborious calculations, he found that Brahe’s precise data on the motion of Mars about the Sun provided the answer. Kepler’s analysis first showed that the concept of circular orbits about the Sun had to be abandoned. He eventually discovered that the orbit of Mars could be accurately described by an ellipse with the Sun at one focus. He then generalized this analysis to include the motions of all planets. The complete analysis is summarized in three statements known as **Kepler’s laws**:

1. All planets move in elliptical orbits with the Sun at one of the focal points.
2. A line drawn from the Sun to any planet sweeps out equal areas in equal time intervals.
3. The square of the orbital period of any planet is proportional to the cube of the average distance from the planet to the Sun.

Newton later demonstrated that these laws are consequences of the gravitational force that exists between any two objects. Newton’s law of universal gravitation, together with his laws of motion, provides the basis for a full mathematical description of the motions of planets and satellites.
Kepler’s First Law

The first law arises as a natural consequence of the inverse-square nature of Newton’s law of gravitation. Any object bound to another by a force that varies as \(1/r^2\) will move in an elliptical orbit. As shown in Active Figure 7.21a, an ellipse is a curve drawn so that the sum of the distances from any point on the curve to two internal points called focal points or foci (singular, focus) is always the same. The semimajor axis \(a\) is half the length of the line that goes across the ellipse and contains both foci. For the Sun–planet configuration (Active Fig. 7.21b), the Sun is at one focus and the other focus is empty. Because the orbit is an ellipse, the distance from the Sun to the planet continuously changes.

Kepler’s Second Law

Kepler’s second law states that a line drawn from the Sun to any planet sweeps out equal areas in equal time intervals. Consider a planet in an elliptical orbit about the Sun, as in Figure 7.22. In a given period \(\Delta t\), the planet moves from point \(\oplus\) to point \(\odot\). The planet moves more slowly on that side of the orbit because it’s farther away from the sun. On the opposite side of its orbit, the planet moves from point \(\odot\) to point \(\ominus\) in the same amount of time, \(\Delta t\), moving faster because it’s closer to the sun. Kepler’s second law says that any two wedges formed as in Figure 7.22 will always have the same area. As we will see in Chapter 8, Kepler’s second law is related to a physical principle known as conservation of angular momentum.

Kepler’s Third Law

The derivation of Kepler’s third law is simple enough to carry out for the special case of a circular orbit. Consider a planet of mass \(M_p\) moving around the Sun, which has a mass of \(M_S\), in a circular orbit. Because the orbit is circular, the planet moves at a constant speed \(v\). Newton’s second law, his law of gravitation, and centripetal acceleration then give the following equation:

\[
M_p a_c = \frac{M_p v^2}{r} = \frac{G M_p M_S}{r^2}
\]

The speed \(v\) of the planet in its orbit is equal to the circumference of the orbit divided by the time required for one revolution, \(T\), called the period of the planet, so \(v = 2\pi r/T\). Substituting, the preceding expression becomes

\[
\frac{G M_p}{r^2} = \frac{(2\pi r/T)^2}{r}
\]

\[
T^2 = \frac{4\pi^2}{GM_S} r^3 = K_S r^3
\]

[7.23]

where \(K_S\) is a constant given by

\[K_S = \frac{4\pi^2}{GM_S} = 2.97 \times 10^{-19} \text{ s}^2/\text{m}^3\]

Equation 7.23 is Kepler’s third law for a circular orbit. The orbits of most of the planets are very nearly circular. Comets and asteroids, however, usually have elliptical orbits. For these orbits, the radius \(r\) must be replaced with \(a\), the semimajor axis—half the longest distance across the elliptical orbit. (This is also the average distance of the comet or asteroid from the Sun.) A more detailed calculation shows that \(K_S\) actually depends on the sum of both the mass of a given planet and the Sun’s mass. The masses of the planets, however, are negligible compared with the Sun’s mass; hence can be neglected, meaning Equation 7.23 is valid for any planet in the Sun’s family. If we consider the orbit of a satellite such as the Moon around Earth, then the constant has a different value, with the mass of the Sun replaced by the mass of Earth. In that case, \(K_S\) equals \(4\pi^2/GM_E\).
The mass of the Sun can be determined from Kepler’s third law because the constant K_S in Equation 7.23 includes the mass of the Sun and the other variables and constants can be easily measured. The value of this constant can be found by substituting the values of a planet’s period and orbital radius and solving for K_S. The mass of the Sun is then

$$M_S = \frac{4\pi^2}{G} \frac{T^2}{r^3}$$

This same process can be used to calculate the mass of Earth (by considering the period and orbital radius of the Moon) and the mass of other planets in the solar system that have satellites.

The last column in Table 7.3 confirms that T^2/r^3 is very nearly constant. When time is measured in Earth years and the semimajor axis in astronomical units (1 AU = the distance from Earth to the Sun), Kepler’s law takes the following simple form:

$$T^2 = a^3$$

This equation can be easily checked: Earth has a semimajor axis of one astronomical unit (by definition), and it takes one year to circle the sun. This equation, of course, is valid only for the sun and its planets, asteroids, and comets.

QUICK QUIZ 7.10
Suppose an asteroid has a semimajor axis of 4 AU. How long does it take the asteroid to go around the sun? (a) 2 years (b) 4 years (c) 6 years (d) 8 years

EXAMPLE 7.14 Geosynchronous Orbit and Telecommunications Satellites

Goal Apply Kepler’s third law to an Earth satellite.

Problem From a telecommunications point of view, it’s advantageous for satellites to remain at the same location relative to a location on Earth. This can occur only if the satellite’s orbital period is the same as the Earth’s period of rotation, 24.0 h. (a) At what distance from the center of the Earth can this geosynchronous orbit be found? (b) What’s the orbital speed of the satellite?

Strategy This problem can be solved with the same method that was used to derive a special case of Kepler’s third law, with Earth’s mass replacing the Sun’s mass. There’s no need to repeat the analysis; just replace the Sun’s mass with Earth’s mass in Kepler’s third law, substitute the period T (converted to seconds), and solve for r. For part (b), find the circumference of the circular orbit and divide by the elapsed time.
Remarks
Both these results are independent of the mass of the satellite. Notice that Earth’s mass could be found by substituting the Moon’s distance and period into this form of Kepler’s third law.

QUESTION 7.14
If the satellite was placed in an orbit three times farther away, about how long would it take to orbit the Earth once? Answer in days, rounding to one digit.

EXERCISE 7.14
Mars rotates on its axis once every 1.02 days (almost the same as Earth does). (a) Find the distance from Mars at which a satellite would remain in one spot over the Martian surface. (b) Find the speed of the satellite.

Answer
(a) 2.03×10^7 m (b) 1.45×10^3 m/s

Solution
(a) Find the distance r to geosynchronous orbit.

Apply Kepler’s third law:

$$T^2 = \left(\frac{4\pi^2}{GM_E} \right) r^3$$

Substitute the period in seconds, $T = 86,400$ s, the gravity constant $G = 6.67 \times 10^{-11}$ kg$^{-1}$ m3/s2, and the mass of the Earth, $M_E = 5.98 \times 10^{24}$ kg. Solve for r:

$$r = 4.23 \times 10^7$$ m

(b) Find the orbital speed:

$$v = \frac{d}{T} = \frac{2\pi r}{T} = \frac{2\pi (4.23 \times 10^7)}{8.64 \times 10^4} = 3.08 \times 10^3$$ m/s

SUMMARY

Angular Speed and Angular Acceleration
The average angular speed ω_{av} of a rigid object is defined as the ratio of the angular displacement $\Delta \theta$ to the time interval Δt, or

$$\omega_{av} = \frac{\theta_f - \theta_i}{t_f - t_i} = \frac{\Delta \theta}{\Delta t} \quad [7.3]$$

where ω_{av} is in radians per second (rad/s).

The average angular acceleration α_{av} of a rotating object is defined as the ratio of the change in angular speed $\Delta \omega$ to the time interval Δt, or

$$\alpha_{av} = \frac{\omega_f - \omega_i}{t_f - t_i} = \frac{\Delta \omega}{\Delta t} \quad [7.5]$$

where α_{av} is in radians per second per second (rad/s2).

Rotational Motion Under Constant Angular Acceleration
If an object undergoes rotational motion about a fixed axis under a constant angular acceleration α, its motion can be described with the following set of equations:

$$\omega = \omega_i + \alpha t \quad [7.7]$$

$$\Delta \theta = \omega_i t + \frac{1}{2} \alpha t^2 \quad [7.8]$$

$$\omega^2 = \omega_i^2 + 2\alpha \Delta \theta \quad [7.9]$$

Problems are solved as in one-dimensional kinematics.

Relations Between Angular and Linear Quantities
When an object rotates about a fixed axis, the angular speed and angular acceleration are related to the tangential speed and tangential acceleration through the relationships

$$v_t = r\omega \quad [7.10]$$

and

$$a_t = r\alpha \quad [7.11]$$

Centripetal Acceleration
Any object moving in a circular path has an acceleration directed toward the center of the circular path, called a centripetal acceleration. Its magnitude is given by

$$a_c = \frac{v^2}{r} = r\omega^2 \quad [7.13, 7.17]$$

Any object moving in a circular path must have a net force exerted on it that is directed toward the center of the path. Some examples of forces that cause centripetal acceleration are the force of gravity (as in the motion of a satellite) and the force of tension in a string.

Newtonian Gravitation
Newton’s law of universal gravitation states that every particle in the Universe attracts every other particle with a force that is directly proportional to the product of their...
where \(G = 6.67 \times 10^{-11} \text{ N} \cdot \text{m}^2/\text{kg}^2 \) is the constant of universal gravitation. A general expression for gravitational potential energy is

\[
PE = -G \frac{M_Em}{r} \quad [7.21]
\]

This expression reduces to \(PE = mgh \) close to the surface of Earth and holds for other worlds through replacement of the mass \(M_E \). Problems such as finding the escape velocity from Earth can be solved by using Equation 7.21 in the conservation of energy equation.

7.6 Kepler’s Laws

Kepler derived the following three laws of planetary motion:

1. All planets move in elliptical orbits with the Sun at one of the focal points.
2. A line drawn from the Sun to any planet sweeps out equal areas in equal time intervals.
3. The square of the orbital period of a planet is proportional to the cube of the average distance from the planet to the Sun:

\[
T^2 = \left(\frac{4\pi^2}{GM} \right) r^3 \quad [7.23]
\]

The third law can be applied to any large body and its system of satellites by replacing the Sun’s mass with the body’s mass. In particular, it can be used to determine the mass of the central body once the average distance to a satellite and its period are known.

Multiple-Choice Questions

1. Find the angular speed of Earth around the Sun in radians per second. (a) 2.22 \(\times 10^{-5} \) rad/s (b) 1.16 \(\times 10^{-7} \) rad/s (c) 3.17 \(\times 10^{-3} \) rad/s (d) 4.52 \(\times 10^{-7} \) rad/s (e) 1.99 \(\times 10^{-7} \) rad/s

2. A grindstone increases in angular speed from 4.00 rad/s to 12.0 rad/s in 4.00 s. Through what angle does it turn during that time if the angular acceleration is constant? (a) 8.00 rad (b) 12.0 rad (c) 16.0 rad (d) 32.0 rad (e) 64.0 rad

3. A cyclist rides a bicycle with a wheel radius of 0.500 m across campus. A piece of plastic on the front rim makes a clicking sound every time it passes through the fork. If the cyclist counts 320 clicks between her apartment and the cafeteria, how far has she traveled? (a) 0.50 km (b) 0.80 km (c) 1.0 km (d) 1.5 km (e) 1.8 km

4. A 0.400-kg object attached to the end of a string of length 0.500 m is swung in a circular path and in a vertical plane. If a constant angular speed of 8.00 rad/s is maintained, what is the tension in the string when the object is at the top of the circular path? (a) 8.88 N (b) 10.5 N (c) 12.8 N (d) 19.6 N (e) None of these

5. A merry-go-round rotates with constant angular speed. As a rider moves from the rim of the merry-go-round toward the center, what happens to the magnitude of total centripetal force that must be exerted on him? (a) It increases. (b) It is not zero, but remains the same. (c) It decreases. (d) It’s always zero. (e) It increases or decreases, depending on the direction of rotation.

6. Consider an object on a rotating disk a distance \(r \) from its center, held in place on the disk by static friction. Which of the following statements is not true concerning this object? (a) If the angular speed is constant, the object must have constant tangential speed. (b) If the angular speed is constant, the object is not accelerated. (c) The object has a tangential acceleration only if the disk has an angular acceleration. (d) If the disk has an angular acceleration, the object has both a centripetal and a tangential acceleration. (e) The object always has a centripetal acceleration except when the angular speed is zero.

7. The gravitational force exerted on an astronaut on Earth’s surface is 650 N down. When she is in the International Space Station, is the gravitational force on her (a) larger, (b) exactly the same, (c) smaller, (d) nearly but not exactly zero, or (e) exactly zero?

8. An object is located on the surface of a spherical planet of mass \(M \) and radius \(R \). The escape speed from the planet does not depend on which of the following? (a) \(M \) (b) the density of the planet (c) \(R \) (d) the acceleration due to gravity on that planet (e) the mass of the object

9. A satellite moves in a circular orbit at a constant speed around Earth. Which of the following statements is true? (a) No force acts on the satellite. (b) The satellite moves at constant speed and hence doesn’t accelerate. (c) The satellite has an acceleration directed away from Earth. (d) The satellite has an acceleration directed toward Earth. (e) Work is done on the satellite by the force of gravity.

10. Which of the following statements are true of an object in orbit around Earth? (a) If the orbit is circular, the gravity force is perpendicular to the object’s velocity. (b) If the orbit is elliptical, the gravity force is perpendicular to the velocity vector only at the nearest
and farthest points. (c) If the orbit is not circular, the speed is greatest when the object is farthest away from Earth. (d) The gravity force on the object always has components both parallel and perpendicular to the object’s velocity. (e) All these statements are true.

11. What is the gravitational acceleration close to the surface of a planet with twice the mass and twice the radius of Earth? Answer as a multiple of \(g \) the gravitational acceleration near Earth’s surface. (a) 0.25 \(g \) (b) 0.5\(g \) (c) 2\(g \) (d) 4\(g \)

12. A system consists of four particles. How many terms appear in the expression for the total gravitational potential energy of the system? (a) 4 (b) 6 (c) 10 (d) 12 (e) None of these

13. Halley’s comet has a period of approximately 76 years and moves in an elliptical orbit in which its distance from the Sun at closest approach is a small fraction of its maximum distance. Estimate the comet’s maximum distance from the Sun in astronomical units AU (the distance from Earth to the Sun). (a) 3 AU (b) 6 AU (c) 10 AU (d) 18 AU (e) 36 AU

6. Because of Earth’s rotation about its axis, you weigh slightly less at the equator than at the poles. Explain.

7. It has been suggested that rotating cylinders about 10 miles long and 5 miles in diameter be placed in space for colonies. The purpose of their rotation is to simulate gravity for the inhabitants. Explain the concept behind this proposal.

8. Describe the path of a moving object in the event that the object’s acceleration is constant in magnitude at all times and (a) perpendicular to its velocity; (b) parallel to its velocity.

9. A pail of water can be whirled in a vertical circular path such that no water is spilled. Why does the water remain in the pail, even when the pail is upside down above your head?

10. Use Kepler’s second law to convince yourself that Earth must move faster in its orbit during the northern-hemisphere winter, when it is closest to the Sun, than during the summer, when it is farthest from the Sun.

11. Is it possible for a car to move in a circular path in such a way that it has a tangential acceleration but no centripetal acceleration?

12. A satellite in orbit is not truly traveling through a vacuum—it’s moving through very thin air. Does the resulting air friction cause the satellite to slow down?

2. A wheel has a radius of 4.1 m. How far (path length) does a point on the circumference travel if the wheel is rotated through angles of 30\(^\circ\), 30 rad, and 30 rev, respectively?

3. The tires on a new compact car have a diameter of 2.0 ft and are warranted for 60 000 miles. (a) Determine the angle (in radians) through which one of these tires will rotate during the warranty period. (b) How many revolutions of the tire are equivalent to your answer in part (a)?

4. SCP A potter’s wheel moves uniformly from rest to an angular speed of 1.00 rev/s in 30.0 s. (a) Find its angular acceleration in radians per second per second. (b) Would doubling the angular acceleration during the given period have doubled final angular speed?
SECTION 7.2 ROTATIONAL MOTION UNDER CONSTANT ANGULAR ACCELERATION

SECTION 7.3 RELATIONS BETWEEN ANGULAR AND LINEAR QUANTITIES

5. A dentist’s drill starts from rest. After 3.20 s of constant angular acceleration, it turns at a rate of \(2.51 \times 10^4\) rev/min. (a) Find the drill’s angular acceleration. (b) Determine the angle (in radians) through which the drill rotates during this period.

6. A centrifuge in a medical laboratory rotates at an angular speed of \(3\) 600 rev/min. When switched off, it rotates through 50.0 revolutions before coming to rest. Find the constant angular acceleration of the centrifuge.

7. A machine part rotates at an angular speed of \(0.06\) rad/s; its speed is then increased to \(2.2\) rad/s at an angular acceleration of \(0.70\) rad/s². (a) Find the angle through which the part rotates before reaching this final speed. (b) In general, if both the initial and final angular speed are doubled at the same angular acceleration, by what factor is the angular displacement changed? Why? Hint: Look at the form of Equation 7.9.

8. A bicycle is turned upside down while its owner repairs a flat tire. A friend spins the other wheel and observes that drops of water fly off tangentially. She measures the heights reached by drops moving vertically (Fig. P7.8). A drop that breaks loose from the tire on one turn rises vertically \(54.0\) cm above the tangent point. A drop that breaks loose on the next turn rises \(51.0\) cm above the tangent point. The radius of the wheel is \(0.381\) m. (a) Why does the first drop rise higher than the second drop? (b) Neglecting air friction and using only the observed heights and the radius of the wheel, find the wheel’s angular acceleration (assuming it to be constant).

![FIGURE P7.8](Problems 8 and 69.)

9. The diameters of the main rotor and tail rotor of a single-engine helicopter are \(7.60\) m and \(1.02\) m, respectively. The respective rotational speeds are \(450\) rev/min and \(4 138\) rev/min. Calculate the speeds of the tips of both rotors. Compare these speeds with the speed of sound, \(343\) m/s.

10. The tub of a washer goes into its spin-dry cycle, starting from rest and reaching an angular speed of \(5.0\) rev/s in \(8.0\) s. At this point, the person doing the laundry opens the lid, and a safety switch turns off the washer. The tub slows to rest in \(12.0\) s. Through how many revolutions does the tub turn during the entire \(20\)-s interval? Assume constant angular acceleration while it is starting and stopping.

11. A car initially traveling at \(29.0\) m/s undergoes a constant negative angular acceleration of magnitude \(1.75\) m/s² after its brakes are applied. (a) How many revolutions does each tire make before the car comes to a stop, assuming the car does not skid and the tires have radii of \(0.330\) m? (b) What is the angular speed of the wheels when the car has traveled half the total distance?

12. A 45.0-cm diameter disk rotates with a constant angular acceleration of \(2.50\) rad/s². It starts from rest at \(t = 0\), and a line drawn from the center of the disk to a point \(P\) on the rim of the disk makes an angle of \(57.3°\) with the positive \(x\)-axis at this time. At \(t = 2.30\) s, find (a) the angular speed of the wheel, (b) the linear velocity and tangential acceleration of \(P\), and (c) the position of \(P\) (in degrees, with respect to the positive \(x\)-axis).

13. A rotating wheel requires \(3.00\) s to rotate \(37.0\) revolutions. Its angular velocity at the end of the \(3.00\)-s interval is \(98.0\) rad/s. What is the constant angular acceleration of the wheel?

14. An electric motor rotating a workshop grinding wheel at a rate of \(1.00 \times 10^2\) rev/min is switched off. Assume the wheel has a constant negative angular acceleration of magnitude \(2.00\) rad/s². (a) How long does it take for the grinding wheel to stop? (b) Through how many radians has the wheel turned during the interval found in part (a)?

SECTION 7.4 CENTRIPETAL ACCELERATION

15. Find the centripetal accelerations due to Earth’s rotation about its axis of a man standing (a) at the equator and (b) at the North Pole. (c) What two forces combine to create these centripetal accelerations?

16. It has been suggested that rotating cylinders about 10 mi long and 5.0 mi in diameter be placed in space and used as colonies. What angular speed must such a cylinder have so that the centripetal acceleration at its surface equals the free-fall acceleration on Earth?

17. (a) What is the tangential acceleration of a bug on the rim of a 10-in.-diameter disk if the disk moves from rest to an angular speed of 78 rev/min in 3.0 s? (b) When the disk is at its final speed, what is the tangential velocity of the bug? (c) One second after the bug starts from rest, what are its tangential acceleration, centripetal acceleration, and total acceleration?

18. The 20-g centrifuge at NASA’s Ames Research Center in Mountain View, California, is a cylindrical tube 58 ft long with a radius of 29 ft (Fig. P7.18). If a rider sits in a chair

![FIGURE P7.18](29 ft)
at the end of one arm facing the center, how many revolutions per minute would be required to create a horizontal normal force equal in magnitude to 20.0 times the rider’s weight?

19. Part of a roller-coaster ride involves coasting down an incline and entering a loop 8.00 m in diameter. For safety considerations, the roller coaster’s speed at the top of the loop must be such that the force of the seat on a rider is equal in magnitude to the rider’s weight. From what height above the bottom of the loop must the roller coaster descend to satisfy this requirement?

20. A coin rests 15.0 cm from the center of a turntable. The coefficient of static friction between the coin and turntable surface is 0.350. The turntable starts from rest at $t = 0$ and rotates with a constant angular acceleration of 0.730 rad/s^2. (a) Once the turntable starts to rotate, what force causes the centripetal acceleration when the coin is stationary relative to the turntable? Under what condition does the coin begin to move relative to the turntable? (b) After what period of time will the coin start to slip on the turntable?

21. A 55.0-kg ice skater is moving at 4.00 m/s when she grabs the loose end of a rope, the opposite end of which is tied to a pole. She then moves in a circle of radius 0.800 m around the pole. (a) Determine the force exerted by the horizontal rope on her arms. (b) Compare this force with her weight.

22. A race car starts from rest on a circular track of radius 400 m. The car’s speed increases at the constant rate of 0.500 m/s^2. At the point where the magnitudes of the centripetal and tangential accelerations are equal, determine (a) the speed of the race car, (b) the distance traveled, and (c) the elapsed time.

23. A certain light truck can go around a flat curve having a radius of 150 m with a maximum speed of 32.0 m/s. With what maximum speed can it go around a curve having a radius of 75.0 m?

24. A sample of blood is placed in a centrifuge of radius 15.0 cm. The mass of a red blood cell is $3.0 \times 10^{-15} \text{ kg}$, and the magnitude of the force acting on it as it settles out of the plasma is $4.0 \times 10^{-13} \text{ N}$. At how many revolutions per second should the centrifuge be operated?

25. A 50.0-kg child stands at the rim of a merry-go-round of radius 2.00 m, rotating with an angular speed of 3.00 rad/s. (a) What is the child’s centripetal acceleration? (b) What is the minimum force between her feet and the floor of the carousel that is required to keep her in the circular path? (c) What minimum coefficient of static friction is required? Is the answer you found reasonable? In other words, is she likely to stay on the merry-go-round?

26. A space habitat for a long space voyage consists of two cabins each connected by a cable to a central hub as shown in Figure P7.26. The cabins are set spinning around the hub axis, which is connected to the rest of the spacecraft to generate artificial gravity. (a) What forces are acting on an astronaut in one of the cabins? (b) Write Newton’s second law for an astronaut lying on the “floor” of one of the habitats, relating the astronaut’s mass m, his velocity v, his radial distance from the hub r, and the normal force n. (c) What would n have to equal if the 60.0-kg astronaut is to experience half his normal Earth weight? (d) Calculate the necessary tangential speed of the habitat from Newton’s second law. (e) Calculate the angular speed from the tangential speed. (f) Calculate the period of rotation from the angular speed. (g) If the astronaut stands up, will his head be moving faster, slower, or at the same speed as his feet? Why? Calculate the tangential speed at the top of his head if he is 1.80 m tall.

27. An air puck of mass 0.25 kg is tied to a string and allowed to revolve in a circle of radius 1.0 m on a frictionless horizontal table. The other end of the string passes through a hole in the center of the table, and a mass of 1.0 kg is tied to it (Fig. P7.27). The suspended mass remains in equilibrium while the puck on the tabletop revolves. (a) What is the tension in the string? (b) What is the horizontal force acting on the puck? (c) What is the speed of the puck?

28. An air puck of mass m_1 is tied to a string and allowed to revolve in a circle of radius R on a horizontal, frictionless table. The other end of the string passes through a small hole in the center of the table, and an object of mass m_2 is tied to it (Fig. P7.27). The suspended object remains in equilibrium while the puck on the tabletop revolves. (a) Find a symbolic expression for the tension in the string in terms of m_2 and g. (b) Write Newton’s second law for the air puck, using the variables m_1, v, R, and T. (c) Eliminate the tension T from the expressions found in parts (a) and (b) and find an expression for the speed of the puck in terms of m_1, m_2, g, and R. (d) Check your answers by substituting the values of Problem 7.27 and comparing the results with the answers for that problem.

29. A woman places her briefcase on the backseat of her car. As she drives to work, the car negotiates an unbanked curve in the road that can be regarded as an arc of a circle of radius 62.0 m. While on the curve, the car’s speedometer registers 15.0 m/s at the instant the briefcase starts to slide across the backseat toward the side of the car.
(a) What force causes the centripetal acceleration of the briefcase when it is stationary relative to the car? Under what condition does the briefcase begin to move relative to the car? (b) What is the coefficient of static friction between the briefcase and seat surface?

30. **SSE** A pail of water is rotated in a vertical circle of radius 1.00 m. (a) What two external forces act on the water in the pail? (b) Which of the two forces is most important in causing the water to move in a circle? (c) What is the pail’s minimum speed at the top of the circle if no water is to spill out? (d) If the pail with the speed found in part (c) were to suddenly disappear at the top of the circle, describe the subsequent motion of the water. Would it differ from the motion of a projectile?

31. A 40.0-kg child takes a ride on a Ferris wheel that rotates four times each minute and has a diameter of 18.0 m. (a) What is the centripetal acceleration of the child? (b) What force (magnitude and direction) does the seat exert on the child at the lowest point of the ride? (c) What force does the seat exert on the child at the highest point of the ride? (d) What force does the seat exert on the child when the child is halfway between the top and bottom?

32. A roller-coaster vehicle has a mass of 500 kg when fully loaded with passengers (Fig. P7.32). (a) If the vehicle has a speed of 20.0 m/s at point A, what is the force of the track on the vehicle at this point? (b) What is the maximum speed the vehicle can have at point B for gravity to hold it on the track?

![FIGURE P7.32](image)

SECTION 7.5 NEWTONIAN GRAVITATION

33. The average distance separating Earth and the Moon is 384,000 km. Use the data in Table 7.3 to find the net gravitational force exerted by Earth and the Moon on a 5.00 × 10^4-kg spaceship located halfway between them.

34. A satellite has a mass of 100 kg and is located at 2.00 × 10^6 m above the surface of Earth. (a) What is the potential energy associated with the satellite at this location? (b) What is the magnitude of the gravitational force on the satellite?

35. A coordinate system (in meters) is constructed on the surface of a pool table, and three objects are placed on the table as follows: a 2.0-kg object at the origin of the coordinate system, a 3.0-kg object at (0, 2.0), and a 4.0-kg object at (4.0, 0). Find the resultant gravitational force exerted by the other two objects on the object at the origin.

36. After the Sun exhausts its nuclear fuel, its ultimate fate may be to collapse to a white dwarf state. In this state, it would have approximately the same mass as it has now, but its radius would be equal to the radius of Earth. Calculate (a) the average density of the white dwarf, (b) the surface free-fall acceleration, and (c) the gravitational potential energy associated with a 1.00-kg object at the surface of the white dwarf.

37. Objects with masses of 200 kg and 500 kg are separated by 0.400 m. (a) Find the net gravitational force exerted by these objects on a 50.0-kg object placed midway between them. (b) At what position (other than infinitely remote ones) can the 50.0-kg object be placed so as to experience a net force of zero?

38. Use the data of Table 7.3 to find the point between Earth and the Sun at which an object can be placed so that the net gravitational force exerted by Earth and the Sun on that object is zero.

39. **SSE** A rocket is fired straight up through the atmosphere from the South Pole, burning out at an altitude of 250 km when traveling at 6.0 km/s. (a) What maximum distance from Earth’s surface does it travel before falling back to Earth? (b) Would its maximum distance increase if it were fired from a launch site on the equator? Why?

40. Two objects attract each other with a gravitational force of magnitude 1.00 × 10^{-8} N when separated by 20.0 cm. If the total mass of the objects is 5.00 kg, what is the mass of each?

SECTION 7.6 KEPLER’S LAWS

41. A satellite moves in a circular orbit around Earth at a speed of 5000 m/s. Determine (a) the satellite’s altitude above the surface of Earth and (b) the period of the satellite’s orbit.

42. Use Kepler’s third law to determine how many days it takes a spacecraft to travel in an elliptical orbit from its nearest point, 6,670 km from Earth’s center, to its farthest point, the Moon, 385,000 km from Earth’s center. Note: The average radius or “semimajor axis” is the average of the distance from Earth’s center to the nearest and farthest points on the elliptical orbit.

43. Io, a satellite of Jupiter, has an orbital period of 1.77 days and an orbital radius of 4.22 × 10^6 km. From these data, determine the mass of Jupiter.

44. A 600-kg satellite is in a circular orbit about Earth at a height above Earth equal to Earth’s mean radius. Find (a) the satellite’s orbital speed, (b) the period of its revolution, and (c) the gravitational force acting on it.

45. A satellite of mass 200 kg is launched from a site on Earth’s equator into an orbit 200 km above the surface of Earth. (a) Assuming a circular orbit, what is the orbital period of this satellite? (b) What is the satellite’s speed in its orbit? (c) What is the minimum energy necessary to place the satellite in orbit, assuming no air friction?

ADDITIONAL PROBLEMS

46. A synchronous satellite, which always remains above the same point on a planet’s equator, is put in circular orbit
around Jupiter to study that planet’s famous red spot. Jupiter rotates once every 9.84 h. Use the data of Table 7.3 to find the altitude of the satellite.

47. An artificial satellite circles Earth in a circular orbit at a location where the acceleration due to gravity is 9.00 m/s². Determine the orbital period of the satellite.

48. Neutron stars are extremely dense objects that are formed from the remnants of supernova explosions. Many rotate very rapidly. Suppose the mass of a certain spherical neutron star is twice the mass of the Sun and its radius is 10.0 km. Determine the greatest possible angular speed the neutron star can have so that the matter at its surface on the equator is just held in orbit by the gravitational force.

49. A method of pitching a softball is called the “windmill” delivery method, in which the pitcher’s arm rotates through approximately 560° in a vertical plane before the 198-gram ball is released at the lowest point of the circular motion. An experienced pitcher can throw a ball with a speed of 98.0 mi/h. Assume the angular acceleration is uniform throughout the pitching motion and take the distance between the softball and the shoulder joint to be 74.2 cm. (a) Determine the angular speed of the arm in rev/s at the instant of release. (b) Find the value of the angular acceleration in rev/s² and the radial and tangential acceleration of the ball just before it is released. (c) Determine the force exerted on the ball by the pitcher’s hand (both radial and tangential components) just before it is released.

50. A digital audio compact disc carries data along a continuous spiral track from the inner circumference of the disc to the outside edge. Each bit occupies 0.6 μm of the track. A CD player turns the disc to carry the track counterclockwise above a lens at a constant speed of 1.30 m/s. Find the required angular speed (a) at the beginning of the recording, where the spiral has a radius of 2.30 cm, and (b) at the end of the recording, where the spiral has a radius of 5.80 cm. (c) A full-length recording lasts for 74 min, 53 s. Find the average angular acceleration of the disc. (d) Assuming the acceleration is constant, find the total angular displacement of the disc as it plays. (e) Find the total length of the track.

51. An athlete swings a 5.00-kg ball horizontally on the end of a rope. The ball moves in a circle of radius 0.800 m at an angular speed of 0.500 rev/s. What are (a) the tangential speed of the ball and (b) its centripetal acceleration? (c) If the maximum tension the rope can withstand before breaking is 100 N, what is the maximum tangential speed the ball can have?

52. A car rounds a banked curve where the radius of curvature of the road is R, the banking angle is θ, and the coefficient of static friction is μ. (a) Determine the range of speeds the car can have without slipping up or down the road. (b) What is the range of speeds possible if R = 100 m, θ = 10°, and μ = 0.10 (slippery conditions)?

53. The Solar Maximum Mission Satellite was placed in a circular orbit about 150 mi above Earth. Determine (a) the orbital speed of the satellite and (b) the time required for one complete revolution.

54. A 0.400-kg pendulum bob passes through the lowest part of its path at a speed of 5.00 m/s. (a) What is the tension in the pendulum cable at this point if the pendulum is 80.0 cm long? (b) When the pendulum reaches its highest point, what angle does the cable make with the vertical? (c) What is the tension in the pendulum cable when the pendulum reaches its highest point?

55. A car moves at speed v across a bridge made in the shape of a circular arc of radius r. (a) Find an expression for the normal force acting on the car when it is at the top of the arc. (b) At what minimum speed will the normal force become zero (causing the occupants of the car to seem weightless) if r = 30.0 m?

56. Show that the escape speed from the surface of a planet of uniform density is directly proportional to the radius of the planet.

57. Because of Earth’s rotation about its axis, a point on the equator has a centripetal acceleration of 0.034 0 m/s², whereas a point at the poles has no centripetal acceleration. (a) Show that, at the equator, the gravitational force on an object (the object’s true weight) must exceed the object’s apparent weight. (b) What are the apparent weights of a 75.0-kg person at the equator and at the poles? (Assume Earth is a uniform sphere and take g = 9.800 m/s².)

58. A small block of mass m = 0.50 kg is fired with an initial speed of v₀ = 4.0 m/s along a horizontal section of frictionless track, as shown in the top portion of Figure P7.58. The block then moves along the frictionless, semi-circular, vertical tracks of radius R = 1.5 m. (a) Determine the force exerted by the track on the block at points A and B. (b) The bottom of the track consists of a section (L = 0.40 m) with friction. Determine the coefficient of kinetic friction between the block and that portion of the bottom track if the block just makes it to point C on the first trip. (Hint: If the block just makes it to point C, the force of contact exerted by the track on the block at that point is zero.)

59. In Robert Heinlein’s The Moon Is a Harsh Mistress, the colonial inhabitants of the Moon threaten to launch rocks down onto Earth if they are not given independence (or at least representation). Assuming a gun could launch a rock of mass m at twice the lunar escape speed, calculate the speed of the rock as it enters Earth’s atmosphere.

60. A roller coaster travels in a circular path. (a) Identify the forces on a passenger at the top of the circular loop that cause centripetal acceleration. Show the direc-
tion of all forces in a sketch. (b) Identify the forces on the passenger at the bottom of the loop that produce centripetal acceleration. Show these in a sketch. (c) Based on your answers to parts (a) and (b), at what point, top or bottom, should the seat exert the greatest force on the passenger? (d) Assume the speed of the roller coaster is 4.00 m/s at the top of the loop of radius 8.00 m. Find the force exerted by the seat on a 70.0-kg passenger at the top of the loop. Then, assume the speed remains the same at the bottom of the loop and find the force exerted by the seat on the passenger at this point. Are your answers consistent with your choice of answers for parts (a) and (b)?

Assume you are agile enough to run across a horizontal surface at 8.50 m/s, independently of the value of the gravitational field. What would be (a) the radius and (b) the mass of an airless spherical asteroid of uniform density 1.10×10^3 kg/m3 on which you could launch yourself into orbit by running? (c) What would be your period?

Figure P7.62 shows the elliptical orbit of a spacecraft around Earth. Take the origin of your coordinate system to be at the center of Earth.

(a) On a copy of the figure (enlarged if necessary), draw vectors representing (i) the position of the spacecraft when it is at A and B; (ii) the velocity of the spacecraft when it is at A and B; (iii) the acceleration of the spacecraft when it is at A and B. Make sure that each type of vector can be distinguished. Provide a legend that shows how each type is represented.

(b) Have you drawn the velocity vector at A longer than, shorter than, or the same length as the one at B? Explain. Have you drawn the acceleration vector at A longer than, shorter than, or the same length as the one at B? Explain. (Problem 62 is courtesy of E. F. Redish. For more problems of this type, visit www.physics.umd.edu/erg/.)

A skier starts at rest at the top of a large hemispherical hill (Fig. P7.63). Neglecting friction, show that the skier will leave the hill and become airborne at a distance $h = R/3$ below the top of the hill. (Hint: At this point, the normal force goes to zero.)

Casting of molten metal is important in many industrial processes. Centrifugal casting is used for manufacturing pipes, bearings, and many other structures. A cylindrical enclosure is rotated rapidly and steadily about a horizontal axis, as in Figure P7.64. Molten metal is poured into the rotating cylinder and then cooled, forming the finished product. Turning the cylinder at a high rotation rate forces the solidifying metal strongly to the outside. Any bubbles are displaced toward the axis so that unwanted voids will not be present in the casting.

Suppose a copper sleeve of inner radius 2.10 cm and outer radius 2.20 cm is to be cast. To eliminate bubbles and give high structural integrity, the centripetal acceleration of each bit of metal should be 100 g. What rate of rotation is required? State the answer in revolutions per minute.

65. Suppose a 1800-kg car passes over a bump in a roadway that follows the arc of a circle of radius 20.4 m, as in Figure P7.65. (a) What force does the road exert on the car as the car passes the highest point of the bump if the car travels at 8.94 m/s? (b) What is the maximum speed the car can have without losing contact with the road as it passes this highest point?

66. A stuntman whose mass is 70 kg swings from the end of a 4.0-m-long rope along the arc of a vertical circle. Assuming he starts from rest when the rope is horizontal, find the tensions in the rope that are required to make him follow his circular path (a) at the beginning of his motion, (b) at a height of 1.5 m above the bottom of the circular arc, and (c) at the bottom of the arc.

67. A minimum-energy orbit to an outer planet consists of putting a spacecraft on an elliptical trajectory with the departure planet corresponding to the perihelion of the ellipse, or closest point to the Sun, and the arrival planet corresponding to the aphelion of the ellipse, or farthest point from the Sun. (a) Use Kepler’s third law to calculate how long it would take to go from Earth to Mars on such an orbit. (Answer in years.) (b) Can such an orbit be undertaken at any time? Explain.

68. The pilot of an airplane executes a constant-speed loop-the-loop maneuver in a vertical circle as in Figure 7.15b. The speed of the airplane is 2.00×10^3 m/s, and
the radius of the circle is \(3.20 \times 10^3\) m. (a) What is the pilot's apparent weight at the lowest point of the circle if his true weight is 712 N? (b) What is his apparent weight at the highest point of the circle? (c) Describe how the pilot could experience weightlessness if both the radius and the speed can be varied. Note: His apparent weight is equal to the magnitude of the force exerted by the seat on his body. Under what conditions does this occur? (d) What speed would have resulted in the pilot experiencing weightlessness at the top of the loop?

69. A piece of mud is initially at point \(A\). A 0.275-kg object is swung in a horizontal axis at a constant angular speed \(\omega\) (Fig. P7.8). The mud dislodges from point \(A\) when the wheel diameter through \(A\) is horizontal. The mud then rises vertically and returns to point \(A\). (a) Find a symbolic expression in terms of \(R\), \(\omega\), and \(g\) for the total time the mud is in the air and returns to point \(A\). (b) If the wheel makes one complete revolution in the time it takes the mud to return to point \(A\), find an expression for the angular speed of the bicycle wheel \(\omega\) in terms of \(\pi\), \(g\), and \(R\).

70. A 0.275-kg object is swung in a vertical circular path on a string 0.850 m long as in Figure P7.70. (a) What are the forces acting on the ball at any point along this path? (b) Draw free-body diagrams for the ball when it is at the bottom of the circle and when it is at the top. (c) If its speed is 5.20 m/s at the top of the circle, what is the tension in the string there? (d) If the string breaks when its tension exceeds 22.5 N, what is the maximum speed the object can have at the bottom before the string breaks?

71. A 4.00-kg object is attached to a vertical rod by two strings as shown in Figure P7.71. The object rotates in a horizontal circle at constant speed 6.00 m/s. Find the tension in (a) the upper string and (b) the lower string.

72. The maximum lift force on a bat is proportional to the square of its flying speed \(v\). For the hoary bat (Lasiurus cinereus), the magnitude of the lift force is given by

\[
F_L = (0.018 \, \text{N} \cdot \text{s}^2/\text{m}^2) v^2
\]

The bat can fly in a horizontal circle by “banking” its wings at an angle \(\theta\), as shown in Figure P7.72. In this situation, the magnitude of the vertical component of the lift force must equal the bat’s weight. The horizontal component of the force provides the centripetal acceleration. (a) What is the minimum speed that the bat can have if its mass is 0.031 kg? (b) If the maximum speed of the bat is 10 m/s, what is the maximum banking angle that allows the bat to stay in a horizontal plane? (c) What is the radius of the circle of its flight when the bat flies at its maximum speed? (d) Can the bat turn with a smaller radius by flying more slowly?

73. (a) A luggage carousel at an airport has the form of a section of a large cone, steadily rotating about its vertical axis. Its metallic surface slopes downward toward the outside, making an angle of 20.0° with the horizontal. A 30.0-kg piece of luggage is placed on the carousel, 7.46 m from the axis of rotation. The travel bag goes around once in 38.0 s. Calculate the force of static friction between the bag and the carousel. (b) The drive motor is shifted to turn the carousel at a higher constant rate of rotation, and the piece of luggage is bumped to a position 7.94 m from the axis of rotation. The bag is on the verge of slipping as it goes around once every 34.0 s. Calculate the coefficient of static friction between the bag and the carousel.

74. A 0.50-kg ball that is tied to the end of a 1.5-m light cord is revolved in a horizontal plane, with the cord making a 30° angle with the vertical. (See Fig. P7.74.) (a) Determine the ball's speed. (b) If, instead, the ball is revolved so that its speed is 4.0 m/s, what angle does the cord make with the vertical? (c) If the cord can withstand a maximum tension of 9.8 N, what is the highest speed at which the ball can move?

75. In a popular amusement park ride, a rotating cylinder of radius 3.00 m is set in rotation at an angular speed of 5.00 rad/s, as in Figure P7.75. The floor then drops away, leaving the riders suspended against the wall in a vertical position. What minimum coefficient of friction between a rider’s clothing and the wall is needed to keep the rider from slipping? (Hint: Recall that the magnitude of the maximum force of static friction is equal to \(\mu n\), where \(n\) is the normal force—in this case, the force causing the centripetal acceleration.)
76. A massless spring of constant $k = 78.4$ N/m is fixed on the left side of a level track. A block of mass $m = 0.50$ kg is pressed against the spring and compresses it a distance d, as in Figure P7.76. The block (initially at rest) is then released and travels toward a circular loop-the-loop of radius $R = 1.5$ m. The entire track and the loop-the-loop are frictionless, except for the section of track between points A and B. Given that the coefficient of kinetic friction between the block and the track along AB is $\mu_k = 0.30$, and that the length of AB is 2.5 m, determine the minimum compression d of the spring that enables the block to just make it through the loop-the-loop at point C. (Hint: The force exerted by the track on the block will be zero if the block barely makes it through the loop-the-loop.)
In the study of linear motion, objects were treated as point particles without structure. It didn’t matter where a force was applied, only whether it was applied or not. The reality is that the point of application of a force does matter. In football, for example, if the ball carrier is tackled near his midriff, he might carry the tackler several yards before falling. If tackled well below the waistline, however, his center of mass rotates toward the ground, and he can be brought down immediately. Tennis provides another good example. If a tennis ball is struck with a strong horizontal force acting through its center of mass, it may travel a long distance before hitting the ground, far out of bounds. Instead, the same force applied in an upward, glancing stroke will impart topspin to the ball, which can cause it to land in the opponent’s court.

The concepts of rotational equilibrium and rotational dynamics are also important in other disciplines. For example, students of architecture benefit from understanding the forces that act on buildings and biology students should understand the forces at work in muscles and on bones and joints. These forces create torques, which tell us how the forces affect an object’s equilibrium and rate of rotation.

We will find that an object remains in a state of uniform rotational motion unless acted on by a net torque. This principle is the equivalent of Newton’s first law. Further, the angular acceleration of an object is proportional to the net torque acting on it, which is the analog of Newton’s second law. A net torque acting on an object causes a change in its rotational energy.

Finally, torques applied to an object through a given time interval can change the object’s angular momentum. In the absence of external torques, angular momentum is conserved, a property that explains some of the mysterious and formidable properties of pulsars—remnants of supernova explosions that rotate at equatorial speeds approaching that of light.

8.1 TORQUE

Forces cause accelerations; torques cause angular accelerations. There is a definite relationship, however, between the two concepts.
Figure 8.1 depicts an overhead view of a door hinged at point O. From this viewpoint, the door is free to rotate around an axis perpendicular to the page and passing through O. If a force \mathbf{F} is applied to the door, there are three factors that determine the effectiveness of the force in opening the door: the magnitude of the force, the position of application of the force, and the angle at which it is applied.

For simplicity, we restrict our discussion to position and force vectors lying in a plane. When the applied force \mathbf{F} is perpendicular to the outer edge of the door, as in Figure 8.1, the door rotates counterclockwise with constant angular acceleration. In general, a larger radial distance r between the applied force and the axis of rotation results in a larger angular acceleration. Similarly, a larger applied force will also result in a larger angular acceleration. These considerations motivate the basic definition of torque for the special case of forces perpendicular to the position vector:

Let \mathbf{r} be a force acting on an object, and let \mathbf{r} be a position vector from a chosen point O to the point of application of the force, with \mathbf{F} perpendicular to \mathbf{r}. The magnitude of the torque τ exerted by the force \mathbf{F} is given by

$$\tau = rF$$

where r is the length of the position vector and F is the magnitude of the force.

SI unit: Newton-meter (N_m)

The vectors \mathbf{r} and \mathbf{F} lie in a plane. As discussed in detail shortly in conjunction with Figure 8.4, the torque τ is then perpendicular to this plane. The point O is usually chosen to coincide with the axis the object is rotating around, such as the hinge of a door or hub of a merry-go-round. (Other choices are possible as well.) In addition, we consider only forces acting in the plane perpendicular to the axis of rotation. This criterion excludes, for example, a force with upward component on a merry-go-round railing, which cannot affect the merry-go-round's rotation.

Under these conditions, an object can rotate around the chosen axis in one of two directions. By convention, counterclockwise is taken to be the positive direction, clockwise the negative direction. When an applied force causes an object to rotate counterclockwise, the torque on the object is positive. When the force causes the object to rotate clockwise, the torque on the object is negative. When two or more torques act on an object at rest, the torques are added. If the net torque isn’t zero, the object starts rotating at an ever-increasing rate. If the net torque is zero, the object’s rate of rotation doesn’t change. These considerations lead to the rotational analog of the first law: the rate of rotation of an object doesn’t change, unless the object is acted on by a net torque.

EXAMPLE 8.1 Battle of the Revolving Door

Goal Apply the basic definition of torque.

Problem Two disgruntled businesspeople are trying to use a revolving door, as in Figure 8.2. The woman on the left exerts a force of 625 N perpendicular to the door and 1.20 m from the hub's center, while the man on the right exerts a force of 8.50×10^2 N perpendicular to the door and 0.800 m from the hub's center. Find the net torque on the revolving door.

Strategy Calculate the individual torques on the door using the definition of torque, Equation 8.1, and then sum to find the net torque on the door. The woman exerts a negative torque, the man a positive torque. Their positions of application also differ.
Solution
Calculate the torque exerted by the woman. A negative sign must be supplied because \(\mathbf{F}_1 \), if unopposed, would cause a clockwise rotation:

\[
\tau_1 = -r_1 F_1 = -(1.20 \text{ m})(625 \text{ N}) = -7.50 \times 10^2 \text{ N} \cdot \text{m}
\]

Calculate the torque exerted by the man. The torque is positive because \(\mathbf{F}_2 \), if unopposed, would cause a counterclockwise rotation:

\[
\tau_2 = r_2 F_2 = (0.800 \text{ m})(8.50 \times 10^2 \text{ N}) = 6.80 \times 10^2 \text{ N} \cdot \text{m}
\]

Sum the torques to find the net torque on the door:

\[
\tau_{\text{net}} = \tau_1 + \tau_2 = -7.0 \times 10^3 \text{ N} \cdot \text{m}
\]

Remark The negative result here means that the net torque will produce a clockwise rotation.

QUESTION 8.1
What happens if the woman suddenly slides closer to the hub by 0.400 m?

EXERCISE 8.1
A businessman enters the same revolving door on the right, pushing with 576 N of force directed perpendicular to the door and 0.700 m from the hub, while a boy exerts a force of 365 N perpendicular to the door, 1.25 m to the left of the hub. Find (a) the torques exerted by each person and (b) the net torque on the door.

Answers (a) \(\tau_{\text{boy}} = -456 \text{ N} \cdot \text{m} \), \(\tau_{\text{man}} = 403 \text{ N} \cdot \text{m} \) (b) \(\tau_{\text{net}} = -53 \text{ N} \cdot \text{m} \)

The applied force isn’t always perpendicular to the position vector \(\mathbf{r} \). Suppose the force \(\mathbf{F} \) exerted on a door is directed away from the axis, as in Figure 8.3a, say, by someone’s grasping the doorknob and pushing to the right. Exerting the force in this direction couldn’t possibly open the door. However, if the applied force acts at an angle to the door as in Figure 8.3b, the component of the force perpendicular to the door will cause it to rotate. This figure shows that the component of the force perpendicular to the door is \(F \sin \theta \), where \(\theta \) is the angle between the position vector \(\mathbf{r} \) and the force \(\mathbf{F} \). When the force is directed away from the axis, \(\theta = 0^\circ \), \(\sin (0^\circ) = 0 \), and \(F \sin (0^\circ) = 0 \). When the force is directed toward the axis, \(\theta = 180^\circ \) and \(F \sin (180^\circ) = 0 \). The maximum absolute value of \(F \sin \theta \) is attained only when \(\mathbf{F} \) is perpendicular to \(\mathbf{r} \)—that is, when \(\theta = 90^\circ \) or \(\theta = 270^\circ \). These considerations motivate a more general definition of torque:

Let \(\mathbf{F} \) be a force acting on an object, and let \(\mathbf{r} \) be a position vector from a chosen point \(O \) to the point of application of the force. The magnitude of the torque \(\mathbf{\tau} \) exerted by the force \(\mathbf{F} \) is

\[
\tau = r F \sin \theta \quad \text{[8.2]}
\]

where \(r \) is the length of the position vector, \(F \) the magnitude of the force, and \(\theta \) the angle between \(\mathbf{r} \) and \(\mathbf{F} \).

SI unit: Newton-meter (N \cdot m)

Again the vectors \(\mathbf{r} \) and \(\mathbf{F} \) lie in a plane, and for our purposes the chosen point \(O \) will usually correspond to an axis of rotation perpendicular to the plane.

A second way of understanding the \(\sin \theta \) factor is to associate it with the magnitude \(r \) of the position vector \(\mathbf{r} \). The quantity \(d = r \sin \theta \) is called the lever arm, which is the perpendicular distance from the axis of rotation to a line drawn along the direction of the force. This alternate interpretation is illustrated in Figure 8.3c.
It’s important to remember that the value of \(\tau \) depends on the chosen axis of rotation. Torques can be computed around any axis, regardless of whether there is some actual, physical rotation axis present. Once the point is chosen, however, it must be used consistently throughout a given problem.

Torque is a vector perpendicular to the plane determined by the position and force vectors, as illustrated in Figure 8.4. The direction can be determined by the right-hand rule:

1. Point the fingers of your right hand in the direction of \(\mathbf{r} \).
2. Curl your fingers toward the direction of \(\mathbf{F} \).
3. Your thumb then points approximately in the direction of the torque, in this case out of the page.

Problems used in this book will be confined to objects rotating around an axis perpendicular to the plane containing \(\mathbf{r} \) and \(\mathbf{F} \), so if these vectors are in the plane of the page, the torque will always point either into or out of the page, parallel to the axis of rotation. If your right thumb is pointed in the direction of a torque, your fingers curl naturally in the direction of rotation that the torque would produce on an object at rest.

EXAMPLE 8.2 The Swinging Door

Goal Apply the more general definition of torque.

Problem

(a) A man applies a force of \(F = 3.00 \times 10^2 \) N at an angle of 60.0° to the door of Figure 8.5a, 2.00 m from the hinges. Find the torque on the door, choosing the position of the hinges as the axis of rotation. (b) Suppose a wedge is placed 1.50 m from the hinges on the other side of the door. What minimum force must the wedge exert so that the force applied in part (a) won’t open the door?

Strategy Part (a) can be solved by substitution into the general torque equation. In part (b) the hinges, the wedge, and the applied force all exert torques on the door. The door doesn’t open, so the sum of these torques must be zero, a condition that can be used to find the wedge force.

Solution

(a) Compute the torque due to the applied force exerted at 60.0°.

Substitute into the general torque equation:

\[
\tau_F = rF \sin \theta = (2.00 \text{ m})(3.00 \times 10^2 \text{ N}) \sin 60.0^\circ
\]

\[
= (2.00 \text{ m})(2.60 \times 10^2 \text{ N}) = 5.20 \times 10^2 \text{ N} \cdot \text{m}
\]

(b) Calculate the force exerted by the wedge on the other side of the door.

Set the sum of the torques equal to zero:

\[
\tau_{\text{hinge}} + \tau_{\text{wedge}} + \tau_F = 0
\]

The hinge force provides no torque because it acts at the axis \((r = 0) \). The wedge force acts at an angle of \(-90.0^\circ \), opposite \(F \).

\[
0 + F_{\text{wedge}}(1.50 \text{ m}) \sin (-90.0^\circ) + 5.20 \times 10^2 \text{ N} \cdot \text{m} = 0
\]

\[
F_{\text{wedge}} = 347 \text{ N}
\]

Remark Notice that the angle from the position vector to the wedge force is \(-90^\circ\). This is because, starting at the position vector, it’s necessary to go 90° clockwise (the negative angular direction) to get to the force vector. Measuring
the angle in this way automatically supplies the correct sign for the torque term and is consistent with the right-hand rule. Alternately, the magnitude of the torque can be found and the correct sign chosen based on physical intuition. Figure 8.3b illustrates the fact that the component of the force perpendicular to the lever arm causes the torque.

QUESTION 8.2
To make the wedge more effective in keeping the door closed, should it be placed closer to the hinge or to the doorknob?

EXERCISE 8.2
A man ties one end of a strong rope 8.00 m long to the bumper of his truck, 0.500 m from the ground, and the other end to a vertical tree trunk at a height of 3.00 m. He uses the truck to create a tension of \(8.00 \times 10^2\) N in the rope. Compute the magnitude of the torque on the tree due to the tension in the rope, with the base of the tree acting as the reference point.

Answer \(2.28 \times 10^3\) N⋅m

8.2 TORQUE AND THE TWO CONDITIONS FOR EQUILIBRIUM

An object in mechanical equilibrium must satisfy the following two conditions:

1. **The net external force must be zero:** \[\sum \vec{F} = 0 \]
2. **The net external torque must be zero:** \[\sum \vec{\tau} = 0 \]

The first condition is a statement of translational equilibrium: The sum of all forces acting on the object must be zero, so the object has no translational acceleration, \(\vec{a} = 0\). The second condition is a statement of rotational equilibrium: The sum of all torques on the object must be zero, so the object has no angular acceleration, \(\vec{\alpha} = 0\). For an object to be in equilibrium, it must both translate and rotate at a constant rate.

Because we can choose any location for calculating torques, it’s usually best to select an axis that will make at least one torque equal to zero, just to simplify the net torque equation.

EXAMPLE 8.3 Balancing Act

Goal Apply the conditions of equilibrium and illustrate the use of different axes for calculating the net torque on an object.

Problem A woman of mass \(m = 55.0\) kg sits on the left end of a seesaw—a plank of length \(L = 4.00\) m, pivoted in the middle as in Figure 8.6. (a) First compute the torques on the seesaw about an axis that passes through the pivot point. Where should a man of mass \(M = 75.0\) kg sit if the system (seesaw plus man and woman) is to be balanced? (b) Find the normal force exerted by the pivot if the plank has a mass of \(m_{pl} = 12.0\) kg. (c) Repeat part (b), but this time compute the torques about an axis through the left end of the plank.

Strategy Refer to Figure 8.6b. In part (a), apply the second condition of equilibrium, \(\sum \tau = 0\), computing torques around the pivot point. The mass of the plank forming the seesaw is distributed evenly on either side of the pivot point, so the torque exerted by gravity on the plank, \(\tau_{\text{gravity}}\), can be computed as if all the plank’s mass is concentrated at the pivot point. Then \(\tau_{\text{gravity}}\) is zero, as is the torque exerted by the pivot, because their lever arms are zero. In part (b) the first
condition of equilibrium, $\Sigma \vec{F} = 0$, must be applied. Part (c) is a repeat of part (a) showing that choice of a different axis yields the same answer.

Solution

(a) Where should the man sit to balance the seesaw?

Apply the second condition of equilibrium to the plank by setting the sum of the torques equal to zero:

$$\tau_{\text{pivot}} + \tau_{\text{gravity}} + \tau_{\text{man}} + \tau_{\text{woman}} = 0$$

The first two torques are zero. Let x represent the man’s distance from the pivot. The woman is at a distance $L/2$ from the pivot.

Solve this equation for x and evaluate it:

$$x = \frac{m(L/2)}{M} = \frac{(55.0 \text{ kg})(2.00 \text{ m})}{75.0 \text{ kg}} = 1.47 \text{ m}$$

(b) Find the normal force n exerted by the pivot on the seesaw.

Apply for first condition of equilibrium to the plank, solving the resulting equation for the unknown normal force, n:

$$-Mg - mg - m_{pl}g + n = 0$$

$$n = (M + m + m_{pl})g$$

$$= (75.0 \text{ kg} + 55.0 \text{ kg} + 12.0 \text{ kg})(9.80 \text{ m/s}^2)$$

$$n = 1.39 \times 10^3 \text{ N}$$

(c) Repeat part (a), choosing a new axis through the left end of the plank.

Compute the torques using this axis, and set their sum equal to zero. Now the pivot and gravity forces on the plank result in nonzero torques.

Substitute all known quantities:

$$-(75.0 \text{ kg})(9.80 \text{ m/s}^2)(2.00 \text{ m} + x) + 0$$

$$- (12.0 \text{ kg})(9.80 \text{ m/s}^2)(2.00 \text{ m}) + n(2.00 \text{ m}) = 0$$

$$- (1.47 \times 10^3 \text{ N} \cdot \text{m}) - (735 \text{ N})x - (235 \text{ N} \cdot \text{m})$$

$$+ (2.00 \text{ m})n = 0$$

Solve for x, substituting the normal force found in part (b):

$$x = 1.46 \text{ m}$$

Remarks The answers for x in parts (a) and (c) agree except for a small rounding discrepancy. This illustrates how choosing a different axis leads to the same solution.

QUESTION 8.3

What happens if the woman now leans backwards?

EXERCISE 8.3

Suppose a 30.0-kg child sits 1.50 m to the left of center on the same seesaw. A second child sits at the end on the opposite side, and the system is balanced. (a) Find the mass of the second child. (b) Find the normal force acting at the pivot point.

Answers
(a) 22.5 kg
(b) 632 N
8.3 THE CENTER OF GRAVITY

In the example of the seesaw in the previous section, we guessed that the torque due to the force of gravity on the plank was the same as if all the plank’s weight were concentrated at its center. This is a general procedure: To compute the torque on a rigid body due to the force of gravity, the body’s entire weight can be thought of as concentrated at a single point. The problem then reduces to finding the location of that point. If the body is homogeneous (its mass is distributed evenly) and symmetric, it’s usually possible to guess the location of that point, as in Example 8.3. Otherwise, it’s necessary to calculate the point’s location, as explained in this section.

Consider an object of arbitrary shape lying in the xy-plane, as in Figure 8.7. The object is divided into a large number of very small particles of weight \(m_1g, m_2g, m_3g, \ldots \) having coordinates \((x_1, y_1), (x_2, y_2), (x_3, y_3), \ldots\) If the object is free to rotate around the origin, each particle contributes a torque about the origin that is equal to its weight multiplied by its lever arm. For example, the torque due to the weight \(m_1g \) is \(m_1gx_1 \), and so forth.

We wish to locate the point of application of the single force of magnitude \(w = F_g = Mg \) (the total weight of the object), where the effect on the rotation of the object is the same as that of the individual particles. This point is called the object’s center of gravity. Equating the torque exerted by \(w \) at the center of gravity to the sum of the torques acting on the individual particles gives

\[
(m_1g + m_2g + m_3g + \cdots) x_{cg} = m_1gx_1 + m_2gx_2 + m_3gx_3 + \cdots
\]

We assume that \(g \) is the same everywhere in the object (which is true for all objects we will encounter). Then the \(g \) factors in the preceding equation cancel, resulting in

\[
x_{cg} = \frac{m_1x_1 + m_2x_2 + m_3x_3 + \cdots}{m_1 + m_2 + m_3 + \cdots} = \frac{\Sigma m_i x_i}{\Sigma m_i}
\]

[8.3a]

where \(x_{cg} \) is the x-coordinate of the center of gravity. Similarly, the y-coordinate and z-coordinate of the center of gravity of the system can be found from

\[
y_{cg} = \frac{\Sigma m_i y_i}{\Sigma m_i}
\]

[8.3b]

and

\[
z_{cg} = \frac{\Sigma m_i z_i}{\Sigma m_i}
\]

[8.3c]

These three equations are identical to the equations for a similar concept called center of mass. The center of mass and center of gravity of an object are exactly the same when \(g \) doesn’t vary significantly over the object.

It’s often possible to guess the location of the center of gravity. The center of gravity of a homogeneous, symmetric body must lie on the axis of symmetry. For example, the center of gravity of a homogeneous rod lies midway between the ends of the rod, and the center of gravity of a homogeneous sphere or a homogeneous cube lies at the geometric center of the object. The center of gravity of an irregularly shaped object, such as a wrench, can be determined experimentally by suspending the wrench from two different arbitrary points (Fig. 8.8). The wrench is first hung from point \(A \), and a vertical line \(AB \) (which can be established with a plumb bob) is drawn when the wrench is in equilibrium. The wrench is then hung from point \(C \), and a second vertical line \(CD \) is drawn. The center of gravity coincides with the intersection of these two lines. In fact, if the wrench is hung freely from any point, the center of gravity always lies straight below the point of support, so the vertical line through that point must pass through the center of gravity.

Several examples in Section 8.4 involve homogeneous, symmetric objects where the centers of gravity coincide with their geometric centers. A rigid object in a uniform gravitational field can be balanced by a single force equal in magnitude to the weight of the object, as long as the force is directed upward through the object’s center of gravity.
EXAMPLE 8.4 Where Is the Center of Gravity?

Goal Find the center of gravity of a system of particles.

Problem Three particles are located in a coordinate system as shown in Figure 8.9. Find the center of gravity.

Strategy The y-coordinate and z-coordinate of the center of gravity are both zero because all the particles are on the x-axis. We can find the x-coordinate of the center of gravity using Equation 8.3a.

Solution

Apply Equation 8.3a to the system of three particles:

$$x_{cg} = \frac{\sum m_i x_i}{\sum m_i}$$

Compute the numerator of Equation (1):

$$\sum m_i x_i = m_1 x_1 + m_2 x_2 + m_3 x_3$$

$$= (5.00 \text{ kg})(-0.500 \text{ m}) + (2.00 \text{ kg})(0 \text{ m}) + (4.00 \text{ kg})(1.00 \text{ m})$$

$$= 1.50 \text{ kg} \cdot \text{m}$$

Substitute the denominator, $\sum m_i = 11.0 \text{ kg}$, and the numerator into Equation (1).

$$x_{cg} = \frac{1.50 \text{ kg} \cdot \text{m}}{11.0 \text{ kg}} = 0.136 \text{ m}$$

QUESTION 8.4

If 1.00 kg is added to the masses on the left and right, does the center of mass (a) move to the left, (b) move to the right, or (c) remain in the same position.

EXERCISE 8.4

If a fourth particle of mass 2.00 kg is placed at $x = 0$, $y = 0.250 \text{ m}$, find the x- and y-coordinates of the center of gravity for this system of four particles.

Answer $x_{cg} = 0.115 \text{ m}$; $y_{cg} = 0.0385 \text{ m}$

EXAMPLE 8.5 Locating Your Lab Partner’s Center of Gravity

Goal Use torque to find a center of gravity.

Problem In this example we show how to find the location of a person's center of gravity. Suppose your lab partner has a height L of 173 cm (5 ft, 8 in) and a weight w of 715 N (160 lb). You can determine the position of his center of gravity by having him stretch out on a uniform board supported at one end by a scale, as shown in Figure 8.10. If the board's weight w_b is 49 N and the scale reading F is $3.50 \times 10^2 \text{ N}$, find the distance of your lab partner’s center of gravity from the left end of the board.

Strategy To find the position x_{cg} of the center of gravity, compute the torques using an axis through O. Set the sum of the torques equal to zero and solve for x_{cg}.

Solution

Apply the second condition of equilibrium. There is no torque due to the normal force \bar{n} because its moment arm is zero about an axis through O.

$$\sum \tau_i = \tau_w + \tau_{w_b} + \tau_F = 0$$

$$-wx_{cg} - w_b(L/2) + FL = 0$$
8.4 EXAMPLES OF OBJECTS IN EQUILIBRIUM

Recall from Chapter 4 that when an object is treated as a geometric point, equilibrium requires only that the net force on the object is zero. In this chapter we have shown that for extended objects a second condition for equilibrium must also be satisfied: The net torque on the object must be zero. The following general procedure is recommended for solving problems that involve objects in equilibrium.

Tips

Tip 8.2 Rotary Motion under Zero Torque

If a net torque of zero is exerted on an object, it will continue to rotate at a constant angular speed—which need not be zero. However, zero torque does imply that the angular acceleration is zero.

Solve for x_{cg} **and substitute known values:**

$$x_{cg} = \frac{FL - w(L/2)}{w} = \frac{(350 \text{ N})(173 \text{ cm}) - (49 \text{ N})(86.5 \text{ cm})}{715 \text{ N}} = 79 \text{ cm}$$

Remarks The given information is sufficient only to determine the x-coordinate of the center of gravity. The other two coordinates can be estimated, based on the body’s symmetry.

QUESTION 8.5

What would happen if a support is placed exactly at $x = 79 \text{ cm}$ followed by the removal of the supports at the subject’s head and feet?

EXERCISE 8.5

Suppose a 416-kg alligator of length 3.5 m is stretched out on a board of the same length weighing 65 N. If the board is supported on the ends as in Figure 8.10, and the scale reads 1880 N, find the x-component of the alligator’s center of gravity.

Answer 1.59 m

8.4 EXAMPLES OF OBJECTS IN EQUILIBRIUM

Recall from Chapter 4 that when an object is treated as a geometric point, equilibrium requires only that the net force on the object is zero. In this chapter we have shown that for extended objects a second condition for equilibrium must also be satisfied: The net torque on the object must be zero. The following general procedure is recommended for solving problems that involve objects in equilibrium.

PROBLEM-SOLVING STRATEGY

OBJECTS IN EQUILIBRIUM

1. **Diagram the system.** Include coordinates and choose a convenient rotation axis for computing the net torque on the object.
2. **Draw a free-body diagram** of the object of interest, showing all external forces acting on it. For systems with more than one object, draw a separate diagram for each object. (Most problems will have a single object of interest.)
3. **Apply** $\Sigma \tau_i = 0$, **the second condition of equilibrium.** This condition yields a single equation for each object of interest. If the axis of rotation has been carefully chosen, the equation often has only one unknown and can be solved immediately.
4. **Apply** $\Sigma F_x = 0$ **and** $\Sigma F_y = 0$, **the first condition of equilibrium.** This yields two more equations per object of interest.
5. **Solve the system of equations.** For each object, the two conditions of equilibrium yield three equations, usually with three unknowns. Solve by substitution.
EXAMPLE 8.6 A Weighted Forearm

Goal Apply the equilibrium conditions to the human body.

Problem A 50.0-N (11-lb) bowling ball is held in a person’s hand with the forearm horizontal, as in Figure 8.11a. The biceps muscle is attached 0.0300 m from the joint, and the ball is 0.350 m from the joint. Find the upward force F exerted by the biceps on the forearm (the ulna) and the downward force R exerted by the humerus on the forearm, acting at the joint. Neglect the weight of the forearm and slight deviation from the vertical of the biceps.

Strategy The forces acting on the forearm are equivalent to those acting on a bar of length 0.350 m, as shown in Figure 8.11b. Choose the usual x- and y-coordinates as shown and the axis at O on the left end. (This completes Steps 1 and 2.) Use the conditions of equilibrium to generate equations for the unknowns, and solve.

\[\sum \tau = \tau_R + \tau_F + \tau_{HB} = 0 \]
\[R(0) + F(0.0300 \text{ m}) - (50.0 \text{ N})(0.350 \text{ m}) = 0 \]
\[F = \frac{583 \text{ N}}{131 \text{ lb}} \]

Apply the first condition for equilibrium (Step 4) and solve for the downward force R:
\[\sum F_y = F - R - 50.0 \text{ N} = 0 \]
\[R = 50.0 \text{ N} - 583 \text{ N} - 50 \text{ N} = \frac{533 \text{ N}}{120 \text{ lb}} \]

Remarks The magnitude of the force supplied by the biceps must be about ten times as large as the bowling ball it is supporting!

QUESTION 8.6 Suppose the biceps were surgically reattached three centimeters farther toward the person’s hand. If the same bowling ball were again held in the person’s hand, how would the force required of the biceps be affected? Explain.

EXERCISE 8.6 Suppose you wanted to limit the force acting on your joint to a maximum value of $8.00 \times 10^2 \text{ N}$. (a) Under these circumstances, what maximum weight would you attempt to lift? (b) What force would your biceps apply while lifting this weight?

Answers (a) 75.0 N (b) 875 N

EXAMPLE 8.7 Walking a Horizontal Beam

Goal Solve an equilibrium problem with nonperpendicular torques.

Problem A uniform horizontal beam 5.00 m long and weighing $3.00 \times 10^2 \text{ N}$ is attached to a wall by a pin connection that allows the beam to rotate. Its far end is supported by a cable that makes an angle of 53.0° with the horizontal (Fig. 8.12a, page 238). If a person weighing $6.00 \times 10^2 \text{ N}$ stands 1.50 m from the wall, find the magnitude of the tension T in the cable and the force R exerted by the wall on the beam.

Strategy See Figures 8.12b and 8.12c. The second condition of equilibrium, $\sum \tau = 0$, with torques computed around the pin, can be solved for the tension T in the cable. The first condition of equilibrium, $\sum F = 0$, gives two equations and two unknowns for the two components of the force exerted by the wall, R_x and R_y.

Remarks
Even if we selected some other axis for the torque equation, the solution would be the same. For example, if the axis were to pass through the center of gravity of the beam, the torque equation would involve both \(T \) and \(R_y \). Together with Equations (1) and (2), however, the unknowns could still be found—a good exercise.

QUESTION 8.7
What happens to the tension in the cable if the man in Figure 8.12a moves farther away from the wall?

EXERCISE 8.7
A person with mass 55.0 kg stands 2.00 m away from the wall on a 6.00-m beam, as shown in Figure 8.12d. The mass of the beam is 40.0 kg. Find the hinge force components and the tension in the wire.

Answers

\[T = 751 \text{ N}, \quad R_x = -6.50 \times 10^2 \text{ N}, \quad R_y = 556 \text{ N} \]
EXAMPLE 8.8 Don’t Climb the Ladder

Goal Apply the two conditions of equilibrium.

Problem A uniform ladder 10.0 m long and weighing 50.0 N rests against a smooth vertical wall as in Figure 8.13a. If the ladder is just on the verge of slipping when it makes a 50.0° angle with the ground, find the coefficient of static friction between the ladder and ground.

Strategy Figure 8.13b is the free-body diagram for the ladder. The first condition of equilibrium, \(\sum F_x = 0 \), gives two equations for three unknowns: the magnitudes of the static friction force \(f \) and the normal force \(n \), both acting on the base of the ladder, and the magnitude of the force of the wall, \(P \), acting on the top of the ladder. The second condition of equilibrium, \(\sum \tau = 0 \), gives a third equation (for \(P \)), so all three quantities can be found. The definition of static friction then allows computation of the coefficient of static friction.

Solution Apply the first condition of equilibrium to the ladder:

1. \(\sum F_x = f - P = 0 \) \(\rightarrow f = P \)

2. \(\sum F_y = n - 50.0 \text{ N} = 0 \) \(\rightarrow n = 50.0 \text{ N} \)

Apply the second condition of equilibrium, computing torques around the base of the ladder, with \(\tau_{\text{grav}} \) standing for the torque due to the ladder’s 50.0-N weight:

\[\sum \tau = \tau_f + \tau_n + \tau_{\text{grav}} + \tau_P = 0 \]

The torques due to friction and the normal force are zero about \(O \) because their moment arms are zero. (Moment arms can be found from Fig. 8.13c.)

\[0 + 0 - (50.0 \text{ N})(5.00 \text{ m}) \sin 40.0^\circ + P(10.0 \text{ m}) \sin 50.0^\circ = 0 \]

\[P = 21.0 \text{ N} \]

From Equation (1), we now have \(f = P = 21.0 \text{ N} \). The ladder is on the verge of slipping, so write an expression for the maximum force of static friction and solve for \(\mu_s \):

\[21.0 \text{ N} = f_{\text{max}} = \mu_s n = \mu_s (50.0 \text{ N}) \]

\[\mu_s = \frac{21.0 \text{ N}}{50.0 \text{ N}} = 0.420 \]

Remarks Note that torques were computed around an axis through the bottom of the ladder so that only \(P \) and the force of gravity contributed nonzero torques. This choice of axis reduces the complexity of the torque equation, often resulting in an equation with only one unknown.

QUESTION 8.8
If a 50.0 N monkey hangs from the middle rung, would the coefficient of static friction be (a) doubled, (b) halved, or (c) unchanged?

EXERCISE 8.8
If the coefficient of static friction is 0.360, and the same ladder makes a 60.0° angle with respect to the horizontal, how far along the length of the ladder can a 70.0-kg painter climb before the ladder begins to slip?

Answer 6.33 m

8.5 RELATIONSHIP BETWEEN TORQUE AND ANGULAR ACCELERATION

When a rigid object is subject to a net torque, it undergoes an angular acceleration that is directly proportional to the net torque. This result, which is analogous to Newton’s second law, is derived as follows.
The system shown in Figure 8.14 consists of an object of mass \(m \) connected to a very light rod of length \(r \). The rod is pivoted at the point \(O \), and its movement is confined to rotation on a frictionless horizontal table. Assume that a force \(F_t \) acts perpendicular to the rod and hence is tangent to the circular path of the object. Because there is no force to oppose this tangential force, the object undergoes a tangential acceleration \(a_t \) in accordance with Newton’s second law:

\[
F_t = ma_t
\]

Multiply both sides of this equation by \(r \):

\[
F_tr = mra_t
\]

Substituting the equation \(a_t = ra \) relating tangential and angular acceleration into the above expression gives

\[
F_tr = mr^2a
\]

Equation 8.4 shows that the torque on the object is proportional to the angular acceleration of the object, where the constant of proportionality \(mr^2 \) is called the *moment of inertia* of the object of mass \(m \). (Because the rod is very light, its moment of inertia can be neglected.)

QUICK QUIZ 8.1 Using a screwdriver, you try to remove a screw from a piece of furniture, but can’t get it to turn. To increase the chances of success, you should use a screwdriver that (a) is longer, (b) is shorter, (c) has a narrower handle, or (d) has a wider handle.

Torque on a Rotating Object

Consider a solid disk rotating about its axis as in Figure 8.15a. The disk consists of many particles at various distances from the axis of rotation. (See Fig. 8.15b.) The torque on each one of these particles is given by Equation 8.5. The *net* torque on the disk is given by the sum of the individual torques on all the particles:

\[
\sum \tau = \left(\sum mr^2 \right) \alpha
\]

Because the disk is rigid, all of its particles have the *same* angular acceleration, so \(\alpha \) is not involved in the sum. If the masses and distances of the particles are labeled with subscripts as in Figure 8.15b, then

\[
\sum mr^2 = m_1r_1^2 + m_2r_2^2 + m_3r_3^2 + \cdots
\]

This quantity is the moment of inertia, \(I \), of the whole body:

\[
I = \sum mr^2
\]
The moment of inertia has the SI units kg·m². Using this result in Equation 8.6, we see that the net torque on a rigid body rotating about a fixed axis is given by

$$\sum \tau = I \alpha$$ \[8.8\]

Equation 8.8 says that the **angular acceleration of an extended rigid object is proportional to the net torque acting on it**. This equation is the rotational analog of Newton’s second law of motion, with torque replacing force, moment of inertia replacing mass, and angular acceleration replacing linear acceleration. Although the moment of inertia of an object is related to its mass, there is an important difference between them. The mass m depends only on the quantity of matter in an object, whereas the moment of inertia, I, depends on both the quantity of matter and its distribution (through the r^2 term in $I = \sum mr^2$) in the rigid object.

QUICK QUIZ 8.2 A constant net torque is applied to an object. Which one of the following will not be constant? (a) angular acceleration, (b) angular velocity, (c) moment of inertia, or (d) center of gravity.

QUICK QUIZ 8.3 The two rigid objects shown in Figure 8.16 have the same mass, radius, and angular speed. If the same braking torque is applied to each, which takes longer to stop? (a) A (b) B (c) more information is needed

The gear system on a bicycle provides an easily visible example of the relationship between torque and angular acceleration. Consider first a five-speed gear system in which the drive chain can be adjusted to wrap around any of five gears attached to the back wheel (Fig. 8.17). The gears, with different radii, are concentric with the wheel hub. When the cyclist begins pedaling from rest, the chain is attached to the largest gear. Because it has the largest radius, this gear provides the largest torque to the drive wheel. A large torque is required initially, because the bicycle starts from rest. As the bicycle rolls faster, the tangential speed of the chain increases, eventually becoming too fast for the cyclist to maintain by pushing the pedals. The chain is then moved to a gear with a smaller radius, so the chain has a smaller tangential speed that the cyclist can more easily maintain. This gear doesn’t provide as much torque as the first, but the cyclist needs to accelerate only to a somewhat higher speed. This process continues as the bicycle moves faster and faster and the cyclist shifts through all five gears. The fifth gear supplies the lowest torque, but now the main function of that torque is to counter the frictional torque from the rolling tires, which tends to reduce the speed of the bicycle. The small radius of the fifth gear allows the cyclist to keep up with the chain’s movement by pushing the pedals.

A 15-speed bicycle has the same gear structure on the drive wheel, but has three gears on the sprocket connected to the pedals. By combining different positions of the chain on the rear gears and the sprocket gears, 15 different torques are available.

More on the Moment of Inertia

As we have seen, a small object (or a particle) has a moment of inertia equal to mr^2 about some axis. The moment of inertia of a composite object about some axis is just the sum of the moments of inertia of the object’s components. For example, suppose a majorette twirls a baton as in Figure 8.18. Assume that the baton can be modeled as a very light rod of length 2ℓ with a heavy object at each end. (The rod of a real baton has a significant mass relative to its ends.) Because we are neglecting the mass of the rod, the moment of inertia of the baton about an axis through its center and perpendicular to its length is given by Equation 8.7:

$$I = \sum mr^2$$

FIGURE 8.16 (Quick Quiz 8.3)

FIGURE 8.17 The drive wheel and gears of a bicycle.

FIGURE 8.18 A baton of length 2ℓ and mass $2m$. (The mass of the connecting rod is neglected.) The moment of inertia about the axis through the baton’s center and perpendicular to its length is $2mr^2$.
Because this system consists of two objects with equal masses equidistant from the axis of rotation, \(r = \ell \) for each object, and the sum is

\[
I = \sum mr^2 = m\ell^2 + m\ell^2 = 2m\ell^2
\]

If the mass of the rod were not neglected, we would have to include its moment of inertia to find the total moment of inertia of the baton.

We pointed out earlier that \(I \) is the rotational counterpart of \(m \). However, there are some important distinctions between the two. For example, mass is an intrinsic property of an object that doesn’t change, whereas the moment of inertia of a system depends on how the mass is distributed and on the location of the axis of rotation. Example 8.9 illustrates this point.

EXAMPLE 8.9 The Baton Twirler

Goal Calculate a moment of inertia.

Problem In an effort to be the star of the half-time show, a majorette twirls an unusual baton made up of four spheres fastened to the ends of very light rods (Fig. 8.19). Each rod is 1.0 m long. (a) Find the moment of inertia of the baton about an axis perpendicular to the page and passing through the point where the rods cross. (b) The majorette tries spinning her strange baton about the axis \(OO' \), as shown in Figure 8.20. Calculate the moment of inertia of the baton about this axis.

Strategy In Figure 8.19, all four balls contribute to the moment of inertia, whereas in Figure 8.20, with the new axis, only the two balls on the left and right contribute. Technically, the balls on the top and bottom still make a small contribution because they’re not really point particles. However, their moment of inertia can be neglected because the radius of the sphere is much smaller than the radius formed by the rods.

Solution

(a) Calculate the moment of inertia of the baton when oriented as in Figure 8.19.

Apply Equation 8.7, neglecting the mass of the connecting rods:

\[
I = \sum mr^2 = m_1r_1^2 + m_2r_2^2 + m_3r_3^2 + m_4r_4^2
\]

\[
= (0.20 \text{ kg})(0.50 \text{ m})^2 + (0.30 \text{ kg})(0.50 \text{ m})^2 + (0.20 \text{ kg})(0.50 \text{ m})^2 + (0.30 \text{ kg})(0.50 \text{ m})^2
\]

\[
I = 0.25 \text{ kg} \cdot \text{m}^2
\]

(b) Calculate the moment of inertia of the baton when oriented as in Figure 8.20 (page 243).

Apply Equation 8.7 again, neglecting the radii of the 0.20-kg spheres.

\[
I = \sum mr^2 = m_1r_1^2 + m_2r_2^2 + m_3r_3^2 + m_4r_4^2
\]

\[
= (0.20 \text{ kg})(0)^2 + (0.30 \text{ kg})(0.50 \text{ m})^2 + (0.20 \text{ kg})(0)^2 + (0.30 \text{ kg})(0.50 \text{ m})^2
\]

\[
I = 0.15 \text{ kg} \cdot \text{m}^2
\]
Remarks The moment of inertia is smaller in part (b) because in this configuration the 0.20-kg spheres are essentially located on the axis of rotation.

QUESTION 8.9
If one of the rods is lengthened, which one would cause the larger change in the moment of inertia, the rod connecting bars one and three or the rod connecting bars two and four?

EXERCISE 8.9
Yet another bizarre baton is created by taking four identical balls, each with mass 0.300 kg, and fixing them as before, except that one of the rods has a length of 1.00 m and the other has a length of 1.50 m. Calculate the moment of inertia of this baton (a) when oriented as in Figure 8.19; (b) when oriented as in Figure 8.20, with the shorter rod vertical; and (c) when oriented as in Figure 8.20, but with longer rod vertical.

Answers (a) 0.488 kg·m² (b) 0.338 kg·m² (c) 0.150 kg·m²

Calculation of Moments of Inertia for Extended Objects
The method used for calculating moments of inertia in Example 8.9 is simple when only a few small objects rotate about an axis. When the object is an extended one, such as a sphere, a cylinder, or a cone, techniques of calculus are often required, unless some simplifying symmetry is present. One such extended object amenable to a simple solution is a hoop rotating about an axis perpendicular to its plane and passing through its center, as shown in Figure 8.21. (A bicycle tire, for example, would approximately fit into this category.)

To evaluate the moment of inertia of the hoop, we can still use the equation \(I = \sum m r^2 \) and imagine that the mass of the hoop \(M \) is divided into \(n \) small segments having masses \(m_1, m_2, m_3, \ldots, m_n \) as in Figure 8.21, with \(M = m_1 + m_2 + m_3 + \ldots + m_n \). This approach is just an extension of the baton problem described in the preceding examples, except that now we have a large number of small masses in rotation instead of only four.

We can express the sum for \(I \) as

\[
I = \sum mr^2 = m_1 r_1^2 + m_2 r_2^2 + m_3 r_3^2 + \cdots + m_n r_n^2
\]

All of the segments around the hoop are at the same distance \(R \) from the axis of rotation, so we can drop the subscripts on the distances and factor out \(R^2 \) to obtain

\[
I = (m_1 + m_2 + m_3 + \cdots + m_n) R^2 = MR^2 \quad [8.9]
\]

This expression can be used for the moment of inertia of any ring-shaped object rotating about an axis through its center and perpendicular to its plane. Note that the result is strictly valid only if the thickness of the ring is small relative to its inner radius.

The hoop we selected as an example is unique in that we were able to find an expression for its moment of inertia by using only simple algebra. Unfortunately, for most extended objects the calculation is much more difficult because the mass elements are not all located at the same distance from the axis, so the methods of integral calculus are required. The moments of inertia for some other common shapes are given without proof in Table 8.1 (page 244). You can use this table as needed to determine the moment of inertia of a body having any one of the listed shapes.

If mass elements in an object are redistributed parallel to the axis of rotation, the moment of inertia of the object doesn’t change. Consequently, the expression \(I = MR^2 \) can be used equally well to find the axial moment of inertia of an embroidery hoop or of a long sewer pipe. Likewise, a door turning on its hinges is described by the same moment-of-inertia expression as that tabulated for a long thin rod rotating about an axis through its end.
TABLE 8.1
Moments of Inertia for Various Rigid Objects of Uniform Composition

<table>
<thead>
<tr>
<th>Object Description</th>
<th>Moment of Inertia Formula</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hoop or thin cylindrical shell</td>
<td>$I = 2\frac{1}{3} MR^2$</td>
</tr>
<tr>
<td>Solid sphere</td>
<td>$I = \frac{2}{5} MR^2$</td>
</tr>
<tr>
<td>Solid cylinder or disk</td>
<td>$I = \frac{1}{2} MR^2$</td>
</tr>
<tr>
<td>Thin spherical shell</td>
<td>$I = \frac{2}{3} MR^2$</td>
</tr>
<tr>
<td>Long thin rod with rotation axis through center</td>
<td>$I = \frac{1}{12} ML^2$</td>
</tr>
<tr>
<td>Long thin rod with rotation axis through end</td>
<td>$I = \frac{1}{3} ML^2$</td>
</tr>
</tbody>
</table>

EXAMPLE 8.10 Warming Up

Goal Find a moment of inertia and apply the rotational analog of Newton’s second law.

Problem A baseball player loosening up his arm before a game tosses a 0.150-kg baseball, using only the rotation of his forearm to accelerate the ball (Fig. 8.22). The forearm has a mass of 1.50 kg and a length of 0.350 m. The ball starts at rest and is released with a speed of 30.0 m/s in 0.300 s. (a) Find the constant angular acceleration of the arm and ball. (b) Calculate the moment of inertia of the system consisting of the forearm and ball. (c) Find the torque exerted on the system that results in the angular acceleration found in part (a).

Strategy The angular acceleration can be found with rotational kinematic equations, while the moment of inertia of the system can be obtained by summing the separate moments of inertia of the ball and forearm. Multiplying these two results together gives the torque.

Solution

(a) Find the angular acceleration of the ball.

The angular acceleration is constant, so use the angular velocity kinematic equation with $\omega_i = 0$:

$$\omega = \omega_i + \alpha t \quad \rightarrow \quad \alpha = \frac{\omega}{t}$$

The ball accelerates along a circular arc with radius given by the length of the forearm. Solve $v = r\omega$ for ω and substitute:

$$\omega = \frac{v}{r} = \frac{30.0 \text{ m/s}}{(0.350 \text{ m})(0.300 \text{ s})} = 286 \text{ rad/s}^2$$
Goal Combine Newton’s second law with its rotational analog.

Problem A solid, frictionless cylindrical reel of mass \(M = 3.00 \text{ kg} \) and radius \(R = 0.400 \text{ m} \) is used to draw water from a well (Fig. 8.23a). A bucket of mass \(m = 2.00 \text{ kg} \) is attached to a cord that is wrapped around the cylinder. (a) Find the tension \(T \) in the cord and acceleration \(a \) of the bucket. (b) If the bucket starts from rest at the top of the well and falls for 3.00 s before hitting the water, how far does it fall?

Strategy This problem involves three equations and three unknowns. The three equations are Newton’s second law applied to the bucket, \(ma = \Sigma F \); the rotational version of the second law applied to the cylinder, \(Ia = \Sigma \tau \); and the relationship between linear and angular acceleration, \(a = ra \), which connects the dynamics of the bucket and cylinder. The three unknowns are the acceleration \(a \) of the bucket, the angular acceleration \(\alpha \) of the cylinder, and the tension \(T \) in the rope. Assemble the terms of the three equations and solve for the three unknowns by substitution. Part (b) is a review of kinematics.

(b) Find the moment of inertia of the system (forearm plus ball).

Find the moment of inertia of the ball about an axis that passes through the elbow, perpendicular to the arm:

\[I_{\text{ball}} = mr^2 = (0.150 \text{ kg})(0.350 \text{ m})^2 = 1.84 \times 10^{-2} \text{ kg} \cdot \text{m}^2 \]

Obtain the moment of inertia of the forearm, modeled as a rod, by consulting Table 8.1:

\[I_{\text{forearm}} = \frac{1}{2} M L^2 = \frac{1}{2}(1.50 \text{ kg})(0.350 \text{ m})^2 = 6.13 \times 10^{-2} \text{ kg} \cdot \text{m}^2 \]

Sum the individual moments of inertia to obtain the moment of inertia of the system (ball plus forearm):

\[I_{\text{system}} = I_{\text{ball}} + I_{\text{forearm}} = 7.97 \times 10^{-2} \text{ kg} \cdot \text{m}^2 \]

(c) Find the torque exerted on the system.

Apply Equation 8.8, using the results of parts (a) and (b):

\[\tau = I_{\text{system}} \alpha = (7.97 \times 10^{-2} \text{ kg} \cdot \text{m}^2)(286 \text{ rad/s}^2) = 22.8 \text{ N} \cdot \text{m} \]

Remarks Notice that having a long forearm can greatly increase the torque and hence the acceleration of the ball. This is one reason it’s advantageous for a pitcher to be tall—the pitching arm is proportionately longer. A similar advantage holds in tennis, where taller players can usually deliver faster serves.

QUESTION 8.10
Why do pitchers step forward when delivering the pitch? Why is the timing important?

EXERCISE 8.10
A catapult with a radial arm 4.00 m long accelerates a ball of mass 20.0 kg through a quarter circle. The ball leaves the apparatus at 45.0 m/s. If the mass of the arm is 25.0 kg and the acceleration is constant, find (a) the angular acceleration, (b) the moment of inertia of the arm and ball, and (c) the net torque exerted on the ball and arm.

Hint: Use the time-independent rotational kinematics equation to find the angular acceleration, rather than the angular velocity equation.

Answers (a) 40.3 rad/s² (b) 453 kg·m² (c) 1.83 × 10⁴ N·m

FIGURE 8.23 (Example 8.11) (a) A water bucket attached to a rope passing over a frictionless reel. (b) A free-body diagram for the bucket. (c) The tension produces a torque on the cylinder about its axis of rotation. (d) A falling cylinder (Exercise 8.11).
246 Chapter 8 Rotational Equilibrium and Rotational Dynamics

8.6 ROTATIONAL KINETIC ENERGY

In Chapter 5 we defined the kinetic energy of a particle moving through space with a speed \(v\) as the quantity \(\frac{1}{2}mv^2\). Analogously, an object rotating about some axis with an angular speed \(\omega\) has rotational kinetic energy given by \(\frac{1}{2}I\omega^2\). To prove this, consider an object in the shape of a thin rigid plate rotating around some axis perpendicular to its plane, as in Figure 8.24. The plate consists of many small particles, each of mass \(m\). All these particles rotate in circular paths around the...
axis. If \(r \) is the distance of one of the particles from the axis of rotation, the speed of that particle is \(v = \omega r \). Because the total kinetic energy of the plate’s rotation is the sum of all the kinetic energies associated with its particles, we have

\[
KE_r = \sum \left(\frac{1}{2}m_v^2 \right) = \sum \left(\frac{1}{2}mr^2 \omega^2 \right) = \frac{1}{2} \sum m_r^2 \omega^2
\]

In the last step, the \(\omega^2 \) term is factored out because it’s the same for every particle. Now, the quantity in parentheses on the right is the moment of inertia of the plate in the limit as the particles become vanishingly small, so

\[
KE_r = \frac{1}{2} I \omega^2 \tag{8.10}
\]

where \(I = \sum m_r^2 \) is the moment of inertia of the plate.

A system such as a bowling ball rolling down a ramp is described by three types of energy: gravitational potential energy \(PE_g \), translational kinetic energy \(KE_t \), and rotational kinetic energy \(KE_r \). All these forms of energy, plus the potential energies of any other conservative forces, must be included in our equation for the conservation of mechanical energy of an isolated system:

\[
(KE_i + KE_f + PE_i) = (KE_i + KE_f + PE_f)
\]

where \(i \) and \(f \) refer to initial and final values, respectively, and \(PE \) includes the potential energies of all conservative forces in a given problem. This relation is true only if we ignore dissipative forces such as friction. In that case, it’s necessary to resort to a generalization of the work–energy theorem:

\[
W_{nc} = \Delta KE_t + \Delta KE_r + \Delta PE
\]

PROBLEM-SOLVING STRATEGY

ENERGY METHODS AND ROTATION

1. Choose two points of interest, one where all necessary information is known, and the other where information is desired.
2. Identify the conservative and nonconservative forces acting on the system being analyzed.
3. Write the general work–energy theorem, Equation 8.12, or Equation 8.11 if all forces are conservative.
4. Substitute general expressions for the terms in the equation.
5. Use \(v = \omega r \) to eliminate either \(\omega \) or \(v \) from the equation.
6. Solve for the unknown.

EXAMPLE 8.12 A Ball Rolling Down an Incline

Goal Combine gravitational, translational, and rotational energy.

Problem A ball of mass \(M \) and radius \(R \) starts from rest at a height of 2.00 m and rolls down a 30.0° slope, as in Figure 8.25. What is the linear speed of the ball when it leaves the incline? Assume that the ball rolls without slipping.

Strategy The two points of interest are the top and bottom of the incline, with the bottom acting as the zero point of gravitational potential energy. As the ball rolls down the ramp, gravitational potential energy is converted into both translational and rotational kinetic energy without dissipation, so conservation of mechanical energy can be applied with the use of Equation 8.11.
248 Chapter 8 Rotational Equilibrium and Rotational Dynamics

QUICK QUIZ 8.4
Two spheres, one hollow and one solid, are rotating with the same angular speed around an axis through their centers. Both spheres have the same mass and radius. Which sphere, if either, has the higher rotational kinetic energy? (a) The hollow sphere. (b) The solid sphere. (c) They have the same kinetic energy.

Solution
Apply conservation of energy with PE = PE, the potential energy associated with gravity:

\[(KE_i + KE_f) = (KE_i + KE_f) + PE_g. \]

Substitute the appropriate general expressions, noting that \((KE_i) = (KE_f) = 0 \) and \((PE_g) = 0 \) (obtain the moment of inertia of a ball from Table 8.1):

The ball rolls without slipping, so \(R \omega = v \), the “no-slip condition,” can be applied:

\[Mgh = \frac{1}{2}Mv^2 + \frac{1}{2}(\frac{2}{5}MR^2)\omega^2 = \frac{7}{10}Mv^2. \]

Solve for \(v \), noting that \(M \) cancels.

\[v = \sqrt{\frac{10gh}{7}} = \sqrt{\frac{10(9.80 \text{ m/s}^2)(2.00 \text{ m})}{7}} = 5.29 \text{ m/s}. \]

QUESTION 8.12
Rank from fastest to slowest: (a) a solid ball rolling down a ramp without slipping. (b) a cylinder rolling down the same ramp without slipping. (c) a block sliding down a frictionless ramp with the same height and slope.

EXERCISE 8.12
Repeat this example for a solid cylinder of the same mass and radius as the ball and released from the same height. In a race between the two objects on the incline, which one would win?

Answer \(v = \sqrt{4gh/3} = 5.11 \text{ m/s}; \) the ball would win.

EXAMPLE 8.13 Blocks and Pulley

Goal Solve a system requiring rotation concepts and the work–energy theorem.

Problem Two blocks with masses \(m_1 = 5.00 \text{ kg} \) and \(m_2 = 7.00 \text{ kg} \) are attached by a string as in Figure 8.26a, over a pulley with mass \(M = 2.00 \text{ kg} \). The pulley, which turns on a frictionless axle, is a hollow cylinder with radius 0.050 m over which the string moves without slipping. The horizontal surface has coefficient of kinetic friction 0.350. Find the speed of the system when the block of mass \(m_2 \) has dropped 2.00 m.

Strategy This problem can be solved with the extension of the work–energy theorem, Equation 8.12. If the block of mass \(m_2 \) falls from height \(h \) to 0, then the block of mass \(m_1 \) moves the same distance, \(\Delta x = h \). Apply the work-energy theorem, solve for \(v \), and substitute. Kinetic friction is the sole nonconservative force.

\[\text{FIGURE 8.26} \]
(a) (Example 8.13) (b) (Exercise 8.13) In both cases, \(T_1 \) and \(T_2 \) exert torques on the pulley.
Solution

Apply the work–energy theorem, with $PE = PE_f$.

the potential energy associated with gravity:

Substitute the frictional work for W_{nc}, kinetic energy changes for the two blocks, the rotational kinetic energy change for the pulley, and the potential energy change for the second block:

Substitute $\Delta x = h$, and write I as $(I/r)^2$:

For a hoop, $I = Mr^2$ so $(I/r^2) = M$. Substitute this quantity and $v = r\omega$:

Solve for v:

Substitute $m_1 = 5.00 \text{ kg}$, $m_2 = 7.00 \text{ kg}$, $M = 2.00 \text{ kg}$, $g = 9.80 \text{ m/s}^2$, $h = 2.00 \text{ m}$, and $\mu_k = 0.350$:

Remarks

In the expression for the speed v, the mass m_1 of the first block and the mass M of the pulley all appear in the denominator, reducing the speed, as they should. In the numerator, m_2 is positive while the friction term is negative. Both assertions are reasonable because the force of gravity on m_1 increases the speed of the system while the force of friction on m_1 slows it down. This problem can also be solved with Newton’s second law together with $\tau = I\alpha$, a good exercise.

QUESTION 8.13

How would increasing the radius of the pulley affect the final answer? Assume the angles of the cables are unchanged and the mass is the same as before.

Answer 29.5 J

8.7 Angular Momentum

In Figure 8.27, an object of mass m rotates in a circular path of radius r, acted on by a net force, \mathbf{F}_{net}. The resulting net torque on the object increases its angular speed from the value ω_0 to the value ω in a time interval Δt. Therefore, we can write

$$\sum \tau = I \frac{\Delta \omega}{\Delta t} = I \left(\frac{\omega - \omega_0}{\Delta t} \right) = \frac{I \omega - I \omega_0}{\Delta t}$$

If we define the product

$$L = I \omega$$

as the angular momentum of the object, then we can write

$$\sum \tau = \frac{\text{change in angular momentum}}{\text{time interval}} = \frac{\Delta L}{\Delta t}$$

FIGURE 8.27 An object of mass m rotating in a circular path under the action of a constant torque.
Equation 8.14 is the rotational analog of Newton's second law, which can be written in the form \(F = \Delta p / \Delta t \) and states that the net torque acting on an object is equal to the time rate of change of the object's angular momentum. Recall that this equation also parallels the impulse–momentum theorem.

When the net external torque (\(\Sigma \tau \)) acting on a system is zero, Equation 8.14 gives that \(\Delta L / \Delta t = 0 \), which says that the time rate of change of the system's angular momentum is zero. We then have the following important result:

Let \(L_i \) and \(L_f \) be the angular momenta of a system at two different times, and suppose there is no net external torque, so \(\Sigma \tau = 0 \). Then

\[
L_i = L_f
\]

and angular momentum is said to be conserved.

Equation 8.15 gives us a third conservation law to add to our list: conservation of angular momentum. We can now state that the mechanical energy, linear momentum, and angular momentum of an isolated system all remain constant.

If the moment of inertia of an isolated rotating system changes, the system's angular speed will change. Conservation of angular momentum then requires that

\[
I_i \omega_i = I_f \omega_f \quad \text{if} \quad \Sigma \tau = 0
\]

Note that conservation of angular momentum applies to macroscopic objects such as planets and people, as well as to atoms and molecules. There are many examples of conservation of angular momentum; one of the most dramatic is that of a figure skater spinning in the finale of her act. In Figure 8.28a, the skater has pulled her arms and legs close to her body, reducing their distance from her axis of rotation and hence also reducing her moment of inertia. By conservation of angular momentum, a reduction in her moment of inertia must increase her angular velocity. Coming out of the spin in Figure 8.28b, she needs to reduce her angular velocity, so she extends her arms and legs again, increasing her moment of inertia and thereby slowing her rotation.

Similarly, when a diver or an acrobat wishes to make several somersaults, she pulls her hands and feet close to the trunk of her body in order to rotate at a greater angular speed. In this case, the external force due to gravity acts through her center of gravity and hence exerts no torque about her axis of rotation, so the angular momentum about her center of gravity is conserved. For example, when a diver wishes to double her angular speed, she must reduce her moment of inertia to half its initial value.

An interesting astrophysical example of conservation of angular momentum occurs when a massive star, at the end of its lifetime, uses up all its fuel and collapses under the influence of gravitational forces, causing a gigantic outburst of energy called a supernova. The best-studied example of a remnant of a supernova explosion is the Crab Nebula, a chaotic, expanding mass of gas (Fig. 8.29). In a...
supernova, part of the star’s mass is ejected into space, where it eventually condenses into new stars and planets. Most of what is left behind typically collapses into a neutron star—an extremely dense sphere of matter with a diameter of about 10 km, greatly reduced from the 10^6-km diameter of the original star and containing a large fraction of the star’s original mass. In a neutron star, pressures become so great that atomic electrons combine with protons, becoming neutrons. As the moment of inertia of the system decreases during the collapse, the star’s rotational speed increases. More than 700 rapidly rotating neutron stars have been identified since their first discovery in 1967, with periods of rotation ranging from a millisecond to several seconds. The neutron star is an amazing system—an object with a mass greater than the Sun, fitting comfortably within the space of a small county and rotating so fast that the tangential speed of the surface approaches a sizable fraction of the speed of light!

QUICK QUIZ 8.5 A horizontal disk with moment of inertia \(I_1 \) rotates with angular speed \(\omega_1 \) about a vertical frictionless axle. A second horizontal disk having moment of inertia \(I_2 \) drops onto the first, initially not rotating but sharing the same axis as the first disk. Because their surfaces are rough, the two disks eventually reach the same angular speed \(\omega \). The ratio \(\omega / \omega_1 \) is equal to (a) \(I_1 / I_2 \) (b) \(I_2 / I_1 \) (c) \(I_1 / (I_1 + I_2) \) (d) \(I_2 / (I_1 + I_2) \)

QUICK QUIZ 8.6 If global warming continues, it’s likely that some ice from the polar ice caps of the Earth will melt and the water will be distributed closer to the equator. If this occurs, would the length of the day (one revolution) (a) increase, (b) decrease, or (c) remain the same?

EXAMPLE 8.14 The Spinning Stool

Goal Apply conservation of angular momentum to a simple system.

Problem A student sits on a pivoted stool while holding a pair of weights. (See Fig. 8.30.) The stool is free to rotate about a vertical axis with negligible friction. The moment of inertia of student, weights, and stool is 2.25 kg m^2. The student is set in rotation with arms outstretched, making one complete turn every 1.26 s, arms outstretched. (a) What is the initial angular speed of the system? (b) As he rotates, he pulls the weights inward so that the new moment of inertia of the system (student, objects, and stool) becomes 1.80 kg m^2. What is the new angular speed of the system? (c) Find the work done by the student on the system while pulling in the weights. (Ignore energy lost through dissipation in his muscles.)

Strategy (a) The angular speed can be obtained from the frequency, which is the inverse of the period. (b) There are no external torques acting on the system, so the new angular speed can be found with the principle of conservation of angular momentum. (c) The work done on the system during this process is the same as the system’s change in rotational kinetic energy.
252 Chapter 8 Rotational Equilibrium and Rotational Dynamics

Solution
(a) Find the initial angular speed of the system.
Invert the period to get the frequency, and multiply by \(2\pi\):
\[\omega_i = 2\pi f = 2\pi/T = 4.99 \text{ rad/s} \]

(b) After he pulls the weights in, what’s the system’s new angular speed?
Equate the initial and final angular momenta of the system:
\[I_i \omega_i = I_f \omega_f \]
(1)
Substitute and solve for the final angular speed \(\omega_f\):
\[(2.25 \text{ kg} \cdot \text{m}^2)(4.99 \text{ rad/s}) = (1.80 \text{ kg} \cdot \text{m}^2)\omega_f \]
\[\omega_f = 6.24 \text{ rad/s} \]

(c) Find the work the student does on the system.
Apply the work–energy theorem:
\[W_{\text{student}} = \Delta K_s = \frac{1}{2}I_f \omega_f^2 - \frac{1}{2}I_i \omega_i^2 \]
\[= \frac{1}{2}(1.80 \text{ kg} \cdot \text{m}^2)(6.24 \text{ rad/s})^2 \]
\[- \frac{1}{2}(2.25 \text{ kg} \cdot \text{m}^2)(4.99 \text{ rad/s})^2 \]
\[W_{\text{student}} = 7.03 \text{ J} \]

Remarks Although the angular momentum of the system is conserved, mechanical energy is not conserved because the student does work on the system.

QUESTION 8.14
If the student suddenly releases the weights, will his angular speed increase, decrease, or remain the same?

EXERCISE 8.14
A star with an initial radius of \(1.0 \times 10^8 \text{ m}\) and period of 30.0 days collapses suddenly to a radius of \(1.0 \times 10^4 \text{ m}\).
(a) Find the period of rotation after collapse. (b) Find the work done by gravity during the collapse if the mass of the star is \(2.0 \times 10^{30} \text{ kg}\). (c) What is the speed of an indestructible person standing on the equator of the collapsed star? (Neglect any relativistic or thermal effects, and assume the star is spherical before and after it collapses.)
Answers (a) \(2.6 \times 10^{-2} \text{ s}\) (b) \(2.3 \times 10^{12} \text{ J}\) (c) \(2.4 \times 10^6 \text{ m/s}\)

EXAMPLE 8.15 The Merry-Go-Round

Goal Apply conservation of angular momentum while combining two moments of inertia.

Problem A merry-go-round modeled as a disk of mass \(M = 1.00 \times 10^2 \text{ kg}\) and radius \(R = 2.00 \text{ m}\) is rotating in a horizontal plane about a frictionless vertical axle (Fig. 8.31). (a) After a student with mass \(m = 60.0 \text{ kg}\) jumps on the rim of the merry-go-round, the system's angular speed decreases to 2.00 rad/s. If the student walks slowly from the edge toward the center, find the angular speed of the system when she reaches a point 0.500 m from the center. (b) Find the change in the system's rotational kinetic energy caused by her movement to the center. (c) Find the work done on the student as she walks to \(r = 0.500 \text{ m}\).

Strategy This problem can be solved with conservation of angular momentum by equating the system's initial angular momentum when the student stands at the rim to the angular momentum when the student has reached \(r = 0.500 \text{ m}\). The key is to find the different moments of inertia.
Remarks The angular momentum is unchanged by internal forces; however, the kinetic energy increases because the student must perform positive work in order to walk toward the center of the platform.

QUESTION 8.15

Is energy conservation violated in this example? Explain why there is a positive net change in mechanical energy. What is the origin of this energy?
EXERCISE 8.15
(a) Find the angular speed of the merry-go-round before the student jumped on, assuming the student didn’t transfer any momentum or energy as she jumped on the merry-go-round. (b) By how much did the kinetic energy of the system change when the student jumped on? Notice that energy is lost in this process, as should be expected, since it is essentially a perfectly inelastic collision.

Answers (a) 4.4 rad/s (b) \(KE_f - KE_i = -1.06 \times 10^3 \) J.

8.1 Torque
Let \(\vec{F} \) be a force acting on an object, and let \(\vec{r} \) be a position vector from a chosen point \(O \) to the point of application of the force. Then the magnitude of the torque \(\vec{\tau} \) of the force \(\vec{F} \) is given by

\[
\tau = r F \sin \theta
\]

where \(r \) is the length of the position vector, \(F \) the magnitude of the force, and \(\theta \) the angle between \(\vec{F} \) and \(\vec{r} \).

The quantity \(d = r \sin \theta \) is called the lever arm of the force.

8.2 Torque and the Two Conditions for Equilibrium
An object in mechanical equilibrium must satisfy the following two conditions:

1. The net external force must be zero: \(\sum \vec{F} = 0 \).
2. The net external torque must be zero: \(\sum \tau = 0 \).

These two conditions, used in solving problems involving rotation in a plane—result in three equations and three unknowns—two from the first condition (corresponding to the \(x \) and \(y \)-components of the force) and one from the second condition, on torques. These equations must be solved simultaneously.

8.5 Relationship between Torque and Angular Acceleration
The moment of inertia of a group of particles is

\[
I = \sum m r^2
\]

If a rigid object free to rotate about a fixed axis has a net external torque \(\sum \tau \) acting on it, then the object undergoes an angular acceleration \(\alpha \), where

\[
\sum \tau = I \alpha
\]

This equation is the rotational equivalent of the second law of motion.

Problems are solved by using Equation 8.8 together with Newton’s second law and solving the resulting equations simultaneously. The relation \(a = \alpha r \) is often key in relating the translational equations to the rotational equations.

8.6 Rotational Kinetic Energy
If a rigid object rotates about a fixed axis with angular speed \(\omega \), its rotational kinetic energy is

\[
KE_r = \frac{1}{2} I \omega^2
\]

where \(I \) is the moment of inertia of the object around the axis of rotation.

A system involving rotation is described by three types of energy: potential energy \(PE \), translational kinetic energy \(KE_t \), and rotational kinetic energy \(KE_r \). All these forms of energy must be included in the equation for conservation of mechanical energy for an isolated system:

\[
(KE_i + KE_r + PE)_i = (KE_f + KE_r + PE)_f
\]

where \(i \) and \(f \) refer to initial and final values, respectively. When non-conservative forces are present, it’s necessary to use a generalization of the work–energy theorem:

\[
W_{nc} = \Delta KE_r + \Delta KE_t + \Delta PE
\]

8.7 Angular Momentum
The angular momentum of a rotating object is given by

\[
L = I \omega
\]

Angular momentum is related to torque in the following equation:

\[
\sum \tau = \frac{\text{change in angular momentum}}{\text{time interval}} = \frac{\Delta L}{\Delta t}
\]

If the net external torque acting on a system is zero, the total angular momentum of the system is constant,

\[
L_i = L_f
\]

and is said to be conserved. Solving problems usually involves substituting into the expression

\[
I \omega_i = I \omega_f
\]

and solving for the unknown.
2. A horizontal plank 4.00 m long and having mass 20.0 kg rests on two pivots, one at the left end and a second 1.00 m from the right end. Find the magnitude of the force exerted on the plank by the second pivot. (a) 32.0 N (b) 45.2 N (c) 112 N (d) 131 N (e) 98.2 N

3. What is the magnitude of the angular acceleration of a 25.0-kg disk of radius 0.800 m when a torque of magnitude 40.0 N·m is applied to it? (a) 2.50 rad/s² (b) 5.00 rad/s² (c) 7.50 rad/s² (d) 10.0 rad/s² (e) 12.5 rad/s²

4. Estimate the rotational kinetic energy of Earth by treating it as a solid sphere with uniform density. (a) 3×10^{30} kg·m²/s² (b) 5×10^{35} kg·m²/s² (c) 7×10^{30} kg·m²/s² (d) 4×10^{35} kg·m²/s² (e) 2×10^{35} kg·m²/s²

5. Two forces are acting on an object. Which of the following statements is correct? (a) The object is in equilibrium if the forces are equal in magnitude and opposite in direction. (b) The object is in equilibrium if the net torque on the object is zero. (c) The object is in equilibrium if the forces act at the same point on the object. (d) The object is in equilibrium if the net force and the net torque on the object are both zero. (e) The object cannot be in equilibrium because more than one force acts on it.

6. A disk rotates about a fixed axis that is perpendicular to the disk and passes through its center. At any instant, does every point on the disk have the same (a) centripetal acceleration, (b) angular velocity, (c) tangential acceleration, (d) linear velocity, or (e) total acceleration?

7. A constant net nonzero torque is exerted on an object. Which of the following quantities cannot be constant for this object? More than one answer may be correct. (a) angular acceleration (b) angular velocity (c) moment of inertia (d) center of mass (e) angular momentum

8. A block slides down a frictionless ramp, while a hollow sphere and a solid ball roll without slipping down a second ramp with the same height and slope. Rank the arrival times at the bottom from shortest to longest. (a) sphere, ball, block (b) ball, block, sphere (c) ball, sphere, block (d) block, sphere, ball (e) block, ball, sphere

9. A solid disk and a hoop are simultaneously released from rest at the top of an incline and roll down without slipping. Which object reaches the bottom first? (a) The one that has the largest mass arrives first. (b) The one that has the largest radius arrives first. (c) The hoop arrives first. (d) The disk arrives first. (e) The hoop and the disk arrive at the same time.

10. A solid cylinder of mass M and radius R rolls down an incline without slipping. Its moment of inertia about an axis through its center of mass is $MR^2/2$. At any instant while in motion, its rotational kinetic energy about its center of mass is what fraction of its total kinetic energy? (a) $\frac{1}{3}$ (b) $\frac{1}{4}$ (c) $\frac{1}{5}$ (d) $\frac{1}{6}$ (e) None of these

11. The cars in a soapbox derby have no engines; they simply coast downhill. Which of the following design criteria is best from a competitive point of view? The car’s wheels should (a) have large moments of inertia, (b) be massive, (c) be hoop-like wheels rather than solid disks, (d) be large wheels rather than small wheels, or (e) have small moments of inertia.

12. Consider two uniform, solid spheres, a large, massive sphere and a smaller, lighter sphere. They are released from rest simultaneously from the top of a hill and roll down without slipping. Which one reaches the bottom of the hill first? (a) The large sphere reaches the bottom first. (b) The small sphere reaches the bottom first. (c) The sphere with the greatest density reaches the bottom first. (d) The spheres reach the bottom at the same time. (e) The answer depends on the values of the spheres’ masses and radii.

13. A mouse is initially at rest on a horizontal turntable mounted on a frictionless, vertical axle. As the mouse begins to walk clockwise around the perimeter, which of the following statements must be true of the turntable? (a) It also turns clockwise. (b) It turns counterclockwise with the same angular velocity as the mouse. (c) It remains stationary. (d) It turns counterclockwise because angular momentum is conserved. (e) It turns counterclockwise because mechanical energy is conserved.

CONCEPTUAL QUESTIONS

1. Why can’t you put your heels firmly against a wall and then bend over without falling?
2. Why does a tall athlete have an advantage over a smaller one when the two are competing in the high jump?
3. Both torque and work are products of force and distance. How are they different? Do they have the same units?
4. Is it possible to calculate the torque acting on a rigid object without specifying an origin? Is the torque independent of the location of the origin?
5. Can an object be in equilibrium when only one force acts on it? If you believe the answer is yes, give an example to support your conclusion.
6. In the movie Jurassic Park, there is a scene in which some members of the visiting group are trapped in the kitchen with dinosaurs outside. The paleontologist is pressing against the center of the door, trying to keep out the dinosaurs on the other side. The botanist throws herself against the door at the edge near the hinge. A pivotal point in the film is that she cannot reach a gun on the floor because she is trying to
hold the door closed. If the paleontologist is pressing at the center of the door, and the botanist is pressing at the edge about 8 cm from the hinge, estimate how far the paleontologist would have to relocate in order to have a greater effect on keeping the door closed than both of them pushing together have in their original positions. (Question 6 is courtesy of Edward F. Redish. For more questions of this type, see www.physics.umd.edu/perg/)

7. In some motorcycle races, the riders drive over small hills and the motorcycle becomes airborne for a short time. If the motorcycle racer keeps the throttle open while leaving the hill and going into the air, the motorcycle’s nose tends to rise upwards. Why does this happen?

8. If you toss a textbook into the air, rotating it each time about one of the three axes perpendicular to it, you will find that it will not rotate smoothly about one of those axes. (Try placing a strong rubber band around the book before the toss so that it will stay closed.) The book’s rotation is stable about those axes having the largest and smallest moments of inertia, but unstable about the axis of intermediate moment. Try this on your own to find the axis that has this intermediate moment of inertia.

9. Stars originate as large bodies of slowly rotating gas. Because of gravity, these clumps of gas slowly decrease in size. What happens to the angular speed of a star as it shrinks? Explain.

10. If a high jumper positions his body correctly when going over the bar, the center of gravity of the athlete may actually pass under the bar. (See Fig. CQ8.10.) Explain how this is possible.

11. In a tape recorder, the tape is pulled past the read–write heads at a constant speed by the drive mechanism. Consider the reel from which the tape is pulled: As the tape is pulled off, the radius of the roll of remaining tape decreases. How does the torque on the reel change with time? How does the angular speed of the reel change with time? If the tape mechanism is suddenly turned on so that the tape is quickly pulled with a large force, is the tape more likely to break when pulled from a nearly full reel or from a nearly empty reel?

12. (a) Give an example in which the net force acting on an object is zero, yet the net torque is nonzero. (b) Give an example in which the net torque acting on an object is zero, yet the net force is nonzero.

13. A ladder rests inclined against a wall. Would you feel safer climbing up the ladder if you were told that the floor was frictionless, but the wall was rough, or that the wall was frictionless, but the floor was rough? Justify your answer.

14. A cat usually lands on its feet regardless of the position from which it is dropped. A slow-motion film of a cat falling shows that the upper half of its body twists in one direction while the lower half twists in the opposite direction. (See Fig. CQ8.14.) Why does this type of rotation occur?
2. According to the manual of a certain car, a maximum torque of magnitude 65.0 N \cdot m should be applied when tightening the lug nuts on the vehicle. If you use a wrench of length 0.330 m and you apply the force at the end of the wrench at an angle of 75.0° with respect to a line going from the lug nut through the end of the handle, what is the magnitude of the maximum force you can exert on the handle without exceeding the recommendation?

3. Calculate the net torque (magnitude and direction) on the beam in Figure P8.3 about (a) an axis through O perpendicular to the page and (b) an axis through C perpendicular to the page.

4. A steel band exerts a horizontal force of 80.0 N on a tooth at point B in Figure P8.4. What is the torque on the root of the tooth about point A?

5. A simple pendulum consists of a small object of mass 3.0 kg hanging at the end of a 2.0-m-long light string that is connected to a pivot point. (a) Calculate the magnitude of the torque (due to the force of gravity) about this pivot point when the string makes a 5.0° angle with the vertical. (b) Does the torque increase or decrease as the angle increases? Explain.

6. Write the necessary equations of equilibrium of the object shown in Figure P8.6. Take the origin of the torque equation about an axis perpendicular to the page through the point O.

7. According to the manual of a certain car, a maximum torque of magnitude 65.0 N \cdot m should be applied when tightening the lug nuts on the vehicle. If you use a wrench of length 0.330 m and you apply the force at the end of the wrench at an angle of 75.0° with respect to a line going from the lug nut through the end of the handle, what is the magnitude of the maximum force you can exert on the handle without exceeding the recommendation?

8. A uniform beam of length 7.60 m and weight 4.50 \times 10^2 N is carried by two workers, Sam and Joe, as shown in Figure P8.8. (a) Determine the forces that each person exerts on the beam. (b) Qualitatively, how would the answers change if Sam moved closer to the midpoint? (c) What would happen if Sam moved beyond the midpoint?

9. A cook holds a 2.00-kg carton of milk at arm’s length (Fig. P8.9). What force \(\mathbf{F}_B \) must be exerted by the biceps muscle? (Ignore the weight of the forearm.)

10. A meterstick is found to balance at the 49.7-cm mark when placed on a fulcrum. When a 50.0-gram mass is attached...
at the 10.0-cm mark, the fulcrum must be moved to the 39.2-cm mark for balance. What is the mass of the meterstick?

11. Find the x- and y-coordinates of the center of gravity of a 4.00-ft by 8.00-ft uniform sheet of plywood with the upper right quadrant removed as shown in Figure P8.11.

12. A beam resting on two pivots has a length of $L = 6.00$ m and mass $M = 90.0$ kg. The pivot under the left end exerts a normal force n_1 on the beam, and the second pivot placed a distance $\ell = 4.00$ m from the left end exerts a normal force n_2. A woman of mass $m = 55.0$ kg steps onto the left end of the beam and begins walking to the right as in Figure P8.12. The goal is to find the woman’s position when the beam begins to tip. (a) Sketch a free-body diagram, labeling the gravitational and normal forces acting on the beam and placing the woman x meters to the right of the first pivot, which is the origin. (b) Where is the woman when the normal force n_1 is the greatest? (c) What is n_1 when the beam is about to tip? (d) Use the force equation of equilibrium to find the value of n_2 when the beam is about to tip. (e) Using the result of part (c) and the torque equilibrium equation, with torques computed around the second pivot point, find the woman’s position when the beam is about to tip. (f) Check the answer to part (e) by computing torques around the first pivot point. Except for possible slight differences due to rounding, is the answer the same?

13. Consider the following mass distribution, where x- and y-coordinates are given in meters: 5.0 kg at (0.0, 0.0) m, 3.0 kg at (0.0, 4.0) m, and 4.0 kg at (3.0, 0.0) m. Where should a fourth object of 8.0 kg be placed so that the center of gravity of the four-object arrangement will be at (0.0, 0.0) m?

14. A beam of length L and mass M rests on two pivots. The first pivot is at the left end, taken as the origin, and the second pivot is at a distance ℓ from the left end. A woman of mass m starts at the left end and walks toward the right end as in Figure P8.12. When the beam is on the verge of tipping, find symbolic expressions for (a) the normal force exerted by the second pivot in terms of M, m, and g and (b) the woman’s position in terms of M, m, L, and ℓ. (c) Find the minimum value of ℓ that will allow the woman to reach the end of the beam without it tipping.

15. Many of the elements in horizontal-bar exercises can be modeled by representing the gymnast by four segments consisting of arms, torso (including the head), thighs, and lower legs, as shown in Figure P8.15a. Inertial parameters for a particular gymnast are as follows:

<table>
<thead>
<tr>
<th>Segment</th>
<th>Mass (kg)</th>
<th>Length (m)</th>
<th>r_{cg} (m)</th>
<th>I (kg·m²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arms</td>
<td>6.87</td>
<td>0.548</td>
<td>0.239</td>
<td>0.205</td>
</tr>
<tr>
<td>Torso</td>
<td>33.57</td>
<td>0.601</td>
<td>0.337</td>
<td>1.610</td>
</tr>
<tr>
<td>Thighs</td>
<td>14.07</td>
<td>0.374</td>
<td>0.151</td>
<td>0.173</td>
</tr>
<tr>
<td>Legs</td>
<td>7.54</td>
<td>—</td>
<td>0.227</td>
<td>0.164</td>
</tr>
</tbody>
</table>

Note that in Figure P8.15a r_{cg} is the distance to the center of gravity measured from the joint closest to the bar and the masses for the arms, thighs, and legs include both appendages. I is the moment of inertia of each segment about its center of gravity. Determine the distance from the bar to the center of gravity of the gymnast for the two positions shown in Figures P8.15b and P8.15c.

16. Using the data given in Problem 15 and the coordinate system shown in Figure P8.16b, calculate the position of the center of gravity of the gymnast shown in Figure P8.16a. Pay close attention to the definition of r_{cg} in the table.

17. A person bending forward to lift a load “with his back” (Fig. P8.17a) rather than “with his knees” can be injured by large forces exerted on the muscles and vertebrae. The spine pivots mainly at the fifth lumbar vertebra, with the principal supporting force provided by the erector spinales muscle in the back. To see the magnitude of the forces involved, and to understand why back problems are common among humans, consider the model shown in Figure P8.17b of a person bending forward to lift a 200-N object.
The spine and upper body are represented as a uniform horizontal rod of weight 350 N, pivoted at the base of the spine. The erector spinales muscle, attached at a point two-thirds of the way up the spine, maintains the position of the back. The angle between the spine and this muscle is 12.0°. Find the tension in the back muscle and the compressional force in the spine.

Figure P8.21. Find the tension in each rope when a 700-N person is 0.500 m from the left end.

A hungry 700-N bear walks out on a beam in an attempt to retrieve some “goodies” hanging at the end (Fig. P8.22). The beam is uniform, weighs 200 N, and is 6.00 m long; the goodies weigh 80.0 N. (a) Draw a free-body diagram of the beam. (b) When the bear is at \(x = 1.00 \) m, find the tension in the wire and the components of the reaction force at the hinge. (c) If the wire can withstand a maximum tension of 900 N, what is the maximum distance the bear can walk before the wire breaks?

An 8.00-m, 200-N uniform ladder rests against a smooth wall. The coefficient of static friction between the ladder and the ground is 0.600, and the ladder makes a 50.0° angle with the ground. How far up the ladder can an 800-N person climb before the ladder begins to slip?

A 500-N uniform rectangular sign 4.00 m wide and 3.00 m high is suspended from a horizontal, 6.00-m-long, uniform, 100-N rod as indicated in Figure P8.19. The left end of the rod is supported by a hinge, and the right end is supported by a thin cable making a 30.0° angle with the vertical. (a) Find the tension \(T \) in the cable. (b) Find the horizontal and vertical components of force exerted on the left end of the rod by the hinge.

A window washer is standing on a scaffold supported by a vertical rope at each end. The scaffold weighs 200 N and is 3.00 m long. What is the tension in each rope when the 700-N worker stands 1.00 m from one end?

A uniform plank of length 2.00 m and mass 50.0 kg is supported by three ropes, as indicated by the blue vectors in Figure P8.24. (a) Sketch a free-body diagram, indicating all the forces and their placement on the strut. (b) Why is the hinge a good place to use for calculating torques? (c) Write the condition for rotational equilibrium symbolically, calculating the torques around the hinge. (d) Use the torque equation to calculate the tension in the cable. (e) Write the \(x \) and \(y \)-components of Newton’s second law for equilibrium. (f) Use the force equation to find the \(x \) and \(y \)-components of the force on the hinge. (g) Assuming the strut position is to remain the same, would it be advantageous to attach the cable higher up on the wall? Explain the benefit in terms of the force on the hinge and cable tension.
25. A student gets his car stuck in a snowdrift. Not at a loss, having studied physics, he attaches one end of a stout rope to the car and the other end to the trunk of a nearby tree, allowing for a small amount of slack. The student then exerts a force F on the center of the rope in the direction perpendicular to the car-tree line as shown in Figure P8.25. If the rope is inextensible and the magnitude of the applied force is 475 N, what is the force on the car? (Assume equilibrium conditions.)

![Figure P8.25](image)

26. A uniform beam of length L and mass m shown in Figure P8.26 is inclined at an angle θ to the horizontal. Its upper end is connected to a wall by a rope, and its lower end rests on a rough horizontal surface. The coefficient of static friction between the beam and surface is μ_s. Assume the angle is such that the static friction force is at its maximum value. (a) Draw a free-body diagram for the beam. (b) Using the condition of rotational equilibrium, find an expression for the tension T in the rope in terms of m, g, and θ. (c) Using Newton's second law for equilibrium, find another expression for T in terms of μ_s, m, and g. (d) Using the foregoing results, obtain a relationship involving only μ_s and the angle θ. (e) What happens if the angle gets smaller? Is this equation valid for all values of θ? Explain.

![Figure P8.26](image)

27. The chewing muscle, the masseter, is one of the strongest in the human body. It is attached to the mandible (lower jawbone) as shown in Figure P8.27a. The jawbone is pivoted about a socket just in front of the auditory canal. The forces acting on the jawbone are equivalent to those acting on the curved bar in Figure P8.27b. F_r is the force exerted by the food being chewed against the jawbone, T is the force of tension in the masseter, and R is the force exerted by the socket on the mandible. Find T and R for a person who bites down on a piece of steak with a force of 50.0 N.

![Figure P8.27](image)

28. A 1200-N uniform boom is supported by a cable perpendicular to the boom as in Figure P8.28. The boom is hinged at the bottom, and a 2000-N weight hangs from its top. Find the tension in the supporting cable and the components of the reaction force exerted on the boom by the hinge.

![Figure P8.28](image)

29. The large quadriceps muscle in the upper leg terminates at its lower end in a tendon attached to the upper end of the tibia (Fig. P8.29a). The forces on the lower leg when the leg is extended are modeled as in Figure P8.29b, where \mathbf{T} is the force of tension in the tendon, \mathbf{w} is the force of gravity acting on the lower leg, and \mathbf{F} is the force of gravity acting on the foot. Find \mathbf{T} when the tendon is at an angle of 25.0° with the tibia, assuming that $w = 30.0$ N, $F = 12.5$ N, and the leg is extended at an angle θ of 40.0° with the vertical. Assume that the center of gravity of the lower leg is at its center and that the tendon attaches to the lower leg at a point one-fifth of the way down the leg.

![Figure P8.29](image)

30. One end of a uniform 4.0-m-long rod of weight w is supported by a cable. The other end rests against a wall, where it is held by friction. (See Fig. P8.30.) The coefficient of static friction between the wall and the rod is $\mu_s = 0.50$. Determine the minimum distance x from point A at which an additional weight w (the same as the weight of the rod) can be hung without causing the rod to slip at point A.

![Figure P8.30](image)

31. Four objects are held in position at the corners of a rectangle by light rods as shown in Figure P8.31. Find the moment of inertia of the system about (a) the x-axis, (b) the y-axis, and (c) an axis through O and perpendicular to the page.

![Figure P8.31](image)
32. If the system shown in Figure P8.31 is set in rotation about each of the axes mentioned in Problem 30, find the torque that will produce an angular acceleration of 1.50 rad/s² in each case.

33. A large grinding wheel in the shape of a solid cylinder of radius 0.330 m is free to rotate on a frictionless, vertical axle. A constant tangential force of 250 N applied to its edge causes the wheel to have an angular acceleration of 0.940 rad/s². (a) What is the moment of inertia of the wheel? (b) What is the mass of the wheel? (c) If the wheel starts from rest, what is its angular velocity after 5.00 s have elapsed, assuming the force is acting during that time?

34. An oversized yo-yo is made from two identical solid disks each of mass \(M = 2.00 \text{ kg} \) and radius \(R = 10.0 \text{ cm} \). The two disks are joined by a solid cylinder of radius \(r = 4.00 \text{ cm} \) and mass \(m = 1.00 \text{ kg} \) as in Figure P8.34. Take the center of the cylinder as the axis of the system, with positive torques directed to the left along this axis. All torques and angular variables are to be calculated around this axis. Light string is wrapped around the cylinder, and the system is then allowed to drop from rest. (a) What is the moment of inertia of the system? Give a symbolic answer. (b) What torque does gravity exert on the system with respect to the given axis? (c) Take downward as the negative coordinate direction. As depicted in Figure P8.34, is the torque exerted by the tension positive or negative? Is the angular acceleration positive or negative? What about the translational acceleration? (d) Write an equation for the angular acceleration \(a \) in terms of the translational acceleration \(a \) and radius \(r \). (Watch the sign!) (e) Write Newton’s second law for the system in terms of \(m \), \(M \), \(a \), \(T \), and \(g \). (f) Write Newton’s second law for rotation in terms of \(I \), \(a \), \(T \), and \(r \). (g) Eliminate \(a \) from the rotational second law with the expression found in part (d) and find a symbolic expression for the acceleration \(a \) in terms of \(m \), \(M \), \(g \), \(r \) and \(R \). (h) What is the numeric value for the system’s acceleration? (i) What is the tension in the string? (j) How long does it take the system to drop 1.00 m from rest?

35. A rope of negligible mass is wrapped around a 225-kg solid cylinder of radius 0.400 m. The cylinder is suspended several meters off the ground with its axis oriented horizontally, and turns on that axis without friction. (a) If a 75.0-kg man takes hold of the free end of the rope and falls under the force of gravity, what is his acceleration? (b) What is the angular acceleration of the cylinder? (c) If the mass of the rope were not neglected, what would happen to the angular acceleration of the cylinder as the man falls?

36. A potter’s wheel having a radius of 0.50 m and a moment of inertia of 12 kg·m² is rotating freely at 50 rev/min. The potter can stop the wheel in 6.0 s by pressing a wet rag against the rim and exerting a radially inward force of 70 N. Find the effective coefficient of kinetic friction between the wheel and the wet rag.

37. A model airplane with mass 0.750 kg is tethered by a wire so that it flies in a circle 30.0 m in radius. The airplane engine provides a net thrust of 0.800 N perpendicular to the tethering wire. (a) Find the torque the net thrust produces about the center of the circle. (b) Find the angular acceleration of the airplane when it is in level flight. (c) Find the linear acceleration of the airplane tangent to its flight path.

38. A bicycle wheel has a diameter of 64.0 cm and a mass of 1.80 kg. Assume that the wheel is a hoop with all the mass concentrated on the outside radius. The bicycle is placed on a stationary stand, and a resistive force of 120 N is applied tangent to the rim of the tire. (a) What force must be applied by a chain passing over a 9.00-cm-diameter sprocket in order to give the wheel an acceleration of 4.50 rad/s²? (b) What force is required if you shift to a 5.60-cm-diameter sprocket?

39. A 150-kg merry-go-round in the shape of a uniform, solid, horizontal disk of radius 1.50 m is set in motion by wrapping a rope about the rim of the disk and pulling on the rope. What constant force must be exerted on the rope to bring the merry-go-round from rest to an angular speed of 0.500 rev/s in 2.00 s?

40. An Atwood’s machine consists of blocks of masses \(m_1 = 10.0 \text{ kg} \) and \(m_2 = 20.0 \text{ kg} \) attached by a cord running over a pulley as in Figure P8.40. The pulley is a solid cylinder with mass \(M = 8.00 \text{ kg} \) and radius \(r = 0.200 \text{ m} \). The block of mass \(m_2 \) is allowed to drop, and the cord
turns the pulley without slipping. (a) Why must the tension \(T_2 \) be greater than the tension \(T_1 \)? (b) What is the acceleration of the system, assuming the pulley axis is frictionless? (c) Find the tensions \(T_1 \) and \(T_2 \).

41. An airliner lands with a speed of 50.0 m/s. Each wheel of the plane has a radius of 1.25 m and a moment of inertia of 110 kg m\(^2\). At touchdown, the wheels begin to spin under the action of friction. Each wheel supports a weight of \(1.40 \times 10^3 \) N, and the wheels attain their angular speed in 0.480 s while rolling without slipping. What is the coefficient of kinetic friction between the wheels and the runway? Assume that the speed of the plane is constant.

SECTION 8.6 ROTATIONAL KINETIC ENERGY

42. A car is designed to get its energy from a rotating flywheel with a radius of 2.00 m and a mass of 500 kg. Before a trip, the flywheel is attached to an electric motor, which brings the flywheel's rotational speed up to 5000 rev/min. (a) Find the kinetic energy stored in the flywheel. (b) If the flywheel is to supply energy to the car as a 10.0-hp motor would, find the length of time the car could run before the flywheel would have to be brought back up to speed.

43. A horizontal 800-N merry-go-round of radius 1.50 m is started from rest by a constant horizontal force of 50.0 N applied tangentially to the merry-go-round. Find the kinetic energy of the merry-go-round after 3.00 s. (Assume it is a solid cylinder.)

44. Four objects—a hoop, a solid cylinder, a solid sphere, and a thin, spherical shell—each has a mass of 4.80 kg and a radius of 0.230 m. (a) Find the moment of inertia for each object as it rotates about the axes shown in Table 8.1. (b) Suppose each object is rolled down a ramp. Rank the translational speed of each object from highest to lowest. (c) Rank the objects’ rotational kinetic energies from highest to lowest as the objects roll down the ramp.

45. A light rod 1.00 m in length rotates about an axis perpendicular to its length and passing through its center as in Figure P8.45. Two particles of masses 4.00 kg and 3.00 kg are connected to the ends of the rod. (a) Neglecting the mass of the rod, what is the system’s kinetic energy when its angular speed is \(2.50 \text{ rad/s} \)? (b) Repeat the problem, assuming the mass of the rod is taken to be 2.00 kg.

46. A 240-N sphere 0.20 m in radius rolls without slipping 6.0 m down a ramp that is inclined at 37\(^\circ\) with the horizontal. What is the angular speed of the sphere at the bottom of the slope if it starts from rest?

47. A solid, uniform disk of radius 0.250 m and mass 55.0 kg rolls down a ramp of length 4.50 m that makes an angle of 15.0° with the horizontal. The disk starts from rest from the top of the ramp. Find (a) the speed of the disk’s center of mass when it reaches the bottom of the ramp and (b) the angular speed of the disk at the bottom of the ramp.

48. A solid uniform sphere of mass \(m \) and radius \(R \) rolls without slipping down an incline of height \(h \). (a) What forms of mechanical energy are associated with the sphere at any point along the incline when its angular speed is \(\omega \)? Answer in words and symbolically in terms of the quantities \(m \), \(g \), \(y \), \(I \), \(\omega \), and \(v \). (b) What force acting on the sphere causes it to roll rather than slip down the incline? (c) Determine the ratio of the sphere’s rotational kinetic energy to its total kinetic energy at any instant.

49. The top in Figure P8.49 has a moment of inertia of \(4.00 \times 10^{-4} \text{ kg m}^2 \) and is initially at rest. It is free to rotate about a stationary axis AA’. A string wrapped around a peg along the axis of the top is pulled in such a manner as to maintain a constant tension of 5.57 N in the string. If the string does not slip while wound around the peg, what is the angular speed of the top after 80.0 cm of string has been pulled off the peg? Hint: Consider the work that is done.

50. A constant torque of 25.0 N\cdot m is applied to a grindstone whose moment of inertia is 0.130 kg m\(^2\). Using energy principles and neglecting friction, find the angular speed after the grindstone has made 15.0 revolutions. Hint: The angular equivalent of \(W_{\text{net}} = \int F \cdot dx = \frac{1}{2} m v_i^2 - \frac{1}{2} m v_f^2 \) is \(W_{\text{net}} = r\Delta \theta = \frac{1}{2} I \Delta \omega^2 - \frac{1}{2} I \omega_i^2 \). You should convince yourself that this relationship is correct.

51. A 10.0-kg cylinder rolls without slipping on a rough surface. At an instant when its center of gravity has a speed of 10.0 m/s, determine (a) the translational kinetic energy of its center of gravity, (b) the rotational kinetic energy about its center of gravity, and (c) its total kinetic energy.

52. Use conservation of energy to determine the angular speed of the spool shown in Figure P8.52 after the
3.00-kg bucket has fallen 4.00 m, starting from rest. The light string attached to the bucket is wrapped around the spool and does not slip as it unwinds.

53. A giant swing at an amusement park consists of a 365-kg uniform arm 10.0 m long, with two seats of negligible mass connected at the lower end of the arm (Fig. P8.53). (a) How far from the upper end is the center of mass of the arm? (b) The gravitational potential energy of the arm is the same as if all its mass were concentrated at the center of mass. If the arm is raised through a 45.0° angle, find the gravitational potential energy, where the zero level is taken to be 10.0 m below the axis. (c) The arm drops from rest from the position described in part (b). Find the gravitational potential energy of the system when it reaches the vertical orientation. (d) Find the speed of the seats at the bottom of the swing.

54. Each of the following objects has a radius of 0.180 m and a mass of 2.40 kg, and each rotates about an axis through its center (as in Table 8.1) with an angular speed of 35.0 rad/s. Find the magnitude of the angular momentum of each object. (a) a hoop (b) a solid cylinder (c) a solid sphere (d) a hollow spherical shell

55. (a) Calculate the angular momentum of Earth that arises from its spinning motion on its axis, treating Earth as a uniform solid sphere. (b) Calculate the angular momentum of Earth that arises from its orbital motion about the Sun, treating Earth as a point particle.

56. A 0.005-kg bullet traveling horizontally with a speed of 1.00 × 10^3 m/s enters an 18.0-kg door, imbedding itself 10.0 cm from the side opposite the hinges as in Figure P8.56. The 1.00-m-wide door is free to swing on its hinges. (a) Before it hits the door, does the bullet have angular momentum relative to the door’s axis of rotation? Explain. (b) Is mechanical energy conserved in this collision? Answer without doing a calculation. (c) At what angular speed does the door swing open immediately after the collision? (The door has the same moment of inertia as a rod with axis at one end.) (d) Calculate the energy of the door-bullet system and determine whether it is less than or equal to the kinetic energy of the bullet before the collision.

57. A light rigid rod 1.00 m in length rotates about an axis perpendicular to its length and through its center, as shown in Figure P8.45. Two particles of masses 4.00 kg and 3.00 kg are connected to the ends of the rod. What is the angular momentum of the system if the speed of each particle is 5.00 m/s? (Neglect the rod’s mass.)

58. Halley’s comet moves about the Sun in an elliptical orbit, with its closest approach to the Sun being 0.59 A.U. and its greatest distance being 55 A.U. (1 A.U. is the Earth–Sun distance). If the comet’s speed at closest approach is 54 km/s, what is its speed when it is farthest from the Sun? You may neglect any change in the comet’s mass and assume that its angular momentum about the Sun is conserved.

59. The system of small objects shown in Figure P8.59 is rotating at an angular speed of 2.0 rev/s. The objects are connected by light, flexible spokes that can be lengthened or shortened. What is the new angular speed if the spokes are shortened to 0.50 m? (An effect similar to that illustrated in this problem occurred in the early stages of the formation of our galaxy. As the massive cloud of dust and gas that was the source of the stars and planets contracted, an initially small angular speed increased with time.)

60. A playground merry-go-round of radius 2.00 m has a moment of inertia \(I = 275 \, \text{kg} \cdot \text{m}^2 \) and is rotating about a frictionless vertical axle. As a child of mass 25.0 kg stands at a distance of 1.00 m from the axle, the system (merry-go-round and child) rotates at the rate of 14.0 rev/min. The child then proceeds to walk toward the edge of the merry-go-round. What is the angular speed of the system when the child reaches the edge?

61. A solid, horizontal cylinder of mass 10.0 kg and radius 1.00 m rotates with an angular speed of 7.00 rad/s about a fixed vertical axis through its center. A 0.250-kg piece of putty is dropped vertically onto the cylinder at a point 0.900 m from the center of rotation and sticks to the cylinder. Determine the final angular speed of the system.

62. A student sits on a rotating stool holding two 3.0-kg objects. When his arms are extended horizontally, the objects are 1.0 m from the axis of rotation and he rotates with an angular speed of 0.75 rad/s. The moment of inertia of the student plus stool is 3.0 kg·m² and is assumed to be constant. The student then pulls in the objects horizontally to 0.30 m from the rotation axis. (a) Find the new angular speed of the student. (b) Find the kinetic energy of the student before and after the objects are pulled in.
63. The puck in Figure P8.63 has a mass of 0.120 kg. Its original distance from the center of rotation is 40.0 cm, and it moves with a speed of 80.0 cm/s. The string is pulled downward 15.0 cm through the hole in the frictionless table. Determine the work done on the puck. Hint: Consider the change in kinetic energy of the puck.

64. A space station shaped like a giant wheel has a radius of 100 m and a moment of inertia of \(5.00 \times 10^8 \) kg m\(^2\). A crew of 150 lives on the rim, and the station is rotating so that the crew experiences an apparent acceleration of 1g (Fig. P8.64). When 100 people move to the center of the station for a union meeting, the angular speed changes. What apparent acceleration is experienced by the managers remaining at the rim? Assume the average mass of a crew member is 65.0 kg.

65. A cylinder with moment of inertia \(I_1 \) rotates with angular velocity \(\omega_0 \) about a frictionless vertical axle. A second cylinder, with moment of inertia \(I_2 \), initially not rotating, drops onto the first cylinder (Fig. P8.65). Because the surfaces are rough, the two cylinders eventually reach the same angular speed \(\omega \). (a) Calculate \(\omega \). (b) Show that kinetic energy is lost in this situation, and calculate the ratio of the final to the initial kinetic energy.

66. A merry-go-round rotates at the rate of 0.20 rev/s with an 80-kg man standing at a point 2.0 m from the axis of rotation. (a) What is the new angular speed when the man walks to a point 1.0 m from the center? Assume that the merry-go-round is a solid 25-kg cylinder of radius 2.0 m.

(b) Calculate the change in kinetic energy due to the man’s movement. How do you account for this change in kinetic energy?

67. A 60.0-kg woman stands at the rim of a horizontal turntable having a moment of inertia of 500 kg m\(^2\) and a radius of 2.00 m. The turntable is initially at rest and is free to rotate about a frictionless, vertical axle through its center. The woman then starts walking around the rim clockwise (as viewed from above the system) at a constant speed of 1.50 m/s relative to Earth. (a) In what direction and with what angular speed does the turntable rotate? (b) How much work does the woman do to set herself and the turntable into motion?

ADDITIONAL PROBLEMS

68. Figure P8.68 shows a clawhammer as it is being used to pull a nail out of a horizontal board. If a force of magnitude 150 N is exerted horizontally as shown, find (a) the force exerted by the hammer claws on the nail and (b) the force exerted by the surface at the point of contact with the hammer head. Assume that the force the hammer exerts on the nail is parallel to the nail and perpendicular to the position vector from the point of contact.

69. A 40.0-kg child stands at one end of a 70.0-kg boat that is 4.00 m long (Fig. P8.69). The boat is initially 3.00 m from the pier. The child notices a turtle on a rock beyond the far end of the boat and proceeds to walk to that end to catch the turtle. (a) Neglecting friction between the boat and water, describe the motion of the system (child,

(b) Calculate the change in kinetic energy due to the child’s movement. How do you account for this change in kinetic energy?
26. A 12.0-kg object is attached to a cord that is wrapped around a wheel of radius \(r = 10.0 \, \text{cm} \) (Fig. P8.70). The acceleration of the object down the frictionless incline is measured to be \(2.00 \, \text{m/s}^2 \). Assuming the axle of the wheel to be frictionless, determine (a) the tension in the rope, (b) the moment of inertia of the wheel, and (c) the angular speed of the wheel 2.00 s after it begins rotating, starting from rest.

71. A uniform ladder of length \(L \) and weight \(w \) is leaning against a vertical wall. The coefficient of static friction between the ladder and the floor is the same as that between the ladder and the wall. If this coefficient of static friction is \(\mu_s = 0.500 \), determine the smallest angle the ladder can make with the floor without slipping.

72. Two astronauts (Fig. P8.72), each having a mass of 75.0 kg, are connected by a 10.0-m rope of negligible mass. They are isolated in space, moving in circles around the point halfway between them at a speed of 5.00 m/s. Treating the astronauts as particles, calculate (a) the magnitude of the angular momentum of the system, (b) the rotational energy of the system, (c) the new angular momentum of the system, (d) What are their new speeds? (e) What is the new rotational energy of the system? (f) How much work is done by the astronauts in shortening the rope?

74. Two window washers, Bob and Joe, are on a 3.00-m-long, 345-N scaffold supported by two cables attached to its ends. Bob weighs 750 N and stands 1.00 m from the left end, as shown in Figure P8.74. Two meters from the left end is the 500-N washing equipment. Joe is 0.500 m from the right end and weighs 1 000 N. Given that the scaffold is in rotational and translational equilibrium, what are the forces on each cable?

75. A star with mass \(3.00 \times 10^{30} \, \text{kg} \) and radius \(1.50 \times 10^9 \, \text{m} \) rotates on its axis at a rate of 0.010 0 rev/d. If the star suddenly collapses to a neutron star of radius 15.0 km, find (a) the angular speed of the star and (b) the tangential speed of an indestructible astronaut standing on the equator.

76. A light rod of length \(2L \) is free to rotate in a vertical plane about a frictionless pivot through its center. A particle of mass \(m_1 \) is attached at one end of the rod, and a mass \(m_2 \) is at the opposite end, where \(m_1 > m_2 \). The system is released from rest in the vertical position shown in Figure P8.76a, and at some later time the system is rotating in the position shown in Figure P8.76b. Take the reference point of the gravitational potential energy to be at the pivot. (a) Find an expression for the system's total mechanical energy in the vertical position. (b) Find an expression for the system's total mechanical energy in the horizontal position.
expression for the total mechanical energy in the rotated position shown in Figure P8.76b. (c) Using the fact that the mechanical energy of the system is conserved, how would you determine the angular speed \(\omega \) of the system in the rotated position? (d) Find the magnitude of the torque on the system in the vertical position and in the rotated position. Is the torque constant? Explain what these results imply regarding the angular momentum of the system. (e) Find an expression for the magnitude of the angular acceleration of the system in the rotated position. Does your result make sense when the rod is horizontal? When it is vertical? Explain.

77. In Figure P8.77, the sliding block has a mass of 0.850 kg, the counterweight has a mass of 0.420 kg, and the pulley is a uniform solid cylinder with a mass of 0.350 kg and an outer radius of 0.030 m. The coefficient of kinetic friction between the block and the horizontal surface is 0.250. The pulley turns without friction on its axle. The light cord does not stretch and does not slip on the pulley. The block has a velocity of 0.820 m/s toward the pulley when it passes through a photogate. (a) Use energy methods to predict the speed of the block after it has moved to a second photogate 0.700 m away. (b) Find the angular speed of the pulley at the same moment.

78. (a) Without the wheels, a bicycle frame has a mass of 8.44 kg. Each of the wheels can be roughly modeled as a uniform solid disk with a mass of 0.829 kg and a radius of 0.343 m. Find the kinetic energy of the whole bicycle when it is moving forward at 3.35 m/s. (b) Before the invention of a wheel turning on an axle, ancient people moved heavy loads by placing rollers under them. (Modern people use rollers, too: Any hardware store will sell you a roller bearing for a lazy Susan.) A stone block of mass 844 kg moves forward at 0.335 m/s, supported by two uniform cylindrical tree trunks, each of mass 82.0 kg and radius 0.343 m. There is no slipping between the block and the rollers or between the rollers and the ground. Find the total kinetic energy of the moving objects.

79. In exercise physiology studies, it is sometimes important to determine the location of a person’s center of gravity. This can be done with the arrangement shown in Figure P8.79. A light plank rests on two scales that read \(F_{g1} = 380 \text{ N} \) and \(F_{g2} = 320 \text{ N} \). The scales are separated by a distance of 2.00 m. How far from the woman’s feet is her center of gravity?

80. In a circus performance, a large 5.0-kg hoop of radius 3.0 m rolls without slipping. If the hoop is given an angular speed of 3.0 rad/s while rolling on the horizontal ground and is then allowed to roll up a ramp inclined at 20° with the horizontal, how far along the incline does the hoop roll?

81. A uniform solid cylinder of mass \(M \) and radius \(R \) rotates on a frictionless horizontal axle (Fig. P8.81). Two objects with equal masses \(m \) hang from light cords wrapped around the cylinder. If the system is released from rest, find (a) the tension in each cord and (b) the acceleration of each object after the objects have descended a distance \(h \).

82. A painter climbs a ladder leaning against a smooth wall. At a certain height, the ladder is on the verge of slipping. (a) Explain why the force exerted by the vertical wall on the ladder is horizontal. (b) If the ladder of length \(L \) leans at an angle \(\theta \) with the horizontal, what is the lever arm for this horizontal force with the axis of rotation taken at the base of the ladder? (c) If the ladder is uniform, what is the lever arm for the force of gravity acting on the ladder? (d) Let the mass of the painter be 80 kg, \(L = 4.0 \text{ m} \), the ladder’s mass be 30 kg, \(\theta = 53° \), and the coefficient of friction between ground and ladder be 0.45. Find the maximum distance the painter can climb up the ladder.

83. A war-wolf, or trebuchet, is a device used during the Middle Ages to throw rocks at castles and now sometimes used to fling pumpkins and pianos. A simple trebuchet is shown in Figure P8.83. Model it as a stiff rod of negligible mass 3.00 m long and joining particles of mass 60.0 kg and 0.120 kg at its ends. It can turn on a frictionless horizontal axle perpendicular to the rod and 14.0 cm from the particle of larger mass. The rod is released from rest in a horizontal orientation. Find the maximum speed that the object of smaller mass attains.
84. A string is wrapped around a uniform cylinder of mass M and radius R. The cylinder is released from rest with the string vertical and its top end tied to a fixed bar (Fig. P8.84). Show that (a) the tension in the string is one-third the weight of the cylinder, (b) the magnitude of the acceleration of the center of gravity is $2g/3$, and (c) the speed of the center of gravity is $(4gh/3)^{1/2}$ after the cylinder has descended through distance h. Verify your answer to part (c) with the energy approach.

85. The Iron Cross When a gymnast weighing 750 N executes the iron cross as in Figure P8.85a, the primary muscles involved in supporting this position are the latsimus dorsi (“lats”) and the pectoralis major (“pecs”). The rings exert an upward force on the arms and support the weight of the gymnast. The force exerted by the shoulder joint on the arm is labeled F_s while the two muscles exert a total force F_m on the arm. Estimate the magnitude of the force F_s. Note that one ring supports half the weight of the gymnast, which is 375 N as indicated in Figure P8.85b. Assume that the force F_s acts at an angle of 45° below the horizontal at a distance of 4.0 cm from the shoulder joint. In your estimate, take the distance from the shoulder joint to the hand to be 70 cm and ignore the weight of the arm.

86. Swinging on a high bar The gymnast shown in Figure P8.86 is performing a backwards giant swing on the high bar. Starting from rest in a near-vertical orientation, he rotates around the bar in a counterclockwise direction, keeping his body and arms straight. Friction between the bar and the gymnast’s hands exerts a constant torque opposing the rotational motion. If the angular velocity of the gymnast at position 2 is measured to be 4.0 rad/s, determine his angular velocity at position 3. (Note that this maneuver is called a backwards giant swing, even though the motion of the gymnast would seem to be forwards.)

87. A 4.00-kg mass is connected by a light cord to a 3.00-kg mass on a smooth surface (Fig. P8.87). The pulley rotates about a frictionless axle and has a moment of inertia of 0.500 kg·m² and a radius of 0.300 m. Assuming that the cord does not slip on the pulley, find (a) the acceleration of the two masses and (b) the tensions T_1 and T_2.

88. A 10.0-kg monkey climbs a uniform ladder with weight $w = 1.20 \times 10^2$ N and length $L = 3.00$ m as shown in Figure P8.88. The ladder rests against the wall at an angle of $\theta = 60.0^\circ$. The upper and lower ends of the ladder rest on frictionless surfaces, with the lower end fastened to the wall by a horizontal rope that is frayed and that can support a maximum tension of only 80.0 N. (a) Draw a free-body diagram for the ladder. (b) Find the normal force exerted by the bottom of the ladder. (c) Find the tension in the rope when the monkey is two-thirds of the way up the ladder. (d) Find the maximum distance d that the monkey can climb up the ladder before the rope breaks. (e) If the horizontal surface were rough and the rope were removed, how would your analysis of the problem be changed and what other information would you need to answer parts (c) and (d)?
SOLIDS AND FLUIDS

There are four known states of matter: solids, liquids, gases, and plasmas. In the Universe at large, plasmas—systems of charged particles interacting electromagnetically—are the most common. In our environment on Earth, solids, liquids, and gases predominate.

An understanding of the fundamental properties of these different states of matter is important in all the sciences, in engineering, and in medicine. Forces put stresses on solids, and stresses can strain, deform, and break those solids, whether they are steel beams or bones. Fluids under pressure can perform work, or they can carry nutrients and essential solutes, like the blood flowing through our arteries and veins. Flowing gases cause pressure differences that can lift a massive cargo plane or the roof off a house in a hurricane. High-temperature plasmas created in fusion reactors may someday allow humankind to harness the energy source of the sun.

The study of any one of these states of matter is itself a vast discipline. Here, we’ll introduce basic properties of solids and liquids, the latter including some properties of gases. In addition, we’ll take a brief look at surface tension, viscosity, osmosis, and diffusion.

9.1 STATES OF MATTER

Matter is normally classified as being in one of three states: solid, liquid, or gas. Often this classification system is extended to include a fourth state of matter, called a plasma.

Everyday experience tells us that a solid has a definite volume and shape. A brick, for example, maintains its familiar shape and size day in and day out. A liquid has a definite volume but no definite shape. When you fill the tank on a lawn mower, the gasoline changes its shape from that of the original container to that of the tank on the mower, but the original volume is unchanged. A gas differs from solids and liquids in that it has neither definite volume nor definite shape. Because gas can flow, however, it shares many properties with liquids.

All matter consists of some distribution of atoms or molecules. The atoms in a solid, held together by forces that are mainly electrical, are located at specific positions with respect to one another and vibrate about those positions. At low
temperatures, the vibrating motion is slight and the atoms can be considered essentially fixed. As energy is added to the material, the amplitude of the vibrations increases. A vibrating atom can be viewed as being bound in its equilibrium position by springs attached to neighboring atoms. A collection of such atoms and imaginary springs is shown in Figure 9.1. We can picture applied external forces as compressing these tiny internal springs. When the external forces are removed, the solid tends to return to its original shape and size. Consequently, a solid is said to have elasticity.

Solids can be classified as either crystalline or amorphous. In a crystalline solid the atoms have an ordered structure. For example, in the sodium chloride crystal (common table salt), sodium and chlorine atoms occupy alternate corners of a cube, as in Figure 9.2a. In an amorphous solid, such as glass, the atoms are arranged almost randomly, as in Figure 9.2b.

For any given substance, the liquid state exists at a higher temperature than the solid state. The intermolecular forces in a liquid aren’t strong enough to keep the molecules in fixed positions, and they wander through the liquid in random fashion (Fig. 9.2c). Solids and liquids both have the property that when an attempt is made to compress them, strong repulsive atomic forces act internally to resist the compression.

In the gaseous state, molecules are in constant random motion and exert only weak forces on each other. The average distance between the molecules of a gas is quite large compared with the size of the molecules. Occasionally the molecules collide with each other, but most of the time they move as nearly free, noninteracting particles. As a result, unlike solids and liquids, gases can be easily compressed. We’ll say more about gases in subsequent chapters.

When a gas is heated to high temperature, many of the electrons surrounding each atom are freed from the nucleus. The resulting system is a collection of free, electrically charged particles—negatively charged electrons and positively charged ions. Such a highly ionized state of matter containing equal amounts of positive and negative charges is called a plasma. Unlike a neutral gas, the long-range electric and magnetic forces allow the constituents of a plasma to interact with each other. Plasmas are found inside stars and in accretion disks around black holes, for example, and are far more common than the solid, liquid, and gaseous states because there are far more stars around than any other form of celestial matter.

Normal matter, however, may constitute only about 5% of all matter in the Universe. Observations of the last several years point to the existence of an invisible dark matter, which affects the motion of stars orbiting the centers of galaxies. Dark matter may comprise as much as 25% of the matter in the Universe, several times larger than the amount of normal matter. Finally, the rapid acceleration of the expansion of the Universe may be driven by an even more mysterious form of matter, called dark energy, which may account for 70% of all matter in the Universe.
9.2 THE DEFORMATION OF SOLIDS

Although a solid may be thought of as having a definite shape and volume, it’s possible to change its shape and volume by applying external forces. A sufficiently large force will permanently deform or break an object, but otherwise, when the external forces are removed, the object tends to return to its original shape and size. This is called elastic behavior.

The elastic properties of solids are discussed in terms of stress and strain. Stress is the force per unit area causing a deformation; strain is a measure of the amount of the deformation. For sufficiently small stresses, stress is proportional to strain, with the constant of proportionality depending on the material being deformed and on the nature of the deformation. We call this proportionality constant the elastic modulus:

\[
\frac{\text{stress}}{\text{strain}} = \frac{\text{elastic modulus}}{Y} \]

The elastic modulus is analogous to a spring constant. It can be taken as the stiffness of a material: A material having a large elastic modulus is very stiff and difficult to deform. There are three relationships having the form of Equation 9.1, corresponding to tensile, shear, and bulk deformation, and all of them satisfy an equation similar to Hooke’s law for springs:

\[
F = -k\Delta x
\]

where \(F \) is the applied force, \(k \) is the spring constant, and \(\Delta x \) is essentially the amount by which the spring is stretched or compressed.

Young’s Modulus: Elasticity in Length

Consider a long bar of cross-sectional area \(A \) and length \(L_0 \), clamped at one end (Active Fig. 9.3). When an external force \(F \) is applied along the bar, perpendicular to the cross section, internal forces in the bar resist the distortion (“stretching”) that \(F \) tends to produce. Nevertheless, the bar attains an equilibrium in which (1) its length is greater than \(L_0 \) and (2) the external force is balanced by internal forces. Under these circumstances, the bar is said to be stressed. We define the tensile stress as the ratio of the magnitude of the external force \(F \) to the cross-sectional area \(A \). The word “tensile” has the same root as the word “tension” and is used because the bar is under tension. The SI unit of stress is the newton per square meter (N/m\(^2\)), called the pascal (Pa):

\[1 \text{ Pa} = 1 \text{ N/m}^2 \]

The tensile strain in this case is defined as the ratio of the change in length \(\Delta L \) to the original length \(L_0 \) and is therefore a dimensionless quantity. Using Equation 9.1, we can write an equation relating tensile stress to tensile strain:

\[
\frac{F}{A} = Y \frac{\Delta L}{L_0}
\]

In this equation, \(Y \) is the constant of proportionality, called Young’s modulus. Notice that Equation 9.3 could be solved for \(F \) and put in the form \(F = k \Delta L \), where \(k = YA/L_0 \), making it look just like Hooke’s law, Equation 9.2.

A material having a large Young’s modulus is difficult to stretch or compress. This quantity is typically used to characterize a rod or wire stressed under either tension or compression. Because strain is a dimensionless quantity, \(Y \) is in pascals. Typical values are given in Table 9.1. Experiments show that (1) the change in length for a fixed external force is proportional to the original length and (2) the force necessary to produce a given strain is proportional to the cross-sectional area. The value of Young’s modulus for a given material depends on whether the material is stretched or compressed. A human femur, for example, is stronger under tension than compression.
It’s possible to exceed the elastic limit of a substance by applying a sufficiently great stress (Fig. 9.4). At the elastic limit, the stress-strain curve departs from a straight line. A material subjected to a stress beyond this limit ordinarily doesn’t return to its original length when the external force is removed. As the stress is increased further, it surpasses the ultimate strength: the greatest stress the substance can withstand without breaking. The breaking point for brittle materials is just beyond the ultimate strength. For ductile metals like copper and gold, after passing the point of ultimate strength, the metal thins and stretches at a lower stress level before breaking.

Shear Modulus: Elasticity of Shape

Another type of deformation occurs when an object is subjected to a force F parallel to one of its faces while the opposite face is held fixed by a second force (Active Fig. 9.5a). If the object is originally a rectangular block, such a parallel force results in a shape with the cross section of a parallelogram. This kind of stress is called a shear stress. A book pushed sideways, as in Active Figure 9.5b, is being subjected to a shear stress. There is no change in volume with this kind of deformation.

It’s important to remember that in shear stress, the applied force is parallel to the cross-sectional area, whereas in tensile stress the force is perpendicular to the cross-sectional area. We define the shear stress as F/A, the ratio of the magnitude of the parallel force to the area A of the face being sheared. The shear strain is the ratio $\Delta x/h$, where Δx is the horizontal distance the sheared face moves and h is the height of the object. The shear stress is related to the shear strain according to

$$\frac{F}{A} = S \frac{\Delta x}{h} \quad [9.4]$$

where S is the shear modulus of the material, with units of pascals (force per unit area). Once again, notice the similarity to Hooke’s law.

A material having a large shear modulus is difficult to bend. Shear moduli for some representative materials are listed in Table 9.1.

Bulk Modulus: Volume Elasticity

The bulk modulus characterizes the response of a substance to uniform squeezing. Suppose the external forces acting on an object are all perpendicular to the surface on which the force acts and are distributed uniformly over the surface of

<table>
<thead>
<tr>
<th>Table 9.1 Typical Values for the Elastic Modulus</th>
</tr>
</thead>
<tbody>
<tr>
<td>Substance</td>
</tr>
<tr>
<td>Aluminum</td>
</tr>
<tr>
<td>Bone</td>
</tr>
<tr>
<td>Brass</td>
</tr>
<tr>
<td>Copper</td>
</tr>
<tr>
<td>Steel</td>
</tr>
<tr>
<td>Tungsten</td>
</tr>
<tr>
<td>Glass</td>
</tr>
<tr>
<td>Quartz</td>
</tr>
<tr>
<td>Rib Cartilage</td>
</tr>
<tr>
<td>Rubber</td>
</tr>
<tr>
<td>Tendon</td>
</tr>
<tr>
<td>Water</td>
</tr>
<tr>
<td>Mercury</td>
</tr>
</tbody>
</table>
the object (Active Fig. 9.6). This occurs when an object is immersed in a fluid. An object subject to this type of deformation undergoes a change in volume but no change in shape. The volume stress ΔP is defined as the ratio of the magnitude of the change in the applied force ΔF to the surface area A. (In dealing with fluids, we’ll refer to the quantity F/A as the pressure, to be defined and discussed more formally in the next section.) The volume strain is equal to the change in volume divided by the original volume. Again using Equation 9.1, we can relate a volume stress to a volume strain by the formula

$$\Delta P = -B \frac{\Delta V}{V}$$

[9.5]

A material having a large bulk modulus doesn’t compress easily. Note that a negative sign is included in this defining equation so that B is always positive. An increase in pressure (positive ΔP) causes a decrease in volume (negative ΔV) and vice versa.

Table 9.1 lists bulk modulus values for some materials. If you look up such values in a different source, you may find that the reciprocal of the bulk modulus, called the compressibility of the material, is listed. Note from the table that both solids and liquids have bulk moduli. There is neither a Young’s modulus nor shear modulus for liquids, however, because liquids simply flow when subjected to a tensile or shearing stress.

EXAMPLE 9.1 Built to Last

Goal Calculate a compression due to tensile stress, and maximum load.

Problem A vertical steel beam in a building supports a load of 6.0×10^4 N. (a) If the length of the beam is 4.0 m and its cross-sectional area is 8.0×10^{-3} m2, find the distance the beam is compressed along its length. (b) What maximum load in newtons could the steel beam support before failing?

Strategy Equation 9.3 pertains to compressive stress and strain and can be solved for ΔL, followed by substitution of known values. For part (b), set the compressive stress equal to the ultimate strength of steel from Table 9.2. Solve for the magnitude of the force, which is the total weight the structure can support.

Solution

(a) Find the amount of compression in the beam.

Solve Equation 9.3 for ΔL and substitute, using the value of Young’s modulus from Table 9.1:

$$\frac{F}{A} = Y \frac{\Delta L}{L_0}$$

$$\Delta L = \frac{FL_0}{YA} = \frac{(6.0 \times 10^4 \text{ N})(4.0 \text{ m})}{(2.0 \times 10^{11} \text{ Pa})(8.0 \times 10^{-3} \text{ m}^2)}$$

$$= 1.5 \times 10^{-4} \text{ m}$$
(b) Find the maximum load that the beam can support.

Set the compressive stress equal to the ultimate compressive strength from Table 9.2, and solve for \(F \):

\[
F = \frac{F}{A} = \frac{8.0 \times 10^{-3} \text{ m}^2}{5.0 \times 10^8 \text{ Pa}} = 4.0 \times 10^6 \text{ N}
\]

Remarks In designing load-bearing structures of any kind, it’s always necessary to build in a safety factor. No one would drive a car over a bridge that had been designed to supply the minimum necessary strength to keep it from collapsing.

QUESTION 9.1

Rank by the amount of fractional increase in length under increasing tensile stress, from smallest to largest: rubber, tungsten, steel, aluminum.

EXERCISE 9.1

A cable used to lift heavy materials like steel I-beams must be strong enough to resist breaking even under a load of \(1.0 \times 10^6 \text{ N} \). For safety, the cable must support twice that load. (a) What cross-sectional area should the cable have if it’s to be made of steel? (b) By how much will an 8.0-m length of this cable stretch when subject to the \(1.0 \times 10^6 \text{ N} \) load?

Answers (a) \(4.0 \times 10^{-3} \text{ m}^2 \) (b) \(1.0 \times 10^{-2} \text{ m} \)

<table>
<thead>
<tr>
<th>Material</th>
<th>Tensile Strength (N/m²)</th>
<th>Compressive Strength (N/m²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Iron</td>
<td>(1.7 \times 10^8)</td>
<td>(5.5 \times 10^9)</td>
</tr>
<tr>
<td>Steel</td>
<td>(5.0 \times 10^8)</td>
<td>(5.0 \times 10^9)</td>
</tr>
<tr>
<td>Aluminum</td>
<td>(2.0 \times 10^8)</td>
<td>(2.0 \times 10^9)</td>
</tr>
<tr>
<td>Bone</td>
<td>(1.2 \times 10^8)</td>
<td>(1.5 \times 10^9)</td>
</tr>
<tr>
<td>Marble</td>
<td>—</td>
<td>(8.0 \times 10^7)</td>
</tr>
<tr>
<td>Brick</td>
<td>(1 \times 10^6)</td>
<td>(3.5 \times 10^7)</td>
</tr>
<tr>
<td>Concrete</td>
<td>(2 \times 10^6)</td>
<td>(2 \times 10^7)</td>
</tr>
</tbody>
</table>

EXAMPLE 9.2 Football Injuries

Goal Obtain an estimate of shear stress.

Problem A defensive lineman of mass \(M = 125 \text{ kg} \) makes a flying tackle at \(v_i = 4.00 \text{ m/s} \) on a stationary quarterback of mass \(m = 85.0 \text{ kg} \), and the lineman’s helmet makes solid contact with the quarterback’s femur. (a) What is the speed \(v_f \) of the two athletes immediately after contact? Assume a linear inelastic collision. (b) If the collision lasts for 0.100 s, estimate the average force exerted on the quarterback’s femur. (c) If the cross-sectional area of the quarterback’s femur is \(5.00 \times 10^{-3} \text{ m}^2 \), calculate the shear stress exerted on the bone in the collision.

Strategy The solution proceeds in three well-defined steps. In part (a), use conservation of linear momentum to calculate the final speed of the system consisting of the quarterback and the lineman. Second, the speed found in part (a) can be used in the impulse-momentum theorem to obtain an estimate of the average force exerted on the femur. Third, dividing the average force by the cross-sectional area of the femur gives the desired estimate of the shear stress.

Solution

(a) What is the speed of the system immediately after contact?

Apply momentum conservation to the system:

\[p_{\text{initial}} = p_{\text{final}} \]
Substitute expressions for the initial and final momenta: \[Mv_i = (M + m) v_f \]

Solve for the final speed \(v_f \):

\[v_f = \frac{Mv_i}{M + m} = \frac{(125 \text{ kg})(4.00 \text{ m/s})}{125 \text{ kg} + 85.0 \text{ kg}} = 2.38 \text{ m/s} \]

(b) Obtain an estimate for the average force delivered to the quarterback’s femur.

Apply the impulse-momentum theorem:

\[F \Delta t = \Delta p = Mv_f - Mv_i \]

Solve for the average force exerted on the quarterback’s femur:

\[F = \frac{M(v_f - v_i)}{\Delta t} = \frac{(125 \text{ kg})(4.00 \text{ m/s} - 2.38 \text{ m/s})}{0.100 \text{ s}} = 2.03 \times 10^3 \text{ N} \]

(c) Obtain the average shear stress exerted on the quarterback’s femur.

Divide the average force found in part (b) by the cross-sectional area of the femur:

\[\text{Shear stress} = \frac{F}{A} = \frac{2.03 \times 10^3 \text{ N}}{5.00 \times 10^{-1} \text{ m}^2} = 4.06 \times 10^4 \text{ Pa} \]

Remarks The ultimate shear strength of a femur is approximately \(7 \times 10^7 \text{ Pa} \), so this collision would not be expected to break the quarterback’s leg.

QUESTION 9.2

What kind of stress would be sustained by the lineman? What parts of his body would be affected?

EXERCISE 9.2

Calculate the diameter of a horizontal steel bolt if it is expected to support a maximum load having a mass of \(2.00 \times 10^3 \text{ kg} \) but for safety reasons must be designed to support three times that load. (The ultimate shear strength of steel is about \(2.5 \times 10^8 \text{ Pa} \).)

Answer 1.73 cm

EXAMPLE 9.3 Stressing a Lead Ball

Goal Apply the concepts of bulk stress and strain.

Problem A solid lead sphere of volume \(0.50 \text{ m}^3 \), dropped in the ocean, sinks to a depth of \(2.0 \times 10^3 \text{ m} \) (about 1 mile), where the pressure increases by \(2.0 \times 10^7 \text{ Pa} \). Lead has a bulk modulus of \(4.2 \times 10^{10} \text{ Pa} \). What is the change in volume of the sphere?

Strategy Solve Equation 9.5 for \(\Delta V \) and substitute the given quantities.

Solution

Start with the definition of bulk modulus:

\[B = -\frac{\Delta P}{\Delta V/V} \]

Solve for \(\Delta V \):

\[\Delta V = -\frac{V \Delta P}{B} \]

Substitute the known values:

\[\Delta V = -\frac{(0.50 \text{ m}^3)(2.0 \times 10^7 \text{ Pa})}{4.2 \times 10^{10} \text{ Pa}} = -2.4 \times 10^{-4} \text{ m}^3 \]
Remarks The negative sign indicates a decrease in volume. The following exercise shows that even water can be compressed, although not by much, despite the depth.

QUESTION 9.3
Rank the following substances in order of the fractional change in volume in response to increasing pressure, from smallest to largest: copper, steel, water, mercury.

EXERCISE 9.3
(a) By what percentage does a similar globe of water shrink at that same depth? (b) What is the ratio of the new radius to the initial radius?

Answer (a) 0.95% (b) 0.997

Arches and the Ultimate Strength of Materials

As we have seen, the ultimate strength of a material is the maximum force per unit area the material can withstand before it breaks or fractures. Such values are of great importance, particularly in the construction of buildings, bridges, and roads. Table 9.2 gives the ultimate strength of a variety of materials under both tension and compression. Note that bone and a variety of building materials (concrete, brick, and marble) are stronger under compression than under tension. The greater ability of brick and stone to resist compression is the basis of the semicircular arch, developed and used extensively by the Romans in everything from memorial arches to expansive temples and aqueduct supports.

Before the development of the arch, the principal method of spanning a space was the simple post-and-beam construction (Fig. 9.7a), in which a horizontal beam is supported by two columns. This type of construction was used to build the great Greek temples. The columns of these temples were closely spaced because of the limited length of available stones and the low ultimate tensile strength of a sagging stone beam.

The semicircular arch (Fig. 9.7b) developed by the Romans was a great technological achievement in architectural design. It effectively allowed the heavy load of a wide roof span to be channeled into horizontal and vertical forces on narrow supporting columns. The stability of this arch depends on the compression between its wedge-shaped stones. The stones are forced to squeeze against each other by the uniform loading, as shown in the figure. This compression results in horizontal outward forces at the base of the arch where it starts curving away from the vertical. These forces must then be balanced by the stone walls shown on the sides of the arch. It’s common to use very heavy walls (buttresses) on either side of the arch to provide horizontal stability. If the foundation of the arch should move, the compressive forces between the wedge-shaped stones may decrease to the extent that the arch collapses. The stone surfaces used in the arches constructed by the Romans were cut to make very tight joints; mortar was usually not used. The

APPLICATION

Arch Structures in Buildings

![FIGURE 9.7](image)

(a) A simple post-and-beam structure. (b) The semicircular arch developed by the Romans. (c) Gothic arch with flying buttresses to provide lateral support.
resistance to slipping between stones was provided by the compression force and the friction between the stone faces.

Another important architectural innovation was the pointed Gothic arch, shown in Figure 9.7c. This type of structure was first used in Europe beginning in the 12th century, followed by the construction of several magnificent Gothic cathedrals in France in the 13th century. One of the most striking features of these cathedrals is their extreme height. For example, the cathedral at Chartres rises to 118 ft, and the one at Reims has a height of 137 ft. Such magnificent buildings evolved over a very short time, without the benefit of any mathematical theory of structures. However, Gothic arches required flying buttresses to prevent the spreading of the arch supported by the tall, narrow columns.

9.3 DENSITY AND PRESSURE

Equal masses of aluminum and gold have an important physical difference: The aluminum takes up over seven times as much space as the gold. Although the reasons for the difference lie at the atomic and nuclear levels, a simple measure of this difference is the concept of density.

The density ρ of an object having uniform composition is its mass M divided by its volume V:

$$\rho = \frac{M}{V}$$

SI unit: kilogram per meter cubed (kg/m3)

The most common units used for density are kilograms per cubic meter in the SI system and grams per cubic centimeter in the cgs system. Table 9.3 lists the densities of some substances. The densities of most liquids and solids vary slightly with changes in temperature and pressure; the densities of gases vary greatly with such changes. Under normal conditions, the densities of solids and liquids are about 1 000 times greater than the densities of gases. This difference implies that the average spacing between molecules in a gas under such conditions is about ten times greater than in a solid or liquid.

The specific gravity of a substance is the ratio of its density to the density of water at 4°C, which is 1.0×10^3 kg/m3. (The size of the kilogram was originally defined to make the density of water 1.0×10^3 kg/m3 at 4°C.) By definition, spe-
specific gravity is a dimensionless quantity. For example, if the specific gravity of a substance is 3.0, its density is $3.0 \times 10^3 \text{ kg/m}^3$.

QUICK QUIZ 9.1 Suppose you have one cubic meter of gold, two cubic meters of silver, and six cubic meters of aluminum. Rank them by mass, from smallest to largest. (a) gold, aluminum, silver (b) gold, silver, aluminum (c) aluminum, gold, silver (d) silver, aluminum, gold

Fluids don’t sustain shearing stresses, so the only stress that a fluid can exert on a submerged object is one that tends to compress it, which is bulk stress. The force exerted by the fluid on the object is always perpendicular to the surfaces of the object, as shown in Figure 9.8a.

The pressure at a specific point in a fluid can be measured with the device pictured in Figure 9.8b: an evacuated cylinder enclosing a light piston connected to a spring that has been previously calibrated with known weights. As the device is submerged in a fluid, the fluid presses down on the top of the piston and compresses the spring until the inward force exerted by the fluid is balanced by the outward force exerted by the spring. Let F be the magnitude of the force on the piston and A the area of the top surface of the piston. Notice that the force that compresses the spring is spread out over the entire area, motivating our formal definition of pressure:

If F is the magnitude of a force exerted perpendicular to a given surface of area A, then the pressure P is the force divided by the area:

$$ P = \frac{F}{A} \quad \text{(9.7)} $$

SI unit: pascal (Pa)

Because pressure is defined as force per unit area, it has units of pascals (newtons per square meter). The English customary unit for pressure is the pound per inch squared. Atmospheric pressure at sea level is 14.7 lb/in.2, which in SI units is $1.01 \times 10^5 \text{ Pa}$.

As we see from Equation 9.7, the effect of a given force depends critically on the area to which it’s applied. A 700-N man can stand on a vinyl-covered floor in regular street shoes without damaging the surface, but if he wears golf shoes, the metal cleats protruding from the soles can do considerable damage to the floor. With the cleats, the same force is concentrated into a smaller area, greatly elevating the pressure in those areas, resulting in a greater likelihood of exceeding the ultimate strength of the floor material.

Snowshoes use the same principle (Fig. 9.9). The snow exerts an upward normal force on the shoes to support the person’s weight. According to Newton’s third law, this upward force is accompanied by a downward force exerted by the shoes on the snow. If the person is wearing snowshoes, that force is distributed over the very large area of each snowshoe, so that the pressure at any given point is relatively low and the person doesn’t penetrate very deeply into the snow.

FIGURE 9.8 (a) The force exerted by a fluid on a submerged object at any point is perpendicular to the surface of the object. The force exerted by the fluid on the walls of the container is perpendicular to the walls at all points and increases with depth. (b) A simple device for measuring pressure in a fluid.

FIGURE 9.9 Snowshoes prevent the person from sinking into the soft snow because the force on the snow is spread over a larger area, reducing the pressure on the snow’s surface.
Chapter 9 Solids and Fluids

After an exciting but exhausting lecture, a physics professor stretches out for a nap on a bed of nails, as in Figure 9.10, suffering no injury and only moderate discomfort. How is this possible?

Explanation If you try to support your entire weight on a single nail, the pressure on your body is your weight divided by the very small area of the end of the nail. The resulting pressure is large enough to penetrate the skin. If you distribute your weight over several hundred nails, however, as demonstrated by the professor, the pressure is considerably reduced because the area that supports your weight is the total area of all nails in contact with your body. (Why is lying on a bed of nails more comfortable than sitting on the same bed? Extend the logic to show that it would be more uncomfortable yet to stand on a bed of nails without shoes.)

EXAMPLE 9.4 The Water Bed

Goal Calculate a density and a pressure from a weight.

Problem A water bed is 2.00 m on a side and 30.0 cm deep. (a) Find its weight. (b) Find the pressure that the water bed exerts on the floor. Assume the entire lower surface of the bed makes contact with the floor.

Strategy Density is mass per unit volume: first, find the volume of the bed and multiply it by the density of water to get the bed’s mass. Multiplying by the acceleration of gravity then gives the weight of the bed. The weight divided by the area of floor the bed rests upon gives the pressure exerted on the floor.

Solution

(a) Find the weight of the water bed.

First, find the volume of the bed:

\[V = lwh = (2.00 \text{ m})(2.00 \text{ m})(0.300 \text{ m}) = 1.20 \text{ m}^3 \]

Solve the density equation for the mass and substitute, then multiply the result by \(g \) to get the weight:

\[M = \rho V = (1.00 \times 10^3 \text{ kg/m}^3)(1.20 \text{ m}^3) = 1.20 \times 10^3 \text{ kg} \]

\[w = Mg = (1.20 \times 10^3 \text{ kg})(9.80 \text{ m/s}^2) = 1.18 \times 10^4 \text{ N} \]

(b) Find the pressure that the bed exerts on the floor.

Use the cross-sectional area \(A = 4.00 \text{ m}^2 \) and the value of \(w \) from part (a) to get the pressure:

\[P = \frac{F}{A} = \frac{w}{A} = \frac{1.18 \times 10^4 \text{ N}}{4.00 \text{ m}^2} = 2.95 \times 10^3 \text{ Pa} \]

Remarks Notice that the answer to part (b) is far less than atmospheric pressure. Water is heavier than air for a given volume, but the air is stacked up considerably higher (100 km!). The total pressure exerted on the floor would include the pressure of the atmosphere.

QUESTION 9.4

Is the pressure inside a rubber balloon greater than, less than, or equal to the ambient atmospheric pressure?

EXERCISE 9.4

Calculate the pressure exerted by the water bed on the floor if the bed rests on its side.

Answer 1.97 \times 10^4 \text{ Pa}

9.4 Variation of Pressure with Depth

When a fluid is at rest in a container, all portions of the fluid must be in static equilibrium—at rest with respect to the observer. Furthermore, all points at the same depth must be at the same pressure. If this were not the case, fluid would flow from the higher pressure region to the lower pressure region. For example, consider the small block of fluid shown in Figure 9.11a. If the pressure were greater on the left side of the block than on the right, F_1 would be greater than F_2, and the block would accelerate to the right and thus would not be in equilibrium.

Next, let’s examine the fluid contained within the volume indicated by the darker region in Figure 9.11b. This region has cross-sectional area A and extends from position y_1 to position y_2 below the surface of the liquid. Three external forces act on this volume of fluid: the force of gravity, Mg; the upward force P_2A exerted by the liquid below it; and a downward force P_1A exerted by the fluid above it. Because the given volume of fluid is in equilibrium, these forces must add to zero, so we get

$$ P_2A - P_1A - Mg = 0 \quad [9.8] $$

From the definition of density, we have

$$ M = \rho V = \rho A(y_1 - y_2) \quad [9.9] $$

Substituting Equation 9.9 into Equation 9.8, canceling the area A, and rearranging terms, we get

$$ P_2 = P_1 + \rho g (y_1 - y_2) \quad [9.10] $$

Notice that $(y_1 - y_2)$ is positive, because $y_2 < y_1$. The force P_2A is greater than the force P_1A by exactly the weight of water between the two points. This is the same principle experienced by the person at the bottom of a pileup in football or rugby.

Atmospheric pressure is also caused by a piling up of fluid—in this case, the fluid is the gas of the atmosphere. The weight of all the air from sea level to the edge of space results in an atmospheric pressure of $P_0 = 1.013 \times 10^5$ Pa (equivalent to 14.7 lb/in.2) at sea level. This result can be adapted to find the pressure P at any depth $h = (y_1 - y_2) = (0 - y_2)$ below the surface of the water:

$$ P = P_0 + \rho gh \quad [9.11] $$

According to Equation 9.11, the pressure P at a depth h below the surface of a liquid open to the atmosphere is greater than atmospheric pressure by the amount ρgh. Moreover, the pressure isn’t affected by the shape of the vessel, as shown in Figure 9.12.

QUICK QUIZ 9.2 The pressure at the bottom of a glass filled with water ($\rho = 1000$ kg/m3) is P. The water is poured out and the glass is filled with ethyl alcohol ($\rho = 806$ kg/m3). The pressure at the bottom of the glass is now (a) smaller than P (b) equal to P (c) larger than P (d) indeterminate.

EXAMPLE 9.5 Oil and Water

Goal Calculate pressures created by layers of different fluids.

Problem In a huge oil tanker, salt water has flooded an oil tank to a depth of 5.00 m. On top of the water is a layer of oil 8.00 m deep, as in the cross-sectional view of the tank in Figure 9.13. The oil has a density of 0.700 g/cm3. Find the pressure at the bottom of the tank. (Take 1025 kg/m3 as the density of salt water.)

Strategy Equation 9.11 must be used twice. First, use it to calculate the pressure P_1 at the bottom of the oil layer. Then use this pressure in place of P_0 in Equation 9.11 and calculate the pressure P_{bot} at the bottom of the water layer.
Remark
The weight of the atmosphere results in \(P_0 \) at the surface of the oil layer. Then the weight of the oil and the weight of the water combine to create the pressure at the bottom.

QUESTION 9.5
Why does air pressure decrease with increasing altitude?

EXERCISE 9.5
Calculate the pressure on the top lid of a chest buried under 4.00 meters of mud with density \(1.75 \times 10^3 \text{ kg/m}^3 \) at the bottom of a 10.0-m-deep lake.

Answer \(2.68 \times 10^5 \text{ Pa} \)

EXAMPLE 9.6 A Pain in the Ear

Goal Calculate a pressure difference at a given depth and estimate a force.

Problem Estimate the net force exerted on your eardrum due to the water above when you are swimming at the bottom of a pool that is 5.0 m deep.

Strategy Use Equation 9.11 to find the pressure difference across the eardrum at the given depth. The air inside the ear is generally at atmospheric pressure. Estimate the eardrum's surface area, then use the definition of pressure to get the net force exerted on the eardrum.

Solution
Use Equation 9.11 to calculate the difference between the water pressure at the depth \(h \) and the pressure inside the ear:

\[
\Delta P = P - P_0 = \rho gh \\
= (1.00 \times 10^3 \text{ kg/m}^3)(9.80 \text{ m/s}^2)(5.0 \text{ m}) \\
= 4.9 \times 10^4 \text{ Pa}
\]

Multiply by area \(A \) to get the net force on the eardrum associated with this pressure difference, estimating the area of the eardrum as 1 cm\(^2\).

\[
F_{\text{net}} = A \Delta P = (1 \times 10^{-4} \text{ m}^2)(4.9 \times 10^4 \text{ Pa}) = 5 \text{ N}
\]

Remarks Because a force on the eardrum of this magnitude is uncomfortable, swimmers often "pop their ears" by swallowing or expanding their jaws while underwater, an action that pushes air from the lungs into the middle ear. Using this technique equalizes the pressure on the two sides of the eardrum and relieves the discomfort.

QUESTION 9.6
Why do water containers and gas cans often have a second, smaller cap opposite the spout through which fluid is poured?

EXERCISE 9.6
An airplane takes off at sea level and climbs to a height of 425 m. Estimate the net outward force on a passenger’s eardrum assuming the density of air is approximately constant at 1.3 kg/m\(^3\) and that the inner ear pressure hasn’t been equalized.

Answer 0.54 N
Because the pressure in a fluid depends on depth and on the value of P_0, any increase in pressure at the surface must be transmitted to every point in the fluid. This was first recognized by the French scientist Blaise Pascal (1623–1662) and is called Pascal’s principle:

A change in pressure applied to an enclosed fluid is transmitted undiminished to every point of the fluid and to the walls of the container.

An important application of Pascal’s principle is the hydraulic press (Fig. 9.14a). A downward force F_1 is applied to a small piston of area A_1. The pressure is transmitted through a fluid to a larger piston of area A_2. As the pistons move and the fluids in the left and right cylinders change their relative heights, there are slight differences in the pressures at the input and output pistons. Neglecting these small differences, the fluid pressure on each of the pistons may be taken to be the same; $P_1 = P_2$. From the definition of pressure, it then follows that $F_1/A_1 = F_2/A_2$. Therefore, the magnitude of the force F_2 is larger than the magnitude of F_1 by the factor A_2/A_1. That’s why a large load, such as a car, can be moved on the large piston by a much smaller force on the smaller piston. Hydraulic brakes, car lifts, hydraulic jacks, forklifts, and other machines make use of this principle.

EXAMPLE 9.7 The Car Lift

Goal Apply Pascal’s principle to a car lift, and show that the input work is the same as the output work.

Problem In a car lift used in a service station, compressed air exerts a force on a small piston of circular cross section having a radius of $r_1 = 5.00$ cm. This pressure is transmitted by an incompressible liquid to a second piston of radius $r_2 = 15.0$ cm. (a) What force must the compressed air exert on the small piston in order to lift a car weighing 13 300 N? Neglect the weights of the pistons. (b) What air pressure will produce a force of that magnitude? (c) Show that the work done by the input and output pistons is the same.

Strategy Substitute into Pascal’s principle in part (a), while recognizing that the magnitude of the output force, F_2, must be equal to the car’s weight in order to support it. Use the definition of pressure in part (b). In part (c), use $W = F\Delta x$ to find the ratio W_1/W_2, showing that it must equal 1. This requires combining Pascal’s principle with the fact that the input and output pistons move through the same volume.
Solution

(a) Find the necessary force on the small piston.

Substitute known values into Pascal's principle, using $A = \pi r^2$ for the area of each piston:

$$F_1 = \frac{A_1}{A_2} F_2 = \frac{\pi r_1^2}{\pi r_2^2} F_2$$

$$= \frac{\pi (5.00 \times 10^{-2} \text{ m})^2}{\pi (15.0 \times 10^{-2} \text{ m})^2} (1.33 \times 10^4 \text{ N})$$

$$= 1.48 \times 10^3 \text{ N}$$

(b) Find the air pressure producing F_1.

Substitute into the definition of pressure:

$$P = \frac{F_1}{A_1} = \frac{1.48 \times 10^3 \text{ N}}{\pi (5.00 \times 10^{-2} \text{ m})^2} = 1.88 \times 10^5 \text{ Pa}$$

(c) Show that the work done by the input and output pistons is the same.

First equate the volumes, and solve for the ratio of A_2 to A_1:

$$V_1 = V_2 \rightarrow A_1 \Delta x_1 = A_2 \Delta x_2$$

$$\frac{A_2}{A_1} = \frac{\Delta x_1}{\Delta x_2}$$

Now use Pascal's principle to get a relationship for F_1/F_2:

$$\frac{F_1}{A_1} = \frac{F_2}{A_2} \rightarrow \frac{F_1}{F_2} = \frac{A_1}{A_2}$$

Evaluate the work ratio, substituting the preceding two results:

$$\frac{W_1}{W_2} = \frac{F_1}{F_2} \frac{\Delta x_1}{\Delta x_2} = \left(\frac{A_1}{A_2} \right) \left(\frac{\Delta x_1}{\Delta x_2} \right) = 1$$

$$W_1 = W_2$$

Remark In this problem, we didn't address the effect of possible differences in the heights of the pistons. If the column of fluid is higher in the small piston, the fluid weight assists in supporting the car, reducing the necessary applied force. If the column of fluid is higher in the large piston, both the car and the extra fluid must be supported, so additional applied force is required.

QUESTION 9.7
True or False: If the radius of the output piston is doubled, the output force increases by a factor of 4.

EXERCISE 9.7
A hydraulic lift has pistons with diameters 8.00 cm and 36.0 cm, respectively. If a force of 825 N is exerted at the input piston, what maximum mass can be lifted by the output piston?

Answer $1.70 \times 10^3 \text{ kg}$

APPLYING PHYSICS 9.2 BUILDING THE PYRAMIDS

A corollary to the statement that pressure in a fluid increases with depth is that water always seeks its own level. This means that if a vessel is filled with water, then regardless of the vessel's shape the surface of the water is perfectly flat and at the same height at all points. The ancient Egyptians used this fact to make the pyramids level. Devise a scheme showing how this could be done.

Explanation There are many ways it could be done, but Figure 9.15 shows the scheme used by the Egyptians. The builders cut grooves in the base of the
pyramid as in (a) and partially filled the grooves with water. The height of the water was marked as in (b), and the rock was chiseled down to the mark, as in (c). Finally, the groove was filled with crushed rock and gravel, as in (d).

9.5 Pressure Measurements

A simple device for measuring pressure is the open-tube manometer (Fig. 9.16a). One end of a U-shaped tube containing a liquid is open to the atmosphere, and the other end is connected to a system of unknown pressure \(P \). The pressure at point \(B \) equals \(P_0 + \rho gh \), where \(\rho \) is the density of the fluid. The pressure at \(B \), however, equals the pressure at \(A \), which is also the unknown pressure \(P \). We conclude that \(P = P_0 + \rho gh \).

The pressure \(P \) is called the absolute pressure, and \(P - P_0 \) is called the gauge pressure. If \(P \) in the system is greater than atmospheric pressure, \(h \) is positive. If \(P \) is less than atmospheric pressure (a partial vacuum), \(h \) is negative, meaning that the right-hand column in Figure 9.16a is lower than the left-hand column.

Another instrument used to measure pressure is the barometer (Fig. 9.16b), invented by Evangelista Torricelli (1608-1647). A long tube closed at one end is filled with mercury and then inverted into a dish of mercury. The closed end of the tube is nearly a vacuum, so its pressure can be taken to be zero. It follows that \(P_0 = \rho gh \), where \(\rho \) is the density of the mercury and \(h \) is the height of the mercury column. Note that the barometer measures the pressure of the atmosphere, whereas the manometer measures pressure in an enclosed fluid.

One atmosphere of pressure is defined to be the pressure equivalent of a column of mercury that is exactly 0.76 m in height at 0°C with \(g = 9.80665 \text{ m/s}^2 \). At this temperature, mercury has a density of \(13.595 \times 10^3 \text{ kg/m}^3 \); therefore,

\[
P_0 = \rho gh = (13.595 \times 10^3 \text{ kg/m}^3)(9.80665 \text{ m/s}^2)(0.7600 \text{ m})
= 1.013 \times 10^5 \text{ Pa} = 1 \text{ atm}
\]

It is interesting to note that the force of the atmosphere on our bodies (assuming a body area of 2000 in.\(^2\)) is extremely large, on the order of 30,000 lb! If it were not for the fluids permeating our tissues and body cavities, our bodies would collapse. The fluids provide equal and opposite forces. In the upper atmosphere or in space, sudden decompression can lead to serious injury and death. Air retained in the lungs can damage the tiny alveolar sacs, and intestinal gas can even rupture internal organs.

Quick Quiz 9.3 Several common barometers are built using a variety of fluids. For which fluid will the column of fluid in the barometer be the highest? (Refer to Table 9.3.) (a) mercury (b) water (c) ethyl alcohol (d) benzene

Blood Pressure Measurements

A specialized manometer (called a sphygmomanometer) is often used to measure blood pressure. In this application, a rubber bulb forces air into a cuff wrapped tightly around the upper arm and simultaneously into a manometer, as in Figure 9.17 (page 284). The pressure in the cuff is increased until the flow of blood stops.
through the brachial artery in the arm is stopped. A valve on the bulb is then opened, and the measurer listens with a stethoscope to the artery at a point just below the cuff. When the pressure in the cuff and brachial artery is just below the maximum value produced by the heart (the systolic pressure), the artery opens momentarily on each beat of the heart. At this point, the velocity of the blood is high and turbulent, and the flow is noisy and can be heard with the stethoscope. The manometer is calibrated to read the pressure in millimeters of mercury, and the value obtained is about 120 mm for a normal heart. Values of 130 mm or above are considered high, and medication to lower the blood pressure is often prescribed for such patients. As the pressure in the cuff is lowered further, intermittent sounds are still heard until the pressure falls just below the minimum heart pressure (the diastolic pressure). At this point, continuous sounds are heard. In the normal heart, this transition occurs at about 80 mm of mercury, and values above 90 require medical intervention. Blood pressure readings are usually expressed as the ratio of the systolic pressure to the diastolic pressure, which is 120/80 for a healthy heart.

QUICK QUIZ 9.4 Blood pressure is normally measured with the cuff of the sphygmomanometer around the arm. Suppose the blood pressure is measured with the cuff around the calf of the leg of a standing person. Would the reading of the blood pressure be (a) the same here as it is for the arm, (b) greater than it is for the arm, or (c) less than it is for the arm?

FIGURE 9.17 A sphygmomanometer can be used to measure blood pressure.

APPLYING PHYSICS 9.3 BALLPOINT PENS

In a ballpoint pen, ink moves down a tube to the tip, where it is spread on a sheet of paper by a rolling stainless steel ball. Near the top of the ink cartridge, there is a small hole open to the atmosphere. If you seal this hole, you will find that the pen no longer functions. Use your knowledge of how a barometer works to explain this behavior.

Explanation If the hole were sealed, or if it were not present, the pressure of the air above the ink would decrease as the ink was used. Consequently, atmospheric pressure exerted against the ink at the bottom of the cartridge would prevent some of the ink from flowing out. The hole allows the pressure above the ink to remain at atmospheric pressure. Why does a ballpoint pen seem to run out of ink when you write on a vertical surface?

9.6 BUOYANT FORCES AND ARCHIMEDES’ PRINCIPLE

A fundamental principle affecting objects submerged in fluids was discovered by Greek mathematician and natural philosopher Archimedes. **Archimedes’ principle** can be stated as follows:

Archimedes’ principle

Any object completely or partially submerged in a fluid is buoyed up by a force with magnitude equal to the weight of the fluid displaced by the object.

Many historians attribute the concept of buoyancy to Archimedes’ “bathtub epiphany,” when he noticed an apparent change in his weight upon lowering himself into a tub of water. As will be seen in Example 9.8, buoyancy yields a method of determining density.

Everyone has experienced Archimedes’ principle. It’s relatively easy, for example, to lift someone if you’re both standing in a swimming pool, whereas lifting that same individual on dry land may be a difficult task. Water provides partial
support to any object placed in it. We often say that an object placed in a fluid is buoyed up by the fluid, so we call this upward force the **buoyant force**.

The buoyant force is *not* a mysterious new force that arises in fluids. In fact, the physical cause of the buoyant force is the pressure difference between the upper and lower sides of the object, which can be shown to be equal to the weight of the displaced fluid. In Figure 9.18a, the fluid inside the indicated sphere, colored darker blue, is pressed on all sides by the surrounding fluid. Arrows indicate the forces arising from the pressure. Because pressure increases with depth, the arrows on the underside are larger than those on top. Adding them all up, the horizontal components cancel, but there is a net force upwards. This force, due to differences in pressure, is the buoyant force \(\mathbf{B} \). The sphere of water neither rises nor falls, so the vector sum of the buoyant force and the force of gravity on the sphere of fluid must be zero, and it follows that \(B = Mg \), where \(M \) is the mass of the fluid.

Replacing the shaded fluid with a bowling ball of the same volume, as in Figure 9.18b, changes only the mass on which the pressure acts, so the buoyant force is the same: \(B = Mg \), where \(M \) is the mass of the displaced fluid, *not* the mass of the bowling ball. The force of gravity on the heavier ball is greater than it was on the fluid, so the bowling ball sinks.

Archimedes’ principle can also be obtained from Equation 9.8, relating pressure and depth, using Figure 9.11b. Horizontal forces from the pressure cancel, but in the vertical direction \(P_2 A \) acts upwards on the bottom of the block of fluid and \(P_1 A \) and the gravity force on the fluid, \(Mg \), act downward, giving

\[
B = P_2 A - P_1 A = Mg \tag{9.12a}
\]

where the buoyancy force has been identified as a difference in pressure equal in magnitude to the weight of the displaced fluid. This buoyancy force remains the same regardless of the material occupying the volume in question because it’s due to the *surrounding* fluid. Using the definition of density, Equation 9.12a becomes

\[
B = \rho_{\text{fluid}}V_{\text{fluid}}g \tag{9.12b}
\]

where \(\rho_{\text{fluid}} \) is the density of the fluid and \(V_{\text{fluid}} \) is the volume of the displaced fluid. This result applies equally to all shapes because any irregular shape can be approximated by a large number of infinitesimal cubes.

It’s instructive to compare the forces on a totally submerged object with those on a floating object.

Case I: A Totally Submerged Object. When an object is totally submerged in a fluid of density \(\rho_{\text{fluid}} \), the upward buoyant force acting on the object has a magnitude of \(B = \rho_{\text{fluid}}V_{\text{obj}}g \), where \(V_{\text{obj}} \) is the volume of the object. If the object has density \(\rho_{\text{obj}} \), the downward gravitational force acting on the object has a magnitude equal to \(w = mg = \rho_{\text{obj}}V_{\text{obj}}g \), and the net force on it is \(B - w = (\rho_{\text{fluid}} - \rho_{\text{obj}})V_{\text{obj}}g \). Therefore, if the density of the object is less than the density of the fluid, the net force exerted on

Tip 9.2 Buoyant Force Is Exerted by the Fluid

The buoyant force on an object is exerted by the fluid and is the same, regardless of the density of the object. Objects more dense than the fluid sink; objects less dense rise.

FIGURE 9.18 (a) The arrows indicate forces on the sphere of fluid due to pressure, larger on the underside because pressure increases with depth. The net upward force is the buoyant force. (b) The buoyant force, which is caused by the surrounding fluid, is the same on any object of the same volume, including this bowling ball. The magnitude of the buoyant force is equal to the weight of the displaced fluid.
the object is positive (upward) and the object accelerates upward, as in Active Figure 9.19a. If the density of the object is greater than the density of the fluid, as in Active Figure 9.19b, the net force is negative and the object accelerates downwards.

Case II: A Floating Object. Now consider a partially submerged object in static equilibrium floating in a fluid, as in Active Figure 9.20. In this case, the upward buoyant force is balanced by the downward force of gravity acting on the object. If \(V_{\text{fluid}} \) is the volume of the fluid displaced by the object (which corresponds to the volume of the part of the object beneath the fluid level), then the magnitude of the buoyant force is given by \(B = \rho_{\text{fluid}} V_{\text{fluid}} g \). Because the weight of the object is \(w = m g = \rho_{\text{obj}} V_{\text{obj}} g \), and because \(w = B \), it follows that \(\rho_{\text{fluid}} \frac{V_{\text{fluid}} g}{V_{\text{obj}}} = \rho_{\text{obj}} \frac{V_{\text{obj}} g}{V_{\text{obj}}} \) or

\[
\frac{\rho_{\text{obj}}}{\rho_{\text{fluid}}} = \frac{V_{\text{fluid}}}{V_{\text{obj}}} \tag{9.13}
\]

Equation 9.13 neglects the buoyant force of the air, which is slight because the density of air is only 1.29 kg/m³ at sea level.

Under normal circumstances, the average density of a fish is slightly greater than the density of water, so a fish would sink if it didn’t have a mechanism for adjusting its density. By changing the size of an internal swim bladder, fish maintain neutral buoyancy as they swim to various depths.

The human brain is immersed in a fluid (the cerebrospinal fluid) of density 1 007 kg/m³, which is slightly less than the average density of the brain, 1 040 kg/m³. Consequently, most of the weight of the brain is supported by the buoyant force of the surrounding fluid. In some clinical procedures, a portion of this fluid must be removed for diagnostic purposes. During such procedures, the nerves and blood vessels in the brain are placed under great strain, which in turn can cause extreme discomfort and pain. Great care must be exercised with such patients until the initial volume of brain fluid has been restored by the body.

When service station attendants check the antifreeze in your car or the condition of your battery, they often use devices that apply Archimedes’ principle. Figure 9.21 shows a common device that is used to check the antifreeze in a car radiator. The small balls in the enclosed tube vary in density so that all of them float when the tube is filled with pure water, none float in pure antifreeze, one floats in a 5% mixture, two in a 10% mixture, and so forth. The number of balls that float is a measure of the percentage of antifreeze in the mixture, which in turn is used to determine the lowest temperature the mixture can withstand without freezing.

Similarly, the degree of charge in some car batteries can be determined with a so-called magic-dot process that is built into the battery (Fig. 9.22). Inside a viewing port in the top of the battery, the appearance of an orange dot indicates that the battery is sufficiently charged; a black dot indicates that the battery has lost its charge. If the battery has sufficient charge, the density of the battery fluid is high enough to cause the orange ball to float. As the battery loses its charge, the density of the battery fluid decreases and the ball sinks beneath the surface of the fluid, leaving the dot to appear black.
QUICK QUIZ 9.5 Atmospheric pressure varies from day to day. The level of a floating ship on a high-pressure day is (a) higher (b) lower, or (c) no different than on a low-pressure day.

QUICK QUIZ 9.6 The density of lead is greater than iron, and both metals are denser than water. Is the buoyant force on a solid lead object (a) greater than, (b) equal to, or (c) less than the buoyant force acting on a solid iron object of the same dimensions?

APPLICATION
Checking the Battery Charge

FIGURE 9.22 The orange ball in the plastic tube inside the battery serves as an indicator of whether the battery is (a) charged or (b) discharged. As the battery loses its charge, the density of the battery fluid decreases, and the ball sinks out of sight.

EXAMPLE 9.8 A Red-Tag Special on Crowns

Goal Apply Archimedes’ principle to a submerged object.

Problem A bargain hunter purchases a “gold” crown at a flea market. After she gets home, she hangs it from a scale and finds its weight to be 7.84 N (Fig. 9.23a). She then weighs the crown while it is immersed in water, as in Figure 9.23b, and now the scale reads 6.86 N. Is the crown made of pure gold?

Strategy The goal is to find the density of the crown and compare it to the density of gold. We already have the weight of the crown in air, so we can get the mass by dividing by the acceleration of gravity. If we can find the volume of the crown, we can obtain the desired density by dividing the mass by this volume.

When the crown is fully immersed, the displaced water is equal to the volume of the crown. This same volume is used in calculating the buoyant force. So our strategy is as follows: (1) Apply Newton’s second law to the crown, both in the water and in the air to find the buoyant force. (2) Use the buoyant force to find the crown’s volume. (3) Divide the crown’s scale weight in air by the acceleration of gravity to get the mass, then by the volume to get the density of the crown.

Solution Apply Newton’s second law to the crown when it’s weighed in air. There are two forces on the crown—gravity \(mg \) and \(T_{air} \), the force exerted by the scale on the crown, with magnitude equal to the reading on the scale.

When the crown is immersed in water, the scale force is \(T_{water} \), with magnitude equal to the scale reading, and there is an upward buoyant force \(B \) and the force of gravity.

\[
\begin{align*}
(1) \quad T_{air} - mg &= 0 \\
(2) \quad T_{water} - mg + B &= 0
\end{align*}
\]
Solve Equation (1) for \(mg\), substitute into Equation (2), and solve for the buoyant force, which equals the difference in scale readings:

\[
T_{\text{water}} - T_{\text{air}} + B = 0
\]

\[
B = T_{\text{air}} - T_{\text{water}} = 7.84\text{ N} - 6.86\text{ N} = 0.980\text{ N}
\]

\[
B = \rho_{\text{water}} V_{\text{water}} = 0.980\text{ N}
\]

\[
V_{\text{water}} = \frac{0.980\text{ N}}{g\rho_{\text{water}}} = \frac{(9.80\text{ m/s}^2)(1.00 \times 10^3\text{ kg/m}^3)}{1.00 \times 10^{-4}\text{ m}^3}
\]

\[
= 1.00 \times 10^{-4}\text{ m}^3
\]

\[
m = \frac{T_{\text{air}}}{g} = \frac{7.84\text{ N}}{9.80\text{ m/s}^2} = 0.800\text{ kg}
\]

Find the volume of the displaced water, using the fact that the magnitude of the buoyant force equals the weight of the displaced water:

\[
\rho_{\text{water}} g V_{\text{water}} = 0.980\text{ N}
\]

\[
V_{\text{water}} = \frac{0.980\text{ N}}{g\rho_{\text{water}}} = \frac{0.980\text{ N}}{9.80\text{ m/s}^2} = 0.800\text{ kg/m}^3
\]

The crown is totally submerged, so \(V_{\text{crown}} = V_{\text{water}}\).

From Equation (1), the mass is the crown’s weight in air, \(T_{\text{air}}\), divided by \(g\):

\[
m = \frac{T_{\text{air}}}{g} = \frac{7.84\text{ N}}{9.80\text{ m/s}^2} = 0.800\text{ kg}
\]

\[
\rho_{\text{crown}} = \frac{m}{V_{\text{crown}}} = \frac{0.800\text{ kg}}{1.00 \times 10^{-4}\text{ m}^3} = 8.00 \times 10^3\text{ kg/m}^3
\]

Remarks Because the density of gold is \(19.3 \times 10^3\text{ kg/m}^3\), the crown is either hollow, made of an alloy, or both. Despite the mathematical complexity, it is certainly conceivable that this was the method that occurred to Archimedes. Conceptually, it’s a matter of realizing (or guessing) that equal weights of gold and a silver–gold alloy would have different scale readings when immersed in water because their densities and hence their volumes are different, leading to differing buoyant forces.

QUESTION 9.8

True or False: The magnitude of the buoyant force on a completely submerged object depends on the object’s density.

EXERCISE 9.8

The weight of a metal bracelet is measured to be 0.100 N in air and 0.092 N when immersed in water. Find its density.

Answer \(1.25 \times 10^4\text{ kg/m}^3\)

EXAMPLE 9.9 Floating Down the River

Goal Apply Archimedes’ principle to a partially submerged object.

Problem A raft is constructed of wood having a density of \(6.00 \times 10^2\text{ kg/m}^3\). Its surface area is 5.70 m², and its volume is 0.60 m³. When the raft is placed in fresh water as in Figure 9.24, to what depth \(h\) is the bottom of the raft submerged?

Strategy There are two forces acting on the raft: the buoyant force of magnitude \(B\), acting upwards, and the force of gravity, acting downwards. Because the raft is in equilibrium, the sum of these forces is zero. The buoyant force depends on the submerged volume \(V_{\text{water}} = Ah\). Set up Newton’s second law and solve for \(h\), the depth reached by the bottom of the raft.

Solution

Apply Newton’s second law to the raft, which is in equilibrium:

\[
B - m_{\text{raft}}g = 0 \quad \rightarrow \quad B = m_{\text{raft}}g
\]

The volume of the raft submerged in water is given by \(V_{\text{water}} = Ah\). The magnitude of the buoyant force is equal to the weight of this displaced volume of water:

\[
B = m_{\text{water}}g = (\rho_{\text{water}} V_{\text{water}})g = (\rho_{\text{water}} Ah)g
\]

Now rewrite the gravity force on the raft using the raft’s density and volume:

\[
m_{\text{raft}}g = (\rho_{\text{raft}} V_{\text{raft}})g
\]
Substitute these two expressions into Newton’s second law, \(B = m_{\text{raft}}g \), and solve for \(h \) (note that \(g \) cancels):

\[
\rho_{\text{water}} Ah \ g = (\rho_{\text{raft}} V_{\text{raft}}) g
\]

\[
h = \frac{\rho_{\text{raft}} V_{\text{raft}}}{\rho_{\text{water}} A}
\]

\[
= \frac{(6.00 \times 10^2 \text{ kg/m}^3)(0.600 \text{ m}^3)}{(1.00 \times 10^3 \text{ kg/m}^3)(5.70 \text{ m}^3)}
\]

\[
= 0.063 \text{ m}
\]

Remarks How low the raft rides in the water depends on the density of the raft. The same is true of the human body: Fat is less dense than muscle and bone, so those with a higher percentage of body fat float better.

QUESTION 9.9
If the raft is placed in salt water, which has a density greater than fresh water, would the value of \(h \) (a) decrease, (b) increase, or (c) not change?

EXERCISE 9.9
Calculate how much of an iceberg is beneath the surface of the ocean, given that the density of ice is 917 kg/m³ and salt water has density 1 025 kg/m³.

Answer 89.5%

EXAMPLE 9.10 Floating in Two Fluids

Goal Apply Archimedes’ principle to an object floating in a fluid having two layers with different densities.

Problem A 1.00 \times 10^3\text{-kg} cube of aluminum is placed in a tank. Water is then added to the tank until half the cube is immersed. (a) What is the normal force on the cube? (See Fig. 9.25a.) (b) Mercury is now slowly poured into the tank until the normal force on the cube goes to zero. (See Fig. 9.25b.) How deep is the layer of mercury?

Strategy Both parts of this problem involve applications of Newton's second law for a body in equilibrium, together with the concept of a buoyant force. In part (a) the normal, gravitational, and buoyant force of water act on the cube. In part (b) there is an additional buoyant force of mercury, while the normal force goes to zero. Using \(V_{\text{Hg}} = Ah \), solve for the height of mercury, \(h \).

Solution
(a) Find the normal force on the cube when half-immersed in water.

Calculate the volume \(V \) of the cube and the length \(d \) of one side, for future reference (both quantities will be needed for what follows):

\[
V_{\text{Al}} = \frac{M_{\text{Al}}}{\rho_{\text{Al}}} = \frac{1.00 \times 10^3 \text{ kg}}{2.70 \times 10^3 \text{ kg/m}^3} = 0.370 \text{ m}^3
\]

\[
d = \sqrt[3]{V_{\text{Al}}} = 0.718 \text{ m}
\]

\[
n - M_{\text{Al}}g + B_{\text{water}} = 0
\]

\[
n = M_{\text{Al}}g - B_{\text{water}} = M_{\text{Al}}g - \rho_{\text{water}} (V/2) g
\]

\[
= (1.00 \times 10^3 \text{ kg})(9.80 \text{ m/s}^2)
\]

\[
- (1.00 \times 10^3 \text{ kg/m}^3)(0.370 \text{ m}^3/2.00)(9.80 \text{ m/s}^2)
\]

\[
n = 9.80 \times 10^3 \text{ N} - 1.81 \times 10^3 \text{ N} = 7.99 \times 10^3 \text{ N}
\]
9.7 FLUIDS IN MOTION

When a fluid is in motion, its flow can be characterized in one of two ways. The flow is said to be streamline, or laminar, if every particle that passes a particular point moves along exactly the same smooth path followed by previous particles passing that point. This path is called a streamline (Fig. 9.26). Different streamlines can’t cross each other under this steady-flow condition, and the streamline at any point coincides with the direction of the velocity of the fluid at that point.

In contrast, the flow of a fluid becomes irregular, or turbulent, above a certain velocity or under any conditions that can cause abrupt changes in velocity. Irregular motions of the fluid, called eddy currents, are characteristic in turbulent flow, as shown in Figure 9.27.

In discussions of fluid flow, the term viscosity is used for the degree of internal friction in the fluid. This internal friction is associated with the resistance between two adjacent layers of the fluid moving relative to each other. A fluid such as kerosene has a lower viscosity than does crude oil or molasses.

Many features of fluid motion can be understood by considering the behavior of an ideal fluid, which satisfies the following conditions:

1. The fluid is nonviscous, which means there is no internal friction force between adjacent layers.
2. The fluid is incompressible, which means its density is constant.
3. The fluid motion is steady, meaning that the velocity, density, and pressure at each point in the fluid don’t change with time.
4. The fluid moves without turbulence. This implies that each element of the fluid has zero angular velocity about its center, so there can’t be any eddy currents present in the moving fluid. A small wheel placed in the fluid would translate but not rotate.

Equation of Continuity

Figure 9.28a represents a fluid flowing through a pipe of nonuniform size. The particles in the fluid move along the streamlines in steady-state flow. In a small time interval Δt, the fluid entering the bottom end of the pipe moves a distance h.
\[\Delta x_1 = v_1 \Delta t, \] where \(v_1 \) is the speed of the fluid at that location. If \(A_1 \) is the cross-sectional area in this region, then the mass contained in the bottom blue region is
\[M_1 = \rho_1 A_1 v_1 \Delta t, \] where \(\rho_1 \) is the density of the fluid at \(A_1 \). Similarly, the fluid that moves out of the upper end of the pipe in the same time interval \(\Delta t \) has a mass of
\[\Delta M_2 = \rho_2 A_2 v_2 \Delta t. \] However, because mass is conserved and because the flow is steady, the mass that flows into the bottom of the pipe through \(A_1 \) in the time \(\Delta t \) must equal the mass that flows out through \(A_2 \) in the same interval. Therefore,
\[\Delta M_1 = \Delta M_2, \] or
\[\rho_1 A_1 v_1 = \rho_2 A_2 v_2 \quad [9.14] \]
For the case of an incompressible fluid, \(\rho_1 = \rho_2 \) and Equation 9.14 reduces to
\[A_1 v_1 = A_2 v_2 \quad [9.15] \]
This expression is called the equation of continuity. From this result, we see that the product of the cross-sectional area of the pipe and the fluid speed at that cross section is a constant. Therefore, the speed is high where the tube is constricted and low where the tube has a larger diameter. The product \(Av \), which has dimensions of volume per unit time, is called the flow rate. The condition \(Av = \) constant is equivalent to the fact that the volume of fluid that enters one end of the tube in a given time interval equals the volume of fluid leaving the tube in the same interval, assuming that the fluid is incompressible and there are no leaks. Figure 9.28b is an example of an application of the equation of continuity: As the stream of water flows continuously from a faucet, the width of the stream narrows as it falls and speeds up.

There are many instances in everyday experience that involve the equation of continuity. Reducing the cross-sectional area of a garden hose by putting a thumb over the open end makes the water spray out with greater speed; hence the stream goes farther. Similar reasoning explains why smoke from a smoldering piece of wood first rises in a streamline pattern, getting thinner with height, eventually breaking up into a swirling, turbulent pattern. The smoke rises because it’s less dense than air and the buoyant force of the air accelerates it upward. As the speed of the smoke stream increases, the cross-sectional area of the stream decreases, in accordance with the equation of continuity. The stream soon reaches a speed so great that streamline flow is not possible. We will study the relationship between speed of fluid flow and turbulence in a later discussion on the Reynolds number.

EXAMPLE 9.11 Niagara Falls

Goal Apply the equation of continuity.

Problem Each second, 5 525 m3 of water flows over the 670-m-wide cliff of the Horseshoe Falls portion of Niagara Falls. The water is approximately 2 m deep as it reaches the cliff. Estimate its speed at that instant.
Strategy This is an estimate, so only one significant figure will be retained in the answer. The volume flow rate is given, and, according to the equation of continuity, is a constant equal to Av. Find the cross-sectional area, substitute, and solve for the speed.

Solution
Calculate the cross-sectional area of the water as it reaches the edge of the cliff:

$$A = (670 \text{ m})(2 \text{ m}) = 1340 \text{ m}^2$$

Multiply this result by the speed and set it equal to the flow rate. Then solve for v:

$$(1340 \text{ m}^2)v = 5525 \text{ m}^3/\text{s} \rightarrow v = 4 \text{ m/s}$$

QUESTION 9.11
What happens to the speed of blood in an artery when plaque starts to build up on the artery’s sides?

EXERCISE 9.11
The Garfield Thomas water tunnel at Pennsylvania State University has a circular cross section that constricts from a diameter of 3.6 m to the test section, which is 1.2 m in diameter. If the speed of flow is 3.0 m/s in the larger-diameter pipe, determine the speed of flow in the test section.

Answer 27 m/s

EXAMPLE 9.12 Watering a Garden

Goal Combine the equation of continuity with concepts of flow rate and kinematics.

Problem A water hose 2.50 cm in diameter is used by a gardener to fill a 30.0-liter bucket. (One liter = 1000 cm3.) The gardener notices that it takes 1.00 min to fill the bucket. A nozzle with an opening of cross-sectional area 0.500 cm2 is then attached to the hose. The nozzle is held so that water is projected horizontally from a point 1.00 m above the ground. Over what horizontal distance can the water be projected?

Strategy We can find the volume flow rate through the hose by dividing the volume of the bucket by the time it takes to fill it. After finding the flow rate, apply the equation of continuity to find the speed at which the water shoots horizontally out the nozzle. The rest of the problem is an application of two-dimensional kinematics. The answer obtained is the same as would be found for a ball having the same initial velocity and height.

Solution
Calculate the volume flow rate into the bucket, and convert to m3/s:

$$\text{volume flow rate} = \frac{30.0 \text{ L}}{1.00 \text{ min}} \left(\frac{1000 \text{ cm}^3}{1.00 \text{ L}}\right) \left(\frac{1.00 \text{ m}}{100.0 \text{ cm}}\right) \left(\frac{1.00 \text{ min}}{60.0 \text{ s}}\right) = 5.00 \times 10^{-4} \text{ m}^3/\text{s}$$

Solve the equation of continuity for v_{0x}, the x-component of the initial velocity of the stream exiting the hose:

$$A_1v_1 = A_2v_{0x}$$

$$v_{0x} = \frac{A_1v_1}{A_2} = \frac{5.00 \times 10^{-4} \text{ m}^3/\text{s}}{0.500 \times 10^{-4} \text{ m}^2} = 10.0 \text{ m/s}$$

Calculate the time for the stream to fall 1.00 m, using kinematics. Initially, the stream is horizontal, so v_{0y} is zero:

$$\Delta y = v_{0y}t - \frac{1}{2}gt^2$$

Set $v_{0y} = 0$ in the preceding equation and solve for t, noting that $\Delta y = -1.00$ m:

$$t = \sqrt{\frac{-2\Delta y}{g}} = \sqrt{\frac{-2(-1.00 \text{ m})}{9.80 \text{ m/s}^2}} = 0.452 \text{ s}$$
Bernoulli’s Equation

As a fluid moves through a pipe of varying cross section and elevation, the pressure changes along the pipe. In 1738 the Swiss physicist Daniel Bernoulli (1700–1782) derived an expression that relates the pressure of a fluid to its speed and elevation. Bernoulli’s equation is not a freestanding law of physics; rather, it’s a consequence of energy conservation as applied to an ideal fluid.

In deriving Bernoulli’s equation, we again assume the fluid is incompressible, nonviscous, and flows in a nonturbulent, steady-state manner. Consider the flow through a nonuniform pipe in the time t, as in Figure 9.29. The force on the lower end of the fluid is $P_1 A_1$, where P_1 is the pressure at the lower end. The work done on the lower end of the fluid by the fluid behind it is

$$W_1 = P_1 A_1 \Delta x_1 = P_1 V$$

where V is the volume of the lower blue region in the figure. In a similar manner, the work done on the fluid on the upper portion in the time t is

$$W_2 = -P_2 A_2 \Delta x_2 = -P_2 V$$

The volume is the same because, by the equation of continuity, the volume of fluid that passes through A_1 in the time Δt equals the volume that passes through A_2 in the same interval. The work W_2 is negative because the force on the fluid at the top is opposite its displacement. The net work done by these forces in the time Δt is

$$W_{\text{fluid}} = P_1 V - P_2 V$$

Part of this work goes into changing the fluid’s kinetic energy, and part goes into changing the gravitational potential energy of the fluid-Earth system. If m is the mass of the fluid passing through the pipe in the time interval Δt, then the change in kinetic energy of the volume of fluid is

$$\Delta KE = \frac{1}{2} m v_2^2 - \frac{1}{2} m v_1^2$$

The change in the gravitational potential energy is

$$\Delta PE = m g \Delta y_2 - m g \Delta y_1$$

Because the net work done by the fluid on the segment of fluid shown in Figure 9.29 changes the kinetic energy and the potential energy of the nonisolated system, we have

$$W_{\text{fluid}} = \Delta KE + \Delta PE$$

Find the horizontal distance the stream travels:

$$x = v_0 t = (10.0 \text{ m/s})(0.452 \text{ s}) = 4.52 \text{ m}$$

Remark: It’s interesting that the motion of fluids can be treated with the same kinematics equations as individual objects.

QUESTION 9.12
By what factor would the range be changed if the flow rate were doubled?

EXERCISE 9.12
The nozzle is replaced with a Y-shaped fitting that splits the flow in half. Garden hoses are connected to each end of the Y, with each hose having a 0.400 cm2 nozzle. (a) How fast does the water come out of one of the nozzles? (b) How far would one of the nozzles squirt water if both were operated simultaneously and held horizontally 1.00 m off the ground? Hint: Find the volume flow rate through each 0.400-cm2 nozzle, then follow the same steps as before.

Answer (a) 6.25 m/s (b) 2.82 m
The three terms in this equation are those we have just evaluated. Substituting expressions for each of the terms gives

\[P_1 V - P_2 V = \frac{1}{2} m v_2^2 - \frac{1}{2} m v_1^2 + mg y_2 - mg y_1. \]

If we divide each term by \(V \) and recall that \(\rho = m/V \), this expression becomes

\[P_1 - P_2 = \frac{1}{2} \rho v_2^2 - \frac{1}{2} \rho v_1^2 + \rho g y_2 - \rho g y_1. \]

Rearrange the terms as follows:

\[P_1 + \frac{1}{2} \rho v_1^2 + \rho g y_1 = P_2 + \frac{1}{2} \rho v_2^2 + \rho g y_2. \] \[9.16 \]

This is Bernoulli’s equation, often expressed as

\[P + \frac{1}{2} \rho v^2 + \rho g y = \text{constant} \] \[9.17 \]

Bernoulli’s equation states that the sum of the pressure \(P \), the kinetic energy per unit volume, \(\frac{1}{2} \rho v^2 \), and the potential energy per unit volume, \(\rho g y \), has the same value at all points along a streamline.

An important consequence of Bernoulli’s equation can be demonstrated by considering Figure 9.30, which shows water flowing through a horizontal constricted pipe from a region of large cross-sectional area into a region of smaller cross-sectional area. This device, called a Venturi tube, can be used to measure the speed of fluid flow. Because the pipe is horizontal, \(y_1 = y_2 \), and Equation 9.16 applied to points 1 and 2 gives

\[P_1 + \frac{1}{2} \rho v_1^2 = P_2 + \frac{1}{2} \rho v_2^2. \] \[9.18 \]

Because the water is not backing up in the pipe, its speed \(v_2 \) in the constricted region must be greater than its speed \(v_1 \) in the region of greater diameter. From Equation 9.18, we see that \(P_2 \) must be less than \(P_1 \) because \(v_2 > v_1 \). This result is often expressed by the statement that **swiftly moving fluids exert less pressure than do slowly moving fluids.** This important fact enables us to understand a wide range of everyday phenomena.

QUICK QUIZ 9.7 You observe two helium balloons floating next to each other at the ends of strings secured to a table. The facing surfaces of the balloons are separated by 1–2 cm. You blow through the opening between the balloons. What happens to the balloons? (a) They move toward each other. (b) They move away from each other. (c) They are unaffected.

EXAMPLE 9.13 **Shoot-Out at the Old Water Tank**

Goal Apply Bernoulli’s equation to find the speed of a fluid.

Problem A nearsighted sheriff fires at a cattle rustler with his trusty six-shooter. Fortunately for the rustler, the bullet misses him and penetrates the town water tank, causing a leak (Fig. 9.31). (a) If the top of the tank is open to the...
atmosphere, determine the speed at which the water leaves the hole when the water level is 0.500 m above the hole. (b) Where does the stream hit the ground if the hole is 3.00 m above the ground?

Strategy
(a) Assume the tank’s cross-sectional area is large compared to the hole’s ($A_2 \gg A_1$), so the water level drops very slowly and $v_2 \approx 0$. Apply Bernoulli’s equation to points i and ii in Figure 9.31, noting that P_1 equals atmospheric pressure P_0 at the hole and is approximately the same at the top of the water tank. Part (b) can be solved with kinematics, just as if the water were a ball thrown horizontally.

Solution
(a) Find the speed of the water leaving the hole.

Substitute $P_1 = P_2 = P_0$ and $v_2 = 0$ into Bernoulli’s equation, and solve for v_1:

$$P_0 + \frac{1}{2} \rho v_1^2 + \rho g y_1 = P_0 + \rho g y_2$$

$$v_1 = \sqrt{2g(y_2 - y_1)} = \sqrt{2gh}$$

$$v_1 = \sqrt{2(9.80 \text{ m/s}^2)(0.500 \text{ m})} = 3.13 \text{ m/s}$$

(b) Find where the stream hits the ground.

Use the displacement equation to find the time of the fall, noting that the stream is initially horizontal, so $v_{0y} = 0$.

$$\Delta y = \frac{1}{2}gt^2 + v_{0y}t$$

$$-3.00 \text{ m} = -(4.90 \text{ m/s}^2)t^2$$

$$t = 0.782 \text{ s}$$

Compute the horizontal distance the stream travels in this time:

$$x = v_{0x}t = (3.13 \text{ m/s})(0.782 \text{ s}) = 2.45 \text{ m}$$

Remarks
As the analysis of part (a) shows, the speed of the water emerging from the hole is equal to the speed acquired by an object falling freely through the vertical distance h. This is known as Torricelli’s law.

QUESTION 9.13
As time passes, what happens to the speed of the water leaving the hole?

EXERCISE 9.13
Suppose, in a similar situation, the water hits the ground 4.20 m from the hole in the tank. If the hole is 2.00 m above the ground, how far above the hole is the water level?

Answer 2.21 m above the hole

EXAMPLE 9.14 Fluid Flow in a Pipe

Goal Solve a problem combining Bernoulli’s equation and the equation of continuity.

Problem A large pipe with a cross-sectional area of 1.00 m² descends 5.00 m and narrows to 0.500 m², where it terminates in a valve at point ii (Fig. 9.32). If the pressure at point i is atmospheric pressure, and the valve is opened wide and water allowed to flow freely, find the speed of the water leaving the pipe.

Strategy The equation of continuity, together with Bernoulli’s equation, constitute two equations in two unknowns: the speeds v_1 and v_2. Eliminate v_2 from Bernoulli’s equation with the equation of continuity, and solve for v_1.

FIGURE 9.32 (Example 9.14) Fluid Flow in a Pipe
In this section we describe some common phenomena that can be explained, at least in part, by Bernoulli’s equation.

In general, an object moving through a fluid is acted upon by a net upward force as the result of any effect that causes the fluid to change its direction as it flows past the object. For example, a golf ball struck with a club is given a rapid backspin, as shown in Figure 9.33. The dimples on the ball help entrain the air along the curve of the ball’s surface. The figure shows a thin layer of air wrapping partway around the ball and being deflected downward as a result. Because the ball pushes the air down, by Newton’s third law the air must push up on the ball and cause it to rise. Without the dimples, the air isn’t as well entrained, so the golf ball doesn’t travel as far. A tennis ball’s fuzz performs a similar function, though the desired result is ball placement rather than greater distance.

Solution

Write Bernoulli’s equation:

\[
P_1 + \frac{1}{2} \rho v_1^2 + \rho g y_1 = P_2 + \frac{1}{2} \rho v_2^2 + \rho g y_2
\]

Solve the equation of continuity for \(v_2\):

\[
A_2 v_2 = A_1 v_1
\]

In Equation (1), set \(P_1 = P_2 = P_0\), and substitute the expression for \(v_2\). Then solve for \(v_1\).

\[
\begin{align*}
\rho g y_2 + \frac{1}{2} \rho v_1^2 &= \rho g (y_2 - y_1) \\
&= \frac{2gh}{\sqrt{1 - \left(\frac{A_1}{A_2}\right)^2}}
\end{align*}
\]

Substitute the given values:

\(v_1 = 11.4 \text{ m/s}\)

Remarks This speed is slightly higher than the speed predicted by Torricelli’s law because the narrowing pipe squeezes the fluid.

QUESTION 9.14

Why does setting \(A_1 = A_2\) give an undefined answer for the speed \(v_1\)? Hint: Substitute \(A_1 = A_2\) into Equation (3) and verify whether or not a contradiction is obtained.

EXERCISE 9.14

Water flowing in a horizontal pipe is at a pressure of \(1.40 \times 10^5 \text{ Pa}\) at a point where its cross-sectional area is \(1.00 \text{ m}^2\). When the pipe narrows to \(0.400 \text{ m}^2\), the pressure drops to \(1.16 \times 10^5 \text{ Pa}\). Find the water’s speed (a) in the wider pipe and (b) in the narrower pipe.

Answer (a) 3.02 m/s (b) 7.56 m/s

9.8 OTHER APPLICATIONS OF FLUID DYNAMICS

In this section we describe some common phenomena that can be explained, at least in part, by Bernoulli’s equation.

In general, an object moving through a fluid is acted upon by a net upward force as the result of any effect that causes the fluid to change its direction as it flows past the object. For example, a golf ball struck with a club is given a rapid backspin, as shown in Figure 9.33. The dimples on the ball help entrain the air along the curve of the ball’s surface. The figure shows a thin layer of air wrapping partway around the ball and being deflected downward as a result. Because the ball pushes the air down, by Newton’s third law the air must push up on the ball and cause it to rise. Without the dimples, the air isn’t as well entrained, so the golf ball doesn’t travel as far. A tennis ball’s fuzz performs a similar function, though the desired result is ball placement rather than greater distance.

FIGURE 9.33 A spinning golf ball is acted upon by a lifting force that allows it to travel much further than it would if it were not spinning.
Many devices operate in the manner illustrated in Figure 9.34. A stream of air passing over an open tube reduces the pressure above the tube, causing the liquid to rise into the airstream. The liquid is then dispersed into a fine spray of droplets. You might recognize that this so-called atomizer is used in perfume bottles and paint sprayers. The same principle is used in the carburetor of a gasoline engine. In that case, the low-pressure region in the carburetor is produced by air drawn in by the piston through the air filter. The gasoline vaporizes, mixes with the air, and enters the cylinder of the engine for combustion.

In a person with advanced arteriosclerosis, the Bernoulli effect produces a symptom called vascular flutter. In this condition, the artery is constricted as a result of accumulated plaque on its inner walls, as shown in Figure 9.35. To maintain a constant flow rate, the blood must travel faster than normal through the constriction. If the speed of the blood is sufficiently high in the constricted region, the blood pressure is low, and the artery may collapse under external pressure, causing a momentary interruption in blood flow. During the collapse there is no Bernoulli effect, so the vessel reopens under arterial pressure. As the blood rushes through the constricted artery, the internal pressure drops and the artery closes again. Such variations in blood flow can be heard with a stethoscope. If the plaque becomes dislodged and ends up in a smaller vessel that delivers blood to the heart, it can cause a heart attack.

An aneurysm is a weakened spot on an artery where the artery walls have ballooned outward. Blood flows more slowly through this region, as can be seen from the equation of continuity, resulting in an increase in pressure in the vicinity of the aneurysm relative to the pressure in other parts of the artery. This condition is dangerous because the excess pressure can cause the artery to rupture.

The lift on an aircraft wing can also be explained in part by the Bernoulli effect. Airplane wings are designed so that the air speed above the wing is greater than the speed below. As a result, the air pressure above the wing is less than the pressure below, and there is a net upward force on the wing, called the lift. (There is also a horizontal component called the drag.) Another factor influencing the lift on a wing, shown in Figure 9.36, is the slight upward tilt of the wing. This causes air molecules striking the bottom to be deflected downward, producing a reaction force upward by Newton’s third law. Finally, turbulence also has an effect. If the wing is tilted too much, the flow of air across the upper surface becomes turbulent, and the pressure difference across the wing is not as great as that predicted by the Bernoulli effect. In an extreme case, this turbulence may cause the aircraft to stall.

EXAMPLE 9.15 Lift on an Airfoil

Goal Use Bernoulli’s equation to calculate the lift on an airplane wing.

Problem An airplane has wings, each with area 4.00 m², designed so that air flows over the top of the wing at 245 m/s and underneath the wing at 222 m/s. Find the mass of the airplane such that the lift on the plane will support its weight, assuming the force from the pressure difference across the wings is directed straight upwards.

Strategy This problem can be solved by substituting values into Bernoulli’s equation to find the pressure difference between the air under the wing and the air over the wing, followed by applying Newton’s second law to find the mass the airplane can lift.
Remarks

Note the factor of two in the last equation, needed because the airplane has two wings. The density of the atmosphere drops steadily with increasing height, reducing the lift. As a result, all aircraft have a maximum operating altitude.

QUESTION 9.15

Why is the maximum lift affected by increasing altitude?

EXERCISE 9.15

Approximately what size wings would an aircraft need on Mars if its engine generates the same differences in speed as in the example and the total mass of the craft is 400 kg? The density of air on the surface of Mars is approximately one percent Earth’s density at sea level, and the acceleration of gravity on the surface of Mars is about 3.8 m/s².

Answer

Rounding to one significant digit, each wing would have to have an area of about 10 m². There have been proposals for solar-powered robotic Mars aircraft, which would have to be gossamer-light with large wings.

SOLUTION

Apply Bernoulli’s equation to the air flowing under the wing (point 1) and over the wing (point 2). Gravitational potential energy terms are small compared with the other terms, and can be neglected.

\[P_1 + \frac{1}{2} \rho v_1^2 = P_2 + \frac{1}{2} \rho v_2^2 \]

Solve this equation for the pressure difference:

\[\Delta P = P_1 - P_2 = \frac{1}{2} \rho v_2^2 - \frac{1}{2} \rho v_1^2 = \frac{1}{2} \rho (v_2^2 - v_1^2) \]

Substitute the given speeds and \(\rho = 1.29 \text{ kg/m}^3 \), the density of air:

\[\Delta P = \frac{1}{2}(1.29 \text{ kg/m}^3)(245^2 \text{ m}^2/\text{s}^2 - 222^2 \text{ m}^2/\text{s}^2) \]

\[\Delta P = 6.93 \times 10^3 \text{ Pa} \]

Apply Newton’s second law. To support the plane’s weight, the sum of the lift and gravity forces must equal zero. Solve for the mass \(m \) of the plane.

\[2A \Delta P - mg = 0 \rightarrow m = \frac{5.66 \times 10^3}{g} \text{ kg} \]

EXPLANATION

As shown in Figure 9.37, the wind blowing in the direction of the arrow causes the sail to billow out and take on a shape similar to that of an airplane wing. By Bernoulli’s equation, just as for an airplane wing, there is a force on the sail in the direction shown. The component of force perpendicular to the boat tends to make the boat move sideways in the water, but the keel prevents this sideways motion. The component of the force in the forward direction drives the boat almost against the wind. The word *almost* is used because a sailboat can move forward only when the wind direction is about 10 to 15° with respect to the forward direction. This means that to sail directly against the wind, a boat must follow a zigzag path, a procedure called *tacking*, so that the wind is always at some angle with respect to the direction of travel.

APPLYING PHYSICS 9.4 SAILING UPWIND

How can a sailboat accomplish the seemingly impossible task of sailing into the wind?

Explanation

As shown in Figure 9.37, the wind blowing in the direction of the arrow causes the sail to billow out and take on a shape similar to that of an airplane wing. By Bernoulli’s equation, just as for an airplane wing, there is a force on the sail in the direction shown. The component of force perpendicular to the boat tends to make the boat move sideways in the water, but the keel prevents this sideways motion. The component of the force in the forward direction drives the boat almost against the wind. The word *almost* is used because a sailboat can move forward only when the wind direction is about 10 to 15° with respect to the forward direction. This means that to sail directly against the wind, a boat must follow a zigzag path, a procedure called *tacking*, so that the wind is always at some angle with respect to the direction of travel.

FIGURE 9.37 (Applying Physics 9.4)
The exhaust speed of a rocket engine can also be understood qualitatively with Bernoulli’s equation, although, in actual practice, a large number of additional variables need to be taken into account. Rockets actually work better in vacuum than in the atmosphere, contrary to an early New York Times article criticizing rocket pioneer Robert Goddard, which held that they wouldn’t work at all, having no air to push against. The pressure inside the combustion chamber is \(P \), and the pressure just outside the nozzle is the ambient atmospheric pressure, \(P_{\text{atm}} \). Differences in height between the combustion chamber and the end of the nozzle result in negligible contributions of gravitational potential energy. In addition, the gases inside the chamber flow at negligible speed compared to gases going through the nozzle. The exhaust speed can be found from Bernoulli’s equation,

\[
 v_{\text{ex}} = \sqrt{\frac{2(P - P_{\text{atm}})}{\rho}}
\]

This equation shows that the exhaust speed is reduced in the atmosphere, so rockets are actually more effective in the vacuum of space. Also of interest is the appearance of the density \(\rho \) in the denominator. A lower density working fluid or gas will give a higher exhaust speed, which partly explains why liquid hydrogen, which has a very low density, is a fuel of choice.

9.9 Surface Tension, Capillary Action, and Viscous Fluid Flow

If you look closely at a dewdrop sparkling in the morning sunlight, you will find that the drop is spherical. The drop takes this shape because of a property of liquid surfaces called surface tension. In order to understand the origin of surface tension, consider a molecule at point \(A \) in a container of water, as in Figure 9.39 (page 300). Although nearby molecules exert forces on this molecule, the net force on it is zero because it’s completely surrounded by other molecules and hence is
attracted equally in all directions. The molecule at \(B \), however, is not attracted equally in all directions. Because there are no molecules above it to exert upward forces, the molecule at \(B \) is pulled toward the interior of the liquid. The contraction at the surface of the liquid ceases when the inward pull exerted on the surface molecules is balanced by the outward repulsive forces that arise from collisions with molecules in the interior of the liquid. The net effect of this pull on all the surface molecules is to make the surface of the liquid contract and, consequently, to make the surface area of the liquid as small as possible. Drops of water take on a spherical shape because a sphere has the smallest surface area for a given volume.

If you place a sewing needle very carefully on the surface of a bowl of water, you will find that the needle floats even though the density of steel is about eight times that of water. This phenomenon can also be explained by surface tension. A close examination of the needle shows that it actually rests in a depression in the liquid surface as shown in Figure 9.40. The water surface acts like an elastic membrane under tension. The weight of the needle produces a depression, increasing the surface area of the film. Molecular forces now act at all points along the depression, tending to restore the surface to its original horizontal position. The vertical components of these forces act to balance the force of gravity on the needle. The floating needle can be sunk by adding a little detergent to the water, which reduces the surface tension.

The surface tension \(\gamma \) in a film of liquid is defined as the magnitude of the surface tension force \(F \) divided by the length \(L \) along which the force acts:

\[
\gamma = \frac{F}{L} \tag{9.19}
\]

The SI unit of surface tension is the newton per meter, and values for a few representative materials are given in Table 9.4.

Surface tension can be thought of as the energy content of the fluid at its surface per unit surface area. To see that this is reasonable, we can manipulate the units of surface tension \(\gamma \) as follows:

\[
\frac{N}{m} = \frac{N \cdot m}{m^2} = \frac{J}{m^2}
\]

In general, in any equilibrium configuration of an object, the energy is a minimum. Consequently, a fluid will take on a shape such that its surface area is as small as possible. For a given volume, a spherical shape has the smallest surface area; therefore, a drop of water takes on a spherical shape.

An apparatus used to measure the surface tension of liquids is shown in Figure 9.41. A circular wire with a circumference \(L \) is lifted from a body of liquid. The surface film clings to the inside and outside edges of the wire, holding back the wire and causing the spring to stretch. If the spring is calibrated, the force required to overcome the surface tension of the liquid can be measured. In this case the surface tension is given by

\[
\gamma = \frac{F}{2L}
\]

Table 9.4

Surface Tensions for Various Liquids

<table>
<thead>
<tr>
<th>Liquid</th>
<th>(T) (°C)</th>
<th>Surface Tension (N/m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ethyl alcohol</td>
<td>20</td>
<td>0.022</td>
</tr>
<tr>
<td>Mercury</td>
<td>20</td>
<td>0.465</td>
</tr>
<tr>
<td>Soapy water</td>
<td>20</td>
<td>0.025</td>
</tr>
<tr>
<td>Water</td>
<td>20</td>
<td>0.073</td>
</tr>
<tr>
<td>Water</td>
<td>100</td>
<td>0.059</td>
</tr>
</tbody>
</table>
We use $2L$ for the length because the surface film exerts forces on both the inside and outside of the ring.

The surface tension of liquids decreases with increasing temperature because the faster moving molecules of a hot liquid aren't bound together as strongly as are those in a cooler liquid. In addition, certain ingredients called surfactants decrease surface tension when added to liquids. For example, soap or detergent decreases the surface tension of water, making it easier for soapy water to penetrate the cracks and crevices of your clothes to clean them better than plain water does. A similar effect occurs in the lungs. The surface tissue of the air sacs in the lungs contains a fluid that has a surface tension of about 0.050 N/m. A liquid with a surface tension this high would make it very difficult for the lungs to expand during inhalation. However, as the area of the lungs increases with inhalation, the body secretes into the tissue a substance that gradually reduces the surface tension of the liquid. At full expansion, the surface tension of the lung fluid can drop to as low as 0.005 N/m.

Example 9.16 Walking on Water

Goal Apply the surface tension equation.

Problem Many insects can literally walk on water, using surface tension for their support. To show this is feasible, assume the insect’s “foot” is spherical. When the insect steps onto the water with all six legs, a depression is formed in the water around each foot, as shown in Figure 9.42a. The surface tension of the water produces upward forces on the water that tend to restore the water surface to its normally flat shape. If the insect’s mass is 2.0×10^{-5} kg and the radius of each foot is 1.5×10^{-4} m, find the angle θ.

Strategy Find an expression for the magnitude of the net force F directed tangentially to the depressed part of the water surface, and obtain the part that is acting vertically, in opposition to the downward force of gravity. Assume the radius of depression is the same as the radius of the insect’s foot. Because the insect has six legs, one-sixth of the insect’s weight must be supported by one of the legs, assuming the weight is distributed evenly. The length L is just the distance around a circle. Using Newton’s second law for a body in equilibrium (zero acceleration), solve for θ.

Solution Start with the surface tension equation:

$$F = \gamma L.$$

Focus on one circular foot, substituting $L = 2\pi r$. Multiply by $\cos \theta$ to get the vertical component F_v:

$$F_v = \gamma (2\pi r) \cos \theta.$$

Write Newton’s second law for the insect’s one foot, which supports one-sixth of the insect’s weight:

$$\sum F = F_v - \frac{1}{6} mg = 0$$

$$\gamma (2\pi r) \cos \theta - \frac{1}{6} mg = 0$$

Solve for $\cos \theta$ and substitute:

$$\cos \theta = \frac{mg}{12\pi r \gamma}$$

$$= \frac{(2.0 \times 10^{-5} \text{ kg})(9.80 \text{ m/s}^2)}{12\pi(1.5 \times 10^{-4} \text{ m})(0.005 \text{ N/m})} = 0.47$$
The Surface of Liquid

If you have ever closely examined the surface of water in a glass container, you may have noticed that the surface of the liquid near the walls of the glass curves upwards as you move from the center to the edge, as shown in Figure 9.43a. However, if mercury is placed in a glass container, the mercury surface curves downwards, as in Figure 9.43b. These surface effects can be explained by considering the forces between molecules. In particular, we must consider the forces that the molecules of the liquid exert on one another and the forces that the molecules of the glass surface exert on those of the liquid. In general terms, forces between like molecules, such as the forces between water molecules, are called **cohesive forces**, and forces between unlike molecules, such as those exerted by glass on water, are called **adhesive forces**.

Water tends to cling to the walls of the glass because the adhesive forces between the molecules of water and the glass molecules are greater than the cohesive forces between the water molecules. In effect, the water molecules cling to the surface of the glass rather than fall back into the bulk of the liquid. When this condition prevails, the liquid is said to “wet” the glass surface. The surface of the mercury curves downward near the walls of the container because the cohesive forces between the mercury atoms are greater than the adhesive forces between mercury and glass. A mercury atom near the surface is pulled more strongly toward other mercury atoms than toward the glass surface, so mercury doesn’t wet the glass surface.

The angle ϕ between the solid surface and a line drawn tangent to the liquid at the surface is called the **contact angle** (Fig. 9.44). The angle ϕ is less than 90° for
any substance in which adhesive forces are stronger than cohesive forces and greater than 90° if cohesive forces predominate. For example, if a drop of water is placed on paraffin, the contact angle is approximately 107° (Fig. 9.44a). If certain chemicals, called wetting agents or detergents, are added to the water, the contact angle becomes less than 90°, as shown in Figure 9.44b. The addition of such substances to water ensures that the water makes intimate contact with a surface and penetrates it. For this reason, detergents are added to water to wash clothes or dishes.

On the other hand, it is sometimes necessary to keep water from making intimate contact with a surface, as in waterproof clothing, where a situation somewhat the reverse of that shown in Figure 9.44 is called for. The clothing is sprayed with a waterproofing agent, which changes \(\phi \) from less than 90° to greater than 90°. The water beads up on the surface and doesn’t easily penetrate the clothing.

Capillary Action

In capillary tubes the diameter of the opening is very small, on the order of a hundredth of a centimeter. In fact, the word *capillary* means “hairlike.” If such a tube is inserted into a fluid for which adhesive forces dominate over cohesive forces, the liquid rises into the tube, as shown in Figure 9.45. The rising of the liquid in the tube can be explained in terms of the shape of the liquid’s surface and surface tension effects. At the point of contact between liquid and solid, the upward force of surface tension is directed as shown in the figure. From Equation 9.19, the magnitude of this force is

\[
F = \gamma L = \gamma (2\pi r)
\]

(We use \(L = 2\pi r \) here because the liquid is in contact with the surface of the tube at all points around its circumference.) The vertical component of this force due to surface tension is

\[
F_v = \gamma (2\pi r)(\cos \phi)
\]

For the liquid in the capillary tube to be in equilibrium, this upward force must be equal to the weight of the cylinder of water of height \(h \) inside the capillary tube. The weight of this water is

\[
w = Mg = \rho Vg = \rho g \pi r^2 h
\]

Equating \(F_v \) in Equation 9.20 to \(w \) in Equation 9.21 (applying Newton’s second law for equilibrium), we have

\[
\gamma (2\pi r)(\cos \phi) = \rho g \pi r^2 h
\]

Solving for \(h \) gives the height to which water is drawn into the tube:

\[
h = \frac{2\gamma}{\rho g r} \cos \phi
\]

If a capillary tube is inserted into a liquid in which cohesive forces dominate over adhesive forces, the level of the liquid in the capillary tube will be below the surface of the surrounding fluid, as shown in Figure 9.46. An analysis similar to the above would show that the distance \(h \) to the depressed surface is given by Equation 9.22.
Capillary tubes are often used to draw small samples of blood from a needle prick in the skin. Capillary action must also be considered in the construction of concrete-block buildings because water seepage through capillary pores in the blocks or the mortar may cause damage to the inside of the building. To prevent such damage, the blocks are usually coated with a waterproofing agent either outside or inside the building. Water seepage through a wall is an undesirable effect of capillary action, but there are many useful effects. Plants depend on capillary action to transport water and nutrients, and sponges and paper towels use capillary action to absorb spilled fluids.

EXAMPLE 9.17 Rising Water

Goal Apply surface tension to capillary action.

Problem Find the height to which water would rise in a capillary tube with a radius equal to 5.0×10^{-5} m. Assume the contact angle between the water and the material of the tube is small enough to be considered zero.

Strategy This problem requires substituting values into Equation 9.22.

Solution

Substitute the known values into Equation 9.22:

$$h = \frac{2\gamma \cos \theta}{\rho g r}$$

$$= \frac{2(0.073 \text{ N/m})}{(1.00 \times 10^3 \text{ kg/m}^3)(9.80 \text{ m/s}^2)(5.0 \times 10^{-5} \text{ m})}$$

$$= 0.30 \text{ m}$$

QUESTION 9.17

Based on the result of this calculation, is capillary action likely to be the sole mechanism of water and nutrient transport in plants? Explain.

EXERCISE 9.17

Suppose ethyl alcohol rises 0.250 m in a thin tube. Estimate the radius of the tube, assuming the contact angle is approximately zero.

Answer 2.23×10^{-5} m

Viscous Fluid Flow

It is considerably easier to pour water out of a container than to pour honey. This is because honey has a higher viscosity than water. In a general sense, **viscosity refers to the internal friction of a fluid.** It’s very difficult for layers of a viscous fluid to slide past one another. Likewise, it’s difficult for one solid surface to slide past another if there is a highly viscous fluid, such as soft tar, between them.

When an ideal (nonviscous) fluid flows through a pipe, the fluid layers slide past one another with no resistance. If the pipe has a uniform cross section, each layer has the same velocity, as shown in Figure 9.47a. In contrast, the layers of a viscous fluid have different velocities, as Figure 9.47b indicates. The fluid has the greatest velocity at the center of the pipe, whereas the layer next to the wall doesn’t move because of adhesive forces between molecules and the wall surface.

To better understand the concept of viscosity, consider a layer of liquid between two solid surfaces, as in Figure 9.48. The lower surface is fixed in position, and the top surface moves to the right with a velocity \vec{V} under the action of an external force \vec{F}. Because of this motion, a portion of the liquid is distorted from its original shape, $ABCD$, at one instant to the shape $AEFD$ a moment later. The force required to move the upper plate and distort the liquid is proportional to both the area A in contact with the fluid and the speed v of the fluid. Further, the force is
inversely proportional to the distance \(d \) between the two plates. We can express these proportionalities as \(F \propto Av/d \). The force required to move the upper plate at a fixed speed \(v \) is therefore

\[
F = \frac{\eta Av}{d} \tag{9.23}
\]

where \(\eta \) (the lowercase Greek letter \(\eta \)) is the coefficient of viscosity of the fluid.

The SI units of viscosity are \(\text{N} \cdot \text{s}/\text{m}^2 \). The units of viscosity in many reference sources are often expressed in dyne \(\cdot \text{s}/\text{cm}^2 \), called 1 poise, in honor of the French scientist J. L. Poiseuille (1799–1869). The relationship between the SI unit of viscosity and the poise is

\[
1 \text{ poise} = 10^{-1} \text{ N} \cdot \text{s}/\text{m}^2 \tag{9.24}
\]

Small viscosities are often expressed in centipoise (cp), where 1 cp = \(10^{-2} \) poise. The coefficients of viscosity for some common substances are listed in Table 9.5.

Poiseuille’s Law

Figure 9.49 shows a section of a tube of length \(L \) and radius \(R \) containing a fluid under a pressure \(P_1 \) at the left end and a pressure \(P_2 \) at the right. Because of this pressure difference, the fluid flows through the tube. The rate of flow (volume per unit time) depends on the pressure difference \((P_1 - P_2) \), the dimensions of the tube, and the viscosity of the fluid. The result, known as Poiseuille’s law, is

\[
\text{Rate of flow} = \frac{\Delta V}{\Delta t} = \frac{\pi R^4 (P_1 - P_2)}{8 \eta L} \tag{9.25}
\]

where \(\eta \) is the coefficient of viscosity of the fluid. We won’t attempt to derive this equation here because the methods of integral calculus are required. However, it is reasonable that the rate of flow should increase if the pressure difference across the tube or the tube radius increases. Likewise, the flow rate should decrease if the viscosity of the fluid or the length of the tube increases. So the presence of \(R \) and the pressure difference in the numerator of Equation 9.25 and of \(L \) and \(\eta \) in the denominator make sense.

From Poiseuille’s law, we see that in order to maintain a constant flow rate, the pressure difference across the tube has to increase if the viscosity of the fluid increases. This fact is important in understanding the flow of blood through the circulatory system. The viscosity of blood increases as the number of red blood cells rises. Blood with a high concentration of red blood cells requires greater pumping pressure from the heart to keep it circulating than does blood of lower red blood cell concentration.

Note that the flow rate varies as the radius of the tube raised to the fourth power. Consequently, if a constriction occurs in a vein or artery, the heart will have to work considerably harder in order to produce a higher pressure drop and hence maintain the required flow rate.

<table>
<thead>
<tr>
<th>Fluid</th>
<th>(T) (°C)</th>
<th>Viscosity (\eta) (\text{N} \cdot \text{s}/\text{m}^2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water</td>
<td>20</td>
<td>(1.0 \times 10^{-3})</td>
</tr>
<tr>
<td>Water</td>
<td>100</td>
<td>(0.3 \times 10^{-3})</td>
</tr>
<tr>
<td>Whole blood</td>
<td>37</td>
<td>(2.7 \times 10^{-3})</td>
</tr>
<tr>
<td>Glycerin</td>
<td>20</td>
<td>(1500 \times 10^{-3})</td>
</tr>
<tr>
<td>10-wt motor oil</td>
<td>30</td>
<td>(250 \times 10^{-3})</td>
</tr>
</tbody>
</table>
EXAMPLE 9.18 A Blood Transfusion

Goal Apply Poiseuille’s law.

Problem A patient receives a blood transfusion through a needle of radius 0.20 mm and length 2.0 cm. The density of blood is 1 050 kg/m³. The bottle supplying the blood is 0.50 m above the patient’s arm. What is the rate of flow through the needle?

Strategy Find the pressure difference between the level of the blood and the patient’s arm. Substitute into Poiseuille’s law, using the value for the viscosity of whole blood in Table 9.5.

Solution

Calculate the pressure difference:

\[
P_1 - P_2 = \rho gh = (1 050 \text{ kg/m}^3)(9.80 \text{ m/s}^2)(0.50 \text{ m}) = 5.15 \times 10^3 \text{ Pa}
\]

Substitute into Poiseuille’s law:

\[
\frac{\Delta V}{\Delta t} = \frac{\pi R^4(P_1 - P_2)}{8\eta L}
\]

\[
= \frac{\pi (2.0 \times 10^{-4} \text{ m})^4(5.15 \times 10^3 \text{ Pa})}{8(2.7 \times 10^{-3} \text{ N} \cdot \text{s/m}^2)(2.0 \times 10^{-2} \text{ m})}
\]

\[
= 6.0 \times 10^{-8} \text{ m}^3/\text{s}
\]

Remarks Compare this to the volume flow rate in the absence of any viscosity. Using Bernoulli’s equation, the calculated volume flow rate is approximately five times as great. As expected, viscosity greatly reduces flow rate.

QUESTION 9.18

If the radius of a tube is doubled, by what factor will the flow rate change for a viscous fluid?

EXERCISE 9.18

A pipe carrying water from a tank 20.0 m tall must cross 3.00 × 10² km of wilderness to reach a remote town. Find the radius of pipe so that the volume flow rate is at least 0.050 0 m³/s. (Use the viscosity of water at 20°C.)

Answer 0.118 m

Reynolds Number

At sufficiently high velocities, fluid flow changes from simple streamline flow to turbulent flow, characterized by a highly irregular motion of the fluid. Experimentally, the onset of turbulence in a tube is determined by a dimensionless factor called the **Reynolds number**, RN, given by

\[
RN = \frac{\rho v d}{\eta}
\] \[9.26\]

where \(\rho\) is the density of the fluid, \(v\) is the average speed of the fluid along the direction of flow, \(d\) is the diameter of the tube, and \(\eta\) is the viscosity of the fluid. If \(RN\) is below about 2 000, the flow of fluid through a tube is streamline; turbulence occurs if \(RN\) is above 3 000. In the region between 2 000 and 3 000, the flow is unstable, meaning that the fluid can move in streamline flow, but any small disturbance will cause its motion to change to turbulent flow.

EXAMPLE 9.19 Turbulent Flow of Blood

Goal Use the Reynolds number to determine a speed associated with the onset of turbulence.

Problem Determine the speed at which blood flowing through an artery of diameter 0.20 cm will become turbulent.

Strategy The solution requires only the substitution of values into Equation 9.26 giving the Reynolds number and then solving it for the speed \(v\).
When a fluid flows through a tube, the basic mechanism that produces the flow is a difference in pressure across the ends of the tube. This pressure difference is responsible for the transport of a mass of fluid from one location to another. The fluid may also move from place to place because of a second mechanism—one that depends on a difference in concentration between two points in the fluid, as opposed to a pressure difference. When the concentration (the number of molecules per unit volume) is higher at one location than at another, molecules will flow from the point where the concentration is high to the point where it is lower. The two fundamental processes involved in fluid transport resulting from concentration differences are called diffusion and osmosis.

Diffusion

In a diffusion process, molecules move from a region where their concentration is high to a region where their concentration is lower. To understand why diffusion occurs, consider Figure 9.50, which depicts a container in which a high concentration of molecules has been introduced into the left side. The dashed line in the figure represents an imaginary barrier separating the two regions. Because the molecules are moving with high speeds in random directions, many of them will cross the imaginary barrier moving from left to right. Very few molecules will pass through moving from right to left, simply because there are very few of them on the right side of the container at any instant. As a result, there will always be a net movement from the region with many molecules to the region with fewer molecules. For this reason, the concentration on the left side of the container will decrease, and that on the right side will increase with time. Once a concentration equilibrium has been reached, there will be no net movement across the cross-sectional area: The rate of movement of molecules from left to right will equal the rate from right to left.

The basic equation for diffusion is **Fick’s law**,

$$ \text{Diffusion rate} = \frac{\text{mass}}{\text{time}} = \frac{\Delta M}{\Delta t} = DA\left(\frac{C_2 - C_1}{L}\right) \quad [9.27] $$

where D is a constant of proportionality. The left side of this equation is called the *diffusion rate* and is a measure of the mass being transported per unit time. The equation says that the rate of diffusion is proportional to the cross-sectional area A and to the change in concentration per unit distance, $(C_2 - C_1)/L$, which is called...
the concentration gradient. The concentrations C_1 and C_2 are measured in kilograms per cubic meter. The proportionality constant D is called the diffusion coefficient and has units of square meters per second. Table 9.6 lists diffusion coefficients for a few substances.

The Size of Cells and Osmosis

Diffusion through cell membranes is vital in carrying oxygen to the cells of the body and in removing carbon dioxide and other waste products from them. Cells require oxygen for those metabolic processes in which substances are either synthesized or broken down. In such processes, the cell uses up oxygen and produces carbon dioxide as a by-product. A fresh supply of oxygen diffuses from the blood, where its concentration is high, into the cell, where its concentration is low. Likewise, carbon dioxide diffuses from the cell into the blood, where it is in lower concentration.

Water, ions, and other nutrients also pass into and out of cells by diffusion. A cell can function properly only if it can transport nutrients and waste products rapidly across the cell membrane. The surface area of the cell should be large enough so that the exposed membrane area can exchange materials effectively while the volume should be small enough so that materials can reach or leave particular locations rapidly. This requires a large surface-area-to-volume ratio.

Model a cell as a cube, each side with length L. The total surface area is $6L^2$ and the volume is L^3. The surface area to volume is then

$$\frac{\text{surface area}}{\text{volume}} = \frac{6L^2}{L^3} = \frac{6}{L}.$$

Because L is in the denominator, a smaller L means a larger ratio. This shows that the smaller the size of a body, the more efficiently it can transport nutrients and waste products across the cell membrane. Cells range in size from a millionth of a meter to several millionths, so a good estimate of a typical cell's surface-to-volume ratio is 10^6.

The diffusion of material through a membrane is partially determined by the size of the pores (holes) in the membrane wall. Small molecules, such as water, may pass through the pores easily, while larger molecules, such as sugar, may pass through only with difficulty or not at all. A membrane that allows passage of some molecules but not others is called a selectively permeable membrane.

Osmosis is the diffusion of water across a selectively permeable membrane from a high water concentration to a low water concentration. As in the case of diffusion, osmosis continues until the concentrations on the two sides of the membrane are equal.

To understand the effect of osmosis on living cells, consider a particular cell in the body that contains a sugar concentration of 1%. (A 1% solution is 1 g of sugar dissolved in enough water to make 100 ml of solution; “ml” is the abbreviation for milliliters, so $10^{-3} \text{ L} = 1 \text{ cm}^3$.) Assume this cell is immersed in a 5% sugar solution (5 g of sugar dissolved in enough water to make 100 ml). Compared to the 1% solution, there are five times as many sugar molecules per unit volume in the 5% sugar solution, so there must be fewer water molecules. Accordingly, water will diffuse from inside the cell, where its concentration is higher, across the cell membrane to the outside solution, where the concentration of water is lower. This loss of water from the cell would cause it to shrink and perhaps become damaged through dehydration. If the concentrations were reversed, water would diffuse into the cell, causing it to swell and perhaps burst. If solutions are introduced into the body intravenously, care must be taken to ensure that they don’t disturb the osmotic balance of the body, else cell damage can occur. For example, if a 9% saline solution surrounds a red blood cell, the cell will shrink. By contrast, if the solution is about 1%, the cell will eventually burst.

In the body, blood is cleansed of impurities by osmosis as it flows through the kidneys. (See Fig. 9.51a.) Arterial blood first passes through a bundle of capillaries

Table 9.6
Diffusion Coefficients of Various Substances at 20°C

<table>
<thead>
<tr>
<th>Substance</th>
<th>D (m²/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oxygen through air</td>
<td>6.4×10^{-5}</td>
</tr>
<tr>
<td>Oxygen through tissue</td>
<td>1×10^{-11}</td>
</tr>
<tr>
<td>Oxygen through water</td>
<td>1×10^{-9}</td>
</tr>
<tr>
<td>Sucrose through water</td>
<td>5×10^{-10}</td>
</tr>
<tr>
<td>Hemoglobin through water</td>
<td>76×10^{-11}</td>
</tr>
</tbody>
</table>
known as a glomerulus, where most of the waste products and some essential salts and minerals are removed. From the glomerulus, a narrow tube emerges that is in intimate contact with other capillaries throughout its length. As blood passes through the tubules, most of the essential elements are returned to it; waste products are not allowed to reenter and are eventually removed in urine.

If the kidneys fail, an artificial kidney or a dialysis machine can filter the blood. Figure 9.51b shows how this is done. Blood from an artery in the arm is mixed with heparin, a blood thinner, and allowed to pass through a tube covered with a semi-permeable membrane. The tubing is immersed in a bath of a dialysate fluid with the same chemical composition as purified blood. Waste products from the blood enter the dialysate by diffusion through the membrane. The filtered blood is then returned to a vein.

Motion through a Viscous Medium

When an object falls through air, its motion is impeded by the force of air resistance. In general, this force is dependent on the shape of the falling object and on its velocity. The force of air resistance acts on all falling objects, but the exact details of the motion can be calculated only for a few cases in which the object has a simple shape, such as a sphere. In this section we will examine the motion of a tiny spherical object falling slowly through a viscous medium.

In 1845 a scientist named George Stokes found that the magnitude of the resistive force on a very small spherical object of radius r falling slowly through a fluid of viscosity η with speed v is given by

$$F_r = 6\pi \eta rv$$ \[9.28\]

This equation, called Stokes's law, has many important applications. For example, it describes the sedimentation of particulate matter in blood samples. It was used by Robert Millikan (1886–1953) to calculate the radius of charged oil droplets falling through air. From this, Millikan was ultimately able to determine the charge on the electron, and was awarded the Nobel prize in 1923 for his pioneering work on elemental charges.

As a sphere falls through a viscous medium, three forces act on it, as shown in Figure 9.52: F_r, the force of friction; B, the buoyant force of the fluid; and w, the force of gravity acting on the sphere. The magnitude of w is given by

$$w = \rho g V = \rho g \left(\frac{4}{3} \pi r^3\right)$$

APPLICATION

Kidney Function and Dialysis

![Diagram of a single nephron in the human excretory system.](a) (b) An artificial kidney.
where \(\rho \) is the density of the sphere and \(\frac{4}{3} \pi r^3 \) is its volume. According to Archimedes’s principle, the magnitude of the buoyant force is equal to the weight of the fluid displaced by the sphere,

\[
B = \rho_f g V = \rho_f g \left(\frac{4}{3} \pi r^3 \right)
\]

where \(\rho_f \) is the density of the fluid.

At the instant the sphere begins to fall, the force of friction is zero because the speed of the sphere is zero. As the sphere accelerates, its speed increases and so does \(\mathbf{F}_r \). Finally, at a speed called the terminal speed \(v_t \), the net force goes to zero. This occurs when the net upward force balances the downward force of gravity. Therefore, the sphere reaches terminal speed when

\[
F_r + B = w
\]

or

\[
6\pi \eta rv_t + \rho_f g \left(\frac{4}{3} \pi r^3 \right) = \rho_f g \left(\frac{4}{3} \pi r^3 \right)
\]

When this equation is solved for \(v_t \), we get

\[
v_t = \frac{2r^2g}{9\eta} (\rho - \rho_f) \quad [9.29]
\]

Sedimentation and Centrifugation

If an object isn’t spherical, we can still use the basic approach just described to determine its terminal speed. The only difference is that we can’t use Stokes’s law for the resistive force. Instead, we assume that the resistive force has a magnitude given by \(F_r = kv \), where \(k \) is a coefficient that must be determined experimentally. As discussed previously, the object reaches its terminal speed when the downward force of gravity is balanced by the net upward force, or

\[
w = B + F_r \quad [9.30]
\]

where \(B = \rho_f g V \) is the buoyant force. The volume \(V \) of the displaced fluid is related to the density \(\rho \) of the falling object by \(V = m/\rho \). Hence, we can express the buoyant force as

\[
B = \frac{\rho_f}{\rho} mg
\]

We substitute this expression for \(B \) and \(F_r = kv \) into Equation 9.30 (terminal speed condition):

\[
mg = \frac{\rho_f}{\rho} mg + kv,
\]

or

\[
v_t = \frac{mg}{k} \left(1 - \frac{\rho_f}{\rho} \right) \quad [9.31]
\]

The terminal speed for particles in biological samples is usually quite small. For example, the terminal speed for blood cells falling through plasma is about 5 cm/h in the gravitational field of the Earth. The terminal speeds for the molecules that make up a cell are many orders of magnitude smaller than this because of their much smaller mass. The speed at which materials fall through a fluid is called the sedimentation rate and is important in clinical analysis.

The sedimentation rate in a fluid can be increased by increasing the effective acceleration \(g \) that appears in Equation 9.31. A fluid containing various biologi-
cal molecules is placed in a centrifuge and whirled at very high angular speeds (Fig. 9.53). Under these conditions, the particles gain a large radial acceleration
\[a_r = \frac{v^2}{r} = \frac{\omega^2 r}{k} \]
that is much greater than the free-fall acceleration, so we can replace \(g \) in Equation 9.31 by \(\frac{v^2}{r} \) and obtain
\[v_f = \frac{m \omega^2 r}{k} \left(1 - \frac{\rho}{\rho_f} \right) \]
\[[9.32] \]
This equation indicates that the sedimentation rate is enormously speeded up in a centrifuge (\(\omega r \gg g \)) and that those particles with the greatest mass will have the largest terminal speed. Consequently the most massive particles will settle out on the bottom of a test tube first.

Summary

9.1 States of Matter
Matter is normally classified as being in one of three states: solid, liquid, or gaseous. The fourth state of matter is called a plasma, which consists of a neutral system of charged particles interacting electromagnetically.

9.2 The Deformation of Solids
The elastic properties of a solid can be described using the concepts of stress and strain. **Stress** is related to the force per unit area producing a deformation; **strain** is a measure of the amount of deformation. Stress is proportional to strain, and the constant of proportionality is the **elastic modulus**:
\[\text{Stress} = \text{elastic modulus} \times \text{strain} \]
\[[9.1] \]
Three common types of deformation are (1) the resistance of a solid to elongation or compression, characterized by **Young's modulus** \(Y \); (2) the resistance to displacement of the faces of a solid sliding past each other, characterized by the shear modulus \(S \); and (3) the resistance of a solid or liquid to a change in volume, characterized by the bulk modulus \(B \).
All three types of deformation obey laws similar to Hooke's law for springs. Solving problems is usually a matter of identifying the given physical variables and solving for the unknown variable.

9.3 Density and Pressure
The **density** \(\rho \) of a substance of uniform composition is its mass per unit volume—kilograms per cubic meter (kg/m³) in the SI system:
\[\rho = \frac{M}{V} \]
\[[9.6] \]
The **pressure** \(P \) in a fluid, measured in pascals (Pa), is the force per unit area that the fluid exerts on an object immersed in it:
\[P = \frac{F}{A} \]
\[[9.7] \]

9.4 Variation of Pressure with Depth
The pressure in an incompressible fluid varies with depth \(h \) according to the expression
\[P = P_0 + \rho gh \]
\[[9.11] \]
where \(P_0 \) is atmospheric pressure (1.013 × 10⁵ Pa) and \(\rho \) is the density of the fluid.
Pascal's principle states that when pressure is applied to an enclosed fluid, the pressure is transmitted undiminished to every point of the fluid and to the walls of the containing vessel.

9.6 Buoyant Forces and Archimedes' Principle
When an object is partially or fully submerged in a fluid, the fluid exerts an upward force, called the **buoyant force**, on the object. This force is, in fact, just the net difference in pressure between the top and bottom of the object. It can be shown that the magnitude of the buoyant force \(B \) is equal to the weight of the fluid displaced by the object, or
\[B = \rho_{\text{fluid}} V_{\text{fluid}} g \]
\[[9.12b] \]
Equation 9.12b is known as **Archimedes' principle**.
Solving a buoyancy problem usually involves putting the buoyant force into Newton's second law and then proceeding as in Chapter 4.

9.7 Fluids in Motion
Certain aspects of a fluid in motion can be understood by assuming the fluid is nonviscous and incompressible and that its motion is in a steady state with no turbulence:
1. The flow rate through the pipe is a constant, which is equivalent to stating that the product of the cross-sectional area \(A \) and the speed \(v \) at any point is constant. At any two points, therefore, we have
\[A_1 v_1 = A_2 v_2 \]
\[[9.15] \]
This relation is referred to as the **equation of continuity**.
2. The sum of the pressure, the kinetic energy per unit volume, and the potential energy per unit volume is the same at any two points along a streamline:

\[P_1 + \frac{1}{2} \rho v_1^2 + \rho g y_1 = P_2 + \frac{1}{2} \rho v_2^2 + \rho g y_2 \]

Equation 9.16 is known as Bernoulli's equation. Solving problems with Bernoulli's equation is similar to solving problems with the work–energy theorem, whereby two points are chosen, one point where a quantity is unknown and another where all quantities are known. Equation 9.16 is then solved for the unknown quantity.

MULTIPLE-CHOICE QUESTIONS

1. What is the mass of a solid gold rectangular bar that has dimensions of 4.50 cm × 11.0 cm × 26.0 cm? (a) 24.8 kg (b) 45.6 kg (c) 11.4 kg (d) 33.2 kg (e) 19.5 kg

2. A 66.0-kg man lies on his back on a bed of nails, with 1,208 of the nails in contact with his body. The end of each nail has area 1.00 \times 10^{-6} \text{ m}^2. What average pressure is exerted by one nail on the man's body? (a) 2.21 \times 10^4 \text{ Pa} (b) 3.99 \times 10^3 \text{ Pa} (c) 1.65 \times 10^4 \text{ Pa} (d) 5.35 \times 10^3 \text{ Pa} (e) 4.11 \times 10^4 \text{ Pa}

3. A hydraulic jack has an input piston of area 0.050 m\(^2\) and an output piston of area 0.70 m\(^2\). How much force on the input piston is required to lift a car weighing 1.2 \times 10^5 \text{ N}? (a) 42 N (b) 68 N (c) 86 N (d) 110 N (e) 130 N

4. A lead bullet is placed in a pool of mercury. What fractional part of the volume of the bullet is submerged? (a) 0.455 (b) 0.622 (c) 0.714 (d) 0.831 (e) 0.930

5. What is the pressure at the bottom of Loch Ness, which is as much as 754 ft deep? (The surface of the lake is only 15.8 m above sea level; hence, the pressure there can be taken to be 1.013 \times 10^5 \text{ Pa}.) (a) 1.52 \times 10^5 \text{ Pa} (b) 2.74 \times 10^5 \text{ Pa} (c) 3.35 \times 10^5 \text{ Pa} (d) 7.01 \times 10^5 \text{ Pa} (e) 3.15 \times 10^5 \text{ Pa}

6. Hurricane winds of 95 mi/h are blowing over the flat roof of a well-sealed house. What is the difference in air pressure between the inside and outside of the house? (a) 1.2 \times 10^3 \text{ Pa} (b) 2.4 \times 10^3 \text{ Pa} (c) 3.4 \times 10^3 \text{ Pa} (d) 4.0 \times 10^3 \text{ Pa} (e) 5.3 \times 10^3 \text{ Pa}

7. A horizontal pipe narrows from a radius of 0.250 m to 0.100 m. If the speed of the water in the pipe is 1.00 m/s in the larger-radius pipe, what is the speed in the smaller pipe? (a) 4.50 m/s (b) 2.50 m/s (c) 3.75 m/s (d) 6.25 m/s (e) 5.13 m/s

8. Bernoulli's equation can be used to explain, in part, which of the following phenomena? (a) the lift on an airplane wing in flight (b) the curve of a spinning baseball (c) vascular flutter (d) reduction in pressure of moving fluids (e) all these answers

9. A boat develops a leak and, after its passengers are rescued, eventually sinks to the bottom of a lake. When the boat is at the bottom, is the normal force on the boat (a) greater than the weight of the boat, (b) equal to the weight of the boat, (c) less than the weight of the boat, (d) equal to the weight of the displaced water, or (e) equal to the buoyant force on the boat?

10. Three vessels of different shapes are filled to the same level with water as in Figure MCQ9.10. The area of the base is the same for all three vessels. Which of the following statements is valid? (a) The pressure at the top surface of vessel A is greatest because it has the largest surface area. (b) The pressure at the bottom of vessel A is greatest because it contains the most water. (c) The pressure at the bottom of each vessel is the same. (d) The force on the bottom of each vessel is not the same. (e) At a given depth below the surface of each vessel, the pressure on the side of vessel A is greatest because of its slope.

11. An ideal fluid flows through a horizontal pipe having a diameter that varies along its length. Does the sum of the pressure and kinetic energy per unit volume at different sections of the pipe (a) decrease as the pipe diameter increases, (b) increase as the pipe diameter increases, (c) increase as the pipe diameter decreases, (d) decrease as the pipe diameter decreases, or (e) remain the same as the pipe diameter changes?

12. A hose is pointed straight up, with water flowing from it at a steady volume flow rate and reaching a maximum height of \(h \). Neglecting air resistance, which of the following adjustments to the nozzle will result in the water reaching a height of \(4h \)? (a) Decrease the area of the opening by a factor of 16. (b) Decrease the area by a factor of 8. (c) Decrease the area by a factor of 4. (d) Decrease the area by a factor of 2. (e) Give up because the water cannot reach a height of \(4h \).
CONCEPTUAL QUESTIONS

1. Why do baseball home run hitters like to play in Denver, but curveball pitchers do not?

2. The density of air is 1.3 kg/m³ at sea level. From your knowledge of air pressure at ground level, estimate the height of the atmosphere. As a simplifying assumption, take the atmosphere to be of uniform density up to some height, after which the density rapidly falls to zero. (In reality, the density of the atmosphere decreases as we go up.) (This question is courtesy of Edward F. Redish. For more questions of this type, see http://www.physics.umd.edu/perg/.)

3. A woman wearing high-heeled shoes is invited into a home in which the kitchen has vinyl floor covering. Why should the homeowner be concerned?

4. Figure CQ9.4 shows aerial views from directly above two dams. Both dams are equally long (the vertical dimension in the diagram) and equally deep (into the page in the diagram). The dam on the left holds back a very large lake, while the dam on the right holds back a narrow river. Which dam has to be built more strongly?

5. A typical silo on a farm has many bands wrapped around its perimeter, as shown in Figure CQ9.5. Why is the spacing between successive bands smaller at the lower portions of the silo?

6. During inhalation, the pressure in the lungs is slightly less than external pressure and the muscles controlling exhalation are relaxed. Under water, the body equalizes internal and external pressures. Discuss the condition of the muscles if a person under water is breathing through a snorkel. Would a snorkel work in deep water?

7. Suppose a damaged ship just barely floats in the ocean after a hole in its hull has been sealed. It is pulled by a tugboat toward shore and into a river, heading toward a dry dock for repair. As the boat is pulled up the river, it sinks. Why?

8. Many people believe that a vacuum created inside a vacuum cleaner causes particles of dirt to be drawn in. Actually, the dirt is pushed in. Explain.

9. A pound of Styrofoam and a pound of lead have the same weight. If they are placed on a sensitive equal-arm balance, will the scales balance?

10. An ice cube is placed in a glass of water. What happens to the level of the water as the ice melts?

11. Place two cans of soft drinks, one regular and one diet, in a container of water. You will find that the diet drink floats while the regular one sinks. Use Archimedes’ principle to devise an explanation. Broad Hint: The artificial sweetener used in diet drinks is less dense than sugar.

12. Will an ice cube float higher in water or in an alcoholic beverage?

13. Tornadoes and hurricanes often lift the roofs of houses. Use the Bernoulli effect to explain why. Why should you keep your windows open under these conditions?

14. Prairie dogs live in underground burrows with at least two entrances. They ventilate their burrows by building a mound over one entrance, as shown in Figure CQ9.14. This entrance is open to a stream of air when a breeze blows from any direction. A second entrance at ground level is open to almost stagnant air. How does this construction create an airflow through the burrow?
1. If the elastic limit of steel is 5.0×10^4 Pa, determine the minimum diameter a steel wire can have if it is to support a 70-kg circus performer without its elastic limit being exceeded.

2. Comic-book superheroes are sometimes able to punch holes through steel walls. (a) If the ultimate shear strength of steel is taken to be 2.50×10^8 Pa, what force is required to punch through a steel plate 2.00 cm thick? Assume the superhero’s fist has cross-sectional area of 1.00 $\times 10^2$ cm2 and is approximately circular. (b) Qualitatively, what would happen to the superhero on delivery of the punch? What physical law applies?

3. A plank 2.00 cm thick and 15.0 cm wide is firmly attached to the railing of a ship by clamps so that the rest of the board extends 2.00 m horizontally over the sea below. A man of mass 80.0 kg is forced to stand on the very end. If the end of the board drops by 5.00 cm because of the man’s weight, find the shear modulus of the wood.

4. When water freezes, it expands about 9.00%. What would be the pressure increase inside your automobile engine block if the water in it froze? The bulk modulus of ice is 2.00×10^9 N/m2.

5. For safety in climbing, a mountaineer uses a nylon rope that is 50 m long and 1.0 cm in diameter. When supporting a 90-kg climber, the rope elongates 1.6 m. Find its Young’s modulus.

6. A stainless-steel orthodontic wire is applied to a tooth, as in Figure P9.6. The wire has an unstretched length of 3.1 cm and a diameter of 0.22 mm. If the wire is stretched 0.10 mm, find the magnitude and direction of the force on the tooth. Disregard the width of the tooth and assume Young’s modulus for stainless steel is 18×10^6 Pa.

7. Bone has a Young’s modulus of about 18×10^9 Pa. Under compression, it can withstand a stress of about 160×10^6 Pa before breaking. Assume that a femur (thigh-bone) is 0.50 m long, and calculate the amount of compression this bone can withstand before breaking.

8. A high-speed lifting mechanism supports an 800-kg object with a steel cable that is 25.0 m long and 4.00 cm2 in cross-sectional area. (a) Determine the elongation of the cable. (b) By what additional amount does the cable increase in length if the object is accelerated upwards at a rate of 3.0 m/s^2? (c) What is the greatest mass that can be accelerated upwards at 3.0 m/s^2 if the stress in the cable is not to exceed the elastic limit of the cable, which is 2.2×10^8 Pa?

9. A child slides across a floor in a pair of rubber-soled shoes. The friction force acting on each foot is 20 N, the footprint area of each foot is 14 cm2, and the thickness of the soles is 5.0 mm. Find the horizontal distance traveled by the sheared face of the sole. The shear modulus of the rubber is 3.0×10^9 Pa.

10. The distortion of Earth’s crustal plates is an example of shear on a large scale. A particular crustal rock has a shear modulus of 1.5×10^{10} Pa. What shear stress is involved when a 10-km layer of this rock is sheared through a distance of 5.0 m?

11. Determine the elongation of the rod in Figure P9.11 if it is under a tension of 5.8×10^3 N.

12. The total cross-sectional area of the load-bearing calcified portion of the two forearm bones (radius and ulna) is approximately 2.4 cm2. During a car crash, the forearm is slammed against the dashboard. The arm comes to rest from an initial speed of 80 km/h in 5.0 ms. If the arm has an effective mass of 3.0 kg and bone material can withstand a maximum compressional stress of 16×10^3 Pa, is the arm likely to withstand the crash?

13. Suppose two worlds, each having mass M and radius R, coalesce into a single world. Due to gravitational contraction, the combined world has a radius of only $\frac{R}{2}$. What is the average density of the combined world as a multiple of ρ_0, the average density of the original two worlds?

14. The British gold sovereign coin is an alloy of gold and copper having a total mass of 7.988 g, and is 22-karat gold. (a) Find the mass of gold in the sovereign in kilograms using the fact that the number of karats $= \frac{24 \times (mass \ of \ gold)}{(total \ mass)}$. (b) Calculate the volumes of gold and copper, respectively, used to manufacture the coin. (c) Calculate the density of the British sovereign coin.
15. Four acrobats of mass 75.0 kg, 68.0 kg, 62.0 kg, and 55.0 kg form a human tower, with each acrobat standing on the shoulders of another acrobat. The 75.0-kg acrobat is at the bottom of the tower. (a) What is the normal force acting on the 75-kg acrobat? (b) If the area of each of the 75.0-kg acrobat's shoes is 425 cm², what average pressure (not including atmospheric pressure) does the column of acrobats exert on the floor? (c) Will the pressure be the same if a different acrobat is on the bottom?

16. A large man sits on a four-legged chair with his feet off the floor. The combined mass of the man and chair is 95.0 kg. If the chair legs are circular and have a radius of 0.500 cm at the bottom, what pressure does each leg exert on the floor?

17. The nucleus of an atom can be modeled as several protons and neutrons closely packed together. Each particle has a mass of 1.67×10^{-27} kg and radius on the order of 10^{-15} m. (a) Use this model and information to estimate the density of the nucleus of an atom. (b) Compare your result with the density of a material such as iron. What do your result and comparison suggest about the structure of matter?

18. The four tires of an automobile are inflated to a gauge pressure of 2.0×10^5 Pa. Each tire has an area of 0.024 m² in contact with the ground. Determine the weight of the automobile.

19. If 1.0 m³ of concrete weighs 5.0×10^4 N, what is the height of the tallest cylindrical concrete pillar that will not collapse under its own weight? The compression strength of concrete (the maximum pressure that can be exerted on the base of the structure) is 1.7×10^7 Pa.

SECTION 9.4 VARIATION OF PRESSURE WITH DEPTH

SECTION 9.5 PRESSURE MEASUREMENTS

20. The spring of the pressure gauge shown in Figure 9.8b has a force constant of 1 250 N/m, and the piston has a radius of 1.20 cm. As the gauge is lowered into water, what change in depth causes the piston to move in by 0.750 cm?

21. Calculate the absolute pressure at the bottom of a freshwater lake at a depth of 27.5 m. Assume the density of the water is 1.00×10^3 kg/m³ and the air above is at a pressure of 101.3 kPa. (b) What force is exerted by the water on the window of an underwater vehicle at this depth if the window is circular and has a diameter of 35.0 cm?

22. When you suddenly stand up after lying down for a while, your body may not compensate quickly enough for the pressure changes and you might feel dizzy for a moment. If the gauge pressure of the blood at your heart is 13.3 kPa and your body doesn’t compensate, (a) what would the pressure be at your head, 50.0 cm above your heart? (b) What would it be at your feet, 1.30 \times 10² cm below your heart? Hint: The density of blood is 1 060 kg/m³.

23. A collapsible plastic bag (Figure P9.23) contains a glucose solution. If the average gauge pressure in the vein is 1.33×10^3 Pa, what must be the minimum height h of the bag in order to infuse glucose into the vein? Assume the specific gravity of the solution is 1.02.

24. The deepest point in the ocean is in the Mariana Trench, about 11 km deep. The pressure at the ocean floor is huge, about 1.13×10^8 N/m². (a) Calculate the change in volume of 1.00 m³ of water carried from the surface to the bottom of the Pacific. (b) The density of water at the surface is 1.03 \times 10³ kg/m³. Find its density at the bottom. (c) Is it a good approximation to think of water as incompressible?

25. A container is filled to a depth of 20.0 cm with water. On top of the water floats a 30.0-cm-thick layer of oil with specific gravity 0.700. What is the absolute pressure at the bottom of the container?

26. Blaise Pascal duplicated Torricelli’s barometer using a red Bordeaux wine of density 984 kg/m³ as the working liquid (Fig. P9.26). What was the height h of the wine column for normal atmospheric pressure? Would you expect the vacuum above the column to be as good as for mercury?

27. Figure P9.27 shows the essential parts of a hydraulic brake system. The area of the piston in the master cylinder is 1.8 cm² and that of the piston in the brake cylinder is 6.4 cm². The coefficient of friction between shoe and
A large balloon of mass 226 kg is filled with helium gas until its volume is 325 m³. Assume the density of air is 1.29 kg/m³ and the density of helium is 0.179 kg/m³.

28. Piston 1 in Figure P9.28 has a diameter of 0.25 in.; piston 2 has a diameter of 1.5 in. In the absence of friction, determine the force \(F \) necessary to support the 500 lb weight.

![Figure P9.28](image)

SECTION 9.6 BUOYANT FORCES AND ARCHIMEDES’ PRINCIPLE

29. A rubber ball filled with air has a diameter of 25.0 cm and a mass of 0.340 kg. What force is required to hold the ball in equilibrium immediately below the surface of water in a swimming pool?

30. The average human has a density of 945 kg/m³ after breathing out and 1.025 kg/m³ after exhaling. (a) Make an estimate of the volume of a man if he is swimming in the Dead Sea (a lake with a water density of about 1230 kg/m³). (b) Given that bone and muscle are denser than fat, what physical characteristics differentiate “sinkers” (those who tend to sink in water) from “floaters” (those who readily float)?

31. A small ferryboat is 4.00 m wide and 6.00 m long. When a loaded truck pulls onto it, the boat sinks an additional 4.00 cm into the river. What is the weight of the truck?

32. A 62.0-kg survivor of a cruise line disaster rests atop a block of Styrofoam insulation, using it as a raft. The Styrofoam has dimensions 2.00 m × 2.00 m × 0.090 0 m. The bottom 0.024 m of the raft is submerged. (a) Draw a free-body diagram of the system consisting of the survivor and raft. (b) Write Newton’s second law for the system in one dimension, using \(F \) for buoyancy, \(w \) for the weight of the survivor, and \(w_r \) for the weight of the raft. (Set \(a = 0 \).) (c) Calculate the numeric value for the buoyancy, \(B \). (Sea-water has density 1.025 kg/m³.) (d) Using the value of \(B \) and the weight \(w \) of the survivor, calculate the weight \(w_r \) of the Styrofoam. (e) What is the density of the Styrofoam? (f) What is the maximum buoyant force, corresponding to the raft being submerged up to its top surface? (g) What total mass of survivors can the raft support?

33. A wooden block of volume 5.24 × 10⁻⁴ m³ floats in water, and a small steel object of mass \(m \) is placed on top of the block. When \(m = 0.310 \) kg, the system is in equilibrium and the top of the wooden block is at the level of the water. (a) What is the density of the wood? (b) What happens to the block when the steel object is replaced by a second steel object with a mass less than 0.310 kg? What happens to the block when the steel object is replaced by yet another steel object with a mass greater than 0.310 kg?

34. A large balloon of mass 226 kg is filled with helium gas until its volume is 325 m³. Assume the density of air is 1.29 kg/m³ and the density of helium is 0.179 kg/m³.

(a) Draw a free-body diagram for the balloon. (b) Calculate the buoyant force acting on the balloon. (c) Find the net force on the balloon and determine whether the balloon will rise or fall after it is released. (d) What maximum additional mass can the balloon support in equilibrium? (e) What happens to the balloon if the mass of the load is less than the value calculated in part (d)? (f) What limits the height to which the balloon can rise?

35. A spherical weather balloon is filled with hydrogen until its radius is 3.00 m. Its total mass including the instruments it carries is 15.0 kg. (a) Find the buoyant force acting on the balloon, assuming the density of air is 1.29 kg/m³. (b) What is the net force on the balloon and its instruments after the balloon is released from the ground? (c) Why does the radius of the balloon tend to increase as it rises to higher altitude?

36. A man of mass \(m = 70.0 \) kg and having a density of \(\rho = 1.050 \) kg/m³ (while holding his breath) is completely submerged in water. (a) Write Newton’s second law for this situation in terms of the man’s mass \(m \), the density of water \(\rho_w \), his volume \(V \), and \(g \). Neglect any viscous drag of the water. (b) Substitute \(m = \rho V \) into Newton’s second law and solve for the acceleration \(a \), canceling common factors. (c) Calculate the numeric value of the man’s acceleration. (d) How long does it take the man to sink 8.00 m to the bottom of the lake?

37. On October 21, 2001, Ian Ashpole of the United Kingdom achieved a record altitude of 3.35 km (11 000 ft) powered by 600 toy balloons filled with helium. Each filled balloon had a radius of about 0.50 m and an estimated mass of 0.30 kg. (a) Estimate the total buoyant force on the 600 balloons. (b) Estimate the net upward force on all 600 balloons. (c) Ashpole parachuted to Earth after the balloons began to burst at the high altitude and the system lost buoyancy. Why did the balloons burst?

38. A 10.0-kg block of metal is suspended from a scale and immersed in water, as in Figure P9.38. The dimensions of the block are 12.0 cm × 10.0 cm × 10.0 cm. The 12.0-cm dimension is vertical, and the top of the block is 5.00 cm below the surface of the water. (a) What are the forces exerted by the water on the top and bottom of the block? (Take \(P_0 = 1.013 \times 10^5 \) N/m².) (b) What is the reading of the spring scale? (c) Show that the buoyant force equals the difference between the forces at the top and bottom of the block.
39. A bathysphere used for deep sea exploration has a radius of 1.50 m and a mass of 1.20 \times 10^3 \text{ kg}. In order to dive, the sphere takes on mass in the form of sea water. Determine the mass the bathysphere must take on so that it can descend at a constant speed of 1.20 m/s when the resistive force on it is 1 \times 100 \text{ N} upward. The density of sea water is 1.03 \times 10^3 \text{ kg/m}^3.

40. A light spring of force constant \(k \) = 160 N/m rests vertically on the bottom of a large beaker of water (Fig. P9.40a). A 5.00-kg block of wood (density = 650 kg/m\(^3\)) is connected to the spring, and the block–spring system is allowed to come to static equilibrium (Fig. P9.40b). What is the elongation \(\Delta L \) of the spring?

![Figure P9.40](image)

41. A sample of an unknown material appears to weigh 300 N in air and 200 N when immersed in alcohol of specific gravity 0.700. What are (a) the volume and (b) the density of the material?

42. An object weighing 300 N in air is immersed in water after being tied to a string connected to a balance. The scale now reads 265 N. Immersed in oil, the object appears to weigh 275 N. Find (a) the density of the object and (b) the density of the oil.

43. A 1.00-kg beaker containing 2.00 kg of oil (density = 916 kg/m\(^3\)) rests on a scale. A 2.00-kg block of iron is suspended from a spring scale and is completely submerged in the oil (Fig. P9.43). Find the equilibrium readings of both scales.

![Figure P9.43](image)

SECTION 9.7 FLUIDS IN MOTION

SECTION 9.8 OTHER APPLICATIONS OF FLUID DYNAMICS

44. Water flowing through a garden hose of diameter 2.74 cm fills a 25.0-L bucket in 1.50 min. (a) What is the speed of the water leaving the end of the hose? (b) A nozzle is now attached to the end of the hose. If the nozzle diameter is one-third the diameter of the hose, what is the speed of the water leaving the nozzle?

45. (a) Calculate the mass flow rate (in grams per second) of blood (\(\rho = 1.0 \text{ g/cm}^3 \)) in an aorta with a cross-sectional area of 2.0 cm\(^2\) if the flow speed is 40 cm/s. (b) Assume that the aorta branches to form a large number of capillaries with a combined cross-sectional area of 3.0 \times 10^5 \text{ cm}^2. What is the flow speed in the capillaries?

46. A liquid (\(\rho = 1.65 \text{ g/cm}^3 \)) flows through two horizontal sections of tubing joined end to end. In the first section, the cross-sectional area is 10.0 cm\(^2\), the flow speed is 275 cm/s, and the pressure is 1.20 \times 10^3 \text{ Pa}. In the second section, the cross-sectional area is 2.50 cm\(^2\). Calculate the smaller section’s (a) flow speed and (b) pressure.

47. A hypodermic syringe contains a medicine with the density of water (Fig. P9.47). The barrel of the syringe has a cross-sectional area of 2.50 \times 10^{-5} \text{ m}^2. In the absence of a force on the plunger, the pressure everywhere is 1.00 atm. A force \(F \) of magnitude 2.00 N is exerted on the plunger, making medicine squirt from the needle. Determine the medicine’s flow speed through the needle. Assume the pressure in the needle remains equal to 1.00 atm and that the syringe is horizontal.

![Figure P9.47](image)

48. When a person inhales, air moves down the bronchus (windpipe) at 15 cm/s. The average flow speed of the air doubles through a constriction in the bronchus. Assuming incompressible flow, determine the pressure drop in the constriction.

49. A jet airplane in level flight has a mass of 8.66 \times 10^3 \text{ kg}, and the two wings have an estimated total area of 90.0 \text{ m}^2. (a) What is the pressure difference between the lower and upper surfaces of the wings? (b) If the speed of air under the wings is 225 m/s, what is the speed of the air over the wings? Assume air has a density of 1.29 kg/m\(^3\). (c) Explain why all aircraft have a “ceiling,” a maximum operational altitude.

50. An airplane has a mass \(M \), and the two wings have a total area \(A \). During level flight, the pressure on the lower wing surface is \(P_1 \). Determine the pressure \(P_2 \) on the upper wing surface.

51. In a water pistol, a piston drives water through a larger tube of radius 1.00 cm into a smaller tube of radius 1.00 mm as in Figure P9.51. (a) If the pistol is fired horizontally at a height of 1.50 m, use ballistics to determine the time it takes water to travel from the nozzle to the ground. (Neglect air resistance and assume atmospheric pressure is 1.00 atm.) (b) If the range of the stream is to be 8.00 m, with what speed must the stream leave the
nozzle? (c) Given the areas of the nozzle and cylinder, use the equation of continuity to calculate the speed at which the plunger must be moved. (d) What is the pressure at the nozzle? (e) Use Bernoulli’s equation to find the pressure needed in the larger cylinder. Can gravity terms be neglected? (f) Calculate the force that must be exerted on the trigger to achieve the desired range. (The force that must be exerted is due to pressure over and above atmospheric pressure.)

52. Water moves through a constricted pipe in steady, ideal flow. At the lower point shown in Figure 9.29, the pressure is 1.75 × 10^5 Pa and the pipe radius is 3.00 cm. At another point 2.50 m higher, the pressure is 1.20 × 10^5 Pa and the pipe radius is 1.50 cm. Find the speed of flow (a) in the lower section and (b) in the upper section. (c) Find the volume flow rate through the pipe.

53. A jet of water squirts out horizontally from a hole near the bottom of the tank shown in Figure P9.53. If the hole has a diameter of 3.50 mm, what is the height h of the water level in the tank?

54. A large storage tank, open to the atmosphere at the top and filled with water, develops a small hole in its side at a point 16.0 m below the water level. If the rate of flow from the leak is 2.50 × 10^{-3} m^3/min, determine (a) the speed at which the water leaves the hole and (b) the diameter of the hole.

55. The inside diameters of the larger portions of the horizontal pipe depicted in Figure P9.55 are 2.50 cm. Water flows to the right at a rate of 1.80 × 10^{-4} m^3/s. Determine the inside diameter of the constriction.

56. Water is pumped through a pipe of diameter 15.0 cm from the Colorado River up to Grand Canyon Village, on the rim of the canyon. The river is at 564 m elevation and the village is at 2,096 m. (a) At what minimum pressure must the water be pumped to arrive at the village? (b) If 4,500 m^3 are pumped per day, what is the speed of the water in the pipe? (c) What additional pressure is necessary to deliver this flow? Note: You may assume the free-fall acceleration and the density of air are constant over the given range of elevations.

57. Old Faithful geyser in Yellowstone Park erupts at approximately 1-hour intervals, and the height of the fountain reaches 40.0 m. (a) Consider the rising stream as a series of separate drops. Analyze the free-fall motion of one of the drops to determine the speed at which the water leaves the ground. (b) Treat the rising stream as an ideal fluid in streamline flow. Use Bernoulli’s equation to determine the speed of the water as it leaves ground level. (c) What is the pressure (above atmospheric pressure) in the heated underground chamber 175 m below the vent? You may assume the chamber is large compared with the geyser vent.

58. The Venturi tube shown in Figure 9.30 may be used as a fluid flowmeter. Suppose the device is used at a service station to measure the flow rate of gasoline (\(\rho = 7.00 \times 10^3 \text{ kg/m}^3 \)) through a hose having an outlet radius of 1.20 cm. If the difference in pressure is measured to be \(P_1 - P_2 = 1.20 \text{ kPa} \) and the radius of the inlet tube to the meter is 2.40 cm, find (a) the speed of the gasoline as it leaves the hose and (b) the fluid flow rate in cubic meters per second.

SECTION 9.9 SURFACE TENSION, CAPILLARY ACTION, AND VISCOS FUID FLOW

59. A square metal sheet 3.0 cm on a side and of negligible thickness is attached to a balance and inserted into a con-
tainer of fluid. The contact angle is found to be zero, as shown in Figure P9.59a, and the balance to which the metal sheet is attached reads 0.40 N. A thin veneer of oil is then spread over the sheet, and the contact angle becomes 180°, as shown in Figure P9.59b. The balance now reads 0.39 N. What is the surface tension of the fluid?

60. A hypodermic needle is 3.0 cm in length and 0.30 mm in diameter. What excess pressure is required along the needle so that the flow rate of water through it will be 1 g/s? (Use 1.0 × 10⁻³ Pa · s as the viscosity of water.)

61. A certain fluid has a density of 1 080 kg/m³ and is observed to rise to a height of 2.1 cm in a 1.0-mm-diameter tube. The contact angle between the wall and the fluid is zero. Calculate the surface tension of the fluid.

62. Whole blood has a surface tension of 0.058 N/m and a density of 1 050 kg/m³. To what height can whole blood rise in a capillary blood vessel that has a radius of 2.0 × 10⁻⁶ m if the contact angle is zero?

63. The block of ice (temperature 0°C) shown in Figure P9.63 is drawn over a level surface lubricated by a layer of water 0.10 mm thick. Determine the magnitude of the force F needed to pull the block with a constant speed of 0.50 m/s. At 0°C, the viscosity of water has the value \(\eta = 1.79 \times 10^{-3} \text{ N} \cdot \text{s}/\text{m}^2\).

64. A thin 1.5-mm coating of glycerine has been placed between two microscope slides of width 1.0 cm and length 4.0 cm. Find the force required to pull one of the micro- scope slides at a constant speed of 0.30 m/s relative to the other slide.

65. A straight horizontal pipe with a diameter of 1.0 cm and a length of 50 m carries oil with a coefficient of viscosity of 0.12 N · s/m². At the output of the pipe, the flow rate is 8.6 × 10⁻⁵ m³/s and the pressure is 1.0 atm. Find the gauge pressure at the pipe input.

66. The pulmonary artery, which connects the heart to the lungs, has an inner radius of 2.6 mm and is 8.4 cm long. If the pressure drop between the heart and lungs is 400 Pa, what is the average speed of blood in the pulmonary artery?

67. Spherical particles of a protein of density 1.8 g/cm³ are shaken up in a solution of 20°C water. The solution is allowed to stand for 1.0 h. If the depth of water in the tube is 5.0 cm, find the radius of the largest particles that remain in solution at the end of the hour.

68. A hypodermic needle is 3.0 cm in length and 0.30 mm in diameter. What excess pressure is required along the needle so that the flow rate of water through it will be 1 g/s? (Use 1.0 × 10⁻³ Pa · s as the viscosity of water.)

69. What diameter needle should be used to inject a volume of 500 cm³ of a solution into a patient in 30 min? Assume the length of the needle is 2.5 cm and the solution is elevated 1.0 m above the point of injection. Further, assume the viscosity and density of the solution are those of pure water, and that the pressure inside the vein is atmospheric.

70. Water is forced out of a fire extinguisher by air pressure, as shown in Figure P9.70. What gauge air pressure in the tank (above atmospheric pressure) is required for the water to have a jet speed of 30.0 m/s when the water level in the tank is 0.500 m below the nozzle?

71. The aorta in humans has a diameter of about 2.0 cm, and at certain times the blood speed through it is about 55 cm/s. Is the blood flow turbulent? The density of whole blood is 1 050 kg/m³, and its coefficient of viscosity is 2.7 × 10⁻³ N · s/m².

72. A pipe carrying 20°C water has a diameter of 2.5 cm. Estimate the maximum flow speed if the flow must be streamline.

SECTION 9.10 TRANSPORT PHENOMENA

73. Sucrose is allowed to diffuse along a 10-cm length of tubing filled with water. The tube is 6.0 cm² in cross-sectional area. The diffusion coefficient is equal to 5.0 × 10⁻¹⁰ m²/s, and 8.0 × 10⁻³ kg is transported along the tube in 15 s. What is the difference in the concentration levels of sucrose at the two ends of the tube?

74. Glycerin in water diffuses along a horizontal column that has a cross-sectional area of 2.0 cm². The concentration gradient is 3.0 × 10⁻² kg/m³, and the diffusion rate is found to be 5.7 × 10⁻⁵ kg/s. Determine the diffusion coefficient.

75. The viscous force on an oil drop is measured to be equal to 3.0 × 10⁻¹² N when the drop is falling through air with a speed of 4.5 × 10⁻³ m/s. If the radius of the drop is 2.5 × 10⁻⁶ m, what is the viscosity of air?

76. Small spheres of diameter 1.00 mm fall through 20°C water with a terminal speed of 1.10 cm/s. Calculate the density of the spheres.

ADDITIONAL PROBLEMS

77. An iron block of volume 0.20 m³ is suspended from a spring scale and immersed in a flask of water. Then the iron block is removed, and an aluminum block of the
same volume replaces it. (a) In which case is the buoyant force the greatest, for the iron block or the aluminum block? (b) In which case does the spring scale read the largest value? (c) Use the known densities of these materials to calculate the quantities requested in parts (a) and (b). Are your calculations consistent with your previous answers to parts (a) and (b)?

78. A steel ball is tossed into the ocean and comes to rest at a depth of 2.40 km. Find its fractional change in volume, assuming the density of seawater is 1.025 × 10³ kg/m³.

79. As a first approximation, Earth’s continents may be thought of as granite blocks floating in a denser rock (called peridotite) in the same way that ice floats in water. (a) Show that a formula describing this phenomenon is

\[\rho_f = \rho_p \frac{1}{\phi} \]

where \(\rho_f \) is the density of granite (2.8 × 10³ kg/m³), \(\rho_p \) is the density of peridotite (3.3 × 10³ kg/m³), \(\phi \) is the thickness of a continent, and \(d \) is the depth to which a continent floats in the peridotite. (b) If a continent sinks 5.0 km into the peridotite layer (this surface may be thought of as the ocean floor), what is the thickness of the continent?

80. Take the density of blood to be \(\rho \) and the distance between the feet and the heart to be \(h \). Ignore the flow of blood. (a) Show that the difference in blood pressure between the feet and the heart is given by \(P_f - P_h = \rho g h \). (b) Take the density of blood to be 1.05 × 10³ kg/m³ and the distance between the heart and the feet to be 1.20 m. Find the difference in blood pressure between these two points. This problem indicates that pumping blood from the extremities is very difficult for the heart. The veins in the legs have valves in them that open when blood is pumped toward the heart and close when blood flows away from the heart. Also, pumping action produced by physical activities such as walking and breathing assists the heart.

81. The approximate inside diameter of the aorta is 0.50 cm; that of a capillary is 10 μm. The approximate average blood flow speed is 1.0 m/s in the aorta and 1.0 cm/s in the capillaries. If all the blood in the aorta eventually flows through the capillaries, estimate the number of capillaries in the circulatory system.

82. Superman attempts to drink water through a very long vertical straw. With his great strength, he achieves maximum possible suction. The walls of the straw don’t collapse. (a) Find the maximum height through which he can lift the water. (b) Still thirsty, the Man of Steel repeats his attempt on the Moon, which has no atmosphere. Find the difference between the water levels inside and outside the straw.

83. The human brain and spinal cord are immersed in the cerebrospinal fluid. The fluid is normally continuous between the cranial and spinal cavities and exerts a pressure of 100 to 200 mm of H₂O above the prevailing atmospheric pressure. In medical work, pressures are often measured in units of mm of H₂O because body fluids, including the cerebrospinal fluid, typically have nearly the same density as water. The pressure of the cerebrospinal fluid can be measured by means of a spinal tap. A hollow tube is inserted into the spinal column, and the height to which the fluid rises is observed, as shown in Figure P9.83. If the fluid rises to a height of 160 mm, we write its gauge pressure as 160 mm H₂O. (a) Express this pressure in pascals, in atmospheres, and in millimeters of mercury. (b) Sometimes it is necessary to determine whether an accident victim has suffered a crushed vertebra that is blocking the flow of cerebrospinal fluid in the spinal column. In other cases a physician may suspect that a tumor or other growth is blocking the spinal column and inhibiting the flow of cerebrospinal fluid. Such conditions can be investigated by means of the Queckenstedt test. In this procedure the veins in the patient’s neck are compressed, to make the blood pressure rise in the brain. The increase in pressure in the blood vessels is transmitted to the cerebrospinal fluid. What should be the normal effect on the height of the fluid in the spinal tap? (c) Suppose compressing the veins had no effect on the level of the fluid. What might account for this phenomenon?

84. Determining the density of a fluid has many important applications. A car battery contains sulfuric acid, and the battery will not function properly if the acid density is too low. Similarly, the effectiveness of antifreeze in your car’s engine coolant depends on the density of the mixture (usually ethylene glycol and water). When you donate blood to a blood bank, its screening includes a determination of the density of the blood because higher density correlates with higher hemoglobin content. A hydrometer is an instrument used to determine the density of a liquid. A simple one is sketched in Figure P9.84. The bulb of a syringe is squeezed and released to lift a sample of the liquid of interest into a tube containing a calibrated rod of known density. (Assume the rod is cylindrical.) The rod, of length \(L \) and average density \(\rho_{\text{rod}} \), floats partially
85. Figure P9.85 shows a water tank with a valve. If the valve is opened, what is the maximum height attained by the stream of water coming out of the right side of the tank? Assume $h = 10.0$ m, $L = 2.00$ m, and $\theta = 30.0^\circ$, and that the cross-sectional area at A is very large compared with that at B.

86. A helium-filled balloon is tied to a 2.0-m-long, 0.050-kg string. The balloon is spherical with a radius of 0.40 m. When released, it lifts a length h of the string and then remains in equilibrium, as in Figure P9.86. Determine the value of h. When deflated, the balloon has a mass of 0.25 kg. Hint: Only that part of the string above the floor contributes to the load being held up by the balloon.

87. A 600-kg weather balloon is designed to lift a 4,000-kg package. What volume should the balloon have after being inflated with helium at standard temperature and pressure (see Table 9.3) so the total load can be lifted?

88. A U-tube open at both ends is partially filled with water (Fig. P9.88a). Oil ($\rho = 750$ kg/m3) is then poured into the right arm and forms a column $L = 5.00$ cm high (Fig. P9.88b). (a) Determine the difference h in the heights of the two liquid surfaces. (b) The right arm is then shielded from any air motion while air is blown across the top of the left arm until the surfaces of the two liquids are at the same height (Fig. 9.80c). Determine the speed of the air being blown across the left arm. Assume the density of air is 1.29 kg/m3.

89. A 1.0-kg hollow ball with a radius of 0.10 m and filled with air is released from rest at the bottom of a 2.0-m-deep pool of water. How high above the water does the ball shoot upward? Neglect all frictional effects, and neglect changes in the ball’s motion when it is only partially submerged.

90. Oil having a density of 930 kg/m3 floats on water. A rectangular block of wood 4.00 cm high and with a density of 960 kg/m3 floats partly in the oil and partly in the water. The oil completely covers the block. How far below the interface between the two liquids is the bottom of the block?

91. A water tank open to the atmosphere at the top has two small holes punched in its side, one above the other. The holes are 5.00 cm and 12.0 cm above the floor. How high does water stand in the tank if the two streams of water hit the floor at the same place?

92. A walkway suspended across a hotel lobby is supported at numerous points along its edges by a vertical cable above each point and a vertical column underneath. The steel cable is 1.27 cm in diameter and is 5.75 m long before loading. The aluminum column is a hollow cylinder with an inside diameter of 16.14 cm, an outside diameter of 16.24 cm, and an unloaded length of 3.25 m. When the walkway exerts a load force of 8 500 N on one of the support points, through what distance does the point move down?
How can trapped water blow off the top of a volcano in a giant explosion? What causes a sidewalk or road to fracture and buckle spontaneously when the temperature changes? How can thermal energy be harnessed to do work, running the engines that make everything in modern living possible?

Answering these and related questions is the domain of thermal physics, the study of temperature, heat, and how they affect matter. Quantitative descriptions of thermal phenomena require careful definitions of the concepts of temperature, heat, and internal energy. Heat leads to changes in internal energy and thus to changes in temperature, which cause the expansion or contraction of matter. Such changes can damage roadways and buildings, create stress fractures in metal, and render flexible materials stiff and brittle, the latter resulting in compromised O-rings and the Challenger disaster. Changes in internal energy can also be harnessed for transportation, construction, and food preservation.

Gases are critical in the harnessing of thermal energy to do work. Within normal temperature ranges, a gas acts like a large collection of non-interacting point particles, called an ideal gas. Such gases can be studied on either a macroscopic or microscopic scale. On the macroscopic scale, the pressure, volume, temperature, and number of particles associated with a gas can be related in a single equation known as the ideal gas law. On the microscopic scale, a model called the kinetic theory of gases pictures the components of a gas as small particles. This model will enable us to understand how processes on the atomic scale affect macroscopic properties like pressure, temperature, and internal energy.

10.1 TEMPERATURE AND THE ZEROTH LAW OF THERMODYNAMICS

Temperature is commonly associated with how hot or cold an object feels when we touch it. While our senses provide us with qualitative indications of temperature, they are unreliable and often misleading. A metal ice tray feels colder to the hand, for example, than a package of frozen vegetables at the same temperature,
because metals conduct thermal energy more rapidly than a cardboard package. What we need is a reliable and reproducible method of making quantitative measurements that establish the relative “hotness” or “coldness” of objects—a method related solely to temperature. Scientists have developed a variety of thermometers for making such measurements.

When placed in contact with each other, two objects at different initial temperatures will eventually reach a common intermediate temperature. If a cup of hot coffee is cooled with an ice cube, for example, the ice rises in temperature and eventually melts while the temperature of the coffee decreases.

Understanding the concept of temperature requires understanding thermal contact and thermal equilibrium. Two objects are in thermal contact if energy can be exchanged between them. Two objects are in thermal equilibrium if they are in thermal contact and there is no net exchange of energy.

The exchange of energy between two objects because of differences in their temperatures is called heat, a concept examined in more detail in Chapter 11.

Using these ideas, we can develop a formal definition of temperature. Consider two objects A and B that are not in thermal contact with each other, and a third object C that acts as a thermometer—a device calibrated to measure the temperature of an object. We wish to determine whether A and B would be in thermal equilibrium if they were placed in thermal contact. The thermometer (object C) is first placed in thermal contact with A until thermal equilibrium is reached, as in Figure 10.1a, whereupon the reading of the thermometer is recorded. The thermometer is then placed in thermal contact with B, and its reading is again recorded at equilibrium (Fig. 10.1b). If the two readings are the same, then A and B are in thermal equilibrium with each other. If A and B are placed in thermal contact with each other, as in Figure 10.1c, there is no net transfer of energy between them.

We can summarize these results in a statement known as the zeroth law of thermodynamics (the law of equilibrium):

If objects A and B are separately in thermal equilibrium with a third object C, then A and B are in thermal equilibrium with each other.

This statement is important because it makes it possible to define temperature. We can think of temperature as the property that determines whether or not an object is in thermal equilibrium with other objects. Two objects in thermal equilibrium with each other are at the same temperature.

QUICK QUIZ 10.1 Two objects with different sizes, masses, and temperatures are placed in thermal contact. Choose the best answer: Energy travels (a) from the larger object to the smaller object (b) from the object with more mass to the one with less mass (c) from the object at higher temperature to the object at lower temperature.

![Figure 10.1](image-url) The zeroth law of thermodynamics. (a) and (b): If the temperatures of A and B are found to be the same as measured by object C (a thermometer), no energy will be exchanged between them when they are placed in thermal contact with each other, as in (c).
10.2 THERMOMETERS AND TEMPERATURE SCALES

Thermometers are devices used to measure the temperature of an object or a system. When a thermometer is in thermal contact with a system, energy is exchanged until the thermometer and the system are in thermal equilibrium with each other. For accurate readings, the thermometer must be much smaller than the system, so that the energy the thermometer gains or loses doesn’t significantly alter the energy content of the system. All thermometers make use of some physical property that changes with temperature and can be calibrated to make the temperature measurable. Some of the physical properties used are (1) the volume of a liquid, (2) the length of a solid, (3) the pressure of a gas held at constant volume, (4) the volume of a gas held at constant pressure, (5) the electric resistance of a conductor, and (6) the color of a very hot object.

One common thermometer in everyday use consists of a mass of liquid—usually mercury or alcohol—that expands into a glass capillary tube when its temperature rises (Fig. 10.2). In this case the physical property that changes is the volume of a liquid. To serve as an effective thermometer, the change in volume of the liquid with change in temperature must be very nearly constant over the temperature ranges of interest. When the cross-sectional area of the capillary tube is constant as well, the change in volume of the liquid varies linearly with its length along the tube. We can then define a temperature in terms of the length of the liquid column. The thermometer can be calibrated by placing it in thermal contact with environments that remain at constant temperature. One such environment is a mixture of water and ice in thermal equilibrium at atmospheric pressure. Another commonly used system is a mixture of water and steam in thermal equilibrium at atmospheric pressure.

Once we have marked the ends of the liquid column for our chosen environment on our thermometer, we need to define a scale of numbers associated with various temperatures. An example of such a scale is the Celsius temperature scale, formerly called the centigrade scale. On the Celsius scale, the temperature of the ice–water mixture is defined to be zero degrees Celsius, written 0°C and called the ice point or freezing point of water. The temperature of the water–steam mixture is defined as 100°C, called the steam point or boiling point of water. Once the ends of the liquid column in the thermometer have been marked at these two points, the distance between marks is divided into 100 equal segments, each corresponding to a change in temperature of one degree Celsius.

Thermometers calibrated in this way present problems when extremely accurate readings are needed. For example, an alcohol thermometer calibrated at the ice and steam points of water might agree with a mercury thermometer only at the calibration points. Because mercury and alcohol have different thermal expansion properties, when one indicates a temperature of 50°C, say, the other may indicate a slightly different temperature. The discrepancies between different types of thermometers are especially large when the temperatures to be measured are far from the calibration points.

The Constant-Volume Gas Thermometer and the Kelvin Scale

We can construct practical thermometers such as the mercury thermometer, but these types of thermometers don’t define temperature in a fundamental way. One thermometer, however, is more fundamental, and offers a way to define temperature and relate it directly to internal energy: the gas thermometer. In a gas thermometer, the temperature readings are nearly independent of the substance used in the thermometer. One type of gas thermometer is the constant-volume unit shown in Figure 10.3. The behavior observed in this device is the variation of pressure with temperature of a fixed volume of gas. When the constant-volume gas thermometer was developed, it was calibrated using the ice and steam points of water as follows (a different calibration procedure, to be discussed shortly, is now used): The gas flask is inserted into an ice–water bath, and mercury reservoir B is
raised or lowered until the volume of the confined gas is at some value, indicated by the zero point on the scale. The height h, the difference between the levels in the reservoir and column A, indicates the pressure in the flask at 0°C. The flask is inserted into water at the steam point, and reservoir B is readjusted until the height in column A is again brought to zero on the scale, ensuring that the gas volume is the same as it had been in the ice bath (hence the designation "constant-volume"). A measure of the new value for h gives a value for the pressure at 100°C. These pressure and temperature values are then plotted on a graph, as in Figure 10.4. The line connecting the two points serves as a calibration curve for measuring unknown temperatures. If we want to measure the temperature of a substance, we place the gas flask in thermal contact with the substance and adjust the column of mercury until the level in column A returns to zero. The height of the mercury column tells us the pressure of the gas, and we could then find the temperature of the substance from the calibration curve.

Now suppose that temperatures are measured with various gas thermometers containing different gases. Experiments show that the thermometer readings are nearly independent of the type of gas used, as long as the gas pressure is low and the temperature is well above the point at which the gas liquefies.

We can also perform the temperature measurements with the gas in the flask at different starting pressures at 0°C. As long as the pressure is low, we will generate straight-line calibration curves for each starting pressure, as shown for three experimental trials (solid lines) in Figure 10.5.

If the curves in Figure 10.5 are extended back toward negative temperatures, we find a startling result: In every case, regardless of the type of gas or the value of the low starting pressure, the pressure extrapolates to zero when the temperature is $-273.15°C$. This fact suggests that this particular temperature is universal in its importance, because it doesn’t depend on the substance used in the thermometer. In addition, because the lowest possible pressure is $P = 0$, a perfect vacuum, the temperature $-273.15°C$ must represent a lower bound for physical processes. We define this temperature as absolute zero.

Absolute zero is used as the basis for the Kelvin temperature scale, which sets $-273.15°C$ as its zero point (0 K). The size of a "degree" on the Kelvin scale is chosen to be identical to the size of a degree on the Celsius scale. The relationship between these two temperature scales is

$$T_C = T - 273.15$$ \[10.1\]

where T_C is the Celsius temperature and T is the Kelvin temperature (sometimes called the absolute temperature).

Technically, Equation 10.1 should have units on the right-hand side so that it reads $T_C = T°C/K - 273.15°C$. The units are rather cumbersome in this context, so we will usually suppress them in such calculations except in the final answer. (This will also be the case when discussing the Celsius and Fahrenheit scales.)

Early gas thermometers made use of ice and steam points according to the procedure just described. These points are experimentally difficult to duplicate,
however, because they are pressure-sensitive. Consequently, a procedure based on two new points was adopted in 1954 by the International Committee on Weights and Measures. The first point is absolute zero. The second point is the triple point of water, which is the single temperature and pressure at which water, water vapor, and ice can coexist in equilibrium. This point is a convenient and reproducible reference temperature for the Kelvin scale; it occurs at a temperature of 0.01°C and a pressure of 4.58 mm of mercury. The temperature at the triple point of water on the Kelvin scale occurs at 273.16 K. Therefore, the SI unit of temperature, the kelvin, is defined as 1/273.16 of the temperature of the triple point of water. Figure 10.6 shows the Kelvin temperatures for various physical processes and structures. Absolute zero has been closely approached but never achieved.

What would happen to a substance if its temperature could reach 0 K? As Figure 10.5 indicates, the substance would exert zero pressure on the walls of its container (assuming the gas doesn’t liquefy or solidify on the way to absolute zero). In Section 10.5 we show that the pressure of a gas is proportional to the kinetic energy of the molecules of that gas. According to classical physics, therefore, the kinetic energy of the gas would go to zero and there would be no motion at all of the individual components of the gas. According to quantum theory, however (to be discussed in Chapter 27), the gas would always retain some residual energy, called the zero-point energy, at that low temperature.

The Celsius, Kelvin, and Fahrenheit Temperature Scales

Equation 10.1 shows that the Celsius temperature T_C is shifted from the absolute (Kelvin) temperature T by 273.15. Because the size of a Celsius degree is the same as a kelvin, a temperature difference of 5°C is equal to a temperature difference of 5 K. The two scales differ only in the choice of zero point. The ice point (273.15 K) corresponds to 0.00°C, and the steam point (373.15 K) is equivalent to 100.00°C.

The most common temperature scale in use in the United States is the Fahrenheit scale. It sets the temperature of the ice point at 32°F and the temperature of the steam point at 212°F. The relationship between the Celsius and Fahrenheit temperature scales is

$$T_F = \frac{9}{5}T_C + 32$$ \[10.2a\]

For example, a temperature of 50.0°F corresponds to a Celsius temperature of 10.0°C and an absolute temperature of 283 K.

Equation 10.2 can be inverted to give Celsius temperatures in terms of Fahrenheit temperatures:

$$T_C = \frac{5}{9}(T_F - 32)$$ \[10.2b\]
Equation 10.2 can also be used to find a relationship between changes in temperature on the Celsius and Fahrenheit scales. In a problem at the end of the chapter you will be asked to show that if the Celsius temperature changes by ΔT_C, the Fahrenheit temperature changes by the amount

$$\Delta T_F = \frac{5}{9} \Delta T_C \quad [10.3]$$

Figure 10.7 compares the three temperature scales we have discussed.

EXAMPLE 10.1 Skin Temperature

Goal Apply the temperature conversion formulas.

Problem The temperature gradient between the skin and the air is regulated by cutaneous (skin) blood flow. If the cutaneous blood vessels are constricted, the skin temperature and the temperature of the environment will be about the same. When the vessels are dilated, more blood is brought to the surface. Suppose during dilation the skin warms from 72.0°F to 84.0°F. (a) Convert these temperatures to Celsius and find the difference. (b) Convert the temperatures to Kelvin, again finding the difference.

Strategy This is a matter of applying the conversion formulas, Equations 10.1 and 10.2. For part (b) it’s easiest to use the answers for Celsius rather than develop another set of conversion equations.

Solution

(a) Convert the temperatures from Fahrenheit to Celsius and find the difference.

Convert the lower temperature, using Equation 10.2b:

$$T_C = \frac{5}{9}(T_F - 32) = \frac{5}{9}(72 - 32) = 22^\circ C$$

Convert the upper temperature:

$$T_C = \frac{5}{9}(T_F - 32) = \frac{5}{9}(84 - 32) = 29^\circ C$$

Find the difference of the two temperatures:

$$\Delta T_C = 29^\circ C - 22^\circ C = 7^\circ C$$

(b) Convert the temperatures from Fahrenheit to Kelvin and find their difference.

Convert the lower temperature, using the answers for Celsius found in part (a):

$$T = T_C + 273.15 \quad \rightarrow \quad T = 22 + 273.15 = 295 \text{ K}$$

Convert the upper temperature:

$$T = 29 + 273.15 = 302 \text{ K}$$

Find the difference of the two temperatures:

$$\Delta T = 302 \text{ K} - 295 \text{ K} = 7 \text{ K}$$

Remark The change in temperature in Kelvin and Celsius is the same, as it should be.

QUESTION 10.1 Which represents a larger temperature change, a Celsius degree or a Fahrenheit degree?

EXERCISE 10.1

Core body temperature can rise from 98.6°F to 107°F during extreme exercise, such as a marathon run. Such elevated temperatures can also be caused by viral or bacterial infections or tumors and are dangerous if sustained. (a) Convert the given temperatures to Celsius and find the difference. (b) Convert the temperatures to Kelvin, again finding the difference.

Answer (a) 37.0°C, 41.7°C, 4.7°C (b) 310.2 K, 314.9 K, 4.7 K
EXAMPLE 10.2 Extraterrestrial Temperature Scale

Goal Understand how to relate different temperature scales.

Problem An extraterrestrial scientist invents a temperature scale such that water freezes at $-75^\circ E$ and boils at $325^\circ E$, where E stands for an extraterrestrial scale. Find an equation that relates temperature in $^\circ E$ to temperature in $^\circ C$.

Strategy Using the given data, find the ratio of the number of $^\circ E$ between the two temperatures to the number of $^\circ C$. This ratio will be the same as a similar ratio for any other such process—say, from the freezing point to an unknown temperature—corresponding to T_E and T_C. Setting the two ratios equal and solving for T_E in terms of T_C yields the desired relationship.

Solution
Find the change in temperature in $^\circ E$ between the freezing and boiling points of water:

$$\Delta T_E = 325^\circ E - (-75^\circ E) = 400^\circ E$$

Find the change in temperature in $^\circ C$ between the freezing and boiling points of water:

$$\Delta T_C = 100^\circ C - 0^\circ C = 100^\circ C$$

Form the ratio of these two quantities.

$$\frac{\Delta T_E}{\Delta T_C} = \frac{400^\circ E}{100^\circ C} = 4\frac{^\circ E}{^\circ C}$$

This ratio is the same between any other two temperatures—say, from the freezing point to an unknown final temperature. Set the two ratios equal to each other:

$$\frac{\Delta T_E}{\Delta T_C} = \frac{T_E - (-75^\circ E)}{T_C - 0^\circ C} = 4\frac{^\circ E}{^\circ C}$$

Solve for T_E:

$$T_E - (-75^\circ E) = 4(\frac{^\circ E}{^\circ C})(T_C - 0^\circ C)$$

$$T_E = 4T_C - 75$$

Remark The relationship between any other two temperatures scales can be derived in the same way.

QUESTION 10.2
True or False: Finding the relationship between two temperature scales using knowledge of the freezing and boiling point of water in each system is equivalent to finding the equation of a straight line.

EXERCISE 10.2
Find the equation converting $^\circ F$ to $^\circ E$.

Answer $T_E = \frac{20}{9} T_F - 146$

10.3 THERMAL EXPANSION OF SOLIDS AND LIQUIDS

Our discussion of the liquid thermometer made use of one of the best-known changes that occur in most substances: As temperature of the substance increases, its volume increases. This phenomenon, known as thermal expansion, plays an important role in numerous applications. Thermal expansion joints, for example, must be included in buildings, concrete highways, and bridges to compensate for changes in dimensions with variations in temperature (Fig. 10.8).

The overall thermal expansion of an object is a consequence of the change in the average separation between its constituent atoms or molecules. To understand this idea, consider how the atoms in a solid substance behave. These atoms are
located at fixed equilibrium positions; if an atom is pulled away from its position, a
restoring force pulls it back. We can imagine that the atoms are particles connected
by springs to their neighboring atoms. (See Fig. 9.1 in the previous chapter.) If an
atom is pulled away from its equilibrium position, the distortion of the springs
provides a restoring force.

At ordinary temperatures, the atoms vibrate around their equilibrium positions
with an amplitude (maximum distance from the center of vibration) of about 10^{-10} m,
with an average spacing between the atoms of about 10^{-10} m. As the temperature
of the solid increases, the atoms vibrate with greater amplitudes and the average sepa-
ration between them increases. Consequently, the solid as a whole expands.

If the thermal expansion of an object is sufficiently small compared with the
object’s initial dimensions, then the change in any dimension is, to a good approx-
imation, proportional to the first power of the temperature change. Suppose an
object has an initial length L_0 along some direction at some temperature T_0. Then
the length increases by ΔL for a change in temperature ΔT. So for small changes in
temperature,

$$\Delta L = \alpha L_0 \Delta T$$ \hspace{1cm} [10.4]

or

$$L - L_0 = \alpha L_0 (T - T_0)$$

where L is the object’s final length, T is its final temperature, and the proportion-
ality constant α is called the coefficient of linear expansion for a given material
and has units of ($^\circ$C)$^{-1}$.

Table 10.1 lists the coefficients of linear expansion for various materials. Note
that for these materials α is positive, indicating an increase in length with increas-
ing temperature.

Thermal expansion affects the choice of glassware used in kitchens and labo-
ratories. If hot liquid is poured into a cold container made of ordinary glass, the
container may well break due to thermal stress. The inside surface of the glass
becomes hot and expands, while the outside surface is at room temperature, and
ordinary glass may not withstand the difference in expansion without breaking.
Pyrex® glass has a coefficient of linear expansion of about one-third that of ordi-
nary glass, so the thermal stresses are smaller. Kitchen measuring cups and labora-
tory beakers are often made of Pyrex so they can be used with hot liquids.

Table 10.1

<table>
<thead>
<tr>
<th>Material</th>
<th>Average Coefficient of Linear Expansion</th>
<th>Material</th>
<th>Average Coefficient of Volume Expansion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aluminum</td>
<td>24×10^{-6}</td>
<td>Ethyl alcohol</td>
<td>1.12×10^{-4}</td>
</tr>
<tr>
<td>Brass and bronze</td>
<td>19×10^{-6}</td>
<td>Benzene</td>
<td>1.24×10^{-4}</td>
</tr>
<tr>
<td>Copper</td>
<td>17×10^{-6}</td>
<td>Acetone</td>
<td>1.5×10^{-4}</td>
</tr>
<tr>
<td>Glass (ordinary)</td>
<td>9×10^{-6}</td>
<td>Glycerin</td>
<td>4.85×10^{-4}</td>
</tr>
<tr>
<td>Glass (Pyrex®)</td>
<td>3.2×10^{-6}</td>
<td>Mercury</td>
<td>1.82×10^{-4}</td>
</tr>
<tr>
<td>Lead</td>
<td>29×10^{-6}</td>
<td>Turpentine</td>
<td>9.0×10^{-4}</td>
</tr>
<tr>
<td>Steel</td>
<td>11×10^{-6}</td>
<td>Gasoline</td>
<td>9.6×10^{-4}</td>
</tr>
<tr>
<td>Invar (Ni-Fe alloy)</td>
<td>0.9×10^{-6}</td>
<td>Air</td>
<td>3.67×10^{-4}</td>
</tr>
<tr>
<td>Concrete</td>
<td>12×10^{-6}</td>
<td>Helium</td>
<td>3.665×10^{-5}</td>
</tr>
</tbody>
</table>

Tip 10.1 Coefficients of Expansion Are Not Constants

The coefficients of expansion can vary somewhat with temperature, so the given coefficients are actu-
ally averages.
EXAMPLE 10.3 Expansion of a Railroad Track

Goal Apply the concept of linear expansion and relate it to stress.

Problem
(a) A steel railroad track has a length of 30.000 m when the temperature is 0°C. What is its length on a hot day when the temperature is 40.0°C?
(b) Suppose the track is nailed down so that it can’t expand. What stress results in the track due to the temperature change?

Strategy
(a) Apply the linear expansion equation, using Table 10.1 and Equation 10.4.
(b) A track that cannot expand by ΔL due to external constraints is equivalent to compressing the track by ΔL, creating a stress in the track. Using the equation relating tensile stress to tensile strain together with the linear expansion equation, the amount of (compressional) stress can be calculated using Equation 9.3.

Solution
(a) Find the length of the track at 40.0°C.
Substitute given quantities into Equation 10.4, finding the change in length:
$$\Delta L = \alpha L_0 \Delta T = \left[11 \times 10^{-6} \text{°C}^{-1}\right](30.000 \text{ m})(40.0°C)$$
$$\Delta L = 0.013 \text{ m}$$
Add the change to the original length to find the final length:
$$L = L_0 + \Delta L = 30.013 \text{ m}$$

(b) Find the stress if the track cannot expand.
Substitute into Equation 9.3 to find the stress:
$$\frac{F}{A} = Y \frac{\Delta L}{L} = (2.00 \times 10^{11} \text{ Pa}) \left(\frac{0.013 \text{ m}}{30.0 \text{ m}}\right)$$
$$\frac{F}{A} = 8.7 \times 10^7 \text{ Pa}$$

Remarks Repeated heating and cooling is an important part of the weathering process that gradually wears things out, weakening structures over time.

QUESTION 10.3
What happens to the tension of wires in a piano when the temperature decreases?

EXERCISE 10.3
What is the length of the same railroad track on a cold winter day when the temperature is 0°F?

Answer 29.994 m

APPLYING PHYSICS 10.1 BIMETALLIC STRIPS AND THERMOSTATS

How can different coefficients of expansion for metals be used as a temperature gauge and control electronic devices such as air conditioners?

Explanation When the temperatures of a brass rod and a steel rod of equal length are raised by the same amount from some common initial value, the brass rod expands more than the steel rod because brass has a larger coefficient of expansion than steel. A simple device that uses this principle is a bimetallic strip. Such strips can be found in the thermostats of certain home heating systems. The strip is made by securely bonding two different metals together. As the temperature of the strip increases, the two metals expand by different amounts and the strip bends, as in Figure 10.9. The change in shape can make or break an electrical connection.
It may be helpful to picture a thermal expansion as a magnification or a photographic enlargement. For example, as the temperature of a metal washer increases (Active Fig. 10.10), all dimensions, including the radius of the hole, increase according to Equation 10.4.

One practical application of thermal expansion is the common technique of using hot water to loosen a metal lid stuck on a glass jar. This works because the circumference of the lid expands more than the rim of the jar.

Because the linear dimensions of an object change due to variations in temperature, it follows that surface area and volume of the object also change. Consider a square of material having an initial length L_0 on a side and therefore an initial area $A_0 = L_0^2$. As the temperature is increased, the length of each side increases to

$$L = L_0 + aL_0 \Delta T$$

The new area A is

$$A = L^2 = (L_0 + aL_0 \Delta T)(L_0 + aL_0 \Delta T) = L_0^2 + 2aL_0^2 \Delta T + a^2L_0^2(\Delta T)^2$$

The last term in this expression contains the quantity $a\Delta T$ raised to the second power. Because $a\Delta T$ is much less than one, squaring it makes it even smaller. Consequently, we can neglect this term to get a simpler expression:

$$A = L_0^2 + 2aL_0^2 \Delta T$$

so that

$$\Delta A = A - A_0 = \gamma A_0 \Delta T$$

where $\gamma = 2a$. The quantity γ (Greek letter gamma) is called the coefficient of area expansion.

EXAMPLE 10.4 Rings and Rods

Goal Apply the equation of area expansion.

Problem (a) A circular copper ring at 20.0°C has a hole with an area of 9.98 cm². What minimum temperature must it have so that it can be slipped onto a steel metal rod having a cross-sectional area of 10.0 cm²? (b) Suppose the ring and the rod are heated simultaneously. What minimum change in temperature of both will allow the ring to be slipped onto the end of the rod? (Assume no significant change in the coefficients of linear expansion over this temperature range.)

Strategy In part (a), finding the necessary temperature change is just a matter of substituting given values into Equation 10.5, the equation of area expansion. Remember that $\gamma = 2a$. Part (b) is a little harder because now the rod is also expanding. If the ring is to slip onto the rod, however, the final cross-sectional areas of both ring and rod must be equal. Write this condition in mathematical terms, using Equation 10.5 on both sides of the equation, and solve for ΔT.

\[\Delta A = A - A_0 = \gamma A_0 \Delta T \]
Solution

(a) Find the temperature of the ring that will allow it to slip onto the rod.

Write Equation 10.5 and substitute known values, leaving T as the sole unknown:

$$\Delta A = \gamma A_0 \Delta T$$

$$0.02 \text{ cm}^2 = (34 \times 10^{-6} \text{ (°C)}^{-1})(9.98 \text{ cm}^2)(\Delta T)$$

Solve for ΔT, then add this change to the initial temperature to get the final temperature:

$$\Delta T = 58.9 \degree \text{C}$$

$$T = T_0 + \Delta T = 20.0 \degree \text{C} + 58.9 \degree \text{C} = 78.9 \degree \text{C}$$

(b) If both ring and rod are heated, find the minimum change in temperature that will allow the ring to be slipped onto the rod.

Set the final areas of the copper ring and steel rod equal to each other:

$$A_C + \Delta A_C = A_S + \Delta A_S$$

Substitute for each change in area, ΔA:

$$\gamma_C A_C \Delta T = A_S - A_C$$

$$\gamma_C A_C \Delta T - \gamma_S A_S \Delta T = A_S - A_C$$

Factor it out, and solve:

$$\Delta T = \frac{A_S - A_C}{\gamma_C A_C - \gamma_S A_S}$$

$$= \frac{10.0 \text{ cm}^2 - 9.98 \text{ cm}^2}{(34 \times 10^{-6} \text{ (°C)}^{-1})(9.98 \text{ cm}^2) - (22 \times 10^{-6} \text{ (°C)}^{-1})(10.0 \text{ cm}^2)}$$

$$\Delta T = 168 \degree \text{C}$$

Remark Warming and cooling strategies are sometimes useful for separating glass parts in a chemistry lab, such as the glass stopper in a bottle of reagent.

QUESTION 10.4

If instead of heating the copper ring in part (a) the steel rod is cooled, would the magnitude of the required temperature change be larger, smaller, or the same? Why? (Don’t calculate it!)

EXERCISE 10.4

A steel ring with a hole having area of 3.99 cm2 is to be placed on an aluminum rod with cross-sectional area of 4.00 cm2. Both rod and ring are initially at a temperature of 35.0°C. At what common temperature can the steel ring be slipped onto one end of the aluminum rod?

Answer $-61 \degree \text{C}$

We can also show that the *increase in volume* of an object accompanying a change in temperature is

$$\Delta V = \beta V_0 \Delta T$$ \hspace{1cm} [10.6]$$

where β, the *coefficient of volume expansion*, is equal to 3α. (Note that $\gamma = 2\alpha$ and $\beta = 3\alpha$ only if the coefficient of linear expansion of the object is the same in all directions.) The proof of Equation 10.6 is similar to the proof of Equation 10.5.

As Table 10.1 indicates, each substance has its own characteristic coefficients of expansion.
The thermal expansion of water has a profound influence on rising ocean levels. At current rates of global warming, scientists predict that about one-half of the expected rise in sea level will be caused by thermal expansion; the remainder will be due to the melting of polar ice.

QUICK QUIZ 10.2 If you quickly plunge a room-temperature mercury thermometer into very hot water, the mercury level will (a) go up briefly before reaching a final reading, (b) go down briefly before reaching a final reading, or (c) not change.

QUICK QUIZ 10.3 If you are asked to make a very sensitive glass thermometer, which of the following working fluids would you choose? (a) mercury (b) alcohol (c) gasoline (d) glycerin

QUICK QUIZ 10.4 Two spheres are made of the same metal and have the same radius, but one is hollow and the other is solid. The spheres are taken through the same temperature increase. Which sphere expands more? (a) solid sphere, (b) hollow sphere, (c) they expand by the same amount, or (d) not enough information to say.

EXAMPLE 10.5 Global Warming and Coastal Flooding

Goal Apply the volume expansion equation together with linear expansion.

Problem (a) Estimate the fractional change in the volume of Earth’s oceans due to an average temperature change of 1°C. (b) Use the fact that the average depth of the ocean is 4.00×10^3 m to estimate the change in depth. Note that $\beta_\text{water} = 2.07 \times 10^{-4} \text{(°C)}^{-1}$.

Strategy In part (a) solve the volume expansion expression, Equation 10.6, for $\Delta V/V$. For part (b) use linear expansion to estimate the increase in depth. Neglect the expansion of landmasses, which would reduce the rise in sea level only slightly.

Solution

(a) Find the fractional change in volume.

Divide the volume expansion equation by V_0 and substitute:

$$\frac{\Delta V}{V_0} = \beta \Delta T = (2.07 \times 10^{-4} \text{(°C)}^{-1})(1\text{°C}) = 2 \times 10^{-4}$$

(b) Find the approximate increase in depth.

Use the linear expansion equation. Divide the volume expansion coefficient of water by 3 to get the equivalent linear expansion coefficient:

$$\Delta L = a L_0 \Delta T = \left(\frac{\beta}{3}\right) L_0 \Delta T = (6.90 \times 10^{-5} \text{(°C)}^{-1})(4000 \text{ m})(1\text{°C}) = 0.3 \text{ m}$$

Remarks Three-tenths of a meter may not seem significant, but combined with increased melting of the polar ice caps, some coastal areas could experience flooding. An increase of several degrees increases the value of ΔL several times and could significantly reduce the value of waterfront property.

QUESTION 10.5 Assuming all have the same initial volume, rank the following substances by the amount of volume expansion due to an increase in temperature, from least to most: glass, mercury, aluminum, ethyl alcohol.

EXERCISE 10.5 A 1.00-liter aluminum cylinder at 5.00°C is filled to the brim with gasoline at the same temperature. If the aluminum and gasoline are warmed to 65.0°C, how much of the gasoline spills out? **Hint:** Be sure to account for the expansion.
of the container. Also, ignore the possibility of evaporation, and assume the volume coefficients are good to three digits.

Answer The volume spilled is 53.3 cm³. Forgetting to take into account the expansion of the cylinder results in a (wrong) answer of 57.6 cm³.

The Unusual Behavior of Water

Liquids generally increase in volume with increasing temperature and have volume expansion coefficients about ten times greater than those of solids. Over a small temperature range, water is an exception to this rule, as we can see from its density-versus-temperature curve in Figure 10.11. As the temperature increases from 0°C to 4°C, water contracts, so its density increases. Above 4°C, water exhibits the expected expansion with increasing temperature. The density of water reaches its maximum value of 1 000 kg/m³ at 4°C.

We can use this unusual thermal expansion behavior of water to explain why a pond freezes slowly from the top down. When the atmospheric temperature drops from 7°C to 6°C, say, the water at the surface of the pond also cools and consequently decreases in volume. This means the surface water is more dense than the water below it, which has not yet cooled nor decreased in volume. As a result, the surface water sinks and warmer water from below is forced to the surface to be cooled, a process called *upwelling*. When the atmospheric temperature is between 4°C and 0°C, however, the surface water expands as it cools, becoming less dense than the water below it. The sinking process stops, and eventually the surface water freezes. As the water freezes, the ice remains on the surface because ice is less dense than water. The ice continues to build up on the surface, and water near the bottom of the pool remains at 4°C. Further, the ice forms an insulating layer that slows heat loss from the underlying water, offering thermal protection for marine life.

Without buoyancy and the expansion of water upon freezing, life on Earth may not have been possible. If ice had been more dense than water, it would have sunk to the bottom of the ocean and built up over time. This could have led to a freezing of the oceans, turning Earth into an icebound world similar to Hoth in the Star Wars epic *The Empire Strikes Back*.

The same peculiar thermal expansion properties of water sometimes cause pipes to burst in winter. As energy leaves the water through the pipe by heat and is transferred to the outside cold air, the outer layers of water in the pipe freeze first. The continuing energy transfer causes ice to form ever closer to the center of the pipe. As long as there is still an opening through the ice, the water can expand as its temperature approaches 0°C or as it freezes into more ice, pushing itself into another part of the pipe. Eventually, however, the ice will freeze to the center.
somewhere along the pipe’s length, forming a plug of ice at that point. If there is
still liquid water between this plug and some other obstruction, such as another
ice plug or a spigot, then no additional volume is available for further expansion
and freezing. The pressure in the pipe builds and can rupture the pipe.

10.4 MACROSCOPIC DESCRIPTION OF AN IDEAL GAS

The properties of gases are important in a number of thermodynamic processes.
Our weather is a good example of the types of processes that depend on the behav-
ior of gases.

If we introduce a gas into a container, it expands to fill the container uniformly,
with its pressure depending on the size of the container, the temperature, and
the amount of gas. A larger container results in a lower pressure, whereas higher
temperatures or larger amounts of gas result in a higher pressure. The pressure \(P \),
volume \(V \), temperature \(T \), and amount \(n \) of gas in a container are related to each
other by an equation of state.

The equation of state can be very complicated, but is found experimentally to
be relatively simple if the gas is maintained at a low pressure (or a low density).
Such a low-density gas approximates what is called an ideal gas. Most gases at
room temperature and atmospheric pressure behave approximately as ideal gases.

An ideal gas is a collection of atoms or molecules that move randomly and exert
no long-range forces on each other. Each particle of the ideal gas is individually
pointlike, occupying a negligible volume.

A gas usually consists of a very large number of particles, so it’s convenient to
express the amount of gas in a given volume in terms of the number of moles, \(n \).
A mole is a number. The same number of particles is found in a mole of helium as
in a mole of iron or aluminum. This number is known as Avogadro’s number and is
given by

\[
N_A = 6.02 \times 10^{23} \text{ particles/mole}
\]

Avogadro’s number and the definition of a mole are fundamental to chemistry
and related branches of physics. The number of moles of a substance is related to
its mass \(m \) by the expression

\[
n = \frac{m}{\text{molar mass}}
\]

where the molar mass of the substance is defined as the mass of one mole of that
substance, usually expressed in grams per mole.

There are lots of atoms in the world, so it’s natural and convenient to choose a
very large number like Avogadro’s number when describing collections of atoms.
At the same time, Avogadro’s number must be special in some way because other-
wise why not just count things in terms of some large power of ten, like \(10^{24} \)?

It turns out that Avogadro’s number was chosen so that the mass in grams of
one Avogadro’s number of an element is numerically the same as the mass of one
atom of the element, expressed in atomic mass units (u).

This relationship is very convenient. Looking at the periodic table of the ele-
ments in the back of the book, we find that carbon has an atomic mass of 12 u, so
12 g of carbon consists of exactly \(6.02 \times 10^{23} \) atoms of carbon. The atomic mass of
oxygen is 16 u, so in 16 g of oxygen there are again \(6.02 \times 10^{23} \) atoms of oxygen.
The same holds true for molecules: The molecular mass of molecular hydrogen,
\(\text{H}_2 \), is 2 u, and there is an Avogadro’s number of molecules in 2 g of molecular
hydrogen.

The technical definition of a mole is as follows: One mole (mol) of any substance
is that amount of the substance that contains as many particles (atoms, mole-
cules, or other particles) as there are atoms in 12 g of the isotope carbon-12.
Taking carbon-12 as a test case, let’s find the mass of an Avogadro’s number of carbon-12 atoms. A carbon-12 atom has an atomic mass of 12 u, or 12 atomic mass units. One atomic mass unit is equal to \(\frac{1.66 \times 10^{-24} \text{ g}}{\text{u}} \), about the same as the mass of a neutron or proton—particles that make up atomic nuclei. The mass \(m \) of an Avogadro’s number of carbon-12 atoms is then given by

\[
m = N_A (12 \text{ u}) = 6.02 \times 10^{23} (12 \text{ u}) \left(\frac{1.66 \times 10^{-24} \text{ g}}{\text{u}} \right) = 12.0 \text{ g}
\]

So we see that Avogadro’s number is deliberately chosen to be the inverse of the number of grams in an atomic mass unit. In this way the atomic mass of an atom expressed in atomic mass units is numerically the same as the mass of an Avogadro’s number of that kind of atom expressed in grams. Because there are \(6.02 \times 10^{23} \) particles in one mole of any element, the mass per atom for a given element is

\[
m_{\text{atom}} = \frac{\text{molar mass}}{N_A}
\]

For example, the mass of a helium atom is

\[
m_{\text{He}} = \frac{4.00 \text{ g/mol}}{6.02 \times 10^{23} \text{ atoms/mol}} = 6.64 \times 10^{-24} \text{ g/atom}
\]

Now suppose an ideal gas is confined to a cylindrical container with a volume that can be changed by moving a piston, as in Active Figure 10.12. Assume that the cylinder doesn’t leak, so the number of moles remains constant. Experiments yield the following observations: First, when the gas is kept at a constant temperature, its pressure is inversely proportional to its volume (Boyle’s law). Second, when the pressure of the gas is kept constant, the volume of the gas is directly proportional to the temperature (Charles’s law). Third, when the volume of the gas is held constant, the pressure is directly proportional to the temperature (Gay-Lussac’s law). These observations can be summarized by the following equation of state, known as the **ideal gas law**:

\[
P V = n R T
\]

(10.8)

In this equation \(R \) is a constant for a specific gas that must be determined from experiments, whereas \(T \) is the temperature in kelvins. Each point on a \(P \) versus \(V \) diagram would represent a different state of the system. Experiments on several gases show that, as the pressure approaches zero, the quantity \(P V / n T \) approaches the same value of \(R \) for all gases. For this reason, \(R \) is called the **universal gas constant**. In SI units, where pressure is expressed in pascals and volume in cubic meters,

\[
R = 8.31 \text{ J/mol·K}
\]

(10.9)

If the pressure is expressed in atmospheres and the volume is given in liters (recall that \(1 \text{ L} = 10^4 \text{ cm}^3 = 10^{-3} \text{ m}^3 \)), then

\[
R = 0.0821 \text{ L·atm/mol·K}
\]

Using this value of \(R \) and Equation 10.8, the volume occupied by 1 mol of any ideal gas at atmospheric pressure and at 0°C (273 K) is 22.4 L.

EXAMPLE 10.6 An Expanding Gas

Goal Use the ideal gas law to analyze a system of gas.

Problem An ideal gas at 20.0°C and a pressure of \(1.50 \times 10^5 \) Pa is in a container having a volume of 1.00 L. (a) Determine the number of moles of gas in the container. (b) The gas pushes against a piston, expanding to twice its original volume, while the pressure falls to atmospheric pressure. Find the final temperature.
In part (a) solve the ideal gas equation of state for the number of moles, \(n \), and substitute the known quantities. Be sure to convert the temperature from Celsius to Kelvin! When comparing two states of a gas as in part (b) it’s often most convenient to divide the ideal gas equation of the final state by the equation of the initial state. Then quantities that don’t change can immediately be cancelled, simplifying the algebra.

Solution

(a) Find the number of moles of gas.

Convert the temperature to kelvins:

\[
T = T_c + 273 = 20.0 + 273 = 293 \text{ K}
\]

Solve the ideal gas law for \(n \) and substitute:

\[
n = \frac{PV}{RT} = \frac{(1.50 \times 10^5 \text{ Pa})(1.00 \times 10^{-5} \text{ m}^3)}{(8.31 \text{ J/mol-K})(293 \text{ K})} = 6.16 \times 10^{-2} \text{ mol}
\]

(b) Find the temperature after the gas expands to 2.00 L.

Divide the ideal gas law for the final state by the ideal gas law for the initial state:

\[
\frac{P_f V_f}{n R T_f} = \frac{P_i V_i}{n R T_i}
\]

Cancel the number of moles \(n \) and the gas constant \(R \), and solve for \(T_f \):

\[
T_f = \frac{P_f V_f}{P_i V_i} T_i = \frac{(1.01 \times 10^5 \text{ Pa})(2.00 \text{ L})}{(1.50 \times 10^5 \text{ Pa})(1.00 \text{ L})}(293 \text{ K})
\]

\[
T_f = 395 \text{ K}
\]

Remark Remember the trick used in part (b); it’s often useful in ideal gas problems. Notice that it wasn’t necessary to convert units from liters to cubic meters because the units were going to cancel anyway.

QUESTION 10.6

Assuming constant temperature, does a helium balloon expand, contract, or remain at constant volume as it rises through the air?

EXERCISE 10.6

Suppose the temperature of 4.50 L of ideal gas drops from 375 K to 275 K. (a) If the volume remains constant and the initial pressure is atmospheric pressure, find the final pressure. (b) Find the number of moles of gas.

Answer (a) \(7.41 \times 10^4 \text{ Pa} \) (b) \(0.146 \text{ mol} \)

EXAMPLE 10.7 Message in a Bottle

Goal Apply the ideal gas law in tandem with Newton’s second law.

Problem A beachcomber finds a corked bottle containing a message. The air in the bottle is at atmospheric pressure and a temperature of 30.0°C. The cork has a cross-sectional area of 2.30 cm². The beachcomber places the bottle over a fire, figuring the increased pressure will push out the cork. At a temperature of 99°C the cork is ejected from the bottle. (a) What was the pressure in the bottle just before the cork left it? (b) What force of friction held the cork in place? Neglect any change in volume of the bottle.

Strategy In part (a) the number of moles of air in the bottle remains the same as it warms over the fire. Take the ideal gas equation for the final state and divide by the ideal gas equation for the initial state. Solve for the final pressure. In part (b) there are three forces acting on the cork: a friction force, the exterior force of the atmosphere pushing in, and the force of the air inside the bottle pushing out. Apply Newton’s second law. Just before the cork begins to move, the three forces are in equilibrium and the static friction force has its maximum value.
Solution

(a) Find the final pressure.

Divide the ideal gas law at the final point by the ideal gas law at the initial point:

\[\frac{P_f}{P_i} = \frac{nRT_f}{nRT_i} \]

Cancel \(n, R,\) and \(V,\) which don’t change, and solve for \(P_f:\)

\[P_f = \frac{T_f}{T_i} P_i \]

Substitute known values, obtaining the final pressure:

\[P_f = \left(1.01 \times 10^5 \text{ Pa}\right) \frac{372 \text{ K}}{303 \text{ K}} = 1.24 \times 10^5 \text{ Pa} \]

(b) Find the magnitude of the friction force acting on the cork.

Apply Newton’s second law to the cork just before it leaves the bottle. \(P_i\) is the pressure inside the bottle, and \(P_{\text{out}}\) is the pressure outside.

\[\begin{align*}
\sum F &= 0 \\
F_{\text{friction}} &= P_iA - P_{\text{out}}A - (P_i - P_{\text{out}})A \\
&= (1.24 \times 10^5 \text{ Pa} - 1.01 \times 10^5 \text{ Pa})(2.30 \times 10^{-4} \text{ m}^2) \\
F_{\text{friction}} &= 5.29 \text{ N}
\end{align*} \]

Remark Notice the use, once again, of the ideal gas law in Equation (1). Whenever comparing the state of a gas at two different points, this is the best way to do the math. One other point: Heating the gas blasted the cork out of the bottle, which meant the gas did work on the cork. The work done by an expanding gas—driving pistons and generators—is one of the foundations of modern technology and will be studied extensively in Chapter 12.

QUESTION 10.7

As the cork begins to move, what happens to the pressure inside the bottle?

EXERCISE 10.7

A tire contains air at a gauge pressure of \(5.00 \times 10^4 \text{ Pa}\) at a temperature of 30.0°C. After nightfall, the temperature drops to \(-10.0^\circ \text{C}\). Find the new gauge pressure in the tire. (Recall that gauge pressure is absolute pressure minus atmospheric pressure. Assume constant volume.)

Answer \(3.01 \times 10^4 \text{ Pa}\)

EXAMPLE 10.8 Submerging a Balloon

Goal Combine the ideal gas law with the equation of hydrostatic equilibrium and buoyancy.

Problem A sturdy balloon with volume \(0.500 \text{ m}^3\) is attached to a \(2.50 \times 10^2-\text{kg}\) iron weight and tossed overboard into a freshwater lake. The balloon is made of a light material of negligible mass and elasticity (although it can be compressed). The air in the balloon is initially at atmospheric pressure. The system fails to sink and there are no more weights, so a skin diver decides to drag it deep enough so that the balloon will remain submerged. (a) Find the volume of the balloon at the point where the system will remain submerged, in equilibrium. (b) What’s the balloon’s pressure at that point? (c) Assuming constant temperature, to what minimum depth must the balloon be dragged?

Strategy As the balloon and weight are dragged deeper into the lake, the air in the balloon is compressed and the volume is reduced along with the buoyancy. At some depth \(h\) the total buoyant force acting on the balloon and weight, \(B_{\text{bal}} + B_{\text{Fe}}\), will equal the total weight, \(w_{\text{bal}} + w_{\text{Fe}}\), and the balloon will remain at that depth. Substitute these forces into Newton’s second law and solve for the unknown volume of the balloon, answering part (a). Then use the ideal gas law to find the pressure, and the equation of hydrostatic equilibrium to find the depth.
Remark
Once again, the ideal gas law was used to good effect. This problem shows how even answering a fairly simple question can require the application of several different physical concepts: density, buoyancy, the ideal gas law, and hydrostatic equilibrium.

QUESTION 10.8
If a glass is turned upside down and then submerged in water, what happens to the volume of the trapped air as the glass is pushed deeper under water?

EXERCISE 10.8
A boy takes a 30.0-cm³ balloon holding air at 1.00 atm at the surface of a freshwater lake down to a depth of 4.00 m. Find the volume of the balloon at this depth. Assume the balloon is made of light material of little elasticity (although it can be compressed) and the temperature of the trapped air remains constant.

Answer 21.6 cm³
As previously stated, the number of molecules contained in one mole of any gas is Avogadro’s number, \(N_A = 6.02 \times 10^{23} \) particles/mol, so

\[
n = \frac{N}{N_A} \tag{10.10}
\]

where \(n \) is the number of moles and \(N \) is the number of molecules in the gas. With Equation 10.10, we can rewrite the ideal gas law in terms of the total number of molecules as

\[
PV = nRT = \frac{N}{N_A}RT
\]

or

\[
PV = Nk_B T \tag{10.11}
\]

where

\[
k_B = \frac{R}{N_A} = 1.38 \times 10^{-23} \text{ J/K} \tag{10.12}
\]

is Boltzmann’s constant. This reformulation of the ideal gas law will be used in the next section to relate the temperature of a gas to the average kinetic energy of particles in the gas.

10.5 THE KINETIC THEORY OF GASES

In Section 10.4 we discussed the macroscopic properties of an ideal gas, including pressure, volume, number of moles, and temperature. In this section we consider the ideal gas model from the microscopic point of view. We will show that the macroscopic properties can be understood on the basis of what is happening on the atomic scale. In addition, we reexamine the ideal gas law in terms of the behavior of the individual molecules that make up the gas.

Using the model of an ideal gas, we will describe the kinetic theory of gases. With this theory we can interpret the pressure and temperature of an ideal gas in terms of microscopic variables. The kinetic theory of gases model makes the following assumptions:

1. The number of molecules in the gas is large, and the average separation between them is large compared with their dimensions. Because the number of molecules is large, we can analyze their behavior statistically. The large separation between molecules means that the molecules occupy a negligible volume in the container. This assumption is consistent with the ideal gas model, in which we imagine the molecules to be pointlike.
2. The molecules obey Newton’s laws of motion, but as a whole they move randomly. By “randomly” we mean that any molecule can move in any direction with equal probability, with a wide distribution of speeds.
3. The molecules interact only through short-range forces during elastic collisions. This assumption is consistent with the ideal gas model, in which the molecules exert no long-range forces on each other.
4. The molecules make elastic collisions with the walls.
5. All molecules in the gas are identical.

Although we often picture an ideal gas as consisting of single atoms, molecular gases exhibit ideal behavior at low pressures. On average, effects associated with molecular structure have no effect on the motions considered, so we can apply the results of the following development to molecular gases as well as to monatomic gases.

Molecular Model for the Pressure of an Ideal Gas

As a first application of kinetic theory, we derive an expression for the pressure of an ideal gas in a container in terms of microscopic quantities. The pressure of the
gas is the result of collisions between the gas molecules and the walls of the container. During these collisions, the gas molecules undergo a change of momentum as a result of the force exerted on them by the walls.

We now derive an expression for the pressure of an ideal gas consisting of \(N \) molecules in a container of volume \(V \). In this section we use \(m \) to represent the mass of one molecule. The container is a cube with edges of length \(d \) (Fig. 10.13). Consider the collision of one molecule moving with a velocity \(-\mathbf{v}_x \) toward the left-hand face of the box (Fig. 10.14). After colliding elastically with the wall, the molecule moves in the positive \(x \)-direction with a velocity \(+\mathbf{v}_x \). Because the momentum of the molecule is \(-mv_x\) before the collision and \(+mv_x\) afterward, the change in its momentum is

\[
\Delta p_x = mv_x - (-mv_x) = 2mv_x.
\]

If \(F_1 \) is the magnitude of the average force exerted by a molecule on the wall in the \(x \)-direction with velocity \(\mathbf{v}_x \), then applying Newton’s second law to the wall gives

\[
F_1 = \frac{\Delta p_x}{\Delta t} = \frac{2mv_x}{\Delta t}.
\]

For the molecule to make two collisions with the same wall, it must travel a distance \(2d \) along the \(x \)-direction in a time \(\Delta t \). Therefore, the time interval between two collisions with the same wall is \(\Delta t = 2d/v_x \), and the force imparted to the wall by a single molecule is

\[
F_1 = \frac{2mv_x}{\Delta t} = \frac{2mv_x}{2d/v_x} = \frac{mv_x^2}{d}.
\]

The total force \(F \) exerted by all the molecules on the wall is found by adding the forces exerted by the individual molecules:

\[
F = \frac{Nm}{d} (v_{x1}^2 + v_{x2}^2 + \cdots)
\]

In this equation \(v_{x1} \) is the \(x \)-component of velocity of molecule 1, \(v_{x2} \) is the \(x \)-component of velocity of molecule 2, and so on. The summation terminates when we reach \(N \) molecules because there are \(N \) molecules in the container.

Note that the average value of the square of the speed in the \(x \)-direction for \(N \) molecules is

\[
\overline{v_x^2} = \frac{v_{x1}^2 + v_{x2}^2 + \cdots + v_{xN}^2}{N}
\]

where \(\overline{v_x^2} \) is the average value of \(v_x^2 \). The total force on the wall can then be written

\[
F = \frac{Nm}{d} \overline{v_x^2}
\]

Now we focus on one molecule in the container traveling in some arbitrary direction with velocity \(\mathbf{v} \) and having components \(v_x, v_y, \) and \(v_z \). In this case we must express the total force on the wall in terms of the speed of the molecules rather than just a single component. The Pythagorean theorem relates the square of the speed to the square of these components according to the expression

\[
v^2 = v_x^2 + v_y^2 + v_z^2.
\]

Hence, the average value of \(v^2 \) for all the molecules in the container is related to the average values \(\overline{v_x^2}, \overline{v_y^2}, \) and \(\overline{v_z^2} \) according to the expression

\[
v^2 = \overline{v_x^2} + \overline{v_y^2} + \overline{v_z^2}.
\]

Because the motion is completely random, the average values \(\overline{v_x^2}, \overline{v_y^2}, \) and \(\overline{v_z^2} \) are equal to each other. Using this fact and the earlier equation for \(\overline{v_x^2} \), we find that

\[
\overline{v_x^2} = \frac{1}{3} v^2.
\]

The total force on the wall, then, is

\[
F = \frac{N}{3} \left(\frac{mv^2}{d} \right)
\]
This expression allows us to find the total pressure exerted on the wall by dividing the force by the area:

\[P = \frac{F}{A} = \frac{F}{d} = \frac{1}{A} \left(\frac{N}{V} \right) \frac{1}{2} \frac{m v^2}{N} \]

Pressure of an ideal gas

Equation 10.13 says that **the pressure is proportional to the number of molecules per unit volume and to the average translational kinetic energy of a molecule, \(\frac{1}{2}mv^2 \).** With this simplified model of an ideal gas, we have arrived at an important result that relates the large-scale quantity of pressure to an atomic quantity: the average value of the square of the molecular speed. This relationship provides a key link between the atomic world and the large-scale world.

Equation 10.13 captures some familiar features of pressure. One way to increase the pressure inside a container is to increase the number of molecules per unit volume in the container. You do this when you add air to a tire. The pressure in the tire can also be increased by increasing the average translational kinetic energy of the molecules in the tire. As we will see shortly, this can be accomplished by increasing the temperature of the gas inside the tire. That’s why the pressure inside a tire increases as the tire warms up during long trips. The continuous flexing of the tires as they move along the road transfers energy to the air inside them, increasing the air’s temperature, which in turn raises the pressure.

Molecular Interpretation of Temperature

Having related the pressure of a gas to the average kinetic energy of the gas molecules, we now relate temperature to a microscopic description of the gas. We can obtain some insight into the meaning of temperature by multiplying Equation 10.13 by the volume:

\[PV = \frac{2}{3} N \left(\frac{1}{2} mv^2 \right) \]

Comparing this equation with the equation of state for an ideal gas in the form of Equation 10.11, \(PV = Nk_B T \), we note that the left-hand sides of the two equations are identical. Equating the right-hand sides, we obtain

\[T = \frac{2}{3} k_B \left(\frac{1}{2} mv^2 \right) \]

Temperature is proportional to average kinetic energy

This means that **the temperature of a gas is a direct measure of the average molecular kinetic energy of the gas.** As the temperature of a gas increases, the molecules move with higher average kinetic energy.

Rearranging Equation 10.14, we can relate the translational molecular kinetic energy to the temperature:

\[\frac{1}{2} mv^2 = \frac{3}{2} k_B T \]

Average kinetic energy per molecule

So the average translational kinetic energy per molecule is \(\frac{3}{2} k_B T \). The total translational kinetic energy of \(N \) molecules of gas is simply \(N \) times the average energy per molecule,

\[KE_{\text{total}} = N \left(\frac{1}{2} mv^2 \right) = \frac{3}{2} Nk_B T = \frac{3}{2} nRT \]

Total kinetic energy of \(N \) molecules

where we have used \(k_B = R/N_A \) for Boltzmann’s constant and \(n = N/N_A \) for the number of moles of gas. From this result, we see that **the total translational kinetic energy of a system of molecules is proportional to the absolute temperature of the system.**
For a monatomic gas, translational kinetic energy is the only type of energy the molecules can have, so Equation 10.16 gives the internal energy U for a monatomic gas:

$$U = \frac{3}{2}nRT \quad \text{(monatomic gas)}$$

[10.17]

For diatomic and polyatomic molecules, additional possibilities for energy storage are available in the vibration and rotation of the molecule.

The square root of \bar{v} is called the root-mean-square (rms) speed of the molecules. From Equation 10.15, we get, for the rms speed,

$$v_{\text{rms}} = \sqrt{\bar{v}} = \sqrt{\frac{3kT}{m}} = \sqrt{\frac{3RT}{M}}$$

[10.18]

where M is the molar mass in kilograms per mole, if R is given in SI units. Equation 10.18 shows that, at a given temperature, lighter molecules tend to move faster than heavier molecules. For example, if a gas in a vessel consists of a mixture of hydrogen and oxygen, the hydrogen (H$_2$) molecules, with a molar mass of 2.0×10^{-3} kg/mol, move four times faster than the oxygen (O$_2$) molecules, with molar mass 32×10^{-3} kg/mol. If we calculate the rms speed for hydrogen at room temperature (~ 300 K), we find

$$v_{\text{rms}} = \sqrt{\frac{3RT}{M}} = \sqrt{\frac{3(8.31 \text{ J/mol} \cdot \text{K})(300 \text{ K})}{2.0 \times 10^{-3} \text{ kg/mol}}} = 1.9 \times 10^3 \text{ m/s}$$

This speed is about 17% of the escape speed for Earth, as calculated in Chapter 7. Because it is an average speed, a large number of molecules have much higher speeds and can therefore escape from Earth’s atmosphere. This is why Earth’s atmosphere doesn’t currently contain hydrogen; it has all bled off into space.

Table 10.2 (page 344) lists the rms speeds for various molecules at 20°C. A system of gas at a given temperature will exhibit a variety of speeds. This distribution of speeds is known as the Maxwell velocity distribution. An example of such a distribution for nitrogen gas at two different temperatures is given in Active Figure 10.15. The horizontal axis is speed, and the vertical axis is the number of molecules per unit speed. Notice that three speeds are of special interest: the most probable speed, corresponding to the peak in the graph; the average speed, which is found by averaging over all the possible speeds; and the rms speed. For every gas, note that $v_{\text{mp}} < v_{\text{av}} < v_{\text{rms}}$. As the temperature rises, these three speeds shift to the right.

QUICK QUIZ 10.5 One container is filled with argon gas and another with helium gas. Both containers are at the same temperature. Which atoms have the higher rms speed? (a) argon, (b) helium, (c) they have the same speed, or (d) not enough information to say.

ACTIVE FIGURE 10.15

The Maxwell speed distribution for 10^5 nitrogen molecules at 300 K and 900 K. The total area under either curve equals the total number of molecules. The most probable speed v_{mp}, the average speed v_{av}, and the root-mean-square speed v_{rms} are indicated for the 900-K curve.
Chapter 10 Thermal Physics

Imagine a gas in an insulated cylinder with a movable piston. The piston has been pushed inward, compressing the gas, and is now released. As the molecules of the gas strike the piston, they move it outward. Explain, from the point of view of the kinetic theory, how the expansion of this gas causes its temperature to drop.

Explanation

From the point of view of kinetic theory, a molecule colliding with the piston causes the piston to move with some velocity. According to the conservation of momentum, the molecule must rebound with less speed than it had before the collision. As these collisions occur, the average speed of the collection of molecules is therefore reduced. Because temperature is related to the average speed of the molecules, the temperature of the gas drops.

APPLYING PHYSICS 10.2 EXPANSION AND TEMPERATURE

Imagine a gas in an insulated cylinder with a movable piston. The piston has been pushed inward, compressing the gas, and is now released. As the molecules of the gas strike the piston, they move it outward. Explain, from the point of view of the kinetic theory, how the expansion of this gas causes its temperature to drop.

Explanation

From the point of view of kinetic theory, a molecule colliding with the piston causes the piston to move with some velocity. According to the conservation of momentum, the molecule must rebound with less speed than it had before the collision. As these collisions occur, the average speed of the collection of molecules is therefore reduced. Because temperature is related to the average speed of the molecules, the temperature of the gas drops.

EXAMPLE 10.9 A Cylinder of Helium

Goal

Calculate the internal energy of a system and the average kinetic energy per molecule.

Problem

A cylinder contains 2.00 mol of helium gas at 20.0°C. Assume the helium behaves like an ideal gas. (a) Find the total internal energy of the system. (b) What is the average kinetic energy per molecule? (c) How much energy would have to be added to the system to double the rms speed? The molar mass of helium is equal to 4.00×10^{-3} kg/mol.

Strategy

This problem requires substitution of given information into the appropriate equations: Equation 10.17 for part (a) and Equation 10.15 for part (b). In part (c) use the equations for the rms speed and internal energy together. A change in the internal energy must be computed.

Solution

(a) Find the total internal energy of the system.

Substitute values into Equation 10.17 with $n = 2.00$ and $T = 293$ K:

$$U = \frac{3}{2}(2.00 \text{ mol})(8.31 \text{ J/mol·K})(293 \text{ K}) = 7.30 \times 10^3 \text{ J}$$

(b) What is the average kinetic energy per molecule?

Substitute given values into Equation 10.15:

$$\frac{1}{2}mv^2 = \frac{3}{2}kT = \frac{3}{2}(1.38 \times 10^{-23} \text{ J/K})(293 \text{ K}) = 6.07 \times 10^{-21} \text{ J}$$

TABLE 10.2 Some rms Speeds

<table>
<thead>
<tr>
<th>Gas</th>
<th>Molar Mass (kg/mol)</th>
<th>v_{rms} at 20°C (m/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>H₂</td>
<td>2.02×10^{-3}</td>
<td>1902</td>
</tr>
<tr>
<td>He</td>
<td>4.0×10^{-3}</td>
<td>1352</td>
</tr>
<tr>
<td>H₂O</td>
<td>18×10^{-3}</td>
<td>637</td>
</tr>
<tr>
<td>Ne</td>
<td>20.2×10^{-3}</td>
<td>602</td>
</tr>
<tr>
<td>N₂ and CO</td>
<td>28.0×10^{-3}</td>
<td>511</td>
</tr>
<tr>
<td>NO</td>
<td>30.0×10^{-3}</td>
<td>494</td>
</tr>
<tr>
<td>O₂</td>
<td>32.0×10^{-3}</td>
<td>478</td>
</tr>
<tr>
<td>CO₂</td>
<td>44.0×10^{-3}</td>
<td>408</td>
</tr>
<tr>
<td>SO₂</td>
<td>64.1×10^{-3}</td>
<td>338</td>
</tr>
</tbody>
</table>
Remark Computing changes in internal energy will be important in understanding engine cycles in Chapter 12.

QUESTION 10.9
True or False: At the same temperature, 1 mole of helium gas has the same internal energy as 1 mole of argon gas.

EXERCISE 10.9
The temperature of 5.00 moles of argon gas is lowered from 3.00×10^2 K to 2.40×10^2 K. (a) Find the change in the internal energy, ΔU, of the gas. (b) Find the change in the average kinetic energy per atom.

Answer (a) $\Delta U = -3.74 \times 10^3$ J (b) -1.24×10^{-21} J

SUMMARY

10.1 Temperature and the Zeroth Law of Thermodynamics
Two systems are in thermal contact if energy can be exchanged between them, and in thermal equilibrium if they’re in contact and there is no net exchange of energy. The exchange of energy between two objects because of differences in their temperatures is called heat.

The zeroth law of thermodynamics states that if two objects A and B are separately in thermal equilibrium with a third object, then A and B are in thermal equilibrium with each other. Equivalently, if the third object is a thermometer, then the temperature it measures for A and B will be the same. Two objects in thermal equilibrium are at the same temperature.

10.2 Thermometers and Temperature Scales
Thermometers measure temperature and are based on physical properties, such as the temperature-dependent expansion or contraction of a solid, liquid, or gas. These changes in volume are related to a linear scale, the most common being the Fahrenheit, Celsius, and Kelvin scales.

The Kelvin temperature scale takes its zero point at absolute zero (0 K = -273.15 °C), the point at which, by extrapolation, the pressure of all gases falls to zero.

The relationship between the Celsius temperature T_C and the Kelvin (absolute) temperature T is

$$T_C = T - 273.15 \quad [10.1]$$

The relationship between the Fahrenheit and Celsius temperatures is

$$T_F = \frac{9}{5}T_C + 32 \quad [10.2a]$$

10.3 Thermal Expansion of Solids and Liquids
Ordinarily a substance expands when heated. If an object has an initial length L_o at some temperature and undergoes a change in temperature ΔT, its linear dimension changes by the amount ΔL, which is proportional to the object’s initial length and the temperature change:

$$\Delta L = \alpha L_o \Delta T \quad [10.4]$$

The parameter α is called the coefficient of linear expansion. The change in area of a substance with change in temperature is given by

$$\Delta A = \gamma A_o \Delta T \quad [10.5]$$

where $\gamma = 2\alpha$ is the coefficient of area expansion. Similarly, the change in volume with temperature of most substances is proportional to the initial volume V_o and the temperature change ΔT:

$$\Delta V = \beta V_o \Delta T \quad [10.6]$$

where $\beta = 3\alpha$ is the coefficient of volume expansion.

The expansion and contraction of material due to changes in temperature creates stresses and strains, sometimes sufficient to cause fracturing.

10.4 Macroscopic Description of an Ideal Gas
Avogadro’s number is $N_A = 6.02 \times 10^{23}$ particles/mol. A mole of anything, by definition, consists of an Avogadro’s number of particles. The number is defined so that one mole of carbon-12 atoms has a mass of exactly 12 g. The mass of one mole of a pure substance in grams is the same, numerically, as that substance’s atomic (or molecular) mass.
An ideal gas obeys the equation

\[P V = nRT \] \[10.8\]

where \(P \) is the pressure of the gas, \(V \) is its volume, \(n \) is the number of moles of gas, \(R \) is the universal gas constant (8.31 J/mol·K), and \(T \) is the absolute temperature in kelvins. A real gas at very low pressures behaves approximately as an ideal gas.

Solving problems usually entails comparing two different states of the same system of gas, dividing the ideal gas equation for the final state by the ideal gas equation for the initial state, canceling factors that don’t change, and solving for the unknown quantity.

10.5 The Kinetic Theory of Gases

The pressure of \(N \) molecules of an ideal gas contained in a volume \(V \) is given by

\[P = \frac{1}{3} \left(\frac{N}{V} \right) \left(\frac{1}{2} m \bar{v}^2 \right) \] \[10.13\]

where \(\frac{1}{2} m \bar{v}^2 \) is the average kinetic energy per molecule.

The average kinetic energy of the molecules of a gas is directly proportional to the absolute temperature of the gas:

\[\frac{1}{2} m \bar{v}^2 = \frac{1}{2} k_B T \] \[10.15\]

The quantity \(k_B \) is Boltzmann’s constant \((1.38 \times 10^{-23} \text{ J/K})\).

The internal energy of \(n \) moles of a monatomic ideal gas is

\[U = \frac{3}{2} nRT \] \[10.17\]

The root-mean-square (rms) speed of the molecules of a gas is

\[v_{\text{rms}} = \sqrt{\frac{3k_B T}{m}} = \sqrt{\frac{3RT}{M}} \] \[10.18\]

MULTIPLE-CHOICE QUESTIONS

1. On a very cold day in upstate New York, the temperature is −25°C, which is equivalent to what temperature in Fahrenheit? (a) −46°F (b) −77°F (c) 18°F (d) 298 K (e) −13°F

2. Convert 162°F to the equivalent temperature in Kelvin. (a) 373 K (b) 288 K (c) 345 K (d) 201 K (e) 308 K

3. The Statue of Liberty is 93 m tall on a summer morning when the temperature is 20°C. If the temperature of the statue rises from 20°C to 30°C, what is the order of magnitude of the statue’s increase in height? Choose the best estimate, treating the statue as though it were solid copper. (a) 0.1 mm (b) 1 mm (c) 1 cm (d) 10 cm (e) 1 m

4. A hole is drilled in a metal plate. When the metal is heated, what happens to the diameter of the hole? (a) It decreases. (b) It increases. (c) It remains the same. (d) The answer depends on the initial temperature of the metal. (e) None of these

5. A container holds 0.50 m³ of oxygen at an absolute pressure of 4.0 atm. A valve is opened, allowing the gas to drive a piston, increasing the volume of the gas until the pressure drops to 1.0 atm. If the temperature remains constant, what new volume does the gas occupy? (a) 1.0 m³ (b) 1.5 m³ (c) 2.0 m³ (d) 0.12 m³ (e) 2.5 m³

6. If the volume of an ideal gas is doubled while its temperature is quadrupled, does the pressure (a) remain the same, (b) decrease by a factor of 2, (c) decrease by a factor of 4, (d) increase by a factor of 2, or (e) increase by a factor of 4?

7. One way to cool a gas is to let it expand. When a certain gas under a pressure of 5.00 \(\times 10^6 \) Pa at 25.0°C is allowed to expand to 3.00 times its original volume, its final pressure is 1.07 \(\times 10^6 \) Pa. What is its final temperature? (a) 177°C (b) 293 K (c) 212 K (d) 191 K (e) 115 K

8. What is the internal energy of 26.0 g of neon gas at a temperature of 152°C? (a) 2 440 J (b) 6 830 J (c) 3 140 J (d) 5 870 J (e) 5 020 J

9. Find the root-mean-square speed of a methane gas molecule (CH₄) at 25.0°C. (a) 545 m/s (b) 681 m/s (c) 724 m/s (d) 428 m/s (e) 343 m/s

10. Which of the assumptions below is not made in the kinetic theory of gases? (a) The number of molecules is very small. (b) The molecules obey Newton’s laws of motion. (c) The collisions between molecules are elastic. (d) The gas is a pure substance. (e) The average separation between molecules is large compared with their dimensions.

11. Suppose for a brief moment the gas molecules hitting a wall stuck to the wall instead of bouncing off the wall. How would the pressure on the wall be affected during that brief time? (a) The pressure would be zero.
(b) The pressure would be halved. (c) The pressure would remain unchanged. (d) The pressure would double. (e) The answer would depend on the area of the wall.

12. If the temperature of an ideal gas is increased from 200 K to 600 K, what happens to the rms speed of the molecules? (a) It increases by a factor of 3. (b) It remains the same. (c) It is one third of the original speed. (d) It is \(\sqrt{3}\) times the original speed. (e) It increases by a factor of 6.
The respective pressures are 0.900 atm and 1.635 atm. (a) What value of absolute zero does the calibration yield? (b) What pressures would be found at the freezing and boiling points of water? (Note that we have the linear relationship \(P = A + BT \), where \(A \) and \(B \) are constants.)

7. Show that if the temperature on the Celsius scale changes by \(\Delta T_C \), the Fahrenheit temperature changes by \(\Delta T_F = \frac{5}{9} \Delta T_C \).

8. The temperature difference between the inside and the outside of a home on a cold winter day is 57.0°F. Express this difference on (a) the Celsius scale and (b) the Kelvin scale.

9. A nurse measures the temperature of a patient to be 43°C. What is this temperature on the Fahrenheit scale? Do you think the patient is seriously ill? Explain.

10. Temperature differences on the Rankine scale are identical to differences on the Fahrenheit scale, but absolute zero is given as 0°F. (a) Find a relationship converting the temperatures \(T_F \) of the Fahrenheit scale to the corresponding temperatures \(T_R \) of the Rankine scale. (b) Find a second relationship converting temperatures \(T_R \) of the Rankine scale to the temperatures \(T_F \) of the Kelvin scale.

SECTION 10.3 THERMAL EXPANSION OF SOLIDS AND LIQUIDS

11. The New River Gorge bridge in West Virginia is a 518-m-long steel arch. How much will its length change between temperature extremes of −20°C and 35°C?

12. A grandfather clock is controlled by a swinging brass pendulum that is 1.3 m long at a temperature of 20°C. (a) What is the length of the pendulum rod when the temperature drops to 0.0°C? (b) If a pendulum’s period is given by \(T = 2\pi \sqrt{L/g} \), where \(L \) is its length, does the change in length of the rod cause the clock to run fast or slow?

13. A pair of eyeglass frames are made of epoxy plastic (coefficient of linear expansion = \(1.30 \times 10^{-4} \)°C\(^{-1}\)). At room temperature (20.0°C), the frames have circular lens holes 2.20 cm in radius. To what temperature must the frames be heated if lenses 2.21 cm in radius are to be inserted into them?

14. A spherical steel ball bearing has a diameter of 2.540 cm at 25°C. (a) What is its diameter when its temperature is raised to 100°C? (b) What temperature change is required to increase its volume by 1%?

15. A brass ring of diameter 10.00 cm at 20.0°C is heated and slipped over an aluminum rod of diameter 10.01 cm at 20.0°C. Assuming the average coefficients of linear expansion are constant, (a) to what temperature must the combination be cooled to separate the two metals? Is that temperature attainable? (b) What if the aluminum rod were 10.02 cm in diameter?

16. A solid substance has a density \(\rho_0 \) at a temperature \(T_0 \). If its temperature is increased by an amount \(\Delta T \), show that its higher temperature is given by

\[
\rho = \rho_0 \left(1 + \beta \Delta T \right)
\]

17. Lead has a density of \(11.3 \times 10^3 \) kg/m\(^3\) at 0°C. (a) What is the density of lead at 90°C? (b) Based on your answer to part (a), now consider a situation in which you plan to invest in a gold bar. Would you be better off buying it on a warm day? Explain.

18. A copper wire with length 10.0 m and cross-sectional area 2.40 \(\times 10^{-5} \) m\(^2\) is stretched taut between two poles under a tension of 75.0 N. What is the tension in the wire when the temperature falls by 10.0°C?

19. An underground gasoline tank can hold 1.00 \(\times 10^3 \) gallons of gasoline at 52.0°F. If the tank is being filled on a day when the outdoor temperature (and the gasoline in a tanker truck) is 95.0°F, how many gallons from the truck can be poured into the tank? Assume the temperature of the gasoline quickly cools from 95.0°F to 52.0°F upon entering the tank.

20. Show that the coefficient of volume expansion, \(\beta \), is related to the coefficient of linear expansion, \(\alpha \), through the expression \(\beta = 3\alpha \).

21. A gold ring has an inner diameter of 2.168 cm at a temperature of 15.0°C. Determine its inner diameter at 100°C (\(\alpha_{\text{gold}} = 1.42 \times 10^{-5} \)°C\(^{-1}\)).

22. A construction worker uses a steel tape to measure the length of an aluminum support column. If the measured length is 18,700 m when the temperature is 21.2°C, what is the measured length when the temperature rises to 29.4°C? (Note: Don’t neglect the expansion of the tape.)

23. The band in Figure P10.23 is stainless-steel (coefficient of linear expansion = \(17.8 \times 10^{-6} \)°C\(^{-1}\); Young’s modulus = \(18 \times 10^10 \) N/m\(^2\)). It is essentially circular with an initial mean radius of 5.0 mm, a height of 4.0 mm, and a thickness of 0.50 mm. If the band just fits snugly over the tooth when heated to a temperature of 80°C, what is the tension in the band when it cools to a temperature of 37°C?

24. The Trans-Alaskan pipeline is 1,300 km long, reaching from Prudhoe Bay to the port of Valdez, and is subject to temperatures ranging from −73°C to +35°C. How much does the steel pipeline expand due to the difference in temperature? How can this expansion be compensated for?

25. The average coefficient of volume expansion for carbon tetrachloride is \(5.81 \times 10^{-4} \)°C\(^{-1}\). If a 50.0-gal container is filled completely with carbon tetrachloride when the temperature is 10.0°C, how much will spill over when the temperature rises to 30.0°C?

26. The density of gasoline is \(7.30 \times 10^3 \) kg/m\(^3\) at 0°C. Its average coefficient of volume expansion is \(9.60 \times 10^{-4} \)°C\(^{-1}\), and note that 1.00 gal = 0.003 80 m\(^3\). (a) Calculate the mass of 10.0 gal of gas at 0°C. (b) If 1.000 m\(^3\) of gasoline at 0°C is warmed by 20.0°C, calculate its new volume. (c) Using the answer to part (b), calculate the density of gasoline at 20.0°C. (d) Calculate the mass of 10.0 gal of gas at 20.0°C. (e) How many extra kilograms of gasoline...
would you get if you bought 10.0 gal of gasoline at 0°C rather than at 20.0°C from a pump that is not temperature compensated?

27. Figure P10.27 shows a circular steel casting with a gap. If the casting is heated, (a) does the width of the gap increase or decrease? (b) The gap width is 1.600 cm when the temperature is 30.0°C. Determine the gap width when the temperature is 190°C.

![Figure P10.27](image)

28. On a day when the temperature is 20.0°C, a concrete walk is poured in such a way that its ends are unable to move. (a) What is the stress in the cement when its temperature is 50.0°C on a hot, sunny day? (b) Does the concrete fracture? Take Young’s modulus for concrete to be 7.00 × 10^10 N/m² and the compressive strength to be 2.00 × 10^8 N/m².

SECTION 10.4 MACROSCOPIC DESCRIPTION OF AN IDEAL GAS

29. One mole of oxygen gas is at a pressure of 6.00 atm and a temperature of 27.0°C. (a) If the gas is heated at constant volume until the pressure triples, what is the final temperature? (b) If the gas is heated so that both the pressure and volume are doubled, what is the final temperature?

30. A 20.0-L tank of carbon dioxide gas (CO₂) is at a pressure of 9.50 × 10^5 Pa and temperature of 19.0°C. (a) Calculate the temperature of the gas in Kelvin. (b) Use the ideal gas law to calculate the number of moles of gas in the tank. (c) Use the periodic table to compute the molecular weight of carbon dioxide, expressing it in grams per mole. (d) Obtain the number of grams of carbon dioxide in the tank. (e) A fire breaks out, raising the ambient temperature by 224.0 K while 82.0 g of gas leak out of the tank. Calculate the new temperature and the number of moles of gas remaining in the tank. (f) Using a technique analogous to that in Example 10.6b, find a symbolic expression for the final pressure, neglecting the change in volume of the tank. (g) Calculate the final pressure in the tank as a result of the fire and leakage.

31. (a) An ideal gas occupies a volume of 1.0 cm³ at 20°C and atmospheric pressure. Determine the number of molecules of gas in the container. (b) If the pressure of the 1.0-cm³ volume is reduced to 1.0 × 10⁻¹¹ Pa (an extremely good vacuum) while the temperature remains constant, how many moles of gas remain in the container?

32. A tank having a volume of 0.100 m³ contains helium gas at 150 atm. How many balloons can the tank blow up if each filled balloon is a sphere 0.300 m in diameter at an absolute pressure of 1.20 atm?

33. Gas is confined in a tank at a pressure of 11.0 atm and a temperature of 25.0°C. If two thirds of the gas is withdrawn and the temperature is raised to 75.0°C, what is the new pressure in the tank?

34. A rigid tank contains 1.50 moles of an ideal gas. Determine the number of moles of gas that must be withdrawn from the tank to lower the pressure of the gas from 25.0 atm to 5.00 atm. Assume the volume of the tank and the temperature of the gas remain constant during this operation.

35. A weather balloon is designed to expand to a maximum radius of 20 m at its working altitude, where the air pressure is 0.030 atm and the temperature is 298 K. If the balloon is filled at atmospheric pressure and 300 K, what is its radius at liftoff?

36. The density of helium gas at T = 0°C is ρ₁ = 0.179 kg/m³. The temperature is then raised to T = 100°C, but the pressure is kept constant. Assuming the helium is an ideal gas, calculate the new density ρ₂ of the gas.

37. An air bubble has a volume of 1.50 cm³ when it is released by a submarine 100 m below the surface of a lake. What is the volume of the bubble when it reaches the surface? Assume the temperature and the number of air molecules in the bubble remain constant during its ascent.

38. The ideal gas law can be recast in terms of the density of a gas. (a) Use dimensional analysis to find an expression for the density ρ of a gas in terms of the number of moles n, the volume V, and the molecular weight M in kilograms per mole. (b) With the expression found in part (a), show that

\[P = \frac{ρ M}{V} \]

for an ideal gas. (c) Find the density of the carbon dioxide atmosphere at the surface of Venus, where the pressure is 90.0 atm and the temperature is 7.00 × 10^2 K. (d) Would an evacuated steel shell of radius 1.00 m and mass 2.00 × 10^2 kg rise or fall in such an atmosphere? Why?

SECTION 10.5 THE KINETIC THEORY OF GASES

39. What is the average kinetic energy of a molecule of oxygen at a temperature of 300 K?

40. A sealed cubical container 20.0 cm on a side contains three times Avogadro’s number of molecules at a temperature of 20.0°C. Find the force exerted by the gas on one of the walls of the container.

41. Use Avogadro’s number to find the mass of a helium atom.

42. The rms speed of an oxygen molecule (O₂) in a container of oxygen gas is 625 m/s. What is the temperature of the gas?

43. An ideal gas in a container is at a temperature of 77.0°C. What is the average translational kinetic energy of a gas molecule in the container?

44. A 7.00-L vessel contains 3.50 moles of ideal gas at a pressure of 1.60 × 10^5 Pa. Find (a) the temperature of the gas and (b) the average kinetic energy of a gas molecule in the vessel. (c) What additional information would you need if you were asked to find the average speed of a gas molecule?

45. Superman leaps in front of Lois Lane to save her from a volley of bullets. In a 1-minute interval, an automatic weapon fires 150 bullets, each of mass 8.0 g, at 400 m/s.
The bullets strike his mighty chest, which has an area of 0.75 m². Find the average force exerted on Superman’s chest if the bullets bounce back after an elastic, head-on collision.

46. In a period of 1.0 s, 5.0×10^{23} nitrogen molecules strike a wall of area 8.0 cm². If the molecules move at 300 m/s and strike the wall head on in a perfectly elastic collision, find the pressure exerted on the wall. (The mass of one N₂ molecule is 4.68×10^{-26} kg.)

ADDITIONAL PROBLEMS

47. Inside the wall of a house, an L-shaped section of hot-water pipe consists of a straight horizontal piece 28.0 cm long, an elbow, and a straight vertical piece 134 cm long (Fig. P10.47). A stud and a second-story floorboard hold the ends of this section of copper pipe stationary. Find the magnitude and direction of the displacement of the pipe elbow when the water flow is turned on, raising the temperature of the pipe from 18.0°C to 46.5°C.

48. The active element of a certain laser is an ordinary glass rod 20 cm long and 1.0 cm in diameter. If the temperature of the rod increases by 75°C, find its increases in (a) length, (b) diameter, and (c) volume.

49. A popular brand of cola contains 6.50 g of carbon dioxide is trapped in a cylinder at 1.00 atm and the boiling point is 80°. (a) Find a formula converting Réaumer (1683–1757), the freezing point of water is 0°. (b) What is 98.6°F on Réaumer’s scale?

50. On the scale invented by French scientist R. A. F. de Réaumer (1683–1757), the freezing point of water is 0° but the boiling point is 80°. (a) Find a formula converting temperatures T_f in Fahrenheit to the temperatures T_{eg} of this scale. (b) What is 98.6°F on Réaumer’s scale?

51. A bicycle tire is inflated to a gauge pressure of 2.5 atm when the temperature is 15°C. While a man is riding the bicycle, the temperature of the tire increases to 45°C. Assuming the volume of the tire does not change, what is the gauge pressure in the tire at the higher temperature?

52. A 1.5-m-long glass tube that is closed at one end is weighted and lowered to the bottom of a freshwater lake. When the tube is recovered, an indicator mark shows that water rose to within 0.40 m of the closed end. Determine the depth of the lake. Assume constant temperature.

53. Long-term space missions require reclamation of the oxygen in the carbon dioxide exhaled by the crew. In one method of reclamation, 1.00 mol of carbon dioxide produces 1.00 mol of oxygen, with 1.00 mol of methane as a by-product. The methane is stored in a tank under pressure and is available to control the attitude of the spacecraft by controlled venting. A single astronaut exhales 1.09 kg of carbon dioxide each day. If the methane generated in the recycling of three astronauts’ respiration during one week of flight is stored in an originally empty 150-L tank at −45.0°C, what is the final pressure in the tank?

54. A vertical cylinder of cross-sectional area A is fitted with a tight-fitting, frictionless piston of mass m (Fig. P10.54). (a) If n moles of an ideal gas are in the cylinder at a temperature of T, use Newton’s second law for equilibrium to show that the height h at which the piston is in equilibrium under its own weight is given by

$$h = \frac{nRT}{mg + P_O A}$$

where P_O is atmospheric pressure. (b) Is the pressure inside the cylinder less than, equal to, or greater than atmospheric pressure? (c) If the gas in the cylinder is warmed, how would the answer for h be affected?

55. A flask made of Pyrex is calibrated at 20.0°C. It is filled to the 100-mL mark on the flask with 35.0°C acetone. (a) What is the volume of the acetone when both it and the flask cool to 20.0°C? (b) Would the temporary increase in the Pyrex flask’s volume make an appreciable difference in the answer? Why or why not?

56. The pressure gauge on a cylinder of gas registers the gauge pressure, which is the difference between the interior and exterior pressure, P_{gauge}. When the cylinder is full, the mass of the gas in it is m, at a gauge pressure of P_g. Assuming the temperature of the cylinder remains constant, use the ideal gas law and a relationship between moles and mass to show that the mass of the gas remaining in the cylinder when the gauge pressure reading is P_f is given by

$$m_f = m \left(\frac{P_f + P_{\text{gauge}}}{P_g + P_{\text{gauge}}} \right)$$

57. A liquid with a coefficient of volume expansion of β just fills a spherical flask of volume V_a at temperature T (Fig. P10.57). The flask is made of a material that has a coefficient of linear expansion of α. The liquid is free to expand into a capillary of cross-sectional area A at the top. (a) Show that if the temperature increases by ΔT, the liquid rises in the capillary by the amount $\Delta h = (V_a/A)(\beta - 3\alpha)\Delta T$. (b) For a typical system, such as a mercury thermometer, why is it a good approximation to neglect the expansion of the flask?
58. Before beginning a long trip on a hot day, a driver inflates an automobile tire to a gauge pressure of 1.80 atm at 300 K. At the end of the trip, the gauge pressure has increased to 2.20 atm. (a) Assuming the volume has remained constant, what is the temperature of the air inside the tire? (b) What percentage of the original mass of air in the tire should be released so the pressure returns to its original value? Assume the temperature remains at the value found in part (a) and the volume of the tire remains constant as air is released.

59. Two concrete spans of a 250-m-long bridge are placed end to end so that no room is allowed for expansion (Fig. P10.59a). If the temperature increases by 20.0°C, what is the height y to which the spans rise when they buckle (Fig. P10.59b)?

60. An expandable cylinder has its top connected to a spring with force constant 2.00×10^3 N/m (Fig. P10.60). The cylinder is filled with 5.00 L of gas with the spring relaxed at a pressure of 1.00 atm and a temperature of 20.0°C. (a) If the lid has a cross-sectional area of 0.0100 m² and negligible mass, how high will the lid rise when the temperature is raised to 250°C? (b) What is the pressure of the gas at 250°C?

61. A bimetallic bar is made of two thin strips of dissimilar metals bonded together. As they are heated, the one with the larger average coefficient of expansion expands more than the other, forcing the bar into an arc, with the outer strip having both a larger radius and a larger circumference (Fig. P10.61). (a) Derive an expression for the angle of bending, θ, as a function of the initial length of the strips, their average coefficients of linear expansion, the change in temperature, and the separation of the centers of the strips ($\Delta r = r_2 - r_1$). (b) Show that the angle of bending goes to zero when ΔT goes to zero or when the two coefficients of expansion become equal. (c) What happens if the bar is cooled?

62. A 250-m-long bridge is improperly designed so that it cannot expand with temperature. It is made of concrete with $a = 12 \times 10^{-6}$ °C$^{-1}$. (a) Assuming the maximum change in temperature at the site is expected to be 20°C, find the change in length the span would undergo if it were free to expand. (b) Show that the stress on an object with Young’s modulus Y when raised by ΔT with its ends firmly fixed is given by $aY\Delta T$. (c) If the maximum stress the bridge can withstand without crumbling is 2.0×10^7 Pa, will it crumble because of this temperature increase? Young’s modulus for concrete is about 2.0×10^{10} Pa.

63. When the hot water in a certain upstairs bathroom is turned on, a series of 18 “ticks” is heard as the copper hot-water pipe slowly heats up and increases in length. The pipe runs vertically from the hot-water heater in the basement, through a hole in the floor 5.0 m above the water heater. The “ticks” are caused by the pipe sticking in the hole in the floor until the tension in the expanding pipe is great enough to unstick the pipe, enabling it to jump a short distance through the hole. If the hot-water temperature is 46°C and the room temperature is 20°C, determine (a) the distance the pipe moves with each “tick” and (b) the force required to unstick the pipe if the cross-sectional area of the copper in the pipe is 3.55×10^{-3} m².

64. Two small containers, each with a volume of 100 cm³, contain helium gas at 0°C and 1.00 atm pressure. The two containers are joined by a small open tube of negligible volume, allowing gas to flow from one container to the other. What common pressure will exist in the two containers if the temperature of one container is raised to 100°C while the other container is kept at 0°C?
ENERGY IN THERMAL PROCESSES

When two objects with different temperatures are placed in thermal contact, the temperature of the warmer object decreases while the temperature of the cooler object increases. With time they reach a common equilibrium temperature somewhere in between their initial temperatures. During this process, we say that energy is transferred from the warmer object to the cooler one.

Until about 1850 the subjects of thermodynamics and mechanics were considered two distinct branches of science, and the principle of conservation of energy seemed to describe only certain kinds of mechanical systems. Experiments performed by English physicist James Joule (1818–1889) and others showed that the decrease in mechanical energy (kinetic plus potential) of an isolated system was equal to the increase in internal energy of the system. Today, internal energy is treated as a form of energy that can be transformed into mechanical energy and vice versa. Once the concept of energy was broadened to include internal energy, the law of conservation of energy emerged as a universal law of nature.

This chapter focuses on some of the processes of energy transfer between a system and its surroundings.

11.1 HEAT AND INTERNAL ENERGY

A major distinction must be made between heat and internal energy. These terms are not interchangeable: Heat involves a transfer of internal energy from one location to another. The following formal definitions will make the distinction precise.
Internal energy U is the energy associated with the atoms and molecules of the system. The internal energy includes kinetic and potential energy associated with the random translational, rotational, and vibrational motion of the particles that make up the system, and any potential energy bonding the particles together.

In Chapter 10 we showed that the internal energy of a monatomic ideal gas is associated with the translational motion of its atoms. In this special case, the internal energy is the total translational kinetic energy of the atoms; the higher the temperature of the gas, the greater the kinetic energy of the atoms and the greater the internal energy of the gas. For more complicated diatomic and polyatomic gases, internal energy includes other forms of molecular energy, such as rotational kinetic energy and the kinetic and potential energy associated with molecular vibrations. Internal energy is also associated with the intermolecular potential energy (“bond energy”) between molecules in a liquid or solid.

Heat was introduced in Chapter 5 as one possible method of transferring energy between a system and its environment, and we provide a formal definition here:

Heat is the transfer of energy between a system and its environment due to a temperature difference between them.

The symbol Q is used to represent the amount of energy transferred by heat between a system and its environment. For brevity, we will often use the phrase “the energy Q transferred to a system . . .” rather than “the energy Q transferred by heat to a system . . .”

If a pan of water is heated on the burner of a stove, it’s incorrect to say more heat is in the water. Heat is the transfer of thermal energy, just as work is the transfer of mechanical energy. When an object is pushed, it doesn’t have more work; rather, it has more mechanical energy transferred by work. Similarly, the pan of water has more thermal energy transferred by heat.

Units of Heat

Early in the development of thermodynamics, before scientists realized the connection between thermodynamics and mechanics, heat was defined in terms of the temperature changes it produced in an object, and a separate unit of energy, the calorie, was used for heat. The calorie (cal) is defined as the energy necessary to raise the temperature of 1 g of water from 14.5°C to 15.5°C. (The “Calorie,” with a capital “C,” used in describing the energy content of foods, is actually a kilocalorie.) Likewise, the unit of heat in the U.S. customary system, the British thermal unit (Btu), was defined as the energy required to raise the temperature of 1 lb of water from 63°F to 64°F.

In 1948 scientists agreed that because heat (like work) is a measure of the transfer of energy, its SI unit should be the joule. The calorie is now defined to be exactly 4.186 J:

$$1 \text{ cal} = 4.186 \text{ J} \quad \text{(11.1)}$$

This definition makes no reference to raising the temperature of water. The calorie is a general energy unit, introduced here for historical reasons, although we will make little use of it. The definition in Equation 11.1 is known, from the historical background we have discussed, as the mechanical equivalent of heat.
EXAMPLE 11.1 Working Off Breakfast

Goal Relate caloric energy to mechanical energy.

Problem A student eats a breakfast consisting of two bowls of cereal and milk, containing a total of 3.20×10^2 Calories of energy. He wishes to do an equivalent amount of work in the gymnasium by performing curls with a 25.0-kg barbell (Fig. 11.1). How many times must he raise the weight to expend that much energy? Assume he raises it through a vertical displacement of 0.400 m each time, the distance from his lap to his upper chest.

Strategy Convert the energy in Calories to joules, then equate that energy to the work necessary to do n repetitions of the barbell exercise. The work he does lifting the barbell can be found from the work-energy theorem and the change in potential energy of the barbell. He does negative work on the barbell going down, to keep it from speeding up. The net work on the barbell during one repetition is zero, but his muscles expend the same energy both in raising and lowering.

Solution Convert his breakfast Calories, E, to joules:

$$E = (3.20 \times 10^2 \text{ Cal}) \left(\frac{1.00 \times 10^3 \text{ cal}}{1.00 \text{ Cal}} \right) \left(\frac{4.186 \text{ J}}{1 \text{ cal}} \right) = 1.34 \times 10^6 \text{ J}$$

Use the work–energy theorem to find the work necessary to lift the barbell up to its maximum height:

$$W = \Delta KE + \Delta PE = (0 - 0) + (mgH - 0) = mgh$$

The student must expend the same amount of energy lowering the barbell, making $2mgh$ per repetition. Multiply this amount by n repetitions and set it equal to the food energy E:

$$n(2mgh) = E$$

Solve for n, substituting the food energy for E:

$$n = \frac{E}{2mgh} = \frac{1.34 \times 10^6 \text{ J}}{2(25.0 \text{ kg})(9.80 \text{ m/s}^2)(0.400 \text{ m})} = 6.84 \times 10^3 \text{ times}$$

Remarks If the student does one repetition every 5 seconds, it will take him 9.5 hours to work off his breakfast! In exercising, a large fraction of energy is lost through heat, however, due to the inefficiency of the body in doing work. This transfer of energy dramatically reduces the exercise requirement by at least three-quarters, a little over two hours. All the same, it might be best to forgo that second bowl of cereal!

QUESTION 11.1 From the point of view of physics, does the answer depend on how fast the repetitions are performed? How do faster repetitions affect human metabolism?

EXERCISE 11.1 How many sprints from rest to a speed of 5.0 m/s would a 65-kg woman have to complete to burn off 5.0×10^2 Calories? (Assume 100% efficiency in converting food energy to mechanical energy.)

Answer 2.6×10^3 sprints

APPLICATION Physiology of Exercise

Getting proper exercise is an important part of staying healthy and keeping weight under control. As seen in the preceding example, the body expends energy when doing mechanical work, and these losses are augmented by the inefficiency of converting the body’s internal stores of energy into useful work, with three-quarters or more leaving the body through heat. In addition, exercise tends to elevate the body’s general metabolic rate, which persists even after the exercise.
is over. The increase in metabolic rate due to exercise, more so than the exercise itself, is helpful in weight reduction.

11.2 Specific Heat

The historical definition of the calorie is the amount of energy necessary to raise the temperature of one gram of a specific substance—water—by one degree. That amount is 4.186 J. Raising the temperature of one kilogram of water by 1°C requires 4.186 J of energy. The amount of energy required to raise the temperature of one kilogram of an arbitrary substance by 1°C varies with the substance. For example, the energy required to raise the temperature of one kilogram of copper by 1.0°C is 387 J. Every substance requires a unique amount of energy per unit mass to change the temperature of that substance by 1°C.

Table 11.1 lists specific heats for several substances. From the definition of the calorie, the specific heat of water is 4.186 J/kg °C. The values quoted are typical, but vary depending on the temperature and whether the matter is in a solid, liquid, or gaseous state.

From the definition of specific heat, we can express the energy Q needed to raise the temperature of a system of mass m by ΔT as

$$ Q = mc \Delta T \quad [11.3] $$

The energy required to raise the temperature of 0.500 kg of water by 3.00°C, for example, is $Q = (0.500 \text{ kg})(4.186 \text{ J/kg °C})(3.00°C) = 6.28 \times 10^3 \text{ J}$. Note that when the temperature increases, ΔT and Q are positive, corresponding to energy flowing into the system. When the temperature decreases, ΔT and Q are negative, and energy flows out of the system.

Table 11.1 shows that water has the highest specific heat relative to most other common substances. This high specific heat is responsible for the moderate temperatures found in regions near large bodies of water. As the temperature of a body of water decreases during winter, the water transfers energy to the air, which carries the energy landward when prevailing winds are toward the land. Off the western coast of the United States, the energy liberated by the Pacific Ocean is carried to the east, keeping coastal areas much warmer than they would otherwise be. Winters are generally colder in the eastern coastal states, because the prevailing winds tend to carry the energy away from land.

The fact that the specific heat of water is higher than the specific heat of sand is responsible for the pattern of airflow at a beach. During the day, the Sun adds roughly equal amounts of energy to the beach and the water, but the lower specific heat of sand causes the beach to reach a higher temperature than the water. As a result, the air above the land reaches a higher temperature than the air above the water. The denser cold air pushes the less dense hot air upward (due to Archimedes’s principle), resulting in a breeze from ocean to land during the day. Because the hot air gradually cools as it rises, it subsequently sinks, setting up the circulation pattern shown in Figure 11.2.

A similar effect produces rising layers of air called thermals that can help eagles soar higher and hang gliders stay in flight longer. A thermal is created when a portion of the Earth reaches a higher temperature than neighboring regions. Thermals often occur in plowed fields, which are warmed by the Sun to higher temperatures.
than nearby fields shaded by vegetation. The cooler, denser air over the vegetation-covered fields pushes the expanding air over the plowed field upwards, and a thermal is formed.

QUICK QUIZ 11.1 Suppose you have 1 kg each of iron, glass, and water, and all three samples are at 10°C. (a) Rank the samples from lowest to highest temperature after 100 J of energy is added to each by heat. (b) Rank them from least to greatest amount of energy transferred by heat if enough energy is transferred so that each increases in temperature by 20°C.

EXAMPLE 11.2 Stressing a Strut

Goal Use the energy transfer equation in the context of linear expansion and compressional stress.

Problem A steel strut near a ship’s furnace is 2.00 m long, with a mass of 1.57 kg and cross-sectional area of 1.00×10^{-3} m2. During operation of the furnace, the strut absorbs a net thermal energy of 2.50×10^5 J.

(a) Find the change in temperature of the strut. (b) Find the increase in length of the strut. (c) If the strut is not allowed to expand because it’s bolted at each end, find the compressional stress developed in the strut.

Strategy This problem can be solved by substituting given quantities into three different equations. In part (a), the change in temperature can be computed by substituting into Equation 11.3, which relates temperature change to the energy transferred by heat. In part (b), substituting the result of part (a) into the linear expansion equation yields the change in length. If that change of length is thwarted by poor design, as in part (c), the result is compressional stress, found with the compressional stress–strain equation. Note: The specific heat of steel may be taken to be the same as that of iron.

Solution

(a) Find the change in temperature.

Solve Equation 11.3 for the change in temperature and substitute:

$$\Delta T = \frac{Q}{m c_p} \rightarrow \Delta T = \frac{Q}{m c_p} = \frac{2.50 \times 10^5 \text{ J}}{(1.57 \text{ kg})(448 \text{ J/kg} \cdot ^\circ \text{C})} = 355^\circ \text{C}$$

(b) Find the change in length of the strut if it’s allowed to expand.

Substitute into the linear expansion equation:

$$\Delta L = \alpha L_0 \Delta T = (11 \times 10^{-6} \text{ C}^{-1})(2.00 \text{ m})(355^\circ \text{C}) = 7.8 \times 10^{-3} \text{ m}$$

(c) Find the compressional stress in the strut if it is not allowed to expand.

Substitute into the compressional stress–strain equation:

$$\frac{F}{A} = Y \frac{\Delta L}{L} = (2.00 \times 10^{11} \text{ Pa}) \frac{7.8 \times 10^{-3} \text{ m}}{2.01 \text{ m}} = 7.8 \times 10^8 \text{ Pa}$$

Remarks Notice the use of 2.01 m in the denominator of the last calculation, rather than 2.00 m. This is because, in effect, the strut was compressed back to the original length from the length to which it would have expanded. (The difference is negligible, however.) The answer exceeds the ultimate compressive strength of steel and underscores the importance of allowing for thermal expansion. Of course, it’s likely the strut would bend, relieving some of the stress (creating some shear stress in the process). Finally, if the strut is attached at both ends by bolts, thermal expansion and contraction would exert sheer stresses on the bolts, possibly weakening or loosening them over time.

QUESTION 11.2 Which of the following combinations of properties will result in the smallest expansion of a substance due to the absorption of thermal energy? (a) small specific heat, large coefficient of expansion (b) small specific heat, small coefficient of expansion (c) large specific heat, large coefficient of expansion (d) large specific heat, large coefficient of expansion
EXERCISE 11.2

Suppose a steel strut having a cross-sectional area of 5.00 \(\times \) 10^{-4} m^2 and length 2.50 m is bolted between two rigid bulkheads in the engine room of a submarine. Assume the density of the steel is the same as that of iron. (a) Calculate the change in temperature of the strut if it absorbs 3.00 \(\times \) 10^5 J of thermal energy. (b) Calculate the compressional stress in the strut.

Answers (a) 68.2°C (b) 1.50 \(\times \) 10^8 Pa

11.3 CALORIMETRY

One technique for measuring the specific heat of a solid or liquid is to raise the temperature of the substance to some value, place it into a vessel containing cold water of known mass and temperature, and measure the temperature of the combination after equilibrium is reached. Define the system as the substance and the water. If the vessel is assumed to be a good insulator, so that energy doesn’t leave the system, then we can assume the system is isolated. Vessels having this property are called calorimeters, and analysis performed using such vessels is called calorimetry.

The principle of conservation of energy for this isolated system requires that the net result of all energy transfers is zero. If one part of the system loses energy, another part has to gain the energy because the system is isolated and the energy has nowhere else to go. When a warm object is placed in the cooler water of a calorimeter, the warm object becomes cooler while the water becomes warmer. This principle can be written

\[
Q_{\text{cold}} = -Q_{\text{hot}} \tag{11.4}
\]

\(Q_{\text{cold}}\) is positive because energy is flowing into cooler objects, and \(Q_{\text{hot}}\) is negative because energy is leaving the hot object. The negative sign on the right-hand side of Equation 11.4 ensures that the right-hand side is a positive number, consistent with the left-hand side. The equation is valid only when the system it describes is isolated.

Calorimetry problems involve solving Equation 11.4 for an unknown quantity, usually either a specific heat or a temperature.

EXAMPLE 11.3 Finding a Specific Heat

Goal Solve a calorimetry problem involving only two substances.

Problem A 125-g block of an unknown substance with a temperature of 90.0°C is placed in a Styrofoam cup containing 0.326 kg of water at 20.0°C. The system reaches an equilibrium temperature of 22.4°C. What is the specific heat, \(c_s\), of the unknown substance if the heat capacity of the cup is neglected?

Strategy The water gains thermal energy \(Q_{\text{cold}}\) while the block loses thermal energy \(Q_{\text{hot}}\). Using Equation 11.3, substitute expressions into Equation 11.4 and solve for the unknown specific heat, \(c_s\).

Solution Let \(T\) be the final temperature, and let \(T_w\) and \(T_s\) be the initial temperatures of the water and block, respectively. Apply Equations 11.3 and 11.4:

\[
\begin{align*}
Q_{\text{cold}} &= -Q_{\text{hot}} \\
\rho_{\text{w}} c_{\text{w}} (T - T_w) &= -m_s c_s (T - T_s)
\end{align*}
\]

Solve for \(c_s\) and substitute numerical values:

\[
c_s = \frac{\rho_{\text{w}} c_{\text{w}} (T - T_w)}{m_s (T - T)} = \frac{(0.326 \text{ kg})(4,190 \text{ J/kg} \cdot ^\circ\text{C})(22.4^\circ\text{C} - 20.0^\circ\text{C})}{(0.125 \text{ kg})(90.0^\circ\text{C} - 22.4^\circ\text{C})} = 388 \text{ J/kg} \cdot ^\circ\text{C}
\]
Remarks
Comparing our results to values given in Table 11.1, the unknown substance is probably copper.

QUESTION 11.3
Objects A, B, and C are at different temperatures, A lowest and C highest. The three objects are put in thermal contact with each other. Without doing a calculation, is it possible to determine whether object B will gain or lose thermal energy?

EXERCISE 11.3
A 255-g block of gold at 85.0°C is immersed in 155 g of water at 25.0°C. Find the equilibrium temperature, assuming the system is isolated and the heat capacity of the cup can be neglected.

Answer
27.9°C

As long as there are no more than two substances involved, Equation 11.4 can be used to solve elementary calorimetry problems. Sometimes, however, there may be three (or more) substances exchanging thermal energy, each at a different temperature. If the problem requires finding the final temperature, it may not be clear whether the substance with the middle temperature gains or loses thermal energy. In such cases, Equation 11.4 can’t be used reliably.

For example, suppose we want to calculate the final temperature of a system consisting initially of a glass beaker at 25°C, hot water at 40°C, and a block of aluminum at 37°C. We know that after the three are combined, the glass beaker warms up and the hot water cools, but we don’t know for sure whether the aluminum block gains or loses energy because the final temperature is unknown.

Fortunately, we can still solve such a problem as long as it’s set up correctly. With an unknown final temperature \(T_f \), the expression \(\frac{Q}{mc} \left(\frac{T_f}{T_i} \right) \) will be positive if \(T_f > T_i \), and negative if \(T_f < T_i \). Equation 11.4 can be written as

\[
\sum Q_k = 0 \tag{11.5}
\]

where \(Q_k \) is the energy change in the \(k \)th object. Equation 11.5 says that the sum of all the gains and losses of thermal energy must add up to zero, as required by the conservation of energy for an isolated system. Each term in Equation 11.5 will have the correct sign automatically. Applying Equation 11.5 to the water, aluminum, and glass problem, we get

\[
Q_w + Q_{al} + Q_g = 0
\]

There’s no need to decide in advance whether a substance in the system is gaining or losing energy. This equation is similar in style to the conservation of mechanical energy equation, where the gains and losses of kinetic and potential energies sum to zero for an isolated system: \(\Delta K + \Delta PE = 0 \). As will be seen, changes in thermal energy can be included on the left-hand side of this equation.

When more than two substances exchange thermal energy, it’s easy to make errors substituting numbers, so it’s a good idea to construct a table to organize and assemble all the data. This strategy is illustrated in the next example.

EXAMPLE 11.4 Calculate an Equilibrium Temperature

Goal
Solve a calorimetry problem involving three substances at three different temperatures.

Problem
Suppose 0.400 kg of water initially at 40.0°C is poured into a 0.300-kg glass beaker having a temperature of 25.0°C. A 0.500-kg block of aluminum at 37.0°C is placed in the water and the system insulated. Calculate the final equilibrium temperature of the system.

Strategy
The energy transfer for the water, aluminum, and glass will be designated \(Q_w \), \(Q_{al} \), and \(Q_g \), respectively. The sum of these transfers must equal zero, by conservation of energy. Construct a table, assemble the three terms from the given data, and solve for the final equilibrium temperature, \(T_f \).
Remarks

The answer turned out to be very close to the aluminum’s initial temperature, so it would have been impossible to guess in advance whether the aluminum would lose or gain energy. Notice the way the table was organized, mirroring the order of factors in the different terms. This kind of organization helps prevent substitution errors, which are common in these problems.

QUESTION 11.4

Suppose thermal energy Q leaked from the system. How should the right side of Equation (1) be adjusted? (a) No change is needed. (b) $+Q$ (c) $-Q$.

EXERCISE 11.4

A 20.0-kg gold bar at 35.0°C is placed in a large, insulated 0.800-kg glass container at 15.0°C and 2.00 kg of water at 25.0°C. Calculate the final equilibrium temperature.

Answer 26.6°C

11.4 LATENT HEAT AND PHASE CHANGE

A substance usually undergoes a change in temperature when energy is transferred between the substance and its environment. In some cases, however, the transfer of energy doesn’t result in a change in temperature. This can occur when the physical characteristics of the substance change from one form to another, commonly referred to as a phase change. Some common phase changes are solid to liquid (melting), liquid to gas (boiling), and a change in the crystalline structure of a solid. Any such phase change involves a change in the internal energy, but no change in the temperature.

The energy Q needed to change the phase of a given pure substance is

$$Q = \pm mL \quad [11.6]$$

where L, called the latent heat of the substance, depends on the nature of the phase change as well as on the substance.

The unit of latent heat is the joule per kilogram (J/kg). The word latent means “lying hidden within a person or thing.” The positive sign in Equation 11.6 is chosen when energy is absorbed by a substance, as when ice is melting. The negative

Tip 11.3 Signs Are Critical

For phase changes, use the correct explicit sign in Equation 11.6, positive if you are adding energy to the substance, negative if you’re taking it away.
The latent heat of fusion L_f is used when a phase change occurs during melting or freezing, whereas the latent heat of vaporization L_v is used when a phase change occurs during boiling or condensing. For example, at atmospheric pressure the latent heat of fusion for water is 3.33×10^5 J/kg and the latent heat of vaporization for water is 2.26×10^6 J/kg. The latent heats of different substances vary considerably, as can be seen in Table 11.2.

Another process, sublimation, is the passage from the solid to the gaseous phase without going through a liquid phase. The fuming of dry ice (frozen carbon dioxide) illustrates this process, which has its own latent heat associated with it, the heat of sublimation.

EXAMPLE 11.5 Boiling Liquid Helium

Goal Apply the concept of latent heat of vaporization to liquid helium.

Problem Liquid helium has a very low boiling point, 4.2 K, as well as a low latent heat of vaporization, equal to 2.09×10^4 J/kg. If energy is transferred to a container of liquid helium at the boiling point from an immersed electric heater at a rate of 10.0 W, how long does it take to boil away 2.00 kg of the liquid?

Strategy Because $L_v = 2.09 \times 10^4$ J/kg, boiling away each kilogram of liquid helium requires 2.09×10^4 J of energy. Joules divided by watts is time, so find the total energy needed and divide by the power to find the time.

Solution Find the energy needed to vaporize 2.00 kg of liquid helium at its boiling point:

$$Q = mL_v = (2.00 \text{ kg})(2.09 \times 10^4 \text{ J/kg}) = 4.18 \times 10^4 \text{ J}$$

Divide this result by the power to find the time:

$$\Delta t = \frac{Q}{P} = \frac{mL_v}{10.0 \text{ W}} = \frac{4.18 \times 10^4 \text{ J}}{10.0 \text{ W}} = 4.18 \times 10^3 \text{ s} = 69.7 \text{ min}$$

When a gas cools, it eventually returns to the liquid phase, or condenses. The energy per unit mass given up during the process is called the **heat of condensation**, and it equals the heat of vaporization. When a liquid cools, it eventually solidifies, and the **heat of solidification** equals the heat of fusion.
Remark Notice that no change of temperature was involved. During such processes, the transferred energy goes into changing the state of the substance involved.

QUESTION 11.5
A puddle of water evaporates after a few hours. Where does the energy causing the evaporation come from?

EXERCISE 11.5
If 10.0 W of power is supplied to 2.00 kg of water at 1.00 × 10^2°C, how long will it take the water to completely boil away?

Answer 126 h

To better understand the physics of phase changes, consider the addition of energy to a 1.00-g cube of ice at −30.0°C in a container held at constant pressure. Suppose this input of energy turns the ice to steam (water vapor) at 120.0°C. Figure 11.3 is a plot of the experimental measurement of temperature as energy is added to the system. We examine each portion of the curve separately.

Part A During this portion of the curve, the temperature of the ice changes from −30.0°C to 0.0°C. Because the specific heat of ice is 2.090 J/kg °C, we can calculate the amount of energy added from Equation 11.3:

\[Q = mc \Delta T = (1.00 \times 10^{-3} \text{ kg})(2.090 \text{ J/kg °C})(30.0°C) = 62.7 \text{ J} \]

Part B When the ice reaches 0°C, the ice–water mixture remains at that temperature—even though energy is being added—until all the ice melts to become water at 0°C. According to Equation 11.6, the energy required to melt 1.00 g of ice at 0°C is

\[Q = mL_f = (1.00 \times 10^{-3} \text{ kg})(3.33 \times 10^3 \text{ J/kg}) = 333 \text{ J} \]

Part C Between 0°C and 100°C, no phase change occurs. The energy added to the water is used to increase its temperature, as in part A. The amount of energy necessary to increase the temperature from 0°C to 100°C is

\[Q = mc \Delta T = (1.00 \times 10^{-3} \text{ kg})(4.19 \times 10^3 \text{ J/kg °C})(1.00 \times 10^2 °C) \]

\[Q = 4.19 \times 10^2 \text{ J} \]

Part D At 100°C, another phase change occurs as the water changes to steam at 100°C. As in Part B, the water–steam mixture remains at constant temperature, this time at 100°C—even though energy is being added—until all the liquid has been converted to steam. The energy required to convert 1.00 g of water at 100°C to steam at 100°C is

\[Q = mL_v = (1.00 \times 10^{-3} \text{ kg})(2.26 \times 10^6 \text{ J/kg}) = 2.26 \times 10^3 \text{ J} \]

FIGURE 11.3 A plot of temperature versus energy added when 1.00 g of ice, initially at −30.0°C, is converted to steam at 120°C.
Part E During this portion of the curve, as in parts A and C, no phase change occurs, so all the added energy goes into increasing the temperature of the steam. The energy that must be added to raise the temperature of the steam to 120.0°C is

\[Q = m_{\text{steam}} \Delta T = (1.00 \times 10^{-3} \text{ kg})(2.01 \times 10^{3} \text{ J/kg} \cdot ^\circ \text{C})(20.0{^\circ \text{C}}) = 40.2 \text{ J} \]

The total amount of energy that must be added to change 1.00 g of ice at −30.0°C to steam at 120.0°C is the sum of the results from all five parts of the curve, \(3.11 \times 10^{3} \text{ J} \). Conversely, to cool 1.00 g of steam at 120.0°C to the point at which it becomes ice at −30.0°C, \(3.11 \times 10^{3} \text{ J} \) of energy must be removed.

Phase changes can be described in terms of rearrangements of molecules when energy is added to or removed from a substance. Consider first the liquid-to-gas phase change. The molecules in a liquid are close together, and the forces between them are stronger than the forces between the more widely separated molecules of a gas. Work must therefore be done on the liquid against these attractive molecular forces so as to separate the molecules. The latent heat of vaporization is the amount of energy that must be added to the one kilogram of liquid to accomplish this separation.

Similarly, at the melting point of a solid, the amplitude of vibration of the atoms about their equilibrium positions becomes great enough to allow the atoms to pass the barriers of adjacent atoms and move to their new positions. On average, these new positions are less symmetrical than the old ones and therefore have higher energy. The latent heat of fusion is equal to the work required at the molecular level to transform the mass from the ordered solid phase to the disordered liquid phase.

The average distance between atoms is much greater in the gas phase than in either the liquid or the solid phase. Each atom or molecule is removed from its neighbors, overcoming the attractive forces of nearby neighbors. Therefore, more work is required at the molecular level to vaporize a given mass of a substance than to melt it, so in general the latent heat of vaporization is much greater than the latent heat of fusion (see Table 11.2).

QUICK QUIZ 11.2 Calculate the slopes for the A, C, and E portions of Figure 11.3. Rank the slopes from least to greatest and explain what your ranking means. (a) A, C, E (b) C, A, E (c) E, A, C (d) E, C, A

PROBLEM-SOLVING STRATEGY
CALORIMETRY WITH PHASE CHANGES

1. Make a table for all data. Include separate rows for different phases and for any transition between phases. Include columns for each quantity used and a final column for the combination of the quantities. Transfers of thermal energy in this last column are given by \(Q = m c \Delta T \), whereas phase changes are given by \(Q = \pm m L_j \) for changes between liquid and solid and by \(Q = \pm m L_v \) for changes between liquid and gas.

2. Apply conservation of energy. If the system is isolated, use \(\Sigma Q_k = 0 \) (Eq. 11.5). For a nonisolated system, the net energy change should replace the zero on the right-hand side of that equation. Here, \(\Sigma Q_k \) is just the sum of all the terms in the last column of the table.

3. Solve for the unknown quantity.

EXAMPLE 11.6 Ice Water

Goal Solve a problem involving heat transfer and a phase change from solid to liquid.

Problem At a party, 6.00 kg of ice at −5.00°C is added to a cooler holding 30 liters of water at 20.0°C. What is the temperature of the water when it comes to equilibrium?
Strategy In this problem, it’s best to make a table. With the addition of thermal energy Q_{ice}, the ice will warm to 0°C, then melt at 0°C with the addition of energy Q_{melt}. Next, the melted ice will warm to some final temperature T_f by absorbing energy $Q_{\text{ice-water}}$, obtained from the energy change of the original liquid water, Q_{water}. By conservation of energy, these quantities must sum to zero.

Solution

Calculate the mass of liquid water:

$$m_{\text{water}} = \rho_{\text{water}} V = (1.00 \times 10^3 \text{kg/m}^3)(30.0 \text{ L}) \frac{1.00 \text{ m}^3}{1.00 \times 10^3 \text{ L}} = 30.0 \text{ kg}$$

Write the equation of thermal equilibrium:

$$Q_{\text{ice}} + Q_{\text{melt}} + Q_{\text{ice-water}} + Q_{\text{water}} = 0$$

Construct a comprehensive table:

<table>
<thead>
<tr>
<th>Q</th>
<th>m (kg)</th>
<th>c (J/kg·°C)</th>
<th>L (J/kg)</th>
<th>T_f (°C)</th>
<th>T_i (°C)</th>
<th>Expression</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q_{ice}</td>
<td>6.00</td>
<td>2 090</td>
<td>0</td>
<td>-5.00</td>
<td>-5.00</td>
<td>$m_{\text{ice}} c(T_f - T_i)$</td>
</tr>
<tr>
<td>Q_{melt}</td>
<td>6.00</td>
<td>3.33×10^5</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>$m_{\text{water}} L_f$</td>
</tr>
<tr>
<td>$Q_{\text{ice-water}}$</td>
<td>6.00</td>
<td>4 190</td>
<td>T</td>
<td>0</td>
<td>$m_{\text{ice-water}} (T_f - T_i)$</td>
<td></td>
</tr>
<tr>
<td>Q_{water}</td>
<td>30.0</td>
<td>4 190</td>
<td>T</td>
<td>20.0</td>
<td>$m_{\text{water}} c(T_f - T_i)$</td>
<td></td>
</tr>
</tbody>
</table>

Substitute all quantities in the second through sixth columns into the last column and sum, which is the evaluation of Equation (1), and solve for T:

$$6.27 \times 10^4 \text{J} + 2.00 \times 10^6 \text{J} + (2.51 \times 10^4 \text{J/°C})(T - 0°C) + (1.26 \times 10^5 \text{J/°C})(T - 20.0°C) = 0$$

$$T = 3.03°C$$

Remarks Making a table is optional. However, simple substitution errors are extremely common, and the table makes such errors less likely.

QUESTION 11.6

Can a closed system containing different substances at different initial temperatures reach an equilibrium temperature that is lower than all the initial temperatures?

EXERCISE 11.6

What mass of ice at $-10.0°C$ is needed to cool a whale’s water tank, holding $1.20 \times 10^3 \text{ m}^3$ of water, from $20.0°C$ to a more comfortable $10.0°C$?

Answer $1.27 \times 10^5 \text{ kg}$

EXAMPLE 11.7 Partial Melting

Goal Understand how to handle an incomplete phase change.

Problem A 5.00-kg block of ice at 0°C is added to an insulated container partially filled with 10.0 kg of water at 15.0°C. (a) Find the final temperature, neglecting the heat capacity of the container. (b) Find the mass of the ice that was melted.

Strategy Part (a) is tricky because the ice does not entirely melt in this example. When there is any doubt concerning whether there will be a complete phase change, some preliminary calculations are necessary. First, find the total energy required to melt the ice, Q_{melt}, and then find Q_{water}, the maximum energy that can be delivered by the water above 0°C. If the energy delivered by the water is high enough, all the ice melts. If not, there will usually be a final mixture of ice and water at 0°C, unless the ice starts at a temperature far below 0°C, in which case all the liquid water freezes.
Chapter 11 Energy in Thermal Processes

Remarks
If this problem is solved assuming (wrongly) that all the ice melts, a final temperature of \(T = 16.5°C \) is obtained. The only way that could happen is if the system were not isolated, contrary to the statement of the problem.

In Exercise 11.7, you must also compute the thermal energy needed to warm the ice to its melting point.

QUESTION 11.7
What effect would doubling the initial amount of liquid water have on the amount of ice melted?

EXERCISE 11.7
If 8.00 kg of ice at 5.00°C is added to 12.0 kg of water at 20.0°C, compute the final temperature. How much ice remains, if any?

Answer
\(T = 0°C \), 5.23 kg

Sometimes problems involve changes in mechanical energy. During a collision, for example, some kinetic energy can be transformed to the internal energy of the colliding objects. This kind of transformation is illustrated in Example 11.8, which involves a possible impact of a comet on Earth. In this example, a number of liberties will be taken in order to estimate the magnitude of the destructive power of such a catastrophic event. The specific heats depend on temperature and pressure, for example, but that will be ignored. Also, the ideal gas law doesn’t apply at the temperatures and pressures attained, and the result of the collision wouldn’t be superheated steam, but a plasma of charged particles. Despite all these simplifications, the example yields good order-of-magnitude results.

EXAMPLE 11.8 Armageddon!

Goal
Link mechanical energy to thermal energy, phase changes, and the ideal gas law to create an estimate.

Problem
A comet half a kilometer in radius consisting of ice at 273 K hits Earth at a speed of 4.00 \(\times 10^4 \) m/s. For simplicity, assume all the kinetic energy converts to thermal energy on impact and that all the thermal energy goes into warming the comet.

(a) Calculate the volume and mass of the ice.

(b) Use conservation of energy to find the final temperature of the comet material. Assume, contrary to fact, that the result is superheated steam and that the usual specific heats are valid, although in fact they depend on both temperature and pressure.

(c) Assuming the steam retains a spherical shape and has the same initial volume as the comet, calculate the pressure of the
steam using the ideal gas law. This law actually doesn’t apply to a system at such high pressure and temperature, but can be used to get an estimate.

Strategy Part (a) requires the volume formula for a sphere and the definition of density. In part (b) conservation of energy can be applied. There are four processes involved: (1) melting the ice, (2) warming the ice water to the boiling point, (3) converting the boiling water to steam, and (4) warming the steam. The energy needed for these processes will be designated Q_{melt}, Q_{water}, Q_{vapor}, and Q_{steam} respectively. These quantities plus the change in kinetic energy ΔK sum to zero because they are assumed to be internal to the system. In this case, the first three Q‘s can be neglected compared to the (extremely large) kinetic energy term. Solve for the unknown temperature and substitute it into the ideal gas law in part (c).

Solution

(a) Find the volume and mass of the ice.

Apply the volume formula for a sphere:

\[V = \frac{4}{3} \pi r^3 = \frac{4}{3} (3.14) (5.00 \times 10^2 \text{ m})^3 \]

\[= 5.23 \times 10^8 \text{ m}^3 \]

Apply the density formula to find the mass of the ice:

\[m = \rho V = (917 \text{ kg/m}^3) (5.23 \times 10^8 \text{ m}^3) \]

\[= 4.80 \times 10^{11} \text{ kg} \]

(b) Find the final temperature of the cometary material.

Use conservation of energy:

\[(1) \quad Q_{\text{melt}} + Q_{\text{water}} + Q_{\text{vapor}} + Q_{\text{steam}} + \Delta K = 0 \]

\[(2) \quad m \ell_f + m \ell_w + m \ell_v + m c_{\text{steam}} \Delta T_{\text{steam}} + \frac{1}{2} m v^2 = 0 \]

The first three terms are negligible compared to the kinetic energy. The steam term involves the unknown final temperature, so retain only it and the kinetic energy, canceling the mass and solving for T:

\[m c_{\text{steam}} (T - 373 \text{ K}) - \frac{1}{2} m v^2 = 0 \]

\[T = \frac{\frac{1}{2} v^2}{\ell_{\text{steam}}} + 373 \text{ K} = \frac{\frac{1}{2} (4.00 \times 10^4 \text{ m/s})^2}{2 \times 10^3 \text{ J/kg/K}} + 373 \text{ K} \]

\[T = 3.98 \times 10^5 \text{ K} \]

(c) Estimate the pressure of the gas, using the ideal gas law.

First, compute the number of moles of steam:

\[n = (4.80 \times 10^{11} \text{ kg}) \left(\frac{1 \text{ mol}}{0.018 \text{ kg}} \right) = 2.67 \times 10^{13} \text{ mol} \]

Solve for the pressure, using $PV = nRT$:

\[P = \frac{nRT}{V} \]

\[= \frac{(2.67 \times 10^{13} \text{ mol})(8.31 \text{ J/mol.K})(3.98 \times 10^5 \text{ K})}{5.23 \times 10^8 \text{ m}^3} \]

\[P = 1.69 \times 10^{11} \text{ Pa} \]

Remarks The estimated pressure is several hundred times greater than the ultimate shear stress of steel! This high-pressure region would expand rapidly, destroying everything within a very large radius. Fires would ignite across a continent-sized region, and tidal waves would wrap around the world, wiping out coastal regions everywhere. The Sun would be obscured for at least a decade, and numerous species, possibly including *Homo sapiens*, would become extinct. Such extinction events are rare, but in the long run represent a significant threat to life on Earth.

QUESTION 11.8

Why would a nickel-iron asteroid be more dangerous than an asteroid of the same size made mainly of ice?

EXERCISE 11.8

Suppose a lead bullet with mass 5.00 g and an initial temperature of 65.0°C hits a wall and completely liquefies.
What minimum speed did it have before impact? (Hint: The minimum speed corresponds to the case where all the kinetic energy becomes internal energy of the lead and the final temperature of the lead is at its melting point. Don’t neglect any terms here!)

Answer 341 m/s

11.5 ENERGY TRANSFER

For some applications it’s necessary to know the rate at which energy is transferred between a system and its surroundings and the mechanisms responsible for the transfer. This information is particularly important when weatherproofing buildings or in medical applications, such as human survival time when exposed to the elements.

Earlier in this chapter we defined heat as a transfer of energy between a system and its surroundings due to a temperature difference between them. In this section we take a closer look at heat as a means of energy transfer and consider the processes of thermal conduction, convection, and radiation.

Thermal Conduction

The energy transfer process most closely associated with a temperature difference is called thermal conduction or simply conduction. In this process the transfer can be viewed on an atomic scale as an exchange of kinetic energy between microscopic particles—molecules, atoms, and electrons—with less energetic particles gaining energy as they collide with more energetic particles. An inexpensive pot, as in Figure 11.4, may have a metal handle with no surrounding insulation. As the pot is warmed, the temperature of the metal handle increases, and the cook must hold it with a cloth potholder to avoid being burned.

The way the handle warms up can be understood by looking at what happens to the microscopic particles in the metal. Before the pot is placed on the stove, the particles are vibrating about their equilibrium positions. As the stove coil warms up, those particles in contact with it begin to vibrate with larger amplitudes. These particles collide with their neighbors and transfer some of their energy in the collisions. Metal atoms and electrons farther and farther from the flame gradually increase the amplitude of their vibrations, until eventually those in the metal near your hand are affected. This increased vibration represents an increase in temperature of the metal (and possibly a burned hand!).

Although the transfer of energy through a substance can be partly explained by atomic vibrations, the rate of conduction depends on the properties of the substance. For example, it’s possible to hold a piece of asbestos in a flame indefinitely, which implies that very little energy is conducted through the asbestos. In general, metals are good thermal conductors because they contain large numbers of electrons that are relatively free to move through the metal and can transport energy from one region to another. In a good conductor such as copper, conduction takes place via the vibration of atoms and the motion of free electrons. Materials such as asbestos, cork, paper, and fiberglass are poor thermal conductors. Gases are also poor thermal conductors because of the large distance between their molecules.

Conduction occurs only if there is a difference in temperature between two parts of the conducting medium. The temperature difference drives the flow of energy.

Consider a slab of material of thickness \(\Delta x \) and cross-sectional area \(A \) with its opposite faces at different temperatures \(T_i \) and \(T_f \), where \(T_f > T_i \) (Fig. 11.5). The slab allows energy to transfer from the region of higher temperature to the region of lower temperature by thermal conduction. The rate of energy transfer, \(\mathcal{P} = \frac{Q}{\Delta t} \), is proportional to the cross-sectional area of the slab and the temperature difference and is inversely proportional to the thickness of the slab:

\[
\mathcal{P} = \frac{Q}{\Delta t} = A \frac{\Delta T}{\Delta x}
\]

Note that \(\mathcal{P} \) has units of watts when \(Q \) is in joules and \(\Delta t \) is in seconds.
Suppose a substance is in the shape of a long, uniform rod of length L, as in Figure 11.6. We assume the rod is insulated, so thermal energy can’t escape by conduction from its surface except at the ends. One end is in thermal contact with an energy reservoir at temperature T_k and the other end is in thermal contact with a reservoir at temperature T_ℓ, when a steady state is reached, the temperature at each point along the rod is constant in time. In this case $\Delta T = T_k - T_\ell$, and $\Delta x = L$, so

$$\frac{\Delta T}{\Delta x} = \frac{T_k - T_\ell}{L}$$

The rate of energy transfer by conduction through the rod is given by

$$\mathcal{P} = kA \frac{T_k - T_\ell}{L}$$

where k, a proportionality constant that depends on the material, is called the thermal conductivity. Substances that are good conductors have large thermal conductivities, whereas good insulators have low thermal conductivities. Table 11.3 lists the thermal conductivities for various substances.

QUICK QUIZ 11.3 Will an ice cube wrapped in a wool blanket remain frozen for (a) less time, (b) the same length of time, or (c) a longer time than an identical ice cube exposed to air at room temperature?

QUICK QUIZ 11.4 Two rods of the same length and diameter are made from different materials. The rods are to connect two regions of different temperature so that energy will transfer through the rods by heat. They can be connected in series, as in Figure 11.7a, or in parallel, as in Figure 11.7b. In which case is the rate of energy transfer by heat larger? (a) When the rods are in series (b) When the rods are in parallel (c) The rate is the same in both cases.

TABLE 11.3

<table>
<thead>
<tr>
<th>Substance</th>
<th>Thermal Conductivity (J/s·m·°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Metals (at 25°C)</td>
<td></td>
</tr>
<tr>
<td>Aluminum</td>
<td>238</td>
</tr>
<tr>
<td>Copper</td>
<td>397</td>
</tr>
<tr>
<td>Gold</td>
<td>314</td>
</tr>
<tr>
<td>Iron</td>
<td>79.5</td>
</tr>
<tr>
<td>Lead</td>
<td>34.7</td>
</tr>
<tr>
<td>Silver</td>
<td>427</td>
</tr>
<tr>
<td>Gases (at 20°C)</td>
<td></td>
</tr>
<tr>
<td>Air</td>
<td>0.023 4</td>
</tr>
<tr>
<td>Helium</td>
<td>0.138</td>
</tr>
<tr>
<td>Hydrogen</td>
<td>0.172</td>
</tr>
<tr>
<td>Nitrogen</td>
<td>0.023 4</td>
</tr>
<tr>
<td>Oxygen</td>
<td>0.023 8</td>
</tr>
<tr>
<td>Nonmetals</td>
<td></td>
</tr>
<tr>
<td>Asbestos</td>
<td>0.25</td>
</tr>
<tr>
<td>Concrete</td>
<td>1.3</td>
</tr>
<tr>
<td>Glass</td>
<td>0.84</td>
</tr>
<tr>
<td>Ice</td>
<td>1.6</td>
</tr>
<tr>
<td>Rubber</td>
<td>0.2</td>
</tr>
<tr>
<td>Water</td>
<td>0.60</td>
</tr>
<tr>
<td>Wood</td>
<td>0.10</td>
</tr>
</tbody>
</table>

EXAMPLE 11.9 Energy Transfer Through a Concrete Wall

Goal Apply the equation of heat conduction.

Problem Find the energy transferred in 1.00 h by conduction through a concrete wall 2.0 m high, 3.65 m long, and 0.20 m thick if one side of the wall is held at 20°C and the other side is at 5°C.

Strategy Equation 11.7 gives the rate of energy transfer by conduction in joules per second. Multiply by the time and substitute given values to find the total thermal energy transferred.

Solution

Multiply Equation 11.7 by Δt to find an expression for the total energy Q transferred through the wall:

$$Q = \mathcal{P} \Delta t = kA \left(\frac{T_k - T_\ell}{L} \right) \Delta t$$

Substitute the numerical values to obtain Q, consulting Table 11.3 for k:

$$Q = (1.3 \text{ J/s·m·°C}) (7.3 \text{ m}^2) \left(\frac{15°C}{0.20 \text{ m}} \right) (3600 \text{ s}) = 2.6 \times 10^6 \text{ J}$$
Remarks Early houses were insulated with thick masonry walls, which restrict energy loss by conduction because k is relatively low. The large thickness L also decreases energy loss by conduction, as shown by Equation 11.7. There are much better insulating materials, however, and layering is also helpful. Despite the low thermal conductivity of masonry, the amount of energy lost is still rather large, enough to raise the temperature of 600 kg of water by more than 1°C.

QUESTION 11.9

True or False: Materials having high thermal conductivities provide better insulation than materials having low thermal conductivities.

Home Insulation

To determine whether to add insulation to a ceiling or some other part of a building, the preceding discussion of conduction must be extended for two reasons:

1. The insulating properties of materials used in buildings are usually expressed in engineering (U.S. customary) rather than SI units. Measurements stamped on a package of fiberglass insulating board will be in units such as British thermal units, feet, and degrees Fahrenheit.

2. In dealing with the insulation of a building, conduction through a compound slab must be considered, with each portion of the slab having a certain thickness and a specific thermal conductivity. A typical wall in a house consists of an array of materials, such as wood paneling, drywall, insulation, sheathing, and wood siding.

The rate of energy transfer by conduction through a compound slab is

$$\frac{Q}{\Delta t} = \frac{A(T_i - T_e)}{\sum L_i/k_i} \quad [11.8]$$

where T_i and T_e are the temperatures of the outer extremities of the slab and the summation is over all portions of the slab. This formula can be derived algebraically, using the facts that the temperature at the interface between two insulating materials must be the same and that the rate of energy transfer through one insulator must be the same as through all the other insulators. If the slab consists of three different materials, the denominator is the sum of three terms. In engineering practice, the term L/k for a particular substance is referred to as the R-value of the material, so Equation 11.8 reduces to

$$\frac{Q}{\Delta t} = \frac{A(T_i - T_e)}{\sum R_i} \quad [11.9]$$

The R-values for a few common building materials are listed in Table 11.4. Note the unit of R and the fact that the R-values are defined for specific thicknesses.

Next to any vertical outside surface is a very thin, stagnant layer of air that must be considered when the total R-value for a wall is computed. The thickness of this stagnant layer depends on the speed of the wind. As a result, energy loss by conduction from a house on a day when the wind is blowing is greater than energy loss on a day when the wind speed is zero. A representative R-value for a stagnant air layer is given in Table 11.4.
TABLE 11.4

R-Values for Some Common Building Materials

<table>
<thead>
<tr>
<th>Material</th>
<th>R value $\left(\frac{\text{ft}^2 \cdot \text{°F} \cdot \text{h}}{\text{Btu}}\right)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hardwood siding (1.0 in. thick)</td>
<td>0.91</td>
</tr>
<tr>
<td>Wood shingles (lapped)</td>
<td>0.87</td>
</tr>
<tr>
<td>Brick (4.0 in. thick)</td>
<td>4.00</td>
</tr>
<tr>
<td>Concrete block (filled cores)</td>
<td>1.93</td>
</tr>
<tr>
<td>Styrofoam (1.0 in. thick)</td>
<td>5.0</td>
</tr>
<tr>
<td>Fiberglass batting (3.5 in. thick)</td>
<td>10.90</td>
</tr>
<tr>
<td>Fiberglass batting (6.0 in. thick)</td>
<td>18.80</td>
</tr>
<tr>
<td>Fiberglass board (1.0 in. thick)</td>
<td>4.35</td>
</tr>
<tr>
<td>Cellulose fiber (1.0 in. thick)</td>
<td>3.70</td>
</tr>
<tr>
<td>Flat glass (0.125 in. thick)</td>
<td>0.89</td>
</tr>
<tr>
<td>Insulating glass (0.25-in. space)</td>
<td>1.54</td>
</tr>
<tr>
<td>Vertical air space (3.5 in. thick)</td>
<td>1.01</td>
</tr>
<tr>
<td>Stagnant layer of air</td>
<td>0.17</td>
</tr>
<tr>
<td>Drywall (0.50 in. thick)</td>
<td>0.45</td>
</tr>
<tr>
<td>Sheathing (0.50 in. thick)</td>
<td>1.32</td>
</tr>
</tbody>
</table>

EXAMPLE 11.10 The R-Value of a Typical Wall

Goal Calculate the R-value of a wall consisting of several layers of insulating material.

Problem Calculate the total R-value for a wall constructed as shown in Figure 11.8a. Starting outside the house (to the left in the figure) and moving inward, the wall consists of 4.0 in. of brick, 0.50 in. of sheathing, an air space 3.5 in. thick, and 0.50 in. of drywall.

Strategy Add all the R-values together, remembering the stagnant air layers inside and outside the house.

Solution

Refer to Table 11.4, and sum. All quantities are in units of $\text{ft}^2 \cdot \text{°F} \cdot \text{h}/\text{Btu}$.

\[
R_{\text{total}} = R_{\text{outside air layer}} + R_{\text{brick}} + R_{\text{sheath}} + R_{\text{air space}} + R_{\text{drywall}} + R_{\text{inside air layer}}
\]

\[
(0.17 + 4.00 + 1.32 + 1.01 + 0.45 + 0.17)\text{ft}^2 \cdot \text{°F} \cdot \text{h}/\text{Btu}
\]

\[
R_{\text{total}} = 7.12\text{ft}^2 \cdot \text{°F} \cdot \text{h}/\text{Btu}
\]

Remarks Convection, presented in the next section, can reduce the effectiveness of the outside air layer.

QUESTION 11.10

Does creating insulation with a R-value require (a) a smaller thermal conductivity and larger thickness, (b) a larger thermal conductivity and large thickness, or (c) a smaller thermal conductivity and smaller thickness.

EXERCISE 11.10

If a layer of fiberglass insulation 3.5 in. thick is placed inside the wall to replace the air space, as in Figure 11.8b, what is the new total R-value? By what factor is the rate of energy loss reduced?

Answer $R = 17$ $\text{ft}^2 \cdot \text{°F} \cdot \text{h}/\text{Btu}$; 2.4
EXAMPLE 11.11 Staying Warm in the Arctic

Goal Combine two layers of insulation.

Problem An arctic explorer builds a wooden shelter out of wooden planks that are 1.0 cm thick. To improve the insulation, he covers the shelter with a layer of ice 3.2 cm thick. (a) Compute the R-values for the wooden planks and the ice. (b) If the temperature outside the shelter is -20.0°C and the temperature inside is 5.00$^\circ$C, find the rate of energy loss through one of the walls, if the wall has dimensions 2.00 m by 2.00 m. (c) Find the temperature at the interface between the wood and the ice. Disregard stagnant air layers.

Strategy After finding the R-values, substitute into Equation 11.9 to get the rate of energy transfer. To answer part (c), use Equation 11.7 for one of the layers, setting it equal to the rate found in part (b) and solving for the temperature.

Solution
(a) Compute the R-values using the data in Table 11.3.

Find the R-value for the wooden wall:

$$R_{\text{wood}} = \frac{L_{\text{wood}}}{k_{\text{wood}}} = \frac{0.010 \text{ m}}{0.10 \text{ J/s·m·°C}} = 0.10 \text{ m}^2\cdot\text{s·°C/J}$$

Find the R-value for the ice layer:

$$R_{\text{ice}} = \frac{L_{\text{ice}}}{k_{\text{ice}}} = \frac{0.032 \text{ m}}{1.6 \text{ J/s·m·°C}} = 0.020 \text{ m}^2\cdot\text{s·°C/J}$$

(b) Find the rate of heat loss.

Apply Equation 11.9:

$$\mathcal{P} = \frac{Q}{\Delta t} = \frac{A(T_h - T_C)}{\sum R_i} = \frac{(4.00 \text{ m}^2)(5.00^\circ \text{C} - (-20.0^\circ \text{C}))}{0.12 \text{ m}^2\cdot\text{s·°C/J}} = 830 \text{ W}$$

(c) Find the temperature in between the ice and wood.

Apply the equation of heat conduction to the wood:

$$\frac{k_{\text{wood}}A(T_h - T)}{L} = \mathcal{P}$$

Solve for the unknown temperature:

$$T = \frac{(0.10 \text{ J/s·m·°C})(4.00 \text{ m}^2)(5.00^\circ \text{C} - T)}{0.010 \text{ m}} = 830 \text{ W}$$

Remarks The outer side of the wooden wall and the inner surface of the ice must have the same temperature, and the rate of energy transfer through the ice must be the same as through the wooden wall. Using Equation 11.7 for ice instead of wood gives the same answer. This rate of energy transfer is only a modest improvement over the thousand-watt rate in Exercise 11.9. The choice of insulating material is important!

QUESTION 11.11

Women have an extra layer of subcutaneous fat than men. What two survival advantages does this additional layer confer?

EXERCISE 11.11

Rather than use ice to cover the wooden shelter, the explorer glues pressed cork with thickness 0.500 cm to the outside of his wooden shelter. Find the new rate of energy loss through the same wall. (Note that $k_{\text{cork}} = 0.046 \text{ J/s·m·°C}$.)

Answer 480 W
Convection

When you warm your hands over an open flame, as illustrated in Figure 11.9, the air directly above the flame, being warmed, expands. As a result, the density of this air decreases and the air rises, warming your hands as it flows by. The transfer of energy by the movement of a substance is called convection. When the movement results from differences in density, as with air around a fire, it’s referred to as natural convection. Airflow at a beach is an example of natural convection, as is the mixing that occurs as surface water in a lake cools and sinks. When the substance is forced to move by a fan or pump, as in some hot air and hot water heating systems, the process is called forced convection.

Convection currents assist in the boiling of water. In a teakettle on a hot stove-top, the lower layers of water are warmed first. The warmed water has a lower density and rises to the top, while the denser, cool water at the surface sinks to the bottom of the kettle and is warmed.

The same process occurs when a radiator raises the temperature of a room. The hot radiator warms the air in the lower regions of the room. The warm air expands and, because of its lower density, rises to the ceiling. The denser, cooler air from above sinks, setting up the continuous air current pattern shown in Figure 11.10.

An automobile engine is maintained at a safe operating temperature by a combination of conduction and forced convection. Water (actually, a mixture of water and antifreeze) circulates in the interior of the engine. As the metal of the engine block increases in temperature, energy passes from the hot metal to the cooler water by thermal conduction. The water pump forces water out of the engine and into the radiator, carrying energy along with it (by forced convection). In the radiator the hot water passes through metal pipes that are in contact with the cooler outside air, and energy passes into the air by conduction. The cooled water is then returned to the engine by the water pump to absorb more energy. The process of air being pulled past the radiator by the fan is also forced convection.

The algal blooms often seen in temperate lakes and ponds during the spring or fall are caused by convection currents in the water. To understand this process, consider Figure 11.11. During the summer, bodies of water develop temperature gradients, with a warm upper layer of water separated from a cold lower layer by a buffer zone called a thermocline. In the spring and fall temperature changes in the water break down this thermocline, setting up convection currents that mix the water. The mixing process transports nutrients from the bottom to the
The nutrient-rich water forming at the surface can cause a rapid, temporary increase in the algae population.

Explanation A natural method of maintaining body temperature is via layers of fat beneath the skin. Fat protects against both conduction and convection because of its low thermal conductivity and because there are few blood vessels in fat to carry blood to the surface, where energy losses by convection can occur. Birds ruffle their feathers in cold weather to trap a layer of air with a low thermal conductivity between the feathers and the skin. Bristling the fur produces the same effect in fur-bearing animals.

Humans keep warm with wool sweaters and down jackets that trap the warmer air in regions close to their bodies, reducing energy loss by convection and conduction.

Radiation

Another process of transferring energy is through radiation. Figure 11.12 shows how your hands can be warmed at an open flame through radiation. Because your hands aren’t in physical contact with the flame and the conductivity of air is very low, conduction can’t account for the energy transfer. Nor can convection be responsible for any transfer of energy because your hands aren’t above the flame in the path of convection currents. The warmth felt in your hands must therefore come from the transfer of energy by radiation.

All objects radiate energy continuously in the form of electromagnetic waves due to thermal vibrations of their molecules. These vibrations create the orange glow of an electric stove burner, an electric space heater, and the coils of a toaster.

The rate at which an object radiates energy is proportional to the fourth power of its absolute temperature. This is known as Stefan’s law, expressed in equation form as

\[
\mathcal{P} = \varepsilon \sigma A T^4
\]

where \(\mathcal{P}\) is the power in watts (or joules per second) radiated by the object, \(\sigma\) is the Stefan–Boltzmann constant, equal to \(5.669 \times 10^{-8}\) W/m\(^2\)K\(^4\), \(A\) is the surface area of the object in square meters, \(\varepsilon\) is a constant called the emissivity of the object, and \(T\) is the object’s Kelvin temperature. The value of \(\varepsilon\) can vary between zero and one, depending on the properties of the object’s surface.

Approximately 1 340 J of electromagnetic radiation from the Sun passes through each square meter at the top of the Earth’s atmosphere every second. This radiation is primarily visible light, accompanied by significant amounts of infrared and ultraviolet light. We will study these types of radiation in detail in Chapter 21. Some of this energy is reflected back into space, and some is absorbed by the atmosphere, but enough arrives at the surface of the Earth each day to supply all our energy needs hundreds of times over, if it could be captured and used efficiently. The growth in the number of solar houses in the United States is one example of an attempt to make use of this abundant energy. Radiant energy from the Sun affects our day-to-day existence in a number of ways, influencing Earth’s average temperature, ocean currents, agriculture, and rain patterns. It can also affect behavior.

As another example of the effects of energy transfer by radiation, consider what happens to the atmospheric temperature at night. If there is a cloud cover above the Earth, the water vapor in the clouds absorbs part of the infrared radiation emitted by the Earth and re-emits it back to the surface. Consequently, the temperature at the surface remains at moderate levels. In the absence of cloud cover, there
is nothing to prevent the radiation from escaping into space, so the temperature drops more on a clear night than on a cloudy night.

As an object radiates energy at a rate given by Equation 11.10, it also absorbs radiation. If it didn’t, the object would eventually radiate all its energy and its temperature would reach absolute zero. The energy an object absorbs comes from its environment, which consists of other bodies that radiate energy. If an object is at a temperature \(T \) and its surroundings are at a temperature \(T_0 \), the net energy gained or lost each second by the object as a result of radiation is

\[
\mathcal{P}_{\text{net}} = \sigma A e (T^4 - T_0^4)
\] \hspace{1cm} [11.11]

When an object is in equilibrium with its surroundings, it radiates and absorbs energy at the same rate, so its temperature remains constant. When an object is hotter than its surroundings, it radiates more energy than it absorbs and therefore cools.

An **ideal absorber** is an object that absorbs all the light radiation incident on it, including invisible infrared and ultraviolet light. Such an object is called a **black body** because a room-temperature black body would look black. Because a black body doesn’t reflect radiation at any wavelength, any light coming from it is due to atomic and molecular vibrations alone. A perfect black body has emittance \(e = 1 \). An ideal absorber is also an ideal radiator of energy. The Sun, for example, is nearly a perfect black body. This statement may seem contradictory because the Sun is bright, not dark; the light that comes from the Sun, however, is emitted, not reflected. Black bodies are perfect absorbers that look black at room temperature because they don’t reflect any light. All black bodies, except those at absolute zero, emit light that has a characteristic spectrum, discussed in Chapter 27. In contrast to black bodies, an object for which \(e = 0 \) absorbs none of the energy incident on it, reflecting it all. Such a body is an **ideal reflector**.

White clothing is more comfortable to wear in the summer than black clothing. Black fabric acts as a good absorber of incoming sunlight and as a good emitter of this absorbed energy. About half of the emitted energy, however, travels toward the body, causing the person wearing the garment to feel uncomfortably warm. White or light-colored clothing reflects away much of the incoming energy.

The amount of energy radiated by an object can be measured with temperature-sensitive recording equipment via a technique called **thermography**. An image of the pattern formed by varying radiation levels, called a **thermogram**, is brightest in the warmest areas. Figure 11.13 reproduces a thermogram of a house. More energy escapes in the lighter regions, such as the door and windows. The owners of this house could conserve energy and reduce their heating costs by adding insulation to the attic area and by installing thermal draperies over the windows. Thermograms have also been used to image injured or diseased tissue in medicine, because such areas are often at a different temperature than surrounding healthy tissue, although many radiologists consider thermograms inadequate as a diagnostic tool.

Figure 11.14 shows a recently developed radiation thermometer that has removed most of the risk of taking the temperature of young children or the aged.
with a rectal thermometer, risks such as bowel perforation or bacterial contamination. The instrument measures the intensity of the infrared radiation leaving the eardrum and surrounding tissues and converts this information to a standard numerical reading. The eardrum is a particularly good location to measure body temperature because it’s near the hypothalamus, the body’s temperature control center.

QUICK QUIZ 11.5 Stars A and B have the same temperature, but star A has twice the radius of star B. (a) What is the ratio of star A’s power output to star B’s output due to electromagnetic radiation? The emissivity of both stars can be assumed to be 1. (b) Repeat the question if the stars have the same radius, but star A has twice the absolute temperature of star B. (c) What’s the ratio if star A has both twice the radius and twice the absolute temperature of star B?

APPLICATION PHYSICS 11.2 THERMAL RADIATION AND NIGHT VISION

How can thermal radiation be used to see objects in near total darkness?

Explanation There are two methods of night vision, one enhancing a combination of very faint visible light and infrared light, and another using infrared light only. The latter is valuable for creating images in absolute darkness. Because all objects above absolute zero emit thermal radiation due to the vibrations of their atoms, the infrared (invisible) light can be focused by a special lens and scanned by an array of infrared detector elements. These elements create a thermogram. The information from thousands of separate points in the field of view is converted to electrical impulses and translated by a microchip into a form suitable for display. Different temperature areas are assigned different colors, which can then be easily discerned on the display.

EXAMPLE 11.12 Polar Bear Club

Goal Apply Stefan’s law.

Problem A member of the Polar Bear Club, dressed only in bathing trunks of negligible size, prepares to plunge into the Baltic Sea from the beach in St. Petersburg, Russia. The air is calm, with a temperature of 5°C. If the swimmer’s surface body temperature is 25°C, compute the net rate of energy loss from his skin due to radiation. How much energy is lost in 10.0 minutes? Assume his emissivity is 0.900 and his surface area is 1.50 m².

Strategy Use Equation 11.11, the thermal radiation equation, substituting the given information. Remember to convert temperatures to Kelvin by adding 273 to each value in degrees Celsius!

Solution

Convert temperatures from Celsius to Kelvin:

\[
T_{25\degree C} = T_{C} + 273 = 25 + 273 = 298 \text{ K}
\]

\[
T_{5\degree C} = T_{C} + 273 = 5 + 273 = 278 \text{ K}
\]

Compute the net rate of energy loss, using Equation 11.11:

\[
\mathcal{P}_{\text{net}} = \sigma A e (T^4 - T_0^4)
\]

\[= (5.67 \times 10^{-8} \text{ W/m}^2 \cdot \text{K}^4) (1.50 \text{ m}^2) \times (0.900) [(298 \text{ K})^4 - (278 \text{ K})^4] \]

\[= 146 \text{ W} \]

Multiply the preceding result by the time, 10 minutes, to get the energy lost in that time due to radiation:

\[
Q = \mathcal{P}_{\text{net}} \times \Delta t = (146 \text{ J/s}) (6.00 \times 10^2 \text{ s}) = 8.76 \times 10^4 \text{ J}
\]
Remarks Energy is also lost from the body through convection and conduction. Clothing traps layers of air next to the skin, which are warmed by radiation and conduction. In still air these warm layers are more readily retained. Even a Polar Bear Club member enjoys some benefit from the still air, better retaining a stagnant air layer next to the surface of his skin.

QUESTION 11.12
Suppose that at a given temperature the rate of an object's energy loss due to radiation is equal to its loss by conduction. When the object's temperature is raised, is the energy loss due to radiation (a) greater than, (b) equal to, or (c) less than the rate of energy loss due to conduction? (Assume the temperature of the environment is constant.)

EXERCISE 11.12
Repeat the calculation when the man is standing in his bedroom, with an ambient temperature of 20.0°C. Assume his body surface temperature is 27.0°C, with emissivity of 0.900.

Answer 55.9 W, 3.35 × 10^4 J

11.6 Global Warming and Greenhouse Gases

The Dewar Flask
The Thermos bottle, also called a Dewar flask (after its inventor), is designed to minimize energy transfer by conduction, convection, and radiation. The thermos can store either cold or hot liquids for long periods. The standard vessel (Fig. 11.15) is a double-walled Pyrex glass with silvered walls. The space between the walls is evacuated to minimize energy transfer by conduction and convection. The silvered surface minimizes energy transfer by radiation because silver is a very good reflector and has very low emissivity. A further reduction in energy loss is achieved by reducing the size of the neck. Dewar flasks are commonly used to store liquid nitrogen (boiling point 77 K) and liquid oxygen (boiling point 90 K).

To confine liquid helium (boiling point 4.2 K), which has a very low heat of vaporization, it's often necessary to use a double Dewar system in which the Dewar flask containing the liquid is surrounded by a second Dewar flask. The space between the two flasks is filled with liquid nitrogen.

Some of the principles of the Thermos bottle are used in the protection of sensitive electronic instruments in orbiting space satellites. In half of its orbit around the Earth a satellite is exposed to intense radiation from the Sun, and in the other half it lies in the Earth's cold shadow. Without protection, its interior would be subjected to tremendous extremes of temperature. The interior of the satellite is wrapped with blankets of highly reflective aluminum foil. The foil's shiny surface reflects away much of the Sun's radiation while the satellite is in the unshaded part of the orbit and helps retain interior energy while the satellite is in the Earth's shadow.

APPLICATION
Thermos Bottles

11.6 Global Warming and Greenhouse Gases

Many of the principles of energy transfer, and opposition to it, can be understood by studying the operation of a glass greenhouse. During the day, sunlight passes into the greenhouse and is absorbed by the walls, soil, plants, and so on. This absorbed visible light is subsequently reradiated as infrared radiation, causing the temperature of the interior to rise.

In addition, convection currents are inhibited in a greenhouse. As a result, warmed air can't rapidly pass over the surfaces of the greenhouse that are exposed to the outside air and thereby cause an energy loss by conduction through those surfaces. Most experts now consider this restriction to be a more important warming effect than the trapping of infrared radiation. In fact, experiments have shown that when the glass over a greenhouse is replaced by a special glass known to transmit infrared light, the temperature inside is lowered only slightly. On the basis of this evidence, the primary mechanism that raises the temperature of a greenhouse
is not the trapping of infrared radiation, but the inhibition of airflow that occurs under any roof (in an attic, for example).

A phenomenon commonly known as the greenhouse effect can also play a major role in determining the Earth's temperature. First, note that the Earth's atmosphere is a good transmitter (and hence a poor absorber) of visible radiation and a good absorber of infrared radiation. The visible light that reaches the Earth's surface is absorbed and reradiated as infrared light, which in turn is absorbed (trapped) by the Earth's atmosphere. An extreme case is the warmest planet, Venus, which has a carbon dioxide (CO₂) atmosphere and temperatures approaching 850°F.

As fossil fuels (coal, oil, and natural gas) are burned, large amounts of carbon dioxide are released into the atmosphere, causing it to retain more energy. These emissions are of great concern to scientists and governments throughout the world. Many scientists are convinced that the 10% increase in the amount of atmospheric carbon dioxide since 1970 could lead to drastic changes in world climate. The increase in concentration of atmospheric carbon dioxide in the latter part of the 20th century is shown in Figure 11.16. According to one estimate, doubling the carbon dioxide content in the atmosphere will cause temperatures to increase by 2°C. In temperate regions such as Europe and the United States, a 2°C temperature rise would save billions of dollars per year in fuel costs. Unfortunately, it would also melt a large amount of land-based ice from Greenland and Antarctica, raising the level of the oceans and destroying many coastal regions. A 2°C rise would also increase the frequency of droughts and consequently decrease already low crop yields in tropical and subtropical countries. Even slightly higher average temperatures might make it impossible for certain plants and animals to survive in their customary ranges.

At present, about 3.5×10^{11} tons of CO₂ are released into the atmosphere each year. Most of this gas results from human activities such as the burning of fossil fuels, the cutting of forests, and manufacturing processes. Another greenhouse gas is methane (CH₄), which is released in the digestive process of cows and other ruminants. This gas originates from that part of the animal’s stomach called the rumen, where cellulose is digested. Termites are also major producers of this gas. Finally, greenhouse gases such as nitrous oxide (N₂O) and sulfur dioxide (SO₂) are increasing due to automobile and industrial pollution.

Whether the increasing greenhouse gases are responsible or not, there is convincing evidence that global warming is under way. The evidence comes from the melting of ice in Antarctica and the retreat of glaciers at widely scattered sites throughout the world (see Fig. 11.17). For example, satellite images of Antarctica show James Ross Island completely surrounded by water for the first time since maps were made, about 100 years ago. Previously, the island was connected to the mainland by an ice bridge. In addition, at various places across the continent, ice shelves are retreating, some at a rapid rate.

Perhaps at no place in the world are glaciers monitored with greater interest than in Switzerland. There, it is found that the Alps have lost about 50% of their
glacial ice compared to 130 years ago. The retreat of glaciers on high-altitude peaks in the tropics is even more severe than in Switzerland. The Lewis glacier on Mount Kenya and the snows of Kilimanjaro are two examples. In certain regions of the planet where glaciers are near large bodies of water and are fed by large and frequent snows, however, glaciers continue to advance, so the overall picture of a catastrophic global-warming scenario may be premature. In about 50 years, though, the amount of carbon dioxide in the atmosphere is expected to be about twice what it was in the preindustrial era. Because of the possible catastrophic consequences, most scientists voice the concern that reductions in greenhouse gas emissions need to be made now.

FIGURE 11.17 Death of an ice shelf. The image in (a), taken on January 9, 1995 in the near-visible part of the spectrum, shows James Ross Island (spidery-shaped, just off center) before the iceberg calved, but after the disintegration of the ice shelf between James Ross Island and the Antarctic peninsula. In the image in part (b), taken on February 12, 1995, the iceberg has calved and begun moving away from land. The iceberg is about 78 km by 27 km and 200 m thick. A century ago James Ross Island was completely surrounded in ice that joined it to Antarctica.

SUMMARY

11.1 Heat and Internal Energy

Internal energy is associated with a system’s microscopic components. Internal energy includes the kinetic energy of translation, rotation, and vibration of molecules, as well as potential energy.

Heat is the transfer of energy across the boundary of a system resulting from a temperature difference between the system and its surroundings. The symbol Q represents the amount of energy transferred.

The calorie is the amount of energy necessary to raise the temperature of 1 g of water from 14.5°C to 15.5°C. The mechanical equivalent of heat is 4.186 J/cal.

11.2 Specific Heat

11.3 Calorimetry

The energy required to change the temperature of a substance of mass m by an amount ΔT is

$$Q = mc \Delta T \quad [11.3]$$

where c is the specific heat of the substance. In calorimetry problems the specific heat of a substance can be determined by placing it in water of known temperature, isolating the system, and measuring the temperature at equilibrium. The sum of all energy gains and losses for all the objects in an isolated system is given by

$$\sum Q_i = 0 \quad [11.5]$$

where Q_k is the energy change in the kth object in the system. This equation can be solved for the unknown specific heat, or used to determine an equilibrium temperature.

11.4 Latent Heat and Phase Change

The energy required to change the phase of a pure substance of mass m is

$$Q = \pm mL \quad [11.6]$$

where L is the latent heat of the substance. The latent heat of fusion, L_f, describes an energy transfer during a change from a solid phase to a liquid phase (or vice versa), while the latent heat of vaporization, L_v, describes an energy transfer during a change from a liquid phase to a gaseous phase (or vice versa). Calorimetry problems involving phase changes are handled with Equation 11.5, with latent heat terms added to the specific heat terms.

11.5 Energy Transfer

Energy can be transferred by several different processes, including work, discussed in Chapter 5, and by conduction, convection, and radiation. Conduction can be viewed as an exchange of kinetic energy between colliding molecules or electrons. The rate at which energy transfers by conduction through a slab of area A and thickness L is

$$\varphi = kA \frac{(T_h - T)}{L} \quad [11.7]$$
where \(k \) is the thermal conductivity of the material making up the slab.

Energy is transferred by convection as a substance moves from one place to another.

All objects emit radiation from their surfaces in the form of electromagnetic waves at a net rate of

\[
\Phi_{\text{net}} = \alpha \varepsilon \sigma (T^4 - T_0^4) \tag{11.11}
\]

where \(T \) is the temperature of the object and \(T_0 \) is the temperature of the surroundings. An object that is hotter than its surroundings radiates more energy than it absorbs, whereas a body that is cooler than its surroundings absorbs more energy than it radiates.

MULTIPLE-CHOICE QUESTIONS

1. Convert \(3.50 \times 10^5 \text{ cal} \) to an equivalent number of joules. (a) \(2.74 \times 10^4 \text{ J} \) (b) \(1.47 \times 10^5 \text{ J} \) (c) \(3.24 \times 10^4 \text{ J} \) (d) \(5.33 \times 10^4 \text{ J} \) (e) \(7.20 \times 10^4 \text{ J} \)

2. Convert \(7.80 \times 10^3 \text{ J} \) to the equivalent number of Calories (1 Cal = 1 000 cal). (a) 186 Cal (b) 238 Cal (c) 325 Cal (d) 418 Cal (e) 522 Cal

3. How much energy is required to raise the temperature of 5.00 kg of lead from 20.0°C to its melting point of 327°C? (a) \(4.04 \times 10^5 \text{ J} \) (b) \(1.07 \times 10^5 \text{ J} \) (c) \(8.15 \times 10^4 \text{ J} \) (d) \(2.13 \times 10^4 \text{ J} \) (e) \(1.96 \times 10^3 \text{ J} \)

4. If \(9.30 \times 10^5 \text{ J} \) of energy are transferred to 2.00 kg of ice at 0°C, what is the final temperature of the system? (a) 22.4°C (b) 14.2°C (c) 31.5°C (d) 18.0°C (e) 0°C

5. A wall made of wood 4.00 cm thick has area of 48.0 m². If the temperature inside is 25°C and the temperature outside is 14°C, at what rate is thermal energy transported through the wall by conduction? (a) 82 W (b) 210 W (c) 690 W (d) \(1.3 \times 10^3 \text{ W} \) (e) \(2.1 \times 10^3 \text{ W} \)

6. A granite ball of radius 2.00 m and emissivity 0.450 is heated to 135°C, whereas the ambient temperature is 25.0°C. What is the net power radiated from the ball? (a) \(4.25 \times 10^3 \text{ W} \) (b) \(5.55 \times 10^4 \text{ W} \) (c) \(145 \text{ W} \) (d) \(2.01 \times 10^3 \text{ W} \) (e) \(2.54 \times 10^4 \text{ W} \)

7. How long would it take a 1.00 \(\times 10^3 \text{ W} \) heating element to melt 2.00 kg of ice at \(-20.0°C \), assuming all the energy is absorbed by the ice? (a) 4.19 s (b) 419 s (c) 555 min (d) 12.5 min (e) 2.00 h

8. An unknown element of mass 0.250 kg, initially at 95.0°C, is dropped into 0.400 kg of water at 20.0°C contained in an insulated cup of negligible mass and specific heat. If the equilibrium temperature is 36.0°C, which of the following is the most likely identity of the substance? (a) aluminum (b) beryllium (c) cadmium (d) iron (e) gold

9. An amount of energy is added to ice, raising its temperature from \(-10°C \) to \(-5°C \). A larger amount of energy is added to the same mass of water, raising its temperature from 15°C to 20°C. From these results, what can we conclude? (a) Overcoming the latent heat of fusion of ice requires an input of energy. (b) The latent heat of fusion of ice delivers some energy to the system. (c) The specific heat of ice is less than that of water. (d) The specific heat of ice is greater than that of water. (e) More information is needed to draw any conclusion.

10. Star A has twice the radius and twice the absolute temperature of star B. What is the ratio of the power output of star A to that of star B? The emissivity of both stars can be assumed to be 1. (a) 4 (b) 8 (c) 16 (d) 32 (e) 64

11. A person shakes a sealed, insulated bottle containing coffee for a few minutes. What is the change in the temperature of the coffee? (a) a large decrease (b) a slight decrease (c) no change (d) a slight increase (e) a large increase

12. A poker is a stiff, nonflammable rod used to push burning logs around in a fireplace. Suppose it is to be made of a single material. For best functionality and safety, should the poker be made from a material with (a) high specific heat and high thermal conductivity, (b) low specific heat and low thermal conductivity, (c) low specific heat and high thermal conductivity, (d) high specific heat and low thermal conductivity, or (e) low specific heat and low density?

CONCEPTUAL QUESTIONS

1. Rub the palm of your hand on a metal surface for 30 to 45 seconds. Place the palm of your other hand on an un-rubbed portion of the surface and then on the rubbed portion. The rubbed portion will feel warmer. Now repeat this process on a wooden surface. Why does the temperature difference between the rubbed and un-rubbed portions of the wood surface seem larger than for the metal surface?

2. Pioneers stored fruits and vegetables in underground cellars. Discuss fully this choice for a storage site.

3. In usually warm climates that experience an occasional hard freeze, fruit growers will spray the fruit trees with water, hoping that a layer of ice will form on the fruit. Why would such a layer be advantageous?
4. In winter, why did the pioneers (mentioned in Question 2) store an open barrel of water alongside their produce?

5. Cups of water for coffee or tea can be warmed with a coil that is immersed in the water and raised to a high temperature by means of electricity. Why do the instructions warn users not to operate the coils in the absence of water? Can the immersion coil be used to warm up a cup of stew?

6. The U.S. penny is now made of copper-coated zinc. Can a calorimetric experiment be devised to test for the metal content in a collection of pennies? If so, describe the procedure.

7. On a clear, cold night, why does frost tend to form on the tops, rather than the sides, of mailboxes and cars?

8. The air temperature above coastal areas is profoundly influenced by the large specific heat of water. One reason is that the energy released when 1 cubic meter of water cools by 1.0°C will raise the temperature of an enormously larger volume of air by 1.0°C. Estimate that volume of air. The specific heat of air is approximately 1.0 kJ/kg °C. Take the density of air to be 1.3 kg/m³.

9. A tile floor may feel uncomfortably cold to your bare feet, but a carpeted floor in an adjoining room at the same temperature feels warm. Why?

10. On a very hot day, it’s possible to cook an egg on the hood of a car. Would you select a black car or a white car on which to cook your egg? Why?

11. Concrete has a higher specific heat than does soil. Use this fact to explain (partially) why a city has a higher average temperature than the surrounding countryside. Would you expect evening breezes to blow from city to country or from country to city? Explain.

12. You need to pick up a very hot cooking pot in your kitchen. You have a pair of hot pads. Should you soak them in cold water or keep them dry in order to pick up the pot most comfortably?

PROBLEMS

The Problems for this chapter may be assigned online at WebAssign.

1. 2. 3 = straightforward, intermediate, challenging

WebAssign

<table>
<thead>
<tr>
<th>Level</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>GP</td>
<td>denotes guided problem</td>
</tr>
<tr>
<td>ecp</td>
<td>denotes enhanced content problem</td>
</tr>
<tr>
<td>S</td>
<td>denotes biomedical application</td>
</tr>
<tr>
<td>SSM</td>
<td>denotes full solution available in Student Solutions Manual/Study Guide</td>
</tr>
</tbody>
</table>

SECTION 11.1 HEAT AND INTERNAL ENERGY

1. The highest recorded waterfall in the world is found at Angel Falls in Venezuela. Its longest single waterfall has a height of 807 m. If water at the top of the falls is at 15.0°C, what is the maximum temperature of the water at the bottom of the falls? Assume all the kinetic energy of the water as it reaches the bottom goes into raising the water’s temperature.

2. How much energy is required to raise the temperature of 1.50 kg of cadmium from 20.0°C to 150°C?

3. Lake Erie contains roughly 4.00 × 10¹³ m³ of water. (a) How much energy is required to raise the temperature of that volume of water from 11.0°C to 12.0°C? (b) How many years would it take to supply this amount of energy by using the 1 000-MW exhaust energy of an electric power plant?

4. An aluminum rod is 20.0 cm long at 20°C and has a mass of 350 g. If 10 000 J of energy is added to the rod by heat, what is the change in length of the rod?

5. A 75-g sample of silicon is at 25°C. If 750 cal of energy is transferred to the silicon, what is its final temperature?

6. A 55-kg woman cheats on her diet and eats a 540-Calorie (540 kcal) jelly donut for breakfast. (a) How many joules of energy are the equivalent of one jelly doughnut? (b) How many stairs must the woman climb to perform an amount of mechanical work equivalent to the food energy in one jelly doughnut? Assume the height of a single stair is 15 cm. (c) If the human body is only 25% efficient in converting chemical energy to mechanical energy, how many stairs must the woman climb to work off her breakfast?

7. A 75-kg sprinter accelerates from rest to a speed of 11.0 m/s in 5.0 s. (a) Calculate the mechanical work done by the sprinter during this time. (b) Calculate the average power the sprinter must generate. (c) If the sprinter converts food energy to mechanical energy with an efficiency of 25%, at what average rate is he burning Calories? (d) What happens to the other 75% of the food energy being used?

8. A sprinter of mass m accelerates uniformly from rest to velocity v in t seconds. (a) Write a symbolic expression for the instantaneous mechanical power P required by the sprinter in terms of force F and velocity v. (b) Use Newton’s second law and a kinematics equation for the velocity at any time to obtain an expression for the instantaneous power in terms of m, a, and t only. (c) If a 75.0-kg sprinter reaches a speed of 11.0 m/s in 5.0 s, calculate the sprinter’s acceleration, assuming it to be constant. (d) Calculate the 75.0-kg sprinter’s instantaneous mechanical power as a function of time t and (e) give the maximum rate at which he burns Calories during the sprint, assuming 25% efficiency of conversion form food energy to mechanical energy.

9. A 5.00-g lead bullet traveling at 300 m/s is stopped by a large tree. If half the kinetic energy of the bullet is transformed into internal energy and remains with the bullet while the other half is transmitted to the tree, what is the increase in temperature of the bullet?
The apparatus shown in Figure P11.10 was used by Joule to measure the mechanical equivalent of heat. Work is done on the water by rotating paddle wheel, which is driven by two blocks falling at a constant speed. The temperature of the stirred water increases due to the friction between the water and the paddles. If the energy lost in the bearings and through the walls is neglected, then the loss in potential energy associated with the blocks equals the work done by the paddle wheel on the water. If each block has a mass of 1.50 kg and the insulated tank is filled with 200 g of water, what is the increase in temperature of the water after the blocks fall through a distance of 3.00 m?

![Figure P11.10](image)

SECTION 11.3 CALORIMETRY

15. What mass of water at 25.0°C must be allowed to come to thermal equilibrium with a 1.85-kg cube of aluminum initially at 1.50 \times 10^3°C to lower the temperature of the aluminum to 65.0°C? Assume any water turned to steam subsequently recondenses.

16. Lead pellets, each of mass 1.00 g, are heated to 200°C. How many pellets must be added to 500 g of water that is initially at 20.0°C to make the equilibrium temperature 25.0°C? Neglect any energy transfer to or from the container.

17. An aluminum cup contains 225 g of water and a 40-g copper stirrer, all at 27°C. A 400-g sample of silver at an initial temperature of 87°C is placed in the water. The stirrer is used to stir the mixture until it reaches its final equilibrium temperature. Calculate the mass of the aluminum cup.

18. In a showdown on the streets of Laredo, the good guy drops a 5.0-g silver bullet at a temperature of 20°C into a 100-cm³ cup of water at 90°C. Simultaneously, the bad guy drops a 5.0-g copper bullet at the same initial temperature into an identical cup of water. Which one ends the showdown with the coolest cup of water in the West? Neglect any energy transfer into or away from the container.

19. A 100-g aluminum calorimeter contains 250 g of water. The two substances are in thermal equilibrium at 10°C. Two metallic blocks are placed in the water. One is a 50-g piece of copper at 80°C. The other sample has a mass of 70 g and is originally at a temperature of 100°C. The entire system stabilizes at a final temperature of 20°C. Determine the specific heat of the unknown second sample.

20. It is desired to cool iron parts from 500°F to 100°F by dropping them into water that is initially at 75°F. Assuming all the thermal energy from the iron is transferred to the water and that none of the water evaporates, how many kilograms of water are needed per kilogram of iron?

21. A student drops two metallic objects into a 120-g steel container holding 150 g of water at 25°C. One object is a 200-g cube of copper that is initially at 85°C, and the other is a chunk of aluminum that is initially at 5.0°C. To the surprise of the student, the water reaches a final temperature of 25°C, precisely where it started. What is the mass of the aluminum chunk?

22. When a driver brakes an automobile, the friction between the brake drums and the brake shoes converts the car’s kinetic energy into an increase in the internal energy of the brake system. The wheel axles are made of steel, which has the same specific heat as iron. (a) Calculate the compressive stress in the steel. (b) What is the increase in temperature of the steel? (c) Compute the mass of the steel. (d) Concrete has an ultimate compressive strength of 2.00 \times 10^6 Pa, specific heat of 880 J/kg°C, and Young’s modulus of 2.1 \times 10^10 Pa. How much thermal energy must be transferred to the slab to reach this compressive stress? (e) What temperature change is required? (f) If the sun delivers 1.00 \times 10^7 W of power to the top surface of the slab and if half the energy, on the average, is absorbed and retained, how long does it take the slab to reach the point at which it is in danger of cracking due to compressive stress?

FIGURE P11.10 The falling weights rotate the paddles, causing the temperature of the water to increase.

PROBLEMS

10. The temperature of the water to increase.
kinetic energy to thermal energy. If a 1500-kg automobile traveling at 30 m/s comes to a halt, how much does the temperature rise in each of the four 8.0-kg iron brake drums? (The specific heat of iron is 448 J/kg·°C.)

23. Equal 0.400-kg masses of lead and tin at 60.0°C are placed in 1.00 kg of water at 20.0°C. (a) What is the equilibrium temperature of the system? (b) If an alloy is half lead and half tin by mass, what specific heat would you anticipate for the alloy? (c) How many atoms of tin \(N_{Sn} \) are in 0.400 kg of tin, and how many atoms of lead \(N_{Pb} \) are in 0.400 kg of lead? (d) Divide the number \(N_{Sn} \) of tin atoms by the number \(N_{Pb} \) of lead atoms and compare this ratio with the specific heat of tin divided by the specific heat of lead. What conclusion can be drawn?

24. An unknown substance has a mass of 0.125 kg and an initial temperature of 95.0°C. The substance is then dropped into a calorimeter made of aluminum containing 0.285 kg of water initially at 29.0°C. The mass of the aluminum container is 0.150 kg, and the temperature of the calorimeter increases to a final equilibrium temperature of 32.0°C. Assuming no thermal energy is transferred to the environment, calculate the specific heat of the unknown substance.

SECTION 11.4 LATENT HEAT AND PHASE CHANGE

25. A 75-g ice cube at 0°C is placed in 825 g of water at 25°C. What is the final temperature of the mixture?

26. A 50-g ice cube at 0°C is heated until 45 g has become water at 100°C and 5.0 g has become steam at 100°C. How much energy was added to accomplish the transformation?

27. A 100-g cube of ice at 0°C is dropped into 1.0 kg of water that was originally at 80°C. What is the final temperature of the water after the ice has melted?

28. How much energy is required to change a 40-g ice cube from ice at −10°C to steam at 110°C?

29. A 75-kg cross-country skier glides over snow as in Figure P11.29. The coefficient of friction between skis and snow is 0.20. Assume all the snow beneath his skis is at 0°C and that all the internal energy generated by friction is added to snow, which sticks to his skis until it melts. How far would he have to ski to melt 1.0 kg of snow?

30. Into a 0.500-kg aluminum container at 29.0°C is placed 6.00 kg of ethyl alcohol at 30.0°C and 1.00 kg ice at −10.0°C. Assume the system is insulated from its environment. (a) Identify all five thermal energy transfers that occur as the system goes to a final equilibrium temperature \(T \). Use the form “substance at X°C to substance at Y°C.” (b) Construct a table similar to the table in Example 11.6. (c) Sum all terms in the right-most column of the table and set the sum equal to zero. (d) Substitute information from the table into the equation found in part (c) and solve for the final equilibrium temperature, \(T \).

31. A 40-g block of ice is cooled to −78°C and is then added to 560 g of water in an 80-g copper calorimeter at a temperature of 25°C. Determine the final temperature of the system consisting of the ice, water, and calorimeter. (If not all the ice melts, determine how much ice is left.) Remember that the ice must first warm to 0°C, melt, and then continue warming as water. (The specific heat of ice is 0.500 cal/g·°C = 2.090 J/kg·°C.)

32. When you jog, most of the food energy you burn above your basal metabolic rate (BMR) ends up as internal energy that would raise your body temperature if it were not eliminated. The evaporation of perspiration is the primary mechanism for eliminating this energy. Determine the amount of water you lose to evaporation when running for 30 minutes at a rate that uses 400 kcal/h above your BMR. (That amount is often considered to be the “maximum fat-burning” energy output.) The metabolism of 1 gram of fat generates approximately 9.0 kcal of energy and produces approximately 1 gram of water. (The hydrogen atoms in the fat molecule are transferred to oxygen to form water.) What fraction of your need for water will be provided by fat metabolism? (The latent heat of vaporization of water at room temperature is 2.5 \(\times 10^6 \) J/kg.)

33. A high-end gas stove usually has at least one burner rated at 14,000 Btu/h. If you place a 0.25-kg aluminum pot containing 2.0 liters of water at 20°C on this burner, how long will it take to bring the water to a boil, assuming all the heat from the burner goes into the pot? How long will it take to boil all the water out of the pot?

34. A 60.0-kg runner expends 300 W of power while running a marathon. Assuming 10.0% of the energy is delivered to the muscle tissue and that the excess energy is removed from the body primarily by sweating, determine the volume of bodily fluid (assume it is water) lost per hour. (At 37.0°C, the latent heat of vaporization of water is 2.41 \(\times 10^6 \) J/kg.)

35. Steam at 100°C is added to ice at 0°C. (a) Find the amount of ice melted and the final temperature when the mass of steam is 10 g and the mass of ice is 50 g. (b) Repeat with steam of mass 1.0 g and ice of mass 50 g.

36. The excess internal energy of metabolism is exhausted through a variety of channels, such as through radiation and evaporation of perspiration. Consider another pathway for energy loss: moisture in exhaled breath. Suppose you breathe out 22.0 breaths per minute, each with a volume of 0.660 L. Suppose also that you inhale dry air and exhale air at 37°C containing water vapor with a vapor pressure of 3.20 kPa. The vapor comes from the evaporation of liquid
37. A 3.00-g lead bullet at 30.0°C is fired at a speed of 420 m/s. Calculate the rate at which you lose energy by exhaling humid air.

SECTION 11.5 ENERGY TRANSFER

38. A glass windowpane in a home is 0.62 cm thick and has dimensions of 1.0 m × 2.0 m. On a certain day, the indoor temperature is 25°C and the outdoor temperature is 0°C. (a) What is the rate at which energy is transferred by heat through the glass? (b) How much energy is lost through the window in one day, assuming the temperatures inside and outside remain constant?

39. A concrete slab is 12 cm thick and has an area of 5.0 m². Electric heating coils are installed under the slab to melt the ice on the surface in the winter months. What minimum power must be supplied to the coils to maintain a temperature difference of 20.0°C between the bottom of the slab and its surface? Assume all the energy lost is through the slab.

40. The thermal conductivities of human tissues vary greatly. Fat and skin have conductivities of about 0.20 W/m·K and 0.020 W/m·K, respectively, while other tissues inside the body have conductivities of about 0.50 W/m·K. Assume that between the core region of the body and the skin surface lies a skin layer of 1.0 mm, fat layer of 0.50 cm, and 3.2 cm of other tissues. (a) Find the R-factor for each of these layers, and the equivalent R-factor for all layers taken together, retaining two digits. (b) Find the rate of energy loss when the core temperature is 37°C and the exterior temperature is 0°C. Assume that both a protective layer of clothing and an insulating layer of unmoving air are absent, and a body area of 2.0 m².

41. A steam pipe is covered with 1.50-cm-thick insulating material of thermal conductivity 0.200 cal/cm·°C·s. How much energy is lost every second when the steam is at 200°C and the surrounding air is at 20.0°C? The pipe has a circumference of 800 cm and a length of 5.0 m. Neglect losses through the ends of the pipe.

42. The average thermal conductivity of the walls (including windows) and roof of a house in Figure P11.42 is 4.8 × 10⁻⁴ kW/m·°C, and their average thickness is 21.0 cm. The house is heated with natural gas, with a heat of combustion (energy released per cubic meter of gas burned) of 9.300 kcal/m³. How many cubic meters of gas must be burned each day to maintain an inside temperature of 25.0°C if the outside temperature is 0.0°C? Disregard radiation and energy loss by heat through the ground.

43. Determine the R-value for a wall constructed as follows: The outside of the house consists of lapped wood shingles placed over 0.50-in.-thick sheathing, over 3.0 in. of cellulose fiber, over 0.50 in. of drywall.

44. A thermapane window consists of two glass panes, each 0.50 cm thick, with a 1.0-cm-thick sealed layer of air in between. If the inside surface temperature is 23°C and the outside surface temperature is 0.0°C, determine the rate of energy transfer through 1.0 m² of the window. Compare your answer with the rate of energy transfer through 1.0 m² of a single 1.0-cm-thick pane of glass.

45. A copper rod and an aluminum rod of equal diameter are joined end to end in good thermal contact. The temperature of the free end of the copper rod is held constant at 100°C and that of the far end of the aluminum rod is held at 0°C. If the copper rod is 0.15 m long, what must be the length of the aluminum rod so that the temperature at the junction is 50°C?

46. A Styrofoam box has a surface area of 0.80 m² and a wall thickness of 2.0 cm. The temperature of the inner surface is 50.0°C, and the outside temperature is 25°C. If it takes 8.0 h for 5.0 kg of ice to melt in the container, determine the thermal conductivity of the Styrofoam.

47. A sphere that is a perfect blackbody radiator has a radius of 0.060 m and is at 200°C in a room where the temperature is 22°C. Calculate the net rate at which the sphere radiates energy.

48. A solar sail is made of aluminized Mylar having an emissivity of 0.03 and reflecting 97% of the light that falls on it. Suppose a sail with area 1.00 km² is oriented so that sunlight falls perpendicular to its surface with an intensity of 1.40 × 10³ W/m². To what temperature will it warm before it emits as much energy (from both sides) by radiation as it absorbs on the sunny side? Assume the sail is so thin that the temperature is uniform and no energy is emitted from the edges. Take the environment to be 0 K.

49. Measurements on two stars indicate that Star X has a surface temperature of 5727°C and Star Y has a surface temperature of 11727°C. If both stars have the same radius, what is the ratio of the luminosity (total power output) of Star Y to the luminosity of Star X? Both stars can be considered to have an emissivity of 1.0.

50. Calculate the temperature at which a tungsten filament that has an emissivity of 0.90 and a surface area of 2.5 × 10⁻⁴ m² will radiate energy at the rate of 25 W in a room where the temperature is 22°C.

ADDITIONAL PROBLEMS

51. The bottom of a copper kettle has a 10-cm radius and is 2.0 mm thick. The temperature of the outside surface is 102°C, and the water inside the kettle is boiling at 1 atm.
of pressure. Find the rate at which energy is being transferred through the bottom of the kettle.

52. A family comes home from a long vacation with laundry to do and showers to take. The water heater has been turned off during the vacation. If the heater has a capacity of 50.0 gallons and a 4 800-W heating element, how much time is required to raise the temperature of the water from 20.0°C to 60.0°C? Assume the heater is well insulated and no water is withdrawn from the tank during that time.

53. A 40-g ice cube floats in 200 g of water in a 100-g copper cup; all are at a temperature of 0°C. A piece of lead at 98°C is dropped into the cup, and the final equilibrium temperature is 12°C. What is the mass of the lead?

54. A water heater is operated by solar power. If the solar collector has an area of 6.00 m² and the intensity delivered by sunlight is 550 W/m², how long does it take to increase the temperature of 1.00 m³ of water from 20.0°C to 60.0°C?

55. A 200-g block of copper at a temperature of 90°C is dropped into 400 g of water at 27°C. The water is contained in a 300-g glass container. What is the final temperature of the mixture?

56. Liquid nitrogen has a boiling point of 77 K and a latent heat of vaporization of 2.01 × 10³ J/kg. A 25-W electric heating element is immersed in an insulated vessel containing 25 L of liquid nitrogen at its boiling point. (a) Describe the energy transformations that occur as power is supplied to the heating element. (b) How many kilograms of nitrogen are boiled away in a period of 4.0 hours?

57. A student measures the following data in a calorimeter experiment designed to determine the specific heat of aluminum:

Initial temperature of water and calorimeter:	70.0°C
Mass of water:	0.400 kg
Mass of calorimeter:	0.040 kg
Specific heat of calorimeter:	0.63 kJ/kg · °C
Initial temperature of aluminum:	27.0°C
Mass of aluminum:	0.290 kg
Final temperature of mixture:	66.3°C

Use these data to determine the specific heat of aluminum. Explain whether your result is within 15% of the value listed in Table 11.1.

58. Overall, 80% of the energy used by the body must be eliminated as excess thermal energy and needs to be dissipated. The mechanisms of elimination are radiation, evaporation of sweat (2 430 kJ/kg), evaporation from the lungs (38 kJ/h), conduction, and convection.

A person working out in a gym has a metabolic rate of 2 500 kJ/h. His body temperature is 37°C, and the outside temperature 24°C. Assume the skin has an area of 2.0 m² and emissivity of 0.97. (a) At what rate is his excess thermal energy dissipated by radiation? (b) If he eliminates 0.40 kg of perspiration during that hour, at what rate is thermal energy dissipated by evaporation of sweat? (c) At what rate is energy eliminated by evaporation from the lungs? (d) At what rate must the remaining excess energy be eliminated through conduction and convection?

59. Water is being boiled in an open kettle that has a 0.500 cm-thick circular aluminum bottom with a radius of 12.0 cm. If the water boils away at a rate of 0.500 kg/min, what is the temperature of the lower surface of the bottom of the kettle? Assume the top surface of the bottom of the kettle is at 100°C.

60. A class of 10 students taking an exam has a power output per student of about 200 W. Assume the initial temperature of the room is 20°C and that its dimensions are 6.0 m by 15.0 m by 3.0 m. What is the temperature of the room at the end of 1.0 h if all the energy remains in the air in the room and none is added by an outside source? The specific heat of air is 837 J/kg · °C, and its density is about 1.3 × 10⁻³ g/cm³.

61. A bar of gold (Au) is in thermal contact with a bar of silver (Ag) of the same length and area (Fig. P11.61). One end of the compound bar is maintained at 80.0°C, and the opposite end is at 30.0°C. Find the temperature at the junction when the energy flow reaches a steady state.

62. An iron plate is held against an iron wheel so that a sliding frictional force of 50 N acts between the two pieces of metal. The relative speed at which the two surfaces slide over each other is 40 m/s. (a) Calculate the rate at which mechanical energy is converted to internal energy. (b) The plate and the wheel have masses of 5.0 kg each, and each receives 50% of the internal energy. If the system is run as described for 10 s and each object is then allowed to reach a uniform internal temperature, what is the resultant temperature increase?

63. An automobile has a mass of 1 500 kg, and its aluminum brakes have an overall mass of 6.0 kg. (a) Assuming all the internal energy transformed by friction when the car stops is deposited in the brakes and neglecting energy transfer, how many times could the car be braked to rest starting from 25 m/s (56 mi/h) before the brakes would begin to melt? (Assume an initial temperature of 20°C.) (b) Identify some effects that are neglected in part (a), but are likely to be important in a more realistic assessment of the temperature increase of the brakes.

64. Three liquids are at temperatures of 10°C, 20°C, and 30°C, respectively. Equal masses of the first two liquids are mixed, and the equilibrium temperature is 17°C. Equal masses of the second and third are then mixed, and the equilibrium temperature is 28°C. Find the equilibrium temperature when equal masses of the first and third are mixed.

65. A flow calorimeter is an apparatus used to measure the specific heat of a liquid. The technique is to measure
66. A wood stove is used to heat a single room. The stove is cylindrical in shape, with a diameter of 40.0 cm and a length of 50.0 cm, and operates at a temperature of 400°F. (a) If the temperature of the room is 70.0°F, determine the amount of radiant energy delivered to the room by the stove each second if the emissivity is 0.920. (b) If the room is a square with walls that are 8.00 ft high and 25.0 ft wide, determine the R-value needed in the walls and ceiling to maintain the inside temperature at 70.0°F if the outside temperature is 32.0°F. Note that we are ignoring any heat conveyed by the stove via convection and any energy lost through the walls (and windows!) via convection or radiation.

67. A “solar cooker” consists of a curved reflecting mirror that focuses sunlight onto the object to be heated (Fig. P11.67). The solar power per unit area reaching the Earth at the location of a 0.50-m-diameter solar cooker is 600 W/m². Assuming 50% of the incident energy is converted to thermal energy, how long would it take to boil away 1.0 L of water initially at 20°C? (Neglect the specific heat of the container.)

68. A 15 cm long and each has a cross-sectional area of 5.0 cm², what quantity of energy is conducted across the combination in 30 min?

69. What mass of steam initially at 130°C is needed to warm 200 g of water in a 100-g glass container from 20.0°C to 50.0°C?

70. The evaporation of perspiration is the primary mechanism for cooling the human body. Estimate the amount of water you will lose when you bake in the sun on the beach for an hour. Use a value of 1 000 W/m² for the intensity of sunlight and note that the energy required to evaporate a liquid at a particular temperature is approximately equal to the sum of the energy required to raise its temperature to the boiling point and the latent heat of vaporization (determined at the boiling point).

At time t = 0, a vessel contains a mixture of 10 kg of water and an unknown mass of ice in equilibrium at 0°C. The temperature of the mixture is measured over a period of an hour, with the following results: During the first 50 min, the mixture remains at 0°C; from 50 min to 60 min, the temperature increases steadily from 0°C to 2°C. Neglecting the heat capacity of the vessel, determine the mass of ice that was initially placed in it. Assume a constant power input to the container.

An ice-cube tray is filled with 75.0 g of water. After the filled tray reaches an equilibrium temperature 20.0°C, it is placed in a freezer set at –8.00°C to make ice cubes. (a) Describe the processes that occur as energy is being removed from the water to make ice. (b) Calculate the energy that must be removed from the water to make ice cubes at –8.00°C.

73. An aluminum rod and an iron rod are joined end to end in good thermal contact. The two rods have equal lengths and radii. The free end of the aluminum rod is maintained at a temperature of 100°C, and the free end of the iron rod is maintained at 0°C. (a) Determine the temperature of the interface between the two rods. (b) If each rod is 15 cm long and each has a cross-sectional area of 5.0 cm², what quantity of energy is conducted across the combination in 30 min?
THE LAWS OF THERMODYNAMICS

According to the first law of thermodynamics, the internal energy of a system can be increased either by adding energy to the system or by doing work on it. This means the internal energy of a system, which is just the sum of the molecular kinetic and potential energies, can change as a result of two separate types of energy transfer across the boundary of the system. Although the first law imposes conservation of energy for both energy added by heat and work done on a system, it doesn’t predict which of several possible energy-conserving processes actually occur in nature.

The second law of thermodynamics constrains the first law by establishing which processes allowed by the first law actually occur. For example, the second law tells us that energy never flows by heat spontaneously from a cold object to a hot object. One important application of this law is in the study of heat engines (such as the internal combustion engine) and the principles that limit their efficiency.

12.1 WORK IN THERMODYNAMIC PROCESSES

Energy can be transferred to a system by heat and by work done on the system. In most cases of interest treated here, the system is a volume of gas, which is important in understanding engines. All such systems of gas will be assumed to be in thermodynamic equilibrium, so that every part of the gas is at the same temperature and pressure. If that were not the case, the ideal gas law wouldn’t apply and most of the results presented here wouldn’t be valid. Consider a gas contained by a cylinder fitted with a movable piston (Active Fig. 12.1a) and in equilibrium. The gas occupies a volume \(V \) and exerts a uniform pressure \(P \) on the cylinder walls and the piston. The gas is compressed slowly enough so the system remains essentially in thermodynamic equilibrium at all times. As the piston is pushed downward by an external force \(F \) through a distance \(\Delta y \), the work done on the gas is

\[
W = -F \Delta y = -PA \Delta y
\]
where we have set the magnitude F of the external force equal to PA, possible because the pressure is the same everywhere in the system (by the assumption of equilibrium). Note that if the piston is pushed downward, $\Delta y = y_f - y_i$ is negative, so we need an explicit negative sign in the expression for W to make the work positive. The change in volume of the gas is $\Delta V = A \Delta y$, which leads to the following definition:

The work W done on a gas at constant pressure is given by

$$W = -P \Delta V$$ \hspace{1cm} [12.1]

where P is the pressure throughout the gas and ΔV is the change in volume of the gas during the process.

If the gas is compressed as in Active Figure 12.1b, ΔV is negative and the work done on the gas is positive. If the gas expands, ΔV is positive and the work done on the gas is negative. The work done by the gas on its environment, W_{env}, is simply the negative of the work done on the gas. In the absence of a change in volume, the work is zero.

EXAMPLE 12.1 Work Done by an Expanding Gas

Goal Apply the definition of work at constant pressure.

Problem In a system similar to that shown in Active Figure 12.1, the gas in the cylinder is at a pressure equal to 1.01×10^5 Pa and the piston has an area of 0.100 m2. As energy is slowly added to the gas by heat, the piston is pushed up a distance of 4.00 cm. Calculate the work done by the expanding gas on the surroundings, W_{env}, assuming the pressure remains constant.

Strategy The work done on the environment is the negative of the work done on the gas given in Equation 12.1. Compute the change in volume and multiply by the pressure.

Solution

Find the change in volume of the gas, ΔV, which is the cross-sectional area times the displacement:

$$\Delta V = A \Delta y = (0.100 \text{ m}^2)(4.00 \times 10^{-2} \text{ m})$$

$$= 4.00 \times 10^{-3} \text{ m}^3$$

Multiply this result by the pressure, getting the work the gas does on the environment, W_{env}:

$$W_{env} = P \Delta V = (1.01 \times 10^5 \text{ Pa})(4.00 \times 10^{-3} \text{ m}^3)$$

$$= 404 \text{ J}$$

Remark The volume of the gas increases, so the work done on the environment is positive. The work done on the system during this process is $W = -404 \text{ J}$. The energy required to perform positive work on the environment must come from the energy of the gas. (See the next section for more details.)

QUESTION 12.1
If no energy were added to the gas during the expansion, could the pressure remain constant?

EXERCISE 12.1
Gas in a cylinder similar to Figure 12.1 moves a piston with area 0.200 m2 as energy is slowly added to the system. If 2.00×10^3 J of work is done on the environment and the pressure of the gas in the cylinder remains constant at 1.01×10^5 Pa, find the displacement of the piston.

Answer 9.90×10^{-2} m

Equation 12.1 can be used to calculate the work done on the system only when the pressure of the gas remains constant during the expansion or compression. A process in which the pressure remains constant is called an **isobaric process**.
The pressure vs. volume graph, or PV diagram, of an isobaric process is shown in Figure 12.2. The curve on such a graph is called the path taken between the initial and final states, with the arrow indicating the direction the process is going, in this case from smaller to larger volume. The area under the graph is

\[\text{Area} = P(V_f - V_i) = P \Delta V \]

The area under the graph in a PV diagram is equal in magnitude to the work done on the gas. This is true in general, whether or not the process proceeds at constant pressure. Just draw the PV diagram of the process, find the area underneath the graph (and above the horizontal axis), and that area will be the equal to the magnitude of the work done on the gas. If the arrow on the graph points toward larger volumes, the work done on the gas is negative. If the arrow on the graph points toward smaller volumes, the work done on the gas is positive.

Whenever negative work is done on a system, positive work is done by the system on its environment. The negative work done on the system represents a loss of energy from the system—the cost of doing positive work on the environment.

QUICK QUIZ 12.1 By visual inspection, order the PV diagrams shown in Figure 12.3 from the most negative work done on the system to the most positive work done on the system. (a) a, b, c, d (b) a, c, b, d (c) d, b, c, a (d) d, a, c, b

![FIGURE 12.2](image) The PV diagram for a gas being compressed at constant pressure. The shaded area represents the work done on the gas.

Notice that the graphs in Figure 12.3 all have the same endpoints, but the areas beneath the curves are different. The work done on a system depends on the path taken in the PV diagram.

EXAMPLE 12.2 Work and PV Diagrams

Goal Calculate work from a PV diagram.

Problem Find the numeric value of the work done on the gas in (a) Figure 12.3a and (b) Figure 12.3b.

Strategy The regions in question are composed of rectangles and triangles. Use basic geometric formulas to find the area underneath each curve. Check the direction of the arrow to determine signs.

Solution

(a) Find the work done on the gas in Figure 12.3a.

Compute the areas \(A_1 \) and \(A_2 \) in Figure 12.3a. \(A_1 \) is a rectangle and \(A_2 \) is a triangle.

\[A_1 = \text{height} \times \text{width} = (1.00 \times 10^5 \text{ Pa})(2.00 \text{ m}^3) = 2.00 \times 10^5 \text{ J} \]

\[A_2 = \frac{1}{2} \text{ base} \times \text{ height} = \frac{1}{2}(2.00 \text{ m}^3)(2.00 \times 10^5 \text{ Pa}) = 2.00 \times 10^5 \text{ J} \]

Sum the areas (the arrows point to increasing volume, so the work done on the gas is negative):

\[\text{Area} = A_1 + A_2 = 4.00 \times 10^5 \text{ J} \]

\[W = -4.00 \times 10^5 \text{ J} \]
Chapter 12 The Laws of Thermodynamics

(b) Find the work done on the gas in Figure 12.3b.

Compute the areas of the two rectangular regions:

\[A_1 = \text{height} \times \text{width} = (1.00 \times 10^5 \text{ Pa})(1.00 \text{ m}^3) \]
\[= 1.00 \times 10^5 \text{ J} \]
\[A_2 = \text{height} \times \text{width} = (2.00 \times 10^5 \text{ Pa})(1.00 \text{ m}^3) \]
\[= 2.00 \times 10^5 \text{ J} \]

Sum the areas (the arrows point to decreasing volume, so the work done on the gas is positive):

Area = \(A_1 + A_2 = 3.00 \times 10^5 \text{ J} \)

\[W = +3.00 \times 10^5 \text{ J} \]

Remarks Notice that in both cases the paths in the \(PV \) diagrams start and end at the same points, but the answers are different.

QUESTION 12.2

Is work done on a system during a process in which its volume remains constant?

EXERCISE 12.2

Compute the work done on the system in Figures 12.3c and 12.3d.

Answers \(-3.00 \times 10^5 \text{ J}, +4.00 \times 10^5 \text{ J}\)

12.2 THE FIRST LAW OF THERMODYNAMICS

The first law of thermodynamics is another energy conservation law that relates changes in internal energy—the energy associated with the position and jiggling of all the molecules of a system—to energy transfers due to heat and work. The first law is universally valid, applicable to all kinds of processes, providing a connection between the microscopic and macroscopic worlds.

There are two ways energy can be transferred between a system and its surroundings: by doing work, which requires a macroscopic displacement of an object through the application of a force; and by heat, which occurs through random molecular collisions. Both mechanisms result in a change in internal energy, \(\Delta U \), of the system and therefore in measurable changes in the macroscopic variables of the system, such as the pressure, temperature, and volume. This change in the internal energy can be summarized in the first law of thermodynamics:

If a system undergoes a change from an initial state to a final state, where \(Q \) is the energy transferred to the system by heat and \(W \) is the work done on the system, the change in the internal energy of the system, \(\Delta U \), is given by

\[\Delta U = U_f - U_i = Q + W \] \[12.2\]

The quantity \(Q \) is positive when energy is transferred into the system by heat and negative when energy is transferred out of the system by heat. The quantity \(W \) is positive when work is done on the system and negative when the system does work on its environment. All quantities in the first law, Equation 12.2, must have the same energy units. Any change in the internal energy of a system—the positions and vibrations of the molecules—is due to the transfer of energy by heat or work (or both).

From Equation 12.2 we also see that the internal energy of any isolated system must remain constant, so that \(\Delta U = 0 \). Even when a system isn’t isolated, the change in internal energy will be zero if the system goes through a cyclic process in which all the thermodynamic variables—pressure, volume, temperature, and moles of gas—return to their original values.

It’s important to remember that the quantities in Equation 12.2 concern a system, not the effect on the system’s environment through work. If the system is hot steam
expanding against a piston, for example, the system work \(W \) is negative because the piston can only expand at the expense of the internal energy of the gas. The work \(W_{env} \) done by the hot steam on the environment—in this case, moving a piston which moves the train—is positive, but that’s not the work \(W \) in Equation 12.2. This way of defining work in the first law makes it consistent with the concept of work defined in Chapter 5. There, positive work done on a system (for example, a block) increased its mechanical energy, whereas negative work decreased its energy. In this chapter, positive work done on a system (typically, a volume of gas) increases its internal energy, and negative work decreases that internal energy. In both the mechanical and thermal cases, the effect on the system is the same: positive work increases the system’s energy, and negative work decreases the system’s energy.

Some textbooks identify \(W \) as the work done by the gas on its environment. This is an equivalent formulation, but it means that \(W \) must carry a minus sign in the first law. That convention isn’t consistent with previous discussions of the energy of a system, because when \(W \) is positive the system loses energy, whereas in Chapter 5 positive \(W \) means that the system gains energy. For that reason, the old convention is not used in this book.

Tip 12.1 Dual Sign Conventions

Many physics and engineering textbooks present the first law as \(\Delta U = Q - W \), with a minus sign between the heat and the work. The reason is that work is defined in these treatments as the work done by the gas rather than on the gas, as in our treatment. This form of the first law represents the original interest in applying it to steam engines, where the primary concern is the work extracted from the engine.

EXAMPLE 12.3 Heating a Gas

Goal Combine the first law of thermodynamics with work done during a constant pressure process.

Problem An ideal gas absorbs 5.00 \(\times 10^3 \) J of energy while doing 2.00 \(\times 10^3 \) J of work on the environment during a constant pressure process. (a) Compute the change in the internal energy of the gas. (b) If the internal energy now drops by 4.50 \(\times 10^3 \) J and 7.50 \(\times 10^3 \) J is expelled from the system, find the change in volume, assuming a constant pressure process at 1.01 \(\times 10^5 \) Pa.

Strategy Part (a) requires substitution of the given information into the first law, Equation 12.2. Notice, however, that the given work is done on the environment. The negative of this amount is the work done on the system, representing a loss of internal energy. Part (b) is a matter of substituting the equation for work done at constant pressure into the first law and solving for the change in volume.

Solution

(a) Compute the change in internal energy of the gas.

Substitute values into the first law, noting that the work done on the gas is negative:

\[
\Delta U = Q + W = 5.00 \times 10^3 \text{ J} - 2.00 \times 10^3 \text{ J} = 3.00 \times 10^3 \text{ J}
\]

(b) Find the change in volume, noting that \(\Delta U \) and \(Q \) are both negative in this case.

Substitute the equation for work done at constant pressure into the first law:

\[
\Delta U = Q + W = Q - P \Delta V
\]

\[
-4.50 \times 10^3 \text{ J} = -7.50 \times 10^3 \text{ J} - (1.01 \times 10^5 \text{ Pa}) \Delta V
\]

Solve for the change in volume, \(\Delta V \):

\[
\Delta V = \frac{-4.50 \times 10^3 \text{ J} - (-7.50 \times 10^3 \text{ J})}{1.01 \times 10^5 \text{ Pa}} = 2.97 \times 10^{-2} \text{ m}^3
\]

Remarks The change in volume is negative, so the system contracts, doing negative work on the environment, whereas the work \(W \) on the system is positive.

QUESTION 12.3

True or False: When an ideal gas expands at constant pressure, the change in the internal energy must be positive.

EXERCISE 12.3

Suppose the internal energy of an ideal gas rises by 3.00 \(\times 10^3 \) J at a constant pressure of 1.00 \(\times 10^5 \) Pa, while the system gains 4.20 \(\times 10^3 \) J of energy by heat. Find the change in volume of the system.

Answer 1.20 \(\times 10^{-2} \) m³
Recall that an expression for the internal energy of an ideal gas is

\[U = \frac{3}{2} nRT \]

[12.3a]

This expression is valid only for a *monatomic* ideal gas, which means the particles of the gas consist of single atoms. The change in the internal energy, \(\Delta U \), for such a gas is given by

\[\Delta U = \frac{3}{2} nR \Delta T \]

[12.3b]

The molar specific heat at constant volume of a monatomic ideal gas, \(C_v \), is defined by

\[C_v = \frac{3}{2} R \]

[12.4]

The change in internal energy of an ideal gas can then be written

\[\Delta U = nC_v \Delta T \]

[12.5]

For ideal gases, this expression is always valid, even when the volume isn’t constant. The value of the molar specific heat, however, depends on the gas and can vary under different conditions of temperature and pressure.

A gas with a larger molar specific heat requires more energy to realize a given temperature change. The size of the molar specific heat depends on the structure of the gas molecule and how many different ways it can store energy. A monatomic gas such as helium can store energy as motion in three different directions. A gas such as hydrogen, on the other hand, is diatomic in normal temperature ranges, and aside from moving in three directions, it can also tumble, rotating in two different directions. So hydrogen molecules can store energy in the form of translational motion and in addition can store energy through tumbling. Further, molecules can also store energy in the vibrations of their constituent atoms. A gas composed of molecules with more ways to store energy will have a larger molar specific heat.

Each different way a gas molecule can store energy is called a *degree of freedom*. Each degree of freedom contributes \(\frac{1}{2} R \) to the molar specific heat. Because an atomic ideal gas can move in three directions, it has a molar specific heat capacity \(C_v = 3 \left(\frac{1}{2} R \right) = \frac{3}{2} R \). A diatomic gas like molecular oxygen, \(O_2 \), can also tumble in two different directions. This adds \(2 \times \frac{1}{2} R = R \) to the molar heat specific heat, so \(C_v = \frac{5}{2} R \) for diatomic gases. The spinning about the long axis connecting the two atoms is generally negligible. Vibration of the atoms in a molecule can also contribute to the heat capacity. A full analysis of a given system is often complex, so in general, molar specific heats must be determined by experiment. Some representative values of \(C_v \) can be found in Table 12.1.

12.3 THERMAL PROCESSES

Engine cycles can be complex. Fortunately, they can often be broken down into a series of simple processes. In this section the four most common processes will be studied and illustrated by their effect on an ideal gas. Each process corresponds to making one of the variables in the ideal gas law a constant or assuming one of the three quantities in the first law of thermodynamics is zero. The four processes are called isobaric (constant pressure), isothermal (constant temperature, corresponding to \(\Delta U = 0 \)), isovolumetric (constant volume, corresponding to \(W = 0 \)), and adiabatic (no thermal energy transfer, or \(Q = 0 \)). Naturally, many other processes don’t fall into one of these four categories, so they will be covered in a fifth category, called generic. What is essential in each case is to be able to calculate the three thermodynamic quantities in the first law: the work \(W \), the thermal energy transfer \(Q \), and the change in the internal energy \(\Delta U \).

Recall from Section 12.1 that in an isobaric process the pressure remains constant as the gas expands or is compressed. An expanding gas does work on its envi-
The work done by the gas on its environment must come at the expense of the change in its internal energy, ΔU. Because the change in the internal energy of an ideal gas is given by $\Delta U = nC_v \Delta T$, the temperature of an expanding gas must decrease as the internal energy decreases. Expanding volume and decreasing temperature means the pressure must also decrease, in conformity with the ideal gas law, $PV = nRT$. Consequently, the only way such a process can remain at constant pressure is if thermal energy Q is transferred into the gas by heat. Rearranging the first law, we obtain

$$Q = \Delta U - W = \Delta U + P\Delta V$$

Now we can substitute the expression in Equation 12.3b for ΔU and use the ideal gas law to substitute $P\Delta V = nR\Delta T$:

$$Q = \frac{\gamma}{\gamma - 1}nR\Delta T + nR\Delta T = \frac{\gamma}{\gamma - 1}nR\Delta T$$

Another way to express this transfer by heat is

$$Q = nC_p \Delta T \quad [12.6]$$

where $C_p = \frac{\gamma}{\gamma - 1}R$. For ideal gases, the molar heat capacity at constant pressure, C_p, is the sum of the molar heat capacity at constant volume, C_v, and the gas constant R:

$$C_p = C_v + R \quad [12.7]$$

This can be seen in the fourth column of Table 12.1, where $C_p - C_v$ is calculated for a number of different gases. The difference works out to be approximately R in virtually every case.

<table>
<thead>
<tr>
<th>TABLE 12.1</th>
<th>Molar Specific Heats of Various Gases</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gas</td>
<td>C_p</td>
</tr>
<tr>
<td>Monatomic Gases</td>
<td></td>
</tr>
<tr>
<td>He</td>
<td>20.8</td>
</tr>
<tr>
<td>Ar</td>
<td>20.8</td>
</tr>
<tr>
<td>Ne</td>
<td>20.8</td>
</tr>
<tr>
<td>Kr</td>
<td>20.8</td>
</tr>
<tr>
<td>Diatomic Gases</td>
<td></td>
</tr>
<tr>
<td>H$_2$</td>
<td>28.8</td>
</tr>
<tr>
<td>N$_2$</td>
<td>29.1</td>
</tr>
<tr>
<td>O$_2$</td>
<td>29.4</td>
</tr>
<tr>
<td>CO</td>
<td>29.3</td>
</tr>
<tr>
<td>Cl$_2$</td>
<td>34.7</td>
</tr>
<tr>
<td>Polyatomic Gases</td>
<td></td>
</tr>
<tr>
<td>CO$_2$</td>
<td>37.0</td>
</tr>
<tr>
<td>SO$_2$</td>
<td>40.4</td>
</tr>
<tr>
<td>H$_2$O</td>
<td>35.4</td>
</tr>
<tr>
<td>CH$_4$</td>
<td>35.5</td>
</tr>
</tbody>
</table>

All values except that for water were obtained at 300 K.
EXAMPLE 12.4 Expanding Gas

Goal Use molar specific heats and the first law in a constant pressure process.

Problem Suppose a system of monatomic ideal gas at 2.00×10^5 Pa and an initial temperature of 293 K slowly expands at constant pressure from a volume of 1.00 L to 2.50 L. (a) Find the work done on the environment. (b) Find the change in internal energy of the gas. (c) Use the first law of thermodynamics to obtain the thermal energy absorbed by the gas during the process. (d) Use the molar heat capacity at constant pressure to find the thermal energy absorbed. (e) How would the answers change for a diatomic ideal gas?

Strategy This problem mainly involves substituting values into the appropriate equations. Substitute into the equation for work at constant pressure to obtain the answer to part (a). In part (b) use the ideal gas law twice: to find the temperature when $V = 2.00$ L and to find the number of moles of the gas. These quantities can then be used to obtain the change in internal energy, ΔU. Part (c) can then be solved by substituting into the first law, yielding Q, the answer checked in part (d) with Equation 12.6. Repeat these steps for part (e) after increasing the molar specific heats by R because of the extra two degrees of freedom associated with a diatomic gas.

Solution

(a) Find the work done on the environment.

Apply the definition of work at constant pressure:

$$W_{env} = P \Delta V = (2.00 \times 10^5 \text{ Pa})(2.50 \times 10^{-3} \text{ m}^3 - 1.00 \times 10^{-3} \text{ m}^3)$$

$$W_{env} = 3.00 \times 10^2 \text{ J}$$

(b) Find the change in the internal energy of the gas.

First, obtain the final temperature, using the ideal gas law, noting that $P_i = P_f$:

$$\frac{P_f V_f}{P_i V_i} = \frac{T_f}{T_i} \rightarrow T_f = T_i \frac{V_f}{V_i} = (293 \text{ K}) \frac{(2.50 \times 10^{-3} \text{ m}^3)}{(1.00 \times 10^{-3} \text{ m}^3)}$$

$$T_f = 733 \text{ K}$$

Again using the ideal gas law, obtain the number of moles of gas:

$$n = \frac{P_i V_i}{RT_i} = \frac{(2.00 \times 10^5 \text{ Pa})(1.00 \times 10^{-3} \text{ m}^3)}{(8.31 \text{ J/K mol})(293 \text{ K})}$$

$$n = 8.21 \times 10^{-2} \text{ mol}$$

Use these results and given quantities to calculate the change in internal energy, ΔU:

$$\Delta U = nC_v \Delta T = \frac{3}{2} nR \Delta T$$

$$\Delta U = \frac{3}{2}(8.21 \times 10^{-2} \text{ mol})(8.31 \text{ J/K mol})(733 \text{ K} - 293 \text{ K})$$

$$\Delta U = 4.50 \times 10^2 \text{ J}$$

(c) Use the first law to obtain the energy transferred by heat.

Solve the first law for Q, and substitute ΔU and $W = -W_{env} = -3.00 \times 10^2 \text{ J}$:

$$\Delta U = Q + W \rightarrow Q = \Delta U - W$$

$$Q = 4.50 \times 10^2 \text{ J} - (-3.00 \times 10^2 \text{ J}) = 7.50 \times 10^2 \text{ J}$$

(d) Use the molar heat capacity at constant pressure to obtain Q.

Substitute values into Equation 12.6:

$$Q = nC_p \Delta T = \frac{5}{2} nR \Delta T$$

$$Q = \frac{5}{2}(8.21 \times 10^{-2} \text{ mol})(8.31 \text{ J/K mol})(733 \text{ K} - 293 \text{ K})$$

$$Q = 7.50 \times 10^2 \text{ J}$$

(e) How would the answers change for a diatomic ideal gas?

Increase the molar specific heats by R because of the extra two degrees of freedom associated with a diatomic gas.
Remarks

Notice that problems involving diatomic gases are no harder than those with monatomic gases. It’s just a matter of adjusting the molar specific heats.

QUESTION 12.4

True or False: During a constant pressure compression, the temperature of an ideal gas must always decrease, and the gas must always exhaust thermal energy ($Q < 0$).

EXERCISE 12.4

Suppose an ideal monatomic gas at an initial temperature of 475 K is compressed from 3.00 L to 2.00 L while its pressure remains constant at 1.00×10^6 Pa. Find (a) the work done on the gas, (b) the change in internal energy, and (c) the energy transferred by heat, Q.

Answers

(a) 1.00×10^2 J
(b) -150 J
(c) -250 J

Adiabatic Processes

In an adiabatic process, no energy enters or leaves the system by heat. Such a system is insulated, thermally isolated from its environment. In general, however, the system isn’t mechanically isolated, so it can still do work. A sufficiently rapid process may be considered approximately adiabatic because there isn’t time for any significant transfer of energy by heat.

For adiabatic processes $Q = 0$, so the first law becomes

$$\Delta U = W$$
(adiabatic processes)

The work done during an adiabatic process can be calculated by finding the change in the internal energy. Alternately, the work can be computed from a PV diagram. For an ideal gas undergoing an adiabatic process, it can be shown that

$$PV^\gamma = \text{constant}$$ \hspace{1cm} [12.8a]

where

$$\gamma = \frac{C_p}{C_v}$$ \hspace{1cm} [12.8b]

is called the adiabatic index of the gas. Values of the adiabatic index for several different gases are given in Table 12.1. After computing the constant on the right-hand side of Equation 12.8a and solving for the pressure P, the area under the curve in the PV diagram can be found by counting boxes, yielding the work.

If a hot gas is allowed to expand so quickly that there is no time for energy to enter or leave the system by heat, the work done on the gas is negative and the internal energy decreases. This decrease occurs because kinetic energy is transferred from the gas molecules to the moving piston. Such an adiabatic expansion is of practical importance and is nearly realized in an internal combustion engine when a gasoline–air mixture is ignited and expands rapidly against a piston. The following example illustrates this process.
The work done on the piston comes at the expense of the internal energy of the gas. In an ideal adiabatic expansion, the loss of internal energy is completely converted into useful work. In a real engine, there are always losses.

QUESTION 12.5

In an adiabatic expansion of an ideal gas, why must the change in temperature always be negative?

EXERCISE 12.5

A monatomic ideal gas with volume 0.200 L is rapidly compressed, so the process can be considered adiabatic. If the gas is initially at 1.01×10^5 Pa and 3.00×10^2 K and the final temperature is 477 K, find the work done by the gas on the environment, W_{env}.

Answer -17.9 J

EXAMPLE 12.5 Work and an Engine Cylinder

Goal Use the first law to find the work done in an adiabatic expansion.

Problem In a car engine operating at a frequency of 1.80×10^3 rev/min, the expansion of hot, high-pressure gas against a piston occurs in about 10 ms. Because energy transfer by heat typically takes a time on the order of minutes or hours, it’s safe to assume little energy leaves the hot gas during the expansion. Find the work done by the gas on the piston during this adiabatic expansion by assuming the engine cylinder contains 0.100 moles of an ideal monatomic gas that goes from 1.200×10^3 K to 4.00×10^2 K, typical engine temperatures, during the expansion.

Strategy Find the change in internal energy using the given temperatures. For an adiabatic process, this equals the work done on the gas, which is the negative of the work done on the environment—in this case, the piston.

Solution

Start with the first law, taking $Q = 0$:

$$W = \Delta U - Q = \Delta U - 0 = \Delta U$$

Find ΔU from the expression for the internal energy of an ideal monatomic gas:

$$\Delta U = U_f - U_i = \frac{3}{2}nR(T_f - T_i)$$

$$= \frac{3}{2}(0.100 \text{ mol})(8.31 \text{ J/mol·K})(4.00 \times 10^2 \text{ K} - 1.20 \times 10^3 \text{ K})$$

$$\Delta U = -9.97 \times 10^2 \text{ J}$$

The change in internal energy equals the work done on the system, which is the negative of the work done on the piston:

$$W_{\text{piston}} = -W = -\Delta U = 9.97 \times 10^2 \text{ J}$$

Remarks The work done on the piston comes at the expense of the internal energy of the gas. In an ideal adiabatic expansion, the loss of internal energy is completely converted into useful work. In a real engine, there are always losses.

QUESTION 12.5

In an adiabatic expansion of an ideal gas, why must the change in temperature always be negative?

EXAMPLE 12.6 An Adiabatic Expansion

Goal Use the adiabatic pressure vs. volume relation to find a change in pressure and the work done on a gas.

Problem A monatomic ideal gas at an initial pressure of 1.01×10^5 Pa expands adiabatically from an initial volume of 1.50 m3, doubling its volume. (a) Find the new pressure. (b) Sketch the $P V$ diagram and estimate the work done on the gas.

Strategy There isn’t enough information to solve this problem with the ideal gas law. Instead, use Equation 12.8 and the given information to find the adiabatic index and the constant C for the process. For part (b), sketch the $P V$ diagram and count boxes to estimate the area under the graph, which gives the work.

Solution

Start with the first law, taking $Q = 0$:

$$W = \Delta U - Q = \Delta U - 0 = \Delta U$$

Find ΔU from the expression for the internal energy of an ideal monatomic gas:

$$\Delta U = U_f - U_i = \frac{3}{2}nR(T_f - T_i)$$

$$= \frac{3}{2}(0.100 \text{ mol})(8.31 \text{ J/mol·K})(4.00 \times 10^2 \text{ K} - 1.20 \times 10^3 \text{ K})$$

$$\Delta U = -9.97 \times 10^2 \text{ J}$$

The change in internal energy equals the work done on the system, which is the negative of the work done on the piston:

$$W_{\text{piston}} = -W = -\Delta U = 9.97 \times 10^2 \text{ J}$$

Remarks The work done on the piston comes at the expense of the internal energy of the gas. In an ideal adiabatic expansion, the loss of internal energy is completely converted into useful work. In a real engine, there are always losses.

QUESTION 12.5

In an adiabatic expansion of an ideal gas, why must the change in temperature always be negative?
Remarks
The exact answer, obtained with calculus, is 8.43 \times 10^4 J, so our result is a very good estimate. The answer is negative because the gas is expanding, doing positive work on the environment, thereby reducing its own internal energy.

QUESTION 12.6
For an adiabatic expansion between two given volumes and an initial pressure, which gas does more work, a monoatomic gas or a diatomic gas?

EXERCISE 12.6
Repeat the preceding calculations for an ideal diatomic gas expanding adiabatically from an initial volume of 0.500 m3 to a final volume of 1.25 m3, starting at a pressure of $P_1 = 1.01 \times 10^5$ Pa. Use the same techniques as in the example.

Answers
$P_2 = 2.80 \times 10^4$ Pa, $W = -4 \times 10^4$ J

Isovolumetric Processes
An isovolumetric process, sometimes called an isochoric process (which is harder to remember), proceeds at constant volume, corresponding to vertical lines in a PV diagram. If the volume doesn’t change, no work is done on or by the system, so $W = 0$ and the first law of thermodynamics reads

$$\Delta U = Q \quad \text{(isovolumetric process)}$$

This result tells us that in an isovolumetric process, the change in internal energy of a system equals the energy transferred to the system by heat. From Equation 12.5, the energy transferred by heat in constant volume processes is given by

$$Q = nC_v \Delta T \quad \text{[12.9]}$$

EXAMPLE 12.7 An Isovolumetric Process

Goal
Apply the first law to a constant-volume process.

Problem How much thermal energy must be added to 5.00 moles of monatomic ideal gas at 3.00×10^2 K and with a constant volume of 1.50 L in order to raise the temperature of the gas to 3.80×10^2 K?
Strategy The energy transferred by heat is equal to the change in the internal energy of the gas, which can be calculated by substitution into Equation 12.9.

Solution

Apply Equation 12.9, using the fact that \(C_v = \frac{3R}{2} \) for an ideal monatomic gas:

\[
Q = \Delta U = nC_v \Delta T = \frac{3}{2} nR \Delta T
\]

\[
= \frac{3}{2} (5.00 \text{ mol})(8.31 \text{ J/K mol})(80.0 \text{ K})
\]

\[
Q = 4.99 \times 10^3 \text{ J}
\]

Remark Constant volume processes are the simplest to handle and include such processes as heating a solid or liquid, in which the work of expansion is negligible.

QUESTION 12.7

By what factor would the answer change if the gas were diatomic?

EXERCISE 12.7

Find the change in temperature of 22.0 mol of a monatomic ideal gas if it absorbs 9750 J at constant volume.

Answer 35.6 K

Isothermal Processes

During an isothermal process, the temperature of a system doesn’t change. In an ideal gas the internal energy \(U \) depends only on the temperature, so it follows that \(\Delta U = 0 \) because \(\Delta T = 0 \). In this case, the first law of thermodynamics gives

\[
W = -Q \quad \text{(isothermal process)}
\]

We see that if the system is an ideal gas undergoing an isothermal process, the work done on the system is equal to the negative of the thermal energy transferred to the system. Such a process can be visualized in Figure 12.5. A cylinder filled with gas is in contact with a large energy reservoir that can exchange energy with the gas without changing its temperature. For a constant temperature ideal gas,

\[
P = \frac{nRT}{V}
\]

where the numerator on the right-hand side is constant. The \(P V \) diagram of a typical isothermal process is graphed in Figure 12.6, contrasted with an adiabatic process. When the process is adiabatic, the pressure falls off more rapidly.

Using methods of calculus, it can be shown that the work done on the environment during an isothermal process is given by

\[
W_{\text{env}} = nRT \ln \left(\frac{V_f}{V_i} \right) \tag{12.10}
\]

The symbol “\(\ln \)” in Equation 12.10 is an abbreviation for the natural logarithm, discussed in Appendix A. The work \(W \) done on the gas is just the negative of \(W_{\text{env}} \).
EXAMPLE 12.8 An Isothermally Expanding Balloon

Goal Find the work done during an isothermal expansion.

Problem A balloon contains 5.00 moles of a monatomic ideal gas. As energy is added to the system by heat (say, by absorption from the Sun), the volume increases by 25% at a constant temperature of 27.0°C. Find the work W_{env} done by the gas in expanding the balloon, the thermal energy Q transferred to the gas, and the work W done on the gas.

Strategy Be sure to convert temperatures to kelvins. Use the equation for isothermal work to find the work done on the balloon, which is the work done on the environment. The latter is equal to the thermal energy Q transferred to the gas, and the negative of this quantity is the work done on the gas.

Solution Substitute into Equation 12.10, finding the work done during the isothermal expansion. Note that $T = 27.0 °C = 300 \times 10^2 \text{ K}$.

$$W_{\text{env}} = nRT \ln \left(\frac{V_f}{V_i} \right) = (5.00 \text{ mol})(8.31 \text{ J/K mol})(3.00 \times 10^2 \text{ K}) \times \ln \left(\frac{1.25V_0}{V_0} \right) = 2.78 \times 10^3 \text{ J}$$

The negative of this amount is the work done on the gas: $W = -W_{\text{env}} = -2.78 \times 10^3 \text{ J}$

Remarks Notice the relationship between the work done on the gas, the work done on the environment, and the energy transferred. These relationships are true of all isothermal processes.

QUESTION 12.8
True or False: In an isothermal process no thermal energy transfer takes place.

EXERCISE 12.8
Suppose that subsequent to this heating, $1.50 \times 10^4 \text{ J}$ of thermal energy is removed from the gas isothermally. Find the final volume in terms of the initial volume of the example, V_0. *(Hint: Follow the same steps as in the example, but in reverse. Also note that the initial volume in this exercise is $1.25V_0$)*

Answer $0.375V_0$

General Case
When a process follows none of the four given models, it’s still possible to use the first law to get information about it. The work can be computed from the area under the curve in the PV diagram, and if the temperatures at the endpoints can be found, ΔU follows from Equation 12.5, as illustrated in the following example.

EXAMPLE 12.9 A General Process

Goal Find thermodynamic quantities for a process that doesn’t fall into any of the four previously discussed categories.

Problem A quantity of 4.00 moles of a monatomic ideal gas expands from an initial volume of 0.100 m3 to a final volume of 0.300 m3 and pressure of 2.5 \times 105 Pa (Fig. 12.7a). Compute (a) the work done on the gas, (b) the change in internal energy of the gas, and (c) the thermal energy transferred to the gas.

Strategy The work done on the gas is equal to the negative of the area under the curve in the PV diagram. Use the ideal gas law to get the temperature change and, subsequently, the change in internal energy. Finally, the first law gives the thermal energy transferred by heat.
Remarks
As long as it’s possible to compute the work, cycles involving these more exotic processes can be completely analyzed. Usually, however, it’s necessary to use calculus.

QUESTION 12.9
For a curve with lower pressures but the same endpoints as in Figure 12.7a, would the thermal energy transferred be (a) smaller than, (b) equal to, or (c) greater than the thermal energy transfer of the straight-line path?

EXERCISE 12.9
Figure 12.7b represents a process involving 3.00 moles of a monatomic ideal gas expanding from 0.100 m³ to 0.200 m³. Find the work done on the system, the change in the internal energy of the system, and the thermal energy transferred in the process.

Answers
\[
W = -2.00 \times 10^4 \text{ J}, \quad \Delta U = -1.50 \times 10^4 \text{ J}, \quad Q = 5.00 \times 10^3 \text{ J}
\]

Solution
(a) Find the work done on the gas by computing the area under the curve in Figure 12.7a.

Find \(A_1 \), the area of the triangle:
\[
A_1 = \frac{1}{2}bh_1 = \frac{1}{2}(0.200 \text{ m}^3)(1.50 \times 10^5 \text{ Pa}) = 1.50 \times 10^4 \text{ J}
\]

Find \(A_2 \), the area of the rectangle:
\[
A_2 = bh_2 = (0.200 \text{ m}^3)(1.00 \times 10^5 \text{ Pa}) = 2.00 \times 10^4 \text{ J}
\]

Sum the two areas (the gas is expanding, so the work done on the gas is negative and a minus sign must be supplied):
\[
W = -(A_1 + A_2) = -3.50 \times 10^4 \text{ J}
\]

(b) Find the change in the internal energy during the process.

Compute the temperature at points \(A \) and \(B \) with the ideal gas law:

\[
T_A = \frac{P_AV_A}{nR} = \frac{(1.00 \times 10^5 \text{ Pa})(0.100 \text{ m}^3)}{(4.00 \text{ mol})(8.31 \text{ J/K mol})} = 301 \text{ K}
\]

\[
T_B = \frac{P_BV_B}{nR} = \frac{(2.50 \times 10^5 \text{ Pa})(0.300 \text{ m}^3)}{(4.00 \text{ mol})(8.31 \text{ J/K mol})} = 2.26 \times 10^3 \text{ K}
\]

Compute the change in internal energy:

\[
\Delta U = \frac{2}{n}nR\Delta T = \frac{2}{4}(4.00 \text{ mol})(8.31 \text{ J/K mol})(2.26 \times 10^3 \text{ K} - 301 \text{ K}) = 9.77 \times 10^4 \text{ J}
\]

(c) Compute \(Q \) with the first law:

\[
Q = \Delta U - W = 9.77 \times 10^4 \text{ J} - (-3.50 \times 10^4 \text{ J}) = 1.33 \times 10^5 \text{ J}
\]

Remarks
As long as it’s possible to compute the work, cycles involving these more exotic processes can be completely analyzed. Usually, however, it’s necessary to use calculus.

QUICK QUIZ 12.2
Identify the paths \(A, B, C, \) and \(D \) in Figure 12.8 as iso-baric, iso-thermal, iso-volumetric, or adiabatic. For path \(B \), \(Q = 0 \).
12.4 HEAT ENGINES AND THE SECOND LAW OF THERMODYNAMICS

A heat engine takes in energy by heat and partially converts it to other forms, such as electrical and mechanical energy. In a typical process for producing electricity in a power plant, for instance, coal or some other fuel is burned, and the resulting internal energy is used to convert water to steam. The steam is then directed at the blades of a turbine, setting it rotating. Finally, the mechanical energy associated with this rotation is used to drive an electric generator. In another heat engine—the internal combustion engine in an automobile—energy enters the engine as fuel is injected into the cylinder and combusted, and a fraction of this energy is converted to mechanical energy.

In general, a heat engine carries some working substance through a cyclic process\(^1\) during which (1) energy is transferred by heat from a source at a high temperature, (2) work is done by the engine, and (3) energy is expelled by the engine by heat to a source at lower temperature. As an example, consider the operation of a steam engine in which the working substance is water. The water in the engine is carried through a cycle in which it first evaporates into steam in a boiler and then expands against a piston. After the steam is condensed with cooling water, it returns to the boiler, and the process is repeated.

It’s useful to draw a heat engine schematically, as in Active Figure 12.9. The engine absorbs energy \(Q_h\) from the hot reservoir, does work \(W\) on the engine, then gives up energy \(Q_c\) to the cold reservoir. (Note that negative work is done on the engine, so that \(W = -W_{\text{eng}}\).) Because the working substance goes through a cycle, always returning to its initial thermodynamic state, its initial and final internal energies are equal, so \(\Delta U = 0\). From the first law of thermodynamics, therefore,

\[
\Delta U = 0 = Q + W \quad \rightarrow \quad Q_{\text{net}} = -W = W_{\text{eng}}
\]

The last equation shows that the work \(W_{\text{eng}}\) done by a heat engine equals the net energy absorbed by the engine. As we can see from Active Figure 12.9, \(Q_{\text{net}} = |Q_h| - |Q_c|\). Therefore,

\[
W_{\text{eng}} = |Q_h| - |Q_c| \quad \Quad
We can think of thermal efficiency as the ratio of the benefit received (work) to the cost incurred (energy transfer at the higher temperature). Equation 12.12 shows that a heat engine has 100% efficiency \(e = 1 \) if \(Q_c = 0 \), meaning no energy is expelled to the cold reservoir. In other words, a heat engine with perfect efficiency would have to use all the input energy for doing mechanical work. That isn't possible, as will be seen in Section 12.5.

EXAMPLE 12.10 The Efficiency of an Engine

Goal Apply the efficiency formula to a heat engine.

Problem During one cycle, an engine extracts 2.00 \(\times \) \(10^3 \) J of energy from a hot reservoir and transfers 1.50 \(\times \) \(10^3 \) J to a cold reservoir. (a) Find the thermal efficiency of the engine. (b) How much work does this engine do in one cycle? (c) How much power does the engine generate if it goes through four cycles in 2.50 s?

Strategy Apply Equation 12.12 to obtain the thermal efficiency, then use the first law, adapted to engines (Eq. 12.11), to find the work done in one cycle. To obtain the power generated, divide the work done in four cycles by the time it takes to run those cycles.

Solution

(a) Find the engine’s thermal efficiency.

Substitute \(Q_c \) and \(Q_h \) into Equation 12.12:

\[
e = 1 - \frac{|Q_c|}{|Q_h|} = 1 - \frac{1.50 \times 10^3 \text{ J}}{2.00 \times 10^3 \text{ J}} = 0.250, \text{ or } 25.0\%
\]

(b) How much work does this engine do in one cycle?

Apply the first law in the form of Equation 12.11 to find the work done by the engine:

\[
W_{\text{eng}} = |Q_h| - |Q_c| = 2.00 \times 10^3 \text{ J} - 1.50 \times 10^3 \text{ J} = 5.00 \times 10^2 \text{ J}
\]

(c) Find the power output of the engine.

Multiply the answer of part (b) by four and divide by time:

\[
\mathcal{P} = \frac{W}{\Delta t} = \frac{4.00 \times (5.00 \times 10^2 \text{ J})}{2.50 \text{ s}} = 8.00 \times 10^2 \text{ W}
\]

Remark Problems like this usually reduce to solving two equations and two unknowns, as here, where the two equations are the efficiency equation and the first law and the unknowns are the efficiency and the work done by the engine.

QUESTION 12.10

Can the efficiency of an engine always be improved by increasing the thermal energy put into the system during a cycle? Explain.

EXERCISE 12.10

The energy absorbed by an engine is three times as great as the work it performs. (a) What is its thermal efficiency? (b) What fraction of the energy absorbed is expelled to the cold reservoir? (c) What is the power output of the engine if the energy input is 1 650 J each cycle and it goes through two cycles every 3 seconds?

Answer

(a) \(1/3 \) (b) \(2/3 \) (c) 367 W

EXAMPLE 12.11 Analyzing an Engine Cycle

Goal Combine several concepts to analyze an engine cycle.

Problem A heat engine contains an ideal monatomic gas confined to a cylinder by a movable piston. The gas starts at \(A \), where \(T = 3.00 \times 10^2 \text{ K} \). (See Fig. 12.11a.) The process \(B \rightarrow C \) is an isothermal expansion. (a) Find the number \(n \) of moles of gas and the temperature at \(B \). (b) Find \(\Delta U \), \(Q \), and \(W \) for the isovolumetric process \(A \rightarrow B \). (c) Repeat for the isothermal process \(B \rightarrow C \). (d) Repeat for the isobaric process \(C \rightarrow A \). (e) Find the net change in the inter-
nal energy for the complete cycle. (f) Find the thermal energy transferred into the system, the thermal energy rejected, Q_c, the thermal efficiency, and net work on the environment performed by the engine.

Strategy In part (a) n, T, and V can be found from the ideal gas law, which connects the equilibrium values of P, V, and T. Once the temperature T is known at the points A, B, and C, the change in internal energy, ΔU, can be computed from the formula in Table 12.2 for each process. Q and W can be similarly computed, or deduced from the first law, using the techniques applied in the single-process examples.

Solution

(a) Find n and T_B with the ideal gas law:

$$n = \frac{P_AV_A}{RT_A} = \frac{(1.00 \text{ atm})(5.00 \text{ L})}{(0.0821 \text{ L} \cdot \text{atm/mol} \cdot \text{K})(3.00 \times 10^2 \text{ K})}$$

$$n = 0.203 \text{ mol}$$

$$T_B = \frac{P_BV_B}{nR} = \frac{(3.00 \text{ atm})(5.00 \text{ L})}{(0.203 \text{ mol})(0.0821 \text{ L} \cdot \text{atm/mol} \cdot \text{K})}$$

$$T_B = 9.00 \times 10^2 \text{ K}$$

(b) Find ΔU_{AB}, Q_{AB}, and W_{AB} for the constant volume process $A \rightarrow B$.

Compute ΔU_{AB}, noting that $C_v = \frac{3}{2}R = 12.5 \text{ J/mol} \cdot \text{K}$:

$$\Delta U_{AB} = nC_v \Delta T = (0.203 \text{ mol})(12.5 \text{ J/mol} \cdot \text{K}) \times (9.00 \times 10^2 \text{ K} - 3.00 \times 10^2 \text{ K})$$

$$\Delta U_{AB} = 1.52 \times 10^3 \text{ J}$$

$\Delta V = 0$ for isovolumetric processes, so no work is done: $W_{AB} = 0$

We can find Q_{AB} from the first law:

$$Q_{AB} = \Delta U_{AB} = 1.52 \times 10^3 \text{ J}$$

(c) Find ΔU_{BC}, Q_{BC}, and W_{BC} for the isothermal process $B \rightarrow C$.

This process is isothermal, so the temperature doesn’t change, and the change in internal energy is zero:

$$\Delta U_{BC} = nC_v \Delta T = 0$$

Compute the work done on the system, using the negative of Equation 12.10:

$$W_{BC} = -nRT \ln \left(\frac{V_C}{V_B} \right) = -(0.203 \text{ mol})(8.31 \text{ J/mol} \cdot \text{K})(9.00 \times 10^2 \text{ K}) \times \ln \left(\frac{1.50 \times 10^{-2} \text{ m}^3}{5.00 \times 10^{-2} \text{ m}^3} \right)$$

$$W_{BC} = -1.67 \times 10^3 \text{ J}$$

Compute Q_{BC} from the first law:

$$0 = Q_{BC} + W_{BC} \rightarrow Q_{BC} = -W_{BC} = 1.67 \times 10^3 \text{ J}$$

(d) Find ΔU_{CA}, Q_{CA}, and W_{CA} for the isobaric process $C \rightarrow A$.

Compute the work on the system, with pressure constant:

$$W_{CA} = -P \Delta V = -(1.01 \times 10^5 \text{ Pa})(5.00 \times 10^{-3} \text{ m}^3 - 1.50 \times 10^{-2} \text{ m}^3)$$

$$W_{CA} = 1.01 \times 10^3 \text{ J}$$
Find the change in internal energy, ΔU_{CA}:

$$\Delta U_{CA} = \frac{3}{2} n R \Delta T = \frac{3}{2}(0.203 \text{ mol})(8.31 \text{ J/K/mol}) \times (3.00 \times 10^2 \text{ K} - 9.00 \times 10^2 \text{ K})$$

$$\Delta U_{CA} = -1.52 \times 10^3 \text{ J}$$

Compute the thermal energy, Q_{CA}, from the first law:

$$Q_{CA} = \Delta U_{CA} - W_{CA} = -1.52 \times 10^3 \text{ J} - 1.01 \times 10^3 \text{ J}$$

$$Q_{CA} = -2.53 \times 10^3 \text{ J}$$

(e) Find the net change in internal energy, ΔU_{net}, for the cycle:

$$\Delta U_{\text{net}} = \Delta U_{AB} + \Delta U_{BC} + \Delta U_{CA}$$

$$\Delta U_{\text{net}} = 1.52 \times 10^3 \text{ J} + 0 - 1.52 \times 10^3 \text{ J} = 0$$

(f) Find the energy input, Q_h; the energy rejected, Q_c; the thermal efficiency; and the net work performed by the engine:

$$Q_h = Q_{AB} + Q_{BC} = 1.52 \times 10^3 \text{ J} + 1.67 \times 10^3 \text{ J}$$

$$Q_h = 3.19 \times 10^3 \text{ J}$$

$$Q_c = -2.53 \times 10^3 \text{ J}$$

Find the engine efficiency and the net work done by the engine:

$$\epsilon = 1 - \frac{|Q_c|}{|Q_h|} = 1 - \frac{2.53 \times 10^3 \text{ J}}{3.19 \times 10^3 \text{ J}} = 0.207$$

$$W_{\text{eng}} = -(W_{AB} + W_{BC} + W_{CA})$$

$$W_{\text{eng}} = -(0 - 1.67 \times 10^3 \text{ J} + 1.01 \times 10^3 \text{ J})$$

$$W_{\text{eng}} = 6.60 \times 10^2 \text{ J}$$

Remarks Cyclic problems are rather lengthy, but the individual steps are often short substitutions. Notice that the change in internal energy for the cycle is zero and that the net work done on the environment is identical to the net thermal energy transferred, both as they should be.

QUESTION 12.11

If BC were a straight-line path, would the work done by the cycle be affected? How?

EXERCISE 12.11

4.05 $\times 10^{-2}$ mol of monatomic ideal gas goes through the process shown in Figure 12.11b. The temperature at point A is 3.00 $\times 10^2$ K and is 6.00 $\times 10^2$ K during the isothermal process $B \rightarrow C$. (a) Find Q, ΔU, and W for the constant volume process $A \rightarrow B$. (b) Do the same for the isothermal process $B \rightarrow C$. (c) Repeat, for the constant pressure process $C \rightarrow A$. (d) Find Q_h, Q_c, and the efficiency. (e) Find W_{eng}.

Answers (a) $Q_{AB} = \Delta U_{AB} = 151 \text{ J}$, $W_{AB} = 0$ (b) $\Delta U_{BC} = 0$, $Q_{BC} = -W_{BC} = 1.40 \times 10^2 \text{ J}$ (c) $Q_{CA} = -252 \text{ J}$, $\Delta U_{CA} = -151 \text{ J}$, $W_{CA} = 101 \text{ J}$ (d) $Q_h = 291 \text{ J}$, $Q_c = -252 \text{ J}$, $\epsilon = 0.134$ (e) $W_{\text{eng}} = 39 \text{ J}$

Refrigerators and Heat Pumps

Heat engines can operate in reverse. In this case, energy is injected into the engine, modeled as work W in Active Figure 12.12, resulting in energy being extracted from the cold reservoir and transferred to the hot reservoir. The system now operates as a heat pump, a common example being a refrigerator (Fig. 12.13). Energy Q_h is extracted from the interior of the refrigerator and delivered as energy Q_c to the warmer air in the kitchen. The work is done in the compressor unit of the refrigerator, compressing a refrigerant such as freon, causing its temperature to increase.
A household air conditioner is another example of a heat pump. Some homes are both heated and cooled by heat pumps. In winter, the heat pump extracts energy Q_c from the cool outside air and delivers energy Q_h to the warmer air inside. In summer, energy Q_c is removed from the cool inside air, while energy Q_h is ejected to the warm air outside.

For a refrigerator or an air conditioner—a heat pump operating in cooling mode—work W is what you pay for, in terms of electrical energy running the compressor, whereas Q_c is the desired benefit. The most efficient refrigerator or air conditioner is one that removes the greatest amount of energy from the cold reservoir in exchange for the least amount of work.

The coefficient of performance (COP) for a refrigerator or an air conditioner is the magnitude of the energy extracted from the cold reservoir, $|Q_c|$, divided by the work W performed by the device:

$$\text{COP}(\text{cooling mode}) = \frac{|Q_c|}{W}$$ \[12.13\]

SI unit: dimensionless

The larger this ratio, the better the performance, because more energy is being removed for a given amount of work. A good refrigerator or air conditioner will have a COP of 5 or 6.

A heat pump operating in heating mode warms the inside of a house in winter by extracting energy from the colder outdoor air. This statement may seem paradoxical, but recall that this process is equivalent to a refrigerator removing energy from its interior and ejecting it into the kitchen.

The coefficient of performance of a heat pump operating in the heating mode is the magnitude of the energy rejected to the hot reservoir, $|Q_h|$, divided by the work W done by the pump:

$$\text{COP}(\text{heating mode}) = \frac{|Q_h|}{W}$$ \[12.14\]

SI unit: dimensionless

In effect, the COP of a heat pump in the heating mode is the ratio of what you gain (energy delivered to the interior of your home) to what you give (work input). Typical values for this COP are greater than 1, because $|Q_h|$ is usually greater than W.

In a groundwater heat pump, energy is extracted in the winter from water deep in the ground rather than from the outside air, while energy is delivered to that water in the summer. This strategy increases the year-round efficiency of the heating and cooling unit because the groundwater is at a higher temperature than the air in winter and at a cooler temperature than the air in summer.

EXAMPLE 12.12 Cooling the Leftovers

Goal Apply the coefficient of performance of a refrigerator.

Problem A 2.00-L container of leftover soup at a temperature of 323 K is placed in a refrigerator. Assume the specific heat of the soup is the same as that of water and the density is 1.25×10^3 kg/m3. The refrigerator cools the soup to 283 K. (a) If the COP of the refrigerator is 5.00, find the energy needed, in the form of work, to cool the soup. (b) If the compressor has a power rating of 0.250 hp, for what minimum length of time must it operate to cool the soup to 283 K? (The minimum time assumes the soup cools at the same rate that the heat pump ejects thermal energy from the refrigerator.)

Strategy The solution to this problem requires three steps. First, find the total mass m of the soup. Second, using $Q = mc\Delta T$, where $Q = Q_c$, find the energy transfer required to cool the soup. Third, substitute Q_c and the COP into Equation 12.13, solving for W. Divide the work by the power to get an estimate of the time required to cool the soup.
404 Chapter 12 The Laws of Thermodynamics

Solution
(a) Find the work needed to cool the soup.

Calculate the mass of the soup:
\[m = \rho V = (1.25 \times 10^3 \text{ kg/m}^3)(2.00 \times 10^{-3} \text{ m}^3) = 2.50 \text{ kg} \]

Find the energy transfer required to cool the soup:
\[Q_c = Q = mc\Delta T \]
\[= (2.50 \text{ kg})(4190 \text{ J/kg} \cdot \text{K})(283 \text{ K} - 323 \text{ K}) \]
\[= -4.19 \times 10^5 \text{ J} \]

Substitute \(Q_c \) and the COP into Equation 12.13:
\[\text{COP} = \frac{|Q_c|}{W} \]
\[W = \frac{4.19 \times 10^5 \text{ J}}{5.00} \]
\[W = 8.38 \times 10^4 \text{ J} \]

(b) Find the time needed to cool the soup.

Convert horsepower to watts:
\[\mathcal{P} = (0.250 \text{ hp})(746 \text{ W/1 hp}) = 187 \text{ W} \]

Divide the work by the power to find the elapsed time:
\[\Delta t = \frac{W}{\mathcal{P}} = \frac{8.38 \times 10^4 \text{ J}}{187 \text{ W}} = 448 \text{ s} \]

Remarks This example illustrates how cooling different substances requires differing amounts of work due to differences in specific heats. The problem doesn’t take into account the insulating properties of the soup container and of the soup itself, which retard the cooling process.

QUESTION 12.12
If the refrigerator door is left open, does the kitchen become cooler? Why or why not?

EXERCISE 12.12
(a) How much work must a heat pump with a COP of 2.50 do to extract 1.00 MJ of thermal energy from the outdoors (the cold reservoir)? (b) If the unit operates at 0.500 hp, how long will the process take? (Be sure to use the correct COP!)

Answers (a) \(6.67 \times 10^5 \text{ J} \) (b) \(1.79 \times 10^3 \text{ s} \)

The Second Law of Thermodynamics

There are limits to the efficiency of heat engines. The ideal engine would convert all input energy into useful work, but it turns out that such an engine is impossible to construct. The Kelvin-Planck formulation of the second law of thermodynamics can be stated as follows:

No heat engine operating in a cycle can absorb energy from a reservoir and use it entirely for the performance of an equal amount of work.

This form of the second law means that the efficiency \(\varepsilon = \frac{W_{\text{eng}}}{|Q_h|} \) of engines must always be less than 1. Some energy \(Q_c \) must always be lost to the environment. In other words, it’s theoretically impossible to construct a heat engine with an efficiency of 100%.

To summarize, the first law says we can’t get a greater amount of energy out of a cyclic process than we put in, and the second law says we can’t break even. No matter what engine is used, some energy must be transferred by heat to the cold reservoir. In Equation 12.11, the second law simply means \(|Q_c| \) is always greater than zero.
There is another equivalent statement of the second law:

If two systems are in thermal contact, net thermal energy transfers spontaneously by heat from the hotter system to the colder system.

Here, spontaneous means the energy transfer occurs naturally, with no work being done. Thermal energy naturally transfers from hotter systems to colder systems. Work must be done to transfer thermal energy from a colder system to a hotter system, however. An example is the refrigerator, which transfers thermal energy from inside the refrigerator to the warmer kitchen.

Reversible and Irreversible Processes

No engine can operate with 100% efficiency, but different designs yield different efficiencies, and it turns out that one design in particular delivers the maximum possible efficiency. This design is the Carnot cycle, discussed in the next subsection. Understanding it requires the concepts of reversible and irreversible processes. In a **reversible** process, every state along the path is an equilibrium state, so the system can return to its initial conditions by going along the same path in the reverse direction. A process that doesn’t satisfy this requirement is **irreversible**.

Most natural processes are known to be irreversible; the reversible process is an idealization. Although real processes are always irreversible, some are **almost** reversible. If a real process occurs so slowly that the system is virtually always in equilibrium, the process can be considered reversible. Imagine compressing a gas very slowly by dropping grains of sand onto a frictionless piston, as in Figure 12.14. The temperature can be kept constant by placing the gas in thermal contact with an energy reservoir. The pressure, volume, and temperature of the gas are well defined during this isothermal compression. Each added grain of sand represents a change to a new equilibrium state. The process can be reversed by slowly removing grains of sand from the piston.

The Carnot Engine

In 1824, in an effort to understand the efficiency of real engines, a French engineer named Sadi Carnot (1796–1832) described a theoretical engine now called a **Carnot engine** that is of great importance from both a practical and a theoretical viewpoint. He showed that a heat engine operating in an ideal, reversible cycle—now called a **Carnot cycle**—between two energy reservoirs is the most efficient engine possible. Such an engine establishes an upper limit on the efficiencies of all real engines. **Carnot’s theorem** can be stated as follows:

No real engine operating between two energy reservoirs can be more efficient than a Carnot engine operating between the same two reservoirs.

In a Carnot cycle, an ideal gas is contained in a cylinder with a movable piston at one end. The temperature of the gas varies between T_h and T_c. The cylinder walls and the piston are thermally nonconducting. Active Figure 12.15 (page 406) shows the four stages of the Carnot cycle, and Active Figure 12.16 (page 407) is the PV diagram for the cycle. The cycle consists of two adiabatic and two isothermal processes, all reversible:

1. The process $A \rightarrow B$ is an isothermal expansion at temperature T_h in which the gas is placed in thermal contact with a hot reservoir (a large oven, for example) at temperature T_h (Active Fig. 12.15a). During the process, the gas absorbs energy Q_h from the reservoir and does work W_{AB} in raising the piston.
2. In the process $B \rightarrow C$, the base of the cylinder is replaced by a thermally nonconducting wall and the gas expands adiabatically, so no energy enters or leaves the system by heat (Active Fig. 12.15b). During the process, the temperature falls from T_h to T_c and the gas does work W_{BC} in raising the piston.
3. In the process \(C \rightarrow D \), the gas is placed in thermal contact with a cold reservoir at temperature \(T_c \) (Active Fig. 12.15c) and is compressed isothermally at temperature \(T_c \). During this time, the gas expels energy \(Q_c \) to the reservoir and the work done on the gas is \(W_{CD} \).

4. In the final process, \(D \rightarrow A \), the base of the cylinder is again replaced by a thermally nonconducting wall (Active Fig. 12.15d) and the gas is compressed adiabatically. The temperature of the gas increases to \(T_h \), and the work done on the gas is \(W_{DA} \).

For a Carnot engine, the following relationship between the thermal energy transfers and the absolute temperatures can be derived:

\[
\frac{|Q_c|}{|Q_h|} = \frac{T_c}{T_h} \quad \text{[12.15]}
\]

Substituting this expression into Equation 12.12, we find that the thermal efficiency of a Carnot engine is

\[
\varepsilon_C = 1 - \frac{T_c}{T_h} \quad \text{[12.16]}
\]

where \(T \) must be in kelvins. From this result, we see that all Carnot engines operating reversibly between the same two temperatures have the same efficiency.

Equation 12.16 can be applied to any working substance operating in a Carnot cycle between two energy reservoirs. According to that equation, the efficiency is zero if \(T_c = T_h \). The efficiency increases as \(T_c \) is lowered and as \(T_h \) is increased. The efficiency can be one (100%), however, only if \(T_c = 0 \) K. According to the third law of thermodynamics, it’s impossible to lower the temperature of a system to absolute zero in a finite number of steps, so such reservoirs are not available and the
maximum efficiency is always less than 1. In most practical cases, the cold reservoir is near room temperature, about 300 K, so increasing the efficiency requires raising the temperature of the hot reservoir. All real engines operate irreversibly, due to friction and the brevity of their cycles, and are therefore less efficient than the Carnot engine.

QUICK QUIZ 12.3 Three engines operate between reservoirs separated in temperature by 300 K. The reservoir temperatures are as follows:

- Engine A: \(T_h = 1000 \text{ K}, T_c = 700 \text{ K} \)
- Engine B: \(T_h = 800 \text{ K}, T_c = 500 \text{ K} \)
- Engine C: \(T_h = 600 \text{ K}, T_c = 300 \text{ K} \)

Rank the engines in order of their theoretically possible efficiency, from highest to lowest. (a) A, B, C (b) B, C, A (c) C, B, A (d) C, A, B

ACTIVE FIGURE 12.16
The \(PV \) diagram for the Carnot cycle. The net work done, \(W_{\text{eng}} \), equals the net energy received by heat in one cycle, \(|Q_h| - |Q_c| \).

EXAMPLE 12.13 The Steam Engine

Goal Apply the equations of an ideal (Carnot) engine.

Problem A steam engine has a boiler that operates at \(5.00 \times 10^2 \text{ K} \). The energy from the boiler changes water to steam, which drives the piston. The temperature of the exhaust is that of the outside air, \(3.00 \times 10^2 \text{ K} \). (a) What is the engine’s efficiency if it’s an ideal engine? (b) If the \(3.50 \times 10^3 \text{ J} \) of energy is supplied from the boiler, find the energy transferred to the cold reservoir and the work done by the engine on its environment.

Strategy This problem requires substitution into Equations 12.15 and 12.16, both applicable to a Carnot engine. The first equation relates the ratio \(Q_c/Q_h \) to the ratio \(T_c/T_h \), and the second gives the Carnot engine efficiency.

Solution

(a) Find the engine’s efficiency, assuming it’s ideal.

Substitute into Equation 12.16, the equation for the efficiency of a Carnot engine:

\[
e_c = 1 - \frac{T_c}{T_h} = 1 - \frac{3.00 \times 10^2 \text{ K}}{5.00 \times 10^2 \text{ K}} = 0.400, \text{ or } 40\%
\]

(b) Find the energy transferred to the cold reservoir and the work done on the environment if \(3.50 \times 10^3 \text{ J} \) is delivered to the engine during one cycle.

The ratio of energies equals the ratio of temperatures:

\[
\frac{|Q_c|}{|Q_h|} = \frac{T_c}{T_h} \quad \text{or} \quad |Q_c| = |Q_h| \frac{T_c}{T_h}
\]

Substitute, finding the energy transferred to the cold reservoir:

\[
|Q_c| = (3.50 \times 10^3 \text{ J}) \left(\frac{3.00 \times 10^2 \text{ K}}{5.00 \times 10^2 \text{ K}} \right) = 2.10 \times 10^3 \text{ J}
\]
Use Equation 12.11 to find the work done by the engine:

\[W_{\text{eng}} = |Q_h| - |Q_c| = 3.50 \times 10^3 \text{ J} - 2.10 \times 10^3 \text{ J} = 1.40 \times 10^3 \text{ J} \]

Remarks This problem differs from the earlier examples on work and efficiency because we used the special Carnot relationships, Equations 12.15 and 12.16. Remember that these equations can only be used when the cycle is identified as ideal or a Carnot.

QUESTION 12.13
True or False: A nonideal engine operating between the same temperature extremes as a Carnot engine and having the same input thermal energy will perform the same amount of work as the Carnot engine.

EXERCISE 12.13
The highest theoretical efficiency of a gasoline engine based on the Carnot cycle is 0.300, or 30.0%. (a) If this engine expels its gases into the atmosphere, which has a temperature of 3.00 × 10^2 K, what is the temperature in the cylinder immediately after combustion? (b) If the heat engine absorbs 837 J of energy from the hot reservoir during each cycle, how much work can it perform in each cycle?

Answers (a) 429 K (b) 251 J

12.5 ENTROPY
Temperature and internal energy, associated with the zeroth and first laws of thermodynamics, respectively, are both state variables, meaning they can be used to describe the thermodynamic state of a system. A state variable called the entropy \(S \) is related to the second law of thermodynamics. We define entropy on a macroscopic scale as German physicist Rudolf Clausius (1822–1888) first expressed it in 1865:

\[\Delta S = \frac{Q}{T} \quad [12.17] \]

SI unit: joules/kelvin (J/K)

Let \(Q \) be the energy absorbed or expelled during a reversible, constant temperature process between two equilibrium states. Then the change in entropy during any constant temperature process connecting the two equilibrium states is defined as

A similar formula holds when the temperature isn’t constant, but its derivation entails calculus and won’t be considered here. Calculating the change in entropy, \(\Delta S \), during a transition between two equilibrium states requires finding a reversible path that connects the states. The entropy change calculated on that reversible path is taken to be \(\Delta S \) for the actual path. This approach is necessary because quantities such as the temperature of a system can be defined only for systems in equilibrium, and a reversible path consists of a sequence of equilibrium states. The subscript \(r \) on the term \(Q_r \) emphasizes that the path chosen for the calculation must be reversible. The change in entropy \(\Delta S \), like changes in internal energy \(\Delta U \) and changes in potential energy, depends only on the endpoints, and not on the path connecting them.

The concept of entropy gained wide acceptance in part because it provided another variable to describe the state of a system, along with pressure, volume, and temperature. Its significance was enhanced when it was found that the entropy of the Universe increases in all natural processes. This is yet another way of stating the second law of thermodynamics.

Although the entropy of the Universe increases in all natural processes, the entropy of a system can decrease. For example, if system A transfers energy \(Q \) to system B by heat, the entropy of system A decreases. This transfer, however, can

RUDOLF CLAUSIUS
German Physicist (1822–1888)
Born with the name Rudolf Gottlieb, he adopted the classical name of Clausius, which was a popular thing to do in his time. "I propose . . . to call \(S \) the entropy of a body, after the Greek word 'transformation.' I have designedly coined the word 'entropy' to be similar to energy, for these two quantities are so analogous in their physical significance, that an analogy of denominations seems to be helpful."
only occur if the temperature of system B is less than the temperature of system A. Because temperature appears in the denominator in the definition of entropy, system B's increase in entropy will be greater than system A's decrease, so taken together, the entropy of the Universe increases.

For centuries, individuals have attempted to build perpetual motion machines that operate continuously without any input of energy or increase in entropy. The laws of thermodynamics preclude the invention of any such machines. The concept of entropy is satisfying because it enables us to present the second law of thermodynamics in the form of a mathematical statement. In the next section we find that entropy can also be interpreted in terms of probabilities, a relationship that has profound implications.

QUICK QUIZ 12.4 Which of the following is true for the entropy change of a system that undergoes a reversible, adiabatic process? (a) $\Delta S < 0$ (b) $\Delta S = 0$ (c) $\Delta S > 0$

EXAMPLE 12.14 Melting a Piece of Lead

Goal Calculate the change in entropy due to a phase change.

Problem (a) Find the change in entropy of 3.00 $\times 10^2$ g of lead when it melts at 327°C. Lead has a latent heat of fusion of 2.45×10^4 J/kg. (b) Suppose the same amount of energy is used to melt part of a piece of silver, which is already at its melting point of 961°C. Find the change in the entropy of the silver.

Strategy This problem can be solved by substitution into Equation 12.17. Be sure to use the Kelvin temperature scale.

Solution

(a) Find the entropy change of the lead.

Find the energy necessary to melt the lead: $Q = mL_f = (0.300 \text{ kg})(2.45 \times 10^4 \text{ J/kg}) = 7.35 \times 10^3 \text{ J}$

Convert the temperature in degrees Celsius to kelvins: $T = T_c + 273 = 327 + 273 = 6.00 \times 10^2 \text{ K}$

Substitute the quantities found into the entropy equation: $\Delta S = \frac{Q}{T} = \frac{7.35 \times 10^3 \text{ J}}{6.00 \times 10^2 \text{ K}} = 12.3 \text{ J/K}$

(b) Find the entropy change of the silver.

The added energy is the same as in part (a), by supposition. Substitute into the entropy equation, after first converting the melting point of silver to kelvins: $T = T_c + 273 = 961 + 273 = 1.234 \times 10^3 \text{ K}$

$\Delta S = \frac{Q}{T} = \frac{7.35 \times 10^3 \text{ J}}{1.234 \times 10^3 \text{ K}} = 5.96 \text{ J/K}$

Remarks This example shows that adding a given amount of energy to a system increases its disorder, but adding the same amount of energy to another system at higher temperature results in a smaller increase in disorder. This is because the change in entropy is inversely proportional to the temperature.

QUESTION 12.14 If the same amount of energy were used to melt ice at 0°C to water at 0°C, rank the entropy changes for ice, silver, and lead, from smallest to largest.

EXERCISE 12.14 Find the change in entropy of a 2.00-kg block of gold at 1 063°C when it melts to become liquid gold at 1 063°C.

Answer 96.4 J/K
EXAMPLE 12.15 Ice, Steam, and the Entropy of the Universe

Goal Calculate the change in entropy for a system and its environment.

Problem A block of ice at 273 K is put in thermal contact with a container of steam at 373 K, converting 25.0 g of ice to water at 273 K while condensing some of the steam to water at 373 K. (a) Find the change in entropy of the ice. (b) Find the change in entropy of the steam. (c) Find the change in entropy of the Universe.

Strategy First, calculate the energy transfer necessary to melt the ice. The amount of energy gained by the ice is lost by the steam. Compute the entropy change for each process and sum to get the entropy change of the Universe.

Solution
(a) Find the change in entropy of the ice.

Use the latent heat of fusion, \(L_f \), to compute the thermal energy needed to melt 25.0 g of ice:

\[Q_{\text{ice}} = mL_f = (0.025 \text{ kg})(3.33 \times 10^5 \text{ J}) = 8.33 \times 10^3 \text{ J} \]

Calculate the change in entropy of the ice:

\[\Delta S_{\text{ice}} = \frac{Q_{\text{ice}}}{T_{\text{ice}}} = \frac{8.33 \times 10^3 \text{ J}}{273 \text{ K}} = 30.5 \text{ J/K} \]

(b) Find the change in entropy of the steam.

By supposition, the thermal energy lost by the steam is equal to the thermal energy gained by the ice:

\[\Delta S_{\text{steam}} = \frac{Q_{\text{steam}}}{T_{\text{steam}}} = \frac{-8.33 \times 10^3 \text{ J}}{373 \text{ K}} = -22.3 \text{ J/K} \]

(c) Find the change in entropy of the Universe.

Sum the two changes in entropy:

\[\Delta S_{\text{universe}} = \Delta S_{\text{ice}} + \Delta S_{\text{steam}} = 30.5 \text{ J/K} - 22.3 \text{ J/K} = 8.2 \text{ J/K} \]

Remark Notice that the entropy of the Universe increases, as it must in all natural processes.

QUESTION 12.15
True or False: For a given magnitude of thermal energy transfer, the change in entropy is smaller for processes that proceed at lower temperature.

EXERCISE 12.15
A 4.00-kg block of ice at 273 K encased in a thin plastic shell of negligible mass melts in a large lake at 293 K. At the instant the ice has completely melted in the shell and is still at 273 K, calculate the change in entropy of (a) the ice, (b) the lake (which essentially remains at 293 K), and (c) the Universe.

Answers (a) \(4.88 \times 10^3 \text{ J/K} \) (b) \(-4.55 \times 10^3 \text{ J/K} \) (c) \(+3.3 \times 10^2 \text{ J/K} \)

EXAMPLE 12.16 A Falling Boulder

Goal Combine mechanical energy and entropy.

Problem A chunk of rock of mass 1.00 \times 10^3 kg at 293 K falls from a cliff of height 125 m into a large lake, also at 293 K. Find the change in entropy of the lake, assuming all the rock’s kinetic energy upon entering the lake converts to thermal energy absorbed by the lake.

Strategy Gravitational potential energy when the rock is at the top of the cliff converts to kinetic energy of the rock before it enters the lake, then is transferred to the lake as thermal energy. The change in the lake’s temperature is negligible (due to its mass). Divide the mechanical energy of the rock by the temperature of the lake to estimate the lake’s change in entropy.
This example shows how even simple mechanical processes can bring about increases in the Universe’s entropy.

QUESTION 12.16
If you carefully remove your (very heavy) physics book from a shelf and place it on the ground, what happens to the entropy of the Universe? Does it increase, decrease, or remain the same? Explain.

EXERCISE 12.16
Estimate the change in entropy of a tree trunk at 15.0°C when a bullet of mass 5.00 g traveling at $1.00\times 10^3\text{ m/s}$ embeds itself in it. (Assume the kinetic energy of the bullet transforms to thermal energy, all of which is absorbed by the tree.)

Answer 8.68 J/K

Entropy and Disorder
A large element of chance is inherent in natural processes. The spacing between trees in a natural forest, for example, is random; if you discovered a forest where all the trees were equally spaced, you would conclude that it had been planted. Likewise, leaves fall to the ground with random arrangements. It would be highly unlikely to find the leaves laid out in perfectly straight rows. We can express the results of such observations by saying that a disorderly arrangement is much more probable than an orderly one if the laws of nature are allowed to act without interference.

Entropy originally found its place in thermodynamics, but its importance grew tremendously as the field of statistical mechanics developed. This analytical approach employs an alternate interpretation of entropy. In statistical mechanics, the behavior of a substance is described by the statistical behavior of the atoms and molecules contained in it. One of the main conclusions of the statistical mechanical approach is that isolated systems tend toward greater disorder, and entropy is a measure of that disorder.

In light of this new view of entropy, Boltzmann found another method for calculating entropy through use of the relation

$$ S = k_B \ln W \quad [12.18] $$

where $k_B = 1.38 \times 10^{-23}\text{ J/K}$ is Boltzmann’s constant and W is a number proportional to the probability that the system has a particular configuration. The symbol “ln” again stands for natural logarithm, discussed in Appendix A.

Equation 12.18 could be applied to a bag of marbles. Imagine that you have 100 marbles—50 red and 50 green—stored in a bag. You are allowed to draw four marbles from the bag according to the following rules: Draw one marble, record its color, return it to the bag, and draw again. Continue this process until four marbles have been drawn. Note that because each marble is returned to the bag before the next one is drawn, the probability of drawing a red marble is always the same as the probability of drawing a green one.

The results of all possible drawing sequences are shown in Table 12.3. For example, the result RRGR means that a red marble was drawn first, a red one second, a
green one third, and a red one fourth. The table indicates that there is only one possible way to draw four red marbles. There are four possible sequences that produce one green and three red marbles, six sequences that produce two green and two red, four sequences that produce three green and one red, and one sequence that produces all green. From Equation 12.18, we see that the state with the greatest disorder (two red and two green marbles) has the highest entropy because it is most probable. In contrast, the most ordered states (all red marbles and all green marbles) are least likely to occur and are states of lowest entropy.

The outcome of the draw can range between these highly ordered (lowest-entropy) and highly disordered (highest-entropy) states. Entropy can be regarded as an index of how far a system has progressed from an ordered to a disordered state.

The second law of thermodynamics is really a statement of what is most probable rather than of what must be. Imagine placing an ice cube in contact with a hot piece of pizza. There is nothing in nature that absolutely forbids the transfer of energy by heat from the ice to the much warmer pizza. Statistically, it’s possible for a slow-moving molecule in the ice to collide with a faster-moving molecule in the pizza so that the slow one transfers some of its energy to the faster one. When the great number of molecules present in the ice and pizza are considered, however, the odds are overwhelmingly in favor of the transfer of energy from the faster-moving molecules to the slower-moving molecules. Furthermore, this example demonstrates that a system naturally tends to move from a state of order to a state of disorder. The initial state, in which all the pizza molecules have high kinetic energy and all the ice molecules have lower kinetic energy, is much more ordered than the final state after energy transfer has taken place and the ice has melted.

Even more generally, the second law of thermodynamics defines the direction of time for all events as the direction in which the entropy of the universe increases. Although conservation of energy isn’t violated if energy flows spontaneously from a cold object (the ice cube) to a hot object (the pizza slice), that event violates the second law because it represents a spontaneous increase in order. Of course, such an event also violates everyday experience. If the melting ice cube is filmed and the film speeded up, the difference between running the film in forward and reverse directions would be obvious to an audience. The same would be true of filming any event involving a large number of particles, such as a dish dropping to the floor and shattering.

As another example, suppose you were able to measure the velocities of all the air molecules in a room at some instant. It’s very unlikely that you would find all molecules moving in the same direction with the same speed; that would be a highly ordered state, indeed. The most probable situation is a system of molecules moving haphazardly in all directions with a wide distribution of speeds, a highly disordered state. This physical situation can be compared to the drawing of marbles from a bag: If a container held 10^{23} molecules of a gas, the probability of finding all the molecules moving in the same direction with the same speed at some instant would be similar to that of drawing a marble from the bag 10^{23} times and getting a red marble on every draw, clearly an unlikely set of events.
The tendency of nature to move toward a state of disorder affects the ability of a system to do work. Consider a ball thrown toward a wall. The ball has kinetic energy, and its state is an ordered one, which means that all the atoms and molecules of the ball move in unison at the same speed and in the same direction (apart from their random internal motions). When the ball hits the wall, however, part of the ball’s kinetic energy is transformed into the random, disordered, internal motion of the molecules in the ball and the wall, and the temperatures of the ball and the wall both increase slightly. Before the collision, the ball was capable of doing work. It could drive a nail into the wall, for example. With the transformation of part of the ordered energy into disordered internal energy, this capability of doing work is reduced. The ball rebounds with less kinetic energy than it originally had, because the collision is inelastic.

Various forms of energy can be converted to internal energy, as in the collision between the ball and the wall, but the reverse transformation is never complete. In general, given two kinds of energy, A and B, if A can be completely converted to B and vice versa, we say that A and B are of the same grade. However, if A can be completely converted to B and the reverse is never complete, then A is of a higher grade of energy than B. In the case of a ball hitting a wall, the kinetic energy of the ball is of a higher grade than the internal energy contained in the ball and the wall after the collision. When high-grade energy is converted to internal energy, it can never be fully recovered as high-grade energy.

This conversion of high-grade energy to internal energy is referred to as the degradation of energy. The energy is said to be degraded because it takes on a form that is less useful for doing work. In other words, in all real processes, the energy available for doing work decreases.

Finally, note once again that the statement that entropy must increase in all natural processes is true only for isolated systems. There are instances in which the entropy of some system decreases, but with a corresponding net increase in entropy for some other system. When all systems are taken together to form the Universe, the entropy of the Universe always increases.

Ultimately, the entropy of the Universe should reach a maximum. When it does, the Universe will be in a state of uniform temperature and density. All physical, chemical, and biological processes will cease, because a state of perfect disorder implies no available energy for doing work. This gloomy state of affairs is sometimes referred to as the ultimate “heat death” of the Universe.

QUICK QUIZ 12.5 Suppose you are throwing two dice in a friendly game of craps. For any given throw, the two numbers that are face up can have a sum of 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, or 12. Which outcome is most probable? Which is least probable?

12.6 HUMAN METABOLISM

Animals do work and give off energy by heat, and this lead us to believe the first law of thermodynamics can be applied to living organisms to describe them in a general way. The internal energy stored in humans goes into other forms needed for maintaining and repairing the major body organs and is transferred out of the body by work as a person walks or lifts a heavy object, and by heat when the body is warmer than its surroundings. Because the rates of change of internal energy, energy loss by heat, and energy loss by work vary widely with the intensity and duration of human activity, it’s best to measure the time rates of change of ΔU, Q, and W. Rewriting the first law, these time rates of change are related by

$$\frac{\Delta U}{\Delta t} = \frac{Q}{\Delta t} + \frac{W}{\Delta t}$$ \[12.19\]
On average, energy Q flows out of the body, and work is done by the body on its surroundings, so both $Q/\Delta t$ and $W/\Delta t$ are negative. This means that $U/\Delta t$ would be negative and the internal energy and body temperature would decrease with time if a human were a closed system with no way of ingesting matter or replenishing internal energy stores. Because all animals are actually open systems, they acquire internal energy (chemical potential energy) by eating and breathing, so their internal energy and temperature are kept constant. Overall, the energy from the oxidation of food ultimately supplies the work done by the body and energy lost from the body by heat, and this is the interpretation we give Equation 12.19. That is, $U/\Delta t$ is the rate at which internal energy is added to our bodies by food, and this term just balances the rate of energy loss by heat, $Q/\Delta t$, and by work, $W/\Delta t$. Finally, if we have a way of measuring $U/\Delta t$ and $W/\Delta t$ for a human, we can calculate $Q/\Delta t$ from Equation 12.19 and gain useful information on the efficiency of the body as a machine.

Measuring the Metabolic Rate $\Delta U/\Delta t$

The value of $W/\Delta t$, the work done by a person per unit time, can easily be determined by measuring the power output supplied by the person (in pedaling a bike, for example). The **metabolic rate** $\Delta U/\Delta t$ is the rate at which chemical potential energy in food and oxygen are transformed into internal energy to just balance the body losses of internal energy by work and heat. Although the mechanisms of food oxidation and energy release in the body are complicated, involving many intermediate reactions and enzymes (organic compounds that speed up the chemical reactions taking place at “low” body temperatures), an amazingly simple rule summarizes these processes: **The metabolic rate is directly proportional to the rate of oxygen consumption by volume.** It is found that for an average diet, the consumption of one liter of oxygen releases 4.8 kcal, or 20 kJ, of energy. We may write this important summary rule as

$$\frac{\Delta U}{\Delta t} = 4.8 \frac{\Delta V_{O_2}}{\Delta t} \tag{12.20}$$

where the metabolic rate $\Delta U/\Delta t$ is measured in kcal/s and $\Delta V_{O_2}/\Delta t$, the volume rate of oxygen consumption, is in L/s. Measuring the rate of oxygen consumption during various activities ranging from sleep to intense bicycle racing effectively measures the variation of metabolic rate or the variation in the total power the body generates. A simultaneous measurement of the work per unit time done by a person along with the metabolic rate allows the efficiency of the body as a machine to be determined. Figure 12.17 shows a person monitored for oxygen consumption while riding a bike attached to a dynamometer, a device for measuring power output.

Metabolic Rate, Activity, and Weight Gain

Table 12.4 shows the measured rate of oxygen consumption in milliliters per minute per kilogram of body mass and the calculated metabolic rate for a 65-kg male engaged in various activities. A sleeping person uses about 80 W of power, the **basal metabolic rate**, just to maintain and run different body organs such as the heart, lungs, liver, kidneys, brain, and skeletal muscles. More intense activity increases the metabolic rate to a maximum of about 1 600 W for a superb racing cyclist, although such a high rate can only be maintained for periods of a few seconds. When we sit watching a riveting film, we give off about as much energy by heat as a bright (250-W) light bulb.

Regardless of level of activity, the daily food intake should just balance the loss in internal energy if a person is not to gain weight. Further, exercise is a poor substitute for dieting as a method of losing weight. For example, the loss of 1 pound of body fat requires the muscles to expend 4 100 kcal of energy. If the goal is to lose 1 pound of fat in 35 days, a jogger could run an extra mile a day, because a 65-kg jogger uses about 120 kcal to jog 1 mile (35 days \times 120 kcal/day $= 4200$ kcal).
An easier way to lose the pound of fat would be to diet and eat two fewer slices of bread per day for 35 days, because bread has a calorie content of 60 kcal/slice (35 days × 2 slices/day × 60 kcal/slice = 4,200 kcal).

TABLE 12.4
Oxygen Consumption and Metabolic Rates for Various Activities for a 65-kg Male

<table>
<thead>
<tr>
<th>Activity</th>
<th>O₂ Use Rate (mL/min·kg)</th>
<th>Metabolic Rate (kcal/h)</th>
<th>Metabolic Rate (W)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sleeping</td>
<td>3.5</td>
<td>70</td>
<td>80</td>
</tr>
<tr>
<td>Light activity (dressing, walking slowly, desk work)</td>
<td>10</td>
<td>200</td>
<td>230</td>
</tr>
<tr>
<td>Moderate activity (walking briskly)</td>
<td>20</td>
<td>400</td>
<td>465</td>
</tr>
<tr>
<td>Heavy activity (basketball, swimming a fast breaststroke)</td>
<td>30</td>
<td>600</td>
<td>700</td>
</tr>
<tr>
<td>Extreme activity (bicycle racing)</td>
<td>70</td>
<td>1,400</td>
<td>1,600</td>
</tr>
</tbody>
</table>

An easier way to lose the pound of fat would be to diet and eat two fewer slices of bread per day for 35 days, because bread has a calorie content of 60 kcal/slice (35 days × 2 slices/day × 60 kcal/slice = 4,200 kcal).

EXAMPLE 12.17 Fighting Fat

Goal Estimate human energy usage during a typical day.

Problem In the course of 24 hours, a 65-kg person spends 8 h at a desk, 2 h puttering around the house, 1 h jogging 5 miles, 5 h in moderate activity, and 8 h sleeping. What is the change in her internal energy during this period?

Strategy The time rate of energy usage—or power—multiplied by time gives the amount of energy used during a given activity. Use Table 12.4 to find the power P_i needed for each activity, multiply each by the time, and sum them all up.

Solution

$$
\Delta U = - \sum P_i \Delta t_i = -(P_1 \Delta t_1 + P_2 \Delta t_2 + \ldots + P_n \Delta t_n) \\
= -(200 \text{ kcal/h})(10 \text{ h}) - (5 \text{ mi/h})(120 \text{ kcal/mi})(1 \text{ h}) - (400 \text{ kcal/h})(5 \text{ h}) - (70 \text{ kcal/h})(8 \text{ h}) \\
\Delta U = -5,000 \text{ kcal}
$$

Remarks If this is a typical day in the woman’s life, she will have to consume less than 5,000 kilocalories on a daily basis in order to lose weight. A complication lies in the fact that human metabolism tends to drop when food intake is reduced.

QUESTION 12.17 How could completely skipping meals lead to weight gain?

EXERCISE 12.17 If a 60.0-kg woman ingests 3,000 kcal a day and spends 6 h sleeping, 4 h walking briskly, 8 h sitting at a desk job, 1 h swimming a fast breaststroke, and 5 h watching action movies on TV, about how much weight will the woman gain or lose every day? (Note: Recall that using about 4,100 kcal of energy will burn off a pound of fat.)

Answer She’ll lose a little more than one-half a pound of fat a day.

Physical Fitness and Efficiency of the Human Body as a Machine

One measure of a person’s physical fitness is his or her maximum capacity to use or consume oxygen. This “aerobic” fitness can be increased and maintained with regular exercise, but falls when training stops. Typical maximum rates of oxygen consumption and corresponding fitness levels are shown in Table 12.5 (page 416);
we see that the maximum oxygen consumption rate varies from 28 mL/min·kg of body mass for poorly conditioned subjects to 70 mL/min·kg for superb athletes.

We have already pointed out that the first law of thermodynamics can be rewritten to relate the metabolic rate \(\Delta U / \Delta t \) to the rate at which energy leaves the body by work and by heat:

\[
\frac{\Delta U}{\Delta t} = \frac{Q}{\Delta t} + \frac{W}{\Delta t}
\]

Now consider the body as a machine capable of supplying mechanical power to the outside world and ask for its efficiency. The body’s efficiency \(e \) is defined as the ratio of the mechanical power supplied by a human to the metabolic rate or the total power input to the body:

\[
e = \frac{\text{body's efficiency}}{\frac{|W|}{\Delta t}} = \frac{\Delta U}{\Delta t}
\]

[12.21]

In this definition, absolute value signs are used to show that \(e \) is a positive number and to avoid explicitly using minus signs required by our definitions of \(W \) and \(Q \) in the first law. Table 12.6 shows the efficiency of workers engaged in different activities for several hours. These values were obtained by measuring the power output and simultaneous oxygen consumption of mine workers and calculating the metabolic rate from their oxygen consumption. The table shows that a person can steadily supply mechanical power for several hours at about 100 W with an efficiency of about 17%. It also shows the dependence of efficiency on activity, and that \(e \) can drop to values as low as 3% for highly inefficient activities like shoveling, which involves many starts and stops. Finally, it is interesting in comparison to the average results of Table 12.6 that a superbly conditioned athlete, efficiently coupled to a mechanical device for extracting power (a bike!), can supply a power of around 300 W for about 30 minutes at a peak efficiency of 22%.

TABLE 12.5

| Physical Fitness and Maximum Oxygen Consumption Rate* |
|-----------------|-----------------|
| Fitness Level | Maximum Oxygen Consumption Rate (mL/min·kg) |
| Very poor | 28 |
| Poor | 34 |
| Fair | 42 |
| Good | 52 |
| Excellent | 70 |

TABLE 12.6

| Metabolic Rate, Power Output, and Efficiency for Different Activities* |
|-----------------|-----------------|-----------------|-----------------|
| Activity | \(\Delta U / \Delta t \) (watts) | \(W / \Delta t \) (watts) | Efficiency \(e \) |
| Cycling | 505 | 96 | 0.19 |
| Pushing loaded coal cars in a mine | 525 | 90 | 0.17 |
| Shoveling | 570 | 17.5 | 0.03 |

tem loses energy. \(W\) is positive when work is done on the system (for example, by compression) and negative when the system does positive work on its environment.

The change of the internal energy, \(\Delta U\), of an ideal gas is given by

\[
\Delta U = nC_v \Delta T
\]

[12.5]

where \(C_v\) is the molar specific heat at constant volume.

12.3 Thermal Processes

An isobaric process is one that occurs at constant pressure. The work done on the system in such a process is \(-P \Delta V\), whereas the thermal energy transferred by heat is given by

\[
Q = nC_p \Delta T
\]

[12.6]

with the molar heat capacity at constant pressure given by \(C_p = C_v + R\).

In an **adiabatic process** no energy is transferred by heat between the system and its surroundings \((Q = 0)\). In this case the first law gives \(\Delta U = W\), which means the internal energy changes solely as a consequence of work being done on the system. The pressure and volume in adiabatic processes are related by

\[
P V^\gamma = \text{constant}
\]

[12.8a]

where \(\gamma = C_p / C_v\) is the adiabatic index.

In an **isovolumetric process** the volume doesn’t change and no work is done. For such processes, the first law gives \(\Delta U = Q\).

An **isothermal process** occurs at constant temperature. The work done by an ideal gas on the environment is

\[
W_{\text{eng}} = nRT \ln \left(\frac{V_f}{V_i} \right)
\]

[12.10]

12.4 Heat Engines and the Second Law of Thermodynamics

In a cyclic process (in which the system returns to its initial state), \(\Delta U = 0\) and therefore \(Q = W_{\text{eng}}\), meaning the energy transferred into the system by heat equals the work done on the system during the cycle.

A **heat engine** takes in energy by heat and partially converts it to other forms of energy, such as mechanical and electrical energy. The work \(W_{\text{eng}}\) done by a heat engine in carrying a working substance through a cyclic process \((\Delta U = 0)\) is

\[
W_{\text{eng}} = |Q_h| - |Q_c|
\]

[12.11]

where \(Q_h\) is the energy absorbed from a hot reservoir and \(Q_c\) is the energy expelled to a cold reservoir.

The **thermal efficiency** of a heat engine is defined as the ratio of the work done by the engine to the energy transferred into the engine per cycle:

\[
\epsilon = \frac{W_{\text{eng}}}{|Q_h|} = 1 - \frac{|Q_c|}{|Q_h|}
\]

[12.12]

Heat pumps are heat engines in reverse. In a refrigerator the heat pump removes thermal energy from inside the refrigerator. Heat pumps operating in cooling mode have coefficient of performance given by

\[
\text{COP (cooling mode)} = \frac{|Q_c|}{W}
\]

[12.13]

A heat pump in heating mode has coefficient of performance

\[
\text{COP (heating mode)} = \frac{|Q_h|}{W}
\]

[12.14]

Real processes proceed in an order governed by the **second law of thermodynamics**, which can be stated in two ways:

1. Energy will not flow spontaneously by heat from a cold object to a hot object.
2. No heat engine operating in a cycle can absorb energy from a reservoir and perform an equal amount of work.

No real heat engine operating between the Kelvin temperatures \(T_h\) and \(T_c\) can exceed the efficiency of an engine operating between the same two temperatures in a Carnot cycle, given by

\[
\epsilon_c = 1 - \frac{T_c}{T_h}
\]

[12.16]

Perfect efficiency of a Carnot engine requires a cold reservoir of 0 K, absolute zero. According to the **third law of thermodynamics**, however, it is impossible to lower the temperature of a system to absolute zero in a finite number of steps.

12.5 Entropy

The second law can also be stated in terms of a quantity called **entropy** (\(S\)). The **change in entropy** of a system is equal to the energy \(Q\) flowing by heat into (or out of) the system as the system changes from one state to another by a reversible process, divided by the absolute temperature:

\[
\Delta S = \frac{Q}{T}
\]

[12.17]

One of the primary findings of statistical mechanics is that systems tend toward disorder, and entropy is a measure of that disorder. An alternate statement of the second law is that the entropy of the Universe increases in all natural processes.

FOR ADDITIONAL STUDENT RESOURCES, GO TO WWW.SERWAYPHYSICS.COM

MULTIPLE-CHOICE QUESTIONS

1. An ideal gas is maintained at a constant pressure of 70.0 kPa during an isobaric process while its volume decreases by 0.20 m³. What is the work done by the system on its environment? (a) 14 kJ (b) 35 kJ (c) –14 kJ (d) –35 kJ (e) –72 kJ
2. A 2.0-mole ideal gas system is maintained at a constant volume of 4.0 liters. If 100 J of thermal energy is transferred to the system, what is the change in the internal energy of the system? (a) 0 (b) 400 J (c) 70 J (d) 100 J (e) −100 J

3. A monatomic ideal gas expands from 1.00 m³ to 2.50 m³ at a constant pressure of 2.00 \times 10^5 \text{ Pa}. Find the change in the internal energy of the gas. (a) 7.50 \times 10^3 \text{ J} (b) 1.05 \times 10^4 \text{ J} (c) 4.50 \times 10^3 \text{ J} (d) 3.00 \times 10^5 \text{ J} (e) −4.50 \times 10^3 \text{ J}

4. An ideal gas drives a piston as it expands from 1.00 m³ to 2.00 m³ at a constant temperature of 850 K. If there are 390 moles of gas in the piston, how much work does the gas do in displacing the piston? (a) 1.9 \times 10^6 \text{ J} (b) 2.5 \times 10^6 \text{ J} (c) 4.7 \times 10^5 \text{ J} (d) 2.1 \times 10^5 \text{ J} (e) 3.5 \times 10^3 \text{ J}

5. A diatomic ideal gas expands adiabatically from a volume of 1.00 m³ to a final volume of 3.50 m³. If the initial pressure is 1.00 \times 10^5 \text{ Pa}, what is the final pressure? (a) 6.62 \times 10^4 \text{ Pa} (b) 1.24 \times 10^5 \text{ Pa} (c) 3.54 \times 10^4 \text{ Pa} (d) 2.33 \times 10^5 \text{ Pa} (e) 1.73 \times 10^5 \text{ Pa}

6. How much net work is done by the gas undergoing the cyclic process illustrated in Figure MCQ12.6: Choose the best estimate. (a) 1 \times 10^3 \text{ J} (b) 2 \times 10^3 \text{ J} (c) 3 \times 10^5 \text{ J} (d) 4 \times 10^3 \text{ J} (e) 5 \times 10^5 \text{ Pa}

7. An engine does 15 kJ of work while rejecting 37 kJ to the cold reservoir. What is the efficiency of the engine? (a) 0.15 (b) 0.29 (c) 0.33 (d) 0.45 (e) 1.2

8. A refrigerator does 18 kJ of work while moving 115 kJ of thermal energy from inside the refrigerator. What is its coefficient of performance? (a) 3.4 (b) 2.8 (c) 8.9 (d) 6.4 (e) 5.2

9. A steam turbine operates at a boiler temperature of 450 K and an exhaust temperature of 3.0 \times 10^5 \text{ K}. What is the maximum theoretical efficiency of this system? (a) 0.24 (b) 0.50 (c) 0.33 (d) 0.67 (e) 0.15

10. A 1.00-kg block of ice at 0°C and 1.0 atm melts completely to water at 0°C. Calculate the change of the entropy of the ice during the melting process. (For ice, \(L_f = 3.33 \times 10^3 \text{ J/kg}.\)) (a) 3 340 J/K (b) 2 170 J/K (c) −3 340 J/K (d) 1 220 J/K (e) −1 220 J/K

11. If an ideal gas is compressed isothermally, which of the following statements is true? (a) Energy is transferred to the gas by heat. (b) No work is done on the gas. (c) The temperature of the gas increases. (d) The internal energy of the gas remains constant. (e) The pressure remains constant.

12. When an ideal gas undergoes an adiabatic expansion, which of the following statements is true? (a) The temperature of the gas doesn't change. (b) No work is done by the gas. (c) No energy is delivered to the gas by heat. (d) The internal energy of the gas doesn't change. (e) The pressure increases.

13. If an ideal gas undergoes an isobaric process, which of the following statements is true? (a) The temperature of the gas doesn't change. (b) Work is done on or by the gas. (c) No energy is transferred by heat to or from the gas. (d) The volume of the gas remains the same. (e) The pressure of the gas decreases uniformly.

14. Of the following, which is not a statement of the second law of thermodynamics? (a) No heat engine operating in a cycle can absorb energy from a reservoir and use it entirely to do work. (b) No real engine operating between two energy reservoirs can be more efficient than a Carnot engine operating between the same two reservoirs. (c) When a system undergoes a change in state, the change in the internal energy of the system is the sum of the energy transferred to the system by heat and the work done on the system. (d) The entropy of the Universe increases in all natural processes. (e) In all real processes, the resulting energy available for doing work decreases.

15. If an ideal gas is compressed to half its initial volume, which of the following statements is true regarding the work done on the gas? (a) The isothermal process involves the most work. (b) The adiabatic process involves the most work. (c) The isobaric process involves the most work. (d) The isovolumetric process involves the most work. (e) The work done is independent of the process.

16. A window air conditioner is placed on a table inside a well-insulated apartment, plugged in and turned on. What happens to the average temperature of the apartment? (a) It increases. (b) It decreases. (c) It remains constant. (d) It increases until the unit warms up and then decreases. (e) The answer depends on the initial temperature of the apartment.

17. The second law of thermodynamics implies that the coefficient of performance of a refrigerator must be what? (a) less than 1 (b) less than or equal to 1 (c) greater than or equal to 1 (d) finite (e) greater than 0

18. A thermodynamic process occurs in which the entropy of a system changes by −6 J/K. According to the second law of thermodynamics, what can you conclude about the entropy change of the environment? (a) It must be +6 J/K or less. (b) It must be equal to 6 J/K. (c) It must be between 6 J/K and 0. (d) It must be 0. (e) It must be +6 J/K or more.
CONCEPTUAL QUESTIONS

1. What are some factors that affect the efficiency of automobile engines?

2. If you shake a jar full of jelly beans of different sizes, the larger beans tend to appear near the top and the smaller ones tend to fall to the bottom. Why does this occur? Does this process violate the second law of thermodynamics?

3. For an ideal gas in an isothermal process, there is no change in internal energy. Suppose the gas does work W during such a process. How much energy was transferred by heat?

4. Clearly distinguish among temperature, heat, and internal energy.

5. Consider the human body performing a strenuous exercise, such as lifting weights or riding a bicycle. Work is being done by the body, and energy is leaving by conduction from the skin into the surrounding air. According to the first law of thermodynamics, the temperature of the body should be steadily decreasing during the exercise. That isn’t what happens, however. Is the first law invalid for this situation? Explain.

6. A steam-driven turbine is one major component of an electric power plant. Why is it advantageous to increase the temperature of the steam as much as possible?

7. When a sealed Thermos bottle full of hot coffee is shaken, what changes, if any, take place in (a) the temperature of the coffee and (b) its internal energy?

8. In solar ponds constructed in Israel, the Sun’s energy is concentrated near the bottom of a salty pond. With the proper layering of salt in the water, convection is prevented and temperatures of 100°C may be reached. Can you guess the maximum efficiency with which useful mechanical work can be extracted from the pond?

9. Is it possible to construct a heat engine that creates no thermal pollution?

10. If a supersaturated sugar solution is allowed to evaporate slowly, sugar crystals form in the container. Hence, sugar molecules go from a disordered form (in solution) to a highly ordered, crystalline form. Does this process violate the second law of thermodynamics? Explain.

11. The first law of thermodynamics says we can’t get more out of a process than we put in, but the second law says that we can’t break even. Explain this statement.

12. Give some examples of irreversible processes that occur in nature. Give an example of a process in nature that is nearly reversible.

PROBLEMS

The Problems for this chapter may be assigned online at WebAssign.

1. 2, 3 = straightforward, intermediate, challenging

GP = denotes guided problem

ecp = denotes enhanced content problem

e = biomedical application

f = denotes full solution available in Student Solutions Manual/Study Guide

SECTION 12.1 WORK IN THERMODYNAMIC PROCESSES

1. A gas changes in volume from 0.750 m3 to 0.250 m3 at a constant pressure of 1.50×10^5 Pa. (a) How much work is done on the gas? (b) How much work is done by the gas on its environment? (c) Which of Newton’s laws best explains why the work done on the gas is the negative of the work done on the environment?

2. Sketch a PV diagram and find the work done by the gas during the following stages. (a) A gas is expanded from a volume of 1.0 L to 3.0 L at a constant pressure of 3.0 atm. (b) The gas is then cooled at constant volume until the pressure falls to 2.0 atm. (c) The gas is then compressed at a constant pressure of 2.0 atm from a volume of 3.0 L to 1.0 L. (Note: Be careful of signs.) (d) The gas is heated until its pressure increases from 2.0 atm to 3.0 atm at a constant volume. (e) Find the net work done during the complete cycle.

3. Gas in a container is at a pressure of 1.5 atm and a volume of 4.0 m3. What is the work done on the gas (a) if it expands at constant pressure to twice its initial volume, and (b) if it is compressed at constant pressure to one-quarter its initial volume?

4. A 40.0-g projectile is launched by the expansion of hot gas in an arrangement shown in Figure P12.4a. The cross-sectional area of the launch tube is 1.0 cm2, and the length that the projectile travels down the tube after starting from rest is 32 cm. As the gas expands, the pressure varies as shown in Figure P12.4b. The values for the initial pressure and volume are $P_i = 11 \times 10^5$ Pa and $V_i = 8.0$ cm3, while the final values are $P_f = 1.0 \times 10^5$ Pa and $V_f = 40.0$ cm3. Friction between the projectile and the launch tube is negligible. (a) If the projectile is launched into a vacuum, what is the speed of the projectile as

FIGURE P12.4
it leaves the launch tube? (b) If instead the projectile is launched into air at a pressure of 1.0 \times 10^5 \text{ Pa}, what fraction of the work done by the expanding gas in the tube is spent by the projectile pushing air out of the way as it proceeds down the tube?

5. A gas expands from \(I \) to \(F \) along the three paths indicated in Figure P12.5. Calculate the work done on the gas along paths (a) \(IAF \), (b) \(IF \), and (c) \(IBF \).

6. Sketch a \(PV \) diagram of the following processes: (a) A gas expands at constant pressure \(P_1 \) from volume \(V_1 \) to volume \(V_2 \). It is then kept at constant volume while the pressure is reduced to \(P_2 \). (b) A gas is reduced in pressure from \(P_1 \) to \(P_2 \) while its volume is held constant at \(V_1 \). It is then expanded at constant pressure \(P_2 \) to a final volume \(V_f \). (c) In which of the processes is more work done by the gas? Why?

7. A sample of helium behaves as an ideal gas as it is heated at constant pressure from 273 K to 373 K. If 20.0 J of work is done by the gas during this process, what is the mass of helium present?

8. One mole of an ideal gas initially at a temperature of \(1.50 \times 10^5 \) \text{ K} is compressed at a constant pressure of 2.00 atm to two-thirds its initial volume. (a) What is the final temperature of the gas? (b) Calculate the work done on the gas during the compression.

9. One mole of an ideal gas initially at a temperature of \(T_i = 0 \) \text{ K} undergoes an expansion at a constant pressure of 1.00 atm to four times its original volume. (a) Calculate the new temperature \(T_f \) of the gas. (b) Calculate the work done on the gas during the expansion.

10. (a) Determine the work done on a fluid that expands from \(i \) to \(f \) as indicated in Figure P12.10. (b) How much work is done on the fluid if it is compressed from \(f \) to \(i \) along the same path?

11. The only form of energy possessed by molecules of a monatomic ideal gas is translational kinetic energy. Using the results from the discussion of kinetic theory in Section 10.5, show that the internal energy of a monatomic ideal gas at pressure \(P \) and occupying volume \(V \) may be written as \(U = \frac{3}{2}PV \).

12. A cylinder of volume 0.300 m\(^3\) contains 10.0 mol of neon gas at 20.0\(^\circ\)C. Assume neon behaves as an ideal gas. (a) What is the pressure of the gas? (b) Find the internal energy of the gas. (c) Suppose the gas expands at constant pressure to a volume of 1.000 m\(^3\). How much work is done on the gas? (d) What is the temperature of the gas at the new volume? (e) Find the internal energy of the gas when its volume is 1.000 m\(^3\). (f) Compute the change in the internal energy during the expansion. (g) Compute \(\Delta U = W \) (h) Must thermal energy be transferred to the gas during the constant pressure expansion or be taken away? (i) Compute \(Q \), the thermal energy transfer. (j) What symbolic relationship between \(Q, \Delta U \), and \(W \) is suggested by the values obtained?

13. A gas expands from \(I \) to \(F \) in Figure P12.5. The energy added to the gas by heat is 418 J when the gas goes from \(I \) to \(F \) along the diagonal path. (a) What is the change in internal energy of the gas? (b) How much energy must be added to the gas by heat for the indirect path \(IAF \) to give the same change in internal energy?

14. A thermodynamic system undergoes a process in which its internal energy decreases by 500 J. If at the same time 220 J of work is done on the system, find the energy transferred to or from it by heat.

15. A gas is compressed at a constant pressure of 0.800 atm from 9.00 L to 2.00 L. In the process, 400 J of energy leaves the gas by heat. (a) What is the work done on the gas? (b) What is the change in its internal energy?

16. A quantity of a monatomic ideal gas undergoes a process in which both its pressure and volume are doubled as shown in Figure P12.16. What is the energy absorbed by heat into the gas during this process? (Hint: See Problem 11.)

17. A gas is enclosed in a container fitted with a piston of cross-sectional area 0.150 m\(^2\). The pressure of the gas is maintained at 6 000 Pa as the piston moves inward 20.0 cm. (a) Calculate the work done by the gas. (b) If the internal energy of the gas decreases by 8.00 J, find the amount of heat removed from the system by heat during the compression.
18. A monatomic ideal gas undergoes the thermodynamic process shown in the PV diagram of Figure P12.18. Determine whether each of the values ΔU, Q, and W for the gas is positive, negative, or zero. (Hint: See Problem 11.)

![FIGURE P12.18](image)

19. An ideal gas in a cylinder is compressed very slowly to one-third its original volume while its temperature is held constant. The work required to accomplish this task is 75.0 J. (a) What is the change in the internal energy of the gas? (b) How much energy is transferred to or out of the gas by heat in this process?

20. An ideal gas in a cylinder is compressed adiabatically to one-half its original volume. The work required to compress the gas is 125.0 J. (a) How much energy is transferred into or out of the gas by heat in this process? (b) What is the change in the internal energy of the gas?

21. An ideal monatomic gas expands isothermally from 0.500 m³ to 1.25 m³ at a constant temperature of 675 K. If the initial pressure is 1.00 × 10⁶ Pa, find (a) the work done on the gas, (b) the thermal energy transfer Q, and (c) the change in the internal energy.

22. **SHOW** An ideal gas expands at constant pressure. (a) Show that \(P \Delta V = nRT \). (b) If the gas is monatomic, start from the definition of internal energy and show that \(\Delta U = \frac{3}{2}W_{\text{int}} \) where \(W_{\text{int}} \) is the work done by the gas on its environment. (c) For the same monatomic ideal gas, show with the first law that \(Q = \frac{3}{2}W_{\text{int}} \). (d) Is it possible for an ideal gas to expand at constant pressure while experiencing thermal energy? Explain.

23. One gram of water changes to ice at a constant pressure of 1.00 atm and a constant temperature of 0°C. In the process, the volume changes from 1.00 cm³ to 1.09 cm³. (a) Find the work done on the water and (b) the change in the internal energy of the water.

24. Consider the cyclic process described by Figure P12.24. If \(Q \) is negative for the process \(\text{BC} \) and \(\Delta U \) is negative for the process \(\text{CA} \), determine the signs of \(Q, W \), and \(\Delta U \) associated with each process.

![FIGURE P12.24](image)

25. A 5.0-kg block of aluminum is heated from 20°C to 90°C at atmospheric pressure. Find (a) the work done by the aluminum, (b) the amount of energy transferred to it by heat, and (c) the increase in its internal energy.

26. One mole of gas initially at a pressure of 2.00 atm and a volume of 0.300 L has an internal energy equal to 91.0 J. In its final state, the gas is at a pressure of 1.50 atm and a volume of 0.800 L, and its internal energy equals 180 J. For the paths \(\text{IAF}, \text{IBF}, \text{and IF} \) in Figure P12.26, calculate (a) the work done on the gas and (b) the net energy transferred to the gas by heat in the process.

![FIGURE P12.26](image)

27. **SHOW** Consider the Universe to be an adiabatic expansion of atomic hydrogen gas. (a) Use the ideal gas law and Equation 12.8a to show that \(\frac{P_1V_1}{T_1} \) = \(C \), where \(C \) is a constant. (b) The current Universe extends at least 15 billion light-years in all directions \((1.4 \times 10^{26} \text{ m})\), and the current temperature of the Universe is 2.7 K. Estimate the temperature of the Universe when it was the size of a nutshell, with a radius of 2 cm. (For this calculation, assume the Universe is spherical.)

28. Suppose the Universe is considered to be an ideal gas of hydrogen atoms expanding adiabatically. (a) If the density of the gas in the Universe is one hydrogen atom per cubic meter, calculate the number of moles per unit volume \((n/V)\). (b) Calculate the pressure of the Universe, taking the temperature of the Universe as 2.7 K. (c) If the current radius of the Universe is 15 billion light-years \((1.4 \times 10^{26} \text{ m})\), find the pressure of the Universe when it was the size of a nutshell, with radius 2.0 \(\times 10^{-2} \) m. Be careful: Calculator overflow can occur.

SECTION 12.4 HEAT ENGINES AND THE SECOND LAW OF THERMODYNAMICS

29. A gas increases in pressure from 2.00 atm to 6.00 atm at a constant volume of 1.00 m³ and then expands at constant pressure to a volume of 3.00 m³ before returning to its
initial state as shown in Figure P12.29. How much work is done in one cycle?

30. An ideal gas expands at a constant pressure of 6.00×10^3 Pa from a volume of 1.00 m3 to a volume of 4.00 m3 and then is compressed to one-third that pressure and a volume of 2.50 m3 as shown in Figure P12.30 before returning to its initial state. How much work is done in taking a gas through one cycle of the process shown in the figure?

31. A heat engine operates between a reservoir at 25°C and one at 375°C. What is the maximum efficiency possible for this engine?

32. **SCD** A heat engine is being designed to have a Carnot efficiency of 65% when operating between two heat reservoirs. (a) If the temperature of the cold reservoir is 20°C, what must be the temperature of the hot reservoir? (b) Can the actual efficiency of the engine be equal to 65%? Explain.

33. The work done by an engine equals one-fourth the energy it absorbs from a reservoir. (a) What is its thermal efficiency? (b) What fraction of the energy absorbed is expelled to the cold reservoir?

34. A particular engine has a power output of 5.00 kW and an efficiency of 25.0%. If the engine expels 8000 J of energy in each cycle, find (a) the energy absorbed in each cycle and (b) the time required to complete each cycle.

35. One of the most efficient engines ever built is a coal-fired steam turbine engine in the Ohio River valley, driving an electric generator as it operates between 1 870°C and 430°C. (a) What is its maximum theoretical efficiency? (b) Its actual efficiency is 42.0%. How much mechanical power does the engine deliver if it absorbs 1.40×10^7 J of energy each second from the hot reservoir?

36. A gun is a heat engine. In particular, it is an internal combustion piston engine that does not operate in a cycle, but comes apart during its adiabatic expansion process. A certain gun consists of 1.80 kg of iron. It fires one 2.40-g bullet at 320 m/s with an energy efficiency of 1.10%. Assume the body of the gun absorbs all the energy exhaust and increases uniformly in temperature for a short time before it loses any energy by heat into the environment. Find its temperature increase.

37. An engine absorbs 1 700 J from a hot reservoir and expels 1 200 J to a cold reservoir in each cycle. (a) What is the engine’s efficiency? (b) How much work is done in each cycle? (c) What is the power output of the engine if each cycle lasts 0.300 s?

38. A heat pump has a coefficient of performance of 3.80 and operates with a power consumption of 7.03×10^3 W. (This power usage corresponds to that of a “2-ton unit.”) (a) How much energy does the heat pump deliver into a home during 8.00 h of continuous operation? (b) How much energy does it extract from the outside air in 8.00 h?

39. A freezer has a coefficient of performance of 6.30. The freezer is advertised as using 457 kW-h/s. (a) On average, how much energy does the freezer use in a single day? (b) On average, how much thermal energy is removed from the freezer each day? (c) What maximum amount of water at 20.0°C could the freezer freeze in a single day? (One kilowatt-hour is an amount of energy equal to running a 1-kW appliance for one hour.)

40. **SCD** Suppose an ideal (Carnot) heat pump could be constructed. (a) Using Equation 12.15, obtain an expression for the coefficient of performance for such a heat pump in terms of T_h and T_c. (b) Would such a heat pump work better if the difference in the operating temperatures were greater or were smaller? (c) Compute the coefficient of performance for such a heat pump if the cold reservoir is 50.0°C and indoor temperature is 70.0°C.

41. In one cycle a heat engine absorbs 500 J from a high-temperature reservoir and expels 300 J to a low-temperature reservoir. If the efficiency of this engine is 60% of the efficiency of a Carnot engine, what is the ratio of the low temperature to the high temperature in the Carnot engine?

42. **SCD** A power plant has been proposed that would make use of the temperature gradient in the ocean. The system is to operate between 20.0°C (surface water temperature) and 5.00°C (water temperature at a depth of about 1 km). (a) What is the maximum efficiency of such a system? (b) If the useful power output of the plant is 75.0 MW, how much energy is absorbed per hour? (c) In view of your answer to part (a), do you think such a system is worthwhile (considering that there is no charge for fuel)?

43. A nuclear power plant has an electrical power output of 1 000 MW and operates with an efficiency of 33%. If excess energy is carried away from the plant by a river with a flow rate of 1.0×10^6 kg/s, what is the rise in temperature of the flowing water?

44. A heat engine operates in a Carnot cycle between 80.0°C and 350°C. It absorbs 21 000 J of energy per cycle from the hot reservoir. The duration of each cycle is 1.00 s. (a) What is the mechanical power output of this engine? (b) How much energy does it expel in each cycle by heat?

SECTION 12.5 ENTROPY

45. A Styrofoam cup holding 120 g of hot water at 1.00×10^2°C cools to room temperature, 20.0°C. What is the change in entropy of the room? (Neglect the specific heat of the cup and any change in temperature of the room.)

46. Two 2 000-kg cars, both traveling at 20 m/s, undergo a head-on collision and stick together. Find the change in entropy of the Universe resulting from the collision if the temperature is 29°C.
47. A freezer is used to freeze 1.0 L of water completely into ice. The water and the freezer remain at a constant temperature of $T = 0^\circ C$. Determine (a) the change in the entropy of the water and (b) the change in the entropy of the freezer.

48. What is the change in entropy of 1.00 kg of liquid water at 100$^\circ$C as it changes to steam at 100$^\circ$C?

49. A 70-kg log falls from a height of 25 m into a lake. If the log, the lake, and the air are all at 300 K, find the change in entropy of the Universe during this process.

50. If you roll a pair of dice, what is the total number of ways in which you can obtain (a) a 12? (b) a 7?

51. The surface of the Sun is approximately at 5 700 K, and the temperature of the Earth's surface is approximately 290 K. What entropy change occurs when 1 000 J of energy is transferred by heat from the Sun to the Earth?

52. When an aluminum bar is temporarily connected between a hot reservoir at 725 K and a cold reservoir at 310 K, 2.50 kJ of energy is transferred by heat from the hot reservoir to the cold reservoir. In this irreversible process, calculate the change in entropy of (a) the hot reservoir, (b) the cold reservoir, and (c) the Universe, neglecting any change in entropy of the aluminum rod. (d) Mathematically, why did the result for the Universe in part (c) have to be positive?

53. Prepare a table like Table 12.3 for the following occurrence: You toss four coins into the air simultaneously and record all the possible results of the toss in terms of the numbers of heads and tails that can result. (For example, HHTH and HTHH are two possible ways in which three heads and one tail can be achieved.) (a) On the basis of your table, what is the most probable result of a toss? In terms of entropy, (b) what is the most ordered state, and (c) what is the most disordered?

54. When a metal bar is temporarily connected between a hot reservoir at T_a and a cold reservoir at T_c, the energy transferred by heat from the hot reservoir to the cold reservoir is Q. In this irreversible process, find expressions for the change in entropy of (a) the hot reservoir, (b) the cold reservoir, and (c) the Universe.

SECTION 12.6 HUMAN METABOLISM

55. Energetically, 1 lb of fat is equivalent to 1.7×10^7 J. How much extra weight would you lose each year if you substituted one hour of physics study a day (considered desk work) for one hour of sleep?

56. A weightlifter has a basal metabolic rate of 80.0 W. As he is working out, his metabolic rate increases by about 650 W. (a) How many hours does it take him to work off a 450-Calorie bagel if he stays in bed all day? (b) How long does it take him if he's working out? (c) Calculate the amount of mechanical work necessary to lift a 120-kg barbell 2.00 m. (d) He drops the barbell to the floor and lifts it repeatedly. How many times per minute must he repeat this process to do an amount of mechanical work equivalent to his metabolic rate increase of 650 W during exercise? (e) Could he actually do repeti-

57. Sweating is one of the main mechanisms with which the body dissipates heat. Sweat evaporates with a latent heat of 2 430 kJ/kg at body temperature, and the body can produce as much as 1.5 kg of sweat per hour. If sweating were the only heat dissipation mechanism, what would be the maximum sustainable metabolic rate, in watts, if 80% of the energy used by the body goes into waste heat?

ADDITIONAL PROBLEMS

58. A Carnot engine operates between the temperatures $T_i = 100^\circ$C and $T_f = 20^\circ$C. By what factor does the theoretical efficiency increase if the temperature of the hot reservoir is increased to 550$^\circ$C?

59. A 1 500-kW heat engine operates at 25% efficiency. The heat energy expelled at the low temperature is absorbed by a stream of water that enters the cooling coils at 20$^\circ$C. If 60 L flows across the coils per second, determine the increase in temperature of the water.

60. A Carnot engine operates between 100$^\circ$C and 20$^\circ$C. How much ice can the engine melt from its exhaust after it has done 5.0×10^4 J of work?

61. A substance undergoes the cyclic process shown in Figure P12.61. Work output occurs along path AB while work input is required along path BC, and no work is involved in the constant volume process CA. Energy transfers by heat occur during each process involved in the cycle. (a) What is the work output during process AB? (b) How much work input is required during process BC? (c) What is the net energy input Q during this cycle?

62. When a gas follows path 123 on the PV diagram in Figure P12.62, 418 J of energy flows into the system by heat and -167 J of work is done on the gas. (a) What is the change in the internal energy of the system? (b) How much energy Q flows into the system if the gas follows path 143? The work done on the gas along this path is -63.0 J. What net work would be done on or by the system if the system fol-
An ideal gas initially at pressure P_0, volume V_0, and temperature T_0 is taken through the cycle described in Figure P12.64. (a) Find the net work done by the gas per cycle in terms of P_0 and V_0. (b) What is the net energy Q added to the system per cycle? (c) Obtain a numerical value for the net work done per cycle for 1.00 mol of gas initially at 0°C. (Hint: Recall that the work done by the system equals the area under a PV-curve.)

![Figure P12.64](image)

One mole of neon gas is heated from 300 K to 420 K at constant pressure. Calculate (a) the energy Q transferred to the gas, (b) the change in the internal energy of the gas, and (c) the work done on the gas. Note that neon has a molar specific heat of $c=20.79 \text{ J/mol} \cdot \text{K}$ for a constant-pressure process.

Every second at Niagara Falls, approximately 5,000 m3 of water falls a distance of 50.0 m. What is the increase in entropy per second due to the falling water? Assume the mass of the surroundings is so great that its temperature and that of the water stay nearly constant at 20.0°C. Also assume a negligible amount of water evaporates.

A cylinder containing 10.0 moles of a monatomic ideal gas expands from Φ to Ψ along the path shown in Figure P12.67. (a) Find the temperature of the gas at point Φ and the temperature at point Ψ. (b) How much work is done by the gas during this expansion? (c) What is the change in internal energy of the gas? (d) Find the energy transferred to the gas by heat in this process.

Two moles of molecular hydrogen (H$_2$) react with 1 mole of molecular oxygen (O$_2$) to produce 2 moles of water (H$_2$O) together with an energy release of 241.8 kJ/mole of water. Suppose a spherical vessel of radius 0.500 m contains 14.4 moles of H$_2$ and 7.2 moles of O$_2$ at 20.0°C. (a) What is the initial pressure in the vessel? (b) What is the initial internal energy of the gas? (c) Suppose a spark ignites the mixture and the gases burn completely into water vapor. How much energy is produced? (d) Find the temperature and pressure of the steam, assuming it’s an ideal gas. (e) Find the mass of steam and then calculate the steam’s density. (f) If a small hole were put in the sphere, what would be the initial exhaust velocity of the exhausted steam if spewed out into a vacuum? (Use Bernoulli’s equation.)

Suppose you spend 30.0 minutes on a stair-climbing machine, climbing at a rate of 90.0 steps per minute, with each step 8.00 inches high. If you weigh 150 lb and the machine reports that 600 kcal have been burned at the end of the workout, what efficiency is the machine using in obtaining this result? If your actual efficiency is 0.18, how many kcal did you actually burn?

Hydrothermal vents deep on the ocean floor spout water at temperatures as high as 570°C. This temperature is below the boiling point of water because of the immense pressure at that depth. Because the surrounding ocean temperature is at 4.0°C, an organism could use the temperature gradient as a source of energy. (a) Assuming the specific heat of water under these conditions is 1.0 cal/g Â· °C, how much energy is released when 1.0 liter of water is cooled from 570°C to 4.0°C? (b) What is the maximum usable energy an organism can extract from this energy source? (Assume the organism has some internal type of heat engine acting between the two temperature extremes.) (c) Water from these vents contains hydrogen sulfide (H$_2$S) at a concentration of 0.90 mmole/liter. Oxidation of 1.0 mole of H$_2$S produces 310 kJ of energy. How much energy is available through H$_2$S oxidation of 1.0 L of water?

An electrical power plant has an overall efficiency of 15%. The plant is to deliver 150 MW of electrical power to a city, and its turbines use coal as fuel. The burning coal produces steam at 190°C, which drives the turbines. The steam is condensed into water at 25°C by passing through coils that are in contact with river water. (a) How many metric tons of coal does the plant consume each day (1 metric ton = 1×10^3 kg)? (b) What is the total cost of the fuel per year if the delivery price is $8 per metric ton? (c) If the river water is delivered at 20°C, at what minimum rate must it flow over the cooling coils so that its temperature doesn’t exceed 25°C? (Note: The heat of combustion of coal is 7.8 $\times 10^6$ cal/g.)
Ocean waves combine properties of both transverse and longitudinal waves. With proper balance and timing, a surfer can capture some of the wave’s energy and take it for a ride.

13.1 HOOKE’S LAW

One of the simplest types of vibrational motion is that of an object attached to a spring, previously discussed in the context of energy in Chapter 5. We assume the object moves on a frictionless horizontal surface. If the spring is stretched or compressed a small distance x from its unstretched or equilibrium position and then released, it exerts a force on the object as shown in Active Figure 13.1 (page 426). From experiment the spring force is found to obey the equation

$$F_x = -kx$$ \hspace{1cm} [13.1]

where x is the displacement of the object from its equilibrium position ($x = 0$) and k is a positive constant called the spring constant. This force law for springs was discovered by Robert Hooke in 1678 and is known as Hooke’s law. The value of k is a measure of the stiffness of the spring. Stiff springs have large k values, and soft springs have small k values.

The negative sign in Equation 13.1 means that the force exerted by the spring is always directed opposite the displacement of the object. When the object is to the right of the equilibrium position, as in Active Figure 13.1a, x is positive and F_x is
ACTIVE FIGURE 13.1
The force exerted by a spring on an object varies with the displacement of the object from the equilibrium position, \(x \neq 0 \). (a) When \(x \) is positive (the spring is stretched), the spring force is to the right. (b) When \(x \) is zero (the spring is unstretched), the spring force is zero. (c) When \(x \) is negative (the spring is compressed), the spring force is to the right.

The force exerted by a spring on an object varies with the displacement of the object from the equilibrium position, \(x \neq 0 \). (a) When \(x \) is positive (the spring is stretched), the spring force is to the right. Of course, when \(x = 0 \), as in Active Figure 13.1b, the spring is unstretched and \(F_s = 0 \). Because the spring force always acts toward the equilibrium position, it is sometimes called a restoring force. A restoring force always pushes or pulls the object toward the equilibrium position.

Suppose the object is initially pulled a distance \(A \) to the right and released from rest. The force exerted by the spring on the object pulls it back toward the equilibrium position. As the object moves toward \(x = 0 \), the magnitude of the force decreases (because \(x \) decreases) and reaches zero at \(x = 0 \). The object gains speed as it moves toward the equilibrium position, however, reaching its maximum speed when \(x = 0 \). The momentum gained by the object causes it to overshoot the equilibrium position and compress the spring. As the object moves to the left of the equilibrium position (negative \(x \)-values), the spring force acts on it to the right, steadily increasing in strength, and the speed of the object decreases. The object finally comes briefly to rest at \(x = -A \) before accelerating back towards \(x = 0 \) and ultimately returning to the original position at \(x = A \). The process is then repeated, and the object continues to oscillate back and forth over the same path. This type of motion is called simple harmonic motion. Simple harmonic motion occurs when the net force along the direction of motion obeys Hooke’s law—when the net force is proportional to the displacement from the equilibrium point and is always directed toward the equilibrium point.

Not all periodic motions over the same path can be classified as simple harmonic motion. A ball being tossed back and forth between a parent and a child moves repetitively, but the motion isn’t simple harmonic motion because the force acting on the ball doesn’t take the form of Hooke’s law, Equation 13.1.

The motion of an object suspended from a vertical spring is also simple harmonic. In this case the force of gravity acting on the attached object stretches the spring until equilibrium is reached and the object is suspended at rest. By definition, the equilibrium position of the object is \(x = 0 \). When the object is moved away from equilibrium by a distance \(x \) and released, a net force acts toward the equilibrium position. Because the net force is proportional to \(x \), the motion is simple harmonic.

The following three concepts are important in discussing any kind of periodic motion:

- The amplitude \(A \) is the maximum distance of the object from its equilibrium position. In the absence of friction, an object in simple harmonic motion oscillates between the positions \(x = -A \) and \(x = +A \).
- The period \(T \) is the time it takes the object to move through one complete cycle of motion, from \(x = A \) to \(x = -A \) and back to \(x = A \).
- The frequency \(f \) is the number of complete cycles or vibrations per unit of time, and is the reciprocal of the period (\(f = 1/T \)).

EXAMPLE 13.1 Measuring the Spring Constant

Goal Use Newton’s second law together with Hooke’s law to calculate a spring constant.

Problem A common technique used to measure a spring constant is illustrated in Figure 13.2. A spring is hung vertically (Fig. 13.2a), and an object of mass \(m \) is attached to the lower end of the spring and slowly lowered a distance \(d \) to the equilibrium point (Fig. 13.2b). Find the value of the spring constant if the spring is displaced by 2.00 cm and the mass is 0.550 kg.

FIGURE 13.2 (Example 13.1)
Determining the spring constant. The elongation \(d \) of the spring is due to the suspended weight \(mg \) because the upward spring force balances the weight when the system is in equilibrium, it follows that \(k = mg/d \).
Strategy This example is an application of Newton’s second law. The spring is stretched by a distance \(d\) from its initial position under the action of the load \(mg\). The spring force is upward, balancing the downward force of gravity \(mg\) when the system is in equilibrium. (See Fig. 13.2c.) The suspended mass is in equilibrium, so set the sum of the forces equal to zero.

Solution Apply the second law (with \(a = 0\)) and solve for the spring constant \(k\):

\[
F = F_g = -mg + kd = 0
\]

\[
k = \frac{mg}{d} = \frac{(0.550 \text{ kg})(9.80 \text{ m/s}^2)}{2.00 \times 10^{-2} \text{ m}} = 2.70 \times 10^2 \text{ N/m}
\]

Remarks In this case the spring force is positive, because it’s directed upward. Once the mass is pulled down from the equilibrium position and released, it oscillates around the equilibrium position, just like the horizontal spring.

QUESTION 13.1 If this spring is mounted horizontally, what magnitude force does it exert when stretched from equilibrium by 2.0 cm?

EXERCISE 13.1 A spring with constant \(k = 475 \text{ N/m}\) stretches 4.50 cm when an object of mass 25.0 kg is attached to the end of the spring. Find the acceleration of gravity in this location.

Answer 0.855 m/s² (The location is evidently an asteroid or small moon.)

The acceleration of an object moving with simple harmonic motion can be found by using Hooke’s law in the equation for Newton’s second law, \(F = ma\). This gives

\[
a = \frac{F}{m} = -\frac{kx}{m}
\]

Equation 13.2, an example of a harmonic oscillator equation, gives the acceleration as a function of position. Because the maximum value of \(x\) is defined to be the amplitude \(A\), the acceleration ranges over the values \(-kA/m\) to \(+kA/m\). In the next section we will find equations for velocity as a function of position and for position as a function of time.

QUICK QUIZ 13.1 A block on the end of a horizontal spring is pulled from equilibrium at \(x = 0\) to \(x = A\) and released. Through what total distance does it travel in one full cycle of its motion? (a) \(A/2\) (b) \(A\) (c) \(2A\) (d) \(4A\)

QUICK QUIZ 13.2 For a simple harmonic oscillator, which of the following pairs of vector quantities can’t both point in the same direction? (The position vector is the displacement from equilibrium.) (a) position and velocity (b) velocity and acceleration (c) position and acceleration

EXAMPLE 13.2 Simple Harmonic Motion on a Frictionless Surface

Goal Calculate forces and accelerations for a horizontal spring system.

Problem A 0.350-kg object attached to a spring of force constant \(1.30 \times 10^2 \text{ N/m}\) is free to move on a frictionless horizontal surface, as in Active Figure 13.1. If the object is released from rest at \(x = 0.100 \text{ m}\), find the force on it and its acceleration at \(x = 0.100 \text{ m}\), \(x = 0.050 \text{ m}\), \(x = 0 \text{ m}\), \(x = -0.050 \text{ m}\), and \(x = -0.100 \text{ m}\).

Strategy Substitute given quantities into Hooke’s law to find the forces, then calculate the accelerations with Newton’s second law. The amplitude \(A\) is the same as the point of release from rest, \(x = 0.100 \text{ m}\).
Remarks The table above shows that when the initial position is halved, the force and acceleration are also halved. Further, positive values of \(x \) give negative values of the force and acceleration, whereas negative values of \(x \) give positive values of the force and acceleration. As the object moves to the left and passes the equilibrium point, the spring force becomes positive (for negative values of \(x \)), slowing the object down.

QUESTION 13.2
Will doubling a given displacement always result in doubling the magnitude of the spring force? Explain.

EXERCISE 13.2
For the same spring and mass system, find the force exerted by the spring and the position \(x \) when the object’s acceleration is \(+9.00 \text{ m/s}^2\).

Answers 3.15 N, \(-2.42 \text{ cm}\)

13.2 ELASTIC POTENTIAL ENERGY

In this section we review the material covered in Section 4 of Chapter 5.

A system of interacting objects has potential energy associated with the configuration of the system. A compressed spring has potential energy that, when allowed to expand, can do work on an object, transforming spring potential energy into the object’s kinetic energy. As an example, Figure 13.3 shows a ball being projected from a spring-loaded toy gun, where the spring is compressed a distance \(x \). As the gun is fired, the compressed spring does work on the ball and imparts kinetic energy to it.

FIGURE 13.3 A ball projected from a spring-loaded gun. The elastic potential energy stored in the spring is transformed into the kinetic energy of the ball.
Recall that the energy stored in a stretched or compressed spring or some other elastic material is called elastic potential energy, \(P_{Es} \), given by:

\[
P_{Es} = \frac{1}{2} kx^2
\]

[13.3]

Recall also that the law of conservation of energy, including both gravitational and spring potential energy, is given by:

\[
(KE + PE_g + P_{Es})_i = (KE + PE_g + P_{Es})_f
\]

[13.4]

If nonconservative forces such as friction are present, then the change in mechanical energy must equal the work done by the nonconservative forces:

\[
W_{nc} = (KE + P_{Es})_f - (KE + P_{Es})_i
\]

[13.5]

Rotational kinetic energy must be included in both Equation 13.4 and Equation 13.5 for systems involving torques.

As an example of the energy conversions that take place when a spring is included in a system, consider Figure 13.4. A block of mass \(m \) slides on a frictionless horizontal surface with constant velocity \(v_i \) and collides with a coiled spring. The description that follows is greatly simplified by assuming the spring is very light and therefore has negligible kinetic energy. As the spring is compressed, it exerts a force to the left on the block. At maximum compression, the block comes to rest for just an instant (Fig. 13.4c). The initial total energy in the system (block plus spring) before the collision is the kinetic energy of the block. After the block collides with the spring and the spring is partially compressed, as in Figure 13.4b, the block has kinetic energy \(\frac{1}{2} mv^2 \) (where \(v < v_i \)) and the spring has potential energy \(\frac{1}{2} kx^2 \). When the block stops for an instant at the point of maximum compression, the kinetic energy is zero. Because the spring force is conservative and because there are no external forces that can do work on the system, the total mechanical energy of the system consisting of the block and spring remains constant. Energy is transformed from the kinetic energy of the block to the potential energy stored in the spring. As the spring expands, the block moves in the opposite direction and regains all its initial kinetic energy, as in Figure 13.4d.

When an archer pulls back on a bowstring, elastic potential energy is stored in both the bent bow and stretched bowstring (Fig. 13.5). When the arrow is released, the potential energy stored in the system is transformed into the kinetic energy of the arrow. Devices such as crossbows and slingshots work the same way.
QUICK QUIZ 13.3 When an object moving in simple harmonic motion is at its maximum displacement from equilibrium, which of the following is at a maximum? (a) velocity, (b) acceleration, or (c) kinetic energy.

EXAMPLE 13.3 Stop That Car!

Goal Apply conservation of energy and the work–energy theorem with spring and gravitational potential energy.

Problem A 13 000-N car starts at rest and rolls down a hill from a height of 10.0 m (Fig. 13.6). It then moves across a level surface and collides with a light spring-loaded guardrail. (a) Neglecting any losses due to friction, and ignoring the rotational kinetic energy of the wheels, find the maximum distance the spring is compressed. Assume a spring constant of 1.0×10^6 N/m. (b) Calculate the maximum acceleration of the car after contact with the spring, assuming no frictional losses. (c) If the spring is compressed by only 0.30 m, find the change in the mechanical energy due to friction.

Strategy Because friction losses are neglected, use conservation of energy in the form of Equation 13.4 to solve for the spring displacement in part (a). The initial and final values of the car’s kinetic energy are zero, so the initial potential energy of the car–spring–Earth system is completely converted to elastic potential energy in the spring at the end of the ride. In part (b) apply Newton’s second law, substituting the answer to part (a) for x because the maximum compression will give the maximum acceleration. In part (c) friction is no longer neglected, so use the work–energy theorem, Equation 13.5. The change in mechanical energy must equal the mechanical energy lost due to friction.

Solution

(a) Find the maximum spring compression, assuming no energy losses due to friction.

Apply conservation of mechanical energy. Initially, there is only gravitational potential energy, and at maximum compression of the guardrail, there is only spring potential energy.

\[
(KE + PE_g + PE_s)_i = (KE + PE_g + PE_s)_f
\]

\[
0 + mgh + 0 = 0 + 0 + \frac{1}{2}kx^2
\]

Solve for x:

\[
x = \sqrt{\frac{2mgh}{k}} = \sqrt{\frac{2(13 000 \text{ N})(10.0 \text{ m})}{1.0 \times 10^6 \text{ N/m}}} = 0.51 \text{ m}
\]

(b) Calculate the maximum acceleration of the car by the spring, neglecting friction.

Apply Newton’s second law:

\[
ma = -kx \quad \Rightarrow \quad a = -\frac{kx}{m} = -\frac{kxg}{mg} = -\frac{kxg}{w}
\]

Substitute values:

\[
a = -\frac{(1.0 \times 10^6 \text{ N/m})(0.51 \text{ m})(9.8 \text{ m/s}^2)}{13 000 \text{ N}} = -380 \text{ m/s}^2
\]

(c) If the compression of the guardrail is only 0.30 m, find the change in the mechanical energy due to friction.

Use the work–energy theorem:

\[
W_{nc} = (KE + PE_g + PE_s)_i - (KE + PE_g + PE_s)_f
\]

\[
= (0 + 0 + \frac{1}{2}kx^2) - (0 + mgh + 0)
\]

\[
= \frac{1}{2}(1.0 \times 10^6 \text{ N/m})(0.30)^2 - (13 000 \text{ N})(10.0 \text{ m})
\]

\[
W_{nc} = -8.5 \times 10^4 \text{ J}
\]
Remarks The answer to part (b) is about 40 times greater than the acceleration of gravity, so we’d better be wearing our seat belts. Note that the solution didn’t require calculation of the velocity of the car.

QUESTION 13.3
True or False: In the absence of energy losses due to friction, doubling the height of the hill doubles the maximum acceleration delivered by the spring.

EXERCISE 13.3
A spring-loaded gun fires a 0.100-kg puck along a tabletop. The puck slides up a curved ramp and flies straight up into the air. If the spring is displaced 12.0 cm from equilibrium and the spring constant is 875 N/m, how high does the puck rise, neglecting friction? (b) If instead it only rises to a height of 5.00 m because of friction, what is the change in mechanical energy?

Answers (a) 6.43 m (b) −1.40 J

In addition to studying the preceding example, it’s a good idea to review those given in Section 5.4.

Velocity as a Function of Position
Conservation of energy provides a simple method of deriving an expression for the velocity of an object undergoing periodic motion as a function of position. The object in question is initially at its maximum extension A (Fig. 13.7a) and is then released from rest. The initial energy of the system is entirely elastic potential energy stored in the spring, $\frac{1}{2}kA^2$. As the object moves toward the origin to some new position x (Fig. 13.7b), part of this energy is transformed into kinetic energy, and the potential energy stored in the spring is reduced to $\frac{1}{2}kx^2$. Because the total energy of the system is equal to $\frac{1}{2}kA^2$ (the initial energy stored in the spring), we can equate this quantity to the sum of the kinetic and potential energies at the position x:

$$\frac{1}{2}kA^2 = \frac{1}{2}mv^2 + \frac{1}{2}kx^2$$

Solving for v, we get

$$v = \pm \sqrt{\frac{k}{m}}(A^2 - x^2)$$ \[13.6\]

This expression shows that the object’s speed is a maximum at $x = 0$ and is zero at the extreme positions $x = \pm A$.

The right side of Equation 13.6 is preceded by the ± sign because the square root of a number can be either positive or negative. If the object in Figure 13.7 is moving to the right, v is positive; if the object is moving to the left, v is negative.

EXAMPLE 13.4 The Object–Spring System Revisited

Goal Apply the time-independent velocity expression, Equation 13.6, to an object-spring system.

Problem A 0.500-kg object connected to a light spring with a spring constant of 20.0 N/m oscillates on a frictionless horizontal surface. (a) Calculate the total energy of the system and the maximum speed of the object if the amplitude of the motion is 3.00 cm. (b) What is the velocity of the object when the displacement is 2.00 cm? (c) Compute the kinetic and potential energies of the system when the displacement is 2.00 cm.

Strategy The total energy of the system can be found most easily at the amplitude $x = A$, where the kinetic energy is zero. There, the potential energy alone is equal to the total energy. Conservation of energy then yields the speed at $x = 0$. For part (b), obtain the velocity by substituting the given value of x into the time-independent velocity equation. Using this result, the kinetic energy asked for in part (c) can be found by substitution, and the potential energy can be found by substitution into Equation 13.3.
Solution

(a) Calculate the total energy and maximum speed if the amplitude is 3.00 cm.

Substitute \(x = A = 3.00 \text{ cm}\) and \(k = 20.0 \text{ N/m}\) into the equation for the total mechanical energy \(E\):

\[
E = KE + PE_e + PE_s = 0 + 0 + \frac{1}{2}kA^2 = \frac{1}{2}(20.0 \text{ N/m})(3.00 \times 10^{-2} \text{ m})^2
\]

\[
= 9.00 \times 10^{-3} \text{ J}
\]

Use conservation of energy with \(x_i = A\) and \(x_f = 0\) to compute the speed of the object at the origin:

\[
\begin{align*}
(KE + PE_e + PE_s)_i & = (KE + PE_e + PE_s)_f \\
0 + 0 + \frac{1}{2}kA^2 & = \frac{1}{2}mv_{\text{max}}^2 + 0 + 0 \\
\frac{1}{2}mv_{\text{max}}^2 & = 9.00 \times 10^{-3} \text{ J}
\end{align*}
\]

\[
v_{\text{max}} = \sqrt{\frac{18.0 \times 10^{-3} \text{ J}}{0.500 \text{ kg}}} = 0.190 \text{ m/s}
\]

(b) Compute the velocity of the object when the displacement is 2.00 cm.

Substitute known values directly into Equation 13.6:

\[
v = \pm \sqrt{\frac{k}{m}} (A^2 - x^2)
\]

\[
= \pm \sqrt{\frac{20.0 \text{ N/m}}{0.500 \text{ kg}}} [(0.030 \text{ m})^2 - (0.020 \text{ m})^2]
\]

\[
= \pm 0.141 \text{ m/s}
\]

(c) Compute the kinetic and potential energies when the displacement is 2.00 cm.

Substitute into the equation for kinetic energy:

\[
KE = \frac{1}{2}mv^2 = \frac{1}{2}(0.500 \text{ kg})(0.141 \text{ m/s})^2 = 4.97 \times 10^{-3} \text{ J}
\]

Substitute into the equation for spring potential energy:

\[
PE_s = \frac{1}{2}kx^2 = \frac{1}{2}(20.0 \text{ N/m})(2.00 \times 10^{-2} \text{ m})^2
\]

\[
= 4.00 \times 10^{-3} \text{ J}
\]

Remark With the given information, it is impossible to choose between the positive and negative solutions in part (b). Notice that the sum \(KE + PE_s\) in part (c) equals the total energy \(E\) found in part (a), as it should (except for a small discrepancy due to rounding).

QUESTION 13.4

True or False: Doubling the initial displacement doubles the speed of the object at the equilibrium point.

EXERCISE 13.4

For what values of \(x\) is the speed of the object 0.10 m/s?

Answer \(\pm 2.55 \text{ cm}\)

Chapter 13 Vibrations and Waves

13.3 COMPARING SIMPLE HARMONIC MOTION WITH UNIFORM CIRCULAR MOTION

We can better understand and visualize many aspects of simple harmonic motion along a straight line by looking at its relationship to uniform circular motion. Active Figure 13.8 is a top view of an experimental arrangement that is useful for this purpose. A ball is attached to the rim of a turntable of radius \(A\), illuminated from the side by a lamp. We find that as the turntable rotates with constant angular speed, the shadow of the ball moves back and forth with simple harmonic motion.
This fact can be understood from Equation 13.6, which says that the velocity of an object moving with simple harmonic motion is related to the displacement by

\[v = C \sqrt{A^2 - x^2} \]

where \(C \) is a constant. To see that the shadow also obeys this relation, consider Figure 13.9, which shows the ball moving with a constant speed \(v_0 \) in a direction tangent to the circular path. At this instant, the velocity of the ball in the \(x \)-direction is given by \(v = v_0 \sin \theta \), or

\[\sin \theta = \frac{v}{v_0} \]

From the larger triangle in the figure we can obtain a second expression for \(\sin \theta \):

\[\sin \theta = \frac{\sqrt{A^2 - x^2}}{A} \]

Equating the right-hand sides of the two expressions for \(\sin \theta \), we find the following relationship between the velocity \(v \) and the displacement \(x \):

\[\frac{v}{v_0} = \frac{\sqrt{A^2 - x^2}}{A} \]

or

\[v = \frac{v_0}{A} \sqrt{A^2 - x^2} = C \sqrt{A^2 - x^2} \]

The velocity of the ball in the \(x \)-direction is related to the displacement \(x \) in exactly the same way as the velocity of an object undergoing simple harmonic motion. The shadow therefore moves with simple harmonic motion.

A valuable example of the relationship between simple harmonic motion and circular motion can be seen in vehicles and machines that use the back-and-forth motion of a piston to create rotational motion in a wheel. Consider the drive wheel of a locomotive. In Figure 13.10, the curved housing at the left contains a piston that moves back and forth in simple harmonic motion. The piston is connected to an arrangement of rods that transforms its back-and-forth motion into rotational motion of the wheels. A similar mechanism in an automobile engine transforms the back-and-forth motion of the pistons to rotational motion of the crankshaft.

Period and Frequency

The period \(T \) of the shadow in Active Figure 13.8, which represents the time required for one complete trip back and forth, is also the time it takes the ball to make one complete circular trip on the turntable. Because the ball moves through the distance \(2\pi A \) (the circumference of the circle) in the time \(T \), the speed \(v_0 \) of the ball around the circular path is

\[v_0 = \frac{2\pi A}{T} \]

and the period is

\[T = \frac{2\pi A}{v_0} \quad [13.7] \]

Imagine that the ball moves from \(P \) to \(Q \), a quarter of a revolution, in Active Figure 13.8. The motion of the shadow is equivalent to the horizontal motion of an object on the end of a spring. For this reason, the radius \(A \) of the circular motion is the same as the amplitude \(A \) of the simple harmonic motion of the shadow. During the quarter of a cycle shown, the shadow moves from a point where the energy of
the system (ball and spring) is solely elastic potential energy to a point where the energy is solely kinetic energy. By conservation of energy, we have

\[\frac{1}{2} k A^2 = \frac{1}{2} m v_0^2 \]

which can be solved for \(A/v_0 \):

\[\frac{A}{v_0} = \sqrt{\frac{m}{k}} \]

Substituting this expression for \(A/v_0 \) in Equation 13.7, we find that the period is

\[T = 2\pi \sqrt{\frac{m}{k}} \]

Equation 13.8 represents the time required for an object of mass \(m \) attached to a spring with spring constant \(k \) to complete one cycle of its motion. The square root of the mass is in the numerator, so a large mass will mean a large period, in agreement with intuition. The square root of the spring constant \(k \) is in the denominator, so a large spring constant will yield a small period, again agreeing with intuition. It’s also interesting that the period doesn’t depend on the amplitude \(A \).

The inverse of the period is the frequency of the motion:

\[f = \frac{1}{T} \]

Therefore, the frequency of the periodic motion of a mass on a spring is

\[f = \frac{1}{2\pi} \sqrt{\frac{k}{m}} \]

The units of frequency are cycles per second (s\(^{-1}\)), or hertz (Hz). The angular frequency \(\omega \) is

\[\omega = 2\pi f = \sqrt{\frac{k}{m}} \]

The frequency and angular frequency are actually closely related concepts. The unit of frequency is cycles per second, where a cycle may be thought of as a unit of angular measure corresponding to \(2\pi \) radians, or \(360^\circ \). Viewed in this way, angular frequency is just a unit conversion of frequency. Radian measure is used for angles mainly because it provides a convenient and natural link between linear and angular quantities.

Although an ideal mass–spring system has a period proportional to the square root of the object’s mass \(m \), experiments show that a graph of \(T^2 \) versus \(m \) doesn’t pass through the origin. This is because the spring itself has a mass. The coils of the spring oscillate just like the object, except the amplitudes are smaller for all coils but the last. For a cylindrical spring, energy arguments can be used to show that the effective additional mass of a light spring is one-third the mass of the spring. The square of the period is proportional to the total oscillating mass, so a graph of \(T^2 \) versus total mass (the mass hung on the spring plus the effective oscillating mass of the spring) would pass through the origin.

QUICK QUIZ 13.4 An object of mass \(m \) is attached to a horizontal spring, stretched to a displacement \(A \) from equilibrium and released, undergoing harmonic oscillations on a frictionless surface with period \(T_0 \). The experiment is then repeated with a mass of \(4m \). What’s the new period of oscillation? (a) \(2T_0 \) (b) \(T_0 \) (c) \(T_0/2 \) (d) \(T_0/4 \)
QUICK QUIZ 13.5 Consider the situation in Quick Quiz 13.4. Is the subsequent total mechanical energy of the object with mass $4m$ (a) greater than, (b) less than, or (c) equal to the original total mechanical energy?

APPLYING PHYSICS 13.1 BUNGEE JUMPING

A bungee cord can be modeled as a spring. If you go bungee jumping, you will bounce up and down at the end of the elastic cord after your dive off a bridge (Fig. 13.11). Suppose you perform a dive and measure the frequency of your bouncing. You then move to another bridge, but find that the bungee cord is too long for dives off this bridge. What possible solutions might be applied? In terms of the original frequency, what is the frequency of vibration associated with the solution?

Explanation There are two possible solutions: Make the bungee cord smaller or fold it in half. The latter would be the safer of the two choices, as we’ll see.

The force exerted by the bungee cord, modeled as a spring, is proportional to the separation of the coils as the spring is extended. First, we extend the spring by a given distance and measure the distance between coils. We then cut the spring in half. If one of the half-springs is now extended by the same distance, the coils will be twice as far apart as they were for the complete spring. Therefore, it takes twice as much force to stretch the half-spring through the same displacement, so the half-spring has a spring constant twice that of the complete spring. The folded bungee cord can then be modeled as two half-springs in parallel. Each half has a spring constant that is twice the original spring constant of the bungee cord. In addition, an object hanging on the folded bungee cord will experience two forces, one from each half-spring. As a result, the required force for a given extension will be four times as much as for the original bungee cord. The effective spring constant of the folded bungee cord is therefore four times as large as the original spring constant. Because the frequency of oscillation is proportional to the square root of the spring constant, your bouncing frequency on the folded cord will be twice what it was on the original cord.

This discussion neglects the fact that the coils of a spring have an initial separation. It’s also important to remember that a shorter coil may lose elasticity more readily, possibly even going beyond the elastic limit for the material, with disastrous results. Bungee jumping is dangerous; discretion is advised!

EXAMPLE 13.5 That Car Needs Shock Absorbers!

Goal Understand the relationships between period, frequency, and angular frequency.

Problem A 1.30×10^3-kg car is constructed on a frame supported by four springs. Each spring has a spring constant of 2.00×10^4 N/m. If two people riding in the car have a combined mass of 1.60×10^2 kg, find the frequency of vibration of the car when it is driven over a pothole in the road. Find also the period and the angular frequency. Assume the weight is evenly distributed.

Strategy Because the weight is evenly distributed, each spring supports one-fourth of the mass. Substitute this value and the spring constant into Equation 13.10 to get the frequency. The reciprocal is the period, and multiplying the frequency by 2π gives the angular frequency.

Solution Compute one-quarter of the total mass:

$$m = \frac{1}{4} (m_{\text{car}} + m_{\text{pass}}) = \frac{1}{4} (1.30 \times 10^3 \text{ kg} + 1.60 \times 10^2 \text{ kg})$$

$$= 365 \text{ kg}$$
Remark: Solving this problem didn’t require any knowledge of the size of the pothole because the frequency doesn’t depend on the amplitude of the motion.

QUESTION 13.5
True or False: The frequency of vibration of a heavy vehicle is greater than that of a lighter vehicle, assuming the two vehicles are supported by the same set of springs.

EXERCISE 13.5
A 45.0-kg boy jumps on a 5.00-kg pogo stick with spring constant 3.650 N/m. Find (a) the angular frequency, (b) the frequency, and (c) the period of the boy’s motion.

Answers (a) 8.54 rad/s (b) 1.36 Hz (c) 0.735 s

13.4 POSITION, VELOCITY, AND ACCELERATION AS A FUNCTION OF TIME

We can obtain an expression for the position of an object moving with simple harmonic motion as a function of time by returning to the relationship between simple harmonic motion and uniform circular motion. Again, consider a ball on the rim of a rotating turntable of radius A, as in Active Figure 13.12. We refer to the circle made by the ball as the reference circle for the motion. We assume the turntable revolves at a constant angular speed ω. As the ball rotates on the reference circle, the angle θ made by the line OP with the x-axis changes with time. Meanwhile, the projection of P on the x-axis, labeled point Q, moves back and forth along the axis with simple harmonic motion.

From the right triangle OPQ, we see that $\cos \theta = x/A$. Therefore, the x-coordinate of the ball is

$$x = A \cos \theta$$

Because the ball rotates with constant angular speed, it follows that $\theta = \omega t$ (see Chapter 7), so we have

$$x = A \cos (\omega t) \quad [13.12]$$

In one complete revolution, the ball rotates through an angle of 2π rad in a time equal to the period T. In other words, the motion repeats itself every T seconds. Therefore,

$$\omega = \frac{\Delta \theta}{\Delta t} = \frac{2\pi}{T} = 2\pi f \quad [13.13]$$

where f is the frequency of the motion. The angular speed of the ball as it moves around the reference circle is the same as the angular frequency of the projected simple harmonic motion. Consequently, Equation 13.12 can be written

$$x = A \cos (2\pi ft) \quad [13.14a]$$
This cosine function represents the position of an object moving with simple harmonic motion as a function of time, and is graphed in Active Figure 13.13a. Because the cosine function varies between 1 and -1, x varies between A and $-A$. The shape of the graph is called sinusoidal.

Active Figures 13.13b and 13.13c represent curves for velocity and acceleration as a function of time. To find the equation for the velocity, use Equations 13.6 and 13.14a together with the identity $\cos^2 \theta + \sin^2 \theta = 1$, obtaining

$$v = -A \omega \sin(2\pi ft) \quad [13.14b]$$

where we have used the fact that $\omega = \sqrt{k/m}$. The ± sign is no longer needed, because sine can take both positive and negative values. Deriving an expression for the acceleration involves substituting Equation 13.14a into Equation 13.2, Newton’s second law for springs:

$$a = -A \omega^2 \cos(2\pi ft) \quad [13.14c]$$

The detailed steps of these derivations are left as an exercise for the student. Notice that when the displacement x is at a maximum, at $x = A$ or $x = -A$, the velocity is zero, and when x is zero, the magnitude of the velocity is a maximum. Further, when $x = +A$, its most positive value, the acceleration is a maximum but in the negative x-direction, and when x is at its most negative position, $x = -A$, the acceleration has its maximum value in the positive x-direction. These facts are consistent with our earlier discussion of the points at which v and a reach their maximum, minimum, and zero values.

The maximum values of the position, velocity, and acceleration are always equal to the magnitude of the expression in front of the trigonometric function in each equation because the largest value of either cosine or sine is 1.

Figure 13.14 illustrates one experimental arrangement that demonstrates the sinusoidal nature of simple harmonic motion. An object connected to a spring has a marking pen attached to it. While the object vibrates vertically, a sheet of paper is moved horizontally with constant speed. The pen traces out a sinusoidal pattern.

QUICK QUIZ 13.6 If the amplitude of a system moving in simple harmonic motion is doubled, which of the following quantities doesn’t change? (a) total energy (b) maximum speed (c) maximum acceleration (d) period

EXAMPLE 13.6 The Vibrating Object–Spring System

Goal Identify the physical parameters of a harmonic oscillator from its mathematical description.

Problem (a) Find the amplitude, frequency, and period of motion for an object vibrating at the end of a horizontal spring if the equation for its position as a function of time is

$$x = (0.250 \text{ m}) \cos \left(\frac{\pi}{8.00} \text{ t} \right)$$

(b) Find the maximum magnitude of the velocity and acceleration. (c) What are the position, velocity, and acceleration of the object after 1.00 s has elapsed?

Strategy In part (a) the amplitude and frequency can be found by comparing the given equation with the standard form in Equation 13.14a, matching up the numerical values with the corresponding terms in the standard form. In part (b) the maximum speed will occur when the sine function in Equation 13.14b equals 1 or -1, the extreme values of the sine function (and similarly for the acceleration and the cosine function). In each case, find the magnitude of the expression in front of the trigonometric function. Part (c) is just a matter of substituting values into Equations 13.14a, b, and c.
Remarks
In evaluating the sine or cosine function, the angle is in radians, so you should either set your calculator to evaluate trigonometric functions based on radian measure or convert from radians to degrees.

QUESTION 13.6
If the mass is doubled, is the magnitude of the acceleration of the system at any position (a) doubled, (b) halved, or (c) unchanged?

EXERCISE 13.6
If the object–spring system is described by \(x = (0.330 \text{ m}) \cos (1.50 \text{ t}) \), find (a) the amplitude, the angular frequency, the frequency, and the period, (b) the maximum magnitudes of the velocity and acceleration, and (c) the position, velocity, and acceleration when \(t = 0.250 \text{ s} \).

Answers (a) \(A = 0.350 \text{ m}, \ \omega = 1.50 \text{ rad/s}, \ f = 0.239 \text{ Hz}, \ T = 4.19 \text{ s} \) (b) \(v_{\text{max}} = 0.495 \text{ m/s}, \ a_{\text{max}} = 0.743 \text{ m/s}^2 \) (c) \(x = 0.307 \text{ m}, \ v = -0.181 \text{ m/s}, \ a = -0.691 \text{ m/s}^2 \)
13.5 MOTION OF A PENDULUM

A simple pendulum is another mechanical system that exhibits periodic motion. It consists of a small bob of mass m suspended by a light string of length L fixed at its upper end, as in Active Figure 13.15. (By a light string, we mean that the string’s mass is assumed to be very small compared with the mass of the bob and hence can be ignored.) When released, the bob swings to and fro over the same path, but is its motion simple harmonic?

Answering this question requires examining the restoring force—the force of gravity—that acts on the pendulum. The pendulum bob moves along a circular arc, rather than back and forth in a straight line. When the oscillations are small, however, the motion of the bob is nearly straight, so Hooke’s law may apply approximately.

In Active Figure 13.15, s is the displacement of the bob from equilibrium along the arc. Hooke’s law is $F = -kx$, so we are looking for a similar expression involving s, $F = -ks$, where F is the force acting in a direction tangent to the circular arc. From the figure, the restoring force is

$$F_t = -mg \sin \theta$$

Since $s = L\theta$, the equation for F_t can be written as

$$F_t = -mg \sin \left(\frac{s}{L} \right)$$

This expression isn’t of the form $F_t = -ks$, so in general, the motion of a pendulum is not simple harmonic. For small angles less than about 15 degrees, however, the angle θ measured in radians and the sine of the angle are approximately equal. For example, $\theta = 10.0^\circ = 0.175$ rad, and $\sin (10.0^\circ) = 0.174$. Therefore, if we restrict the motion to small angles, the approximation $\sin \theta \approx \theta$ is valid, and the restoring force can be written

$$F_t = -mg \sin \theta \approx -mg \theta$$

Substituting $\theta = s/L$, we obtain

$$F_t = \left(\frac{mg}{L} \right) s$$

This equation follows the general form of Hooke’s force law $F_t = -ks$, with $k = mg/L$. We are justified in saying that a pendulum undergoes simple harmonic motion only when it swings back and forth at small amplitudes (or, in this case, small values of θ, so that $\sin \theta \approx \theta$).

Recall that for the object-spring system, the angular frequency is given by Equation 13.11:

$$\omega = 2\pi f = \sqrt{\frac{k}{m}}$$

Substituting the expression of k for a pendulum, we obtain

$$\omega = \sqrt{\frac{mg/L}{m}} = \sqrt{\frac{g}{L}}$$

This angular frequency can be substituted into Equation 13.12, which then mathematically describes the motion of a pendulum. The frequency is just the angular frequency divided by 2π, while the period is the reciprocal of the frequency, or

$$T = 2\pi \sqrt{\frac{L}{g}}$$ \[13.15\]

This equation reveals the somewhat surprising result that the period of a simple pendulum doesn’t depend on the mass, but only on the pendulum’s length and on
Furthermore, the amplitude of the motion isn’t a factor as long as it’s relatively small. The analogy between the motion of a simple pendulum and the object–spring system is illustrated in Active Figure 13.16.

Galileo first noted that the period of a pendulum was independent of its amplitude. He supposedly observed this while attending church services at the cathedral in Pisa. The pendulum he studied was a swinging chandelier that was set in motion when someone bumped it while lighting candles. Galileo was able to measure its period by timing the swings with his pulse.

The dependence of the period of a pendulum on its length and on the free-fall acceleration allows us to use a pendulum as a timekeeper for a clock. A number of clock designs employ a pendulum, with the length adjusted so that its period serves as the basis for the rate at which the clock’s hands turn. Of course, these clocks are used at different locations on the Earth, so there will be some variation of the free-fall acceleration. To compensate for this variation, the pendulum of a clock should have some movable mass so that the effective length can be adjusted.

Geologists often make use of the simple pendulum and Equation 13.15 when prospecting for oil or minerals. Deposits beneath the Earth’s surface can produce irregularities in the free-fall acceleration over the region being studied. A specially designed pendulum of known length is used to measure the period, which in turn is used to calculate g. Although such a measurement in itself is inconclusive, it’s an important tool for geological surveys.

Quick Quiz 13.7 A simple pendulum is suspended from the ceiling of a stationary elevator, and the period is measured. If the elevator moves with constant velocity, does the period (a) increase, (b) decrease, or (c) remain
the same? If the elevator accelerates upward, does the period (a) increase, (b) decrease, or (c) remain the same?

QUICK QUIZ 13.8 A pendulum clock depends on the period of a pendulum to keep correct time. Suppose a pendulum clock is keeping correct time and then Dennis the Menace slides the bob of the pendulum downward on the oscillating rod. Does the clock run (a) slow, (b) fast, or (c) correctly?

QUICK QUIZ 13.9 The period of a simple pendulum is measured to be \(T \) on the Earth. If the same pendulum were set in motion on the Moon, would its period be (a) less than \(T \), (b) greater than \(T \), or (c) equal to \(T \)?

EXAMPLE 13.7 Measuring the Value of \(g \)

Goal Determine \(g \) from pendulum motion.

Problem Using a small pendulum of length 0.171 m, a geophysicist counts 72.0 complete swings in a time of 60.0 s. What is the value of \(g \) in this location?

Strategy First calculate the period of the pendulum by dividing the total time by the number of complete swings. Solve Equation 13.15 for \(g \) and substitute values.

Solution

Calculate the period by dividing the total elapsed time by the number of complete oscillations:

\[
T = \frac{\text{time}}{\# \text{ of oscillations}} = \frac{60.0 \text{ s}}{72.0} = 0.833 \text{ s}
\]

Solve Equation 13.15 for \(g \) and substitute values:

\[
T = 2\pi \sqrt{\frac{L}{g}} \quad \Rightarrow \quad T^2 = 4\pi^2 \frac{L}{g}
\]

\[
g = \frac{4\pi^2 L}{T^2} = \frac{(39.5)(0.171 \text{ m})}{(0.833 \text{ s})^2} = 9.73 \text{ m/s}^2
\]

Remark Measuring such a vibration is a good way of determining the local value of the acceleration of gravity.

QUESTION 13.7

True or False: A simple pendulum of length 0.50 m has a larger frequency of vibration than a simple pendulum of length 1.0 m.

EXERCISE 13.7

What would be the period of the 0.171-m pendulum on the Moon, where the acceleration of gravity is 1.62 m/s²?

Answer 2.04 s

The Physical Pendulum

The simple pendulum discussed thus far consists of a mass attached to a string. A pendulum, however, can be made from an object of any shape. The general case is called the **physical pendulum**.

In Figure 13.17 a rigid object is pivoted at point \(O \), which is a distance \(L \) from the object’s center of mass. The center of mass oscillates along a circular arc, just like the simple pendulum. The period of a physical pendulum is given by

\[
T = 2\pi \sqrt{\frac{I}{mgL} \sin \theta}
\]

where \(I \) is the object’s moment of inertia and \(m \) is the object’s mass. As a check, notice that in the special case of a simple pendulum with an arm of length \(L \) and
negligible mass, the moment of inertia is \(I = mL^2 \). Substituting into Equation 13.16 results in

\[
T = 2\pi \sqrt{\frac{mL^2}{mgL}} = 2\pi \sqrt{\frac{L}{g}}
\]

which is the correct period for a simple pendulum.

13.6 DAMPED OSCILLATIONS

The vibrating motions we have discussed so far have taken place in ideal systems that oscillate indefinitely under the action of a linear restoring force. In all real mechanical systems, forces of friction retard the motion, so the systems don’t oscillate indefinitely. The friction reduces the mechanical energy of the system as time passes, and the motion is said to be **damped**.

Shock absorbers in automobiles (Fig. 13.18) are one practical application of damped motion. A shock absorber consists of a piston moving through a liquid such as oil. The upper part of the shock absorber is firmly attached to the body of the car. When the car travels over a bump in the road, holes in the piston allow it to move up and down in the fluid in a damped fashion.

Damped motion varies with the fluid used. For example, if the fluid has a relatively low viscosity, the vibrating motion is preserved but the amplitude of vibration decreases in time and the motion ultimately ceases. This process is known as **underdamped oscillation**. The position vs. time curve for an object undergoing such oscillation appears in Active Figure 13.19. Figure 13.20 compares three types of damped motion, with curve (a) representing underdamped oscillation. If the fluid viscosity is increased, the object returns rapidly to equilibrium after it’s released and doesn’t oscillate. In this case the system is said to be **critically damped**, and is shown as curve (b) in Figure 13.20. The piston returns to the equilibrium position in the shortest time possible without once overshooting the equilibrium position. If the viscosity is made greater still, the system is said to be **overdamped**. In this case the piston returns to equilibrium without ever passing through the equilibrium point, but the time required to reach equilibrium is greater than in critical damping, as illustrated by curve (c) in Figure 13.20.

To make automobiles more comfortable to ride in, shock absorbers are designed to be slightly underdamped. This can be demonstrated by a sharp downward push on the hood of a car. After the applied force is removed, the body of the car oscillates a few times about the equilibrium position before returning to its fixed position.
13.7 WAVES

The world is full of waves: sound waves, waves on a string, seismic waves, and electromagnetic waves, such as visible light, radio waves, television signals, and x-rays. All these waves have as their source a vibrating object, so we can apply the concepts of simple harmonic motion in describing them.

In the case of sound waves, the vibrations that produce waves arise from sources such as a person’s vocal chords or a plucked guitar string. The vibrations of electrons in an antenna produce radio or television waves, and the simple up-and-down motion of a hand can produce a wave on a string. Certain concepts are common to all waves, regardless of their nature. In the remainder of this chapter, we focus our attention on the general properties of waves. In later chapters we will study specific types of waves, such as sound waves and electromagnetic waves.

What Is a Wave?

When you drop a pebble into a pool of water, the disturbance produces water waves, which move away from the point where the pebble entered the water. A leaf floating near the disturbance moves up and down and back and forth about its original position, but doesn’t undergo any net displacement attributable to the disturbance. This means that the water wave (or disturbance) moves from one place to another, but the water isn’t carried with it.

When we observe a water wave, we see a rearrangement of the water’s surface. Without the water, there wouldn’t be a wave. Similarly, a wave traveling on a string wouldn’t exist without the string. Sound waves travel through air as a result of pressure variations from point to point. Therefore, we can consider a wave to be the motion of a disturbance. In Chapter 21 we discuss electromagnetic waves, which don’t require a medium.

The mechanical waves discussed in this chapter require (1) some source of disturbance, (2) a medium that can be disturbed, and (3) some physical connection or mechanism through which adjacent portions of the medium can influence each other. All waves carry energy and momentum. The amount of energy transmitted through a medium and the mechanism responsible for the transport of energy differ from case to case. The energy carried by ocean waves during a storm, for example, is much greater than the energy carried by a sound wave generated by a single human voice.

APPLYING PHYSICS 13.2 BURYING BOND

At one point in On Her Majesty’s Secret Service, a James Bond film from the 1960s, Bond was escaping on skis. He had a good lead and was a hard-to-hit moving target. There was no point in wasting bullets shooting at him, so why did the bad guys open fire?

Explanation These misguided gentlemen had a good understanding of the physics of waves. An impulsive sound, like a gunshot, can cause an acoustical disturbance that propagates through the air. If it impacts a ledge of snow that is ready to break free, an avalanche can result. Such a disaster occurred in 1916 during World War I when Austrian soldiers in the Alps were smothered by an avalanche caused by cannon fire. So the bad guys, who have never been able to hit Bond with a bullet, decided to use the sound of gunfire to start an avalanche.

Types of Waves

One of the simplest ways to demonstrate wave motion is to flip one end of a long string that is under tension and has its opposite end fixed, as in Figure 13.21 (page 444). The bump (called a pulse) travels to the right with a definite speed. A disturbance of this type is called a traveling wave. The figure shows the shape of the string at three closely spaced times.
As such a wave pulse travels along the string, each segment of the string that is disturbed moves in a direction perpendicular to the wave motion. Figure 13.22 illustrates this point for a particular tiny segment P. The string never moves in the direction of the wave. A traveling wave in which the particles of the disturbed medium move in a direction perpendicular to the wave velocity is called a transverse wave. Figure 13.23a illustrates the formation of transverse waves on a long spring.

In another class of waves, called longitudinal waves, the elements of the medium undergo displacements parallel to the direction of wave motion. Sound waves in air are longitudinal. Their disturbance corresponds to a series of high- and low-pressure regions that may travel through air or through any material medium with a certain speed. A longitudinal pulse can easily be produced in a stretched spring, as in Figure 13.23b. The free end is pumped back and forth along the length of the spring. This action produces compressed and stretched regions of the coil that travel along the spring, parallel to the wave motion.

Waves need not be purely transverse or purely longitudinal: ocean waves exhibit a superposition of both types. When an ocean wave encounters a cork, the cork executes a circular motion, going up and down while going forward and back.

Another type of wave, called a soliton, consists of a solitary wave front that propagates in isolation. Ordinary water waves generally spread out and dissipate, but solitons tend to maintain their form. The study of solitons began in 1849, when Scottish engineer John Scott Russell noticed a solitary wave leaving the turbulence in front of a barge and propagating forward all on its own. The wave maintained its shape and traveled down a canal at about 10 mi/h. Russell chased the wave two miles on horseback before losing it. Only in the 1960s did scientists take solitons seriously; they are now widely used to model physical phenomena, from elementary particles to the Giant Red Spot of Jupiter.

Picture of a Wave

Active Figure 13.24 shows the curved shape of a vibrating string. This pattern is a sinusoidal curve, the same as in simple harmonic motion. The brown curve can be thought of as a snapshot of a traveling wave taken at some instant of time, say, $t = 0$; the blue curve is a snapshot of the same traveling wave at a later time. This picture can also be used to represent a wave on water. In such a case, a high point would correspond to the crest of the wave and a low point to the trough of the wave.
The same waveform can be used to describe a longitudinal wave, even though no up-and-down motion is taking place. Consider a longitudinal wave traveling on a spring. Figure 13.25a is a snapshot of this wave at some instant, and Figure 13.25b shows the sinusoidal curve that represents the wave. Points where the coils of the spring are compressed correspond to the crests of the waveform, and stretched regions correspond to troughs.

The type of wave represented by the curve in Figure 13.25b is often called a density wave or pressure wave, because the crests, where the spring coils are compressed, are regions of high density, and the troughs, where the coils are stretched, are regions of low density. Sound waves are longitudinal waves, propagating as a series of high- and low-density regions.

13.8 FREQUENCY, AMPLITUDE, AND WAVELENGTH

Active Figure 13.26 illustrates a method of producing a continuous wave or a steady stream of pulses on a very long string. One end of the string is connected to a blade that is set vibrating. As the blade oscillates vertically with simple harmonic motion, a traveling wave moving to the right is set up in the string. Active Figure 13.26 consists of views of the wave at intervals of one-quarter of a period. Note that each small segment of the string, such as \(p \), oscillates vertically in the \(y \)-direction with simple harmonic motion. That must be the case because each segment follows the simple harmonic motion of the blade. Every segment of the string can therefore be treated as a simple harmonic oscillator vibrating with the same frequency as the blade that drives the string.

The frequencies of the waves studied in this course will range from rather low values for waves on strings and waves on water, to values for sound waves between 20 Hz and 20 000 Hz (recall that 1 Hz = 1 s\(^{-1}\)), to much higher frequencies for electromagnetic waves. These waves have different physical sources, but can be described with the same concepts.

The horizontal dashed line in Active Figure 13.26 represents the position of the string when no wave is present. The maximum distance the string moves above or below this equilibrium value is called the amplitude \(A \) of the wave. For the waves we work with, the amplitudes at the crest and the trough will be identical.

Active Figure 13.26b illustrates another characteristic of a wave. The horizontal arrows show the distance between two successive points that behave identically. This distance is called the wavelength \(\lambda \) (the Greek letter lambda).

We can use these definitions to derive an expression for the speed of a wave. We start with the defining equation for the wave speed \(v \):

\[
\nu = \frac{\Delta x}{\Delta t}
\]

The wave speed is the speed at which a particular part of the wave—say, a crest—moves through the medium.

A wave advances a distance of one wavelength in a time interval equal to one period of the vibration. Taking \(\Delta x = \lambda \) and \(\Delta t = T \), we see that

\[
\nu = \frac{\lambda}{T}
\]

Because the frequency is the reciprocal of the period, we have

\[
\nu = f\lambda \quad [13.17]
\]

This important general equation applies to many different types of waves, such as sound waves and electromagnetic waves.
EXAMPLE 13.8 A Traveling Wave

Goal Obtain information about a wave directly from its graph.

Problem A wave traveling in the positive x-direction is pictured in Figure 13.27a. Find the amplitude, wavelength, speed, and period of the wave if it has a frequency of 8.00 Hz. In Figure 13.27a, $\Delta x = 40.0$ cm and $\Delta y = 15.0$ cm.

Strategy The amplitude and wavelength can be read directly from the figure: the maximum vertical displacement is the amplitude, and the distance from one crest to the next is the wavelength. Multiplying the wavelength by the frequency gives the speed, whereas the period is the reciprocal of the frequency.

Solution

The maximum wave displacement is the amplitude A:

$$A = \Delta y = 15.0 \text{ cm} = 0.150 \text{ m}$$

The distance from crest to crest is the wavelength:

$$\lambda = \Delta x = 40.0 \text{ cm} = 0.400 \text{ m}$$

Multiply the wavelength by the frequency to get the speed:

$$v = f\lambda = (8.00 \text{ Hz})(0.400 \text{ m}) = 3.20 \text{ m/s}$$

Take the reciprocal of the frequency to get the period:

$$T = \frac{1}{f} = \frac{1}{8.00} \text{ s} = 0.125 \text{ s}$$

Remark It’s important not to confuse the wave with the medium it travels in. A wave is energy transmitted through a medium; some waves, such as light waves, don’t require a medium.

QUESTION 13.8

Is the frequency of a wave affected by the wave’s amplitude?

EXERCISE 13.8

A wave traveling in the positive x-direction is pictured in Figure 13.27b. Find the amplitude, wavelength, speed, and period of the wave if it has a frequency of 15.0 Hz. In the figure, $\Delta x = 72.0$ cm and $\Delta y = 25.0$ cm.

Answers $A = 0.25$ m, $\lambda = 0.720$ m, $v = 10.8$ m/s, $T = 0.0667$ s

EXAMPLE 13.9 Sound and Light

Goal Perform elementary calculations using speed, wavelength, and frequency.

Problem A wave has a wavelength of 3.00 m. Calculate the frequency of the wave if it is (a) a sound wave and (b) a light wave. Take the speed of sound as 343 m/s and the speed of light as 3.00×10^8 m/s.

Solution

(a) Find the frequency of a sound wave with $\lambda = 3.00$ m.

Solve Equation 3.17 for the frequency and substitute:

$$f = \frac{v}{\lambda} = \frac{343 \text{ m/s}}{3.00 \text{ m}} = 114 \text{ Hz}$$

(b) Find the frequency of a light wave with $\lambda = 3.00$ m.

Substitute into Equation (1), using the speed of light for c:

$$f = \frac{c}{\lambda} = \frac{3.00 \times 10^8 \text{ m/s}}{3.00 \text{ m}} = 1.00 \times 10^8 \text{ Hz}$$

Remark The same equation can be used to find the frequency in each case, despite the great difference between the physical phenomena. Notice how much larger frequencies of light waves are than frequencies of sound waves.
QUESTION 13.9
A wave in one medium encounters a new medium and enters it. Which of the following wave properties will be affected in this process? (a) wavelength (b) frequency (c) speed

EXERCISE 13.9
(a) Find the wavelength of an electromagnetic wave with frequency $9.00 \, \text{GHz} = 9.00 \times 10^9 \, \text{Hz}$ ($\text{G} = \text{giga} = 10^9$), which is in the microwave range. (b) Find the speed of a sound wave in an unknown fluid medium if a frequency of $567 \, \text{Hz}$ has a wavelength of $2.50 \, \text{m}$.

Answers
(a) $0.0333 \, \text{m}$
(b) $1.42 \times 10^3 \, \text{m/s}$

13.9 THE SPEED OF WAVES ON STRINGS

In this section we focus our attention on the speed of a transverse wave on a stretched string.

For a vibrating string, there are two speeds to consider. One is the speed of the physical string that vibrates up and down, transverse to the string, in the y-direction. The other is the wave speed, which is the rate at which the disturbance propagates along the length of the string in the x-direction. We wish to find an expression for the wave speed.

If a horizontal string under tension is pulled vertically and released, it starts at its maximum displacement, $y = A$, and takes a certain amount of time to go to $y = -A$ and back to A again. This amount of time is the period of the wave, and is the same as the time needed for the wave to advance horizontally by one wavelength. Dividing the wavelength by the period of one transverse oscillation gives the wave speed.

For a fixed wavelength, a string under greater tension F has a greater wave speed because the period of vibration is shorter, and the wave advances one wavelength during one period. It also makes sense that a string with greater mass per unit length, μ, vibrates more slowly, leading to a longer period and a slower wave speed. The wave speed is given by

$$v = \sqrt{\frac{F}{\mu}} \tag{13.18}$$

where F is the tension in the string and μ is the mass of the string per unit length, called the linear density. From Equation 13.18, it’s clear that a larger tension F results in a larger wave speed, whereas a larger linear density μ gives a slower wave speed, as expected.

According to Equation 13.18, the propagation speed of a mechanical wave, such as a wave on a string, depends only on the properties of the string through which the disturbance travels. It doesn’t depend on the amplitude of the vibration. This turns out to be generally true of waves in various media.

A proof of Equation 13.18 requires calculus, but dimensional analysis can easily verify that the expression is dimensionally correct. Note that the dimensions of F are ML/T^2, and the dimensions of μ are M/L. The dimensions of F/μ are therefore L^2/T^2, so those of $\sqrt{F/\mu}$ are L/T, giving the dimensions of speed. No other combination of F and μ is dimensionally correct, so in the case in which the tension and mass density are the only relevant physical factors, we have verified Equation 13.18 up to an overall constant.

According to Equation 13.18, we can increase the speed of a wave on a stretched string by increasing the tension in the string. Increasing the mass per unit length, on the other hand, decreases the wave speed. These physical facts lie behind the metallic windings on the bass strings of pianos and guitars. The windings increase the mass per unit length, μ, decreasing the wave speed and hence the frequency, resulting in a lower tone. Tuning a string to a desired frequency is a simple matter of changing the tension in the string.

APPLICATION
Bass Guitar Strings
EXAMPLE 13.10 A Pulse Traveling on a String

Goal Calculate the speed of a wave on a string.

Problem A uniform string has a mass M of 0.030 0 kg and a length L of 6.00 m. Tension is maintained in the string by suspending a block of mass $m = 2.00$ kg from one end (Fig. 13.28). (a) Find the speed of a transverse wave pulse on this string. (b) Find the time it takes the pulse to travel from the wall to the pulley. Neglect the mass of the hanging part of the string.

Strategy The tension F can be obtained from Newton’s second law for equilibrium applied to the block, and the mass per unit length of the string is $\mu = M/L$. With these quantities, the speed of the transverse pulse can be found by substitution into Equation 13.18. Part (b) requires the formula $d = vt$.

Solution
(a) Find the speed of the wave pulse.

Apply the second law to the block: the tension F is equal and opposite to the force of gravity.

$$\sum F = F - mg = 0 \rightarrow F = mg$$

Substitute expressions for F and μ into Equation 13.18:

$$v = \sqrt{\frac{F}{\mu}} = \sqrt{\frac{mg}{M/L}} = \sqrt{\frac{(2.00 \text{ kg})(9.80 \text{ m/s}^2)}{(0.030 \text{ kg})/(6.00 \text{ m})}} = \sqrt{\frac{19.6 \text{ N}}{0.00500 \text{ kg/m}}} = 62.6 \text{ m/s}$$

(b) Find the time it takes the pulse to travel from the wall to the pulley.

Solve the distance formula for time:

$$t = \frac{d}{v} = \frac{5.00 \text{ m}}{62.6 \text{ m/s}} = 0.079 \text{ s}$$

Remark Don’t confuse the speed of the wave on the string with the speed of the sound wave produced by the vibrating string. (See Chapter 14.)

QUESTION 13.10 If the mass of the block is quadrupled, what happens to the speed of the wave?

EXERCISE 13.10 To what tension must a string with mass 0.010 0 kg and length 2.50 m be tightened so that waves will travel on it at a speed of 125 m/s?

Answer 62.5 N

13.10 INTERFERENCE OF WAVES

Many interesting wave phenomena in nature require two or more waves passing through the same region of space at the same time. Two traveling waves can meet and pass through each other without being destroyed or even altered. For instance, when two pebbles are thrown into a pond, the expanding circular waves don’t destroy each other. In fact, the ripples pass through each other. Likewise, when sound waves from two sources move through air, they pass through each other. In the region of overlap, the resultant wave is found by adding the displacements of the individual waves. For such analyses, the superposition principle applies:
When two or more traveling waves encounter each other while moving through a medium, the resultant wave is found by adding together the displacements of the individual waves point by point.

Experiments show that the superposition principle is valid only when the individual waves have small amplitudes of displacement, which is an assumption we make in all our examples.

Figures 13.29a and 13.29b show two waves of the same amplitude and frequency. If at some instant of time these two waves were traveling through the same region of space, the resultant wave at that instant would have a shape like that shown in Figure 13.29c. For example, suppose the waves are water waves of amplitude 1 m. At the instant they overlap so that crest meets crest and trough meets trough, the resultant wave has an amplitude of 2 m. Waves coming together like that are said to be *in phase* and to exhibit **constructive interference**.

Figures 13.30a and 13.30b show two similar waves. In this case, however, the crest of one coincides with the trough of the other, so one wave is *inverted* relative to the other. The resultant wave, shown in Figure 13.30c, is seen to be a state of complete cancellation. If these were water waves coming together, one of the waves would exert an upward force on an individual drop of water at the same instant the other wave was exerting a downward force. The result would be no motion of the water at all. In such a situation the two waves are said to be 180° out of phase and to exhibit **destructive interference**. Figure 13.31 illustrates the interference of water waves produced by drops of water falling into a pond.

Active Figure 13.32 shows constructive interference in two pulses moving toward each other along a stretched string; Active Figure 13.33 (page 450) shows destructive interference in two pulses. Notice in both figures that when the two pulses separate, their shapes are unchanged, as if they had never met!

13.11 REFLECTION OF WAVES

In our discussion so far, we have assumed waves could travel indefinitely without striking anything. Often, such conditions are not realized in practice. Whenever a traveling wave reaches a boundary, part or all of the wave is reflected. For example, consider a pulse traveling on a string that is fixed at one end (Active Fig. 13.34, page 450). When the pulse reaches the wall, it is reflected.

Note that the reflected pulse is inverted. This can be explained as follows: When the pulse meets the wall, the string exerts an upward force on the wall. According to Newton’s third law, the wall must exert an equal and opposite (downward) reaction force on the string. This downward force causes the pulse to invert on reflection.

Now suppose the pulse arrives at the string’s end, and the end is attached to a ring of negligible mass that is free to slide along the post without friction (Active...
Chapter 13 Vibrations and Waves

Fig. 13.35). Again the pulse is reflected, but this time it is not inverted. On reaching the post, the pulse exerts a force on the ring, causing it to accelerate upward. The ring is then returned to its original position by the downward component of the tension in the string.

An alternate method of showing that a pulse is reflected without inversion when it strikes a free end of a string is to send the pulse down a string hanging vertically. When the pulse hits the free end, it’s reflected without inversion, just as is the pulse in Active Figure 13.35.

Finally, when a pulse reaches a boundary, it’s partly reflected and partly transmitted past the boundary into the new medium. This effect is easy to observe in the case of two ropes of different density joined at some boundary.

ACTIVE FIGURE 13.33
Two wave pulses traveling in opposite directions with displacements that are inverted relative to each other. When the two overlap, as in (c), their displacements subtract from each other.

ACTIVE FIGURE 13.34
The reflection of a traveling wave at the fixed end of a stretched string. Note that the reflected pulse is inverted, but its shape remains the same.

ACTIVE FIGURE 13.35
The reflection of a traveling wave at the free end of a stretched string. In this case the reflected pulse is not inverted.

SUMMARY

13.1 Hooke’s Law

Simple harmonic motion occurs when the net force on an object along the direction of motion is proportional to the object’s displacement and in the opposite direction:

\[F_x = -kx \] \[13.1\]

This equation is called Hooke’s law. The time required for one complete vibration is called the **period** of the motion. The reciprocal of the period is the **frequency** of the motion, which is the number of oscillations per second.

When an object moves with simple harmonic motion, its **acceleration** as a function of position is

\[a = -\frac{k}{m}x \] \[13.2\]

13.2 Elastic Potential Energy

The energy stored in a stretched or compressed spring or in some other elastic material is called **elastic potential energy**:

\[PE_{ei} = \frac{1}{2}kx^2 \] \[13.3\]

The **velocity** of an object as a function of position, when the object is moving with simple harmonic motion, is

\[v = \pm \sqrt{\frac{k}{m}(A^2 - x^2)} \] \[13.6\]

13.4 Position, Velocity, and Acceleration as a Function of Time

The **period** of an object of mass \(m \) moving with simple harmonic motion while attached to a spring of spring constant \(k \) is

\[T = 2\pi \sqrt{\frac{m}{k}} \] \[13.8\]

where \(T \) is independent of the amplitude \(A \).

The **frequency** of an object–spring system is \(f = 1/T \). The **angular frequency** \(\omega \) of the system in rad/s is

\[\omega = 2\pi f = \sqrt{\frac{k}{m}} \] \[13.11\]
When an object is moving with simple harmonic motion, the position, velocity, and acceleration of the object as a function of time are given by

\[x = A \cos(2\pi ft) \] \[v = -\omega A \sin(2\pi ft) \] \[a = -\omega^2 A \cos(2\pi ft) \]

13.5 Motion of a Pendulum
A simple pendulum of length \(L \) moves with simple harmonic motion for small angular displacements from the vertical, with a period of

\[T = 2\pi \sqrt{\frac{L}{g}} \]

13.7 Waves
In a transverse wave the elements of the medium move in a direction perpendicular to the direction of the wave. An example is a wave on a stretched string.

In a longitudinal wave the elements of the medium move parallel to the direction of the wave velocity. An example is a sound wave.

13.8 Frequency, Amplitude, and Wavelength
The relationship of the speed, wavelength, and frequency of a wave is

\[v = \frac{f}{\lambda} \]

This relationship holds for a wide variety of different waves.

13.9 The Speed of Waves on Strings
The speed of a wave traveling on a stretched string of mass per unit length \(\mu \) and under tension \(F \) is

\[v = \sqrt{\frac{F}{\mu}} \]

13.10 Interference of Waves
The superposition principle states that if two or more traveling waves are moving through a medium, the resultant wave is found by adding the individual waves together point by point. When waves meet crest to crest and trough to trough, they undergo constructive interference. When crest meets trough, the waves undergo destructive interference.

13.11 Reflection of Waves
When a wave pulse reflects from a rigid boundary, the pulse is inverted. When the boundary is free, the reflected pulse is not inverted.

MULTIPLE-CHOICE QUESTIONS

1. The distance between the crest of a water wave and the next trough is 2 m. If the frequency of a particular wave is 2 Hz, what is the speed of the wave? (a) 4 m/s (b) 1 m/s (c) 8 m/s (d) 2 m/s (e) impossible to determine from the information given

2. The position of an object moving with simple harmonic motion is given by \(x = 4 \cos(6\pi ft) \), where \(x \) is in meters and \(t \) is in seconds. What is the period of the oscillating system? (a) 4 s (b) \(\frac{1}{3} \) s (c) \(\frac{1}{2} \) s (d) \(6\pi \) s (e) impossible to determine from the information given

3. A block-spring system vibrating on a frictionless, horizontal surface with an amplitude of 6.0 cm has a total energy of 12 J. If the block is replaced by one having twice the mass of the original block and the amplitude of the motion is again 6.0 cm, what is the energy of the more massive system? (a) 12 J (b) 24 J (c) 6 J (d) 48 J (e) 36 J

4. A mass of 0.40 kg, hanging from a spring with a spring constant of 80.0 N/m, is set into an up-and-down simple harmonic motion. If the mass is displaced from equilibrium by 0.10 m and released from rest, what is its speed when moving through the equilibrium point? (a) 0 (b) 1.4 m/s (c) 2.0 m/s (d) 3.4 m/s (e) 4.2 m/s

5. If an object of mass \(m \) attached to a light spring is replaced by one of mass 9\(m \), the frequency of the vibrating system changes by what multiplicative factor? (a) \(\frac{1}{9} \) (b) \(\frac{1}{3} \) (c) 3.0 (d) 9.0 (e) 6.0

6. An object of mass 0.40 kg, hanging from a spring with a spring constant of 8.0 N/m, is set into an up-and-down simple harmonic motion. What is the magnitude of the acceleration of the object when it is at its maximum displacement of 0.10 m? (a) 0 (b) 0.45 m/s^2 (c) 1.0 m/s^2 (d) 2.0 m/s^2 (e) 2.40 m/s^2

7. A runaway railroad car with mass 3.0 \(\times \) 10^5 kg coasts across a level track at 2.0 m/s when it collides elastically with a spring-loaded bumper at the end of the track. If the spring constant of the bumper is 2.0 \(\times \) 10^6 N/m, what is the maximum compression of the spring during the collision? (a) 0.77 m (b) 0.58 m (c) 0.34 m (d) 1.07 m (e) 1.24 m

8. If a simple pendulum oscillates with a small amplitude and its length is doubled, what happens to the frequency of its motion? (a) It doubles. (b) It becomes \(\sqrt{2} \) times as large. (c) It halves. (d) It becomes \(1/\sqrt{2} \) as large. (e) It remains the same.
9. A simple pendulum has a period of 2.5 s. What is its period if its length is made four times as large? (a) 0.625 s (b) 1.25 s (c) 2.5 s (d) 5.34 s (e) 5.0 s

10. A particle on a spring moves in simple harmonic motion along the x-axis between turning points at \(x_1 = 100\, \text{cm}\) and \(x_2 = 140\, \text{cm}\). At which of the following positions does the particle have its maximum kinetic energy? (a) 100 cm (b) 110 cm (c) 120 cm (d) 130 cm (e) 140 cm

11. Which of the following statements is not true regarding a mass–spring system that moves with simple harmonic motion in the absence of friction? (a) The total energy of the system remains constant. (b) The energy of the system is continually transformed between kinetic and potential energy. (c) The total energy of the system is proportional to the square of the amplitude. (d) The potential energy stored in the system is greatest when the mass passes through the equilibrium position. (e) The velocity of the oscillating mass has its maximum value when the mass passes through the equilibrium position.

12. A block is attached to a spring hanging vertically. After being slowly lowered, it hangs at rest with the spring stretched by 15.0 cm. If the block is raised back up and released from rest with the spring unstretched, what maximum distance does it fall? (a) 7.5 cm (b) 15.0 cm (c) 30.0 cm (d) 60.0 cm (e) impossible to determine without knowing the mass and spring constant

CONCEPTUAL QUESTIONS

1. An object–spring system undergoes simple harmonic motion with an amplitude \(A\). Does the total energy change if the mass is doubled but the amplitude isn’t changed? Are the kinetic and potential energies at a given point in its motion affected by the change in mass? Explain.

2. If a spring is cut in half, what happens to its spring constant?

3. An object is hung on a spring, and the frequency of oscillation of the system, \(f\), is measured. The object, a second identical object, and the spring are carried to space in the space shuttle. The two objects are attached to the ends of the spring, and the system is taken out into space on a space walk. The spring is extended, and the system is released to oscillate while floating in space. The coils of the spring don’t bump into one another. What is the frequency of oscillation for this system in terms of \(f\)?

4. If an object–spring system is hung vertically and set into oscillation, why does the motion eventually stop?

5. Is a bouncing ball an example of simple harmonic motion? Is the daily movement of a student from home to school and back simple harmonic motion?

6. If a pendulum clock keeps perfect time at the base of a mountain, will it also keep perfect time when it is moved to the top of the mountain? Explain.

7. A pendulum bob is made from a sphere filled with water. What would happen to the frequency of vibration of this pendulum if the sphere had a hole in it that allowed the water to leak out slowly?

8. If a grandfather clock were running slow, how could we adjust the length of the pendulum to correct the time?

9. A grandfather clock depends on the period of a pendulum to keep correct time. Suppose such a clock is calibrated correctly and then the temperature of the room in which it resides increases. Does the clock run slow, fast, or correctly? Hint: A material expands when its temperature increases.

10. If you stretch a rubber hose and pluck it, you can observe a pulse traveling up and down the hose. What happens to the speed of the pulse if you stretch the hose more tightly? What happens to the speed if you fill the hose with water?

11. Explain why the kinetic and potential energies of an object–spring system can never be negative.

12. What happens to the speed of a wave on a string when the frequency is doubled? Assume the tension in the string remains the same.

PROBLEMS

The Problems for this chapter may be assigned online at WebAssign.

1, 2, 3 = straightforward, intermediate, challenging

- GP = denotes guided problem
- ECOP = denotes enhanced content problem
- BM = biomedical application
- FS = denotes full solution available in Student Solutions Manual/Study Guide

1. A 0.60-kg block attached to a spring with force constant 130 N/m is free to move on a frictionless, horizontal surface as in Figure 13.7. The block is released from rest after the spring is stretched 0.13 m. At that instant, find (a) the force on the block and (b) its acceleration.

2. When a 4.25-kg object is placed on top of a vertical spring, the spring compresses a distance of 2.62 cm. What is the force constant of the spring?
3. A ball dropped from a height of 4.00 m makes a perfectly elastic collision with the ground. Assuming no mechanical energy is lost due to air resistance, (a) show that the motion is periodic and (b) determine the period of the motion. (c) Is the motion simple harmonic? Explain.

4. A load of 50 N attached to a spring hanging vertically stretches the spring 5.0 cm. The spring is now placed horizontally on a table and stretched 11 cm. (a) What force is required to stretch the spring by that amount? (b) Plot a graph of force (on the y-axis) versus spring displacement from the equilibrium position along the x-axis.

5. A spring is hung from a ceiling, and an object attached to its lower end stretches the spring by 5.00 cm from its unstretched position when the system is in equilibrium. If the spring constant is 47.5 N/m, determine the mass of the object.

6. An archer must exert a force of 375 N on the bowstring shown in Figure P13.6a such that the string makes an angle of $\theta = 35.0^\circ$ with the vertical. (a) Determine the tension in the bowstring. (b) If the applied force is replaced by a stretched spring as in Figure P13.6b and the spring is stretched 30.0 cm from its unstretched length, what is the spring constant?

7. A spring 1.50 m long with force constant 475 N/m is hung from the ceiling of an elevator, and a block of mass 10.0 kg is attached to the bottom of the spring. (a) By how much is the spring stretched when the block is slowly lowered to its equilibrium point? (b) If the elevator subsequently accelerates upward at 2.00 m/s², what is the position of the block, taking the equilibrium position found in part (a) as $x = 0$ and upwards as the positive y-direction. (c) If the elevator cable snaps during the acceleration, describe the subsequent motion of the block relative to the freely falling elevator. What is the amplitude of its motion?

SECTION 13.2 ELASTIC POTENTIAL ENERGY

8. A spring-loaded pellet gun is designed to fire 3.00-g projectiles horizontally at a speed of 45.0 m/s. (a) If the spring is compressed to its maximum design difference of 8.00 cm, what spring constant is required? (b) What maximum force is required to load the gun?

9. A slingshot consists of a light leather cup containing a stone. The cup is pulled back against two parallel rubber bands. It takes a force of 15 N to stretch either one of these bands 1.0 cm. (a) What is the potential energy stored in the two bands together when a 50-g stone is placed in the cup and pulled back 0.20 m from the equilibrium position? (b) With what speed does the stone leave the slingshot?

10. An archer pulls her bowstring back 0.400 m by exerting a force that increases uniformly from zero to 230 N. (a) What is the equivalent spring constant of the bow? (b) How much work is done in pulling the bow?

11. A child’s toy consists of a piece of plastic attached to a spring (Fig. P13.11). The spring is compressed against the floor a distance of 2.00 cm, and the toy is released. If the toy has a mass of 100 g and rises to a maximum height of 60.0 cm, estimate the force constant of the spring.

12. An automobile having a mass of 1000 kg is driven into a brick wall in a safety test. The bumper behaves like a spring with constant 5.00×10^5 N/m and is compressed 3.16 cm as the car is brought to rest. What was the speed of the car before impact, assuming no energy is lost in the collision with the wall?

13. A 10.0-g bullet is fired into, and embeds itself in, a 2.00-kg block attached to a spring with a force constant of 19.6 N/m and whose mass is negligible. How far is the spring compressed if the bullet has a speed of 300 m/s just before it strikes the block and the block slides on a frictionless surface? Note: You must use conservation of momentum in this problem. Why?

14. An object–spring system moving with simple harmonic motion has an amplitude A. (a) What is the total energy of the system in terms of k and A only? (b) Suppose at a certain instant the kinetic energy is twice the elastic potential energy. Write an equation describing this situation, using only the variables for the mass m, velocity v, spring constant k, and position x. (c) Using the results of parts (a) and (b) and the conservation of energy equation, find the positions x of the object when its kinetic energy equals twice the potential energy stored in the spring. (The answer should in terms of A only.)

15. A horizontal block–spring system with the block on a frictionless surface has total mechanical energy $E = 47.0 \text{ J}$ and a maximum displacement from equilibrium of 0.240 m. (a) What is the spring constant? (b) What is the kinetic energy of the system at the equilibrium point? (c) If the maximum speed of the block is 3.45 m/s, what is its mass? (d) What is the speed of the block when its displacement is 0.160 m²? (e) Find the kinetic energy of the block at $x = 0.160$ m. (f) Find the potential energy stored in the spring when $x = 0.160$ m. (g) Suppose the same system is released from rest at $x = 0.240$ m on a rough surface so that it loses 14.0 J by the time it reaches its first turning point (after passing equilibrium at $x = 0$). What is its position at that instant?

16. A 0.256-kg block resting on a frictionless, horizontal surface is attached to a spring having force constant 83.8 N/m as in Figure P13.16. A horizontal force F causes
the spring to stretch a distance of 3.46 cm from its equilibrium position. (a) Find the value of \(F \). (b) What is the total energy stored in the system when the spring is stretched? (c) Find the magnitude of the acceleration of the block immediately after the applied force is removed. (d) Find the speed of the block when it first reaches the equilibrium position. (e) If the surface is not frictionless but the block still reaches the equilibrium position, how would your answer to part (d) change? What other information would you need to know to answer?

SECTION 13.3 COMPARING SIMPLE HARMONIC MOTION WITH UNIFORM CIRCULAR MOTION

SECTION 13.4 POSITION, VELOCITY, AND ACCELERATION AS A FUNCTION OF TIME

21. An object–spring system oscillates with an amplitude of 20.0 cm on a spring with a force constant of 19.6 N/m. If the spring is compressed 1.5 cm and released from rest, determine (a) the maximum speed of the object, (b) the speed of the object when the spring is compressed 1.5 cm, and (c) the speed of the object when the spring is stretched 1.5 cm. (d) For what value of \(x \) does the speed equal one-half the maximum speed?

22. An object moves uniformly around a circular path of radius 20.0 cm, making one complete revolution every 2.00 s. What are (a) the translational speed of the object, (b) the frequency of motion in hertz, and (c) the angular speed of the object?

23. Consider the simplified single-piston engine in Figure P13.23. If the wheel rotates at a constant angular speed \(\omega \), explain why the piston rod oscillates in simple harmonic motion.

24. The period of motion of an object–spring system is 0.223 s when a 35.4-g object is attached to the spring. What is the force constant of the spring?

25. A string stretches 3.9 cm when a 10-g object is hung from it. The object is replaced with a block of mass 25 g that oscillates in simple harmonic motion. Calculate the period of motion.

26. When four people with a combined mass of 320 kg sit down in a car, they find that the car drops 0.80 cm lower on its springs. Then they get out of the car and bounce it up and down. What is the frequency of the car’s vibration if its mass (when it is empty) is \(2.0 \times 10^3 \) kg?

27. A cart of mass 250 g is placed on a frictionless horizontal air track. A spring having a spring constant of 9.5 N/m is attached between the cart and the left end of the track. When in equilibrium, the cart is located 12 cm from the left end of the track. If the cart is displaced 4.5 cm from its equilibrium position, find (a) the period at which it oscillates, (b) its maximum speed, and (c) its speed when it is 14 cm from the left end of the track.

28. The position of an object connected to a spring varies with time according to the expression \(x = (5.2 \text{ cm}) \sin (8.0 \pi t) \). Find (a) the period of this motion, (b) the frequency of the motion, (c) the amplitude of the motion, and (d) the first time after \(t = 0 \) that the object reaches the position \(x = 2.6 \text{ cm} \).

29. A 326-g object is attached to a spring and executes simple harmonic motion with a period of 0.250 s. If the total energy of the system is 5.83 J, find (a) the maximum speed of the object, (b) the force constant of the spring, and (c) the amplitude of the motion.

30. An object executes simple harmonic motion with an amplitude \(A \). (a) At what values of its position does its speed equal half its maximum speed? (b) At what values of its position does its potential energy equal half the total energy?

31. A 2.00-kg object on a frictionless horizontal track is attached to the end of a horizontal spring whose force constant is 5.00 N/m. The object is displaced 3.00 m to the right from its equilibrium position and then released, initiating simple harmonic motion. (a) What is the force...
A spring of negligible mass stretches 3.00 cm from its relaxed length when a force of 7.50 N is applied. A 0.500-kg particle rests on a frictionless horizontal surface and is attached to the free end of the spring. The particle is displaced from the origin to $x = 5.00$ cm and released from rest at $t = 0$. (a) What is the force constant of the spring? (b) What are the angular frequency ω, the frequency, and the period of the motion? (c) What is the total energy of the system? (d) What is the amplitude of the motion? (e) What are the maximum speed and the maximum acceleration of the particle? (f) Determine the displacement x of the particle from the equilibrium position at $t = 0.500$ s. (g) Determine the velocity and acceleration of the particle when $t = 0.500$ s.

Given that $x = A \cos(\omega t)$ is a sinusoidal function of time, show that v (velocity) and a (acceleration) are also sinusoidal functions of time. \textit{Hint:} Use Equations 13.6 and 13.2.

SECTION 13.5 MOTION OF A PENDULUM

34. A man enters a tall tower, needing to know its height. He notes that a long pendulum extends from the ceiling almost to the floor and that its period is 15.5 s. (a) How tall is the tower? (b) If this pendulum is taken to the Moon, where the free-fall acceleration is 1.67 m/s^2, what is the period there?

35. A simple pendulum makes 120 complete oscillations in 3.00 min at a location where $g = 9.80 \text{ m/s}^2$. Find (a) the period of the pendulum and (b) its length.

36. A “seconds” pendulum is one that moves through its equilibrium position once each second. (The period of the pendulum is 2.00 s.) The length of a seconds pendulum is 0.9927 m at Tokyo and 0.9942 m at Cambridge, England. What is the ratio of the free-fall accelerations at these two locations?

37. A pendulum clock that works perfectly on the Earth is taken to the Moon. (a) Does it run fast or slow there? (b) If the clock is started at 12:00 midnight, what will it read after one Earth day (24.0 h)? Assume the free-fall acceleration on the Moon is 1.63 \text{ m/s}^2.

38. An aluminum clock pendulum having a period of 1.00 s keeps perfect time at 20.0°C. (a) When placed in a room at a temperature of -5.00°C, will it gain time or lose time? (b) How much time will it gain or lose every hour? \textit{Hint:} See Chapter 10.

39. The free-fall acceleration on Mars is 3.7 m/s^2. (a) What length of pendulum has a period of 1 s on Earth? What length of pendulum would have a 1-s period on Mars? (b) An object is suspended from a spring with force constant 10 N/m. Find the mass suspended from this spring that would result in a period of 1 s on Earth and on Mars.

40. A simple pendulum is 5.00 m long. (a) What is the period of simple harmonic motion for this pendulum if it is located in an elevator accelerating upward at 5.00 m/s^2? (b) What is its period if the elevator is accelerating downward at 5.00 m/s^2? (c) What is the period of simple harmonic motion for the pendulum if it is placed in a truck that is accelerating horizontally at 5.00 m/s^2?

SECTION 13.6 DAMPED OSCILLATIONS

SECTION 13.7 WAVES

SECTION 13.8 FREQUENCY, AMPLITUDE, AND WAVELENGTH

41. The sinusoidal wave shown in Figure P13.41 is traveling in the positive x-direction and has a frequency of 18.0 Hz. Find the (a) amplitude, (b) wavelength, (c) period, and (d) speed of the wave.

42. An object attached to a spring vibrates with simple harmonic motion as described by Figure P13.42. For this motion, find (a) the amplitude, (b) the period, (c) the angular frequency, (d) the maximum speed, (e) the maximum acceleration, and (f) an equation for its position x in terms of a sine function.

43. A certain FM radio station broadcasts jazz music at a frequency of 101.9 MHz. Find (a) the wave’s period and (b) its wavelength. (Radio waves are electromagnetic waves that travel at the speed of light, $3.00 \times 10^8 \text{ m/s}$.)

44. The distance between two successive minima of a transverse wave is 2.76 m. Five crests of the wave pass a given point along the direction of travel every 14.0 s. Find (a) the frequency of the wave and (b) the wave speed.

45. A harmonic wave is traveling along a rope. It is observed that the oscillator that generates the wave completes 40.0 vibrations in 30.0 s. Also, a given maximum travels 425 cm along the rope in 10.0 s. What is the wavelength?

46. A bat can detect small objects, such as an insect, whose size is approximately equal to one wavelength of the sound the bat makes. If bats emit a chirp at a frequency of 60.0 kHz and the speed of sound in air is 340 m/s, what is the smallest insect a bat can detect?
47. A cork on the surface of a pond bobs up and down two times per second on ripples having a wavelength of 8.50 cm. If the cork is 10.0 m from shore, how long does it take a ripple passing the cork to reach the shore?

48. Ocean waves are traveling to the east at 4.0 m/s with a distance of 20 m between crests. With what frequency do the waves hit the front of a boat (a) when the boat is at anchor and (b) when the boat is moving westward at 1.0 m/s?

SECTION 13.9 THE SPEED OF WAVES ON STRINGS

49. A phone cord is 4.00 m long and has a mass of 0.200 kg. A transverse wave pulse is produced by plucking one end of the taut cord. The pulse makes four trips down and back along the cord in 0.800 s. What is the tension in the cord?

50. A circus performer stretches a tightrope between two towers. He strikes one end of the rope and sends a wave along it toward the other tower. He notes that it takes the wave 0.800 s to reach the opposite tower, 20.0 m away. If a 1-m length of the rope has a mass of 0.350 kg, find the tension in the tightrope.

51. A transverse pulse moves along a stretched cord of length 6.30 m having a mass of 0.150 kg. If the tension in the cord is 12.0 N, find (a) the wave speed and (b) the time it takes the pulse to travel the length of the cord.

52. A taut clothesline is 12.0 m long and has a mass of 0.375 kg. A transverse pulse is produced by plucking one end of the clothesline. If the pulse takes 2.96 s to make six round trips along the clothesline, find (a) the speed of the pulse and (b) the tension in the clothesline.

53. Transverse waves with a speed of 50.0 m/s are to be produced on a stretched string. A 5.00-m length of string with a total mass of 0.060 kg is used. (a) What is the required tension in the string? (b) Calculate the wave speed in the string if the tension is 8.00 N.

54. An astronaut on the Moon wishes to measure the local value of g by timing pulses traveling down a wire that has a large object suspended from it. Assume a wire of mass 4.00 g is 1.00 m long and has a 3.00-kg object suspended from it. A pulse requires 36.1 ms to traverse the length of the wire. Calculate E_{kin} from these data. (You may neglect the mass of the wire when calculating the tension in it.)

55. A simple pendulum consists of a ball of mass 5.00 kg hanging from a uniform string of mass 0.060 kg and length L. If the period of oscillation of the pendulum is 2.00 s, determine the speed of a transverse wave in the string when the pendulum hangs vertically.

56. A string is 5.00 cm long and has a mass of 3.00 g. A wave travels at 5.00 m/s along this string. A second string has the same length, but half the mass of the first. If the two strings are under the same tension, what is the speed of a wave along the second string?

57. Tension is maintained in a string as in Figure P13.57. The observed wave speed is 24 m/s when the suspended mass is 3.0 kg. (a) What is the mass per unit length of the string? (b) What is the wave speed when the suspended mass is 2.0 kg?

58. The elastic limit of a piece of steel wire is 2.70×10^9 Pa. What is the maximum speed at which transverse wave pulses can propagate along the wire without exceeding its elastic limit? (The density of steel is 7.86×10^3 kg/m3.)

59. A 2.65-kg power line running between two towers has a length of 38.0 m and is under a tension of 12.5 N. (a) What is the speed of a transverse pulse set up on the line? (b) If the tension in the line was unknown, describe a procedure a worker on the ground might use to estimate the tension.

60. A taut clothesline has length L and a mass M. A transverse pulse is produced by plucking one end of the clothesline. If the pulse makes n round trips along the clothesline in t seconds, find expressions for (a) the speed of the pulse in terms of n, L, and t and (b) the tension F in the clothesline in terms of the same variables and mass M.

SECTION 13.10 INTERFERENCE OF WAVES

SECTION 13.11 REFLECTION OF WAVES

61. A wave of amplitude 0.30 m interferes with a second wave of amplitude 0.20 m traveling in the same direction. What are (a) the largest and (b) the smallest resultant amplitudes that can occur, and under what conditions will these maxima and minima arise?

62. The position of a 0.30-kg object attached to a spring is described by

$$x = (0.25 \text{ m}) \cos (0.4 \pi t)$$

Find (a) the amplitude of the motion, (b) the spring constant, (c) the position of the object at $t = 0.30$ s, and (d) the object’s speed at $t = 0.30$ s.

ADDITIONAL PROBLEMS

63. An object of mass 2.00 kg is oscillating freely on a vertical spring with a period of 0.600 s. Another object of unknown mass on the same spring oscillates with a period of 1.05 s. Find (a) the spring constant k and (b) the unknown mass.

64. A certain tuning fork vibrates at a frequency of 196 Hz while each tip of its two prongs has an amplitude of 0.850 mm. (a) What is the period of this motion? (b) Find the wavelength of the sound produced by the vibrating fork, taking the speed of sound in air to be 343 m/s.

65. A simple pendulum has mass 1.20 kg and length 0.700 m. (a) What is the period of the pendulum near the surface
66. A 500-g block is released from rest and slides down a frictionless track that begins 2.00 m above the horizontal, as shown in Figure P13.66. At the bottom of the track, where the surface is horizontal, the block strikes and sticks to a light spring with a spring constant of 20.0 N/m. Find the maximum distance the spring is compressed.

67. A 3.00-kg object is fastened to a light spring, with the intervening cord passing over a pulley (Fig. P13.67). The pulley is frictionless, and its inertia may be neglected. The object is released from rest when the spring is unstretched. If the object drops 10.0 cm before stopping, find (a) the spring constant of the spring and (b) the speed of the object when it is 5.00 cm below its starting point.

68. A 5.00-g bullet moving with an initial speed of 400 m/s is fired into and passes through a 1.00-kg block, as in Figure P13.68. The block, initially at rest on a frictionless horizontal surface, is connected to a spring with a spring constant of 900 N/m. If the block moves 5.00 cm to the right after impact, find (a) the speed at which the bullet emerges from the block and (b) the mechanical energy lost in the collision.

69. A 25-kg block is connected to a 30-kg block by a light string that passes over a frictionless pulley. The 30-kg block is connected to a light spring of force constant 200 N/m, as in Figure P13.69. The spring is unstretched when the system is as shown in the figure, and the incline is smooth. The 25-kg block is pulled 20 cm down the incline (so that the 30-kg block is 40 cm above the floor) and is released from rest. Find the speed of each block when the 30-kg block is 20 cm above the floor (that is, when the spring is unstretched).

70. A spring in a toy gun has a spring constant of 9.80 N/m and can be compressed 20.0 cm beyond the equilibrium position. A 1.00-g pellet resting against the spring is propelled forward when the spring is released. (a) Find the muzzle speed of the pellet. (b) If the pellet is fired horizontally from a height of 1.00 m above the floor, what is its range?

71. A light balloon filled with helium of density 0.180 kg/m³ is tied to a light string of length L = 3.00 m. The string is tied to the ground, forming an “inverted” simple pendulum (Fig. P13.71a). If the balloon is displaced slightly from equilibrium, as in Figure P13.71b, show that the motion is simple harmonic and determine the period of the motion. Take the density of air to be 1.29 kg/m³.

Hint: Use an analogy with the simple pendulum discussed in the text, and see Chapter 9.

72. An object of mass m is connected to two rubber bands of length L, each under tension F, as in Figure P13.72. The object is displaced vertically by a small distance y. Assuming the tension does not change, show that (a) the restoring force is −(2F/L)y and (b) the system exhibits simple harmonic motion with an angular frequency \(\omega = \sqrt{2F/mL} \).
73. Assume a hole is drilled through the center of the Earth. It can be shown that an object of mass \(m \) at a distance \(r \) from the center of the Earth is pulled toward the center only by the material in the shaded portion of Figure P13.73. Assume Earth has a uniform density \(\rho \). Write down Newton’s law of gravitation for an object at a distance \(r \) from the center of the Earth and show that the force on it is of the form of Hooke’s law, \(F = -kr \), with an effective force constant of \(k = \left(\frac{\rho}{2} \right) \pi r G m \), where \(G \) is the gravitational constant.

74. Figure P13.74 shows a crude model of an insect wing. The mass \(m \) represents the entire mass of the wing, which pivots about the fulcrum \(F \). The spring represents the surrounding connective tissue. Motion of the wing corresponds to vibration of the spring. Suppose the mass of the wing is 0.30 g and the effective spring constant of the tissue is \(4.7 \times 10^{-4} \) N/m. If the mass \(m \) moves up and down a distance of 2.0 mm from its position of equilibrium, what is the maximum speed of the outer tip of the wing?

75. A 2.00-kg block hangs without vibrating at the end of a spring (\(k = 500 \) N/m) that is attached to the ceiling of an elevator car. The car is rising with an upward acceleration of \(g/3 \) when the acceleration suddenly ceases (at \(t = 0 \)). (a) What is the angular frequency of oscillation of the block after the acceleration ceases? (b) By what amount is the spring stretched during the time that the elevator car is accelerating? This distance will be the amplitude of the ensuing oscillation of the block.

76. A system consists of a vertical spring with force constant \(k = 1250 \) N/m, length \(L = 1.50 \) m, and object of mass \(m = 5.00 \) kg attached to the end (Fig. P13.76). The object is placed at the level of the point of attachment with the spring unstretched, at position \(y_i = L \), and then it is released so that it swings like a pendulum. (a) Write Newton’s second law symbolically for the system as the object passes through its lowest point. (Note that at the lowest point, \(y_f = L - y_i \)). (b) Write the conservation of energy equation symbolically, equating the total mechanical energies at the initial point and lowest point. (c) Find the coordinate position of the lowest point. (d) Will this pendulum’s period be greater or less than the period of a simple pendulum with the same mass \(m \) and length \(L \)? Explain.

77. A large block \(P \) executes horizontal simple harmonic motion as it slides across a frictionless surface with a frequency \(f = 1.50 \) Hz. Block \(B \) rests on it, as shown in Figure P13.77, and the coefficient of static friction between the two is \(\mu_s = 0.600 \). What maximum amplitude of oscillation can the system have if block \(B \) is not to slip?
Sound can be used to create striking images of the human body’s interior, as in this three-dimensional ultrasound of twins in utero.

14

SOUND

Sound waves are the most important example of longitudinal waves. In this chapter we discuss the characteristics of sound waves: how they are produced, what they are, and how they travel through matter. We then investigate what happens when sound waves interfere with each other. The insights gained in this chapter will help you understand how we hear.

14.1 PRODUCING A SOUND WAVE

Whether it conveys the shrill whine of a jet engine or the soft melodies of a crooner, any sound wave has its source in a vibrating object. Musical instruments produce sounds in a variety of ways. The sound of a clarinet is produced by a vibrating reed, the sound of a drum by the vibration of the taut drumhead, the sound of a piano by vibrating strings, and the sound from a singer by vibrating vocal cords.

Sound waves are longitudinal waves traveling through a medium, such as air. In order to investigate how sound waves are produced, we focus our attention on the tuning fork, a common device for producing pure musical notes. A tuning fork consists of two metal prongs, or tines, that vibrate when struck. Their vibration disturbs the air near them, as shown in Figure 14.1. (The amplitude of vibration of the tine shown in the figure has been greatly exaggerated for clarity.) When a tine swings to the right, as in Figure 14.1a, the molecules in an element of air in front of its movement are forced closer together than normal. Such a region of high molecular density and high air pressure is called a compression. This compression moves away from the fork like a ripple on a pond. When the tine swings to the left, as in Figure 14.1b, the molecules in an element of air to the right of the tine spread apart, and the density and air pressure in this region are then lower than normal. Such a region of reduced density is called a rarefaction (pronounced “rare a fak’ shun”). Molecules to the right of the rarefaction in the figure move to the left. The rarefaction itself therefore moves to the right, following the previously produced compression.

As the tuning fork continues to vibrate, a succession of compressions and rarefactions forms and spreads out from it. The resultant pattern in the air is somewhat like that pictured in Figure 14.2a (page 460). We can use a sinusoidal curve...
FIGURE 14.3 An alternating voltage applied to the faces of a piezoelectric crystal causes the crystal to vibrate.

FIGURE 14.2 (a) As the tuning fork vibrates, a series of compressions and rarefactions moves outward, away from the fork. (b) The crests of the wave correspond to compressions, the troughs to rarefactions.

to represent a sound wave, as in Figure 14.2b. Notice that there are crests in the sinusoidal wave at the points where the sound wave has compressions and troughs where the sound wave has rarefactions. The compressions and rarefactions of the sound waves are superposed on the random thermal motion of the atoms and molecules of the air (discussed in Chapter 10), so sound waves in gases travel at about the molecular rms speed.

14.2 CHARACTERISTICS OF SOUND WAVES

As already noted, the general motion of elements of air near a vibrating object is back and forth between regions of compression and rarefaction. This back-and-forth motion of elements of the medium in the direction of the disturbance is characteristic of a longitudinal wave. The motion of the elements of the medium in a longitudinal sound wave is back and forth along the direction in which the wave travels. By contrast, in a transverse wave, the vibrations of the elements of the medium are at right angles to the direction of travel of the wave.

Categories of Sound Waves

Sound waves fall into three categories covering different ranges of frequencies. Audible waves are longitudinal waves that lie within the range of sensitivity of the human ear, approximately 20 to 20,000 Hz. Infrasonic waves are longitudinal waves with frequencies below the audible range. Earthquake waves are an example. Ultrasonic waves are longitudinal waves with frequencies above the audible range for humans and are produced by certain types of whistles. Animals such as dogs can hear the waves emitted by these whistles.

Applications of Ultrasound

Ultrasonic waves are sound waves with frequencies greater than 20 kHz. Because of their high frequency and corresponding short wavelengths, ultrasonic waves can be used to produce images of small objects and are currently in wide use in medical applications, both as a diagnostic tool and in certain treatments. Internal organs can be examined via the images produced by the reflection and absorption of ultrasonic waves. Although ultrasonic waves are far safer than x-rays, their images don’t always have as much detail. Certain organs, however, such as the liver and the spleen, are invisible to x-rays but can be imaged with ultrasonic waves.

Medical workers can measure the speed of the blood flow in the body with a device called an ultrasonic flow meter, which makes use of the Doppler effect (discussed in Section 14.6). The flow speed is found by comparing the frequency of the waves scattered by the flowing blood with the incident frequency.

Figure 14.3 illustrates the technique that produces ultrasonic waves for clinical use. Electrical contacts are made to the opposite faces of a crystal, such as quartz or strontium titanate. If an alternating voltage of high frequency is applied to these contacts, the crystal vibrates at the same frequency as the applied voltage, emitting a beam of ultrasonic waves. At one time, a technique like this was used to produce sound in nearly all headphones. This method of transforming electrical energy into mechanical energy, called the piezoelectric effect, is reversible: If some external source causes the crystal to vibrate, an alternating voltage is produced across...
it. A single crystal can therefore be used to both generate and receive ultrasonic waves.

The primary physical principle that makes ultrasound imaging possible is the fact that a sound wave is partially reflected whenever it is incident on a boundary between two materials having different densities. If a sound wave is traveling in a material of density \(\rho_i \) and strikes a material of density \(\rho_t \), the percentage of the incident sound wave intensity reflected, \(PR \), is given by

\[
PR = \left(\frac{\rho_t - \rho_i}{\rho_t + \rho_i} \right)^2 \times 100
\]

This equation assumes that the direction of the incident sound wave is perpendicular to the boundary and that the speed of sound is approximately the same in the two materials. The latter assumption holds very well for the human body because the speed of sound doesn’t vary much in the organs of the body.

Physicians commonly use ultrasonic waves to observe fetuses. This technique presents far less risk than do x-rays, which deposit more energy in cells and can produce birth defects. First the abdomen of the mother is coated with a liquid, such as mineral oil. If that were not done, most of the incident ultrasonic waves from the piezoelectric source would be reflected at the boundary between the air and the mother’s skin. Mineral oil has a density similar to that of skin, and a very small fraction of the incident ultrasonic wave is reflected when \(\frac{\rho_i}{\rho_t} \approx 0.5 \). The ultrasound energy is emitted in pulses rather than as a continuous wave, so the same crystal can be used as a detector as well as a transmitter. An image of the fetus is obtained by using an array of transducers placed on the abdomen. The reflected sound waves picked up by the transducers are converted to an electric signal, which is used to form an image on a fluorescent screen. Difficulties such as the likelihood of spontaneous abortion or of breech birth are easily detected with this technique. Fetal abnormalities such as spina bifida and water on the brain are also readily observed.

A relatively new medical application of ultrasonics is the cavitation ultrasonic surgical aspirator (CUSA). This device has made it possible to surgically remove brain tumors that were previously inoperable. The probe of the CUSA emits ultrasonic waves (at about 23 kHz) at its tip. When the tip touches a tumor, the part of the tumor near the probe is shattered and the residue can be sucked up (aspirated) through the hollow probe. Using this technique, neurosurgeons are able to remove brain tumors without causing serious damage to healthy surrounding tissue.

Ultrasound is also used to break up kidney stones that are otherwise too large to pass. Previously, invasive surgery was more often required.

Another interesting application of ultrasonics is the ultrasonic ranging unit used in some cameras to provide an almost instantaneous measurement of the distance between the camera and the object to be photographed. The principal component of this device is a crystal that acts as both a loudspeaker and a microphone. A pulse of ultrasonic waves is transmitted from the transducer to the object, which then reflects part of the signal, producing an echo that is detected by the device. The time interval between the outgoing pulse and the detected echo is electronically converted to a distance, because the speed of sound is a known quantity.

14.3 The Speed of Sound

The speed of a sound wave in a fluid depends on the fluid’s compressibility and inertia. If the fluid has a bulk modulus \(B \) and an equilibrium density \(\rho \), the speed of sound in it is

\[
v = \sqrt{\frac{B}{\rho}}
\]

\[\text{[14.1]}\]
Equation 14.1 also holds true for a gas. Recall from Chapter 9 that the bulk modulus is defined as the ratio of the change in pressure, ΔP, to the resulting fractional change in volume, $\Delta V/V$:

$$B = \frac{\Delta P}{\Delta V/V} \tag{14.2}$$

B is always positive because an increase in pressure (positive ΔP) results in a decrease in volume. Hence, the ratio $\Delta P/\Delta V$ is always negative.

It’s interesting to compare Equation 14.1 with Equation 13.18 for the speed of transverse waves on a string, $v = \sqrt{F/\mu}$, discussed in Chapter 13. In both cases the wave speed depends on an elastic property of the medium (B or F) and on an inertial property of the medium (ρ or μ). In fact, the speed of all mechanical waves follows an expression of the general form

$$v = \sqrt{\frac{\text{elastic property}}{\text{inertial property}}}$$

Another example of this general form is the speed of a longitudinal wave in a solid rod, which is

$$v = \sqrt{\frac{Y}{\rho}} \tag{14.3}$$

where Y is the Young’s modulus of the solid (see Eq. 9.3) and ρ is its density. This expression is valid only for a thin, solid rod.

Table 14.1 lists the speeds of sound in various media. The speed of sound is much higher in solids than in gases because the molecules in a solid interact more strongly with each other than do molecules in a gas. Striking a long steel rail with a hammer, for example, produces two sound waves, one moving through the rail and a slower wave moving through the air. A student with an ear pressed against the rail first hears the faster sound moving through the rail, then the sound moving through air. In general, sound travels faster through solids than liquids and faster through liquids than gases, although there are exceptions.

The speed of sound also depends on the temperature of the medium. For sound traveling through air, the relationship between the speed of sound and temperature is

$$v = (331 \text{ m/s}) \sqrt{\frac{T}{273 \text{ K}}} \tag{14.4}$$

where 331 m/s is the speed of sound in air at 0°C and T is the absolute (Kelvin) temperature. Using this equation, the speed of sound in air at 293 K (a typical room temperature) is approximately 343 m/s.

QUICK QUIZ 14.1 Which of the following actions will increase the speed of sound in air? (a) decreasing the air temperature (b) increasing the frequency of the sound (c) increasing the air temperature (d) increasing the amplitude of the sound wave (e) reducing the pressure of the air

TABLE 14.1

<table>
<thead>
<tr>
<th>Medium</th>
<th>v (m/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gases</td>
<td></td>
</tr>
<tr>
<td>Air (0°C)</td>
<td>331</td>
</tr>
<tr>
<td>Air (100°C)</td>
<td>386</td>
</tr>
<tr>
<td>Hydrogen (0°C)</td>
<td>1 290</td>
</tr>
<tr>
<td>Oxygen (0°C)</td>
<td>317</td>
</tr>
<tr>
<td>Helium (0°C)</td>
<td>972</td>
</tr>
<tr>
<td>Liquids at 25°C</td>
<td></td>
</tr>
<tr>
<td>Water</td>
<td>1 490</td>
</tr>
<tr>
<td>Methyl alcohol</td>
<td>1 140</td>
</tr>
<tr>
<td>Sea water</td>
<td>1 530</td>
</tr>
<tr>
<td>Solids</td>
<td></td>
</tr>
<tr>
<td>Aluminum</td>
<td>5 100</td>
</tr>
<tr>
<td>Copper</td>
<td>3 560</td>
</tr>
<tr>
<td>Iron</td>
<td>5 130</td>
</tr>
<tr>
<td>Lead</td>
<td>1 320</td>
</tr>
<tr>
<td>Vulcanized rubber</td>
<td>54</td>
</tr>
</tbody>
</table>

APPLYING PHYSICS 14.1 THE SOUNDS HEARD DURING A STORM

How does lightning produce thunder, and what causes the extended rumble?

Explanation Assume you’re at ground level, and neglect ground reflections. When lightning strikes, a channel of ionized air carries a large electric current from a cloud to the ground. This results in a rapid temperature increase of the air in the channel as the current moves through it, causing a similarly rapid expansion of the air. The expansion is so sudden and so intense that a tremendous disturbance—thunder—is produced in the air. The entire length of the channel produces the sound at essentially the same instant.
of time. Sound produced at the bottom of the channel reaches you first because that’s the point closest to you. Sounds from progressively higher portions of the channel reach you at later times, resulting in an extended roar. If the lightning channel were a perfectly straight line, the roar might be steady, but the zigzag shape of the path results in the rumbling variation in loudness, with different quantities of sound energy from different segments arriving at any given instant.

EXAMPLE 14.1 Explosion over an Ice Sheet

Goal Calculate time of travel for sound through various media.

Problem An explosion occurs 275 m above an 867-m-thick ice sheet that lies over ocean water. If the air temperature is \(-7.00°C\), how long does it take the sound to reach a research vessel 1 250 m below the ice? Neglect any changes in the bulk modulus and density with temperature and depth. (Use \(B_{\text{ice}} = 9.2 \times 10^9 \text{ Pa}\).)

Strategy Calculate the speed of sound in air with Equation 14.4 and use \(d = vt\) to find the time needed for the sound to reach the surface of the ice. Use Equation 14.1 to compute the speed of sound in ice, again finding the time with the distance equation. Finally, use the speed of sound in salt water to find the time needed to traverse the water and then sum the three times.

Solution

Calculate the speed of sound in air at \(-7.00°C\), which is equivalent to 266 K:

\[
v_{\text{air}} = (331 \text{ m/s})\sqrt{\frac{T}{273 \text{ K}}} = (331 \text{ m/s})\sqrt{\frac{266 \text{ K}}{273 \text{ K}}} = 327 \text{ m/s}
\]

Calculate the travel time through the air:

\[
t_{\text{air}} = \frac{d}{v_{\text{air}}} = \frac{275 \text{ m}}{327 \text{ m/s}} = 0.841 \text{ s}
\]

Compute the speed of sound in ice, using the bulk modulus and density of ice:

\[
v_{\text{ice}} = \sqrt{\frac{B}{\rho}} = \sqrt{\frac{9.2 \times 10^9 \text{ Pa}}{917 \text{ kg/m}^3}} = 3.2 \times 10^3 \text{ m/s}
\]

Compute the travel time through the ice:

\[
t_{\text{ice}} = \frac{d}{v_{\text{ice}}} = \frac{867 \text{ m}}{3 \times 200 \text{ m/s}} = 0.27 \text{ s}
\]

Compute the travel time through the ocean water:

\[
t_{\text{water}} = \frac{d}{v_{\text{water}}} = \frac{1250 \text{ m}}{1530 \text{ m/s}} = 0.817 \text{ s}
\]

Sum the three times to obtain the total time of propagation:

\[
t_{\text{tot}} = t_{\text{air}} + t_{\text{ice}} + t_{\text{water}} = 0.841 \text{ s} + 0.27 \text{ s} + 0.817 \text{ s} = 1.93 \text{ s}
\]

Remarks Notice that the speed of sound is highest in solid ice, second highest in liquid water, and slowest in air.

QUESTION 14.1

Is the speed of sound in rubber higher or lower than the speed of sound in aluminum? Why?

EXERCISE 14.1

Compute the speed of sound in the following substances at 273 K: (a) lead \((Y = 1.6 \times 10^{10} \text{ Pa})\), (b) mercury \((B = 2.8 \times 10^{10} \text{ Pa})\), and (c) air at \(-15.0°C\).

Answers (a) \(1.2 \times 10^3 \text{ m/s}\) (b) \(1.4 \times 10^3 \text{ m/s}\) (c) \(322 \text{ m/s}\)

14.4 Energy and Intensity of Sound Waves

As the tines of a tuning fork move back and forth through the air, they exert a force on a layer of air and cause it to move. In other words, the tines do work on the layer of air. That the fork pours sound energy into the air is one reason the vibration of the fork slowly dies out. (Other factors, such as the energy lost to friction as the tines bend, are also responsible for the lessening of movement.)
The average intensity I of a wave on a given surface is defined as the rate at which energy flows through the surface, $\Delta E/\Delta t$, divided by the surface area A:

$$I = \frac{1}{A} \frac{\Delta E}{\Delta t}$$ \hspace{1cm} \text{[14.5]}

where the direction of energy flow is perpendicular to the surface at every point.

SI unit: watt per meter squared (W/m²)

A rate of energy transfer is power, so Equation 14.5 can be written in the alternate form

$$I = \frac{\text{power}}{\text{area}} = \frac{\mathcal{P}}{A}$$ \hspace{1cm} \text{[14.6]}

where \mathcal{P} is the sound power passing through the surface, measured in watts, and the intensity again has units of watts per square meter.

The faintest sounds the human ear can detect at a frequency of 1000 Hz have an intensity of about 1×10^{-12} W/m². This intensity is called the threshold of hearing. The loudest sounds the ear can tolerate have an intensity of about 1 W/m² (the threshold of pain). At the threshold of hearing, the increase in pressure in the ear is approximately 3×10^{-5} Pa over normal atmospheric pressure. Because atmospheric pressure is about 1×10^5 Pa, this means the ear can detect pressure fluctuations as small as about 3 parts in 10^9! The maximum displacement of an air molecule at the threshold of hearing is about 1×10^{-11} m, which is a remarkably small number! If we compare this displacement with the diameter of a molecule (about 10^{-10} m), we see that the ear is an extremely sensitive detector of sound waves.

The loudest sounds the human ear can tolerate at 1 kHz correspond to a pressure variation of about 29 Pa away from normal atmospheric pressure, with a maximum displacement of air molecules of 1×10^{-5} m.

Intensity Level in Decibels

The loudest tolerable sounds have intensities about 1.0×10^{12} times greater than the faintest detectable sounds. The most intense sound, however, isn’t perceived as being 1.0×10^{12} times louder than the faintest sound because the sensation of loudness is approximately logarithmic in the human ear. (For a review of logarithms, see Section A.3, heading G, in Appendix A.) The relative intensity of a sound is called the **intensity level** or **decibel level**, defined by

$$\beta = 10 \log \left(\frac{I}{I_0} \right)$$ \hspace{1cm} \text{[14.7]}

The constant $I_0 = 1.0 \times 10^{-12}$ W/m² is the reference intensity, the sound intensity at the threshold of hearing, I is the intensity, and β is the corresponding intensity level measured in decibels (dB). (The word *decibel*, which is one-tenth of a *bel*, comes from the name of the inventor of the telephone, Alexander Graham Bell (1847–1922)).

To get a feel for various decibel levels, we can substitute a few representative numbers into Equation 14.7, starting with $I = 1.0 \times 10^{-12}$ W/m²:

$$\beta = 10 \log \left(\frac{1.0 \times 10^{-12} \text{ W/m}^2}{1.0 \times 10^{-12} \text{ W/m}^2} \right) = 10 \log \left(1 \right) = 0 \text{ dB}$$

From this result, we see that the lower threshold of human hearing has been chosen to be zero on the decibel scale. Progressing upward by powers of ten yields

$$\beta = 10 \log \left(\frac{1.0 \times 10^{-11} \text{ W/m}^2}{1.0 \times 10^{-12} \text{ W/m}^2} \right) = 10 \log \left(10 \right) = 10 \text{ dB}$$

$$\beta = 10 \log \left(\frac{1.0 \times 10^{-10} \text{ W/m}^2}{1.0 \times 10^{-12} \text{ W/m}^2} \right) = 10 \log \left(100 \right) = 20 \text{ dB}$$
Notice the pattern: Multiplying a given intensity by ten adds 10 \(\text{db} \) to the intensity level. This pattern holds throughout the decibel scale. For example, a 50\(\text{dB} \) sound is 10 times as intense as a 40\(\text{dB} \) sound, whereas a 60\(\text{dB} \) sound is 100 times as intense as a 40\(\text{dB} \) sound.

On this scale, the threshold of pain \((I = 1.0 \text{ W/m}^2) \) corresponds to an intensity level of \(\beta = 10 \log (1/1 \times 10^{-12}) = 10 \log (10^{12}) = 120 \text{ dB} \). Nearby jet airplanes can create intensity levels of 150 \(\text{dB} \), and subways and riveting machines have levels of 90 to 100 \(\text{dB} \). The electronically amplified sound heard at rock concerts can attain levels of up to 120 \(\text{dB} \), the threshold of pain. Exposure to such high intensity levels can seriously damage the ear. Earplugs are recommended whenever prolonged intensity levels exceed 90 \(\text{dB} \). Recent evidence suggests that noise pollution, which is common in most large cities and in some industrial environments, may be a contributing factor to high blood pressure, anxiety, and nervousness. Table 14.2 gives the approximate intensity levels of various sounds.

EXAMPLE 14.2 A Noisy Grinding Machine

Goal Working with watts and decibels.

Problem A noisy grinding machine in a factory produces a sound intensity of \(1.00 \times 10^{-5} \text{ W/m}^2 \). Calculate (a) the decibel level of this machine and (b) the new intensity level when a second, identical machine is added to the factory. (c) A certain number of additional such machines are put into operation alongside these two machines. When all the machines are running at the same time the decibel level is 77.0 \(\text{dB} \). Find the sound intensity.

Strategy Parts (a) and (b) require substituting into the decibel formula, Equation 14.7, with the intensity in part (b) twice the intensity in part (a). In part (c), the intensity level in decibels is given, and it’s necessary to work backwards, using the inverse of the logarithm function, to get the intensity in watts per meter squared.

Solution

(a) Calculate the intensity level of the single grinder.

Substitute the intensity into the decibel formula:

\[
\beta = 10 \log \left(\frac{1.00 \times 10^{-5} \text{ W/m}^2}{1.00 \times 10^{-12} \text{ W/m}^2} \right) = 10 \log (10^7)
\]

\[= 70.0 \text{ dB} \]

(b) Calculate the new intensity level when an additional machine is added.

Substitute twice the intensity of part (a) into the decibel formula:

\[
\beta = 10 \log \left(\frac{2.00 \times 10^{-5} \text{ W/m}^2}{1.00 \times 10^{-12} \text{ W/m}^2} \right) = 73.0 \text{ dB}
\]

(c) Find the intensity corresponding to an intensity level of 77.0 \(\text{dB} \).

Substitute 77.0 \(\text{dB} \) into the decibel formula and divide both sides by 10:

\[
7.70 = \log \left(\frac{I}{10^{-12} \text{ W/m}^2} \right)
\]

Make each side the exponent of 10. On the right-hand side, \(10^{\log u} = u \), by definition of base 10 logarithms.

\[
10^{7.70} = 5.01 \times 10^7 = \frac{I}{1.00 \times 10^{-12} \text{ W/m}^2}
\]

\[
I = 5.01 \times 10^{-5} \text{ W/m}^2
\]

Remarks The answer is five times the intensity of the single grinder, so in part (c) there are five such machines operating simultaneously. Because of the logarithmic definition of intensity level, large changes in intensity correspond to small changes in intensity level.

TABLE 14.2

<table>
<thead>
<tr>
<th>Source of Sound</th>
<th>(\beta) (dB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nearby jet airplane</td>
<td>150</td>
</tr>
<tr>
<td>Jackhammer, machine gun</td>
<td>130</td>
</tr>
<tr>
<td>Siren, rock concert</td>
<td>120</td>
</tr>
<tr>
<td>Subway, power mower</td>
<td>100</td>
</tr>
<tr>
<td>Busy traffic</td>
<td>80</td>
</tr>
<tr>
<td>Vacuum cleaner</td>
<td>70</td>
</tr>
<tr>
<td>Normal conversation</td>
<td>50</td>
</tr>
<tr>
<td>Mosquito buzzing</td>
<td>40</td>
</tr>
<tr>
<td>Whisper</td>
<td>30</td>
</tr>
<tr>
<td>Rustling leaves</td>
<td>10</td>
</tr>
<tr>
<td>Threshold of hearing</td>
<td>0</td>
</tr>
</tbody>
</table>

EXAMPLE 14.2 A Noisy Grinding Machine

Goal Working with watts and decibels.

Problem A noisy grinding machine in a factory produces a sound intensity of \(1.00 \times 10^{-5} \text{ W/m}^2 \). Calculate (a) the decibel level of this machine and (b) the new intensity level when a second, identical machine is added to the factory. (c) A certain number of additional such machines are put into operation alongside these two machines. When all the machines are running at the same time the decibel level is 77.0 \(\text{dB} \). Find the sound intensity.

Strategy Parts (a) and (b) require substituting into the decibel formula, Equation 14.7, with the intensity in part (b) twice the intensity in part (a). In part (c), the intensity level in decibels is given, and it’s necessary to work backwards, using the inverse of the logarithm function, to get the intensity in watts per meter squared.

Solution

(a) Calculate the intensity level of the single grinder.

Substitute the intensity into the decibel formula:

\[
\beta = 10 \log \left(\frac{1.00 \times 10^{-5} \text{ W/m}^2}{1.00 \times 10^{-12} \text{ W/m}^2} \right) = 10 \log (10^7)
\]

\[= 70.0 \text{ dB} \]

(b) Calculate the new intensity level when an additional machine is added.

Substitute twice the intensity of part (a) into the decibel formula:

\[
\beta = 10 \log \left(\frac{2.00 \times 10^{-5} \text{ W/m}^2}{1.00 \times 10^{-12} \text{ W/m}^2} \right) = 73.0 \text{ dB}
\]

(c) Find the intensity corresponding to an intensity level of 77.0 \(\text{dB} \).

Substitute 77.0 \(\text{dB} \) into the decibel formula and divide both sides by 10:

\[
7.70 = \log \left(\frac{I}{10^{-12} \text{ W/m}^2} \right)
\]

Make each side the exponent of 10. On the right-hand side, \(10^{\log u} = u \), by definition of base 10 logarithms.

\[
10^{7.70} = 5.01 \times 10^7 = \frac{I}{1.00 \times 10^{-12} \text{ W/m}^2}
\]

\[
I = 5.01 \times 10^{-5} \text{ W/m}^2
\]

Remarks The answer is five times the intensity of the single grinder, so in part (c) there are five such machines operating simultaneously. Because of the logarithmic definition of intensity level, large changes in intensity correspond to small changes in intensity level.
QUESTION 14.2
By how many decibels is the sound intensity level raised when the sound intensity is doubled?

EXERCISE 14.2
Suppose a manufacturing plant has an average sound intensity level of 97.0 dB created by 25 identical machines.
(a) Find the total intensity created by all the machines. (b) Find the sound intensity created by one such machine.
(c) What’s the sound intensity level if five such machines are running?

Answers
(a) $5.01 \times 10^{-3} \text{ W/m}^2$
(b) $2.00 \times 10^{-4} \text{ W/m}^2$
(c) 90.0 dB

Federal OSHA regulations now demand that no office or factory worker be exposed to noise levels that average more than 85 dB over an 8-h day. From a management point of view, here’s the good news: one machine in the factory may produce a noise level of 70 dB, but a second machine, though doubling the total intensity, increases the noise level by only 3 dB. Because of the logarithmic nature of intensity levels, doubling the intensity doesn’t double the intensity level; in fact, it alters it by a surprisingly small amount. This means that equipment can be added to the factory without appreciably altering the intensity level of the environment.

Now here’s the bad news: as you remove noisy machinery, the intensity level isn’t lowered appreciably. In Exercise 14.2, reducing the intensity level by 7 dB would require the removal of 20 of the 25 machines! To lower the level another 7 dB would require removing 80% of the remaining machines, in which case only one machine would remain.

14.5 SPHERICAL AND PLANE WAVES

If a small spherical object oscillates so that its radius changes periodically with time, a spherical sound wave is produced (Fig. 14.4). The wave moves outward from the source at a constant speed.

Because all points on the vibrating sphere behave in the same way, we conclude that the energy in a spherical wave propagates equally in all directions. This means that no one direction is preferred over any other. If P_w is the average power emitted by the source, then at any distance r from the source, this power must be distributed over a spherical surface of area $4\pi r^2$, assuming no absorption in the medium. (Recall that $4\pi r^2$ is the surface area of a sphere.) Hence, the intensity I of the sound at a distance r from the source is

$$I = \frac{\text{average power}}{\text{area}} = \frac{P_w}{4\pi r^2}$$ \[14.8\]

This equation shows that the intensity of a wave decreases with increasing distance from its source, as you might expect. The fact that I varies as $1/r^2$ is a result of the assumption that the small source (sometimes called a point source) emits a spherical wave. (In fact, light waves also obey this so-called inverse-square relationship.) Because the average power is the same through any spherical surface centered at the source, we see that the intensities at distances r_1 and r_2 (Fig. 14.4) from the center of the source are

$$I_1 = \frac{P_w}{4\pi r_1^2}, \quad I_2 = \frac{P_w}{4\pi r_2^2}$$

The ratio of the intensities at these two spherical surfaces is

$$\frac{I_1}{I_2} = \frac{r_2^2}{r_1^2}$$ \[14.9\]

It’s useful to represent spherical waves graphically with a series of circular arcs (lines of maximum intensity) concentric with the source representing part of a spherical surface, as in Figure 14.5. We call such an arc a wave front. The distance between adjacent wave fronts equals the wavelength λ. The radial lines pointing outward from the source and perpendicular to the arcs are called rays.
Now consider a small portion of a wave front that is at a great distance (relative to λ) from the source, as in Figure 14.6. In this case the rays are nearly parallel to each other and the wave fronts are very close to being planes. At distances from the source that are great relative to the wavelength, therefore, we can approximate the wave front with parallel planes, called plane waves. Any small portion of a spherical wave that is far from the source can be considered a plane wave. Figure 14.7 illustrates a plane wave propagating along the x-axis. If the positive x-direction is taken to be the direction of the wave motion (or ray) in this figure, then the wave fronts are parallel to the plane containing the y- and z-axes.

FIGURE 14.6 Far away from a point source, the wave fronts are nearly parallel planes and the rays are nearly parallel lines perpendicular to the planes. Hence, a small segment of a spherical wave front is approximately a plane wave.

FIGURE 14.7 A representation of a plane wave moving in the positive x-direction with a speed v. The wave fronts are planes parallel to the y-plane.

EXAMPLE 14.3 *Intensity Variations of a Point Source*

Goal Relate sound intensities and their distances from a point source.

Problem A small source emits sound waves with a power output of 80.0 W. (a) Find the intensity 3.00 m from the source. (b) At what distance would the intensity be one-fourth as much as it is at $r = 3.00$ m? (c) Find the distance at which the sound level is 40.0 dB.

Strategy The source is small, so the emitted waves are spherical and the intensity in part (a) can be found by substituting values into Equation 14.8. Part (b) involves solving for r in Equation 14.8 followed by substitution (although Eq. 14.9 can be used instead). In part (c), convert from the sound intensity level to the intensity in W/m2, using Equation 14.7. Then substitute into Equation 14.9 (although Eq. 14.8 could be used instead) and solve for r^2.

Solution

(a) Find the intensity 3.00 m from the source.

Substitute $P_w = 80.0$ W and $r = 3.00$ m into Equation 14.8:

$$I = \frac{P_w}{4\pi r^2} = \frac{80.0 \text{ W}}{4\pi(3.00 \text{ m})^2} = 0.707 \text{ W/m}^2$$

(b) At what distance would the intensity be one-fourth as much as it is at $r = 3.00$ m?

Take $I = (0.707 \text{ W/m}^2)/4$, and solve for r in Equation 14.8:

$$r = \left(\frac{P_w}{4\pi I}\right)^{1/2} = \left[\frac{80.0 \text{ W}}{4\pi(0.707 \text{ W/m}^2)/4.0}\right]^{1/2} = 6.00 \text{ m}$$

(c) Find the distance at which the sound level is 40.0 dB.

Convert the intensity level of 40.0 dB to an intensity in W/m2 by solving Equation 14.7 for I:

$$40.0 = 10 \log \left(\frac{I}{I_0}\right) \rightarrow 4.00 = \log \left(\frac{I}{I_0}\right)$$

$$10^{4.00} = \frac{I}{I_0} \rightarrow I = 10^{4.00}I_0 = 1.00 \times 10^{-8} \text{ W/m}^2$$
Remarks Once the intensity is known at one position a certain distance away from the source, it’s easier to use Equation 14.9 rather than Equation 14.8 to find the intensity at any other location. This is particularly true for part (b), where, using Equation 14.9, we can see right away that doubling the distance reduces the intensity to one-fourth its previous value.

QUESTION 14.3
The power output of a sound system is increased by a factor of 25. By what factor should you adjust your distance from the speakers so the sound intensity is the same?

EXERCISE 14.3
Suppose a certain jet plane creates an intensity level of 125 dB at a distance of 5.00 m. What intensity level does it create on the ground directly underneath it when flying at an altitude of 2.00 km?

Answer 73.0 dB

14.6 THE DOPPLER EFFECT
If a car or truck is moving while its horn is blowing, the frequency of the sound you hear is higher as the vehicle approaches you and lower as it moves away from you. This phenomenon is one example of the Doppler effect, named for Austrian physicist Christian Doppler (1803–1853), who discovered it. The same effect is heard if you’re on a motorcycle and the horn is stationary: the frequency is higher as you approach the source and lower as you move away.

Although the Doppler effect is most often associated with sound, it’s common to all waves, including light.

In deriving the Doppler effect, we assume the air is stationary and that all speed measurements are made relative to this stationary medium. The speed \(v_O \) is the speed of the observer, \(v_S \) is the speed of the source, and \(v \) is the speed of sound.

Case 1: The Observer Is Moving Relative to a Stationary Source
In Active Figure 14.8 an observer is moving with a speed of \(v_O \) toward the source (considered a point source), which is at rest \((v_S = 0) \).

We take the frequency of the source to be \(f_S \), the wavelength of the source to be \(\lambda_S \), and the speed of sound in air to be \(v \). If both observer and source are stationary, the observer detects \(f_S \) wave fronts per second. (That is, when \(v_O = 0 \) and \(v_S = 0 \), the observed frequency \(f_O \) equals the source frequency \(f_S \).) When moving toward the source, the observer moves a distance of \(v_O t \) in \(t \) seconds. During this interval, the observer detects an additional number of wave fronts. The number of extra wave fronts is equal to the distance traveled, \(v_O t \), divided by the wavelength \(\lambda_S \):

\[
\text{Additional wave fronts detected} = \frac{v_O t}{\lambda_S}
\]

Divide this equation by the time \(t \) to get the number of additional wave fronts detected per second, \(v_O / \lambda_S \). Hence, the frequency heard by the observer is increased to

\[
f_O = f_S + \frac{v_O}{\lambda_S}
\]
Substituting $\lambda_S = v/f_S$ into this expression for f_O, we obtain

$$f_O = f_S \left(\frac{v + v_O}{v} \right)$$ \[14.10\]

When the observer is moving away from a stationary source (Fig. 14.9), the observed frequency decreases. A derivation yields the same result as Equation 14.10, but with $v - v_O$ in the numerator. Therefore, when the observer is moving away from the source, substitute $-v_O$ for v_O in Equation 14.10.

Case 2: The Source Is Moving Relative to a Stationary Observer

Now consider a source moving toward an observer at rest, as in Active Figure 14.10. Here, the wave fronts passing observer A are closer together because the source is moving in the direction of the outgoing wave. As a result, the wavelength λ_O measured by observer A is shorter than the wavelength λ_S of the source at rest. During each vibration, which lasts for an interval T (the period), the source moves a distance $v_S T = v_S/f_S$ and the wavelength is shortened by that amount. The observed wavelength is therefore given by

$$\lambda_O = \lambda_S - \frac{v_S}{f_S}$$

Because $\lambda_S = v/f_S$, the frequency observed by A is

$$f_O = \frac{v}{\lambda_O} = \frac{v}{\lambda_S - \frac{v_S}{f_S}} = \frac{v}{\lambda_S - v_S}$$

or

$$f_O = f_S \left(\frac{v}{v - v_S} \right)$$ \[14.11\]

As expected, the observed frequency increases when the source is moving toward the observer. When the source is moving away from an observer at rest, the minus sign in the denominator must be replaced with a plus sign, so the factor becomes $(v + v_S)$.

General Case

When both the source and the observer are in motion relative to Earth, Equations 14.10 and 14.11 can be combined to give

$$f_O = f_S \left(\frac{v + v_O}{v - v_S} \right)$$ \[14.12\]

In this expression, the signs for the values substituted for v_O and v_S depend on the direction of the velocity. When the observer moves toward the source, a positive Doppler shift equation—observer and source in motion

Tip 14.2 Doppler Effect Doesn’t Depend on Distance

The sound from a source approaching at constant speed will increase in intensity, but the observed (elevated) frequency will remain unchanged. The Doppler effect doesn’t depend on distance.

Active Figure 14.10

(a) A source S moving with speed v_S toward stationary observer A and away from stationary observer B. Observer A hears an increased frequency, and observer B hears a decreased frequency.
Sound speed is substituted for \(v_O \); when the observer moves away from the source, a negative speed is substituted for \(v_O \). Similarly, a positive speed is substituted for \(v_S \) when the source moves toward the observer, a negative speed when the source moves away from the observer.

Choosing incorrect signs is the most common mistake made in working a Doppler effect problem. The following rules may be helpful: The word toward is associated with an increase in the observed frequency; the words away from are associated with a decrease in the observed frequency.

These two rules derive from the physical insight that when the observer is moving toward the source (or the source toward the observer), there is a smaller observed period between wave crests, hence a larger frequency, with the reverse holding—a smaller observed frequency—when the observer is moving away from the source (or the source away from the observer). Keep the physical insight in mind whenever you’re in doubt about the signs in Equation 14.12: Adjust them as necessary to get the correct physical result.

The second most common mistake made in applying Equation 14.12 is to accidentally reverse numerator and denominator. Some find it helpful to remember the equation in the following form:

\[
\frac{f_O}{v + v_O} = \frac{f_S}{v - v_S}
\]

The advantage of this form is its symmetry: both sides are very nearly the same, with \(O \)'s on the left and \(S \)'s on the right. Forgetting which side has the plus sign and which has the minus sign is not a serious problem as long as physical insight is used to check the answer and make adjustments as necessary.

QUICK QUIZ 14.2 Suppose you’re on a hot air balloon ride, carrying a buzzer that emits a sound of frequency \(f \). If you accidentally drop the buzzer over the side while the balloon is rising at constant speed, what can you conclude about the sound you hear as the buzzer falls toward the ground?

(a) The frequency and intensity increase. (b) The frequency decreases and the intensity increases. (c) The frequency decreases and the intensity decreases. (d) The frequency remains the same, but the intensity decreases.

APPLYING PHYSICS 14.2 OUT-OF-TUNE SPEAKERS

Suppose you place your stereo speakers far apart and run past them from right to left or left to right. If you run rapidly enough and have excellent pitch discrimination, you may notice that the music playing seems to be out of tune when you’re between the speakers. Why?

Explanation When you are between the speakers, you are running away from one of them and toward the other, so there is a Doppler shift downward for the sound from the speaker behind you and a Doppler shift upward for the sound from the speaker ahead of you. As a result, the sound from the two speakers will not be in tune. A calculation shows that a world-class sprinter could run fast enough to generate about a semitone difference in the sound from the two speakers.

EXAMPLE 14.4 Listen, but Don’t Stand on the Track

Goal Solve a Doppler shift problem when only the source is moving.

Problem A train moving at a speed of 40.0 m/s sounds its whistle, which has a frequency of \(5.00 \times 10^2 \) Hz. Determine the frequency heard by a stationary observer as the train approaches the observer. The ambient temperature is 24.0°C.
Strategy Use Equation 14.4 to get the speed of sound at the ambient temperature, then substitute values into Equation 14.12 for the Doppler shift. Because the train approaches the observer, the observed frequency will be larger. Choose the sign of \(v_S \) to reflect this fact.

Solution Use Equation 14.4 to calculate the speed of sound in air at \(T = 24.0^\circ C \):

\[
v = (331 \text{ m/s}) \sqrt{\frac{T}{273 \text{ K}}}
\]

\[
v = (331 \text{ m/s}) \sqrt{\frac{(273 + 24.0) \text{ K}}{273 \text{ K}}} = 345 \text{ m/s}
\]

The observer is stationary, so \(v_O = 0 \). The train is moving toward the observer, so \(v_S = +40.0 \text{ m/s} \) (positive).

Substitute these values and the speed of sound into the Doppler shift equation:

\[
fo = f_S \left(\frac{v + v_O}{v - v_S} \right)
\]

\[
fo = (5.00 \times 10^2 \text{ Hz}) \left(\frac{345 \text{ m/s}}{345 \text{ m/s} - 40.0 \text{ m/s}} \right) = 566 \text{ Hz}
\]

Remark If the train were going away from the observer, \(v_S = -40.0 \text{ m/s} \) would have been chosen instead.

QUESTION 14.4 Does the Doppler shift change due to temperature variations? If so, why? For typical daily variations in temperature in a moderate climate, would any change in the Doppler shift be best characterized as (a) nonexistent, (b) small, or (c) large?

EXERCISE 14.4 Determine the frequency heard by the stationary observer as the train recedes from the observer.

Answer 448 Hz

EXAMPLE 14.5 The Noisy Siren

Goal Solve a Doppler shift problem when both the source and observer are moving.

Problem An ambulance travels down a highway at a speed of 75.0 mi/h, its siren emitting sound at a frequency of \(4.00 \times 10^2 \text{ Hz} \). What frequency is heard by a passenger in a car traveling at 55.0 mi/h in the opposite direction as the car and ambulance (a) approach each other and (b) pass and move away from each other? Take the speed of sound in air to be \(v = 345 \text{ m/s} \).

Strategy Aside from converting mi/h to m/s, this problem only requires substitution into the Doppler formula, but two signs must be chosen correctly in each part. In part (a) the observer moves toward the source and the source moves toward the observer, so both \(v_O \) and \(v_S \) should be chosen to be positive. Switch signs after they pass each other.

Solution Convert the speeds from mi/h to m/s:

\[
v_S = (75.0 \text{ mi/h}) \left(\frac{0.447 \text{ m/s}}{1.00 \text{ mi/h}} \right) = 33.5 \text{ m/s}
\]

\[
v_O = (55.0 \text{ mi/h}) \left(\frac{0.447 \text{ m/s}}{1.00 \text{ mi/h}} \right) = 24.6 \text{ m/s}
\]

(a) Compute the observed frequency as the ambulance and car approach each other.

Each vehicle goes toward the other, so substitute \(v_O = +24.6 \text{ m/s} \) and \(v_S = +33.5 \text{ m/s} \) into the Doppler shift formula:

\[
f_O = f_S \left(\frac{v + v_O}{v - v_S} \right)
\]

\[
f_O = (4.00 \times 10^2 \text{ Hz}) \left(\frac{345 \text{ m/s} + 24.6 \text{ m/s}}{345 \text{ m/s} - 33.5 \text{ m/s}} \right) = 475 \text{ Hz}
\]
Chapter 14 Sound

Remarks Notice how the signs were handled. In part (b) the negative signs were required on the speeds because both observer and source were moving away from each other. Sometimes, of course, one of the speeds is negative and the other is positive.

QUESTION 14.5
Is the Doppler shift affected by sound intensity level?

EXERCISE 14.5
Repeat this problem, but assume the ambulance and car are going the same direction, with the ambulance initially behind the car. The speeds and the frequency of the siren are the same as in the example. Find the frequency heard by the observer in the car (a) before and (b) after the ambulance passes the car. Note: The highway patrol subsequently gives the driver of the car a ticket for not pulling over for an emergency vehicle!

Answers (a) 411 Hz (b) 391 Hz

Shock Waves

What happens when the source speed v_s exceeds the wave velocity v? Figure 14.11a describes this situation graphically. The circles represent spherical wave fronts emitted by the source at various times during its motion. At $t = 0$, the source is at point S_0, and at some later time t, the source is at point S_t. In the interval t, the wave front centered at S_0 reaches a radius of vt. In this same interval, the source travels to S_t, a distance of v_st. At the instant the source is at S_t, the waves just beginning to be generated at this point have wave fronts of zero radius. The line drawn from S_t to the wave front centered on S_0 is tangent to all other wave fronts generated at intermediate times. All such tangent lines lie on the surface of a cone. The angle θ between one of these tangent lines and the direction of travel is given by

$$\sin \theta = \frac{v}{v_s}$$

The ratio v/v_s is called the Mach number. The conical wave front produced when $v_s > v$ (supersonic speeds) is known as a shock wave. Figure 14.11b is a photograph of a bullet traveling at supersonic speed through the hot air rising above a candle.

![Figure 14.11](image_not_available_due_to_copy_right_restrictions)
Notice the shock waves in the vicinity of the bullet. Another interesting example of a shock wave is the V-shaped wave front produced by a boat (the bow wave) when the boat's speed exceeds the speed of the water waves (Fig. 14.12).

Jet aircraft and space shuttles traveling at supersonic speeds produce shock waves that are responsible for the loud explosion, or sonic boom, heard on the ground. A shock wave carries a great deal of energy concentrated on the surface of the cone, with correspondingly great pressure variations. Shock waves are unpleasant to hear and can damage buildings when aircraft fly supersonically at low altitudes. In fact, an airplane flying at supersonic speeds produces a double boom because two shock waves are formed: one from the nose of the plane and one from the tail (Fig. 14.13).

QUICK QUIZ 14.3 As an airplane flying with constant velocity moves from a cold air mass into a warm air mass, does the Mach number (a) increase, (b) decrease, or (c) remain the same?

14.7 INTERFERENCE OF SOUND WAVES

Sound waves can be made to interfere with each other, a phenomenon that can be demonstrated with the device shown in Figure 14.14. Sound from a loudspeaker at S is sent into a tube at P, where there is a T-shaped junction. The sound splits and follows two separate pathways, indicated by the red arrows. Half of the sound travels upward, half downward. Finally, the two sounds merge at an opening where a listener places her ear. If the two paths \(r_1 \) and \(r_2 \) have the same length, waves that enter the junction will separate into two halves, travel the two paths, and then combine again at the ear. This reuniting of the two waves produces constructive interference, and the listener hears a loud sound. If the upper path is adjusted to be one full wavelength longer than the lower path, destructive interference of the two waves occurs again, and a loud sound is detected at the receiver. We have the following result: If the path difference \(r_2 - r_1 \) is zero or some integer multiple of wavelengths, then constructive interference occurs and

\[
 r_2 - r_1 = n\lambda \quad (n = 0, 1, 2, \ldots) \tag{14.13}
\]

Suppose, however, that one of the path lengths, \(r_2 \), is adjusted so that the upper path is half a wavelength longer than the lower path \(r_1 \). In this case an entering sound wave splits and travels the two paths as before, but now the wave along the upper path must travel a distance equivalent to half a wavelength farther than the wave traveling along the lower path. As a result, the crest of one wave meets the trough of the other when they merge at the receiver, causing the two waves to cancel each other. This phenomenon is called totally destructive interference, and
no sound is detected at the receiver. In general, if the path difference \(r_2 - r_1 \) is \(\frac{1}{4}, \frac{1}{2}, \frac{3}{4}, 2, \frac{5}{4}, \ldots \) wavelengths, destructive interference occurs and

\[
 r_2 - r_1 = \left(n + \frac{1}{2} \right) \lambda \quad (n = 0, 1, 2, \ldots)
\]

Nature provides many other examples of interference phenomena, most notably in connection with light waves, described in Chapter 24.

In connecting the wires between your stereo system and loudspeakers, you may notice that the wires are usually color coded and that the speakers have positive and negative signs on the connections. The reason for this is that the speakers need to be connected with the same “polarity.” If they aren’t, then the same electrical signal fed to both speakers will result in one speaker cone moving outward at the same time that the other speaker cone is moving inward. In this case, the sound leaving the two speakers will be 180° out of phase with each other. If you are sitting midway between the speakers, the sounds from both speakers travel the same distance and preserve the phase difference they had when they left. In an ideal situation, for a 180° phase difference, you would get complete destructive interference and no sound! In reality, the cancellation is not complete and is much more significant for bass notes (which have a long wavelength) than for the shorter wavelength treble notes. Nevertheless, to avoid a significant reduction in the intensity of bass notes, the color-coded wires and the signs on the speaker connections should be carefully noted.

EXAMPLE 14.6 Two Speakers Driven by the Same Source

Goal Use the concept of interference to compute a frequency.

Problem Two speakers placed 3.00 m apart are driven by the same oscillator (Fig. 14.15). A listener is originally at point \(O \), which is located 8.00 m from the center of the line connecting the two speakers. The listener then walks to point \(P \), which is a perpendicular distance 0.350 m from \(O \), before reaching the first minimum in sound intensity. What is the frequency of the oscillator? Take the speed of sound in air to be \(v_s = 343 \text{ m/s} \).

Strategy The position of the first minimum in sound intensity is given, which is a point of destructive interference. We can find the path lengths \(r_1 \) and \(r_2 \) with the Pythagorean theorem and then use Equation 14.14 for destructive interference to find the wavelength \(\lambda \). Using \(v = f \lambda \) then yields the frequency.

Solution Use the Pythagorean theorem to find the path lengths \(r_1 \) and \(r_2 \):

\[
 r_1 = \sqrt{(8.00 \text{ m})^2 + (1.15 \text{ m})^2} = 8.08 \text{ m}
\]

\[
 r_2 = \sqrt{(8.00 \text{ m})^2 + (1.85 \text{ m})^2} = 8.21 \text{ m}
\]

Substitute these values and \(n = 0 \) into Equation 14.14, solving for the wavelength:

\[
 r_2 - r_1 = \left(n + \frac{1}{2} \right) \lambda \\
 8.21 \text{ m} - 8.08 \text{ m} = 0.13 \text{ m} = \lambda/2 \quad \rightarrow \quad \lambda = 0.26 \text{ m}
\]

Solve \(v = f \lambda \) for the frequency \(f \) and substitute the speed of sound and the wavelength:

\[
 f = \frac{v}{\lambda} = \frac{343 \text{ m/s}}{0.26 \text{ m}} = 1.3 \text{ kHz}
\]

Remark For problems involving constructive interference, the only difference is that Equation 14.13, \(r_2 - r_1 = n \lambda \), would be used instead of Equation 14.14.

QUESTION 14.6

True or False: In the same context, smaller wavelengths of sound would create more interference maxima and minima than longer wavelengths.
EXERCISE 14.6
If the oscillator frequency is adjusted so that the location of the first minimum is at a distance of 0.750 m from O, what is the new frequency?

Answer 0.624 kHz

14.8 Standing Waves

Standing waves can be set up in a stretched string by connecting one end of the string to a stationary clamp and connecting the other end to a vibrating object, such as the end of a tuning fork, or by shaking the hand holding the string up and down at a steady rate (Fig. 14.16). Traveling waves then reflect from the ends and move in both directions on the string. The incident and reflected waves combine according to the superposition principle. (See Section 13.10.) If the string vibrates at exactly the right frequency, the wave appears to stand still, hence its name, standing wave. A node occurs where the two traveling waves always have the same magnitude of displacement but the opposite sign, so the net displacement is zero at that point. There is no motion in the string at the nodes, but midway between two adjacent nodes, at an antinode, the string vibrates with the largest amplitude.

Figure 14.17 shows snapshots of the oscillation of a standing wave during half of a cycle. The pink arrows indicate the direction of motion of different parts of the string. Notice that all points on the string oscillate together vertically with the same frequency, but different points have different amplitudes of motion. The points of attachment to the wall and all other stationary points on the string are called nodes, labeled N in Figure 14.17a. From the figure, observe that the distance between adjacent nodes is one-half the wavelength of the wave:

\[d_{NN} = \frac{1}{2} \lambda \]

Consider a string of length \(L \) that is fixed at both ends, as in Active Figure 14.18. For a string, we can set up standing-wave patterns at many frequencies—the more
loops, the higher the frequency. Three such patterns are shown in Active Figures
14.18b, 14.18c, and 14.18d. Each has a characteristic frequency, which we will now
calculate.

First, the ends of the string must be nodes, because these points are fixed. If
the string is displaced at its midpoint and released, the vibration shown in Active
Figure 14.18b can be produced, in which case the center of the string is an anti-
ode, labeled A. Note that from end to end, the pattern is N–A–N. The distance
from a node to its adjacent antinode, N–A, is always equal to a quarter wavelength,
\(\lambda_1/4 \). There are two such segments, N–A and A–N, so
\[L = 2(\lambda_1/4) = \lambda_1/2, \]
and \(\lambda_1 = 2L \). The frequency of this vibration is therefore

\[f_1 = \frac{v}{\lambda_1} = \frac{v}{2L}. \]

[14.15]

Recall that the speed of a wave on a string is
\[v = \sqrt{F/\mu}, \]
where \(F \) is the tension in
the string and \(\mu \) is its mass per unit length (Chapter 13). Substituting into Equation
14.15, we obtain

\[f_1 = \frac{1}{2L} \sqrt{\frac{F}{\mu}} \]

[14.16]

This lowest frequency of vibration is called the fundamental frequency of the
vibrating string, or the first harmonic.

The first harmonic has nodes only at the ends: the points of attachment, with
node-antinode pattern of N–A–N. The next harmonic, called the second harmonic
(also called the first overtone), can be constructed by inserting an additional node–
antinode segment between the endpoints. This makes the pattern N–A–N–A–N, as
in Active Figure 14.18c. We count the node–antinode pairs: N–A, A–N, N–A, and
A–N, four segments in all, each representing a quarter wavelength. We then have
\[L = 4(\lambda_2/4) = \lambda_2, \]
and the second harmonic (first overtone) is

\[f_2 = \frac{v}{\lambda_2} = \frac{v}{L} = 2 \left(\frac{v}{2L} \right) = 2f_1 \]

This frequency is equal to twice the fundamental frequency. The third harmonic
(second overtone) is constructed similarly. Inserting one more N–A segment, we obtain Active Figure 14.18d, the pattern of nodes reading N–A–N–A–N–A–N–N–A–N–N–A–N–A–N–N–A–N–N.
There are six node–antinode segments, so \(L = 6(\lambda_3/4) = 3(\lambda_3/2) \), which means
that \(\lambda_3 = 2L/3 \), giving

\[f_3 = \frac{v}{\lambda_3} = \frac{3v}{2L} = 3f_1 \]

All the higher harmonics, it turns out, are positive integer multiples of the
fundamental:

\[f_n = nf_1 = \frac{n}{2L} \sqrt{\frac{F}{\mu}} \quad n = 1, 2, 3, \ldots \]

[14.17]

The frequencies \(f_1, 2f_1, 3f_1, \) and so on form a harmonic series.

QUICK QUIZ 14.4 Which of the following frequencies are higher harmonics of a string with fundamental frequency of 150 Hz? (a) 200 Hz (b) 300 Hz (c) 400 Hz (d) 500 Hz (e) 600 Hz

When a stretched string is distorted to a shape that corresponds to any one of its
harmonics, after being released it vibrates only at the frequency of that harmonic.
If the string is struck or bowed, however, the resulting vibration includes different
amounts of various harmonics, including the fundamental frequency. Waves not
in the harmonic series are quickly damped out on a string fixed at both ends. In
effect, when disturbed, the string “selects” the standing-wave frequencies. As we’ll
see later, the presence of several harmonics on a string gives stringed instruments their characteristic sound, which enables us to distinguish one from another even when they are producing identical fundamental frequencies.

The frequency of a string on a musical instrument can be changed by varying either the tension or the length. The tension in guitar and violin strings is varied by turning pegs on the neck of the instrument. As the tension is increased, the frequency of the harmonic series increases according to Equation 14.17. Once the instrument is tuned, the musician varies the frequency by pressing the strings against the neck at a variety of positions, thereby changing the effective lengths of the vibrating portions of the strings. As the length is reduced, the frequency again increases, as follows from Equation 14.17.

Finally, Equation 14.17 shows that a string of fixed length can be made to vibrate at a lower fundamental frequency by increasing its mass per unit length. This increase is achieved in the bass strings of guitars and pianos by wrapping the strings with metal windings.

APPLICATION

Tuning a Musical Instrument

EXAMPLE 14.7 Guitar Fundamentals

Goal Apply standing-wave concepts to a stringed instrument.

Problem The high E string on a certain guitar measures 64.0 cm in length and has a fundamental frequency of 329 Hz. When a guitarist presses down so that the string is in contact with the first fret (Fig. 14.19a), the string is shortened so that it plays an F note that has a frequency of 349 Hz. (a) How far is the fret from the nut? (b) Overtones can be produced on a guitar string by gently placing the index finger in the location of a node of a higher harmonic. The string should be touched, but not depressed against a fret. (Given the width of a finger, pressing too hard will damp out higher harmonics as well.) The fundamental frequency is thereby suppressed, making it possible to hear overtones. Where on the guitar string relative to the nut should the finger be lightly placed so as to hear the second harmonic? The fourth harmonic? (This is equivalent to finding the location of the nodes in each case.)

Strategy For part (a) use Equation 14.15, corresponding to the fundamental frequency, to find the speed of waves on the string. Shortening the string by playing a higher note doesn’t affect the wave speed, which depends only on the tension and linear density of the string (which are unchanged). Solve Equation 14.15 for the new length L, using the new fundamental frequency, and subtract this length from the original length to find the distance from the nut to the first fret. In part (b) remember that the distance from node to node is half a wavelength. Calculate the wavelength, divide it in two, and locate the nodes, which are integral numbers of half-wavelengths from the nut. Note: The nut is a small piece of wood or ebony at the top of the fret board. The distance from the nut to the bridge (below the sound hole) is the length of the string. (See Fig. 14.19b.)

Solution

(a) Find the distance from the nut to the first fret.

Substitute $L_0 = 0.640$ m and $f_1 = 329$ Hz into Equation 14.15, finding the wave speed on the string:

$$f_1 = \frac{v}{2L_0}$$

$$v = 2L_0f_1 = 2(0.640 \text{ m})(329 \text{ Hz}) = 421 \text{ m/s}$$

Solve Equation 14.15 for the length L, and substitute the wave speed and the frequency of an F note.

$$L = \frac{v}{2f_1} = \frac{421 \text{ m/s}}{2(349 \text{ Hz})} = 0.603 \text{ m} = 60.3 \text{ cm}$$

Subtract this length from the original length L_0 to find the distance from the nut to the first fret:

$$\Delta x = L_0 - L = 64.0 \text{ cm} - 60.3 \text{ cm} = 3.7 \text{ cm}$$
(b) Find the locations of nodes for the second and fourth harmonics.

The second harmonic has a wavelength

$$\lambda_2 = \frac{1}{2} L_0 = 32.0 \text{ cm}$$

The distance from nut to node corresponds to half a wavelength.

The fourth harmonic, of wavelength

$$\lambda_4 = \frac{1}{4} L_0 = 32.0 \text{ cm}$$

has three nodes between the endpoints:

$$\Delta x = \frac{1}{3} \lambda_4 = 16.0 \text{ cm}$$ \hspace{1cm} \Delta x = 2(\lambda_4/2) = 32.0 \text{ cm}$$

$$\Delta x = 3(\lambda_4/2) = 48.0 \text{ cm}$$

Remarks Placing a finger at the position $\Delta x = 32.0 \text{ cm}$ damps out the fundamental and odd harmonics, but not all the higher even harmonics. The second harmonic dominates, however, because the rest of the string is free to vibrate. Placing the finger at $\Delta x = 16.0 \text{ cm}$ or 48.0 cm damps out the first through third harmonics, allowing the fourth harmonic to be heard.

QUESTION 14.7

True or False: If a guitar string has length L, gently placing a thin object at the position $\frac{1}{n} L$ will always result in the sounding a higher harmonic, where n is a positive integer.

EXERCISE 14.7

Pressing the E string down on the fret board just above the second fret pinches the string firmly against the fret, giving an F-sharp, which has frequency $3.70 \times 10^2 \text{ Hz}$. (a) Where should the second fret be located? (b) Find two locations where you could touch the open E string and hear the third harmonic.

Answers (a) 7.1 cm from the nut and 3.4 cm from the first fret. Note that the distance from the first to the second fret isn't the same as from the nut to the first fret. (b) 21.3 cm and 42.7 cm from the nut

EXAMPLE 14.8 Harmonics of a Stretched Wire

Goal Calculate string harmonics, relate them to sound, and combine them with tensile stress.

Problem (a) Find the frequencies of the fundamental, second, and third harmonics of a steel wire 1.00 m long with a mass per unit length of $2.00 \times 10^{-3} \text{ kg/m}$ and under a tension of 80.0 N. (b) Find the wavelengths of the sound waves created by the vibrating wire for all three modes. Assume the speed of sound in air is 345 m/s. (c) Suppose the wire is carbon steel with a density of $7.80 \times 10^3 \text{ kg/m}^3$, a cross-sectional area $A = 2.56 \times 10^{-7} \text{ m}^2$, and an elastic limit of $2.80 \times 10^8 \text{ Pa}$. Find the fundamental frequency if the wire is tightened to the elastic limit. Neglect any stretching of the wire (which would slightly reduce the mass per unit length).

Strategy (a) It’s easiest to find the speed of waves on the wire then substitute into Equation 14.15 to find the first harmonic. The next two are multiples of the first, given by Equation 14.17. (b) The frequencies of the sound waves are the same as the frequencies of the vibrating wire, but the wavelengths are different. Use $v_s = f \lambda$, where v_s is the speed of sound in air, to find the wavelengths in air. (c) Find the force corresponding to the elastic limit and substitute it into Equation 14.16.

Solution (a) Find the first three harmonics at the given tension.

Use Equation 13.18 to calculate the speed of the wave on the wire:

$$v = \sqrt{\frac{F}{\mu}} = \sqrt{\frac{80.0 \text{ N}}{2.00 \times 10^{-3} \text{ kg/m}}} = 2.00 \times 10^2 \text{ m/s}$$

Find the wire’s fundamental frequency from Equation 14.15:

$$f_1 = \frac{v}{2L} = \frac{2.00 \times 10^2 \text{ m/s}}{2(1.00 \text{ m})} = 1.00 \times 10^2 \text{ Hz}$$

Find the next two harmonics by multiplication:

$$f_2 = 2f_1 = 2.00 \times 10^2 \text{ Hz}$$

$$f_3 = 3f_1 = 3.00 \times 10^2 \text{ Hz}$$
(b) Find the wavelength of the sound waves produced.
\[\lambda_1 = \frac{v_1}{f_1} = \frac{(345 \text{ m/s})}{(1.00 \times 10^2 \text{ Hz})} = 3.45 \text{ m} \]
\[\lambda_2 = \frac{v_1}{f_2} = \frac{(345 \text{ m/s})}{(2.00 \times 10^2 \text{ Hz})} = 1.73 \text{ m} \]
\[\lambda_3 = \frac{v_1}{f_3} = \frac{(345 \text{ m/s})}{(3.00 \times 10^2 \text{ Hz})} = 1.15 \text{ m} \]

(c) Find the fundamental frequency corresponding to the elastic limit.
Calculate the tension in the wire from the elastic limit:
\[F = \frac{A}{A_{\text{elastic limit}}} \]
\[F = (2.80 \times 10^8 \text{ Pa})(2.56 \times 10^{-7} \text{ m}^2) = 71.7 \text{ N} \]

Substitute the values of \(F, \mu, \) and \(L \) into Equation 14.16:
\[f_1 = \frac{1}{2L} \sqrt{\frac{F}{\mu}} \]
\[f_1 = \frac{1}{2(1.00 \text{ m})} \sqrt{\frac{71.7 \text{ N}}{2.00 \times 10^{-3} \text{ kg/m}}} = 94.7 \text{ Hz} \]

Remarks From the answer to part (c), it appears we need to choose a thicker wire or use a better grade of steel with a higher elastic limit. The frequency corresponding to the elastic limit is smaller than the fundamental!

QUESTION 14.8
A string on a guitar is replaced with one of lower linear density. To obtain the same frequency sound as previously, must the tension of the new string be (a) greater than, (b) less than, or (c) equal to the tension in the old string?

EXERCISE 14.8
(a) Find the fundamental frequency and second harmonic if the tension in the wire is increased to 115 N. (Assume the wire doesn’t stretch or break.) (b) Using a sound speed of 345 m/s, find the wavelengths of the sound waves produced.

Answers
(a) \(1.20 \times 10^2 \text{ Hz}, 2.40 \times 10^2 \text{ Hz} \)
(b) 2.88 m, 1.44 m

14.9 FORCED VIBRATIONS AND RESONANCE

In Chapter 13 we learned that the energy of a damped oscillator decreases over time because of friction. It’s possible to compensate for this energy loss by applying an external force that does positive work on the system.

For example, suppose an object–spring system having some natural frequency of vibration \(f_0 \) is pushed back and forth by a periodic force with frequency \(f \). The system vibrates at the frequency \(f \) of the driving force. This type of motion is referred to as a *forced vibration*. Its amplitude reaches a maximum when the frequency of the driving force equals the natural frequency of the system \(f_0 \), called the *resonant frequency* of the system. Under this condition, the system is said to be in *resonance*.

In Section 14.8 we learned that a stretched string can vibrate in one or more of its natural modes. Here again, if a periodic force is applied to the string, the amplitude of vibration increases as the frequency of the applied force approaches one of the string’s natural frequencies of vibration.

Resonance vibrations occur in a wide variety of circumstances. Figure 14.20 illustrates one experiment that demonstrates a resonance condition. Several pendulums of different lengths are suspended from a flexible beam. If one of them, such as \(A \), is set in motion, the others begin to oscillate because of vibrations in the flexible beam. Pendulum \(C \), the same length as \(A \), oscillates with the greatest amplitude because its natural frequency matches that of pendulum \(A \) (the driving force).

Another simple example of resonance is a child being pushed on a swing, which is essentially a pendulum with a natural frequency that depends on its length. The swing is kept in motion by a series of appropriately timed pushes. For its amplitude to increase, the swing must be pushed each time it returns to the person’s hands.

FIGURE 14.20 Resonance. If pendulum \(A \) is set in oscillation, only pendulum \(C \), with a length matching that of \(A \), will eventually oscillate with a large amplitude, or resonate. The arrows indicate motion perpendicular to the page.
This corresponds to a frequency equal to the natural frequency of the swing. If the energy put into the system per cycle of motion equals the energy lost due to friction, the amplitude remains constant.

Opera singers have been known to set crystal goblets in audible vibration with their powerful voices, as shown in Figure 14.21. This is yet another example of resonance: The sound waves emitted by the singer can set up large-amplitude vibrations in the glass. If a highly amplified sound wave has the right frequency, the amplitude of forced vibrations in the glass increases to the point where the glass becomes heavily strained and shatters.

The classic example of structural resonance occurred in 1940, when the Tacoma Narrows bridge in the state of Washington was set in oscillation by the wind (Fig. 14.22). The amplitude of the oscillations increased rapidly and reached a high value until the bridge ultimately collapsed (probably because of metal fatigue). In recent years, however, a number of researchers have called this explanation into question. Gusts of wind, in general, don’t provide the periodic force necessary for a sustained resonance condition, and the bridge exhibited large twisting oscillations, rather than the simple up-and-down oscillations expected of resonance.

A more recent example of destruction by structural resonance occurred during the Loma Prieta earthquake near Oakland, California, in 1989. In a mile-long section of the double-decker Nimitz Freeway, the upper deck collapsed onto the lower deck, killing several people. The collapse occurred because that particular section was built on mud fill, whereas other parts were built on bedrock. As seismic waves pass through mud fill or other loose soil, their speed decreases and their amplitude increases. The section of the freeway that collapsed oscillated at the same frequency as other sections, but at a much larger amplitude.

14.10 STANDING WAVES IN AIR COLUMNS

Standing longitudinal waves can be set up in a tube of air, such as an organ pipe, as the result of interference between sound waves traveling in opposite directions. The relationship between the incident wave and the reflected wave depends on whether the reflecting end of the tube is open or closed. A portion of the sound wave is reflected back into the tube even at an open end. If one end is closed, a node must exist at that end because the movement of air is restricted. If the end is open, the elements of air have complete freedom of motion, and an antinode exists.

Figure 14.23a shows the first three modes of vibration of a pipe open at both ends. When air is directed against an edge at the left, longitudinal standing waves are formed and the pipe vibrates at its natural frequencies. Note that, from end to end, the pattern is A–N–A, the same pattern as in the vibrating string, except node and antinode have exchanged positions. As before, an antinode and its adjacent node, A–N, represent a quarter-wavelength, and there are two, A–N and N–A, so \(L = 2(\lambda_1/4) = \lambda_1/2 \) and \(\lambda_1 = 2L \). The fundamental frequency of the pipe open at both ends is then \(f_1 = v/\lambda_1 = v/2L \). The next harmonic has an additional node and antinode between the ends, creating the pattern A–N–A–N–A.
A frequency consists of a single antinode–node pair, \(A - N \), so and the closed end is a node (Fig. 14.23b). In such a pipe, the fundamental frequency is

\[
f_n = \frac{v}{2L} n = nf_1 \quad n = 1, 2, 3, \ldots
\]

where \(v \) is the speed of sound in air. Notice the similarity to Equation 14.17, which also involves multiples of the fundamental.

If a pipe is open at one end and closed at the other, the open end is an antinode and the closed end is a node (Fig. 14.23b). In such a pipe, the fundamental frequency consists of a single antinode–node pair, \(A - N \), so \(L = \lambda_2 / 4 \) and \(\lambda_1 = 4L \). The fundamental harmonic for a pipe closed at one end is then \(f_1 = v / \lambda_1 = v / 4L \). The first overtone therefore has frequency \(f_2 = v / \lambda_2 = v / 2L = 2f_1 \). All higher harmonics, it turns out, are positive integer multiples of the fundamental:

\[
f_n = \frac{n v}{2L} = nf_1 \quad n = 1, 2, 3, \ldots
\]

QUICK QUIZ 14.5 A pipe open at both ends resonates at a fundamental frequency \(f_{\text{open}} \). When one end is covered and the pipe is again made to resonate, the fundamental frequency is \(f_{\text{closed}} \). Which of the following expressions describes how these two resonant frequencies compare? (a) \(f_{\text{closed}} = f_{\text{open}} \) (b) \(f_{\text{closed}} = \frac{3}{2} f_{\text{open}} \) (c) \(f_{\text{closed}} = 2 f_{\text{open}} \) (d) \(f_{\text{closed}} = \frac{5}{2} f_{\text{open}} \) (e) none of these
Balboa Park in San Diego has an outdoor organ. When the air temperature increases, the fundamental frequency of one of the organ pipes (a) increases, (b) decreases, (c) stays the same, or (d) is impossible to determine. (The thermal expansion of the pipe is negligible.)

Why do passing ocean waves sometimes cause the water in a harbor to undergo very large oscillations, called a seiche (pronounced saysh)?

Explanation Water in a harbor is enclosed and possesses a natural frequency based on the size of the harbor. This is similar to the natural frequency of the enclosed air in a bottle, which can be excited by blowing across the edge of the opening. Ocean waves pass by the opening of the harbor at a certain frequency. If this frequency matches that of the enclosed harbor, then a large standing wave can be set up in the water by resonance. This situation can be simulated by carrying a fish tank filled with water. If your walking frequency matches the natural frequency of the water as it sloshes back and forth, a large standing wave develops in the fish tank.

Why do the strings go flat and the wind instruments go sharp during a performance if an orchestra doesn’t warm up beforehand?

Explanation Without warming up, all the instruments will be at room temperature at the beginning of the concert. As the wind instruments are played, they fill with warm air from the player’s exhalation. The increase in temperature of the air in the instruments causes an increase in the speed of sound, which raises the resonance frequencies of the air columns. As a result, the instruments go sharp. The strings on the stringed instruments also increase in temperature due to the friction of rubbing with the bow. This results in thermal expansion, which causes a decrease in tension in the strings. With the decrease in tension, the wave speed on the strings drops and the fundamental frequencies decrease, so the stringed instruments go flat.

A bugle has no valves, keys, slides, or finger holes. How can it be used to play a song?

Explanation Songs for the bugle are limited to harmonics of the fundamental frequency because there is no control over frequencies without valves, keys, slides, or finger holes. The player obtains different notes by changing the tension in the lips as the bugle is played, exciting different harmonics. The normal playing range of a bugle is among the third, fourth, fifth, and sixth harmonics of the fundamental. “Reveille,” for example, is played with just the three notes G, C, and F, and “Taps” is played with these three notes and the G one octave above the lower G.

Goal Find frequencies of open and closed pipes.

Problem A pipe is 2.46 m long. (a) Determine the frequencies of the first three harmonics if the pipe is open at both ends. Take 343 m/s as the speed of sound in air. (b) How many harmonic frequencies of this pipe lie in the audible range, from 20 Hz to 20 000 Hz? (c) What are the three lowest possible frequencies if the pipe is closed at one end and open at the other?

Strategy Substitute into Equation 14.18 for part (a) and Equation 14.19 for part (c). All harmonics, $n = 1, 2, 3 \ldots$ are available for the pipe open at both ends, but only the harmonics with $n = 1, 3, 5, \ldots$ for the pipe closed at one end. For part (b), set the frequency in Equation 14.18 equal to 2.00×10^4 Hz.
QUESTION 14.9
True or False: The fundamental wavelength of a longer pipe is greater than the fundamental wavelength of a shorter pipe.

EXERCISE 14.9
(a) What length pipe open at both ends has a fundamental frequency of 3.70×10^2 Hz? Find the first overtone. (b) If the one end of this pipe is now closed, what is the new fundamental frequency? Find the first overtone. (c) If the pipe is open at one end only, how many harmonics are possible in the normal hearing range from 20 to 20 000 Hz?

Answer
(a) 0.464 m, 7.40×10^2 Hz (b) 185 Hz, 555 Hz (c) 54

Solution
(a) Find the frequencies if the pipe is open at both ends.

Substitute into Equation 14.18, with $n = 1$:

$$f_1 = \frac{v}{2L} = \frac{343 \text{ m/s}}{2(2.46 \text{ m})} = 69.7 \text{ Hz}$$

Multiply to find the second and third harmonics:

$$f_2 = 2f_1 = 139 \text{ Hz} \quad f_3 = 3f_1 = 209 \text{ Hz}$$

(b) How many harmonics lie between 20 Hz and 20 000 Hz for this pipe?

Set the frequency in Equation 14.18 equal to 2.00×10^4 Hz and solve for n:

$$f_n = n \frac{v}{2L} = n \frac{343 \text{ m/s}}{2(2.46 \text{ m})} = 2.00 \times 10^4 \text{ Hz}$$

This works out to $n = 286.88$, which must be truncated down ($n = 287$ gives a frequency over 2.00×10^4 Hz);

$$n = 286$$

(c) Find the frequencies for the pipe closed at one end.

Apply Equation 14.19 with $n = 1$:

$$f_1 = \frac{v}{4L} = \frac{343 \text{ m/s}}{4(2.46 \text{ m})} = 34.9 \text{ Hz}$$

The next two harmonics are odd multiples of the first:

$$f_3 = 3f_1 = 105 \text{ Hz} \quad f_5 = 5f_1 = 175 \text{ Hz}$$

EXAMPLE 14.10 Resonance in a Tube of Variable Length

Goal Understand resonance in tubes and perform elementary calculations.

Problem Figure 14.24a shows a simple apparatus for demonstrating resonance in a tube. A long tube open at both ends is partially submerged in a beaker of water, and a vibrating tuning fork of unknown frequency is placed near the top of the tube. The length of the air column, L, is adjusted by moving the tube vertically. The sound waves generated by the fork are reinforced when the length of the air column corresponds to one of the resonant frequencies of the tube. Suppose the smallest value of L for which a peak occurs in the sound intensity is 9.00 cm. (a) With this measurement, determine the frequency of the tuning fork. (b) Find the wavelength and the next two air-column lengths giving resonance. Take the speed of sound to be 345 m/s.

Strategy Once the tube is in the water, the setup is the same as a pipe closed at one end. For part (a), substitute values for v and L into Equation 14.19 with $n = 1$ and find the frequency of the tuning fork. (b) The next resonance maximum occurs when the water level is low enough to allow a second node, which is another half-wavelength in distance. The third resonance occurs when the third node is reached, requiring yet another half-wavelength of distance. The frequency in each case is the same because it’s generated by the tuning fork.
Solution
(a) Find the frequency of the tuning fork.
Substitute $n = 1, v = 345 \text{ m/s},$ and $L_1 = 9.00 \times 10^{-2} \text{ m}$ into Equation 14.19:

$$f_1 = \frac{v}{4L_1} = \frac{345 \text{ m/s}}{4(9.00 \times 10^{-2} \text{ m})} = 958 \text{ Hz}$$

(b) Find the wavelength and the next two water levels giving resonance.
Calculate the wavelength, using the fact that, for a tube open at one end, $\lambda = 4L$ for the fundamental.

$$\lambda = 4L_1 = 4(9.00 \times 10^{-2} \text{ m}) = 0.360 \text{ m}$$

Add a half-wavelength of distance to L_1 to get the next resonance position:

$$L_2 = L_1 + \lambda/2 = 0.090 \text{ m} + 0.180 \text{ m} = 0.270 \text{ m}$$

Add another half-wavelength to L_2 to obtain the third resonance position:

$$L_3 = L_2 + \lambda/2 = 0.270 \text{ m} + 0.180 \text{ m} = 0.450 \text{ m}$$

Remark This experimental arrangement is often used to measure the speed of sound, in which case the frequency of the tuning fork must be known in advance.

QUESTION 14.10
True or False: The resonant frequency of an air column depends on the length of the column and the speed of sound.

EXERCISE 14.10
An unknown gas is introduced into the aforementioned apparatus using the same tuning fork, and the first resonance occurs when the air column is 5.84 cm long. Find the speed of sound in the gas.

Answer 224 m/s

14.11 BEATS
The interference phenomena we have been discussing so far have involved the superposition of two or more waves with the same frequency, traveling in opposite directions. Another type of interference effect results from the superposition of two waves with slightly different frequencies. In such a situation, the waves at some fixed point are periodically in and out of phase, corresponding to an alternation in time between constructive and destructive interference. To understand this phenomenon, consider Active Figure 14.25. The two waves shown in Active Figure 14.25a were emitted by two tuning forks having slightly different frequencies; Active Figure 14.25b shows the superposition of these waves. At some time $t_a,$ the waves are in phase and constructive interference occurs, as demonstrated by the resultant curve in Active Figure 14.25b. At some later time, however, the vibrations of the two forks move out of step with each other. At time $t_b,$ one fork emits a compression while the other emits a rarefaction, and destructive interference occurs, as demonstrated by the curve shown. As time passes, the vibrations of the two forks

[ACTIVE FIGURE 14.25]
Beats are formed by the combination of two waves of slightly different frequencies traveling in the same direction. (a) The individual waves heard by an observer at a fixed point in space. (b) The combined wave has an amplitude (dashed line) that oscillates in time.
move out of phase, then into phase again, and so on. As a consequence, a listener at some fixed point hears an alternation in loudness, known as beats. The number of beats per second, or the beat frequency, equals the difference in frequency between the two sources:

\[f_b = |f_2 - f_1| \]

where \(f_b \) is the beat frequency and \(f_1 \) and \(f_2 \) are the two frequencies. The absolute value is used because the beat frequency is a positive quantity and will occur regardless of the order of subtraction.

A stringed instrument such as a piano can be tuned by beating a note on the instrument against a note of known frequency. The string can then be tuned to the desired frequency by adjusting the tension until no beats are heard.

QUICK QUIZ 14.7 You are tuning a guitar by comparing the sound of the string with that of a standard tuning fork. You notice a beat frequency of 5 Hz when both sounds are present. As you tighten the guitar string, the beat frequency rises steadily to 8 Hz. To tune the string exactly to the tuning fork, you should (a) continue to tighten the string, (b) loosen the string, or (c) impossible to determine from the given information.

EXAMPLE 14.11 Sour Notes

Goal Apply the beat frequency concept.

Problem A certain piano string is supposed to vibrate at a frequency of \(4.40 \times 10^2 \) Hz. To check its frequency, a tuning fork known to vibrate at a frequency of \(4.40 \times 10^2 \) Hz is sounded at the same time the piano key is struck, and a beat frequency of 4 beats per second is heard. (a) Find the two possible frequencies at which the string could be vibrating. (b) Suppose the piano tuner runs toward the piano, holding the vibrating tuning fork while his assistant plays the note, which is at 436 Hz. At his maximum speed, the piano tuner notices the beat frequency drops from 4 Hz to 2 Hz (without going through a beat frequency of zero). How fast is he moving? Use a sound speed of 343 m/s. (c) While the piano tuner is running, what beat frequency is observed by the assistant? *Note: Assume all numbers are accurate to two decimal places, necessary for this last calculation.*

Strategy (a) The beat frequency is equal to the absolute value of the difference in frequency between the two sources of sound and occurs if the piano string is tuned either too high or too low. Solve Equation 14.20 for these two possible frequencies. (b) Moving toward the piano raises the observed piano string frequency. Solve the Doppler shift formula, Equation 14.12, for the speed of the observer. (c) The assistant observes a Doppler shift for the tuning fork. Apply Equation 14.12.

Solution

(a) Find the two possible frequencies.

Case 1: \(f_2 - f_1 \) is already positive, so just drop the absolute-value signs:

\[f_b = f_2 - f_1 \rightarrow 4 \text{ Hz} = f_2 - 4.40 \times 10^2 \text{ Hz} \]

\[f_2 = 444 \text{ Hz} \]

Case 2: \(f_2 - f_1 \) is negative, so drop the absolute-value signs, but apply an overall negative sign:

\[f_b = -(f_2 - f_1) \rightarrow 4 \text{ Hz} = -(f_2 - 4.40 \times 10^2 \text{ Hz}) \]

\[f_2 = 436 \text{ Hz} \]

(b) Find the speed of the observer if running toward the piano results in a beat frequency of 2 Hz.

Apply the Doppler shift to the case where frequency of the piano string heard by the running observer is \(f_0 = 438 \text{ Hz} \):

\[
\begin{aligned}
f_0 &= f_1 \left(\frac{v + v_o}{v} \right) \\
438 \text{ Hz} &= (436 \text{ Hz}) \left(\frac{343 \text{ m/s} + v_o}{343 \text{ m/s}} \right) \\
v_o &= \left(\frac{438 \text{ Hz} - 436 \text{ Hz}}{436 \text{ Hz}} \right) (343 \text{ m/s}) = 1.57 \text{ m/s}
\end{aligned}
\]
14.12 QUALITY OF SOUND

The sound-wave patterns produced by most musical instruments are complex. Figure 14.26 shows characteristic waveforms (pressure is plotted on the vertical axis, time on the horizontal axis) produced by a tuning fork, a flute, and a clarinet, each playing the same steady note. Although each instrument has its own characteristic pattern, the figure reveals that each of the waveforms is periodic. Note that the tuning fork produces only one harmonic (the fundamental frequency), but the two instruments emit mixtures of harmonics. Figure 14.27 graphs the harmonics of the waveforms in Figure 14.26. When the note is played on the flute (Fig. 14.26b), part of the sound consists of a vibration at the fundamental frequency, an even higher intensity is contributed by the second harmonic, the fourth harmonic produces about the same intensity as the fundamental, and so on. These sounds add together according to the principle of superposition to give the complex waveform shown. The clarinet emits a certain intensity at a frequency of the first harmonic, about half as much intensity at the frequency of the second harmonic, and the tuning fork are struck at the same time. (a) Find the two possible frequencies of the string. (b) Assume the actual string frequency is the higher frequency. If the piano tuner runs away from the piano at 4.00 m/s while holding the vibrating tuning fork, what beat frequency does he hear? (c) What beat frequency does the assistant on the bench hear? Use 343 m/s for the speed of sound.

Answers (a) 438 Hz, 442 Hz (b) 3 Hz (c) 7 Hz

EXERCISE 14.11
The assistant adjusts the tension in the same piano string, and a beat frequency of 2.00 Hz is heard when the note and the tuning fork are struck at the same time. (a) Find the two possible frequencies of the string. (b) Assume the actual string frequency is the higher frequency. If the piano tuner runs away from the piano at 4.00 m/s while holding the vibrating tuning fork, what beat frequency does he hear? (c) What beat frequency does the assistant on the bench hear? Use 343 m/s for the speed of sound.

Answers (a) 438 Hz, 442 Hz (b) 3 Hz (c) 7 Hz

Remarks The assistant on the piano bench and the tuner running with the fork observe different beat frequencies. Many physical observations depend on the state of motion of the observer, a subject discussed more fully in Chapter 26, on relativity.

QUESTION 14.11
Why aren’t beats heard when two different notes are played on the piano?
so forth. The resultant superposition of these frequencies produces the pattern shown in Figure 14.26c. The tuning fork (Figs. 14.26a and 14.27a) emits sound only at the frequency of the first harmonic.

In music, the characteristic sound of any instrument is referred to as the quality, or timbre, of the sound. The quality depends on the mixture of harmonics in the sound. We say that the note C on a flute differs in quality from the same C on a clarinet. Instruments such as the bugle, trumpet, violin, and tuba are rich in harmonics. A musician playing a wind instrument can emphasize one or another of these harmonics by changing the configuration of the lips, thereby playing different musical notes with the same valve openings.

Tip 14.5 Pitch Is Not the Same as Frequency

Although pitch is related mostly (but not completely) to frequency, the two terms are not the same. A phrase such as “the pitch of the sound” is incorrect because pitch is not a physical property of the sound. Frequency is the physical measurement of the number of oscillations per second of the sound. Pitch is a psychological reaction to sound that enables a human being to place the sound on a scale from high to low or from treble to bass. Frequency is the stimulus and pitch is the response.

A professor performs a demonstration in which he breathes helium and then speaks with a comical voice. One student explains, “The velocity of sound in helium is higher than in air, so the fundamental frequency of the standing waves in the mouth is increased.” Another student says, “No, the fundamental frequency is determined by the vocal folds and cannot be changed. Only the quality of the voice has changed.” Which student is correct?

Explanation The second student is correct. The fundamental frequency of the complex tone from the voice is determined by the vibration of the vocal folds and is not changed by substituting a different gas in the mouth. The introduction of the helium into the mouth results in harmonics of higher frequencies being excited more than in the normal voice, but the fundamental frequency of the voice is the same, only the quality has changed. The unusual inclusion of the higher frequency harmonics results in a common description of this effect as a “high-pitched” voice, but that description is incorrect. (It is really a “quack” timbre.)

14.13 THE EAR

The human ear is divided into three regions: the outer ear, the middle ear, and the inner ear (Fig. 14.28). The outer ear consists of the ear canal (which is open to the atmosphere), terminating at the eardrum (tympanum). Sound waves travel...
down the ear canal to the eardrum, which vibrates in and out in phase with the pushes and pulls caused by the alternating high and low pressures of the waves. Behind the eardrum are three small bones of the middle ear, called the hammer, the anvil, and the stirrup because of their shapes. These bones transmit the vibration to the inner ear, which contains the cochlea, a snail-shaped tube about 2 cm long. The cochlea makes contact with the stirrup at the oval window and is divided along its length by the basilar membrane, which consists of small hairs (cilia) and nerve fibers. This membrane varies in mass per unit length and in tension along its length, and different portions of it resonate at different frequencies. (Recall that the natural frequency of a string depends on its mass per unit length and on the tension in it.) Along the basilar membrane are numerous nerve endings, which sense the vibration of the membrane and in turn transmit impulses to the brain. The brain interprets the impulses as sounds of varying frequency, depending on the locations along the basilar membrane of the impulse-transmitting nerves and on the rates at which the impulses are transmitted.

Figure 14.29 shows the frequency response curves of an average human ear for sounds of equal loudness, ranging from 0 to 120 dB. To interpret this series of graphs, take the bottom curve as the threshold of hearing. Compare the intensity level on the vertical axis for the two frequencies 100 Hz and 1000 Hz. The vertical axis shows that the 100-Hz sound must be about 38 dB greater than the 1000-Hz sound to be at the threshold of hearing, which means that the threshold of hearing is very strongly dependent on frequency. The easiest frequencies to hear are around 3300 Hz; those above 12000 Hz or below about 50 Hz must be relatively intense to be heard.

Now consider the curve labeled 80. This curve uses a 1000-Hz tone at an intensity level of 80 dB as its reference. The curve shows that a tone of frequency 100 Hz would have to be about 4 dB louder than the 80-dB, 1000-Hz tone in order to sound as loud. Notice that the curves flatten out as the intensities levels of the sounds increase, so when sounds are loud, all frequencies can be heard equally well.

The small bones in the middle ear represent an intricate lever system that increases the force on the oval window. The pressure is greatly magnified because the surface area of the eardrum is about 20 times that of the oval window (in analogy with a hydraulic press). The middle ear, together with the eardrum and oval window, in effect acts as a matching network between the air in the outer ear and the liquid in the inner ear. The overall energy transfer between the outer ear and the inner ear is highly efficient, with pressure amplification factors of several thousand. In other words, pressure variations in the inner ear are much greater than those in the outer ear.

The ear has its own built-in protection against loud sounds. The muscles connecting the three middle-ear bones to the walls control the volume of the sound.
by changing the tension on the bones as sound builds up, thus hindering their ability to transmit vibrations. In addition, the eardrum becomes stiffer as the sound intensity increases. These two events make the ear less sensitive to loud incoming sounds. There is a time delay between the onset of a loud sound and the ear’s protective reaction, however, so a very sudden loud sound can still damage the ear.

The complex structure of the human ear is believed to be related to the fact that mammals evolved from seagoing creatures. In comparison, insect ears are considerably simpler in design because insects have always been land residents. A typical insect ear consists of an eardrum exposed directly to the air on one side and to an air-filled cavity on the other side. Nerve cells communicate directly with the cavity and the brain, without the need for the complex intermediary of an inner and middle ear. This simple design allows the ear to be placed virtually anywhere on the body. For example, a grasshopper has its ears on its legs. One advantage of the simple insect ear is that the distance and orientation of the ears can be varied so that it is easier to locate sources of sound, such as other insects.

One of the most amazing medical advances in recent decades is the cochlear implant, allowing the deaf to hear. Deafness can occur when the hairlike sensors (cilia) in the cochlea break off over a lifetime or sometimes because of prolonged exposure to loud sounds. Because the cilia don’t grow back, the ear loses sensitivity to certain frequencies of sound. The cochlear implant stimulates the nerves in the ear electronically to restore hearing loss that is due to damaged or absent cilia.

SUMMARY

14.2 Characteristics of Sound Waves

Sound waves are longitudinal waves. Audible waves are sound waves with frequencies between 20 and 20,000 Hz. Infrasonic waves have frequencies below the audible range, and ultrasonic waves have frequencies above the audible range.

14.3 The Speed of Sound

The speed of sound in a medium of bulk modulus B and density ρ is

$$v = \sqrt{\frac{B}{\rho}}$$ \[14.1\]

The speed of sound also depends on the temperature of the medium. The relationship between temperature and the speed of sound in air is

$$v = (331 \text{ m/s}) \sqrt{\frac{T}{273 \text{ K}}}$$ \[14.4\]

where T is the absolute (Kelvin) temperature and 331 m/s is the speed of sound in air at 0°C.

14.4 Energy and Intensity of Sound Waves

The average intensity of sound incident on a surface is defined by

$$I = \frac{\text{power}}{\text{area}} = \frac{P}{A}$$ \[14.6\]

where the power P is the energy per unit time flowing through the surface, which has area A. The intensity level of a sound wave is given by

$$\beta = 10 \log \left(\frac{I}{I_0} \right)$$ \[14.7\]

The constant $I_0 = 1.0 \times 10^{-12} \text{ W/m}^2$ is a reference intensity, usually taken to be at the threshold of hearing, and I is the intensity at level β, measured in decibels (dB).

14.5 Spherical and Plane Waves

The intensity of a spherical wave produced by a point source is proportional to the average power emitted and inversely proportional to the square of the distance from the source:

$$I = \frac{P_{av}}{4\pi r^2}$$ \[14.8\]

14.6 The Doppler Effect

The change in frequency heard by an observer whenever there is relative motion between a source of sound and the observer is called the Doppler effect. If the observer is moving with speed v_O and the source is moving with speed v_S, the observed frequency is

$$f_O = f_S \frac{v + v_O}{v - v_S}$$ \[14.12\]

where v is the speed of sound. A positive speed is substituted for v_O when the observer moves toward the source, a negative speed when the observer moves away from the source. Similarly, a positive speed is substituted for v_S when the sources moves toward the observer, a negative speed when the source moves away.

14.7 Interference of Sound Waves

When waves interfere, the resultant wave is found by adding the individual waves together point by point. When crest meets crest and trough meets trough, the waves undergo constructive interference, with path length difference

$$r_2 - r_1 = n\lambda \quad n = 0, 1, 2, \ldots$$ \[14.13\]
When crest meets trough, destructive interference occurs, with path length difference

\[r_2 - r_1 = (n + \frac{1}{2})\lambda \quad n = 0, 1, 2, \ldots \] \[14.14]\]

14.8 Standing Waves
Standing waves are formed when two waves having the same frequency, amplitude, and wavelength travel in opposite directions through a medium. The natural frequencies of vibration of a stretched string of length \(L \), fixed at both ends, are

\[f_n = n\frac{v}{2L} \quad n = 1, 2, 3, \ldots \] \[14.17]\]

where \(F \) is the tension in the string and \(\mu \) is its mass per unit length.

14.9 Forced Vibrations and Resonance
A system capable of oscillating is said to be in resonance with some driving force whenever the frequency of the driving force matches one of the natural frequencies of the system. When the system is resonating, it oscillates with maximum amplitude.

MULTIPLE-CHOICE QUESTIONS

1. A sound wave traveling in air has a frequency \(f \) and wavelength \(\lambda \). A second sound wave traveling in air has wavelength \(\lambda/2 \). What is the frequency of the second sound wave? (a) \(4f \) (b) \(2f \) (c) \(f \) (d) \(f/2 \) (e) \(f/4 \)

2. What is the speed of a longitudinal wave in a bar of aluminum? (a) 340 m/s (b) 570 m/s (c) 1400 m/s (d) 3200 m/s (e) 5100 m/s

3. Compute the speed of sound in ethyl alcohol. (The bulk modulus of ethyl alcohol = \(1.0 \times 10^9 \) Pa) (a) 1100 m/s (b) 340 m/s (c) 820 m/s (d) 450 m/s (e) 1300 m/s

4. The temperature at Furnace Creek in Death Valley reached 134°F on July 10, 1913. What is the speed of sound in air at this temperature? (a) 321 m/s (b) 343 m/s (c) 364 m/s (d) 375 m/s (e) 405 m/s

5. A point source broadcasts sound into a uniform medium. If the distance from the source is tripled, how does the intensity change? (a) It becomes one-ninth as large. (b) It becomes one-third as large. (c) It is unchanged. (d) It becomes three times larger. (e) It becomes nine times larger.

6. The sound intensity level of a jet plane going down the runway as observed from a certain location is 105 dB. What is the intensity of the sound at this location? (a) \(2.45 \times 10^{-7} \) W/m² (b) \(3.54 \times 10^{-7} \) W/m² (c) \(8.25 \times 10^{-7} \) W/m² (d) \(3.16 \times 10^{-7} \) W/m² (e) \(1.05 \times 10^{-7} \) W/m²

7. If a 1.00-kHz sound source moves at a speed of 50.0 m/s toward a listener who moves at a speed of 30.0 m/s in a direction away from the source, what is the apparent frequency heard by the listener? (The velocity of sound is 340 m/s.) (a) 987 Hz (b) 947 Hz (c) 1060 Hz (d) 1070 Hz (e) 230 Hz

8. A flute has a length of 58.0 cm. If the speed of sound in air is 343 m/s, what is the fundamental frequency of the flute, assuming it is a tube closed at one end and open at the other? (a) 148 Hz (b) 296 Hz (c) 444 Hz (d) 591 Hz (e) 340 Hz

9. When two tuning forks are sounded at the same time, a beat frequency of 5 Hz occurs. If one of the tuning forks has a frequency of 245 Hz, what is the frequency of the other tuning fork? (a) 240 Hz (b) 242.5 Hz (c) 247.5 Hz (d) 250 Hz (e) More than one answer could be correct.

10. What happens to a sound wave travel when it travels from air into water? (a) Its intensity increases. (b) Its wavelength decreases. (c) Its frequency increases. (d) Its frequency remains the same. (e) Its velocity decreases.

11. The fundamental frequency of a resonating pipe is 150 Hz, and the next higher resonant frequencies are 300 Hz and 450 Hz. From this information, what can you conclude? (a) The pipe is open at one end and closed at the other. (b) The pipe could be open at each end or closed at each end. (c) The pipe must be open at each end. (d) The pipe must be closed at each end. (e) The pipe is open at both ends for the lowest frequency, only.

12. As you travel down the highway in your car, an ambulance approaches you from the rear at a high speed,
sounding its siren at a frequency of 500 Hz. Which statement is correct? (a) You hear a frequency less than 500 Hz. (b) You hear a frequency equal to 500 Hz. (c) You hear a frequency greater than 500 Hz. (d) You hear a frequency greater than 500 Hz, whereas the ambulance driver hears a frequency lower than 500 Hz. (e) You hear a frequency less than 500 Hz, whereas the ambulance driver hears a frequency of 500 Hz.

13. Two sirens A and B are sounding so that the frequency from A is twice the frequency from B. Compared with the speed of sound from A, is the speed of sound from B (a) twice as fast, (b) half as fast, (c) four times as fast, (d) one-fourth as fast, or (e) the same?

14. A hollow pipe (such as an organ pipe open at both ends) is made to go into resonance at frequency \(f_{\text{open}} \). One end of the pipe is now covered and the pipe is again made to go into resonance, this time at frequency \(f_{\text{closed}} \). Both resonances are first harmonics. How do these two resonances compare? (a) They are the same. (b) \(f_{\text{closed}} = \frac{2}{3} f_{\text{open}} \) (c) \(f_{\text{closed}} = 2 f_{\text{open}} \) (d) \(f_{\text{open}} = \frac{3}{4} f_{\text{closed}} \) (e) \(f_{\text{closed}} = \frac{1}{2} f_{\text{open}} \)

15. Doubling the power output from a sound source emitting a single frequency will result in what increase in decibel level? (a) 0.50 dB (b) 2.0 dB (c) 3.0 dB (d) 4 dB (e) above 20 dB

CONCEPTUAL QUESTIONS

1. (a) You are driving down the highway in your car when a police car sounding its siren overtakes you and passes you. If its frequency at rest is \(f_0 \), is the frequency you hear while the car is catching up to you higher or lower than \(f_0 \)? (b) What about the frequency you hear after the car has passed you?

2. A crude model of the human throat is that of a pipe open at both ends with a vibrating source to introduce the sound into the pipe at one end. Assuming the vibrating source produces a range of frequencies, discuss the effect of changing the pipe’s length.

3. An autofocus camera sends out a pulse of sound and measures the time taken for the pulse to reach an object, reflect off of it, and return to be detected. Can the temperature affect the camera’s focus?

4. Explain how the distance to a lightning bolt can be determined by counting the seconds between the flash and the sound of thunder.

5. Secret agents in the movies always want to get to a secure phone with a voice scrambler. How do these devices work?

6. Of the following sounds, state which is most likely to have an intensity level of 60 dB: a rock concert, the turning of a page in this text, a normal conversation, a cheering crowd at a football game, or background noise at a church?

7. You are driving toward a cliff and you honk your horn. Is there a Doppler shift of the sound when you hear the echo? If so, is it like a moving source or moving observer? What if the reflection occurs not from a cliff, but from the forward edge of a huge alien spacecraft moving toward you as you drive?

8. The radar systems used by police to detect speeders are sensitive to the Doppler shift of a pulse of radio waves. Discuss how this sensitivity can be used to measure the speed of a car.

9. An archer shoots an arrow from a bow. Does the string of the bow exhibit standing waves after the arrow leaves? If so, and if the bow is perfectly symmetric so that the arrow leaves from the center of the string, what harmonics are excited?

10. A soft drink bottle resonates as air is blown across its top. What happens to the resonant frequency as the level of fluid in the bottle decreases?

11. An airplane mechanic notices that the sound from a twin-engine aircraft varies rapidly in loudness when both engines are running. What could be causing this variation from loud to soft?

12. Why does a vibrating guitar string sound louder when placed on the instrument than it would if allowed to vibrate in the air while off the instrument?

PROBLEMS

The Problems for this chapter may be assigned online at WebAssign.

1. Suppose you hear a clap of thunder 16.2 s after seeing the associated lightning stroke. The speed of sound waves in air is 343 m/s, and the speed of light in air is \(3.00 \times 10^8 \text{m/s} \). How far are you from the lightning stroke?
Do you need to know the value of the speed of light to answer? Explain.

2. Earthquakes at fault lines in Earth’s crust create seismic waves, which are longitudinal (P-waves) or transverse (S-waves). The P-waves have a speed of about 7 km/s. Estimate the average bulk modulus of Earth’s crust given that the density of rock is about 2500 kg/m³.

3. The coldest recorded temperature of air on Earth, −128.6°F, occurred on July 21, 1983, at Vostok, a Russian station in Antarctica. What is the speed of sound in air at this temperature?

4. A dolphin located in seawater at a temperature of 25°C emits a sound directed toward the bottom of the ocean 150 m below. How much time passes before it hears an echo?

5. A group of hikers hears an echo 3.00 s after shouting. If the temperature is 22.0°C, how far away is the mountain that reflected the sound wave?

6. The range of human hearing extends from approximately 20 Hz to 20000 Hz. Find the wavelengths of these extremes at a temperature of 27°C.

7. You are watching a pier being constructed on the far shore of a saltwater inlet when some blasting occurs. You hear the sound in the water 4.50 s before it reaches you through the air. How wide is the inlet? Hint: See Table 14.1. Assume the air temperature is 20°C.

8. A stone is dropped from rest into a well. The sound of the splash is heard exactly 2.00 s later. Find the depth of the well if the air temperature is 10.0°C.

9. A sound wave traveling in air at 65°C has a frequency of 845 Hz. Find (a) the wave speed and (b) the wavelength.

SECTION 14.4 ENERGY AND INTENSITY
OF SOUND WAVES

SECTION 14.5 SPHERICAL AND PLANE WAVES

10. The intensity level produced by a jet airplane at a certain location is 150 dB. (a) Calculate the intensity of the sound wave generated by the jet at the given location. (b) Compare the answer to part (a) to the threshold of pain and explain why employees directing jet airplanes at airports must wear hearing protection equipment.

11. One of the loudest sounds in recent history was that made by the explosion of Krakatoa on August 26–27, 1883. According to barometric measurements, the sound had a decibel level of 180 dB at a distance of 161 km. Assuming the intensity falls off as the inverse of the distance squared, what was the decibel level on Rodriguez Island, 4800 km away?

12. A sound wave from a siren has an intensity of 100.0 W/m² at a certain point, and a second sound wave from a nearby ambulance has an intensity level 10 dB greater than the siren’s sound wave at the same point. What is the intensity level of the sound wave due to the ambulance?

13. A person wears a hearing aid that uniformly increases the intensity level of all audible frequencies of sound by 30.0 dB. The hearing aid picks up sound having a frequency of 250 Hz at an intensity of 3.0 × 10⁻¹¹ W/m². What is the intensity delivered to the eardrum?

14. The area of a typical eardrum is about 5.0 × 10⁻⁵ m². Calculate the sound power (the energy per second) incident on an eardrum at (a) the threshold of hearing and (b) the threshold of pain.

15. The toadfish makes use of resonance in a closed tube to produce very loud sounds. The tube is its swim bladder, used as an amplifier. The sound level of this creature has been measured as high as 100 dB. (a) Calculate the intensity of the sound wave emitted. (b) What is the intensity level if three of these fish try to imitate three frogs by saying “Budweiser” at the same time?

16. A trumpet creates a sound intensity level of 1.15 × 10² dB at a distance of 1.00 m. (a) What is the sound intensity of a trumpet at this distance? (b) What is the sound intensity of five trumpets at this distance? (c) Find the sound intensity of five trumpets at the location of the first row of an audience, 8.00 m away, assuming, for simplicity, the sound energy propagates uniformly in all directions. (d) Calculate the decibel level of the five trumpets in the first row. (e) If the trumpets are being played in an outdoor auditorium, how far away, in theory, can their combined sound be heard? (f) In practice such a sound could not be heard once the listener was 2–3 km away. Why can’t the sound be heard at the distance found in part (e)? Hint: In a very quiet room the ambient sound intensity level is about 30 dB.

17. There is evidence that elephants communicate via infrasound, generating rumbling vocalizations as low as 14 Hz that can travel up to 10 km. The intensity level of these sounds can reach 105 dB, measured a distance of 5.0 m from the source. Determine the intensity level of the infrasound 10 km from the source, assuming the sound energy radiates uniformly in all directions.

18. A family ice show is held at an enclosed arena. The skaters perform to music playing at a level of 80.0 dB. This intensity level is too loud for your baby, who yells at 75.0 dB. (a) What total sound intensity engulfs you? (b) What is the combined sound level?

19. A train sounds its horn as it approaches an intersection. The horn can just be heard at a level of 50 dB by an observer 10 km away. (a) What is the average power generated by the horn? (b) What intensity level of the horn’s sound is observed by someone waiting at an intersection 50 m from the train? Treat the horn as a point source and neglect any absorption of sound by the air.

20. An outside loudspeaker (considered a small source) emits sound waves with a power output of 100 W. (a) Find the intensity level of the sound source. (b) Find the intensity level in decibels at that distance. (c) At what distance would you experience the sound at the threshold of pain, 120 dB?

21. Show that the difference in decibel levels β_2 and β_1 of a sound source is related to the ratio of its distances r_1 and r_2 from the receivers by the formula

$$\beta_2 - \beta_1 = 20 \log \left(\frac{r_1}{r_2} \right)$$
22. A skyrocket explodes 100 m above the ground (Fig. P14.22). Three observers are spaced 100 m apart, with the first (A) directly under the explosion. (a) What is the ratio of the sound intensity heard by observer A to that heard by observer B? (b) What is the ratio of the intensity heard by observer A to that heard by observer C?

23. A commuter train passes a passenger platform at a constant speed of 40.0 m/s. The train horn is sounded at its characteristic frequency of 320 Hz. (a) What overall change in frequency is detected by a person on the platform as the train moves from approaching to receding? (b) What wavelength is detected by a person on the platform as the train approaches?

24. An airplane traveling at half the speed of sound (v = 172 m/s) emits a sound of frequency 5.00 kHz. At what frequency does a stationary listener hear the sound (a) as the plane approaches? (b) After it passes?

25. Two trains on separate tracks move toward each other. Train 1 has a speed of 130 km/h, train 2 a speed of 90.0 km/h. Train 2 blows its horn, emitting a frequency of 500 Hz. What is the frequency heard by the engineer on train 1?

26. At rest, a car’s horn sounds the note A (440 Hz). The horn is sounded while the car is moving down the street. A bicyclist moving in the same direction with one-third the car’s speed hears a frequency of 415 Hz. What is the speed of the car? Is the cyclist ahead of or behind the car?

27. An alert physics student stands beside the tracks as a train rolls slowly past. He notes that the frequency of the train whistle is 442 Hz when the train is approaching him and 441 Hz when the train is receding from him. Using these frequencies, he calculates the speed of the train. What value does he find?

28. A bat flying at 5.00 m/s is chasing an insect flying in the same direction. If the bat emits a 40.0-kHz chirp and receives back an echo at 40.4 kHz, what is the speed of the insect? (Take the speed of sound in air to be 340 m/s.)

29. A tuning fork vibrating at 512 Hz falls from rest and accelerates at 9.80 m/s². How far below the point of release is the tuning fork when waves of frequency 485 Hz reach the release point? Take the speed of sound in air to be 340 m/s.

30. Expectant parents are thrilled to hear their unborn baby’s heartbeat, revealed by an ultrasonic motion detector. Suppose the fetus’s ventricular wall moves in simple harmonic motion with amplitude 1.80 mm and frequency 115 per minute. (a) Find the maximum linear speed of the heart wall. Suppose the motion detector in contact with the mother’s abdomen produces sound at precisely 2 MHz, which travels through tissue at 1.50 km/s. (b) Find the maximum frequency at which sound arrives at the wall of the baby’s heart. (c) Find the maximum frequency at which reflected sound is received by the motion detector. (By electronically “listening” for echoes at a frequency different from the broadcast frequency, the motion detector can produce beeps of audible sound in synchrony with the fetal heartbeat.)

31. The now-discontinued Concorde flew at Mach 1.5, which meant that the speed of the plane was 1.5 times the speed of sound in air. What was the angle between the direction of propagation of the shock wave and the direction of the plane’s velocity?

32. A yellow submarine traveling horizontally at 11.0 m/s uses sonar with a frequency of 5.27 × 10³ Hz. A red submarine is in front of the yellow submarine and moving 3.00 m/s relative to the water in the same direction. A crewman in the red submarine observes sound waves (“pings”) from the yellow submarine. Take the speed of sound in seawater as 1 531 m/s. (a) Write Equation 14.12. (b) Which submarine is the source of the sound? (c) Which submarine carries the observer? (d) Does the motion of the observer’s submarine increase or decrease the time between the pressure maxima of the incoming sound waves? How does that affect the observed period? The observed frequency? (e) Should the sign of vs be positive or negative? (f) Does the motion of the source submarine increase or decrease the time observed between the pressure maxima? How does this motion affect the observed period? The observed frequency? (g) What sign should be chosen for vs? (h) Substitute the appropriate numbers and obtain the frequency observed by the crewman on the red submarine.

Section 14.6 The Doppler Effect

Section 14.7 Interference of Sound Waves

33. A pair of speakers connected to the same sound system face each other, one at x = 0 and the other at x = 4.00 m. If they are playing a sound with frequency 345 Hz, what are the points of constructive interference between the two speakers? (Take the speed of sound as 343 m/s.)

34. The acoustical system shown in Figure 14.14 is driven by a speaker emitting sound of frequency 756 Hz. (a) If constructive interference occurs at a particular instant, by what minimum amount should the path length in the upper U-shaped tube be increased so that destructive interference occurs instead? (b) What minimum increase in the original length of the upper tube will again result in constructive interference? Take the speed of sound as 345 m/s.
The ship in Figure P14.35 travels along a straight line parallel to the shore and 600 m from it. The ship’s radio receives simultaneous signals of the same frequency from antennas A and B. The signals interfere constructively at point C, which is equidistant from A and B. The signal goes through the first minimum at point D. Determine the wavelength of the radio waves.

FIGURE P14.35

Two loudspeakers are placed above and below each other, as in Figure 14.15, and driven by the same source at a frequency of 4.50 × 10^3 Hz. An observer is in front of the speakers (to the right) at point O, at the same distance from each speaker. If the speed of sound is 345 m/s, what minimum vertical distance upward should the top speaker be moved to create destructive interference at point O?

A pair of speakers separated by 0.700 m are driven by the same oscillator at a frequency of 690 Hz. An observer originally positioned at one of the speakers begins to walk along a line perpendicular to the line joining the speakers. (a) How far must the observer walk before reaching a relative maximum in intensity? (b) How far will the observer be from the speaker when the first relative minimum is detected in the intensity?

SECTION 14.8 STANDING WAVES

A steel wire in a piano has a length of 0.700 m and a mass of 4.300 × 10^{-3} kg. To what tension must this wire be stretched so that the fundamental vibration corresponds to middle C (f_c = 261.6 Hz on the chromatic musical scale)?

A stretched string fixed at each end has a mass of 40.0 g and a length of 8.00 m. The tension in the string is 49.0 N. (a) Determine the positions of the nodes and antinodes for the third harmonic. (b) What is the vibration frequency for this harmonic?

Resonance of sound waves can be produced within an aluminum rod by holding the rod at its midpoint and stroking it with an alcohol-saturated paper towel. In this resonance mode, the middle of the rod is a node while the ends are antinodes; no other nodes or antinodes are present. What is the frequency of the resonance if the rod is 1.00 m long?

Two speakers are driven by a common oscillator at 800 Hz and face each other at a distance of 1.25 m. Locate the points along a line joining the speakers where relative minima of the amplitude of the pressure would be expected. (Use v = 343 m/s.)

Two pieces of steel wire with identical cross sections have lengths of L and 2L. The wires are each fixed at both ends and stretched so that the tension in the longer wire is four times greater than in the shorter wire. If the fundamental frequency in the shorter wire is 60 Hz, what is the frequency of the second harmonic in the longer wire?

A steel wire with mass 25.0 g and length 1.35 m is strung on a bass so that the distance from the nut to the bridge is 1.10 m. (a) Compute the linear density of the string. (b) What velocity wave on the string will produce the desired fundamental frequency of the E1 string, 41.2 Hz? (c) Calculate the tension required to obtain the proper frequency. (d) Calculate the wavelength of the string’s vibration. (e) What is the wavelength of the sound produced in air? (Assume the speed of sound in air is 343 m/s.)

A standing wave is set up in a string of variable length and tension by a vibrator of variable frequency. Both ends of the string are fixed. When the vibrator has a frequency f_A, in a string of length L_A and under tension T_A, n_A antinodes are set up in the string. (a) Write an expression for the frequency f_B of a standing wave in terms of the number n_B, length L_B, tension T_B, and linear density μ_B. (b) If the length of the string is doubled to L_B = 2L_A, what frequency f_B (written as a multiple of f_A) will result in the same number of antinodes? Assume the tension and linear density are unchanged. Hint: Make a ratio of expressions for f_B and f_A. (c) If the frequency and length are held constant, what tension T_B will produce n_B + 1 antinodes? (d) If the frequency is tripled and the length of the string is halved, by what factor should the tension be changed so that twice as many antinodes are produced?

A 12-kg object hangs in equilibrium from a string of total length L = 5.0 m and linear mass density μ = 0.001 0 kg/m. The string is wrapped around two light, frictionless pulleys that are separated by the distance d = 2.0 m (Fig. P14.45a). (a) Determine the tension in the string. (b) At what frequency must the string between the pulleys vibrate in order to form the standing-wave pattern shown in Figure P14.45b?

In the arrangement shown in Figure P14.46, an object of mass m = 5.0 kg hangs from a cord around a light pulley. The length of the cord between point P and the pulley is
49. The windpipe of a typical whooping crane is about 5.0 ft. long. What is the lowest resonant frequency of this pipe, assuming it is closed at one end? Assume a temperature of 37°C.

50. The overall length of a piccolo is 32.0 cm. The resonating air column vibrates as in a pipe that is open at both ends. (a) Find the frequency of the lowest note a piccolo can play, assuming the speed of sound in air is 340 m/s. (b) Opening holes in the side effectively shortens the length of the resonant column. If the highest note a piccolo can sound is 4000 Hz, find the distance between adjacent antinodes for this mode of vibration.

51. The human ear canal is about 2.8 cm long. If it is regarded as a tube that is open at one end and closed at the eardrum, what is the fundamental frequency around which we would expect hearing to be most sensitive? Take the speed of sound to be 340 m/s.

52. A tunnel under a river is 2.00 km long. (a) When the vibrator is set to a frequency of 150 Hz, a standing wave with six loops is formed. What must be the linear mass density of the cord? (b) How many loops (if any) will result if \(m \) is changed to 45 kg? (c) How many loops (if any) will result if \(m \) is changed to 10 kg?

53. A pipe open at both ends has a fundamental frequency of 300 Hz when the temperature is 0°C. (a) What is the length of the pipe? (b) What is the fundamental frequency at a temperature of 30°C?

54. Two adjacent natural frequencies of an organ pipe are found to be 350 Hz and 650 Hz. Calculate the fundamental frequency and length of this pipe. (Use \(v = 340 \text{ m/s} \).) Determine whether the pipe is open at both ends or open at only one end.

SECTION 14.11 BEATS

55. In certain ranges of a piano keyboard, more than one string is tuned to the same note to provide extra loudness. For example, the note at 1.10 \(\times 10^2 \) Hz has two strings at this frequency. If one string slips from its normal tension of 6.00 \(\times 10^2 \) N to 5.40 \(\times 10^2 \) N, what beat frequency is heard when the hammer strikes the two strings simultaneously?

56. The G string on a violin has a fundamental frequency of 196 Hz. It is 30.0 cm long and has a mass of 0.500 g. While this string is sounding, a nearby violinist effectively shortens the G string on her identical violin (by sliding her finger down the string) until a beat frequency of 2.00 Hz is heard between the two strings. When that occurs, what is the effective length of her string?

57. Two train whistles have identical frequencies of 1.80 \(\times 10^2 \) Hz. When one train is at rest in the station and the other is moving nearby, a commuter standing on the station platform hears beats with a frequency of 2.00 beats/s when the whistles operate together. If the speed of sound is 345 m/s, what are the two possible speeds and directions that the moving train can have?

58. Two pipes of equal length are each open at one end. Each has a fundamental frequency of 480 Hz at 300 K. If one pipe the air temperature is increased to 305 K. If the two pipes are sounded together, what beat frequency results?

59. A student holds a tuning fork oscillating at 256 Hz. He walks toward a wall at a constant speed of 1.33 m/s. (a) What beat frequency does he observe between the tuning fork and its echo? (b) How fast must he walk away from the wall to observe a beat frequency of 5.00 Hz?

SECTION 14.13 THE EAR

60. If a human ear canal can be thought of as resembling an organ pipe, closed at one end, that resonates at a fundamental frequency of 3000 Hz, what is the length of the canal? Use a normal body temperature of 37°C for your determination of the speed of sound in the canal.

61. Some studies suggest that the upper frequency limit of hearing is determined by the diameter of the eardrum. The wavelength of the sound wave and the diameter of the eardrum are approximately equal at this upper limit. If the relationship holds exactly, what is the diameter of the eardrum of a person capable of hearing 20,000 Hz? (Assume a body temperature of 37°C.)

ADDITIONAL PROBLEMS

62. The intensity level of an orchestra is 85 dB. A single violin reaches a level of 7.0 \(\times 10^3 \) dB. What is the ratio of the sound intensity of the full orchestra to the intensity of a single violin?
63. Assume a loudspeaker broadcasts sound equally in all directions and produces sound with a level of 103 dB at a distance of 1.60 m from its center. (a) Find the loudspeaker’s sound power output. (b) If a salesperson claims to be giving you 150 W per channel, she is referring to the electrical power input to the speaker. Find the efficiency of the speaker, that is, the fraction of input power that is converted into useful output power.

64. Two small loudspeakers emit sound waves of different frequencies equally in all directions. Speaker A has an output of 1.00 mW, and speaker B has an output of 1.50 mW. Determine the sound level (in decibels) at point C in Figure P14.64 assuming (a) only speaker A emits sound, (b) only speaker B emits sound, and (c) both speakers emit sound.

![FIGURE P14.64](image)

65. An interstate highway has been built through a poor neighborhood in a city. In the afternoon, the sound level in a rented room is 80.0 dB as 100 cars pass outside the window every minute. Late at night, the traffic flow is only five cars per minute. What is the average late-night sound level?

66. A student uses an audio oscillator of adjustable frequency to measure the depth of a water well. He reports hearing two successive resonances at 52.0 Hz and 60.0 Hz. If the speed of sound is 345 m/s, how deep is the well?

67. When at rest, two trains have sirens that emit a frequency of 300 Hz. The trains travel toward each other and toward an observer stationed between them. One of the trains moves at 30.0 m/s, and the observer hears a beat frequency of 3.0 beats per second. What is the speed of the second train, which travels faster than 30.0 m/s?

68. A commuter train blows its horn as it passes a passenger platform at a constant speed of 40.0 m/s. The horn sounds at a frequency of 320 Hz when the train is at rest. What is the frequency observed by a person on the platform (a) as the train approaches and (b) as the train recedes from him? (c) What wavelength does the observer find in each case?

69. A quartz watch contains a crystal oscillator in the form of a block of quartz that vibrates by contracting and expanding. Two opposite faces of the block, 7.05 mm apart, are antinodes, moving alternately toward and away from each other. The plane halfway between these two faces is a node of the vibration. The speed of sound in quartz is 3.70 km/s. Find the frequency of the vibration. An oscillating electric voltage accompanies the mechanical oscillation, so the quartz is described as piezoelectric. An electric circuit feeds in energy to maintain the oscillation and also counts the voltage pulses to keep time.

70. A flowerpot is knocked off a balcony 20.0 m above the sidewalk and falls toward an unsuspecting 1.75-m-tall man who is standing below. How close to the sidewalk can the flowerpot fall before it is too late for a warning shouted from the balcony to reach the man in time? Assume the man below requires 0.300 s to respond to the warning.

71. On a workday, the average decibel level of a busy street is 70 dB, with 100 cars passing a given point every minute. If the number of cars is reduced to 25 every minute on a weekend, what is the decibel level of the street?

72. A flute is designed so that it plays a frequency of 261.6 Hz, middle C, when all the holes are covered and the temperature is 20.0°C. (a) Consider the flute to be a pipe open at both ends and find its length, assuming the middle-C frequency is the fundamental frequency. (b) A second player, nearby in a colder room, also attempts to play middle C on an identical flute. A beat frequency of 3.00 beats/s is heard. What is the temperature of the room?

73. A block with a speaker bolted to it is connected to a spring having spring constant \(k = 20.0 \text{ N/m} \), as shown in Figure P14.73. The total mass of the block and speaker is 5.00 kg, and the amplitude of the unit’s motion is 0.300 m. If the speaker emits sound waves of frequency 440 Hz, determine the lowest and highest frequencies heard by the person to the right of the speaker.

![FIGURE P14.73](image)

74. A student stands several meters in front of a smooth reflecting wall, holding a board on which a wire is fixed at each end. The wire, vibrating in its third harmonic, is 75.0 cm long, has a mass of 2.25 g, and is under a tension of 400 N. A second student, moving towards the wall, hears 8.50 beats per second. What is the speed of the student approaching the wall? Use 340 m/s as the speed of sound in air.

75. By proper excitation, it is possible to produce both longitudinal and transverse waves in a long metal rod. In a particular case, the rod is 150 cm long and 0.200 cm in radius and has a mass of 50.9 g. Young’s modulus for the material is \(6.80 \times 10^{10} \text{ Pa} \). Determine the required tension in the rod so that the ratio of the speed of longitudinal waves to the speed of transverse waves is 8.
This nighttime view of multiple bolts of lightning was photographed in Tucson, Arizona. During a thunderstorm, a high concentration of electrical charge in a thundercloud creates a higher-than-normal electric field between the thundercloud and the negatively charged Earth’s surface. This strong electric field creates an electric discharge—an enormous spark—between the charged cloud and the ground. Other discharges observed in the sky include cloud-to-cloud discharges and the more frequent intracloud discharges.

ELECTRIC FORCES AND ELECTRIC FIELDS

Electricity is the lifeblood of technological civilization and modern society. Without it, we revert to the mid-nineteenth century: no telephones, no television, none of the household appliances that we take for granted. Modern medicine would be a fantasy, and due to the lack of sophisticated experimental equipment and fast computers—and especially the slow dissemination of information—science and technology would grow at a glacial pace.

Instead, with the discovery and harnessing of electric forces and fields, we can view arrangements of atoms, probe the inner workings of the cell, and send spacecraft beyond the limits of the solar system. All this has become possible in just the last few generations of human life, a blink of the eye compared to the million years our kind spent foraging the savannahs of Africa.

Around 700 B.C. the ancient Greeks conducted the earliest known study of electricity. It all began when someone noticed that a fossil material called amber would attract small objects after being rubbed with wool. Since then we have learned that this phenomenon is not restricted to amber and wool, but occurs (to some degree) when almost any two nonconducting substances are rubbed together.

In this chapter we use the effect of charging by friction to begin an investigation of electric forces. We then discuss Coulomb’s law, which is the fundamental law of force between any two stationary charged particles. The concept of an electric field associated with charges is introduced and its effects on other charged particles described. We end with discussions of the Van de Graaff generator and Gauss’s law.

15.1 PROPERTIES OF ELECTRIC CHARGES

After running a plastic comb through your hair, you will find that the comb attracts bits of paper. The attractive force is often strong enough to suspend the paper
from the comb, defying the gravitational pull of the entire Earth. The same effect occurs with other rubbed materials, such as glass and hard rubber.

Another simple experiment is to rub an inflated balloon against wool (or across your hair). On a dry day, the rubbed balloon will then stick to the wall of a room, often for hours. These materials have become electrically charged. You can give your body an electric charge by vigorously rubbing your shoes on a wool rug or by sliding across a car seat. You can then surprise and annoy a friend or coworker with a light touch on the arm, delivering a slight shock to both yourself and your victim. (If the coworker is your boss, don’t expect a promotion!) These experiments work best on a dry day because excessive moisture can facilitate a leaking away of the charge.

Experiments also demonstrate that there are two kinds of electric charge, which Benjamin Franklin (1706–1790) named positive and negative. Figure 15.1 illustrates the interaction of the two charges. A hard rubber (or plastic) rod that has been rubbed with fur is suspended by a piece of string. When a glass rod that has been rubbed with silk is brought near the rubber rod, the rubber rod is attracted toward the glass rod (Fig. 15.1a). If two charged rubber rods (or two charged glass rods) are brought near each other, as in Figure 15.1b, the force between them is repulsive. These observations may be explained by assuming the rubber and glass rods have acquired different kinds of excess charge. We use the convention suggested by Franklin, where the excess electric charge on the glass rod is called positive and that on the rubber rod is called negative. On the basis of such observations, we conclude that like charges repel one another and unlike charges attract one another. Objects usually contain equal amounts of positive and negative charge; electrical forces between objects arise when those objects have net negative or positive charges.

Nature’s basic carriers of positive charge are protons, which, along with neutrons, are located in the nuclei of atoms. The nucleus, about 10^{-15} m in radius, is surrounded by a cloud of negatively charged electrons about ten thousand times larger in extent. An electron has the same magnitude charge as a proton, but the opposite sign. In a gram of matter there are approximately 10^{23} positively charged protons and just as many negatively charged electrons, so the net charge is zero. Because the nucleus of an atom is held firmly in place inside a solid, protons never move from one material to another. Electrons are far lighter than protons and hence more easily accelerated by forces. Further, they occupy the outer regions of the atom. Consequently, objects become charged by gaining or losing electrons.

Charge transfers readily from one type of material to another. Rubbing the two materials together serves to increase the area of contact, facilitating the transfer process.

An important characteristic of charge is that electric charge is always conserved. Charge isn’t created when two neutral objects are rubbed together; rather, the objects become charged because negative charge is transferred from one object to the other. One object gains a negative charge while the other loses an equal amount of negative charge and hence is left with a net positive charge. When
a glass rod is rubbed with silk, as in Figure 15.2, electrons are transferred from the rod to the silk. As a result, the glass rod carries a net positive charge, the silk a net negative charge. Likewise, when rubber is rubbed with fur, electrons are transferred from the fur to the rubber.

In 1909 Robert Millikan (1886–1953) discovered that if an object is charged, its charge is always a multiple of a fundamental unit of charge, designated by the symbol e. In modern terms, the charge is said to be quantized, meaning that charge occurs in discrete chunks that can’t be further subdivided. An object may have a charge of $\pm e$, $\pm 2e$, $\pm 3e$, and so on, but never a fractional charge of $\pm 0.5e$ or $\pm 0.22e$. Other experiments in Millikan’s time showed that the electron has a charge of $-e$ and the proton has an equal and opposite charge of $+e$. Some particles, such as a neutron, have no net charge. A neutral atom (an atom with no net charge) contains as many protons as electrons. The value of e is now known to be 1.602×10^{-19} C. (The SI unit of electric charge is the coulomb, or C.)

15.2 INSULATORS AND CONDUCTORS

Substances can be classified in terms of their ability to conduct electric charge.

In conductors, electric charges move freely in response to an electric force. All other materials are called insulators.

Glass and rubber are insulators. When such materials are charged by rubbing, only the rubbed area becomes charged, and there is no tendency for the charge to move into other regions of the material. In contrast, materials such as copper, aluminum, and silver are good conductors. When such materials are charged in some small region, the charge readily distributes itself over the entire surface of the material. If you hold a copper rod in your hand and rub the rod with wool or fur, it will not attract a piece of paper. This might suggest that a metal can’t be charged. However, if you hold the copper rod with an insulator and then rub it with wool or fur, the rod remains charged and attracts the paper. In the first case, the electric charges produced by rubbing readily move from the copper through your body and finally to ground. In the second case, the insulating handle prevents the flow of charge to ground.

Semiconductors are a third class of materials, and their electrical properties are somewhere between those of insulators and those of conductors. Silicon and germanium are well-known semiconductors that are widely used in the fabrication of a variety of electronic devices.

Charging by Conduction

Consider a negatively charged rubber rod brought into contact with an insulated neutral conducting sphere. The excess electrons on the rod repel electrons on the sphere, creating local positive charges on the neutral sphere. On contact, some electrons on the rod are now able to move onto the sphere, as in Figure 15.3, neutralizing the positive charges. When the rod is removed, the sphere is left with a net negative charge. This process is referred to as charging by conduction. The object being charged in such a process (the sphere) is always left with a charge having the same sign as the object doing the charging (the rubber rod).

Charging by Induction

An object connected to a conducting wire or copper pipe buried in the Earth is said to be grounded. The Earth can be considered an infinite reservoir for electrons;
in effect, it can accept or supply an unlimited number of electrons. With this idea in mind, we can understand the charging of a conductor by a process known as induction.

Consider a negatively charged rubber rod brought near a neutral (uncharged) conducting sphere that is insulated, so there is no conducting path to ground (Fig. 15.4). Initially the sphere is electrically neutral (Fig. 15.4a). When the negatively charged rod is brought close to the sphere, the repulsive force between the electrons in the rod and those in the sphere causes some electrons to move to the side of the sphere farthest away from the rod (Fig. 15.4b). The region of the sphere nearest the negatively charged rod has an excess of positive charge because of the migration of electrons away from that location. If a grounded conducting wire is then connected to the sphere, as in Figure 15.4c, some of the electrons leave the sphere and travel to ground. If the wire to ground is then removed (Fig. 15.4d), the conducting sphere is left with an excess of induced positive charge. Finally, when the rubber rod is removed from the vicinity of the sphere (Fig. 15.4e), the induced positive charge remains on the ungrounded sphere. Even though the positively charged atomic nuclei remain fixed, this excess positive charge becomes uniformly distributed over the surface of the ungrounded sphere because of the repulsive forces among the like charges and the high mobility of electrons in a metal.

In the process of inducing a charge on the sphere, the charged rubber rod doesn’t lose any of its negative charge because it never comes in contact with the sphere. Furthermore, the sphere is left with a charge opposite that of the rubber rod. Charging an object by induction requires no contact with the object inducing the charge.

A process similar to charging by induction in conductors also takes place in insulators. In most neutral atoms or molecules, the center of positive charge coincides with the center of negative charge. In the presence of a charged object, however, these centers may separate slightly, resulting in more positive charge on one side of the molecule than on the other. This effect is known as polarization. The realignment of charge within individual molecules produces an induced charge on the surface of the insulator, as shown in Figure 15.5a. This property explains why a balloon charged through rubbing will stick to an electrically neutral wall or why the comb you just used on your hair attracts tiny bits of neutral paper.

QUICK QUIZ 15.1 A suspended object A is attracted to a neutral wall. It’s also attracted to a positively charged object B. Which of the following is true about object A? (a) It is unchanged. (b) It has a negative charge. (c) It has a positive charge. (d) It may be either charged or uncharged.

15.3 COULOMB’S LAW

In 1785 Charles Coulomb (1736–1806) experimentally established the fundamental law of electric force between two stationary charged particles.

An electric force has the following properties:

1. It is directed along a line joining the two particles and is inversely proportional to the square of the separation distance \(r \) between them.
2. It is proportional to the product of the magnitudes of the charges, \(|q_1| \) and \(|q_2| \), of the two particles.
3. It is attractive if the charges are of opposite sign and repulsive if the charges have the same sign.

From these observations, Coulomb proposed the following mathematical form for the electric force between two charges:
The magnitude of the electric force \(F \) between charges \(q_1 \) and \(q_2 \) separated by a distance \(r \) is given by

\[
F = k \frac{|q_1| |q_2|}{r^2}
\]

where \(k \) is a constant called the Coulomb constant.

Equation 15.1, known as Coulomb’s law, applies exactly only to point charges and to spherical distributions of charges, in which case \(r \) is the distance between the two centers of charge. Electric forces between unmoving charges are called electrostatic forces. Moving charges, in addition, create magnetic forces, studied in Chapter 19.

The value of the Coulomb constant in Equation 15.1 depends on the choice of units. The SI unit of charge is the coulomb (C). From experiment, we know that the Coulomb constant in SI units has the value

\[
k_e = 8.987 \times 10^9 \text{ N} \cdot \text{m}^2/\text{C}^2
\]

This number can be rounded, depending on the accuracy of other quantities in a given problem. We’ll use either two or three significant digits, as usual.

The charge on the proton has a magnitude of \(e = 1.6 \times 10^{-19} \text{ C} \). Therefore, it would take \(1/e = 6.3 \times 10^{19} \) protons to create a total charge of \(+1.0 \text{ C}\). Likewise, \(6.3 \times 10^{19} \) electrons would have a total charge of \(-1.0 \text{ C}\). Compare this charge with the number of free electrons in 1 cm\(^3\) of copper, which is on the order of \(10^{23} \). Even so, 1.0 C is a very large amount of charge. In typical electrostatic experiments in which a rubber or glass rod is charged by friction, there is a net charge on the order of \(10^{-6} \text{ C} \) (\(= 1 \mu \text{C} \)). Only a very small fraction of the total available charge is transferred between the rod and the rubbing material. Table 15.1 lists the charges and masses of the electron, proton, and neutron.

When using Coulomb’s force law, remember that force is a vector quantity and must be treated accordingly. Active Figure 15.6a (page 502) shows the electric

TABLE 15.1

<table>
<thead>
<tr>
<th>Particle</th>
<th>Charge (C)</th>
<th>Mass (kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electron</td>
<td>(-1.60 \times 10^{-19})</td>
<td>(9.11 \times 10^{-31})</td>
</tr>
<tr>
<td>Proton</td>
<td>(+1.60 \times 10^{-19})</td>
<td>(1.67 \times 10^{-27})</td>
</tr>
<tr>
<td>Neutron</td>
<td>0</td>
<td>(1.67 \times 10^{-27})</td>
</tr>
</tbody>
</table>

Coulomb’s major contribution to science was in the field of electrostatics and magnetism. During his lifetime, he also investigated the strengths of materials and identified the forces that affect objects on beams, thereby contributing to the field of structural mechanics.
force of repulsion between two positively charged particles. Like other forces, electric forces obey Newton’s third law; hence, the forces F_{12} and F_{21} are equal in magnitude but opposite in direction. (The notation F_{12} denotes the force exerted by particle 1 on particle 2; likewise, F_{21} is the force exerted by particle 2 on particle 1.) From Newton’s third law, F_{12} and F_{21} are always equal regardless of whether q_1 and q_2 have the same magnitude.

QUICK QUIZ 15.2

Object A has a charge of +2 μC, and object B has a charge of +6 μC. Which statement is true?

(a) $F_{AB} = -3F_{BA}$
(b) $F_{AB} = -F_{BA}$
(c) $3F_{AB} = -F_{BA}$

The Coulomb force is similar to the gravitational force. Both act at a distance without direct contact. Both are inversely proportional to the distance squared, with the force directed along a line connecting the two bodies. The mathematical form is the same, with the masses m_1 and m_2 in Newton’s law replaced by q_1 and q_2 in Coulomb’s law and with Newton’s constant G replaced by Coulomb’s constant k_e.

There are two important differences: (1) electric forces can be either attractive or repulsive, but gravitational forces are always attractive, and (2) the electric force between charged elementary particles is far stronger than the gravitational force between the same particles, as the next example shows.

EXAMPLE 15.1 Forces in a Hydrogen Atom

Goal Contrast the magnitudes of an electric force and a gravitational force.

Problem The electron and proton of a hydrogen atom are separated (on the average) by a distance of about 5.3×10^{-11} m. (a) Find the magnitudes of the electric force F_e to the gravitational force F_g. (b) Compute the acceleration caused by the electric force of the proton on the electron. Repeat for the gravitational acceleration.

Strategy Solving this problem is just a matter of substituting known quantities into the two force laws and then finding the ratio.

Solution

(a) Compute the magnitudes of the electric and gravitational forces, and find the ratio F_e/F_g.

Substitute $|q| = |q|$ and the distance into Coulomb’s law to find the electric force:

$$F_e = k \frac{|q|^2}{r^2} = \left(8.99 \times 10^9 \text{ N} \cdot \text{m}^2 \cdot \text{C}^{-2} \right) \frac{|q|^2}{(5.3 \times 10^{-11} \text{ m})^2}$$

$$= 8.2 \times 10^{-8} \text{ N}$$

Substitute the masses and distance into Newton’s law of gravity to find the gravitational force:

$$F_g = G \frac{m_e m_p}{r^2} = \left(6.67 \times 10^{-11} \text{ N} \cdot \text{m}^2 \cdot \text{kg}^{-2} \right) \frac{(9.11 \times 10^{-31} \text{ kg})(1.67 \times 10^{-27} \text{ kg})}{(5.3 \times 10^{-11} \text{ m})^2}$$

$$= 3.6 \times 10^{-47} \text{ N}$$

Find the ratio of the two forces:

$$\frac{F_e}{F_g} = 2.3 \times 10^{39}$$
Remarks

The gravitational force between the charged constituents of the atom is negligible compared with the electric force between them. The electric force is so strong, however, that any net charge on an object quickly attracts nearby opposite charges, neutralizing the object. As a result, gravity plays a greater role in the mechanics of moving objects in everyday life.

QUESTION 15.1

If the distance between two charges is doubled, by what factor is the magnitude of the electric force changed?

EXERCISE 15.1

Find the magnitude of the electric force between two protons separated by 1 femtometer (10^{-15} m), approximately the distance between two protons in the nucleus of a helium atom. The answer may not appear large, but if not for the strong nuclear force, the two protons would accelerate in opposite directions at over 1×10^{29} m/s2!

Answer

2×10^2 N

The Superposition Principle

When a number of separate charges act on the charge of interest, each exerts an electric force. These electric forces can all be computed separately, one at a time, then added as vectors. This is another example of the **superposition principle**. The following example illustrates this procedure in one dimension.

EXAMPLE 15.2 Finding Electrostatic Equilibrium

Goal Apply Coulomb’s law in one dimension.

Problem Three charges lie along the x-axis as in Figure 15.7. The positive charge $q_1 = 15 \mu C$ is at $x = 2.0$ m, and the positive charge $q_2 = 6.0 \mu C$ is at the origin. Where must a negative charge q_3 be placed on the x-axis so that the resultant electric force on it is zero?

Strategy If q_3 is to the right or left of the other two charges, the net force on q_3 can’t be zero because then \vec{F}_{13} and \vec{F}_{23} act in the same direction. Consequently, q_3 must lie between the two other charges. Write \vec{F}_{13} and \vec{F}_{23} in terms of the unknown coordinate position x, then sum them and set them equal to zero, solving for the unknown. The solution can be obtained with the quadratic formula.

Solution

Write the x-component of \vec{F}_{13}:

$$F_{13x} = +k \frac{(15 \times 10^{-6} \text{ C}) \cdot |q_3|}{(2.0 \text{ m} - x)^2}$$

Write the x-component of \vec{F}_{23}:

$$F_{23x} = -k \frac{(6.0 \times 10^{-6} \text{ C}) \cdot |q_3|}{x^2}$$

Set the sum equal to zero:

$$k \frac{(15 \times 10^{-6} \text{ C}) \cdot |q_3|}{(2.0 \text{ m} - x)^2} - k \frac{(6.0 \times 10^{-6} \text{ C}) \cdot |q_3|}{x^2} = 0$$

15.3 Coulomb’s Law 503
Cancel k, 10^{-6}, and q_3 from the equation and rearrange terms (explicit significant figures and units are temporarily suspended for clarity):

$$6(2 - x)^2 = 15x^2$$

Put this equation into standard quadratic form, $ax^2 + bx + c = 0$:

$$6(4x + x^2) = 15x^2 \quad \rightarrow \quad 2(4x + x^2) = 5x^2$$

$$3x^2 + 8x - 8 = 0$$

Apply the quadratic formula:

$$x = \frac{-8 \pm \sqrt{64 - (4)(3)(-8)}}{2 \cdot 3} = \frac{-4 \pm 2\sqrt{10}}{3}$$

Only the positive root makes sense:

$$x = 0.77 \text{ m}$$

Remarks Notice that physical reasoning was required to choose between the two possible answers for x, which is nearly always the case when quadratic equations are involved. Use of the quadratic formula could have been avoided by taking the square root of both sides of Equation (1), however this short cut is often unavailable.

QUESTION 15.2

If q_1 has the same magnitude as before but is negative, in what region along the x-axis would it be possible for the net electric force on q_3 to be zero? (a) $x < 0$ (b) $0 < x < 2 \text{ m}$ (c) $2 \text{ m} < x$

EXERCISE 15.2

Three charges lie along the x-axis. A positive charge $q_1 = 10.0 \mu \text{C}$ is at $x = 1.00 \text{ m}$, and a negative charge $q_2 = -2.00 \mu \text{C}$ is at the origin. Where must a positive charge q_3 be placed on the x-axis so that the resultant force on it is zero?

Answer $x = -0.809 \text{ m}$

EXAMPLE 15.3 A Charge Triangle

Goal Apply Coulomb's law in two dimensions.

Problem Consider three point charges at the corners of a triangle, as shown in Figure 15.8, where $q_1 = 6.00 \times 10^{-9} \text{ C}$, $q_2 = -2.00 \times 10^{-9} \text{ C}$, and $q_3 = 5.00 \times 10^{-9} \text{ C}$. (a) Find the components of the force F_{23} exerted by q_2 on q_3. (b) Find the components of the force F_{13} exerted by q_1 on q_3. (c) Find the resultant force on q_3, in terms of components and also in terms of magnitude and direction.

Strategy Coulomb's law gives the magnitude of each force, which can be split with right-triangle trigonometry into x- and y-components. Sum the vectors componentwise and then find the magnitude and direction of the resultant vector.

\[F_{23} = k \frac{|q_2||q_3|}{r^2} \]

\[= \left(8.99 \times 10^9 \text{ N} \cdot \text{m}^2/\text{C}^2\right) \frac{(2.00 \times 10^{-9} \text{ C})(5.00 \times 10^{-9} \text{ C})}{(4.00 \text{ m})^2} \]

\[F_{23} = 5.62 \times 10^{-7} \text{ N} \]

\[F_{13} = k \frac{|q_1||q_3|}{r^2} \]

\[= \left(8.99 \times 10^9 \text{ N} \cdot \text{m}^2/\text{C}^2\right) \frac{(6.00 \times 10^{-9} \text{ C})(5.00 \times 10^{-9} \text{ C})}{(5.00 \text{ m})^2} \]

\[F_{13} = 9.69 \times 10^{-7} \text{ N} \]
Remark

The methods used here are just like those used with Newton's law of gravity in two dimensions.

QUESTION 15.3

Without actually calculating the electric force on \(q_2 \), determine the quadrant into which the electric force vector points.

EXERCISE 15.3

Using the same triangle, find the vector components of the electric force on \(q_1 \) and the vector's magnitude and direction.

Answers

\[F_x = -5.62 \times 10^{-9} \text{ N} \]
\[F_y = 0 \]

Because \(\mathbf{F}_{23} \) is horizontal and points in the negative \(x \)-direction, the negative of the magnitude gives the \(x \)-component, and the \(y \)-component is zero:

(b) Find the components of the force exerted by \(q_1 \) on \(q_3 \).

Find the magnitude of \(\mathbf{F}_{13} \):

\[F_{13} = k \frac{|q_1||q_3|}{r^2} \]
\[= (8.99 \times 10^9 \text{ N} \cdot \text{m}^2/\text{C}^2) \frac{(6.00 \times 10^{-9} \text{ C})(5.00 \times 10^{-9} \text{ C})}{(5.00 \text{ m})^2} \]
\[F_{13} = 1.08 \times 10^{-8} \text{ N} \]

Use the given triangle to find the components of \(\mathbf{F}_{13} \):

\[F_{13x} = F_{13} \cos \theta = (1.08 \times 10^{-8} \text{ N}) \cos(37^\circ) \]
\[= 8.63 \times 10^{-9} \text{ N} \]
\[F_{13y} = F_{13} \sin \theta = (1.08 \times 10^{-8} \text{ N}) \sin(37^\circ) \]
\[= 6.50 \times 10^{-9} \text{ N} \]

(c) Find the components of the resultant vector.

Sum the \(x \)-components to find the resultant \(F_x \):

\[F_x = -5.62 \times 10^{-9} \text{ N} + 8.63 \times 10^{-9} \text{ N} \]
\[= 3.01 \times 10^{-9} \text{ N} \]

Sum the \(y \)-components to find the resultant \(F_y \):

\[F_y = 0 + 6.50 \times 10^{-9} \text{ N} = 6.50 \times 10^{-9} \text{ N} \]

Find the magnitude of the resultant force on the charge \(q_3 \), using the Pythagorean theorem:

\[F = \sqrt{F_x^2 + F_y^2} \]
\[= \sqrt{(3.01 \times 10^{-9} \text{ N})^2 + (6.50 \times 10^{-9} \text{ N})^2} \]
\[= 7.16 \times 10^{-9} \text{ N} \]

Find the angle the resultant force makes with respect to the positive \(x \)-axis:

\[\theta = \tan^{-1} \left(\frac{F_y}{F_x} \right) = \tan^{-1} \left(\frac{6.50 \times 10^{-9} \text{ N}}{3.01 \times 10^{-9} \text{ N}} \right) = 65.2^\circ \]

Remark

The methods used here are just like those used with Newton's law of gravity in two dimensions.

15.4 THE ELECTRIC FIELD

The gravitational force and the electrostatic force are both capable of acting through space, producing an effect even when there isn't any physical contact between the objects involved. Field forces can be discussed in a variety of ways, but an approach developed by Michael Faraday (1791–1867) is the most practical. In this approach an electric field is said to exist in the region of space around a charged object. The electric field exerts an electric force on any other charged object within the field. This differs from the Coulomb's law concept of a force
exerted at a distance in that the force is now exerted by something—the field—that is in the same location as the charged object.

Figure 15.9 shows an object with a small positive charge q_0 placed near a second object with a much larger positive charge Q.

The electric field E_S produced by a charge Q at the location of a small “test” charge q_0 is defined as the electric force F_S exerted by Q on q_0 divided by the test charge q_0:

$$E_S = \frac{F_S}{q_0} \quad [15.3]$$

SI unit: newton per coulomb (N/C)

Conceptually and experimentally, the test charge q_0 is required to be very small (arbitrarily small, in fact), so it doesn’t cause any significant rearrangement of the charge creating the electric field E. Mathematically, however, the size of the test charge makes no difference: the calculation comes out the same, regardless. In view of this, using $q_0 = 1 \, \text{C}$ in Equation 15.3 can be convenient if not rigorous.

When a positive test charge is used, the electric field always has the same direction as the electric force on the test charge, which follows from Equation 15.3. Hence, in Figure 15.9, the direction of the electric field is horizontal and to the right. The electric field at point A in Figure 15.10a is vertical and downward because at that point a positive test charge would be attracted toward the negatively charged sphere.

Once the electric field due to a given arrangement of charges is known at some point, the force on any particle with charge q placed at that point can be calculated from a rearrangement of Equation 15.3:

$$F = qE \quad [15.4]$$

Here q_0 has been replaced by q, which need not be a mere test charge.

As shown in Active Figure 15.11, the direction of E is the direction of the force that acts on a positive test charge q_0 placed in the field. We say that an electric field exists at a point if a test charge at that point is subject to an electric force there.

Consider a point charge q located a distance r from a test charge q_0. According to Coulomb’s law, the magnitude of the electric force of the charge q on the test charge is

$$F = k \frac{|q| |q_0|}{r^2} \quad [15.5]$$

Because the magnitude of the electric field at the position of the test charge is defined as $E = F/q_0$, we see that the magnitude of the electric field due to the charge q at the position of q_0 is

$$E = k \frac{|q|}{r^2} \quad [15.6]$$

Equation 15.6 points out an important property of electric fields that makes them useful quantities for describing electrical phenomena. As the equation indicates,
an electric field at a given point depends only on the charge \(q \) on the object setting up the field and the distance \(r \) from that object to a specific point in space. As a result, we can say that an electric field exists at point \(P \) in Active Figure 15.11 whether or not there is a test charge at \(P \).

The principle of superposition holds when the electric field due to a group of point charges is calculated. We first use Equation 15.6 to calculate the electric field produced by each charge individually at a point and then add the electric fields together as vectors.

It’s also important to exploit any symmetry of the charge distribution. For example, if equal charges are placed at \(x = a \) and at \(x = -a \), the electric field is zero at the origin, by symmetry. Similarly, if the \(x \)-axis has a uniform distribution of positive charge, it can be guessed by symmetry that the electric field points away from the \(x \)-axis and is zero parallel to that axis.

QUICK QUIZ 15.3 A test charge of \(+3 \mu C \) is at a point \(P \) where the electric field due to other charges is directed to the right and has a magnitude of \(4 \times 10^4 \) N/C. If the test charge is replaced with a charge of \(-3 \mu C \), the electric field at \(P \) (a) has the same magnitude as before, but changes direction, (b) increases in magnitude and changes direction, (c) remains the same, or (d) decreases in magnitude and changes direction.

QUICK QUIZ 15.4 A circular ring of charge of radius \(b \) has a total charge \(q \) uniformly distributed around it. Find the magnitude to the electric field in the center of the ring.

(a) 0 (b) \(kq/b^2 \) (c) \(kq^2/b^2 \) (d) \(kq^2/b \) (e) None of these answers is correct.

QUICK QUIZ 15.5 A “free” electron and a “free” proton are placed in an identical electric field. Which of the following statements are true? (a) Each particle is acted upon by the same electric force and has the same acceleration. (b) The electric force on the proton is greater in magnitude than the electric force on the electron, but in the opposite direction. (c) The electric force on the proton is equal in magnitude to the electric force on the electron, but in the opposite direction. (d) The magnitude of the acceleration of the electron is greater than that of the proton. (e) Both particles have the same acceleration.

EXAMPLE 15.4 Electrified Oil

Goal Use electric forces and fields together with Newton’s second law in a one-dimensional problem.

Problem Tiny droplets of oil acquire a small negative charge while dropping through a vacuum (pressure \(= 0 \)) in an experiment. An electric field of magnitude \(5.92 \times 10^4 \) N/C points straight down. (a) One particular droplet is observed to remain suspended against gravity. If the mass of the droplet is \(2.93 \times 10^{-15} \) kg, find the charge carried by the droplet. (b) Another droplet of the same mass falls 10.3 cm from rest in 0.250 s, again moving through a vacuum. Find the charge carried by the droplet.

Strategy We use Newton’s second law with both gravitational and electric forces. In both parts the electric field \(\vec{E} \) is pointing down, taken as the negative direction, as usual. In part (a) the acceleration is equal to zero. In part (b) the acceleration is uniform, so the kinematic equations yield the acceleration. Newton’s law can then be solved for \(q \).

Solution

(a) Find the charge on the suspended droplet.

Apply Newton’s second law to the droplet in the vertical direction:

\[ma = \sum F = -mg + Eq \]
This example exhibits features similar to the Millikan Oil-Drop experiment discussed in Section 15.7, which determined the value of the fundamental electric charge e. Notice that in both parts of the example, the charge is very nearly a multiple of e.

QUESTION 15.4
What would be the acceleration of the oil droplet in part (a) if the electric field suddenly reversed direction without changing in magnitude?

EXERCISE 15.4
Suppose a droplet of unknown mass remains suspended against gravity when $E = -2.70 \times 10^5$ N/C. What is the minimum mass of the droplet?

Answer 4.41×10^{-15} kg

PROBLEM-SOLVING STRATEGY

CALCULATING ELECTRIC FORCES AND FIELDS

The following procedure is used to calculate electric forces. The same procedure can be used to calculate an electric field, a simple matter of replacing the charge of interest, q, with a convenient test charge and dividing by the test charge at the end:

1. **Draw** a diagram of the charges in the problem.
2. **Identify** the charge of interest, q, and circle it.
3. **Convert all units** to SI, with charges in coulombs and distances in meters, so as to be consistent with the SI value of the Coulomb constant k_e.
4. **Apply Coulomb’s law**. For each charge Q, find the electric force on the charge of interest, q. The magnitude of the force can be found using Coulomb’s law. The vector direction of the electric force is along the line of the two charges, directed away from Q if the charges have the same sign, toward Q if the charges have the opposite sign. Find the angle θ this vector makes with the positive x-axis. The x-component of the electric force exerted by Q on q will be $F \cos \theta$, and the y-component will be $F \sin \theta$.
5. **Sum all the x-components**, getting the x-component of the resultant electric force.
6. **Sum all the y-components**, getting the y-component of the resultant electric force.

7. **Use the Pythagorean theorem and trigonometry** to find the magnitude and direction of the resultant force if desired.

EXAMPLE 15.5 Electric Field Due to Two Point Charges

Goal Use the superposition principle to calculate the electric field due to two point charges.

Problem Charge $q_1 = 7.00 \, \mu C$ is at the origin, and charge $q_2 = -5.00 \, \mu C$ is on the x-axis, 0.300 m from the origin (Fig. 15.12). (a) Find the magnitude and direction of the electric field at point P, which has coordinates (0, 0.400) m. (b) Find the force on a charge of $2.00 \times 10^{-8} \, \text{C}$ placed at P.

Strategy Follow the problem-solving strategy, finding the electric field at point P due to each individual charge in terms of x- and y-components, then adding the components of each type to get the x- and y-components of the resultant electric field at P. The magnitude of the force in part (b) can be found by simply multiplying the magnitude of the electric field by the charge.

Solution

(a) Calculate the electric field at P.

Find the magnitude of \vec{E}_1 with Equation 15.6:

$$E_1 = k \frac{|q_1|}{r_1^2} = \frac{(8.99 \times 10^9 \, \text{N} \cdot \text{m}^2/\text{C}^2)(7.00 \times 10^{-6} \, \text{C})}{(0.400 \, \text{m})^2} = 3.93 \times 10^5 \, \text{N/C}$$

The vector \vec{E}_1 is vertical, making an angle of 90° with respect to the positive x-axis. Use this fact to find its components:

$$E_{1x} = E_1 \cos (90^\circ) = 0$$

$$E_{1y} = E_1 \sin (90^\circ) = 3.93 \times 10^5 \, \text{N/C}$$

Next, find the magnitude of \vec{E}_2, again with Equation 15.6:

$$E_2 = k \frac{|q_2|}{r_2^2} = \frac{(8.99 \times 10^9 \, \text{N} \cdot \text{m}^2/\text{C}^2)(5.00 \times 10^{-6} \, \text{C})}{(0.500 \, \text{m})^2} = 1.80 \times 10^5 \, \text{N/C}$$

Obtain the x-component of \vec{E}_2, using the triangle in Figure 15.12 to find $\cos \theta$:

$$\cos \theta = \frac{\text{adj}}{\text{hyp}} = \frac{0.300}{0.500} = 0.600$$

$$E_{2x} = E_2 \cos \theta = (1.80 \times 10^5 \, \text{N/C})(0.600) = 1.08 \times 10^5 \, \text{N/C}$$

Obtain the y-component in the same way, but a minus sign has to be provided for $\sin \theta$ because this component is directed downwards:

$$\sin \theta = \frac{\text{opp}}{\text{hyp}} = \frac{0.400}{0.500} = 0.800$$

$$E_{2y} = E_2 \sin \theta = (1.80 \times 10^5 \, \text{N/C})(-0.800) = -1.44 \times 10^5 \, \text{N/C}$$

Sum the x-components to get the x-component of the resultant vector:

$$E_x = E_{1x} + E_{2x} = 0 + 1.08 \times 10^5 \, \text{N/C} = 1.08 \times 10^5 \, \text{N/C}$$
Chapter 15 Electric Forces and Electric Fields

15.5 ELECTRIC FIELD LINES

A convenient aid for visualizing electric field patterns is to draw lines pointing in the direction of the electric field vector at any point. These lines, introduced by Michael Faraday and called electric field lines, are related to the electric field in any region of space in the following way:

1. The electric field vector \(\vec{E} \) is tangent to the electric field lines at each point.
2. The number of lines per unit area through a surface perpendicular to the lines is proportional to the strength of the electric field in a given region.

Note that \(\vec{E} \) is large when the field lines are close together and small when the lines are far apart.

Figure 15.13a shows some representative electric field lines for a single positive point charge. This two-dimensional drawing contains only the field lines that lie in the plane containing the point charge. The lines are actually directed radially outward from the charge in all directions, somewhat like the quills of an angry porcupine. Because a positive test charge placed in this field would be repelled by the charge \(q \), the lines are directed radially away from the positive charge. The electric field lines for a single negative point charge are directed toward the charge (Fig. 15.13b) because a positive test charge is attracted by a negative charge. In either case the lines are radial and extend all the way to infinity. Note that the lines are closer together as they get near the charge, indicating that the strength of the field is increasing. Equation 15.6 verifies that this is indeed the case.

The rules for drawing electric field lines for any charge distribution follow directly from the relationship between electric field lines and electric field vectors:

Remarks There were numerous steps to this problem, but each was very short. When attacking such problems, it’s important to focus on one small step at a time. The solution comes not from a leap of genius, but from the assembly of a number of relatively easy parts.

QUESTION 15.5
Suppose \(q_2 \) were moved slowly to the right. What would happen to the angle \(\phi \)?

EXERCISE 15.5
(a) Place a charge of \(-7.00 \, \mu C\) at point \(P \) and find the magnitude and direction of the electric field at the location of \(q_2 \) due to \(q_1 \) and the charge at \(P \). (b) Find the magnitude and direction of the force on \(q_2 \).

Answer (a) \(5.84 \times 10^5 \, \text{N/C}, \phi = 20.2^\circ \) (b) \(F = 2.92 \, \text{N}, \phi = 200.\)
1. The lines for a group of point charges must begin on positive charges and end on negative charges. In the case of an excess of charge, some lines will begin or end infinitely far away.

2. The number of lines drawn leaving a positive charge or ending on a negative charge is proportional to the magnitude of the charge.

3. No two field lines can cross each other.

Figure 15.14 shows the beautifully symmetric electric field lines for two point charges of equal magnitude but opposite sign. This charge configuration is called an electric dipole. Note that the number of lines that begin at the positive charge must equal the number that terminate at the negative charge. At points very near either charge, the lines are nearly radial. The high density of lines between the charges indicates a strong electric field in this region.

Figure 15.15 (page 512) shows the electric field lines in the vicinity of two equal positive point charges. Again, close to either charge the lines are nearly radial. The same number of lines emerges from each charge because the charges are equal in magnitude. At great distances from the charges, the field is approximately equal to that of a single point charge of magnitude $2q$. The bulging out of the electric field lines between the charges reflects the repulsive nature of the electric force between like charges. Also, the low density of field lines between the charges indicates a weak field in this region, unlike the dipole.

Finally, Active Figure 15.16 (page 512) is a sketch of the electric field lines associated with the positive charge $+2q$ and the negative charge $-q$. In this case the number of lines leaving charge $+2q$ is twice the number terminating on charge $-q$. Hence, only half of the lines that leave the positive charge end at the negative charge. The remaining half terminate on negative charges that we assume to be located at infinity. At great distances from the charges (great compared with the charge separation), the electric field lines are equivalent to those of a single charge $+q$.

TIP 15.1 Electric Field Lines Aren’t Paths of Particles

Electric field lines are not material objects. They are used only as a pictorial representation of the electric field at various locations. Except in special cases, they do not represent the path of a charged particle released in an electric field.
QUICK QUIZ 15.6 Rank the magnitudes of the electric field at points A, B, and C in Figure 15.15, with the largest magnitude first.

(a) A, B, C (b) A, C, B (c) C, A, B (d) The answer can’t be determined by visual inspection.

APPLYING PHYSICS 15.1 MEASURING ATMOSPHERIC ELECTRIC FIELDS

The electric field near the surface of the Earth in fair weather is about 100 N/C downward. Under a thundercloud, the electric field can be very large, on the order of 20 000 N/C. How are these electric fields measured?

Explanation A device for measuring these fields is called the *field mill*. Figure 15.17 shows the fundamental components of a field mill: two metal plates parallel to the ground. Each plate is connected to ground with a wire, with an ammeter (a low-resistance device for measuring the flow of charge, to be discussed in Section 19.6) in one path. Consider first just the lower plate. Because it’s connected to ground and the ground carries a negative charge, the plate is negatively charged. The electric field lines are therefore directed downward, ending on the plate as in Figure 15.17a. Now imagine that the upper plate is suddenly moved over the lower plate, as in Figure 15.17b. This plate is also connected to ground and is also negatively charged, so the field lines now end on the upper plate. The negative charges in the lower plate are repelled by those on the upper plate and must pass through the ammeter, registering a flow of charge. The amount of charge that was on the lower plate is related to the strength of the electric field. In this way, the flow of charge through the ammeter can be calibrated to measure the electric field. The plates are normally designed like the blades of a fan, with the upper plate rotating so that the lower plate is alternately covered and uncovered. As a result, charges flow back and forth continually through the ammeter, and the reading can be related to the electric field strength.
15.6 CONDUCTORS IN ELECTROSTATIC EQUILIBRIUM

A good electric conductor like copper, although electrically neutral, contains charges (electrons) that aren’t bound to any atom and are free to move about within the material. When no net motion of charge occurs within a conductor, the conductor is said to be in electrostatic equilibrium. An isolated conductor (one that is insulated from ground) has the following properties:

1. The electric field is zero everywhere inside the conducting material.
2. Any excess charge on an isolated conductor resides entirely on its surface.
3. The electric field just outside a charged conductor is perpendicular to the conductor’s surface.
4. On an irregularly shaped conductor, the charge accumulates at sharp points, where the radius of curvature of the surface is smallest.

The first property can be understood by examining what would happen if it were not true. If there were an electric field inside a conductor, the free charge there would move and a flow of charge, or current, would be created. If there were a net movement of charge, however, the conductor would no longer be in electrostatic equilibrium.

Property 2 is a direct result of the \(1/r^2\) repulsion between like charges described by Coulomb’s law. If by some means an excess of charge is placed inside a conductor, the repulsive forces between the like charges push them as far apart as possible, causing them to quickly migrate to the surface. (We won’t prove it here, but the excess charge resides on the surface because Coulomb’s law is an inverse-square law. With any other power law, an excess of charge would exist on the surface, but there would be a distribution of charge, of either the same or opposite sign, inside the conductor.)

Property 3 can be understood by again considering what would happen if it were not true. If the electric field in Figure 15.18a were not perpendicular to the surface, it would have a component along the surface, which would cause the free charges of the conductor to move (to the left in the figure). If the charges moved, however, a current would be created and the conductor would no longer be in electrostatic equilibrium. Therefore, \(\mathbf{E}\) must be perpendicular to the surface.

To see why property 4 must be true, consider Figure 15.19a (page 514), which shows a conductor that is fairly flat at one end and relatively pointed at the other. Any excess charge placed on the object moves to its surface. Figure 15.19b shows the forces between two such charges at the flatter end of the object. These forces are predominantly directed parallel to the surface, so the charges move apart until repulsive forces from other nearby charges establish an equilibrium. At the sharp end, however, the forces of repulsion between two charges are directed predominantly away from the surface, as in Figure 15.19c. As a result, there is less tendency for the charges to move apart along the surface here, and the amount of charge...
per unit area is greater than at the flat end. The cumulative effect of many such outward forces from nearby charges at the sharp end produces a large resultant force directed away from the surface that can be great enough to cause charges to leap from the surface into the surrounding air.

Many experiments have shown that the net charge on a conductor resides on its surface. One such experiment was first performed by Michael Faraday and is referred to as Faraday’s ice-pail experiment. Faraday lowered a metal ball having a negative charge at the end of a silk thread (an insulator) into an uncharged hollow conductor insulated from ground, a metal ice-pail as in Figure 15.20a. As the ball entered the pail, the needle on an electrometer attached to the outer surface of the pail was observed to deflect. (An electrometer is a device used to measure charge.) The needle deflected because the charged ball induced a positive charge on the inner wall of the pail, which left an equal negative charge on the outer wall (Fig. 15.20b).

Faraday next touched the inner surface of the pail with the ball and noted that the deflection of the needle did not change, either when the ball touched the inner surface of the pail (Fig. 15.20c) or when it was removed (Fig. 15.20d). Further, he found that the ball was now uncharged because when it touched the inside of the pail, the excess negative charge on the ball had been drawn off, neutralizing the induced positive charge on the inner surface of the pail. In this way Faraday discovered the useful result that all the excess charge on an object can be transferred to an already charged metal shell if the object is touched to the inside of the shell. As we will see, this result is the principle of operation of the Van de Graaff generator.

Faraday concluded that because the deflection of the needle in the electrometer didn’t change when the charged ball touched the inside of the pail, the positive charge induced on the inside surface of the pail was just enough to neutralize the negative charge on the ball. As a result of his investigations, he concluded that a charged object suspended inside a metal container rearranged the charge on the container so that the sign of the charge on its inside surface was opposite the sign of the charge on the suspended object. This produced a charge on the outside surface of the container of the same sign as that on the suspended object.

Faraday also found that if the electrometer was connected to the inside surface of the pail after the experiment had been run, the needle showed no deflection. Thus, the excess charge acquired by the pail when contact was made between ball and pail appeared on the outer surface of the pail.

If a metal rod having sharp points is attached to a house, most of any charge on the house passes through these points, eliminating the induced charge on the house produced by storm clouds. In addition, a lightning discharge striking the house passes through the metal rod and is safely carried to the ground through wires leading from the rod to the Earth. Lightning rods using this principle were first developed by Benjamin Franklin. Some European countries couldn’t accept the fact that such a worthwhile idea could have originated in the New World, so they “improved” the design by eliminating the sharp points!
The Millikan Oil-Drop Experiment

From 1909 to 1913, Robert Andrews Millikan (1868–1953) performed a brilliant set of experiments at the University of Chicago in which he measured the elementary charge e of the electron and demonstrated the quantized nature of the electronic charge. The apparatus he used, diagrammed in Active Figure 15.21, contains two parallel metal plates. Oil droplets that have been charged by friction in an atomizer are allowed to pass through a small hole in the upper plate. A horizontal light beam is used to illuminate the droplets, which are viewed by a telescope with axis at right angles to the beam. The droplets then appear as shining stars against a dark background, and the rate of fall of individual drops can be determined.

We assume a single drop having a mass of m and carrying a charge of q is being viewed and its charge is negative. If no electric field is present between the plates, the two forces acting on the charge are the force of gravity, mg, acting downward, and an upward viscous drag force D (Fig. 15.22a, page 516). The drag force is proportional to the speed of the drop. When the drop reaches its terminal speed, v, the two forces balance each other ($mg = D$).

ACTIVE FIGURE 15.21
A schematic view of Millikan’s oil-drop apparatus.

APPLYING PHYSICS 15.2 CONDUCTORS AND FIELD LINES

Suppose a point charge $+Q$ is in empty space. Wearing rubber gloves, you proceed to surround the charge with a concentric spherical conducting shell. What effect does that have on the field lines from the charge?

Explanation When the spherical shell is placed around the charge, the charges in the shell rearrange to satisfy the rules for a conductor in equilibrium. A net charge of $-Q$ moves to the interior surface of the conductor, so the electric field inside the conductor becomes zero. This means the field lines originating on the $+Q$ charge now terminate on the negative charges. The movement of the negative charges to the inner surface of the sphere leaves a net charge of $+Q$ on the outer surface of the sphere. Then the field lines outside the sphere look just as before: the only change, overall, is the absence of field lines within the conductor.

APPLYING PHYSICS 15.3 DRIVER SAFETY DURING ELECTRICAL STORMS

Why is it safe to stay inside an automobile during a lightning storm?

Explanation Many people believe that staying inside the car is safe because of the insulating characteristics of the rubber tires, but in fact that isn’t true. Lightning can travel through several kilometers of air, so it can certainly penetrate a centimeter of rubber. The safety of remaining in the car is due to the fact that charges on the metal shell of the car will reside on the outer surface of the car, as noted in property 2 discussed earlier. As a result, an occupant in the automobile touching the inner surfaces is not in danger.

15.7 THE MILLIKAN OIL-DROP EXPERIMENT

From 1909 to 1913, Robert Andrews Millikan (1868–1953) performed a brilliant set of experiments at the University of Chicago in which he measured the elementary charge e of the electron and demonstrated the quantized nature of the electronic charge. The apparatus he used, diagrammed in Active Figure 15.21, contains two parallel metal plates. Oil droplets that have been charged by friction in an atomizer are allowed to pass through a small hole in the upper plate. A horizontal light beam is used to illuminate the droplets, which are viewed by a telescope with axis at right angles to the beam. The droplets then appear as shining stars against a dark background, and the rate of fall of individual drops can be determined.

We assume a single drop having a mass of m and carrying a charge of q is being viewed and its charge is negative. If no electric field is present between the plates, the two forces acting on the charge are the force of gravity, mg, acting downward, and an upward viscous drag force D (Fig. 15.22a, page 516). The drag force is proportional to the speed of the drop. When the drop reaches its terminal speed, v, the two forces balance each other ($mg = D$).

ACTIVE FIGURE 15.21
A schematic view of Millikan’s oil-drop apparatus.
Now suppose an electric field is set up between the plates by a battery connected so that the upper plate is positively charged. In this case a third force, \(q \vec{E} \), acts on the charged drop. Because \(q \) is negative and \(\vec{E} \) is downward, the electric force is upward as in Figure 15.22b. If this force is great enough, the drop moves upward and the drag force \(\vec{D} \) acts downward. When the upward electric force, \(q \vec{E} \), balances the sum of the force of gravity and the drag force, both acting downward, the drop reaches a new terminal speed \(\frac{v}{H} \).

With the field turned on, a drop moves slowly upward, typically at a rate of hundreds of a centimeter per second. The rate of fall in the absence of a field is comparable. Hence, a single droplet with constant mass and radius can be followed for hours as it alternately rises and falls, simply by turning the electric field on and off.

After making measurements on thousands of droplets, Millikan and his coworkers found that, to within about 1% precision, every drop had a charge equal to some positive or negative integer multiple of the elementary charge \(e \),

\[
q = ne \quad n = 0, \pm 1, \pm 2, \pm 3, \ldots
\]

[15.7]

where \(e = 1.60 \times 10^{-19} \text{ C} \). It was later established that positive integer multiples of \(e \) would arise when an oil droplet had lost one or more electrons. Likewise, negative integer multiples of \(e \) would arise when a drop had gained one or more electrons. Gains or losses in integral numbers provide conclusive evidence that charge is quantized. In 1923 Millikan was awarded the Nobel Prize in Physics for this work.

15.8 THE VAN DE GRAAFF GENERATOR

In 1929 Robert J. Van de Graaff (1901–1967) designed and built an electrostatic generator that has been used extensively in nuclear physics research. The principles of its operation can be understood with knowledge of the properties of electric fields and charges already presented in this chapter. Figure 15.23 shows the basic construction of this device. A motor-driven pulley \(P \) moves a belt past positively charged comb-like metallic needles positioned at \(A \). Negative charges are attracted to these needles from the belt, leaving the left side of the belt with a net positive charge. The positive charges attract electrons onto the belt as it moves past a second comb of needles at \(B \), increasing the excess positive charge on the dome. Because the electric field inside the metal dome is negligible, the positive charge on it can easily be increased regardless of how much charge is already present. The result is that the dome is left with a large amount of positive charge.

This accumulation of charge on the dome can’t continue indefinitely. As more and more charge appears on the surface of the dome, the magnitude of the electric field at that surface is also increasing. Finally, the strength of the field becomes great enough to partially ionize the air near the surface, increasing the conductivity of the air. Charges on the dome now have a pathway to leak off into the air, producing some spectacular “lightning bolts” as the discharge occurs. As noted earlier, charges find it easier to leap off a surface at points where the curvature is great. As a result, one way to inhibit the electric discharge, and to increase the amount of charge that can be stored on the dome, is to increase its radius. Another method
for inhibiting discharge is to place the entire system in a container filled with a high-pressure gas, which is significantly more difficult to ionize than air at atmospheric pressure.

If protons (or other charged particles) are introduced into a tube attached to the dome, the large electric field of the dome exerts a repulsive force on the protons, causing them to accelerate to energies high enough to initiate nuclear reactions between the protons and various target nuclei.

15.9 ELECTRIC FLUX AND GAUSS’S LAW

Gauss’s law is essentially a technique for calculating the average electric field on a closed surface, developed by Karl Friedrich Gauss (1777–1855). When the electric field, because of its symmetry, is constant everywhere on that surface and perpendicular to it, the exact electric field can be found. In such special cases, Gauss’s law is far easier to apply than Coulomb’s law.

Gauss’s law relates the electric flux through a closed surface and the total charge inside that surface. A closed surface has an inside and an outside: an example is a sphere. Electric flux is a measure of how much the electric field vectors penetrate through a given surface. If the electric field vectors are tangent to the surface at all points, for example, they don’t penetrate the surface and the electric flux through the surface is zero. These concepts will be discussed more fully in the next two subsections. As we’ll see, Gauss’s law states that the electric flux through a closed surface is proportional to the charge contained inside the surface.

Electric Flux

Consider an electric field that is uniform in both magnitude and direction, as in Figure 15.24. The electric field lines penetrate a surface of area \(A \), which is perpendicular to the field. The technique used for drawing a figure such as Figure 15.24 is that the number of lines per unit area, \(N/A \), is proportional to the magnitude of the electric field, or \(E \propto N/A \). We can rewrite this proportion as \(N \propto EA \), which means that the number of field lines is proportional to the product of \(E \) and \(A \), called the electric flux and represented by the symbol \(\Phi_E \):

\[
\Phi_E = EA \quad [15.8]
\]

Note that \(\Phi_E \) has SI units of \(\text{N} \cdot \text{m}^2/\text{C} \) and is proportional to the number of field lines that pass through some area \(A \) oriented perpendicular to the field. (It’s called flux by analogy with the term flux in fluid flow, which is the volume of liquid flowing through a perpendicular area per second.) If the surface under consideration is not perpendicular to the field, as in Figure 15.25, the expression for the electric flux is

\[
\Phi_E = EA \cos \theta \quad [15.9]
\]

where a vector perpendicular to the area \(A \) is at an angle \(\theta \) with respect to the field. This vector is often said to be normal to the surface, and we will refer to it as “the normal vector to the surface.” The number of lines that cross this area is equal to the number that cross the projected area \(A' \), which is perpendicular to the field.

We see that the two areas are related by \(A' = A \cos \theta \). From Equation 15.9, we see that the flux through a surface of fixed area has the maximum value \(EA \) when the surface is perpendicular to the field (when \(\theta = 0^\circ \)) and that the flux is zero when the surface is parallel to the field (when \(\theta = 90^\circ \)). By convention, for a closed surface, the flux lines passing into the interior of the volume are negative and those passing out of the interior of the volume are positive. This convention is equivalent to requiring the normal vector of the surface to point outward when computing the flux through a closed surface.
QUICK QUIZ 15.7 Calculate the magnitude of the flux of a constant electric field of 5.00 N/C in the \(z \)-direction through a rectangle with area 4.00 m\(^2\) in the \(xy \)-plane. (a) 0 (b) 10.0 N⋅m\(^2\)/C (c) 20.0 N⋅m\(^2\)/C (d) More information is needed

QUICK QUIZ 15.8 Suppose the electric field of Quick Quiz 15.7 is tilted 60° away from the positive \(z \)-direction. Calculate the magnitude of the flux through the same area. (a) 0 (b) 10.0 N⋅m\(^2\)/C (c) 20.0 N⋅m\(^2\)/C (d) More information is needed

EXAMPLE 15.6 Flux Through a Cube

Goal Calculate the electric flux through a closed surface.

Problem Consider a uniform electric field oriented in the \(x \)-direction. Find the electric flux through each surface of a cube with edges \(L \) oriented as shown in Figure 15.26, and the net flux.

Strategy This problem involves substituting into the definition of electric flux given by Equation 15.9. In each case \(E \) and \(A \) are the same; the only difference is the angle \(\theta \) that the electric field makes with respect to a vector perpendicular to a given surface and pointing outward (the normal vector to the surface). The angles can be determined by inspection. The flux through a surface parallel to the \(xy \)-plane will be labeled \(\Phi_{xy} \) and further designated by position (front, back); others will be labeled similarly: \(\Phi_{xz} \), top or bottom, and \(\Phi_{yz} \), left or right.

Solution

The normal vector to the \(xy \)-plane points in the negative \(z \)-direction. This, in turn, is perpendicular to \(\mathbf{E} \), so \(\theta = 90° \). (The opposite side works similarly.)

\[\Phi_{xy} = EA \cos (90°) = 0 \text{ (back and front)} \]

The normal vector to the \(xz \)-plane points in the negative \(y \)-direction. This, in turn, is perpendicular to \(\mathbf{E} \), so again \(\theta = 90° \). (The opposite side works similarly.)

\[\Phi_{xz} = EA \cos (90°) = 0 \text{ (top and bottom)} \]

The normal vector to surface \(\text{①} \) (the \(yz \)-plane) points in the negative \(x \)-direction. This is antiparallel to \(\mathbf{E} \), so \(\theta = 180° \).

\[\Phi_{yz} = EA \cos (180°) = -EL^2 \text{ (surface ①)} \]

Surface \(\text{②} \) has normal vector pointing in the positive \(x \)-direction, so \(\theta = 0° \).

\[\Phi_{yz} = EA \cos (0°) = EL^2 \text{ (surface ②)} \]

We calculate the net flux by summing:

\[\Phi_{\text{net}} = 0 + 0 + 0 - EL^2 + EL^2 = 0 \]

Remarks In doing this calculation, it is necessary to remember that the angle in the definition of flux is measured from the normal vector to the surface and that this vector must point outwards for a closed surface. As a result, the normal vector for the \(yz \)-plane on the left points in the negative \(x \)-direction, and the normal vector to the plane parallel to the \(yz \)-plane on the right points in the positive \(x \)-direction. Notice that there aren’t any charges in the box. The net electric flux is always zero for closed surfaces that don’t contain net charge.

QUESTION 15.6

If the surface in Figure 15.26 were spherical, would the answer be (a) greater than, (b) less than, or (c) the same as the net electric flux found for the cubical surface?
Gauss’s Law

Consider a point charge \(q \) surrounded by a spherical surface of radius \(r \) centered on the charge, as in Figure 15.27a. The magnitude of the electric field everywhere on the surface of the sphere is

\[
E = k \frac{q}{r^2}
\]

Note that the electric field is perpendicular to the spherical surface at all points on the surface. The electric flux through the surface is therefore \(EA \), where \(A = 4\pi r^2 \) is the surface area of the sphere:

\[
\Phi_E = EA = k \frac{q}{r^2} (4\pi r^2) = 4\pi k q
\]

It’s sometimes convenient to express \(k \) in terms of another constant, \(\varepsilon_0 \), as \(k = 1/(4\pi \varepsilon_0) \). The constant \(\varepsilon_0 \) is called the **permittivity of free space** and has the value

\[
\varepsilon_0 = \frac{1}{4\pi k} = 8.85 \times 10^{-12} \text{ C}^2/\text{N}\cdot\text{m}^2
\]

The use of \(k \) or \(\varepsilon_0 \) is strictly a matter of taste. The electric flux through the closed spherical surface that surrounds the charge \(q \) can now be expressed as

\[
\Phi_E = 4\pi k q = \frac{q}{\varepsilon_0}
\]

This result says that the electric flux through a sphere that surrounds a charge \(q \) is equal to the charge divided by the constant \(\varepsilon_0 \). Using calculus, this result can be proven for any closed surface that surrounds the charge \(q \). For example, if the surface surrounding \(q \) is irregular, as in Figure 15.27b, the flux through that surface is also \(q/\varepsilon_0 \). This leads to the following general result, known as Gauss’s law:

\[
\Phi_E = \frac{Q_{\text{inside}}}{\varepsilon_0}
\]

Although it’s not obvious, Gauss’s law describes how charges create electric fields. In principle it can always be used to calculate the electric field of a system of charges or a continuous distribution of charge. In practice, the technique is useful only in a limited number of cases in which there is a high degree of symmetry, such as spheres, cylinders, or planes. With the symmetry of these special shapes, the charges can be surrounded by an imaginary surface, called a Gaussian surface. This imaginary surface is used strictly for mathematical calculation, and need not be an actual, physical surface. If the imaginary surface is chosen so that the electric field is constant everywhere on it, the electric field can be computed with

\[
EA = \Phi_E = \frac{Q_{\text{inside}}}{\varepsilon_0}
\]

EXERCISE 15.6

Suppose the constant electric field in Example 15.6 points in the positive \(y \)-direction instead. Calculate the flux through the \(xz \)-plane and the surface parallel to it. What’s the net electric flux through the surface of the cube?

Answers \(\Phi_{xz} = -EL^2 \) (bottom), \(\Phi_{xz} = +EL^2 \) (top). The net flux is still zero.
as will be seen in the examples. Although Gauss’s law in this form can be used to obtain the electric field only for problems with a lot of symmetry, it can always be used to obtain the average electric field on any surface.

QUICK QUIZ 15.9 Find the electric flux through the surface in Active Figure 15.28. (a) \(-(3 \, \text{C})/\varepsilon_0 \) (b) \((3 \, \text{C})/\varepsilon_0 \) (c) 0 (d) \(-(6 \, \text{C})/\varepsilon_0 \)

QUICK QUIZ 15.10 For a closed surface through which the net flux is zero, each of the following four statements could be true. Which of the statements must be true? (There may be more than one.) (a) There are no charges inside the surface. (b) The net charge inside the surface is zero. (c) The electric field is zero everywhere on the surface. (d) The number of electric field lines entering the surface equals the number leaving the surface.

EXAMPLE 15.7 The Electric Field of a Charged Spherical Shell

Goal Use Gauss’s law to determine electric fields when the symmetry is spherical.

Problem A spherical conducting shell of inner radius \(a \) and outer radius \(b \) carries a total charge \(Q \) distributed on the surface of a conducting shell (Fig. 15.29a). The quantity \(Q \) is taken to be positive. (a) Find the electric field in the interior of the conducting shell, for \(r < a \), and (b) the electric field outside the shell, for \(r > b \). (c) If an additional charge of \(-2Q\) is placed at the center, find the electric field for \(r > b \). (d) What is the distribution of charge on the sphere in part (c)?

Strategy For each part, draw a spherical Gaussian surface in the region of interest. Add up the charge inside the Gaussian surface, substitute it and the area into Gauss’s law, and solve for the electric field. To find the distribution of charge in part (c), use Gauss’s law in reverse: the charge distribution must be such that the electrostatic field is zero inside a conductor.

Solution

(a) Find the electric field for \(r < a \).

Apply Gauss’s law, Equation 15.12, to the Gaussian surface illustrated in Figure 15.29b (note that there isn’t any charge inside this surface):

\[
EA = E(4\pi r^2) = \frac{Q_{\text{inside}}}{\varepsilon_0} = 0 \quad \rightarrow \quad E = 0
\]

(b) Find the electric field for \(r > b \).

Apply Gauss’s law, Equation 15.12, to the Gaussian surface illustrated in Figure 15.29c:

\[
EA = E(4\pi r^2) = \frac{Q_{\text{inside}}}{\varepsilon_0} = \frac{Q}{\varepsilon_0}
\]

Divide by the area:

\[
E = \frac{Q}{4\pi \varepsilon_0 r^2}
\]

FIGURE 15.29 (Example 15.7) (a) The electric field inside a uniformly charged spherical shell is zero. It is also zero for the conducting material in the region \(a < r < b \). The field outside is the same as that of a point charge having a total charge \(Q \) located at the center of the shell. (b) The construction of a Gaussian surface for calculating the electric field inside a spherical shell. (c) The construction of a Gaussian surface for calculating the electric field outside a spherical shell.
(c) Now an additional charge of $-2Q$ is placed at the center of the sphere. Compute the new electric field outside the sphere, for $r > b$.

Apply Gauss’s law as in part (b), including the new charge Q_{inside}:

$$EA = E(4\pi r^2) = \frac{Q_{\text{inside}} + Q - 2Q}{\varepsilon_0}$$

$$E = -\frac{Q}{4\pi \varepsilon_0 r^2}$$

(d) Find the charge distribution on the sphere for part (c).

Write Gauss’s law for the interior of the shell:

$$EA = \frac{Q_{\text{inside}}}{\varepsilon_0} = \frac{Q_{\text{center}} + Q_{\text{inner surface}}}{\varepsilon_0}$$

Find the charge on the inner surface of the shell, noting that the electric field in the conductor is zero:

$$Q_{\text{center}} + Q_{\text{inner surface}} = 0$$

$$Q_{\text{inner surface}} = -Q_{\text{center}} = +2Q$$

Find the charge on the outer surface, noting that the inner and outer surface charges must sum to $+Q$:

$$Q_{\text{outer surface}} + Q_{\text{inner surface}} = Q$$

$$Q_{\text{outer surface}} = -Q_{\text{inner surface}} + Q = -Q$$

Remarks The important thing to notice is that in each case, the charge is spread out over a region with spherical symmetry or is located at the exact center. That is what allows the computation of a value for the electric field.

QUESTION 15.7
If the charge at the center of the sphere is made positive, how is the charge on the inner surface of the sphere affected?

EXERCISE 15.7
Suppose the charge at the center is now increased to $+2Q$, while the surface of the conductor still retains a charge of $+Q$.

(a) Find the electric field exterior to the sphere, for $r > b$.
(b) What’s the electric field inside the conductor, for $a < r < b$?
(c) Find the charge distribution on the conductor.

Answers
(a) $E = \frac{3Q}{4\pi \varepsilon_0 r^2}$
(b) $E = 0$, which is always the case when charges are not moving in a conductor.
(c) Inner surface: $-2Q$; outer surface: $+3Q$

In Example 15.7, not much was said about the distribution of charge on the conductor. Whenever there is a net nonzero charge, the individual charges will try to get as far away from each other as possible. Hence, charge will reside either on the inside surface or on the outside surface. Because the electric field in the conductor is zero, there will always be enough charge on the inner surface to cancel whatever charge is at the center. In part (b) there is no charge on the inner surface and a charge of $+Q$ on the outer surface. In part (c), with a $-Q$ charge at the center, $+Q$ is on the inner surface and 0 C is on the outer surface. Finally, in the exercise, with $-2Q$ in the center, there must be $+2Q$ on the inner surface and $-Q$ on the outer surface. In each case the total charge on the conductor remains the same, $+Q$; it’s just arranged differently.

Problems like Example 15.7 are often said to have “thin, nonconducting shells” carrying a uniformly distributed charge. In these cases no distinction need be made between the outer surface and inner surface of the shell. The next example makes that implicit assumption.
EXAMPLE 15.8 A Nonconducting Plane Sheet of Charge

Goal Apply Gauss’s law to a problem with plane symmetry.

Problem Find the electric field above and below a nonconducting infinite plane sheet of charge with uniform positive charge per unit area \(\sigma \) (Fig. 15.30a).

Strategy By symmetry, the electric field must be perpendicular to the plane and directed away from it on either side, as shown in Figure 15.30b. For the Gaussian surface, choose a small cylinder with axis perpendicular to the plane, each end having area \(A_0 \). No electric field lines pass through the curved surface of the cylinder, only through the two ends, which have total area \(2A_0 \). Apply Gauss’s law, using Figure 15.30b.

Solution
(a) Find the electric field above and below a plane of uniform charge.

Apply Gauss’s law, Equation 15.12:

\[
EA = \frac{Q_{\text{inside}}}{\varepsilon_0}
\]

The total charge inside the Gaussian cylinder is the charge density times the cross-sectional area:

\[
Q_{\text{inside}} = \sigma A_0
\]

The electric flux comes entirely from the two ends, each having area \(A_0 \). Substitute \(A = 2A_0 \) and \(Q_{\text{inside}} \) and solve for \(E \).

\[
E = \frac{\sigma A_0}{(2A_0)\varepsilon_0} = \frac{\sigma}{2\varepsilon_0}
\]

This is the magnitude of the electric field. Find the z-component of the field above and below the plane. The electric field points away from the plane, so it’s positive above the plane and negative below the plane.

\[
E_z = \frac{\sigma}{2\varepsilon_0} \quad z > 0
\]

\[
E_z = -\frac{\sigma}{2\varepsilon_0} \quad z < 0
\]

Remarks Notice here that the plate was taken to be a thin, nonconducting shell. If it’s made of metal, of course, the electric field inside it is zero, with half the charge on the upper surface and half on the lower surface.

QUESTION 15.8
In reality, the sheet carrying charge would likely be metallic and have a small but nonzero thickness. If it carries the same charge per unit area, what is the electric field inside the sheet between the two surfaces?
An important circuit element that will be studied extensively in the next chapter is the parallel-plate capacitor. The device consists of a plate of positive charge, as in Example 15.8, with the negative plate of Exercise 15.8 placed above it. The sum of these two fields is illustrated in Figure 15.31. The result is an electric field with double the magnitude in between the two plates:

\[E = \frac{\sigma}{2\epsilon_0}, \quad z > 0; \quad E = \frac{\sigma}{2\epsilon_0}, \quad z < 0. \]

[15.13]

Outside the plates, the electric fields cancel.

EXERCISE 15.8

Suppose an infinite nonconducting plane of charge as in Example 15.8 has a uniform negative charge density of \(-\sigma\).

Find the electric field above and below the plate. Sketch the field.

Answers \(E_z = \frac{-\sigma}{2\epsilon_0}, \quad z > 0; \quad E_z = \frac{\sigma}{2\epsilon_0}, \quad z < 0. \) See Figure 15.30c for the sketch.

SUMMARY

15.1 Properties of Electric Charges

Electric charges have the following properties:

1. Unlike charges attract one another and like charges repel one another.
2. Electric charge is always conserved.
3. Charge comes in discrete packets that are integral multiples of the basic electric charge \(e = 1.6 \times 10^{-19} \) C.
4. The force between two charged particles is proportional to the inverse square of the distance between them.

15.2 Insulators and Conductors

Conductors are materials in which charges move freely in response to an electric field. All other materials are called insulators.

15.3 Coulomb’s Law

Coulomb’s law states that the electric force between two stationary charged particles separated by a distance \(r \) has the magnitude

\[F = k \frac{|q_1||q_2|}{r^2} \]

[15.1]

where \(|q_1| \) and \(|q_2| \) are the magnitudes of the charges on the particles in coulombs and

\[k = 8.99 \times 10^9 \text{ N} \cdot \text{m}^2/\text{C}^2 \]

[15.2]

is the Coulomb constant.

15.4 The Electric Field

An electric field \(\mathbf{E} \) exists at some point in space if a small test charge \(q_0 \) placed at that point is acted upon by an electric force \(\mathbf{F} \). The electric field is defined as

\[\mathbf{E} = \frac{\mathbf{F}}{q_0} \]

[15.3]

The direction of the electric field at a point in space is defined to be the direction of the electric force that would be exerted on a small positive charge placed at that point.

The magnitude of the electric field due to a point charge \(q \) at a distance \(r \) from the point charge is

\[E = \frac{|q|}{4\pi\epsilon_0 r^2} \]

[15.6]

15.5 Electric Field Lines

Electric field lines are useful for visualizing the electric field in any region of space. The electric field vector \(\mathbf{E} \) is tangent to the electric field lines at every point. Further, the number of electric field lines per unit area through a surface perpendicular to the lines is proportional to the strength of the electric field at that surface.

15.6 Conductors in Electrostatic Equilibrium

A conductor in electrostatic equilibrium has the following properties:

1. The electric field is zero everywhere inside the conducting material.
2. Any excess charge on an isolated conductor must reside entirely on its surface.
3. The electric field just outside a charged conductor is perpendicular to the conductor’s surface.
4. On an irregularly shaped conductor, charge accumulates where the radius of curvature of the surface is smallest, at sharp points.

15.9 Electric Flux and Gauss’s Law

Gauss’s law states that the electric flux through any closed surface is equal to the net charge \(Q \) inside the surface divided by the permittivity of free space, \(\epsilon_0 \):

\[\Phi_E = \frac{Q_{\text{inside}}}{\epsilon_0} \]

[15.12]

For highly symmetric distributions of charge, Gauss’s law can be used to calculate electric fields.
MULTIPLE-CHOICE QUESTIONS

1. The magnitude of the electric force between two protons is 2.3×10^{-26} N. How far apart are they? (a) 0.10 m (b) 0.022 m (c) 3.1 m (d) 0.005 7 m (e) 0.48 m

2. Estimate the magnitude of the electric field strength due to the proton in a hydrogen atom at a distance of 5.29×10^{-11} m, the Bohr radius. (a) 10^{-11} N/C (b) 10^6 N/C (c) 10^{14} N/C (d) 10^6 N/C (e) 10^{12} N/C

3. A very small ball has a mass of 5.0×10^{-3} kg and a charge of $4.0 \, \mu$C. What magnitude electric field directed upward will balance the weight of the ball? (a) 8.2×10^3 N/C (b) 1.2×10^4 N/C (c) 2.0×10^{-2} N/C (d) 5.1×10^4 N/C (e) 3.7×10^4 N/C

4. An electron with a speed of 3.00×10^6 m/s moves into a uniform electric field of magnitude 1.00×10^3 N/C. The field is parallel to the electron’s motion. How far does the electron travel before it is brought to rest? (a) 2.56 cm (b) 5.12 cm (c) 11.2 cm (d) 3.34 m (e) 4.24 m

5. Charges of 3.0 nC, $-2.0 \, nC$, $-7.0 \, nC$, and $1.0 \, nC$ are contained inside a rectangular box with length 1.0 m, width 2.0 m, and height 2.5 m. Outside the box are charges of 1.0 nC and 4.0 nC. What is the electric flux through the surface of the box? (a) 0 (b) $-560 \, \text{N} \cdot \text{m}^2/\text{C}$ (c) $-340 \, \text{N} \cdot \text{m}^2/\text{C}$ (d) $260 \, \text{N} \cdot \text{m}^2/\text{C}$ (e) $170 \, \text{N} \cdot \text{m}^2/\text{C}$

6. A uniform electric field of 1.0 N/C is set up by a uniform distribution of charge in the xy-plane. What is the electric field inside a metal ball placed 0.50 m above the xy-plane? (a) 1.0 N/C (b) $-1.0 \, \text{N/C}$ (c) 0 (d) 0.25 N/C (e) It varies depending on the position inside the ball.

7. A charge of $-4.00 \, nC$ is located at (0, 1.00) m. What is the x-component of the electric field at (4.00, -2.00) m? (a) 1.15 N/C (b) $-2.24 \, \text{N/C}$ (c) 3.91 N/C (d) $-1.15 \, \text{N/C}$ (e) 0.863 N/C

8. Two point charges attract each other with an electric force of magnitude F. If one charge is reduced to one-third its original value and the distance between the charges is doubled, what is the resulting magnitude of the electric force between them? (a) $F/12$ (b) $F/3$ (c) $F/6$ (d) 3F/4 (e) 3F/2

9. What happens when a charged insulator is placed near an uncharged metallic object? (a) They repel each other. (b) They attract each other. (c) They may attract or repel each other, depending on whether the charge on the insulator is positive or negative. (d) They exert no electrostatic force on each other. (e) The charged insulator always spontaneously discharges.

10. In which of the following contexts can Gauss’s law not be readily applied to find the electric field? (a) near a long, uniformly charged wire (b) above a large uniformly charged plane (c) inside a uniformly charged ball (d) outside a uniformly charged sphere (e) Gauss’s law can be readily applied to find the electric field in all these contexts.

11. What prevents gravity from pulling you through the ground to the center of Earth? Choose the best answer. (a) The density of matter is too great. (b) The positive nuclei of your body’s atoms repel the positive nuclei of the atoms of the ground. (c) The density of the ground is greater than the density of your body. (d) Atoms are bound together by chemical bonds. (e) Electrons on the ground’s surface and the surface of your feet repel one another.

12. A metallic coin is given a positive electric charge. Does its mass (a) increase measurably, (b) increase by an amount too small to measure directly, (c) stay unchanged, (d) decrease by an amount too small to measure directly, or (e) decrease measurably?

13. Three charged particles are arranged on corners of a square as shown in Figure MCQ15.13, with charge $-Q$ on both the particle at the upper left corner and the particle at the lower right corner, and charge $+2Q$ on the particle at the lower left corner. What is the direction of the electric field at the upper right corner, which is a point in empty space? (a) upward and to the right (b) to the right (c) downward (d) downward and to the left (e) The field is exactly zero at that point.

14. Suppose the $+2Q$ charge at the lower left corner of Figure MCQ15.13 is removed. Which statement is true about the magnitude of the electric field at the upper right corner? (a) It becomes larger. (b) It becomes smaller. (c) It stays the same. (d) It changes unpredictably. (e) It is zero.
CONCEPTUAL QUESTIONS

1. A glass object is charged to +3 nC by rubbing it with a silk cloth. In the rubbing process, have protons been added to the object or have electrons been removed from it?

2. Why must hospital personnel wear special conducting shoes while working around oxygen in an operating room? What might happen if the personnel wore shoes with rubber soles?

3. A person is placed in a large, hollow metallic sphere that is insulated from ground. If a large charge is placed on the sphere, will the person be harmed upon touching the inside of the sphere?

4. Explain from an atomic viewpoint why charge is usually transferred by electrons.

5. Explain how a positively charged object can be used to leave another metallic object with a net negative charge. Discuss the motion of charges during the process.

6. If a suspended object A is attracted to a charged object B, can we conclude that A is charged? Explain.

7. If a metal object receives a positive charge, does its mass increase, decrease, or stay the same? What happens to its mass if the object receives a negative charge?

8. Consider point A in Figure CQ15.8. Does charge exist at this point? Does a force exist at this point? Does a field exist at this point? Explain.

![Figure CQ15.8](image_url)

FIGURE CQ15.8

PROBLEMS

The Problems for this chapter may be assigned online at WebAssign.

1. **ECPS** Two metal balls A and B of negligible radius are floating at rest on Space Station Freedom between two metal bulkheads, connected by a taut nonconducting thread of length 2.00 m. Ball A carries charge \(q \) and ball B carries charge \(2q \). Each ball is 1.00 m away from a bulkhead. (a) If the tension in the string is 2.50 N, what is the magnitude of \(q \)? (b) What happens to the system as time passes? Explain.

2. **ECPS** Find the electrostatic force between a Na\(^+\) ion and a Cl\(^-\) ion separated by 0.50 nm. (b) Would the answer change if the sodium ion were replaced by Li\(^+\) and the Chloride ion by Br\(^-\)? Explain.

3. **ECPS** In fair weather there is an electric field at the surface of the Earth, pointing down into the ground. What is the electric charge on the ground in this situation?

4. A student stands on a thick piece of insulating material, places her hand on top of a Van de Graaff generator, and then turns on the generator. Does she receive a shock?

5. There are great similarities between electric and gravitational fields. A room can be electrically shielded so that there are no electric fields in the room by surrounding it with a conductor. Can a room be gravitationally shielded? Explain.

6. Why should a ground wire be connected to the metal support rod for a television antenna?

7. A charged comb often attracts small bits of dry paper that then fly away when they touch the comb. Explain.

8. A spherical surface surrounds a point charge \(q \). Describe what happens to the total flux through the surface if (a) the charge is tripled, (b) the volume of the sphere is doubled, (c) the surface is changed to a cube, (d) the charge is moved to another location inside the surface, and (e) the charge is moved outside the surface.

9. If more electric field lines leave a Gaussian surface than enclose by that surface?
6. A molecule of DNA (deoxyribonucleic acid) is 2.17 \mu m long. The ends of the molecule become singly ionized: negative on one end, positive on the other. The helical molecule acts like a spring and compresses 1.00% upon becoming charged. Determine the effective spring constant of the molecule.

7. Suppose 1.00 g of hydrogen is separated into electrons and protons. Suppose also the protons are placed at the Earth’s North Pole and the electrons are placed at the South Pole. What is the resulting compressional force on the Earth?

8. Four point charges are at the corners of a square of side \(a\) as shown in Figure P15.8. Determine the magnitude and direction of the resultant electric force on \(q\), with \(k_e\), \(q\), and \(a\) left in symbolic form.

9. Two small identical conducting spheres are placed with their centers 0.30 m apart. One is given a charge of \(12 \times 10^{-9}\) C, the other a charge of \(-18 \times 10^{-9}\) C. (a) Find the electrostatic force exerted on one sphere by the other. (b) The spheres are connected by a conducting wire. Find the electrostatic force between the two after equilibrium is reached.

10. Calculate the magnitude and direction of the Coulomb force on each of the three charges shown in Figure P15.10.

11. Three charges are arranged as shown in Figure P15.11. Find the magnitude and direction of the electrostatic force on the charge at the origin.

12. Three charges are arranged as shown in Figure P15.12. Find the magnitude and direction of the electrostatic force on the 6.00-nC charge.

13. Three point charges are located at the corners of an equilateral triangle as in Figure P15.13. Find the magnitude and direction of the net electric force on the 2.00 \mu C charge.

14. A charge of \(-3.00\) nC and a charge of \(-5.80\) nC are separated by a distance of 50.0 cm. Find the position at which a third charge of \(+7.50\) nC can be placed so that the net electrostatic force on it is zero.

15. Two small metallic spheres, each of mass 0.20 g, are suspended as pendulums by light strings from a common point as shown in Figure P15.15. The spheres are given the same electric charge, and it is found that they come to equilibrium when each string is at an angle of 5.0° with the vertical. If each string is 30.0 cm long, what is the magnitude of the charge on each sphere?
SECTION 15.4 THE ELECTRIC FIELD

17. A small object of mass 3.80 g and charge −18 μC “floats” in a uniform electric field. What is the magnitude and direction of the electric field?

18. (a) Determine the electric field strength at a point 1.00 cm to the left of the middle charge shown in Figure P15.10. (b) If a charge of −2.00 μC is placed at this point, what are the magnitude and direction of the force on it?

19. An airplane is flying through a thundercloud at a height of 2,000 m. (Flying at this height is very dangerous because of updrafts, turbulence, and the possibility of electric discharge.) If there are charge concentrations of +40.0 C at a height of 3,000 m within the cloud and −40.0 C at a height of 1,000 m, what is the electric field E at the aircraft?

20. An electron is accelerated by a constant electric field of magnitude 300 N/C. (a) Find the acceleration of the electron. (b) Use the equations of motion with constant acceleration to find the electron’s speed after 1.00 × 10⁻⁸ s, assuming it starts from rest.

21. A charge of −5.0 nC is at the origin and a second charge of 7.0 nC is at x = 4.00 m. Find the magnitude and direction of the electric field halfway in between the two charges.

22. Each of the protons in a particle beam has a kinetic energy of 3.25 × 10⁻¹⁵ J. What are the magnitude and direction of the electric field that will stop these protons in a distance of 1.25 m?

23. A proton accelerates from rest in a uniform electric field of 640 N/C. At some later time, its speed is 1.20 × 10⁶ m/s. (a) Find the magnitude of the acceleration of the proton. (b) How long does it take the proton to reach this speed? (c) How far has it moved in that interval? (d) What is its kinetic energy at the later time?

24. (a) Find the magnitude and direction of the electric field at the position of the 2.00 μC charge in Figure P15.13. (b) How would the electric field at that point be affected if the charge there were doubled? Would the magnitude of the electric force be affected?

25. An alpha particle (a helium nucleus) is traveling along the positive x-axis at 1,250 m/s when it enters a cylindrical tube of radius 0.500 m centered on the x-axis. Inside the tube is a uniform electric field of 4.50 × 10⁻⁴ N/C pointing in the negative y-direction. How far does the particle travel before hitting the tube wall? Neglect any gravitational forces. Note: m_a = 6.64 × 10⁻²⁷ kg; q_a = 2e.

26. Two point charges lie along the y-axis. A charge of q_1 = −9.0 μC is at y = 6.0 m, and a charge of q_2 = −8.0 μC is at y = −4.0 m. Locate the point (other than infinity) at which the total electric field is zero.

27. In Figure P15.27 determine the point (other than infinity) at which the total electric field is zero.

28. Three charges are at the corners of an equilateral triangle, as shown in Figure P15.28. Calculate the electric field at a point midway between the two charges on the x-axis.

29. Three identical charges (q = −5.0 μC) lie along a circle of radius 2.0 m at angles of 30°, 150°, and 270°, as shown in Figure P15.29. What is the resultant electric field at the center of the circle?

SECTION 15.5 ELECTRIC FIELD LINES

SECTION 15.6 CONDUCTORS IN ELECTROSTATIC EQUILIBRIUM

30. Figure P15.30 shows the electric field lines for two point charges separated by a small distance. (a) Determine the ratio q_1/q_2. (b) What are the signs of q_1 and q_2?

31. (a) Sketch the electric field lines around an isolated point charge q > 0. (b) Sketch the electric field pattern around an isolated negative point charge of magnitude −2q.

32. (a) Sketch the electric field pattern around two positive point charges of magnitude 1 μC placed close together. (b) Sketch the electric field pattern around two negative point charges of −2 μC, placed close together. (c) Sketch the pattern around two point charges of +1 μC and −2 μC, placed close together.
35. Two point charges are a small distance apart. (a) Sketch the electric field lines for the two if one has a charge four times that of the other and both charges are positive. (b) Repeat for the case in which both charges are negative.

34. (a) Sketch the electric field pattern set up by a positively charged hollow sphere. Include regions inside and regions outside the sphere. (b) A conducting cube is given a positive charge. Sketch the electric field pattern both inside and outside the cube.

35. Refer to Figure 15.20. The charge lowered into the center of the hollow conductor has a magnitude of 5 \(\mu \)C. Find the magnitude and sign of the charge on the inside and outside of the hollow conductor when the charge is as shown in (a) Figure 15.20a, (b) Figure 15.20b, (c) Figure 15.20c, and (d) Figure 15.20d.

SECTION 15.8 THE VAN DE GRAAFF GENERATOR

36. The dome of a Van de Graaff generator receives a charge of \(2.0 \times 10^{-4} \) C. Find the strength of the electric field (a) inside the dome, (b) at the surface of the dome, assuming it has a radius of 1.0 m, and (c) 4.0 m from the center of the dome. (Hint: See Section 15.6 to review properties of conductors in electrostatic equilibrium. Also, use that the points on the surface are outside a spherically symmetric charge distribution; the total charge may be considered to be located at the center of the sphere.)

37. If the electric field strength in air exceeds \(3.0 \times 10^{6} \) N/C, the air becomes a conductor. Using this fact, determine the maximum amount of charge that can be carried by a metal sphere 2.0 m in radius. (See the hint in Problem 36.)

38. In the Millikan oil-drop experiment, an atomizer (a sprayer with a fine nozzle) is used to introduce many tiny droplets of oil between two oppositely charged parallel metal plates. Some of the droplets pick up one or more excess electrons. The charge on the plates is adjusted so that the electric force on the excess electrons exactly balances the weight of the droplet. The idea is to look for a droplet that has the smallest electric force and assume it has only one excess electron. This strategy lets the observer measure the weight of the droplet. Suppose we are using an excess electron. This strategy lets the observer measure

40. A flat surface having an area of 3.2 m\(^2\) is rotated in a uniform electric field of magnitude \(E = 6.2 \times 10^{3} \) N/C. Determine the electric flux through this area (a) when the electric field is perpendicular to the surface and (b) when the electric field is parallel to the surface.

41. An electric field of intensity 3.50 kN/C is applied along the x-axis. Calculate the electric flux through a rectangular plane 0.350 m wide and 0.700 m long if (a) the plane is parallel to the xy-plane, (b) the plane is parallel to the yz-plane, and (c) the plane contains the xy-axis and its normal makes an angle of 40.0° with the x-axis.

42. The electric field everywhere on the surface of a charged sphere of radius 0.230 m has a magnitude of 575 N/C and points radially outward from the center of the sphere. (a) What is the net charge on the sphere? (b) What can you conclude about the nature and distribution of charge inside the sphere?

43. Four closed surfaces, \(S_1 \) through \(S_4 \), together with the charges \(-2Q, Q, \) and \(-Q\) are sketched in Figure P15.43. (The colored lines are the intersections of the surfaces with the page.) Find the electric flux through each surface.

44. A vertical electric field of magnitude \(1.80 \times 10^{4} \) N/C exists above Earth’s surface on a stormy day. A car with a rectangular size of 5.50 m by 2.00 m is traveling along a horizontal roadway. Find the magnitude of the electric flux through the bottom of the car.

45. A point charge \(q \) is located at the center of a spherical shell of radius \(a \) that has a charge \(-q\) uniformly distributed on its surface. Find the electric field (a) for all points outside the spherical shell and (b) for a point inside the shell a distance \(r \) from the center.

46. A charge of \(1.70 \times 10^{2} \) \(\mu \)C is at the center of a cube of edge \(80.0 \) cm. No other charges are nearby. (a) Find the flux through the whole surface of the cube. (b) Find the flux through each face of the cube. (c) Would your answers to parts (a) or (b) change if the charge were not at the center? Explain.

47. Suppose the conducting spherical shell of Figure 15.29 carries a charge of \(3.00 \) nC and that a charge of \(-2.00 \) nC is at the center of the sphere. If \(a = 2.00 \) m and \(b = 2.40 \) m, find the electric field at (a) \(r = 1.50 \) m, (b) \(r = 2.20 \) m, and (c) \(r = 2.50 \) m. (d) What is the charge distribution on the sphere?

48. A very large nonconducting plate lying in the xy-plane carries a charge per unit area of \(\sigma \). A second such plate located at \(z = 2.00 \) cm and oriented parallel to the xy-plane carries a charge per unit area of \(-2\sigma\). Find the electric field (a) for \(z < 0 \), (b) \(0 < z < 2.00 \) cm, and (c) \(z > 2.00 \) cm.
ADDITIONAL PROBLEMS

49. In deep space two spheres each of radius 5.00 m are connected by a 3.00 \times 10^2 m nonconducting cord. If a uniformly distributed charge of 35.0 mC resides on the surface of each sphere, calculate the tension in the cord.

50. A nonconducting, thin plane sheet of charge carries a uniform charge per unit area of 5.20 \mu C/m^2 as in Figure 15.30. (a) Find the electric field at a distance of 8.70 cm from the plate. (b) Explain whether your result changes as the distance from the sheet is varied.

51. Three point charges are aligned along the x-axis as shown in Figure P15.51. Find the electric field at the position x = +2.0 m, y = 0.

![Figure P15.51](image)

52. A small, 2.00-g plastic ball is suspended by a 20.0-cm-long string in a uniform electric field, as shown in Figure P15.52. If the ball is in equilibrium when the string makes a 15.0° angle with the vertical as indicated, what is the net charge on the ball?

![Figure P15.52](image)

53. (a) Two identical point charges +q are located on the y-axis at y = +a and y = −a. What is the electric field along the x-axis at x = k? (b) A circular ring of charge of radius a has a total positive charge Q distributed uniformly around it. The ring is in the x = 0 plane with its center at the origin. What is the electric field along the x-axis at x = b due to the ring of charge? (Hint: Consider the charge Q to consist of many pairs of identical point charges positioned at the ends of diameters of the ring.)

54. The electrons in a particle beam each have a kinetic energy K. Find the magnitude of the electric field that will stop these electrons in a distance d, expressing the answer symbolically in terms of K, e, and d. Should the electric field point in the direction of the motion of the electron, or should it point in the opposite direction?

55. A vertical spring with constant 845 N/m has a ball of mass 1.00 kg attached to the bottom of it, which is held with the spring unstretched. (a) How far must the ball be lowered to reach its equilibrium position? (b) The ball is given a charge of 0.050 \mu C. If an electric field directed upward is applied, increasing slowly to a maximum value of 355.0 N/C, how far below the unstretched position is the new equilibrium position of the ball?

56. A 2.00-\mu C charged 1.00-g cork ball is suspended vertically on a 0.500-m-long light string in the presence of a uniform downward-directed electric field of magnitude E = 1.00 \times 10^3 N/C. If the ball is displaced slightly from the vertical, it oscillates like a simple pendulum. (a) Determine the period of the ball's oscillation. (b) Should gravity be included in the calculation for part (a)? Explain.

57. Two 2.0-g spheres are suspended by 10.0-cm-long light strings (Fig. P15.57). A uniform electric field is applied in the x-direction. If the spheres have charges of −5.0 \times 10^{-3} C and +5.0 \times 10^{-3} C, determine the electric field intensity that enables the spheres to be in equilibrium at θ = 10°.

![Figure P15.57](image)

58. A point charge of magnitude 5.00 \mu C is at the origin of a coordinate system, and a charge of −4.00 \mu C is at the point x = 1.00 m. There is a point on the x-axis, at x less than infinity, where the electric field goes to zero. (a) Show by conceptual arguments that this point cannot be located between the charges. (b) Show by conceptual arguments that the point cannot be at any location between x = 0 and negative infinity. (c) Show by conceptual arguments that the point must be between x = 1.00 m and x = positive infinity. (d) Use the values given to find the point and show that it is consistent with your conceptual argument.

59. Two hard rubber spheres of mass 15 g are rubbed vigorously with fur on a dry day and are then suspended from a rod with two insulating strings of length 5.0 cm. They are observed to hang at equilibrium as shown in Figure P15.59, each at an angle of 10° with the vertical. Estimate the amount of charge that is found on each sphere. (Problem 59 is courtesy of E. F. Redish. For more problems of this type, visit www.physics.umd.edu/perg/.)

![Figure P15.59](image)
60. Two small silver spheres, each with a mass of 100 g, are separated by 1.00 m. Calculate the fraction of the electrons in one sphere that must be transferred to the other to produce an attractive force of 1.00×10^4 N (about 1 ton) between the spheres. (The number of electrons per atom of silver is 47, and the number of atoms per gram is Avogadro’s number divided by the molar mass of silver, 107.87 g/mol.)

61. A solid conducting sphere of radius 2.00 cm has a charge of 8.00 μC. A conducting spherical shell of inner radius 4.00 cm and outer radius 5.00 cm is concentric with the solid sphere and has a charge of -4.00μC. Find the electric field at (a) $r = 1.00$ cm, (b) $r = 3.00$ cm, (c) $r = 4.50$ cm, and (d) $r = 7.00$ cm from the center of this charge configuration.

62. Three identical point charges, each of mass $m = 0.100$ kg, hang from three strings, as shown in Figure P15.62. If the lengths of the left and right strings are each $L = 30.0$ cm and if the angle θ is 45.0°, determine the value of q.

63. Each of the electrons in a particle beam has a kinetic energy of 1.60×10^{-17} J. (a) What is the magnitude of the uniform electric field (pointing in the direction of the electrons’ movement) that will stop these electrons in a distance of 10.0 cm? (b) How long will it take to stop the electrons? (c) After the electrons stop, what will they do? Explain.

64. Protons are projected with an initial speed $v_0 = 9550$ m/s into a region where a uniform electric field $E = 720$ N/C is present (Fig. P15.64). The protons are to hit a target that lies a horizontal distance of 1.27 mm from the point where the protons are launched. Find (a) the two projection angles θ that will result in a hit and (b) the total duration of flight for each of the two trajectories.
ELECTRICAL ENERGY AND CAPACITANCE

The concept of potential energy was first introduced in Chapter 5 in connection with the conservative forces of gravity and springs. By using the principle of conservation of energy, we were often able to avoid working directly with forces when solving problems. Here we learn that the potential energy concept is also useful in the study of electricity. Because the Coulomb force is conservative, we can define an electric potential energy corresponding to that force. In addition, we define an electric potential—the potential energy per unit charge—corresponding to the electric field.

With the concept of electric potential in hand, we can begin to understand electric circuits, starting with an investigation of common circuit elements called capacitors. These simple devices store electrical energy and have found uses virtually everywhere, from etched circuits on a microchip to the creation of enormous bursts of power in fusion experiments.

16.1 POTENTIAL DIFFERENCE AND ELECTRIC POTENTIAL

Electric potential energy and electric potential are closely related concepts. The electric potential turns out to be just the electric potential energy per unit charge. This relationship is similar to that between electric force and the electric field, which is the electric force per unit charge.

Work and Electric Potential Energy

Recall from Chapter 5 that the work done by a conservative force F on an object depends only on the initial and final positions of the object and not on the path taken between those two points. This, in turn, means that a potential energy function PE exists. As we have seen, potential energy is a scalar quantity with the change in potential energy equal by definition to the negative of the work done by the conservative force: $\Delta PE = PE_f - PE_i = -W_F$.
Both the Coulomb force law and the universal law of gravity are proportional to \(1/r^2\). Because they have the same mathematical form and because the gravity force is conservative, it follows that the Coulomb force is also conservative. As with gravity, an electrical potential energy function can be associated with this force.

To make these ideas more quantitative, imagine a small positive charge placed at point \(A\) in a uniform electric field \(\vec{E}\), as in Figure 16.1. For simplicity, we first consider only constant electric fields and charges that move parallel to that field in one dimension (taken to be the \(x\)-axis). The electric field between equally and oppositely charged parallel plates is an example of a field that is approximately constant. (See Chapter 15.) As the charge moves from point \(A\) to point \(B\) under the influence of the electric field \(\vec{E}\), the work done on the charge by the electric field is equal to the part of the electric force \(q\vec{E}\) acting parallel to the displacement times the displacement \(\Delta x = x_f - x_i\):

\[
W_{AB} = F_x \Delta x = qE_x(x_f - x_i)
\]

In this expression \(q\) is the charge and \(F_x\) is the vector component of \(\vec{E}\) in the \(x\)-direction (not the magnitude of \(\vec{E}\)). Unlike the magnitude of \(\vec{E}\), the component \(E_x\) can be positive or negative, depending on the direction of \(\vec{E}\), although in Figure 16.1 \(E_x\) is positive. Finally, note that the displacement, like \(q\) and \(E_x\), can also be either positive or negative, depending on the direction of the displacement.

The preceding expression for the work done by an electric field on a charge moving in one dimension is valid for both positive and negative charges and for constant electric fields pointing in any direction. When numbers are substituted with correct signs, the overall correct sign automatically results. In some books the expression \(W = qEd\) is used, instead, where \(E\) is the magnitude of the electric field and \(d\) is the distance the particle travels. The weakness of this formulation is that it doesn’t allow, mathematically, for negative electric work on positive charges, nor for positive electric work on negative charges! Nonetheless, the expression is easy to remember and useful for finding magnitudes: the magnitude of the work done by a constant electric field on a charge moving parallel to the field is always given by \(|W| = |q|Ed\).

We can substitute our definition of electric work into the work–energy theorem (assume other forces are absent):

\[
W = qE_x \Delta x = \Delta KE
\]

The electric force is conservative, so the electric work depends only on the endpoints of the path, \(A\) and \(B\), not on the path taken. Therefore, as the charge accelerates to the right in Figure 16.1, it gains kinetic energy and loses an equal amount of potential energy. Recall from Chapter 5 that the work done by a conservative force can be reinterpreted as the negative of the change in a potential energy associated with that force. This interpretation motivates the definition of the change in electric potential energy:

The change in the electric potential energy, \(\Delta PE\), of a system consisting of an object of charge \(q\) moving through a displacement \(\Delta x\) in a constant electric field \(\vec{E}\) is given by

\[
\Delta PE = -W_{AB} = -qE_x \Delta x \quad \text{[16.1]}
\]

where \(E_x\) is the \(x\)-component of the electric field and \(\Delta x = x_f - x_i\) is the displacement of the charge along the \(x\)-axis.

SI unit: joule (J)

Although potential energy can be defined for any electric field, **Equation 16.1 is valid only for the case of a uniform (i.e., constant) electric field, for a particle that undergoes a displacement along a given axis (here called the \(x\)-axis).** Because the electric field is conservative, the change in potential energy doesn’t depend on...
the path. Consequently, it’s unimportant whether or not the charge remains on the axis at all times during the displacement: the change in potential energy will be the same. In subsequent sections we will examine situations in which the electric field is not uniform.

Electric and gravitational potential energy can be compared in Figure 16.2. In this figure the electric and gravitational fields are both directed downwards. We see that positive charge in an electric field acts very much like mass in a gravity field: a positive charge at point A falls in the direction of the electric field, just as a positive mass falls in the direction of the gravity field. Let point B be the zero point for potential energy in both Figures 16.2a and 16.2b. From conservation of energy, in falling from point A to point B the positive charge gains kinetic energy equal in magnitude to the loss of electric potential energy:

$$\Delta KE + \Delta PE_{el} = \Delta KE + (0 - |q|Ed) = 0 \rightarrow \Delta KE = |q|Ed$$

The absolute-value signs on q are there only to make explicit that the charge is positive in this case. Similarly, the object in Figure 16.2b gains kinetic energy equal in magnitude to the loss of gravitational potential energy:

$$\Delta KE + \Delta PE_{g} = \Delta KE + (0 - mgd) = 0 \rightarrow \Delta KE = mgd$$

So for positive charges, electric potential energy works very much like gravitational potential energy. In both cases moving an object opposite the direction of the field results in a gain of potential energy, and upon release, the potential energy is converted to the object’s kinetic energy.

Electric potential energy differs significantly from gravitational potential energy, however, in that there are two kinds of electrical charge—positive and negative—whereas gravity has only positive “gravitational charge” (i.e. mass). A negatively charged particle at rest at point A in Figure 16.2a would have to be pushed down to point B. To see why, apply the work–energy theorem to a negative charge at rest at point A and assumed to have some speed v on arriving at point B:

$$W = \Delta KE + \Delta PE_{el} = \left(\frac{1}{2}mv^2 - 0\right) + \left[0 - (-|q|Ed)\right]$$

$$W = \frac{1}{2}mv^2 + |q|Ed$$

Notice that the negative charge, $-|q|$, unlike the positive charge, had a positive change in electric potential energy in moving from point A to point B. If the negative charge has any speed at point B, the kinetic energy corresponding to that speed is also positive. Because both terms on the right-hand side of the work–energy equation are positive, there is no way of getting the negative charge from point A to point B without doing positive work W on it. In fact, if the negative charge is simply released at point A, it will “fall” upwards against the direction of the field!

Quick Quiz 16.1 If an electron is released from rest in a uniform electric field, does the electric potential energy of the charge–field system (a) increase, (b) decrease, or (c) remain the same?

Example 16.1 Potential Energy Differences in an Electric Field

Goal Illustrate the concept of electric potential energy.

Problem A proton is released from rest at $x = -2.00$ cm in a constant electric field with magnitude 1.50×10^4 N/C, pointing in the positive x-direction. (a) Calculate the change in the electric potential energy associated with the proton when it reaches $x = 5.00$ cm. (b) An electron is now fired in the same direction from the same position. What is its change in electric potential energy associated with the electron if it reaches $x = 12.0$ cm? (c) If the direction of the electric field is reversed and an electron is released from rest at $x = 3.00$ cm, by how much has the electric potential energy changed when the electron reaches $x = 7.00$ cm?

Strategy This problem requires a straightforward substitution of given values into the definition of electric potential energy, Equation 16.1.
Remarks
Notice that the proton (actually the proton–field system) lost potential energy when it moved in the positive x-direction, whereas the electron gained potential energy when it moved in the same direction. Finding changes in potential energy with the field reversed was only a matter of supplying a minus sign, bringing the total number in this case to three! It’s important not to drop any of the signs.

QUESTION 16.1
True or False: When an electron is released from rest in a constant electric field, the change in the electric potential energy associated with the electron becomes more negative with time.

EXERCISE 16.1
Find the change in electric potential energy associated with the electron in part (b) as it goes on from $x = 0.120$ m to $x = 0.180$ m. (Note that the electron must turn around and go back at some point. The location of the turning point is unimportant because changes in potential energy depend only on the endpoints of the path.)

Answer -7.20×10^{-17} J

EXAMPLE 16.2 Dynamics of Charged Particles

Goal Use electric potential energy in conservation of energy problems.

Problem (a) Find the speed of the proton at $x = 0.050$ m in part (a) of Example 16.1. (b) Find the initial speed of the electron (at $x = -0.00$ m) in part (b) of Example 16.1 given that its speed has fallen by half when it reaches $x = 0.120$ m.
Remarks Although the changes in potential energy associated with the proton and electron were similar in magnitude, the effect on their speeds differed dramatically. The change in potential energy had a proportionately much greater effect on the much lighter electron than on the proton.

EXERCISE 16.2
Refer to Exercise 16.1. Find the electron’s speed at \(x = 0.180 \) m.

Answer \(9.92 \times 10^6 \) m/s The answer is 4.5% of the speed of light.

Electric Potential
In Chapter 15 it was convenient to define an electric field \(\mathbf{E} \) related to the electric force \(\mathbf{F} = q\mathbf{E} \). In this way the properties of fixed collections of charges could be easily studied, and the force on any particle in the electric field could be obtained simply by multiplying by the particle’s charge \(q \). For the same reasons, it’s
useful to define an electric potential difference ΔV related to the potential energy by $\Delta PE = q\Delta V$:

$$\Delta V = V_B - V_A = \frac{\Delta PE}{q} \quad [16.2]$$

SI unit: joule per coulomb, or volt (J/C, or V)

This definition is completely general, although in many cases calculus would be required to compute the change in potential energy of the system. Because electric potential energy is a scalar quantity, electric potential is also a scalar quantity. From Equation 16.2, we see that electric potential difference is a measure of the change in electric potential energy per unit charge. Alternately, the electric potential difference is the work per unit charge that would have to be done by some force to move a charge from point A to point B in the electric field. The SI unit of electric potential is the joule per coulomb, called the volt (V). From the definition of that unit, 1 J of work must be done to move a 1-C charge between two points that are at a potential difference of 1 V. In the process of moving through a potential difference of 1 V, the 1-C charge gains 1 J of energy.

For the special case of a uniform electric field such as that between charged parallel plates, dividing Equation 16.1 by q gives

$$\frac{\Delta PE}{q} = -E_x \Delta x$$

Comparing this equation with Equation 16.2, we find that

$$\Delta V = -E_x \Delta x \quad [16.3]$$

Equation 16.3 shows that potential difference also has units of electric field times distance. It then follows that the SI unit of the electric field, the newton per coulomb, can also be expressed as volts per meter:

$$1 \text{ N/C} = 1 \text{ V/m}$$

Because Equation 16.3 is directly related to Equation 16.1, remember that it’s valid only for the system consisting of a uniform electric field and a charge moving in one dimension.

Released from rest, positive charges accelerate spontaneously from regions of high potential to low potential. If a positive charge is given some initial velocity in the direction of high potential, it can move in that direction, but will slow and finally turn around, just like a ball tossed upwards in a gravity field. Negative charges do exactly the opposite: released from rest, they accelerate from regions of low potential toward regions of high potential. Work must be done on negative charges to make them go in the direction of lower electric potential.

QUICK QUIZ 16.2 If a negatively charged particle is placed at rest in an electric potential field that increases in the positive x-direction, will the particle (a) accelerate in the positive x-direction, (b) accelerate in the negative x-direction, or (c) remain at rest?

QUICK QUIZ 16.3 Figure 16.3 is a graph of an electric potential as a function of position. If a positively charged particle is placed at point A, what will its subsequent motion be? Will it (a) go to the right, (b) go to the left, (c) remain at point A, or (d) oscillate around point B?
QUICK QUIZ 16.4 If a negatively charged particle is placed at point B in Figure 16.3 and given a very small kick to the right, what will its subsequent motion be? Will it (a) go to the right and not return, (b) go to the left, (c) remain at point B, or (d) oscillate around point B?

An application of potential difference is the 12-V battery found in an automobile. Such a battery maintains a potential difference across its terminals, with the positive terminal 12 V higher in potential than the negative terminal. In practice the negative terminal is usually connected to the metal body of the car, which can be considered to be at a potential of zero volts. The battery provides the electrical current necessary to operate headlights, a radio, power windows, motors, and so forth. Now consider a charge of +1 C, to be moved around a circuit that contains the battery connected to some of these external devices. As the charge is moved inside the battery from the negative terminal (at 0 V) to the positive terminal (at 12 V), the work done on the charge by the battery is 12 J. Every coulomb of positive charge that leaves the positive terminal of the battery carries an energy of 12 J. As the charge moves through the external circuit toward the negative terminal, it gives up its 12 J of electrical energy to the external devices. When the charge reaches the negative terminal, its electrical energy is zero again. At this point, the battery takes over and restores 12 J of energy to the charge as it is moved from the negative to the positive terminal, enabling it to make another transit of the circuit. The actual amount of charge that leaves the battery each second and traverses the circuit depends on the properties of the external devices, as seen in the next chapter.

EXAMPLE 16.3 TV Tubes and Atom Smashers

Goal Relate electric potential to an electric field and conservation of energy.

Problem In atom smashers (also known as cyclotrons and linear accelerators) charged particles are accelerated in much the same way they are accelerated in TV tubes: through potential differences. Suppose a proton is injected at a speed of 1.00 × 10⁶ m/s between two plates 5.00 cm apart, as shown in Figure 16.4. The proton subsequently accelerates across the gap and exits through the opening. (a) What must the electric potential difference be if the exit speed is to be 3.00 × 10⁶ m/s? (b) What is the magnitude of the electric field between the plates, assuming it’s constant?

Strategy Use conservation of energy, writing the change in potential energy in terms of the change in electric potential, \(\Delta V \), and solve for \(\Delta V \). For part (b), solve Equation 16.3 for the electric field.

Solution (a) Find the electric potential yielding the desired exit speed of the proton.

Apply conservation of energy, writing the potential energy in terms of the electric potential:

\[
\Delta KE + \Delta PE = \Delta KE + q \Delta V = 0
\]

Solve the energy equation for the change in potential:

\[
\Delta V = \frac{-\Delta KE}{q} = \frac{-\frac{1}{2}m_p v_f^2 - \frac{1}{2}m_p v_i^2}{q} = \frac{-m_p}{2q} \left(v_f^2 - v_i^2\right)
\]

Substitute the given values, obtaining the necessary potential difference:

\[
\Delta V = \frac{-\left(1.67 \times 10^{-27} \text{ kg}\right)}{2 \left(1.60 \times 10^{-19} \text{ C}\right)} \left[(3.00 \times 10^6 \text{ m/s})^2 - (1.00 \times 10^6 \text{ m/s})^2\right]
\]

\[
\Delta V = -4.18 \times 10^4 \text{ V}
\]
16.2 ELECTRIC POTENTIAL AND POTENTIAL ENERGY DUE TO POINT CHARGES

In electric circuits a point of zero electric potential is often defined by grounding (connecting to the Earth) some point in the circuit. For example, if the negative terminal of a 12-V battery were connected to ground, it would be considered to have a potential of zero, whereas the positive terminal would have a potential of \(\frac{12}{1} \) V. The potential difference created by the battery, however, is only locally defined. In this section we describe the electric potential of a point charge, which is defined throughout space.

The electric field of a point charge extends throughout space, so its electric potential does, also. The zero point of electric potential could be taken anywhere, but is usually taken to be an infinite distance from the charge, far from its influence and the influence of any other charges. With this choice, the methods of calculus can be used to show that the electric potential created by a point charge \(q \) at any distance \(r \) from the charge is given by

\[
V = \frac{k \cdot q}{r} \tag{16.4}
\]

Equation 16.4 shows that the electric potential, or work per unit charge, required to move a test charge in from infinity to a distance \(r \) from a positive point charge \(q \) increases as the positive test charge moves closer to \(q \). A plot of Equation 16.4 in Figure 16.5 shows that the potential associated with a point charge decreases as \(1/r \) with increasing \(r \), in contrast to the magnitude of the charge’s electric field, which decreases as \(1/r^2 \).

The electric potential of two or more charges is obtained by applying the superposition principle: the total electric potential at some point \(P \) due to several point charges is the algebraic sum of the electric potentials due to the individual charges. This method is similar to the one used in Chapter 15 to find the resultant electric field at a point in space. Unlike electric field superposition, which involves a sum of vectors, the superposition of electric potentials requires evaluating a sum of scalars. As a result, it’s much easier to evaluate the electric potential at some point due to several charges than to evaluate the electric field, which is a vector quantity.
Figure 16.6 is a computer-generated plot of the electric potential associated with an electric dipole, which consists of two charges of equal magnitude but opposite in sign. The charges lie in a horizontal plane at the center of the potential spikes. The value of the potential is plotted in the vertical dimension. The computer program has added the potential of each charge to arrive at total values of the potential.

Just as in the case of constant electric fields, there is a relationship between electric potential and electric potential energy. If \(V_1 \) is the electric potential due to charge \(q_1 \) at a point \(P \) (Active Figure 16.7a) the work required to bring charge \(q_2 \) from infinity to \(P \) without acceleration is \(q_2 V_1 \). By definition, this work equals the potential energy \(PE \) of the two-particle system when the particles are separated by a distance \(r \) (Active Fig. 16.7b).

We can therefore express the electrical potential energy of the pair of charges as

\[
PE = q_2 V_1 = k \frac{q_1 q_2}{r} \quad [16.5]
\]

If the charges are of the same sign, \(PE \) is positive. Because like charges repel, positive work must be done on the system by an external agent to force the two charges near each other. Conversely, if the charges are of opposite sign, the force is attractive and \(PE \) is negative. This means that negative work must be done to prevent unlike charges from accelerating toward each other as they are brought close together.

QUICK QUIZ 16.5 Consider a collection of charges in a given region and suppose all other charges are distant and have a negligible effect. Further, the electric potential is taken to be zero at infinity. If the electric potential at a given point in the region is zero, which of the following statements must be true? (a) The electric field is zero at that point. (b) The electric potential energy is a minimum at that point. (c) There is no net charge in the region. (d) Some charges in the region are positive, and some are negative. (e) The charges have the same sign and are symmetrically arranged around the given point.

QUICK QUIZ 16.6 A spherical balloon contains a positively charged particle at its center. As the balloon is inflated to a larger volume while the charged particle remains at the center, which of the following are true? (a) The electric potential at the surface of the balloon increases. (b) The magnitude of the electric field at the surface of the balloon increases. (c) The electric flux through the balloon remains the same. (d) none of these.

ACTIVE FIGURE 16.7
(a) The electric potential \(V_1 \) at \(P \) due to the point charge \(q_1 \) is \(V_1 = k q_1 / r \).
(b) If a second charge, \(q_2 \), is brought from infinity to \(P \), the potential energy of the pair is \(PE = k q_1 q_2 / r \).
ELECTRIC POTENTIAL

1. Draw a diagram of all charges and circle the point of interest.
2. Calculate the distance from each charge to the point of interest, labeling it on the diagram.
3. For each charge \(q \), calculate the scalar quantity \(V = \frac{kq}{r} \). The sign of each charge must be included in your calculations!
4. Sum all the numbers found in the previous step, obtaining the electric potential at the point of interest.

EXAMPLE 16.4 Finding the Electric Potential

Goal Calculate the electric potential due to a collection of point charges.

Problem A 5.00-\(\mu \)C point charge is at the origin, and a point charge \(q_2 = -2.00 \) \(\mu \)C is on the \(x \)-axis at (3.00, 0) m, as in Figure 16.8. (a) If the electric potential is taken to be zero at infinity, find the total electric potential due to these charges at point \(P \) with coordinates (0, 4.00) m. (b) How much work is required to bring a third point charge of 4.00 \(\mu \)C from infinity to \(P \)?

Strategy For part (a), the electric potential at \(P \) due to each charge can be calculated from \(V = \frac{kq}{r} \). The total electric potential at \(P \) is the sum of these two numbers. For part (b), use the work–energy theorem, together with Equation 16.5, recalling that the potential at infinity is taken to be zero.

Solution (a) Find the electric potential at point \(P \):

Calculate the electric potential at \(P \) due to the 5.00-\(\mu \)C charge:

\[
V_1 = \frac{kq_1}{r_1} = \left(8.99 \times 10^9 \frac{N \cdot m^2}{C^2} \right) \left(\frac{5.00 \times 10^{-6} \text{ C}}{4.00 \text{ m}} \right) = 1.12 \times 10^4 \text{ V}
\]

Find the electric potential at \(P \) due to the \(-2.00-\mu\)C charge:

\[
V_2 = \frac{kq_2}{r_2} = \left(8.99 \times 10^9 \frac{N \cdot m^2}{C^2} \right) \left(\frac{-2.00 \times 10^{-6} \text{ C}}{5.00 \text{ m}} \right) = -0.360 \times 10^4 \text{ V}
\]

Sum the two numbers to find the total electric potential at \(P \):

\[
V_P = V_1 + V_2 = 1.12 \times 10^4 \text{ V} + (-0.360 \times 10^4 \text{ V}) = 7.6 \times 10^3 \text{ V}
\]

(b) Find the work needed to bring the 4.00-\(\mu \)C charge from infinity to \(P \):

Apply the work-energy theorem, with Equation 16.5:

\[
W = \Delta PE = q_3 \Delta V = q_3 (V_P - V_0)
\]

\[
= (4.00 \times 10^{-6} \text{ C})(7.6 \times 10^3 \text{ V} - 0) = 3.0 \times 10^{-2} \text{ J}
\]
Remarks Unlike the electric field, where vector addition is required, the electric potential due to more than one charge can be found with ordinary addition of scalars. Further, notice that the work required to move the charge is equal to the change in electric potential energy. The sum of the work done moving the particle plus the work done by the electric field is zero \(W_{\text{other}} + W_{\text{electric}} = 0 \) because the particle starts and ends at rest. Therefore, \(W_{\text{other}} = -W_{\text{electric}} = \Delta U_{\text{electric}} = q \Delta V \).

QUESTION 16.4
If \(q_2 \) were moved to the right, what would happen to the electric potential \(V_p \) at point \(P \)? (a) It would increase. (b) It would decrease. (c) It would remain the same.

EXERCISE 16.4
Suppose a charge of \(2.00 \mu\text{C} \) is at the origin and a charge of \(3.00 \mu\text{C} \) is at the point (0, 3.00) m. (a) Find the electric potential at (4.00, 0) m, assuming the electric potential is zero at infinity, and (b) find the work necessary to bring a 4.00 \(\mu\text{C} \) charge from infinity to the point (4.00, 0) m.

Answers
(a) \(8.99 \times 10^2 \text{ V} \) (b) \(3.60 \times 10^{-3} \text{ J} \)

EXAMPLE 16.5 Electric Potential Energy and Dynamics

Goal Apply conservation of energy and electrical potential energy to a configuration of charges.

Problem Suppose three protons lie on the \(x \)-axis, at rest relative to one another at a given instant of time, as in Figure 16.9. If proton \(q_3 \) on the right is released while the others are held fixed in place, find a symbolic expression for the proton’s speed at infinity and evaluate this speed when \(r_0 = 2.00 \text{ fm} \). (Note: 1 fm = \(10^{-15} \text{ m} \)).

Strategy First calculate the initial electric potential energy associated with the system of three particles. There will be three terms, one for each interacting pair. Then calculate the final electric potential energy associated with the system when the proton on the right is arbitrarily far away. Because the electric potential energy falls off as \(1/r \), two of the terms will vanish. Using conservation of energy then yields the speed of the particle in question.

Solution
Calculate the electric potential energy associated with the initial configuration of charges:

\[
PE_i = \frac{kq_1q_2}{r_{12}} + \frac{kq_1q_3}{r_{13}} + \frac{kq_2q_3}{r_{23}} = \frac{kq^2}{r_0} + \frac{kq^2}{2r_0} + \frac{kq^2}{r_0}.
\]

Calculate the electric potential energy associated with the final configuration of charges:

\[
PE_f = \frac{kq_1q_2}{r_{12}} = \frac{kq^2}{r_0}.
\]

Write the conservation of energy equation:

\[
\Delta KE + \Delta PE = KE_f - KE_i + PE_f - PE_i = 0.
\]

Substitute appropriate terms:

\[
\frac{1}{2}m_3v_3^2 - 0 + \frac{kq^2}{r_0} \left(\frac{kq^2}{2r_0} + \frac{kq^2}{r_0} \right) = 0.
\]

\[
\frac{1}{2}m_3v_3^2 - \left(\frac{kq^2}{2r_0} + \frac{kq^2}{r_0} \right) = 0.
\]

Solve for \(v_3 \) after combining the two remaining potential energy terms:

\[
v_3 = \sqrt{\frac{3kq^2}{m_3r_0}}.
\]

Evaluate taking \(r_0 = 2.00 \text{ fm} \):

\[
v_3 = \sqrt{\frac{3(8.99 \times 10^9 \text{ N} \cdot \text{m}^2/\text{C}^2)(1.60 \times 10^{-19} \text{ C})^2}{(1.67 \times 10^{-27} \text{ kg})(2.00 \times 10^{-15} \text{ m})}} = 1.44 \times 10^7 \text{ m/s}.
\]
Remarks The difference in the initial and final kinetic energies yields the energy available for motion. This calculation is somewhat contrived because it would be difficult, although not impossible, to arrange such a configuration of protons; it could conceivably occur by chance inside a star.

QUESTION 16.5
If a fourth proton were placed to the right of q_3, how many additional potential energy terms would have to be calculated in the initial configuration?

EXERCISE 16.5
Starting from the initial configuration of three protons, suppose the end two particles are released simultaneously and the middle particle is fixed. Obtain a numerical answer for the speed of the two particles at infinity. (Note that their speeds, by symmetry, must be the same.)

Answer 1.51×10^7 m/s

16.3 POTENTIALS AND CHARGED CONDUCTORS

The electric potential at all points on a charged conductor can be determined by combining Equations 16.1 and 16.2. From Equation 16.1, we see that the work done on a charge by electric forces is related to the change in electrical potential energy of the charge by

$$W = -\Delta PE$$

From Equation 16.2, we see that the change in electric potential energy between two points A and B is related to the potential difference between those points by

$$\Delta PE = q(V_B - V_A)$$

Combining these two equations, we find that

$$W = -q(V_B - V_A) \tag{16.6}$$

Using this equation, we obtain the following general result: **No work is required to move a charge between two points that are at the same electric potential.** In mathematical terms this result says that $W = 0$ whenever $V_B = V_A$.

In Chapter 15 we found that when a conductor is in electrostatic equilibrium, a net charge placed on it resides entirely on its surface. Further, we showed that the electric field just outside the surface of a charged conductor in electrostatic equilibrium is perpendicular to the surface and that the field inside the conductor is zero. We now show that all points on the surface of a charged conductor in electrostatic equilibrium are at the same potential.

Consider a surface path connecting any points A and B on a charged conductor, as in Figure 16.10. The charges on the conductor are assumed to be in equilibrium with each other, so none are moving. In this case the electric field \vec{E} is always perpendicular to the displacement along this path. This must be so, for otherwise the part of the electric field tangent to the surface would move the charges. Because \vec{E} is perpendicular to the path, no work is done by the electric field if a charge is moved between the given two points. From Equation 16.6 we see that if the work done is zero, the difference in electric potential, $V_B - V_A$, is also zero. It follows that the electric potential is a constant everywhere on the surface of a charged conductor in equilibrium. Further, because the electric field inside a conductor is zero, no work is required to move a charge between two points inside the conductor. Again, Equation 16.6 shows that if the work done is zero, the difference in electric potential between any two points inside a conductor must also be zero. We conclude that the electric potential is constant everywhere inside a conductor.

Finally, because one of the points inside the conductor could be arbitrarily close to the surface of the conductor, we conclude that the electric potential is constant...
everywhere inside a conductor and equal to that same value at the surface. As a consequence, no work is required to move a charge from the interior of a charged conductor to its surface. (It’s important to realize that the potential inside a conductor is not necessarily zero, even though the interior electric field is zero.)

The Electron Volt

An appropriately sized unit of energy commonly used in atomic and nuclear physics is the electron volt (eV). For example, electrons in normal atoms typically have energies of tens of eV’s, excited electrons in atoms emitting x-rays have energies of thousands of eV’s, and high-energy gamma rays (electromagnetic waves) emitted by the nucleus have energies of millions of eV’s.

The electron volt is defined as the kinetic energy that an electron gains when accelerated through a potential difference of 1 V.

Because $1 \text{ V} = 1 \text{ J/C}$ and because the magnitude of the charge on the electron is $1.60 \times 10^{-19} \text{ C}$, we see that the electron volt is related to the joule by

$$1 \text{ eV} = 1.60 \times 10^{-19} \text{ C} \cdot \text{V} = 1.60 \times 10^{-19} \text{ J}$$

[16.7]

QUICK QUIZ 16.7 An electron initially at rest accelerates through a potential difference of 1 V, gaining kinetic energy KE_e, whereas a proton, also initially at rest, accelerates through a potential difference of -1 V, gaining kinetic energy KE_p. Which of the following relationships holds? (a) $KE_e = KE_p$ (b) $KE_e < KE_p$ (c) $KE_e > KE_p$ (d) The answer can’t be determined from the given information.

16.4 EQUIPOTENTIAL SURFACES

A surface on which all points are at the same potential is called an equipotential surface. The potential difference between any two points on an equipotential surface is zero. Hence, no work is required to move a charge at constant speed on an equipotential surface.

Equipotential surfaces have a simple relationship to the electric field: The electric field at every point of an equipotential surface is perpendicular to the surface. If the electric field \vec{E} had a component parallel to the surface, that component would produce an electric force on a charge placed on the surface. This force would do work on the charge as it moved from one point to another, in contradiction to the definition of an equipotential surface.

Equipotential surfaces can be represented on a diagram by drawing equipotential contours, which are two-dimensional views of the intersections of the equipotential surfaces with the plane of the drawing. These equipotential contours are generally referred to simply as equipotentials. Figure 16.11a (page 544) shows the equipotentials (in blue) associated with a positive point charge. Note that the equipotentials are perpendicular to the electric field lines (in red) at all points. Recall that the electric potential created by a point charge q is given by $V = kq/r$. This relation shows that, for a single point charge, the potential is constant on any surface on which r is constant. It follows that the equipotentials of a point charge are a family of spheres centered on the point charge. Figure 16.11b shows the equipotentials associated with two charges of equal magnitude but opposite sign.
16.5 APPLICATIONS

The Electrostatic Precipitator

One important application of electric discharge in gases is a device called an electrostatic precipitator. This device removes particulate matter from combustion gases, thereby reducing air pollution. It’s especially useful in coal-burning power plants and in industrial operations that generate large quantities of smoke. Systems currently in use can eliminate approximately 90% by mass of the ash and dust from the smoke. Unfortunately, a very high percentage of the lighter particles still escape, and they contribute significantly to smog and haze.

Figure 16.12 illustrates the basic idea of the electrostatic precipitator. A high voltage (typically 40 kV to 100 kV) is maintained between a wire running down the center of a duct and the outer wall, which is grounded. The wire is maintained at a negative electric potential with respect to the wall, so the electric field is directed toward the wire. The electric field near the wire reaches a high enough value to cause a discharge around the wire and the formation of positive ions, electrons, and negative ions, such as O_2^-. As the electrons and negative ions are acceler-
ated toward the outer wall by the nonuniform electric field, the dirt particles in the streaming gas become charged by collisions and ion capture. Because most of the charged dirt particles are negative, they are also drawn to the outer wall by the electric field. When the duct is shaken, the particles fall loose and are collected at the bottom.

In addition to reducing the amounts of harmful gases and particulate matter in the atmosphere, the electrostatic precipitator recovers valuable metal oxides from the stack.

A similar device called an electrostatic air cleaner is used in homes to relieve the discomfort of allergy sufferers. Air laden with dust and pollen is drawn into the device across a positively charged mesh screen. The airborne particles become positively charged when they make contact with the screen, and then they pass through a second, negatively charged mesh screen. The electrostatic force of attraction between the positively charged particles in the air and the negatively charged screen causes the particles to precipitate out on the surface of the screen, removing a very high percentage of contaminants from the air stream.

Xerography and Laser Printers

Xerography is widely used to make photocopies of printed materials. The basic idea behind the process was developed by Chester Carlson, who was granted a patent for his invention in 1940. In 1947 the Xerox Corporation launched a full-scale program to develop automated duplicating machines using Carlson’s process. The huge success of that development is evident: today, practically all offices and libraries have one or more duplicating machines, and the capabilities of these machines continue to evolve.

Some features of the xerographic process involve simple concepts from electrostatics and optics. The one idea that makes the process unique, however, is the use of photoconductive material to form an image. A photoconductor is a material that is a poor conductor of electricity in the dark, but a reasonably good conductor when exposed to light.

Figure 16.13 illustrates the steps in the xerographic process. First, the surface of a plate or drum is coated with a thin film of the photoconductive material (usually selenium or some compound of selenium), and the photoconductive surface is given a positive electrostatic charge in the dark (Fig. 16.13a). The page to be copied is then projected onto the charged surface (Fig. 16.13b). The photoconducting...
surface becomes conducting only in areas where light strikes; there the light produces charge carriers in the photoconductor that neutralize the positively charged surface. The charges remain on those areas of the photoconductor not exposed to light, however, leaving a hidden image of the object in the form of a positive distribution of surface charge.

Next, a negatively charged powder called a toner is dusted onto the photoconductive surface (Fig. 16.13c). The charged powder adheres only to the areas that contain the positively charged image. At this point, the image becomes visible. It is then transferred to the surface of a sheet of positively charged paper. Finally, the toner is “fixed” to the surface of the paper by heat (Fig. 16.13d), resulting in a permanent copy of the original.

The steps for producing a document on a laser printer are similar to those used in a photocopy machine in that parts (a), (c), and (d) of Figure 16.13 remain essentially the same. The difference between the two techniques lies in the way the image is formed on the selenium-coated drum. In a laser printer the command to print the letter O, for instance, is sent to a laser from the memory of a computer. A rotating mirror inside the printer causes the beam of the laser to sweep across the selenium-coated drum in an interlaced pattern (Fig. 16.13e). Electrical signals generated by the printer turn the laser beam on and off in a pattern that traces out the letter O in the form of positive charges on the selenium. Toner is then applied to the drum, and the transfer to paper is accomplished as in a photocopy machine.

16.6 CAPACITANCE

A capacitor is a device used in a variety of electric circuits, such as to tune the frequency of radio receivers, eliminate sparking in automobile ignition systems, or store short-term energy for rapid release in electronic flash units. Figure 16.14 shows a typical design for a capacitor. It consists of two parallel metal plates separated by a distance d. Used in an electric circuit, the plates are connected to the positive and negative terminals of a battery or some other voltage source. When this connection is made, electrons are pulled off one of the plates, leaving it with a charge of +Q, and are transferred through the battery to the other plate, leaving it with a charge of −Q, as shown in the figure. The transfer of charge stops when the potential difference across the plates equals the potential difference of the battery. A charged capacitor is a device that stores energy that can be reclaimed when needed for a specific application.

The capacitance C of a capacitor is the ratio of the magnitude of the charge on either conductor (plate) to the magnitude of the potential difference between the conductors (plates):

$$C = \frac{Q}{\Delta V}$$

[16.8]

SI unit: farad (F) = coulomb per volt (C/V)

The quantities Q and ΔV are always taken to be positive when used in Equation 16.8. For example, if a 3.0-μF capacitor is connected to a 12-V battery, the magnitude of the charge on each plate of the capacitor is

$$Q = C \Delta V = (3.0 \times 10^{-6} \text{ F})(12 \text{ V}) = 36 \mu \text{C}$$

From Equation 16.8, we see that a large capacitance is needed to store a large amount of charge for a given applied voltage. The farad is a very large unit of capacitance. In practice, most typical capacitors have capacitances ranging from microfarads (1 μF = 1 × 10⁻⁶ F) to picofarads (1 pF = 1 × 10⁻¹² F).
The capacitance of a device depends on the geometric arrangement of the conductors. The capacitance of a parallel-plate capacitor with plates separated by air (see Fig. 16.14) can be easily calculated from three facts. First, recall from Chapter 15 that the magnitude of the electric field between two plates is given by \(E = \frac{\sigma}{\varepsilon_0} \), where \(\sigma \) is the magnitude of the charge per unit area on each plate. Second, we found earlier in this chapter that the potential difference between two plates is \(\Delta V = Ed \), where \(d \) is the distance between the plates. Third, the charge on one plate is given by \(q = \sigma A \), where \(A \) is the area of the plate. Substituting these three facts into the definition of capacitance gives the desired result:

\[
C = \frac{q}{\Delta V} = \frac{\sigma A}{Ed} = \frac{\sigma A}{(\sigma/\varepsilon_0)d}
\]

Canceling the charge per unit area, \(\sigma \), yields

\[
C = \varepsilon_0 \frac{A}{d}
\]

where \(A \) is the area of one of the plates, \(d \) is the distance between the plates, and \(\varepsilon_0 \) is the permittivity of free space.

From Equation 16.9, we see that plates with larger area can store more charge. The same is true for a small plate separation \(d \) because then the positive charges on one plate exert a stronger force on the negative charges on the other plate, allowing more charge to be held on the plates.

Figure 16.15 shows the electric field lines of a more realistic parallel-plate capacitor. The electric field is very nearly constant in the center between the plates, but becomes less so when approaching the edges. For most purposes, however, the field may be taken as constant throughout the region between the plates.

One practical device that uses a capacitor is the flash attachment on a camera. A battery is used to charge the capacitor, and the stored charge is then released when the shutter-release button is pressed to take a picture. The stored charge is delivered to a flash tube very quickly, illuminating the subject at the instant more light is needed.

Computers make use of capacitors in many ways. For example, one type of computer keyboard has capacitors at the bases of its keys, as in Figure 16.16. Each key is connected to a movable plate, which represents one side of the capacitor; the fixed plate on the bottom of the keyboard represents the other side of the capacitor. When a key is pressed, the capacitor spacing decreases, causing an increase in capacitance. External electronic circuits recognize each key by the change in its capacitance when it is pressed.

Capacitors are useful for storing a large amount of charge that needs to be delivered quickly. A good example on the forefront of fusion research is electrostatic confinement. In this role capacitors discharge their electrons through a grid. The negatively charged electrons in the grid draw positively charged particles to them and therefore to each other, causing some particles to fuse and release energy in the process.
EXAMPLE 16.6 A Parallel-Plate Capacitor

Goal Calculate fundamental physical properties of a parallel-plate capacitor.

Problem A parallel-plate capacitor has an area $A = 2.00 \times 10^{-4} \text{ m}^2$ and a plate separation $d = 1.00 \times 10^{-3} \text{ m}$.
(a) Find its capacitance. (b) How much charge is on the positive plate if the capacitor is connected to a 3.00-V battery? Calculate (c) the charge density on the positive plate, assuming the density is uniform, and (d) the magnitude of the electric field between the plates.

Strategy Parts (a) and (b) can be solved by substituting into the basic equations for capacitance. In part (c) use the definition of charge density, and in part (d) use the fact that the voltage difference equals the electric field times the distance.

Solution
(a) Find the capacitance.
Substitute into Equation 16.9:

$$ C = \varepsilon_0 \frac{A}{d} = \left(8.85 \times 10^{-12} \text{ C}^2/\text{N} \cdot \text{m}^2\right) \left(\frac{2.00 \times 10^{-4} \text{ m}^2}{1.00 \times 10^{-3} \text{ m}}\right) $$

$$ C = 1.77 \times 10^{-12} \text{ F} = 1.77 \text{ pF} $$

(b) Find the charge on the positive plate after the capacitor is connected to a 3.00-V battery.
Substitute into Equation 16.8:

$$ C = \frac{Q}{\Delta V} \rightarrow Q = C \Delta V = (1.77 \times 10^{-12} \text{ F})(3.00 \text{ V}) $$

$$ Q = 5.31 \times 10^{-12} \text{ C} $$

(c) Calculate the charge density on the positive plate.
Charge density is charge divided by area:

$$ \sigma = \frac{Q}{A} = \frac{5.31 \times 10^{-12} \text{ C}}{2.00 \times 10^{-4} \text{ m}^2} = 2.66 \times 10^{-8} \text{ C/m}^2 $$

(d) Calculate the magnitude of the electric field between the plates.
Apply $\Delta V = Ed$:

$$ E = \frac{\Delta V}{d} = \frac{3.00 \text{ V}}{1.00 \times 10^{-3} \text{ m}} = 3.00 \times 10^3 \text{ V/m} $$

Remarks The answer to part (d) could also have been obtained from the electric field derived for a parallel plate capacitor, Equation 15.13, $E = \varepsilon_0 \sigma$.

QUESTION 16.6
How do the answers change if the distance between the plates is doubled?

EXERCISE 16.6
Two plates, each of area $3.00 \times 10^{-4} \text{ m}^2$, are used to construct a parallel-plate capacitor with capacitance 1.00 pF.
(a) Find the necessary separation distance. (b) If the positive plate is to hold a charge of $5.00 \times 10^{-12} \text{ C}$, find the charge density. (c) Find the electric field between the plates. (d) What voltage battery should be attached to the plate to obtain the preceding results?

Answers (a) $2.66 \times 10^{-3} \text{ m}$ (b) $1.67 \times 10^{-8} \text{ C/m}^2$ (c) $1.89 \times 10^4 \text{ N/C}$ (d) 5.00 V

Symbols for Circuit Elements and Circuits
The symbol that is commonly used to represent a capacitor in a circuit is \equiv or sometimes \equiv. Don’t confuse either of these symbols with the circuit symbol, \equiv, which is used to designate a battery (or any other source of direct current). The positive terminal of the battery is at the higher potential and is represented by the longer vertical line in the battery symbol. In the next chapter
we discuss another circuit element, called a resistor, represented by the symbol \[\begin{array}{c}
\end{array}\]. When wires in a circuit don’t have appreciable resistance compared with the resistance of other elements in the circuit, the wires are represented by straight lines.

It’s important to realize that a circuit is a collection of real objects, usually containing a source of electrical energy (such as a battery) connected to elements that convert electrical energy to other forms (light, heat, sound) or store the energy in electric or magnetic fields for later retrieval. A real circuit and its schematic diagram are sketched side by side in Figure 16.17. The circuit symbol for a lightbulb shown in Figure 16.17b is \[\begin{array}{c}
\end{array}\].

If you are not familiar with circuit diagrams, trace the path of the real circuit with your finger to see that it is equivalent to the geometrically regular schematic diagram.

16.8 COMBINATIONS OF CAPACITORS

Two or more capacitors can be combined in circuits in several ways, but most reduce to two simple configurations, called parallel and series. The idea, then, is to find the single equivalent capacitance due to a combination of several different capacitors that are in parallel or in series with each other. Capacitors are manufactured with a number of different standard capacitances, and by combining them in different ways, any desired value of the capacitance can be obtained.

Capacitors in Parallel

Two capacitors connected as shown in Active Figure 16.18a are said to be in parallel. The left plate of each capacitor is connected to the positive terminal of the battery by a conducting wire, so the left plates are at the same potential. In the same way, the right plates, both connected to the negative terminal of the battery, are also at the same potential. This means that capacitors in parallel both have the same potential difference \(\Delta V\) across them. Capacitors in parallel are illustrated in Active Figure 16.18b.

When the capacitors are first connected in the circuit, electrons are transferred from the left plates through the battery to the right plates, leaving the left plates positively charged and the right plates negatively charged. The energy source for this transfer of charge is the internal chemical energy stored in the battery, which is converted to electrical energy. The flow of charge stops when the voltage across the capacitors equals the voltage of the battery, at which time the capacitors have their maximum charges. If the maximum charges on the two capacitors are \(Q_1\) and \(Q_2\), respectively, the total charge, \(Q\), stored by the two capacitors is

\[Q = Q_1 + Q_2 \]

[16.10]
We can replace these two capacitors with one equivalent capacitor having a capacitance of \(C_{eq} \). This equivalent capacitor must have exactly the same external effect on the circuit as the original two, so it must store \(Q \) units of charge and have the same potential difference across it. The respective charges on each capacitor are

\[
Q_1 = C_1 \Delta V \quad \text{and} \quad Q_2 = C_2 \Delta V
\]

The charge on the equivalent capacitor is

\[
Q = C_{eq} \Delta V
\]

Substituting these relationships into Equation 16.10 gives

\[
C_{eq} \Delta V = C_1 \Delta V + C_2 \Delta V
\]

or

\[
C_{eq} = C_1 + C_2 \quad \text{(parallel combination)} \quad [16.11]
\]

If we extend this treatment to three or more capacitors connected in parallel, the equivalent capacitance is found to be

\[
C_{eq} = C_1 + C_2 + C_3 + \cdots \quad \text{(parallel combination)} \quad [16.12]
\]

We see that the equivalent capacitance of a parallel combination of capacitors is larger than any of the individual capacitances.

EXAMPLE 16.7 Four Capacitors Connected in Parallel

Goal Analyze a circuit with several capacitors in parallel.

Problem (a) Determine the capacitance of the single capacitor that is equivalent to the parallel combination of capacitors shown in Figure 16.19. Find (b) the charge on the 12.0-\(\mu \)F capacitor and (c) the total charge contained in the configuration. (d) Derive a symbolic expression for the fraction of the total charge contained on one of the capacitors.

Strategy For part (a), add the individual capacitances. For part (b), apply the formula \(C = Q/\Delta V \) to the 12.0-\(\mu \)F capacitor. The voltage difference is the same as the difference across the battery. To find the total charge contained in all four capacitors, use the equivalent capacitance in the same formula.

Solution

(a) Find the equivalent capacitance.

Apply Equation 16.12:

\[
C_{eq} = C_1 + C_2 + C_3 + C_4
\]

\[
= 3.00 \mu F + 6.00 \mu F + 12.0 \mu F + 24.0 \mu F
\]

\[
= 45.0 \mu F
\]

(b) Find the charge on the 12-\(\mu \)F capacitor (designated \(C_3 \)).

Solve the capacitance equation for \(Q \) and substitute:

\[
Q = C_3 \Delta V = (12.0 \times 10^{-6} \text{ F})(18.0 \text{ V}) = 216 \times 10^{-6} \text{ C}
\]

\[
= 216 \mu C
\]
(c) Find the total charge contained in the configuration.

Use the equivalent capacitance:

\[C_{eq} = \frac{Q}{\Delta V} \quad \Rightarrow \quad Q = C_{eq} \Delta V = (45.0 \, \mu F)(18.0 \, V) = 8.10 \times 10^2 \, \mu C \]

(d) Derive a symbolic expression for the fraction of the total charge contained in one of the capacitors.

Write a symbolic expression for the fractional charge in the \(n \)th capacitor and use the capacitor definition:

\[\frac{Q_i}{Q_{tot}} = \frac{C_i \Delta V}{C_{eq} \Delta V} = \frac{C_i}{C_{eq}} \]

Remarks The charge on any one of the parallel capacitors can be found as in part (b) because the potential difference is the same. Notice that finding the total charge does not require finding the charge on each individual capacitor and adding. It’s easier to use the equivalent capacitance in the capacitance definition.

QUESTION 16.7

If all four capacitors had the same capacitance, what fraction of the total charge would be held by each?

EXERCISE 16.7

Find the charge on the 24.0-\(\mu F \) capacitor.

Answer 432 \(\mu C \)

Capacitors in Series

Now consider two capacitors connected in series, as illustrated in Active Figure 16.20a. For a series combination of capacitors, the magnitude of the charge must be the same on all the plates. To understand this principle, consider the charge transfer process in some detail. When a battery is connected to the circuit, electrons with total charge \(-Q\) are transferred from the left plate of \(C_1 \) to the right plate of \(C_2 \) through the battery, leaving the left plate of \(C_1 \) with a charge of \(+Q\). As a consequence, the magnitudes of the charges on the left plate of \(C_1 \) and the right plate of \(C_2 \) must be the same. Now consider the right plate of \(C_1 \) and the left plate of \(C_2 \), in the middle. These plates are not connected to the battery (because of the gap across the plates) and, taken together, are electrically neutral. The charge of \(+Q\) on the left plate of \(C_1 \), however, attracts negative charges to the right plate of \(C_2 \). These charges will continue to accumulate until the left and right plates of \(C_2 \), taken together, become electrically neutral, which means that the charge on the right plate of \(C_2 \) is \(-Q\). This negative charge could only have come from the left plate of \(C_2 \), so \(C_2 \) has a charge of \(+Q\).

Therefore, regardless of how many capacitors are in series or what their capacitances are, all the right plates gain charges of \(-Q\) and all the left plates have charges of \(+Q\) (a consequence of the conservation of charge).

ACTIVE FIGURE 16.20

A series combination of two capacitors. The charges on the capacitors are the same, and the equivalent capacitance can be calculated from the reciprocal relationship \(1/C_{eq} = (1/C_1) + (1/C_2)\).
After an equivalent capacitor for a series of capacitors is fully charged, the equivalent capacitor must end up with a charge of $-Q$ on its right plate and a charge of $+Q$ on its left plate. Applying the definition of capacitance to the circuit in Active Figure 16.20b, we have

$$\Delta V = \frac{Q}{C_{eq}}$$

where ΔV is the potential difference between the terminals of the battery and C_{eq} is the equivalent capacitance. Because $Q = C \Delta V$ can be applied to each capacitor, the potential differences across them are given by

$$\Delta V_1 = \frac{Q}{C_1} \quad \Delta V_2 = \frac{Q}{C_2}$$

From Active Figure 16.20a, we see that

$$\Delta V = \Delta V_1 + \Delta V_2 \quad [16.13]$$

where ΔV_1 and ΔV_2 are the potential differences across capacitors C_1 and C_2 (a consequence of the conservation of energy).

The potential difference across any number of capacitors (or other circuit elements) in series equals the sum of the potential differences across the individual capacitors. Substituting these expressions into Equation 16.13 and noting that $\Delta V = Q/C_{eq}$, we have

$$\frac{Q}{C_{eq}} = \frac{Q}{C_1} + \frac{Q}{C_2}$$

Canceling Q, we arrive at the following relationship:

$$\frac{1}{C_{eq}} = \frac{1}{C_1} + \frac{1}{C_2} \quad \text{(series combination)} \quad [16.14]$$

If this analysis is applied to three or more capacitors connected in series, the equivalent capacitance is found to be

$$\frac{1}{C_{eq}} = \frac{1}{C_1} + \frac{1}{C_2} + \frac{1}{C_3} + \cdots \quad \text{(series combination)} \quad [16.15]$$

As we will show in Example 16.7, Equation 16.15 implies that the equivalent capacitance of a series combination is always smaller than any individual capacitance in the combination.

QUICK QUIZ 16.8 A capacitor is designed so that one plate is large and the other is small. If the plates are connected to a battery, (a) the large plate has a greater charge than the small plate, (b) the large plate has less charge than the small plate, or (c) the plates have equal, but opposite, charge.

EXAMPLE 16.8 Four Capacitors Connected in Series

Goal Find an equivalent capacitance of capacitors in series, and the charge and voltage on each capacitor.

Problem Four capacitors are connected in series with a battery, as in Figure 16.21. (a) Calculate the capacitance of the equivalent capacitor. (b) Compute the charge on the 12-μF capacitor. (c) Find the voltage drop across the 12-μF capacitor.

Strategy Combine all the capacitors into a single, equivalent capacitor using Equation 16.15. Find the charge on this equivalent capacitor using $C = Q/\Delta V$. This charge is the same as on the individual capacitors. Use this same equation again to find the voltage drop across the 12-μF capacitor.
Remarks
Notice that the equivalent capacitance is less than that of any of the individual capacitors. The relationship
\[\frac{C}{H11005} \frac{Q}{H9004} V \] can be used to find the voltage drops on the other capacitors, just as in part (c).

QUESTION 16.8
Over which capacitor is the voltage drop the smallest? The largest?

EXERCISE 16.8
The 24-\(\mu F \) capacitor is removed from the circuit, leaving only three capacitors in series. Find (a) the equivalent capacitance, (b) the charge on the 6-\(\mu F \) capacitor, and (c) the voltage drop across the 6-\(\mu F \) capacitor.

Answers
(a) 1.7 \(\mu F \) (b) 31 \(\mu C \) (c) 5.2 V

Solution
(a) Calculate the equivalent capacitance of the series.
Apply Equation 16.15:
\[\frac{1}{C_{\text{eq}}} = \frac{1}{3.0 \ \mu F} + \frac{1}{6.0 \ \mu F} + \frac{1}{12 \ \mu F} + \frac{1}{24 \ \mu F} \]
\[C_{\text{eq}} = 1.6 \ \mu F \]

(b) Compute the charge on the 12-\(\mu F \) capacitor.
The desired charge equals the charge on the equivalent capacitor:
\[Q = C_{\text{eq}} \Delta V = (1.6 \times 10^{-6} \ F)(18 \ V) = 29 \ \mu C \]

(c) Find the voltage drop across the 12-\(\mu F \) capacitor.
Apply the basic capacitance equation:
\[C = \frac{Q}{\Delta V} \rightarrow \Delta V = \frac{Q}{C} = \frac{29 \ \mu C}{12 \ \mu F} = 2.4 \ V \]

Remarks
Notice that the equivalent capacitance is less than that of any of the individual capacitors. The relationship
\[\frac{C}{H11005} \frac{Q}{H9004} V \] can be used to find the voltage drops on the other capacitors, just as in part (c).

QUESTION 16.8
Over which capacitor is the voltage drop the smallest? The largest?

EXERCISE 16.8
The 24-\(\mu F \) capacitor is removed from the circuit, leaving only three capacitors in series. Find (a) the equivalent capacitance, (b) the charge on the 6-\(\mu F \) capacitor, and (c) the voltage drop across the 6-\(\mu F \) capacitor.

Answers
(a) 1.7 \(\mu F \) (b) 31 \(\mu C \) (c) 5.2 V

PROBLEM-SOLVING STRATEGY

COMPLEX CAPACITOR COMBINATIONS
1. Combine capacitors that are in series or in parallel, following the derived formulas.
2. Redraw the circuit after every combination.
3. Repeat the first two steps until there is only a single equivalent capacitor.
4. Find the charge on the single equivalent capacitor, using \[C = \frac{Q}{\Delta V} \].
5. Work backwards through the diagrams to the original one, finding the charge and voltage drop across each capacitor along the way. To do this, use the following collection of facts:
 A. The capacitor equation: \[C = \frac{Q}{\Delta V} \]
 B. Capacitors in parallel: \[C_{\text{eq}} = C_1 + C_2 \]
 C. Capacitors in parallel all have the same voltage difference, \(\Delta V \), as does their equivalent capacitor.
 D. Capacitors in series: \[\frac{1}{C_{\text{eq}}} = \frac{1}{C_1} + \frac{1}{C_2} \]
 E. Capacitors in series all have the same charge, \(Q \), as does their equivalent capacitor.
Problem

(a) Calculate the equivalent capacitance between a and b for the combination of capacitors shown in Figure 16.22a. All capacitances are in microfarads. (b) If a 12-V battery is connected across the system between points a and b, find the charge on the 4.0-μF capacitor in the first diagram and the voltage drop across it.

Strategy
For part (a), use Equations 16.12 and 16.15 to reduce the combination step by step, as indicated in the figure. For part (b), to find the charge on the 4.0-μF capacitor, start with Figure 16.22c, finding the charge on the 2.0-μF capacitor. This same charge is on each of the 4.0-μF capacitors in the second diagram, by fact 5E of the Problem-Solving Strategy. One of these 4.0-μF capacitors in the second diagram is simply the original 4.0-μF capacitor in the first diagram.

Solution

(a) Calculate the equivalent capacitance.

Find the equivalent capacitance of the parallel 1.0-μF and 3.0-μF capacitors in Figure 16.22a:

$$C_{eq} = C_1 + C_2 = 1.0 \mu F + 3.0 \mu F = 4.0 \mu F$$

Find the equivalent capacitance of the parallel 2.0-μF and 6.0-μF capacitors in Figure 16.22a:

$$C_{eq} = C_1 + C_2 = 2.0 \mu F + 6.0 \mu F = 8.0 \mu F$$

Combine the two series 4.0-μF capacitors in Figure 16.22b:

$$\frac{1}{C_{eq}} = \frac{1}{C_1} + \frac{1}{C_2} = \frac{1}{4.0 \mu F} + \frac{1}{4.0 \mu F} = \frac{1}{2.0 \mu F} \rightarrow C_{eq} = 2.0 \mu F$$

Combine the two series 8.0-μF capacitors in Figure 16.22b:

$$\frac{1}{C_{eq}} = \frac{1}{C_1} + \frac{1}{C_2} = \frac{1}{8.0 \mu F} + \frac{1}{8.0 \mu F} = \frac{1}{4.0 \mu F} \rightarrow C_{eq} = 4.0 \mu F$$

Finally, combine the two parallel capacitors in Figure 16.22c to find the equivalent capacitance between a and b:

$$C_{eq} = C_1 + C_2 = 2.0 \mu F + 4.0 \mu F = 6.0 \mu F$$

(b) Find the charge on the 4.0-μF capacitor and the voltage drop across it.

Compute the charge on the 2.0-μF capacitor in Figure 16.22c, which is the same as the charge on the 4.0-μF capacitor in Figure 16.22a:

$$C = \frac{Q}{\Delta V} \rightarrow Q = C \Delta V = (2.0 \mu F)(12 V) = 24 \mu C$$

Use the basic capacitance equation to find the voltage drop across the 4.0-μF capacitor in Figure 16.22a:

$$C = \frac{Q}{\Delta V} \rightarrow \Delta V = \frac{Q}{C} = \frac{24 \mu C}{4.0 \mu F} = 6.0 V$$

Remarks
To find the rest of the charges and voltage drops, it's just a matter of using $C = Q/\Delta V$ repeatedly, together with facts 5C and 5E in the Problem-Solving Strategy. The voltage drop across the 4.0-μF capacitor could also have been found by noticing, in Figure 16.22b, that both capacitors had the same value and so by symmetry would split the total drop of 12 volts between them.
QUESTION 16.9
Which capacitor holds more charge, the 1.0-mF capacitor or the 3.0-mF capacitor?

EXERCISE 16.9
(a) In Example 16.9 find the charge on the 8.0-mF capacitor in Figure 16.22a and the voltage drop across it. (b) Do the same for the 6.0-mF capacitor in Figure 16.22a.

Answers (a) 48 μC, 6.0 V (b) 36 μC, 6.0 V

16.9 ENERGY STORED IN A CHARGED CAPACITOR

Almost everyone who works with electronic equipment has at some time verified that a capacitor can store energy. If the plates of a charged capacitor are connected by a conductor such as a wire, charge transfers from one plate to the other until the two are uncharged. The discharge can often be observed as a visible spark. If you accidentally touched the opposite plates of a charged capacitor, your fingers would act as a pathway by which the capacitor could discharge, inflicting an electric shock. The degree of shock would depend on the capacitance and voltage applied to the capacitor. Where high voltages and large quantities of charge are present, as in the power supply of a television set, such a shock can be fatal.

Capacitors store electrical energy, and that energy is the same as the work required to move charge onto the plates. If a capacitor is initially uncharged (both plates are neutral) so that the plates are at the same potential, very little work is required to transfer a small amount of charge \(Q \) from one plate to the other. Once this charge has been transferred, however, a small potential difference \(\Delta V = \Delta Q/C \) appears between the plates, so work must be done to transfer additional charge against this potential difference. From Equation 16.6, if the potential difference at any instant during the charging process is \(\Delta V \), the work \(W \) required to move more charge \(\Delta Q \) through this potential difference is given by

\[
W = \Delta V \Delta Q
\]

We know that \(\Delta V = Q/C \) for a capacitor that has a total charge of \(Q \). Therefore, a plot of voltage versus total charge gives a straight line with a slope \(1/C \), as shown in Figure 16.23. The work \(\Delta W \), for a particular \(\Delta V \), is the area of the blue rectangle. Adding up all the rectangles gives an approximation of the total work needed to fill the capacitor. In the limit as \(\Delta Q \) is taken to be infinitesimally small, the total work needed to charge the capacitor to a final charge \(Q \) and voltage \(\Delta V \) is the area under the line. This is just the area of a triangle, one-half the base times the height, so it follows that

\[
W = \frac{1}{2} Q \Delta V \quad [16.16]
\]

As previously stated, \(W \) is also the energy stored in the capacitor. From the definition of capacitance, we have \(Q = C \Delta V \); hence, we can express the energy stored three different ways:

\[
\text{Energy stored} = \frac{1}{2} Q \Delta V = \frac{1}{2} C (\Delta V)^2 = \frac{Q^2}{2C} \quad [16.17]
\]

For example, the amount of energy stored in a 5.0-μF capacitor when it is connected across a 120-V battery is

\[
\text{Energy stored} = \frac{1}{2} C (\Delta V)^2 = \frac{1}{2}(5.0 \times 10^{-6} \text{ F})(120 \text{ V})^2 = 3.6 \times 10^{-2} \text{ J}
\]

In practice, there is a limit to the maximum energy (or charge) that can be stored in a capacitor. At some point, the Coulomb forces between the charges on the plates become so strong that electrons jump across the gap, discharging the capacitor. For this reason, capacitors are usually labeled with a maximum operating voltage. (This physical fact can actually be exploited to yield a circuit with a regularly blinking light.)

\[
\text{FIGURE 16.23} \quad \text{A plot of voltage vs. charge for a capacitor is a straight line with slope } 1/C. \text{ The work required to move a charge of } \Delta Q \text{ through a potential difference of } \Delta V \text{ across the capacitor plates is } \Delta W = \Delta V \Delta Q \text{ which equals the area of the blue rectangle. The total work required to charge the capacitor to a final charge of } Q \text{ is the area under the straight line, which equals } Q \Delta V/2.
\]
Large capacitors can store enough electrical energy to cause severe burns or even death if they are discharged so that the flow of charge can pass through the heart. Under the proper conditions, however, they can be used to sustain life by stopping cardiac fibrillation in heart attack victims. When fibrillation occurs, the heart produces a rapid, irregular pattern of beats. A fast discharge of electrical energy through the heart can return the organ to its normal beat pattern. Emergency medical teams use portable defibrillators that contain batteries capable of charging a capacitor to a high voltage. (The circuitry actually permits the capacitor to be charged to a much higher voltage than the battery.) In this case and others (camera flash units and lasers used for fusion experiments), capacitors serve as energy reservoirs that can be slowly charged and then quickly discharged to provide large amounts of energy in a short pulse. The stored electrical energy is released through the heart by conducting electrodes, called paddles, placed on both sides of the victim's chest. The paramedics must wait between applications of electrical energy because of the time it takes the capacitors to become fully charged. The high voltage on the capacitor can be obtained from a low-voltage battery in a portable machine through the phenomenon of electromagnetic induction, to be studied in Chapter 20.

EXAMPLE 16.10 Typical Voltage, Energy, and Discharge Time for a Defibrillator

Goal Apply energy and power concepts to a capacitor.

Problem A fully charged defibrillator contains 1.20 kJ of energy stored in a 1.10×10^{-4} F capacitor. In a discharge through a patient, 6.00×10^{2} J of electrical energy are delivered in 2.50 ms. (a) Find the voltage needed to store 1.20 kJ in the unit. (b) What average power is delivered to the patient?

Strategy Because we know the energy stored and the capacitance, we can use Equation 16.17 to find the required voltage in part (a). For part (b), dividing the energy delivered by the time gives the average power.

Solution

(a) Find the voltage needed to store 1.20 kJ in the unit.

Solve Equation 16.17 for ΔV:

$$\Delta V = \sqrt{\frac{2 \times \text{energy stored}}{C}} = \sqrt{\frac{2 \times (1.20 \times 10^3 \text{J})}{1.10 \times 10^{-4} \text{F}}} = 4.67 \times 10^3 \text{V}$$

(b) What average power is delivered to the patient?

Divide the energy delivered by the time:

$$P_{av} = \frac{\text{energy delivered}}{\Delta t} = \frac{6.00 \times 10^2 \text{J}}{2.50 \times 10^{-3} \text{s}} = 2.40 \times 10^5 \text{W}$$

Remarks The power delivered by a draining capacitor isn’t constant, as we’ll find in the study of RC circuits in Chapter 18. For that reason, we were able to find only an average power. Capacitors are necessary in defibrillators because they can deliver energy far more quickly than batteries. Batteries provide current through relatively slow chemical reactions, whereas capacitors can quickly release charge that has already been produced and stored.

QUESTION 16.10 If the voltage across the capacitor were doubled, would the energy stored be (a) halved, (b) doubled, or (c) quadrupled?
EXERCISE 16.10
(a) Find the energy contained in a $2.50 \times 10^{-5} \text{ F}$ parallel-plate capacitor if it holds $1.75 \times 10^{-3} \text{ C}$ of charge. (b) What’s the voltage between the plates? (c) What new voltage will result in a doubling of the stored energy?

Answers
(a) $6.13 \times 10^{-2} \text{ J}$
(b) 70.0 V
(c) 99.0 V

APPLYING PHYSICS 16.1 MAXIMUM ENERGY DESIGN

How should three capacitors and two batteries be connected so that the capacitors will store the maximum possible energy?

Explanation The energy stored in the capacitor is proportional to the capacitance and the square of the potential difference, so we would like to maximize each of these quantities. If the three capacitors are connected in parallel, their capacitances add, and if the batteries are in series, their potential differences add, similarly, also add together.

QUICK QUIZ 16.9 A parallel-plate capacitor is disconnected from a battery, and the plates are pulled a small distance farther apart. Do the following quantities increase, decrease, or stay the same?

(a) C
(b) Q
(c) E between the plates
(d) ΔV
(e) energy stored in the capacitor

16.10 CAPACITORS WITH DIELECTRICS

A **dielectric** is an insulating material, such as rubber, plastic, or waxed paper. When a dielectric is inserted between the plates of a capacitor, the capacitance increases. If the dielectric completely fills the space between the plates, the capacitance is multiplied by the factor κ, called the **dielectric constant**.

The following experiment illustrates the effect of a dielectric in a capacitor. Consider a parallel-plate capacitor of charge Q_0 and capacitance C_0 in the absence of a dielectric. The potential difference across the capacitor plates can be measured, and is given by $\Delta V_0 = Q_0 / C_0$ (Fig. 16.24a). Because the capacitor is not connected to an external circuit, there is no pathway for charge to leave or be added to the plates. If a dielectric is now inserted between the plates as in Figure 16.24b, the voltage across the plates is reduced by the factor κ to the value

$$\Delta V = \frac{\Delta V_0}{\kappa}$$

FIGURE 16.24 (a) With air between the plates, the voltage across the capacitor is ΔV_0, the capacitance is C_0, and the charge is Q_0. (b) With a dielectric between the plates, the charge remains at Q_0, but the voltage and capacitance change.
Because \(\kappa > 1 \), \(\Delta V \) is less than \(\Delta V_0 \). Because the charge \(Q_0 \) on the capacitor doesn’t change, we conclude that the capacitance in the presence of the dielectric must change to the value

\[
C = \frac{Q_0}{\Delta V} = \frac{Q_0}{\Delta V_0/\kappa} = \kappa \frac{Q_0}{\Delta V_0}
\]

or

\[
C = \kappa C_0 \quad [16.18]
\]

According to this result, the capacitance is multiplied by the factor \(\kappa \) when the dielectric fills the region between the plates. For a parallel-plate capacitor, where the capacitance in the absence of a dielectric is \(C_0 = \varepsilon_0 A/\ell \), we can express the capacitance in the presence of a dielectric as

\[
C = \kappa \varepsilon_0 \frac{A}{\ell} \quad [16.19]
\]

From this result, it appears that the capacitance could be made very large by decreasing \(\ell \), the separation between the plates. In practice the lowest value of \(\ell \) is limited by the electric discharge that can occur through the dielectric material separating the plates. For any given plate separation, there is a maximum electric field that can be produced in the dielectric before it breaks down and begins to conduct. This maximum electric field is called the dielectric strength, and for air its value is about \(3 \times 10^6 \) V/m. Most insulating materials have dielectric strengths greater than that of air, as indicated by the values listed in Table 16.1. Figure 16.25 shows an instance of dielectric breakdown in air.

Commercial capacitors are often made by using metal foil interlaced with thin sheets of paraffin-impregnated paper or Mylar®, which serves as the dielectric material. These alternate layers of metal foil and dielectric are rolled into a small cylinder (Fig. 16.26a). One type of a high-voltage capacitor consists of a number of interwoven metal plates immersed in silicone oil (Fig. 16.26b). Small capacitors are often constructed from ceramic materials. Variable capacitors (typically 10 pF to 500 pF) usually consist of two interwoven sets of metal plates, one fixed and the other movable, with air as the dielectric.

An electrolytic capacitor (Fig. 16.26c) is often used to store large amounts of charge at relatively low voltages. It consists of a metal foil in contact with an elec-

TABLE 16.1

Dielectric Constants and Dielectric Strengths of Various Materials at Room Temperature

<table>
<thead>
<tr>
<th>Material</th>
<th>Dielectric Constant (\kappa)</th>
<th>Dielectric Strength (V/m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Air</td>
<td>1.000 59</td>
<td>(3 \times 10^6)</td>
</tr>
<tr>
<td>Bakelite®</td>
<td>4.9</td>
<td>(24 \times 10^6)</td>
</tr>
<tr>
<td>Fused quartz</td>
<td>3.78</td>
<td>(8 \times 10^6)</td>
</tr>
<tr>
<td>Neoprene rubber</td>
<td>6.7</td>
<td>(12 \times 10^6)</td>
</tr>
<tr>
<td>Nylon</td>
<td>3.4</td>
<td>(14 \times 10^6)</td>
</tr>
<tr>
<td>Paper</td>
<td>3.7</td>
<td>(16 \times 10^6)</td>
</tr>
<tr>
<td>Polystyrene</td>
<td>2.56</td>
<td>(24 \times 10^6)</td>
</tr>
<tr>
<td>Pyrex® glass</td>
<td>5.6</td>
<td>(14 \times 10^6)</td>
</tr>
<tr>
<td>Silicone oil</td>
<td>2.5</td>
<td>(15 \times 10^6)</td>
</tr>
<tr>
<td>Strontium titanate</td>
<td>233</td>
<td>(8 \times 10^6)</td>
</tr>
<tr>
<td>Teflon®</td>
<td>2.1</td>
<td>(60 \times 10^6)</td>
</tr>
<tr>
<td>Vacuum</td>
<td>1.000 00</td>
<td>—</td>
</tr>
<tr>
<td>Water</td>
<td>80</td>
<td>—</td>
</tr>
</tbody>
</table>
trolyte—a solution that conducts charge by virtue of the motion of the ions contained in it. When a voltage is applied between the foil and the electrolyte, a thin layer of metal oxide (an insulator) is formed on the foil, and this layer serves as the dielectric. Enormous capacitances can be attained because the dielectric layer is very thin.

Figure 16.27 shows a variety of commercially available capacitors. Variable capacitors are used in radios to adjust the frequency.

When electrolytic capacitors are used in circuits, the polarity (the plus and minus signs on the device) must be observed. If the polarity of the applied voltage is opposite that intended, the oxide layer will be removed and the capacitor will conduct rather than store charge. Further, reversing the polarity can result in such a large current that the capacitor may either burn or produce steam and explode.

If you have ever tried to hang a picture on a wall securely, you know that it can be difficult to locate a wooden stud in which to anchor your nail or screw. The principles discussed in this section can be used to detect a stud electronically. The primary element of an electronic stud finder is a capacitor with its plates arranged side by side instead of facing one another, as in Figure 16.28. How does this device work?

Explanation As the detector is moved along a wall, its capacitance changes when it passes across a stud because the dielectric constant of the material “between” the plates changes. The change in capacitance can be used to cause a light to come on, signaling the presence of the stud.
QUICK QUIZ 16.10 A fully charged parallel-plate capacitor remains connected to a battery while a dielectric is slid between the plates. Do the following quantities increase, decrease, or stay the same? (a) \(C \) (b) \(Q \) (c) \(E \) (d) \(\Delta V \) (e) energy stored in the capacitor

EXAMPLE 16.11 A Paper-Filled Capacitor

Goal Calculate fundamental physical properties of a parallel-plate capacitor with a dielectric.

Problem A parallel-plate capacitor has plates 2.0 cm by 3.0 cm. The plates are separated by a 1.0-mm thickness of paper. Find (a) the capacitance of this device and (b) the maximum charge that can be placed on the capacitor. (c) After the fully charged capacitor is disconnected from the battery, the dielectric is subsequently removed. Find the new electric field across the capacitor. Does the capacitor discharge?

Strategy For part (a), obtain the dielectric constant for paper from Table 16.1 and substitute, with other given quantities, into Equation 16.19. For part (b), note that Table 16.1 also gives the dielectric strength of paper, which is the maximum electric field that can be applied before electrical breakdown occurs. Use Equation 16.3, \(\Delta V = Ed \), to obtain the maximum voltage and substitute into the basic capacitance equation. For part (c), remember that disconnecting the battery traps the extra charge on the plates, which must remain even after the dielectric is removed. Find the charge density on the plates and use Gauss's law to find the new electric field between the plates.

Solution

(a) Find the capacitance of this device.

Substitute into Equation 16.19:

\[
C = \kappa \varepsilon_0 \frac{A}{d} = 3.7 \left(8.85 \times 10^{-12} \text{ C}^2 \text{ N}^{-1} \text{ m}^{-2} \right) \left(\frac{6.0 \times 10^{-4} \text{ m}^2}{1.0 \times 10^{-3} \text{ m}} \right) = 2.0 \times 10^{-11} \text{ F}
\]

(b) Find the maximum charge that can be placed on the capacitor.

Calculate the maximum applied voltage, using the dielectric strength of paper, \(E_{\text{max}} \):

\[
\Delta V_{\text{max}} = E_{\text{max}} d = (16 \times 10^6 \text{ V/m})(1.0 \times 10^{-3} \text{ m}) = 1.6 \times 10^4 \text{ V}
\]

Solve the basic capacitance equation for \(Q_{\text{max}} \) and substitute \(\Delta V_{\text{max}} \) and \(C \):

\[
Q_{\text{max}} = C \Delta V_{\text{max}} = (2.0 \times 10^{-11} \text{ F})(1.6 \times 10^4 \text{ V}) = 0.32 \mu C
\]

(c) Suppose the fully charged capacitor is disconnected from the battery and the dielectric is subsequently removed. Find the new electric field between the plates of the capacitor. Does the capacitor discharge?

Compute the charge density on the plates:

\[
\sigma = \frac{Q_{\text{max}}}{A} = \frac{3.2 \times 10^{-7} \text{ C}}{6.0 \times 10^{-4} \text{ m}^2} = 5.3 \times 10^{-4} \text{ C/m}^2
\]

Calculate the electric field from the charge density:

\[
E = \frac{\sigma}{\varepsilon_0} = \frac{5.3 \times 10^{-4} \text{ C/m}^2}{8.85 \times 10^{-12} \text{ C}^2/\text{m}^2 \cdot \text{N}} = 6.0 \times 10^7 \text{ N/C}
\]

Because the electric field without the dielectric exceeds the value of the dielectric strength of air, the capacitor discharges across the gap.
Remarks Dielectrics allow κ times as much charge to be stored on a capacitor for a given voltage. They also allow an increase in the applied voltage by increasing the threshold of electrical breakdown.

QUESTION 16.11
Subsequent to part (c), the capacitor is reconnected to the battery. Is the charge on the plates (a) larger than, (b) smaller than, or (c) the same as found in part (b)?

EXERCISE 16.11
A parallel-plate capacitor has plate area of $2.50 \times 10^{-3} \text{ m}^2$ and distance between the plates of 2.00 mm. (a) Find the maximum charge that can be placed on the capacitor if air is between the plates. (b) Find the maximum charge if the air is replaced by polystyrene.

Answers (a) $7 \times 10^{-8} \text{ C}$ (b) $1.4 \times 10^{-6} \text{ C}$

An Atomic Description of Dielectrics
The explanation of why a dielectric increases the capacitance of a capacitor is based on an atomic description of the material, which in turn involves a property of some molecules called polarization. A molecule is said to be polarized when there is a separation between the average positions of its negative charge and its positive charge. In some molecules, such as water, this condition is always present. To see why, consider the geometry of a water molecule (Fig. 16.29).

The molecule is arranged so that the negative oxygen atom is bonded to the positively charged hydrogen atoms with a 105° angle between the two bonds. The center of negative charge is at the oxygen atom, and the center of positive charge lies at a point midway along the line joining the hydrogen atoms (point x in the diagram). Materials composed of molecules that are permanently polarized in this way have large dielectric constants, and indeed, Table 16.1 shows that the dielectric constant of water is large ($\kappa = 80$) compared with other common substances.

A symmetric molecule (Fig. 16.30a) can have no permanent polarization, but a polarization can be induced in it by an external electric field. A field directed to the left, as in Figure 16.30b, would cause the center of positive charge to shift to the left from its initial position and the center of negative charge to shift to the right. This induced polarization is the effect that predominates in most materials used as dielectrics in capacitors.

To understand why the polarization of a dielectric can affect capacitance, consider the slab of dielectric shown in Figure 16.31. Before placing the slab between the plates of the capacitor, the polar molecules are randomly oriented (Fig. 16.31a). The polar molecules are dipoles, and each creates a dipole electric field, but because of their random orientation, this field averages to zero.

After insertion of the dielectric slab into the electric field E_0 between the plates (Fig. 16.31b), the positive plate attracts the negative ends of the dipoles and the negative plate attracts the positive ends of the dipoles. These forces exert a torque on the molecules making up the dielectric, reorienting them so that on average the negative pole is more inclined toward the positive plate and the positive pole is more aligned toward the negative plate. The positive and negative charges in the
middle still cancel each other, but there is a net accumulation of negative charge in the dielectric next to the positive plate and a net accumulation of positive charge next to the negative plate. This configuration can be modeled as an additional pair of charged plates, as in Figure 16.31c, creating an induced electric field \(\mathbf{E}_{\text{ind}} \) that partly cancels the original electric field \(\mathbf{E}_{\text{orig}} \). If the battery is not connected when the dielectric is inserted, the potential difference \(\Delta V_{\text{orig}} \) across the plates is reduced to \(\Delta V_{\text{orig}}/\kappa \).

If the capacitor is still connected to the battery, however, the negative poles push more electrons off the positive plate, making it more positive. Meanwhile, the positive poles attract more electrons onto the negative plate. This situation continues until the potential difference across the battery reaches its original magnitude, equal to the potential gain across the battery. The net effect is an increase in the amount of charge stored on the capacitor. Because the plates can store more charge for a given voltage, it follows from \(C = Q \Delta V \) that the capacitance must increase.

QUICK QUIZ 16.11 Consider a parallel-plate capacitor with a dielectric material between the plates. If the temperature of the dielectric increases, does the capacitance (a) decrease, (b) increase, or (c) remain the same?

SUMMARY

16.1 Potential Difference and Electric Potential
The change in the electric potential energy of a system consisting of an object of charge \(q \) moving through a displacement \(\Delta x \) in a constant electric field \(\mathbf{E} \) is given by

\[
\Delta PE = -W_{AB} = qE_x \Delta x \tag{16.1}
\]

where \(E_x \) is the component of the electric field in the \(x \)-direction and \(\Delta x = x_f - x_i \). The **difference in electric potential** between two points \(A \) and \(B \) is

\[
\Delta V = V_B - V_A = \frac{\Delta PE}{q} \tag{16.2}
\]

where \(\Delta PE \) is the change in electrical potential energy as a charge \(q \) moves between \(A \) and \(B \). The units of potential difference are joules per coulomb, or volts; \(1 \text{ J/C} = 1 \text{ V} \).

The electric potential difference between two points \(A \) and \(B \) in a uniform electric field \(\mathbf{E} \) is

\[
\Delta V = -E_x \Delta x \tag{16.3}
\]

where \(\Delta x = x_f - x_i \) is the displacement between \(A \) and \(B \) and \(E_x \) is the \(x \)-component of the electric field in that region.

16.2 Electric Potential and Potential Energy Due to Point Charges
The electric potential due to a point charge \(q \) at distance \(r \) from the point charge is

\[
V = k_e \frac{q}{r} \tag{16.4}
\]

The electric potential energy of a pair of point charges separated by distance \(r \) is

\[
PE = k_e \frac{q_1 q_2}{r} \tag{16.5}
\]

These equations can be used in the solution of conservation of energy problems and in the work–energy theorem.

16.3 Potentials and Charged Conductors

16.4 Equipotential Surfaces

Every point on the surface of a charged conductor in electrostatic equilibrium is at the same potential. Further, the potential is constant everywhere inside the conductor and equals its value on the surface.

The **electron volt** is defined as the energy that an electron (or proton) gains when accelerated through a potential difference of 1 V. The conversion between electron volts and joules is

\[
1 \text{ eV} = 1.60 \times 10^{-19} \text{ C-V} = 1.60 \times 10^{-19} \text{ J} \tag{16.7}
\]

Any surface on which the potential is the same at every point is called an equipotential surface. The electric field is always oriented perpendicular to an equipotential surface.

16.6 Capacitance

A capacitor consists of two metal plates with charges that are equal in magnitude but opposite in sign. The capacitance \(C \) of any capacitor is the ratio of the magnitude of the charge \(Q \) on either plate to the magnitude of potential difference \(\Delta V \) between them:

\[
C = \frac{Q}{\Delta V} \tag{16.8}
\]

Capacitance has the units coulombs per volt, or farads; \(1 \text{ C/V} = 1 \text{ F} \).

16.7 The Parallel-Plate Capacitor

The capacitance of two parallel metal plates of area \(A \) separated by distance \(d \) is

\[
C = \varepsilon_0 \frac{A}{d} \tag{16.9}
\]
where $\varepsilon_0 = 8.85 \times 10^{-12} \text{C}^2/\text{N} \cdot \text{m}^2$ is a constant called the permittivity of free space.

16.8 Combinations of Capacitors
The equivalent capacitance of a parallel combination of capacitors is
$$C_{eq} = C_1 + C_2 + C_3 + \cdots$$\hspace{1cm} [16.12]
If two or more capacitors are connected in series, the equivalent capacitance of the series combination is
$$\frac{1}{C_{eq}} = \frac{1}{C_1} + \frac{1}{C_2} + \frac{1}{C_3} + \cdots$$\hspace{1cm} [16.15]
Problems involving a combination of capacitors can be solved by applying Equations 16.12 and 16.13 repeatedly to a circuit diagram, simplifying it as much as possible. This step is followed by working backwards to the original diagram, applying $C = Q/\Delta V$; that parallel capacitors have the same voltage drop, and that series capacitors have the same charge.

16.9 Energy Stored in a Charged Capacitor
Three equivalent expressions for calculating the energy stored in a charged capacitor are
$$\text{Energy stored} = \frac{1}{2} Q \Delta V = \frac{1}{2} C (\Delta V)^2 = \frac{Q^2}{2C}$$\hspace{1cm} [16.17]

16.10 Capacitors with Dielectrics
When a nonconducting material, called a dielectric, is placed between the plates of a capacitor, the capacitance is multiplied by the factor κ, which is called the dielectric constant, a property of the dielectric material. The capacitance of a parallel-plate capacitor filled with a dielectric is
$$C = \kappa \varepsilon_0 \frac{A}{d}$$\hspace{1cm} [16.19]

MULTIPLE-CHOICE QUESTIONS

1. A proton is released at the origin in a constant electric field of 850 N/C acting in the positive x-direction. Find the change in the electric potential energy associated with the proton after it travels to $x = 2.5$ m.
 - (a) 3.4×10^{-16} J
 - (b) -3.4×10^{-16} J
 - (c) 2.5×10^{-16} J
 - (d) -2.5×10^{-16} J
 - (e) 1.6×10^{-16} J

2. An electron in a TV picture tube is accelerated through a potential difference of 1.0×10^4 V before it hits the screen. What is the kinetic energy of the electron in electron volts?
 - (a) 1.6×10^6 eV
 - (b) 1.6×10^5 eV
 - (c) 1.6×10^3 eV
 - (d) 6.25×10^2 eV
 - (e) 1.6×10^2 eV

3. A helium nucleus (charge $+\frac{2}{3}e$, mass 6.63×10^{-27} kg) traveling at a speed of 6.20×10^3 m/s enters an electric field, traveling from point a, at a potential of 1.50×10^5 V, to point b, at 4.00×10^5 V. What is its speed at point b?
 - (a) 7.91×10^5 m/s
 - (b) 3.78×10^5 m/s
 - (c) 2.13×10^6 m/s
 - (d) 2.52×10^5 m/s
 - (e) 3.01×10^5 m/s

4. The electric potential at $x = 3.0$ m is 120 V, and the electric potential at $x = 5.0$ m is 190 V. What is the electric field in this region, assuming it’s constant?
 - (a) 140 N/C
 - (b) -140 N/C
 - (c) 35 N/C
 - (d) -35 N/C
 - (e) 75 N/C

5. An electronics technician wishes to construct a parallel-plate capacitor using rutile ($\kappa = 1.00 \times 10^5$) as the dielectric. If the cross-sectional area of the plates is 1.0 cm2, what is the capacitance if the rutile thickness is 1.0 mm?
 - (a) 88.5 pF
 - (b) 177 pF
 - (c) 8.85 μF
 - (d) 100.0 μF
 - (e) 354 μF

6. Four point charges are positioned on the rim of a circle. The charge on each of the four is $+0.5$ μC, $+1.5$ μC, -1.0 μC, and -0.5 μC. If the electrical potential at the center of the circle due to the $+0.5$ μC charge alone is 4.5×10^4 V, what is the total electric potential at the center due to the four charges?
 - (a) 18.0×10^4 V
 - (b) 4.5×10^4 V
 - (c) 0
 - (d) -4.5×10^4 V
 - (e) 9.0×10^4 V

7. If three unequal capacitors, initially uncharged, are connected in series across a battery, which of the following statements is true?
 - (a) The equivalent capacitance is greater than any of the individual capacitances.
 - (b) The largest voltage appears across the capacitor with the smallest capacitance.
 - (c) The largest voltage appears across the capacitor with the largest capacitance.
 - (d) The capacitor with the largest capacitance has the smallest charge.
 - (e) The capacitor with the smallest capacitance has the smallest charge.

8. A parallel-plate capacitor is connected to a battery. What happens if the plate separation is doubled while the capacitor remains connected to the battery?
 - (a) The stored energy remains the same.
 - (b) The stored energy is doubled.
 - (c) The stored energy decreases by a factor of 2.
 - (d) The stored energy decreases by a factor of 4.
 - (e) The stored energy increases by a factor of 4.

9. A parallel-plate capacitor filled with air carries a charge Q. The battery is disconnected, and a slab of material with dielectric constant $\kappa = 2$ is inserted between the plates. Which of the following statements is correct?
 - (a) The voltage across the capacitor decreases by a factor of 2.
 - (b) The voltage across the capacitor is doubled.
 - (c) The charge on the plates is doubled.
 - (d) The charge on the plates decreases by a factor of 2.
 - (e) The electric field is doubled.

10. After a parallel-plate capacitor is charged by a battery, it is disconnected from the battery and its plate separation is increased. Which of the following statements is correct?
 - (a) The energy stored in the capacitor decreases.
 - (b) The energy stored in the capacitor increases.
 - (c) The electric field between the plates decreases.
 - (d) The potential difference between the plates decreases.
 - (e) The charge on the plates decreases.
11. A battery is attached to several different capacitors connected in parallel. Which of the following statements is true? (a) All the capacitors have the same charge, and the equivalent capacitance is greater than the capacitance of any of the capacitors in the group. (b) The capacitor with the largest capacitance carries the smallest charge. (c) The potential difference across each capacitor is the same, and the equivalent capacitance is greater than any of the capacitors in the group. (d) The capacitor with the smallest capacitance carries the largest charge. (e) The potential differences across the capacitors are the same only if the capacitances are the same.

12. A battery is attached across several different capacitors connected in series. Which of the following statements are true? (a) All the capacitors have the same charge, and the equivalent capacitance is less than the capacitance of any of the individual capacitors in the group. (b) All the capacitors have the same charge, and the equivalent capacitance is greater than any of the individual capacitors in the group. (c) The capacitor with the largest capacitance carries the largest charge. (c) The potential difference across each capacitor must be the same. (d) The largest potential difference appears across the capacitor having the largest capacitance. (e) The largest potential difference appears across the capacitor with the smallest capacitance.

CONCEPTUAL QUESTIONS

1. (a) Describe the motion of a proton after it is released from rest in a uniform electric field. (b) Describe the changes (if any) in its kinetic energy and the electric potential energy associated with the proton.

2. Describe how you can increase the maximum operating voltage of a parallel-plate capacitor for a fixed plate separation.

3. A parallel-plate capacitor is charged by a battery, and the battery is then disconnected from the capacitor. Because the charges on the capacitor plates are opposite in sign, they attract each other. Hence, it takes positive work to increase the plate separation. Show that the external work done when the plate separation is increased leads to an increase in the energy stored in the capacitor.

4. Distinguish between electric potential and electrical potential energy.

5. Suppose you are sitting in a car and a 20-kV power line drops across the car. Should you stay in the car or get out? The power line potential is 20 kV compared to the potential of the ground.

6. Why is it important to avoid sharp edges or points on conductors used in high-voltage equipment?

7. Explain why, under static conditions, all points in a conductor must be at the same electric potential.

8. If you are given three different capacitors C_1, C_2, and C_3, how many different combinations of capacitance can you produce, using all capacitors in your circuits?

9. Why is it dangerous to touch the terminals of a high-voltage capacitor even after the voltage source that charged the battery is disconnected from the capacitor? What can be done to make the capacitor safe to handle after the voltage source has been removed?

10. The plates of a capacitor are connected to a battery. What happens to the charge on the plates if the connecting wires are removed from the battery? What happens to the charge if the wires are removed from the battery and connected to each other?

11. Can electric field lines ever cross? Why or why not? Can equipotentials ever cross? Why or why not?

12. Is it always possible to reduce a combination of capacitors to one equivalent capacitor with the rules developed in this chapter? Explain.

13. If you were asked to design a capacitor for which a small size and a large capacitance were required, what factors would be important in your design?

14. Explain why a dielectric increases the maximum operating voltage of a capacitor even though the physical size of the capacitor doesn’t change.

PROBLEMS

The Problems for this chapter may be assigned online at WebAssign.

1, 2, 3 = straightforward, intermediate, challenging
GP = denotes guided problem
ecp = denotes enhanced content problem
biomedical application
□ = denotes full solution available in Student Solutions Manual/Study Guide

SECTION 16.1 POTENTIAL DIFFERENCE AND ELECTRIC POTENTIAL

1. A uniform electric field of magnitude 375 N/C pointing in the positive x-direction acts on an electron, which is initially at rest. After the electron has moved 3.20 cm, what is (a) the work done by the field on the electron, (b) the change in potential energy associated with the electron, and (c) the velocity of the electron?
2. A uniform electric field of magnitude 327 N/C is directed along the +y-axis. A 5.40-μC charge moves from the origin to the point (x, y) = (−15.0 cm, −32.0 cm). (a) What is the change in the potential energy associated with this charge? (b) Through what potential difference did the charge move?

3. A potential difference of 90 mV exists between the inner and outer surfaces of a cell membrane. The inner surface is negative relative to the outer surface. How much work is required to eject a positive sodium ion (Na⁺) from the interior of the cell?

4. An ion accelerated through a potential difference of 60.0 V has its potential energy decreased by 1.92 × 10⁻²⁷ J. Calculate the charge on the ion.

5. The potential difference between the accelerating plates of a TV set is about 25 kV. If the distance between the plates is 1.5 cm, find the magnitude of the uniform electric field in the region between the plates.

6. To recharge a 12-V battery, a battery charger must move 3.6 × 10⁻⁹ C of charge from the negative terminal to the positive terminal. How much work is done by the charger? Express your answer in joules.

7. Oppositely charged parallel plates are separated by 5.33 mm. A potential difference of 600 V exists between the plates. (a) What is the magnitude of the electric field between the plates? (b) What is the magnitude of the force on an electron between the plates? (c) How much work must be done on the electron to move it to the negative plate if it is initially positioned 2.90 mm from the positive plate?

8. (a) Find the potential difference ΔV required to stop an electron (called a “stopping potential”) moving with an initial speed of 2.85 × 10⁷ m/s. (b) Would a proton traveling at the same speed require a greater or lesser magnitude potential difference? Explain. (c) Find a symbolic expression for the ratio of the proton stopping potential and the electron stopping potential, ΔVp/ΔVe. The answer should be in terms of the proton mass mp and electron mass me.

9. A 74.0-g block carrying a charge Q = 35.0 μC is connected to a spring for which k = 78.0 N/m. The block lies on a frictionless, horizontal surface and is immersed in a uniform electric field of magnitude E = 4.86 × 10⁴ N/C directed as shown in Figure P16.9. If the block is released from rest when the spring is unstretched (x = 0), (a) by what maximum distance does the block move from its initial position? (b) Find the subsequent equilibrium position of the block and the amplitude of its motion. (c) Using conservation of energy, find a symbolic relationship giving the potential difference between its initial position and the point of maximum extension in terms of the spring constant k, the amplitude A, and the charge Q.

10. On planet Tehar, the free-fall acceleration is the same as that on the Earth, but there is also a strong downward electric field that is uniform close to the planet’s surface. A 2.00-kg ball having a charge of 5.00 μC is thrown upward at a speed of 20.1 m/s. It hits the ground after an interval of 4.10 s. What is the potential difference between the starting point and the top point of the trajectory?

SECTION 16.2 ELECTRIC POTENTIAL AND POTENTIAL ENERGY DUE TO POINT CHARGES

SECTION 16.3 POTENTIALS AND CHARGED CONDUCTORS

SECTION 16.4 EQUIPOTENTIAL SURFACES

11. (a) An electron is at the origin. (b) Calculate the electric potential V_A at point A, x = 0.250 cm. (b) Calculate the electric potential V_B at point B, x = 0.750 cm. What is the potential difference V_B − V_A? (c) Would a negatively charged particle placed at point A necessarily go through this same potential difference upon reaching point B? Explain.

12. Two point charges are on the y-axis. A 4.50-μC charge is located at y = 1.25 cm, and a −2.24-μC charge is located at y = −1.80 cm. Find the total electric potential at (a) the origin and (b) the point having coordinates (1.50 cm, 0).

13. (a) Find the electric potential, taking zero at infinity, at the upper right corner (the corner without a charge) of the rectangle in Figure P16.13. (b) Repeat if the 2.00-μC charge is replaced with a charge of −2.00 μC.

14. Three charges are situated at corners of a rectangle as in Figure P16.13. How much energy would be expended in moving the 8.00-μC charge to infinity?

15. Two point charges Q₁ = +5.00 nC and Q₂ = −3.00 nC are separated by 35.0 cm. (a) What is the electric potential at a point midway between the charges? (b) What is the potential energy of the pair of charges? What is the significance of the algebraic sign of your answer?

16. A point charge of 9.00 × 10⁻⁹ C is located at the origin. How much work is required to bring a positive charge of 3.00 × 10⁻⁶ C from infinity to the location x = 30.0 cm?

17. The three charges in Figure P16.17 are at the vertices of an isosceles triangle. Let q = 7.00 nC, and calculate the electric potential at the midpoint of the base.
18. An electron starts from rest 3.00 cm from the center of a uniformly charged sphere of radius 2.00 cm. If the sphere carries a total charge of 1.00×10^{-9} C, how fast will the electron be moving when it reaches the surface of the sphere?

19. A proton is located at the origin, and a second proton is located on the x-axis at $x = 6.00$ fm ($1 \text{ fm} = 10^{-15}$ m). (a) Calculate the electric potential energy associated with this configuration. (b) An alpha particle (charge $= 2e$, mass $= 6.64 \times 10^{-27}$ kg) is now placed at $(x, y) = (3.00, 3.00)$ fm. Calculate the electric potential energy associated with this configuration. (c) Starting with the three-particle system, find the change in electric potential energy if the alpha particle is allowed to escape to infinity while the two protons remain fixed in place. (Throughout, neglect any radiation effects.) (d) Use conservation of energy to calculate the speed of the alpha particle at infinity. (e) If the two protons are released from rest and the alpha particle remains fixed, calculate the speed of the protons at infinity.

20. A proton and an alpha particle (charge $= 2e$, mass $= 6.64 \times 10^{-27}$ kg) are initially at rest, separated by 4.00×10^{-15} m. (a) If they are both released simultaneously, explain why you can’t find their velocities at infinity using only conservation of energy. (b) What other conservation law can be applied in this case? (c) Find the speeds of the proton and alpha particle, respectively, at infinity.

21. A small spherical object carries a charge of 8.00 nC. At what distance from the center of the object is the potential equal to 100 V? 50.0 V? 25.0 V? Is the spacing of the equipotentials proportional to the change in voltage?

22. Starting with the definition of work, prove that the local electric field must be everywhere perpendicular to a surface having the same potential at every point.

23. In Rutherford’s famous scattering experiments that led to the planetary model of the atom, alpha particles (having charges of $+2e$ and masses of 6.64×10^{-27} kg) were fired toward a gold nucleus with charge $+79e$. An alpha particle, initially very far from the gold nucleus, is fired at 2.00×10^5 m/s directly toward the nucleus, as in Figure P16.23. How close does the alpha particle get to the gold nucleus before turning around? Assume the gold nucleus remains stationary.

24. Four point charges each having charge Q are located at the corners of a square having sides of length a. Find symbolic expressions for (a) the total electric potential at the center of the square due to the four charges and (b) the work required to bring a fifth charge q from infinity to the center of the square.

SECTION 16.6 CAPACITANCE

SECTION 16.7 THE PARALLEL-PLATE CAPACITOR

25. Consider the Earth and a cloud layer 800 m above the planet to be the plates of a parallel-plate capacitor. (a) If the cloud layer has an area of $1.0 \text{ km}^2 = 1.0 \times 10^6 \text{ m}^2$, what is the capacitance? (b) If an electric field strength greater than 3.0×10^6 N/C causes the air to break down and conduct charge (lightning), what is the maximum charge the cloud can hold?

26. (a) When a 9.00-V battery is connected to the plates of a capacitor, it stores a charge of 27.0 μC. What is the value of the capacitance? (b) If the same capacitor is connected to a 12.0-V battery, what charge is stored?

27. An air-filled parallel-plate capacitor has plates of area 2.30 cm^2 separated by 1.50 mm. The capacitor is connected to a 12.0-V battery. (a) Find the value of its capacitance. (b) What is the charge on the capacitor? (c) What is the magnitude of the uniform electric field between the plates?

28. (a) How much charge is on each plate of a 4.00-μF capacitor when it is connected to a 12.0-V battery? (b) If this same capacitor is connected to a 1.50-V battery, what charge is stored?

29. An air-filled capacitor consists of two parallel plates, each with an area of 7.60 cm2 and separated by a distance of 1.80 mm. If a 20.0-V potential difference is applied to these plates, calculate (a) the electric field between the plates, (b) the capacitance, and (c) the charge on each plate.

30. A 1-megabit computer memory chip contains many 60.0 $\times 10^{-12}$-F capacitors. Each capacitor has a plate area of 21.0×10^{-12} m2. Determine the plate separation of such a capacitor. (Assume a parallel-plate configuration.) The diameter of an atom is on the order of 10^{-10} m $= 1$ Å. Express the plate separation in angstroms.

31. A parallel-plate capacitor with area 0.200 m2 and plate separation of 3.00 mm is connected to a 6.00-V battery. (a) What is the capacitance? (b) How much charge is stored on the plates? (c) What is the electric field between the plates? (d) Find the magnitude of the charge density on each plate. (e) Without disconnecting the battery, the plates are moved farther apart. Qualitatively, what happens to each of the previous answers?

32. A small object with a mass of 350 mg carries a charge of 30.0 nC and is suspended by a thread between the vertical plates of a parallel-plate capacitor. The plates are separated by 4.00 cm. If the thread makes an angle of 15.0$^\circ$ with the vertical, what is the potential difference between the plates?
SECTION 16.8 COMBINATIONS OF CAPACITORS

33. Given a 2.50-μF capacitor, a 6.25-μF capacitor, and a 6.00-V battery, find the charge on each capacitor if you connect them (a) in series across the battery and (b) in parallel across the battery.

34. Find the equivalent capacitance of a 4.20-μF capacitor and an 8.50-μF capacitor when they are connected (a) in series and (b) in parallel.

35. Find (a) the equivalent capacitance of the capacitors in Figure P16.35, (b) the charge on each capacitor, and (c) the potential difference across each capacitor.

36. Two capacitors give an equivalent capacitance of 9.00 pF when connected in parallel and an equivalent capacitance of 2.00 pF when connected in series. What is the capacitance of each capacitor?

37. For the system of capacitors shown in Figure P16.37, find (a) the equivalent capacitance of the system, (b) the charge on each capacitor, and (c) the potential difference across each capacitor.

38. Consider the combination of capacitors in Figure P16.38. (a) Find the equivalent single capacitance of the two capacitors in series and redraw the diagram (called diagram 1) with this equivalent capacitance. (b) In diagram 1 find the equivalent capacitance of the three capacitors in parallel and redraw the diagram as a single battery and single capacitor in a loop. (c) Compute the charge on the single equivalent capacitor. (d) Returning to diagram 1, compute the charge on each individual capacitor. Does the sum agree with the value found in part (c)? (e) What is the charge on the 24.0-μF capacitor and on the 8.00-μF capacitor? (f) Compute the voltage drop across the 24.0-μF capacitor and (g) the 8.00-μF capacitor.

39. Find the charge on each of the capacitors in Figure P16.39.

40. A 10.0-μF capacitor is fully charged across a 12.0-V battery. The capacitor is then disconnected from the battery and connected across an initially uncharged capacitor with capacitance \(C \). The resulting voltage across each capacitor is 3.00 V. What is the value of \(C \)?

41. A 25.0-μF capacitor and a 40.0-μF capacitor are charged by being connected across separate 50.0-V batteries. (a) Determine the resulting charge on each capacitor. (b) The capacitors are then disconnected from their batteries and connected to each other, with each negative plate connected to the other positive plate. What is the final charge of each capacitor, and what is the final potential difference across the 40.0-μF capacitor?

42. (a) Find the equivalent capacitance between points \(a \) and \(b \) for the group of capacitors connected as shown in Figure P16.42 if \(C_1 = 3.00 \, \mu\text{F} \), \(C_2 = 10.00 \, \mu\text{F} \), and \(C_3 = 2.00 \, \mu\text{F} \). (b) If the potential between points \(a \) and \(b \) is 60.0 V, what charge is stored on \(C_3 \)?

43. A 1.00-μF capacitor is charged by being connected across a 10.0-V battery. It is then disconnected from the battery and connected across an uncharged 2.00-μF capacitor. Determine the resulting charge on each capacitor.

44. Find the equivalent capacitance between points \(a \) and \(b \) in the combination of capacitors shown in Figure P16.44.

SECTION 16.9 ENERGY STORED IN A CHARGED CAPACITOR

45. A 12.0-V battery is connected to a 4.50-μF capacitor. How much energy is stored in the capacitor?
46. Two capacitors, $C_1 = 18.0 \mu F$ and $C_2 = 36.0 \mu F$, are connected in series, and a 12.0-V battery is connected across them. (a) Find the equivalent capacitance, and the energy contained in this equivalent capacitor. (b) Find the energy stored in each individual capacitor. Show that the sum of these two energies is the same as the energy found in part (a). Will this equality always be true, or does it depend on the number of capacitors and their capacitances? (c) If the same capacitors were connected in parallel, what potential difference would be required across them so that the combination stores the same energy as in part (a)? Which capacitor stores more energy in this situation, C_1 or C_2?

47. A parallel-plate capacitor has capacitance 3.00 μF. (a) How much energy is stored in the capacitor if it is connected to a 6.00-V battery? (b) If the battery is disconnected and the distance between the charged plates doubled, what is the energy stored? (c) The battery is subsequently reattached to the capacitor, but the plate separation remains as in part (b). How much energy is stored? (Answer each part in microjoules.)

48. A certain storm cloud has a potential difference of 1.00×10^6 V relative to a tree. If, during a lightning storm, 50.0 C of charge is transferred through this potential difference and 1.00% of the energy is absorbed by the tree, how much water (sap in the tree) initially at 30.0°C can be boiled away? Water has a specific heat of 4.186 J/kg°C, a boiling point of 100°C, and a heat of vaporization of 2.26 $\times 10^6$ J/kg.

SECTION 16.10 CAPACITORS WITH DIELECTRICS

49. The voltage across an air-filled parallel-plate capacitor is measured to be 85.0 V. When a dielectric is inserted and completely fills the space between the plates as in Figure 16.24, the voltage drops to 25.0 V. (a) What is the dielectric constant of the inserted material? Can you identify the dielectric? (b) If the dielectric doesn’t completely fill the space between the plates, what could you conclude about the voltage across the plates?

50. A parallel-plate capacitor in air has a plate separation of 1.50 cm and a plate area of 25.0 cm2. The plates are charged to a potential difference of 2.50×10^5 V and disconnected from the source. The capacitor is then immersed in distilled water. Determine (a) the charge on the plates before and after immersion, (b) the capacitance and potential difference after immersion, and (c) the change in energy stored in the capacitor due to immersion. Assume the distilled water is an insulator.

51. Determine (a) the capacitance and (b) the maximum voltage that can be applied to a Teflon-filled parallel-plate capacitor having a plate area of 175 cm2 and an insulation thickness of 0.040 mm.

52. A commercial capacitor is constructed as in Figure 16.26a. This particular capacitor is made from a strip of aluminum foil separated by two strips of paraffin-coated paper. Each strip of foil and paper is 7.00 cm wide. The foil is 0.004 00 mm thick, and the paper is 0.025 0 mm thick and has a dielectric constant of 3.70. What length should the strips be if a capacitance of 9.50×10^{-6} F is desired before the capacitor is rolled up? (Use the parallel-plate formula. Adding a second strip of paper and rolling up the capacitor doubles its capacitance by allowing both surfaces of each strip of foil to store charge.)

53. A model of a red blood cell portrays the cell as a spherical capacitor, a positively charged liquid sphere of surface area A separated from the surrounding negatively charged fluid by a membrane of thickness t. Tiny electrodes introduced into the interior of the cell show a potential difference of 100 mV across the membrane. The membrane’s thickness is estimated to be 100 nm and has a dielectric constant of 3.00. (a) If an average red blood cell has a mass of 1.00×10^{-12} kg, estimate the volume of the cell and thus find its surface area. The density of blood is 1.100 kg/m3. (b) Estimate the capacitance of the cell by assuming the membrane surfaces act as parallel plates. (c) Calculate the charge on the surface of the membrane. How many electronic charges does the surface charge represent?

ADDITIONAL PROBLEMS

54. Three parallel-plate capacitors are constructed, each having the same plate spacing d and with C_1 having plate area A_1, C_2 having area A_2, and C_3 having area A_3. Show that the total capacitance C of the three capacitors connected in parallel is the same as that of a capacitor having plate spacing d and plate area $A = A_1 + A_2 + A_3$.

55. Three parallel-plate capacitors are constructed, each having the same plate area A and with C_1 having plate spacing d_1, C_2 having plate spacing d_2, and C_3 having plate spacing d_3. Show that the total capacitance C of the three capacitors connected in series is the same as a capacitor of plate area A and with plate spacing $d = d_1 + d_2 + d_3$.

56. For the system of four capacitors shown in Figure P16.37, find (a) the total energy stored in the system and (b) the energy stored by each capacitor. (c) Compare the sum of the answers in part (b) with your result to part (a) and explain your observation.

57. A parallel-plate capacitor with a plate separation d has a capacitance C_0 in the absence of a dielectric. A slab of dielectric material of dielectric constant κ and thickness $d/3$ is then inserted between the plates as in Figure P16.57. Show that the capacitance of this partially filled capacitor is given by

$$C = \frac{3\kappa}{2\kappa + 1} C_0$$

(Hint: Treat the system as two capacitors connected in series, one with dielectric in it and the other one empty.)

![Figure P16.57](image)
58. Two capacitors give an equivalent capacitance of \(C_p \) when connected in parallel and an equivalent capacitance of \(C_s \) when connected in series. What is the capacitance of each capacitor?

59. An isolated capacitor of unknown capacitance has been charged to a potential difference of 100 V. When the charged capacitor is disconnected from the battery and then connected in parallel to an uncharged 10.0-\(\mu \)F capacitor, the voltage across the combination is measured to be 30.0 V. Calculate the unknown capacitance.

60. Two charges of 1.0 \(\mu \)C and -2.0 \(\mu \)C are 0.50 m apart at two vertices of an equilateral triangle as in Figure P16.60.

(a) What is the electric potential due to the 1.0-\(\mu \)C charge at the third vertex, point P?
(b) What is the electric potential due to the -2.0-\(\mu \)C charge at P?
(c) Find the total electric potential at P.
(d) What is the work required to move a 3.0-\(\mu \)C charge from infinity to P.

![FIGURE P16.60](image)

61. Find the equivalent capacitance of the group of capacitors shown in Figure P16.61.

![FIGURE P16.61](image)

62. A spherical capacitor consists of a spherical conducting shell of radius \(b \) and charge \(-Q \) concentric with a smaller conducting sphere of radius \(a \) and charge \(Q \). (a) Find the capacitance of this device. (b) Show that as the radius \(b \) of the outer sphere approaches infinity, the capacitance approaches the value \(a/k = 4\pi\varepsilon_0a \).

63. The immediate cause of many deaths is ventricular fibrillation, an uncoordinated quivering of the heart, as opposed to proper beating. An electric shock to the chest can cause momentary paralysis of the heart muscle, after which the heart will sometimes start organized beating again. A defibrillator is a device that applies a strong electric shock to the chest over a time of a few milliseconds. The device contains a capacitor of a few microfarads, charged to several thousand volts. Electrodes called paddles, about 8 cm across and coated with conducting paste, are held against the chest on both sides of the heart. Their handles are insulated to prevent injury to the operator, who calls "Clear!" and pushes a button on one paddle to discharge the capacitor through the patient’s chest. Assume an energy of 300 W·s is to be delivered from a 30.0-\(\mu \)F capacitor. To what potential difference must it be charged?

64. When a certain air-filled parallel-plate capacitor is connected across a battery, it acquires a charge of 150 \(\mu \)C on each plate. While the battery connection is maintained, a dielectric slab is inserted into, and fills, the region between the plates. This results in the accumulation of an additional charge of 200 \(\mu \)C on each plate. What is the dielectric constant of the slab?

65. Capacitors \(C_1 = 6.0 \) \(\mu \)F and \(C_2 = 2.0 \) \(\mu \)F are charged as a parallel combination across a 250-V battery. The capacitors are disconnected from the battery and from each other. They are then connected positive plate to negative plate and negative plate to positive plate. Calculate the resulting charge on each capacitor.

66. The energy stored in a 52.0-\(\mu \)F capacitor is used to melt a 6.00-mg sample of lead. To what voltage must the capacitor be initially charged, assuming the initial temperature of the lead is 20.0°C? Lead has a specific heat of 128 J/kg°C, a melting point of 327.3°C, and a latent heat of fusion of 24.5 kJ/kg.

67. Metal sphere A of radius 12.0 cm carries 6.00 \(\mu \)C of charge, and metal sphere B of radius 18.0 cm carries -4.00 \(\mu \)C of charge. If the two spheres are attached by a very long conducting thread, what is the final distribution of charge on the two spheres?

68. An electron is fired at a speed \(v_0 = 5.6 \times 10^6 \) m/s and at an angle \(\theta_0 = -45° \) between two parallel conducting plates that are \(D = 2.0 \) mm apart, as in Figure P16.68. If the voltage difference between the plates is \(\Delta V = 100 \) V, determine (a) how close, \(d \), the electron will get to the bottom plate and (b) where the electron will strike the top plate.

![FIGURE P16.68](image)
Many practical applications and devices are based on the principles of static electricity, but electricity was destined to become an inseparable part of our daily lives when scientists learned how to produce a continuous flow of charge for relatively long periods of time using batteries. The battery or voltaic cell was invented in 1800 by Italian physicist Alessandro Volta. Batteries supplied a continuous flow of charge at low potential, in contrast to earlier electrostatic devices that produced a tiny flow of charge at high potential for brief periods. This steady source of electric current allowed scientists to perform experiments to learn how to control the flow of electric charges in circuits. Today, electric currents power our lights, radios, television sets, air conditioners, computers, and refrigerators. They ignite the gasoline in automobile engines, travel through miniature components making up the chips of microcomputers, and provide the power for countless other invaluable tasks.

In this chapter we define current and discuss some of the factors that contribute to the resistance to the flow of charge in conductors. We also discuss energy transformations in electric circuits. These topics will be the foundation for additional work with circuits in later chapters.

17.1 ELECTRIC CURRENT

In Figure 17.1 charges move in a direction perpendicular to a surface of area \(A \). (The area could be the cross-sectional area of a wire, for example.) The current is the rate at which charge flows through this surface.

Suppose \(\Delta Q \) is the amount of charge that flows through an area \(A \) in a time interval \(\Delta t \) and that the direction of flow is perpendicular to the area. Then the average current \(I_{av} \) is equal to the amount of charge divided by the time interval:

\[
I_{av} = \frac{\Delta Q}{\Delta t}
\]

[17.1a]

SI unit: coulomb/second (C/s), or the ampere (A)

CURRENT AND RESISTANCE
Current is composed of individual moving charges, so for an extremely low current, it is conceivable that a single charge could pass through area \(A \) in one instant and no charge in the next instant. All currents, then, are essentially averages over time. Given the very large number of charges usually involved, however, it makes sense to define an instantaneous current.

The instantaneous current \(I \) is the limit of the average current as the time interval goes to zero:

\[
I = \lim _{\Delta t \to 0} I_{av} = \lim _{\Delta t \to 0} \frac{\Delta Q}{\Delta t} \quad [17.1b]
\]

SI unit: coulomb/second (C/s), or the ampere (A)

When the current is steady, the average and instantaneous currents are the same. Note that one ampere of current is equivalent to one coulomb of charge passing through the cross-sectional area in a time interval of 1 s.

When charges flow through a surface as in Figure 17.1, they can be positive, negative, or both. The direction of conventional current used in this book is the direction positive charges flow. (This historical convention originated about 200 years ago, when the ideas of positive and negative charges were introduced.) In a common conductor such as copper, the current is due to the motion of negatively charged electrons, so the direction of the current is opposite the direction of motion of the electrons. On the other hand, for a beam of positively charged protons in an accelerator, the current is in the same direction as the motion of the protons. In some cases—gases and electrolytes, for example—the current is the result of the flows of both positive and negative charges. Moving charges, whether positive or negative, are referred to as charge carriers. In a metal, for example, the charge carriers are electrons.

In electrostatics, where charges are stationary, the electric potential is the same everywhere in a conductor. That is no longer true for conductors carrying current: as charges move along a wire, the electric potential is continually decreasing (except in the special case of superconductors).

EXAMPLE 17.1 Turn On the Light

Goal Apply the concept of current.

Problem The amount of charge that passes through the filament of a certain lightbulb in 2.00 s is 1.67 C. Find (a) the average current in the lightbulb and (b) the number of electrons that pass through the filament in 5.00 s.

Strategy Substitute into Equation 17.1a for part (a), then multiply the answer by the time given in part (b) to get the total charge that passes in that time. The total charge equals the number \(N \) of electrons going through the circuit times the charge per electron.

Solution

(a) Compute the average current in the lightbulb.

Substitute the charge and time into Equation 17.1a:

\[
I_{av} = \frac{\Delta Q}{\Delta t} = \frac{1.67 \text{ C}}{2.00 \text{ s}} = 0.835 \text{ A}
\]

(b) Find the number of electrons passing through the filament in 5.00 s.

The total number \(N \) of electrons times the charge per electron equals the total charge, \(I_{av} \Delta t \):

\[
Nq = I_{av} \Delta t
\]

Substitute and solve for \(N \):

\[
N(1.60 \times 10^{-19} \text{ C/electron}) = (0.835 \text{ A})(5.00 \text{ s})
\]

\[
N = 2.61 \times 10^{19} \text{ electrons}
\]
Remarks In developing the solution, it was important to use units to ensure the correctness of equations such as Equation (1). Notice the enormous number of electrons passing through a given point in a typical circuit.

QUESTION 17.1
Is it possible to have an instantaneous current of $e/2$ per second? Explain. Can the average current take this value?

EXERCISE 17.1
Suppose 6.40×10^{21} electrons pass through a wire in 2.00 min. Find the average current.

Answer 8.53 A

QUICK QUIZ 17.1 Consider positive and negative charges moving horizontally through the four regions in Figure 17.2. Rank the magnitudes of the currents in these four regions from lowest to highest. (I_a is the current in Figure 17.2a, I_b the current in Figure 17.2b, etc.)

(a) I_d, I_c, I_b, I_a
(b) I_a, I_c, I_b, I_d
(c) I_c, I_a, I_d, I_b
(d) I_b, I_d, I_c, I_a
(e) I_a, I_b, I_c, I_d
(f) None of these

FIGURE 17.2
(Quick Quiz 17.1)

17.2 A MICROSCOPIC VIEW: CURRENT AND DRIFT SPEED

Macroscopic currents can be related to the motion of the microscopic charge carriers making up the current. It turns out that current depends on the average speed of the charge carriers in the direction of the current, the number of charge carriers per unit volume, and the size of the charge carried by each.

Consider identically charged particles moving in a conductor of cross-sectional area A (Fig. 17.3). The volume of an element of length Δx of the conductor is $A \Delta x$. If n represents the number of mobile charge carriers per unit volume, the number of carriers in the volume element is $nA \Delta x$. The mobile charge ΔQ in this element is therefore

$$\Delta Q = nA \Delta x q$$

where q is the charge on each carrier. If the carriers move with a constant average speed called the drift speed v_d, the distance they move in the time interval Δt is $\Delta x = v_d \Delta t$. We can therefore write

$$\Delta Q = (nA v_d \Delta t) q$$

If we divide both sides of this equation by Δx and take the limit as Δt goes to zero, we see that the current in the conductor is

$$I = \lim_{\Delta t \to 0} \frac{\Delta Q}{\Delta t} = n q v_d A \tag{17.2}$$

To understand the meaning of drift speed, consider a conductor in which the charge carriers are free electrons. If the conductor is isolated, these electrons undergo random motion similar to the motion of the molecules of a gas. The drift speed is normally much smaller than the free electrons’ average speed between collisions with the fixed atoms of the conductor. When a potential difference is
applied between the ends of the conductor (say, with a battery), an electric field is set up in the conductor, creating an electric force on the electrons and hence a current. In reality, the electrons don’t simply move in straight lines along the conductor. Instead, they undergo repeated collisions with the atoms of the metal, and the result is a complicated zigzag motion with only a small average drift speed along the wire (Active Fig. 17.4). The energy transferred from the electrons to the metal atoms during a collision increases the vibrational energy of the atoms and causes a corresponding increase in the temperature of the conductor. Despite the collisions, however, the electrons move slowly along the conductor in a direction opposite \(\mathbf{E} \) with the drift velocity \(\mathbf{v}_d \).

TIP 17.2 Electrons Are Everywhere in the Circuit

Electrons don’t have to travel from the light switch to the lightbulb for the lightbulb to operate. Electrons already in the filament of the lightbulb move in response to the electric field set up by the battery. Also, the battery does not provide electrons to the circuit; it provides energy to the existing electrons.

EXAMPLE 17.2 Drift Speed of Electrons

Goal Calculate a drift speed and compare it with the rms speed of an electron gas.

Problem A copper wire of cross-sectional area \(3.00 \times 10^{-6} \text{ m}^2 \) carries a current of 10.0 A. (a) Assuming each copper atom contributes one free electron to the metal, find the drift speed of the electrons in this wire. (b) Use the ideal gas model to compare the drift speed with the random rms speed an electron would have at 20.0°C. The density of copper is 8.92 g/cm³, and its atomic mass is 63.5 u.

Strategy All the variables in Equation 17.2 are known except for \(n \), the number of free charge carriers per unit volume. We can find \(n \) by recalling that one mole of copper contains an Avogadro’s number (\(6.02 \times 10^{23} \)) of atoms and each atom contributes one charge carrier to the metal. The volume of one mole can be found from copper’s known density and atomic mass. The atomic mass is the same, numerically, as the number of grams in a mole of the substance.

Solution

(a) Find the drift speed of the electrons.

Calculate the volume of one mole of copper from its density and its atomic mass:

\[
V = \frac{m}{\rho} = \frac{63.5 \text{ g}}{8.92 \text{ g/cm}^3} = 7.12 \text{ cm}^3
\]

Convert the volume from cm³ to m³:

\[
7.12 \text{ cm}^3 \left(\frac{1 \text{ m}}{10^2 \text{ cm}}\right)^3 = 7.12 \times 10^{-6} \text{ m}^3
\]

Divide Avogadro’s number (the number of electrons in one mole) by the volume per mole to obtain the number density:

\[
n = \frac{6.02 \times 10^{23} \text{ electrons/mole}}{7.12 \times 10^{-6} \text{ m}^3} = 8.46 \times 10^{28} \text{ electrons/m}^3
\]

Solve Equation 17.2 for the drift speed and substitute:

\[
v_d = \frac{I}{nqA} = \frac{10.0 \text{ C/s}}{8.46 \times 10^{28} \text{ electrons/m}^3 \cdot (1.60 \times 10^{-19} \text{ C}) \cdot (3.00 \times 10^{-6} \text{ m}^2)} = 2.46 \times 10^{-4} \text{ m/s}
\]

(b) Find the rms speed of a gas of electrons at 20.0°C.

Apply Equation 10.18:

\[
v_{rms} = \sqrt{\frac{3k_B T}{m_e}}
\]

Convert the temperature to the Kelvin scale and substitute values:

\[
v_{rms} = \sqrt{\frac{3(1.38 \times 10^{-23} \text{ J/K})(293 \text{ K})}{9.11 \times 10^{-31} \text{ kg}}} = 1.15 \times 10^5 \text{ m/s}
\]
Remark The drift speed of an electron in a wire is very small, only about one-billionth of its random thermal speed.

QUESTION 17.2

True or False: The drift velocity in a wire of a given composition is inversely proportional to the number density of charge carriers.

EXERCISE 17.2

What current in a copper wire with a cross-sectional area of \(7.50 \times 10^{-7} \text{ m}^2\) would result in a drift speed equal to \(5.00 \times 10^{-4} \text{ m/s}\)?

Answer 5.08 A

Example 17.2 shows that drift speeds are typically very small. In fact, the drift speed is much smaller than the average speed between collisions. Electrons traveling at \(2.46 \times 10^{-4} \text{ m/s}\), as in the example, would take about 68 min to travel 1 m! In view of this low speed, why does a lightbulb turn on almost instantaneously when a switch is thrown? Think of the flow of water through a pipe. If a drop of water is forced into one end of a pipe that is already filled with water, a drop must be pushed out the other end of the pipe. Although it may take an individual drop a long time to make it through the pipe, a flow initiated at one end produces a similar flow at the other end very quickly. Another familiar analogy is the motion of a bicycle chain. When the sprocket moves one link, the other links all move more or less immediately, even though it takes a given link some time to make a complete rotation. In a conductor, the electric field driving the free electrons travels at a speed close to that of light, so when you flip a light switch, the message for the electrons to start moving through the wire (the electric field) reaches them at a speed on the order of \(10^8 \text{ m/s}\)!

QUICK QUIZ 17.2 Suppose a current-carrying wire has a cross-sectional area that gradually becomes smaller along the wire so that the wire has the shape of a very long, truncated cone. How does the drift speed vary along the wire? (a) It slows down as the cross section becomes smaller. (b) It speeds up as the cross section becomes smaller. (c) It doesn’t change. (d) More information is needed.

17.3 CURRENT AND VOLTAGE MEASUREMENTS IN CIRCUITS

To study electric current in circuits, we need to understand how to measure currents and voltages.

The circuit shown in Figure 17.5a is a drawing of the actual circuit necessary for measuring the current in Example 17.1. Figure 17.5b shows a stylized figure called a circuit diagram that represents the actual circuit of Figure 17.5a. This circuit consists of only a battery and a lightbulb. The word *circuit* means “a closed loop of some sort around which current circulates.” The battery pumps charge through the bulb and around the loop. No charge would flow without a complete conducting path from the positive terminal of the battery into one side of the bulb, out the other side, and through the copper conducting wires back to the negative terminal of the battery. The most important quantities that characterize how the bulb works in different situations are the current \(I\) in the bulb and the potential difference \(\Delta V\) across the bulb. To measure the current in the bulb, we place an ammeter, the device for measuring current, in line with the bulb so there is no path for the current to bypass the meter; all the charge passing through the bulb must also pass through the ammeter. The voltmeter measures the potential difference, or volt-
age, between the two ends of the bulb’s filament. If we use two meters simultaneously as in Figure 17.5a, we can remove the voltmeter and see if its presence affects the current reading. Figure 17.5c shows a digital multimeter, a convenient device, with a digital readout, that can be used to measure voltage, current, or resistance. An advantage of using a digital multimeter as a voltmeter is that it will usually not affect the current because a digital meter has enormous resistance to the flow of charge in the voltmeter mode.

At this point, you can measure the current as a function of voltage (an I–\(\Delta V\) curve) of various devices in the lab. All you need is a variable voltage supply (an adjustable battery) capable of supplying potential differences from about \(-5\) V to \(+5\) V, a bulb, a resistor, some wires and alligator clips, and a couple of multimeters. Be sure to always start your measurements using the highest multimeter scales (say, 10 A and 1 000 V), and increase the sensitivity one scale at a time to obtain the highest accuracy without overloading the meters. (Increasing the sensitivity means lowering the maximum current or voltage that the scale reads.) Note that the meters must be connected with the proper polarity with respect to the voltage supply, as shown in Figure 17.5b. Finally, follow your instructor’s directions carefully to avoid damaging the meters and incurring a soaring lab fee.

QUICK QUIZ 17.3 Look at the four “circuits” shown in Figure 17.6 and select those that will light the bulb.

![Figure 17.6](image)

17.4 RESISTANCE, RESISTIVITY, AND OHM’S LAW

Resistance and Ohm’s Law

When a voltage (potential difference) \(\Delta V\) is applied across the ends of a metallic conductor as in Figure 17.7 (page 576), the current in the conductor is found to be
Resistance is proportional to the applied voltage; \(I \propto \Delta V \). If the proportionality holds, we can write \(\Delta V = IR \), where the proportionality constant \(R \) is called the resistance of the conductor. In fact, we define the resistance as the ratio of the voltage across the conductor to the current it carries:

\[
R = \frac{\Delta V}{I} \tag{17.3}
\]

Resistance has SI units of volts per ampere, called ohms (\(\Omega \)). If a potential difference of 1 V across a conductor produces a current of 1 A, the resistance of the conductor is 1 \(\Omega \). For example, if an electrical appliance connected to a 120-V source carries a current of 6 A, its resistance is 20 \(\Omega \).

The concepts of electric current, voltage, and resistance can be compared to the flow of water in a river. As water flows downhill in a river of constant width and depth, the flow rate (water current) depends on the steepness of descent of the river and the effects of rocks, the riverbank, and other obstructions. The voltage difference is analogous to the steepness, and the resistance to the obstructions. Based on this analogy, it seems reasonable that increasing the voltage applied to a circuit should increase the current in the circuit, just as increasing the steepness of descent increases the water current. Also, increasing the obstructions in the river’s path will reduce the water current, just as increasing the resistance in a circuit will lower the electric current. Resistance in a circuit arises due to collisions between the electrons carrying the current with fixed atoms inside the conductor. These collisions inhibit the movement of charges in much the same way as would a force of friction. For many materials, including most metals, experiments show that the resistance remains constant over a wide range of applied voltages or currents. This statement is known as Ohm’s law, after Georg Simon Ohm (1789–1854), who was the first to conduct a systematic study of electrical resistance.

Ohm’s law is given by

\[
\Delta V = IR \tag{17.4}
\]

where \(R \) is understood to be independent of \(\Delta V \), the potential drop across the resistor, and \(I \), the current in the resistor. We will continue to use this traditional form of Ohm’s law when discussing electrical circuits. A resistor is a conductor that provides a specified resistance in an electric circuit. The symbol for a resistor in circuit diagrams is a zigzag line:

Ohm’s law is an empirical relationship valid only for certain materials. Materials that obey Ohm’s law, and hence have a constant resistance over a wide range of voltages, are said to be ohmic. Materials having resistance that changes with voltage or current are nonohmic. Ohmic materials have a linear current–voltage relationship over a large range of applied voltages (Fig. 17.8a). Nonohmic materials have a nonlinear current–voltage relationship (Fig. 17.8b). One common semiconducting device that is nonohmic is the diode, a circuit element that acts like a one-way valve for current. Its resistance is small for currents in one direction (positive \(\Delta V \)) and large for currents in the reverse direction (negative \(\Delta V \)). Most modern electronic devices, such as transistors, have nonlinear current–voltage relationships; their operation depends on the particular ways in which they violate Ohm’s law.

QUICK QUIZ 17.4 In Figure 17.8b does the resistance of the diode (a) increase or (b) decrease as the positive voltage \(\Delta V \) increases?

QUICK QUIZ 17.5 All electric devices are required to have identifying plates that specify their electrical characteristics. The plate on a certain steam iron states that the iron carries a current of 6.00 A when con-
nected to a source of 1.20×10^2 V. What is the resistance of the steam iron?
(a) $0.050 \ 0 \ \Omega$ (b) $20.0 \ \Omega$ (c) $36.0 \ \Omega$

Resistivity

Electrons don’t move in straight-line paths through a conductor. Instead, they undergo repeated collisions with the metal atoms. Consider a conductor with a voltage applied across its ends. An electron gains speed as the electric force associated with the internal electric field accelerates it, giving it a velocity in the direction opposite that of the electric field. A collision with an atom randomizes the electron’s velocity, reducing it in the direction opposite the field. The process then repeats itself. Together, these collisions affect the electron somewhat as a force of internal friction would. This step is the origin of a material’s resistance.

The resistance of an ohmic conductor increases with length, which makes sense because the electrons going through it must undergo more collisions in a longer conductor. A smaller cross-sectional area also increases the resistance of a conductor, just as a smaller pipe slows the fluid moving through it. The resistance, then, is proportional to the conductor’s length ℓ and inversely proportional to its cross-sectional area A,

$$R = \rho \frac{\ell}{A} \quad [17.5]$$

where the constant of proportionality, ρ, is called the *resistivity* of the material. Every material has a characteristic resistivity that depends on its electronic structure and on temperature. Good electric conductors have very low resistivities, and good insulators have very high resistivities. Table 17.1 lists the resistivities of various materials at 20°C. Because resistance values are in ohms, resistivity values must be in ohm-meters ($\Omega \cdot m$).

TABLE 17.1

<table>
<thead>
<tr>
<th>Material</th>
<th>Resistivity ($\Omega \cdot m$)</th>
<th>Temperature Coefficient of Resistivity (${\degree C}^{-1}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Silver</td>
<td>1.59×10^{-8}</td>
<td>3.8×10^{-3}</td>
</tr>
<tr>
<td>Copper</td>
<td>1.7×10^{-8}</td>
<td>3.9×10^{-3}</td>
</tr>
<tr>
<td>Gold</td>
<td>2.44×10^{-8}</td>
<td>3.4×10^{-3}</td>
</tr>
<tr>
<td>Aluminum</td>
<td>2.82×10^{-8}</td>
<td>3.9×10^{-3}</td>
</tr>
<tr>
<td>Tungsten</td>
<td>5.6×10^{-8}</td>
<td>4.5×10^{-3}</td>
</tr>
<tr>
<td>Iron</td>
<td>10.0×10^{-8}</td>
<td>5.0×10^{-3}</td>
</tr>
<tr>
<td>Platinum</td>
<td>11×10^{-8}</td>
<td>3.92×10^{-3}</td>
</tr>
<tr>
<td>Lead</td>
<td>22×10^{-8}</td>
<td>3.9×10^{-3}</td>
</tr>
<tr>
<td>Nichromea</td>
<td>150×10^{-8}</td>
<td>0.4×10^{-3}</td>
</tr>
<tr>
<td>Carbon</td>
<td>3.5×10^5</td>
<td>-0.5×10^{-3}</td>
</tr>
<tr>
<td>Germanium</td>
<td>0.46</td>
<td>-48×10^{-3}</td>
</tr>
<tr>
<td>Silicon</td>
<td>640</td>
<td>-75×10^{-3}</td>
</tr>
<tr>
<td>Glass</td>
<td>10^{10} to 10^{14}</td>
<td></td>
</tr>
<tr>
<td>Hard rubber</td>
<td>$\approx 10^{13}$</td>
<td></td>
</tr>
<tr>
<td>Sulfur</td>
<td>10^{15}</td>
<td></td>
</tr>
<tr>
<td>Quartz (fused)</td>
<td>75×10^{16}</td>
<td></td>
</tr>
</tbody>
</table>

aA nickel-chromium alloy commonly used in heating elements.
As a lightbulb ages, why does it give off less light than when new?

Explanation There are two reasons for the lightbulb’s behavior, one electrical and one optical, but both are related to the same phenomenon occurring within the bulb. The filament of an old lightbulb is made of a tungsten wire that has been kept at a high temperature for many hours. High temperatures evaporate tungsten from the filament, decreasing its radius. From \(R = \rho \ell / A \), we see that a decreased cross-sectional area leads to an increase in the resistance of the filament. This increasing resistance with age means that the filament will carry less current for the same applied voltage. With less current in the filament, there is less light output, and the filament glows more dimly.

At the high operating temperature of the filament, tungsten atoms leave its surface, much as water molecules evaporate from a puddle of water. The atoms are carried away by convection currents in the gas in the bulb and are deposited on the inner surface of the glass. In time, the glass becomes less transparent because of the tungsten coating, which decreases the amount of light that passes through the glass.

APPLYING PHYSICS 17.1 DIMMING OF AGING LIGHTBULBS

EXAMPLE 17.3 The Resistance of Nichrome Wire

Goal Combine the concept of resistivity with Ohm’s law.

Problem (a) Calculate the resistance per unit length of a 22-gauge Nichrome wire of radius 0.321 mm. (b) If a potential difference of 10.0 V is maintained across a 1.00-m length of the Nichrome wire, what is the current in the wire? (c) The wire is melted down and recast with twice its original length. Find the new resistance \(R_N \) as a multiple of the old resistance \(R_O \).

Strategy Part (a) requires substitution into Equation 17.5, after calculating the cross-sectional area, whereas part (b) is a matter of substitution into Ohm’s law. Part (c) requires some algebra. The idea is to take the expression for the new resistance and substitute expressions for \(\ell_o \) and \(A_o \), the new length and cross-sectional area, in terms of the old length and cross-section. For the area substitution, remember that the volumes of the old and new wires are the same.

Solution

(a) Calculate the resistance per unit length.

Find the cross-sectional area of the wire:

\[
A = \pi r^2 = \pi (0.321 \times 10^{-3} \text{ m})^2 = 3.24 \times 10^{-7} \text{ m}^2
\]

Obtain the resistivity of Nichrome from Table 17.1, solve Equation 17.5 for \(R / \ell \), and substitute:

\[
\frac{R}{\ell} = \frac{\rho}{A} = \frac{1.5 \times 10^{-6} \Omega \cdot \text{m}}{3.24 \times 10^{-7} \text{ m}^2} = 4.6 \Omega / \text{m}
\]

(b) Find the current in a 1.00-m segment of the wire if the potential difference across it is 10.0 V.

Substitute given values into Ohm’s law:

\[
I = \frac{\Delta V}{R} = \frac{10.0 \text{ V}}{4.6 \Omega} = 2.2 \text{ A}
\]

(c) If the wire is melted down and recast with twice its original length, find the new resistance as a multiple of the old.

Find the new area \(A_N \) in terms of the old area \(A_o \) using the fact the volume doesn’t change and \(\ell_N = 2\ell_o \):

\[
V_N = V_o \rightarrow A_N\ell_N = A_o\ell_o \rightarrow A_N = A_o(\ell_o / \ell_N)
\]

\[
A_N = A_o(\ell_o / 2\ell_o) = A_o / 2
\]

Substitute into Equation 17.5:

\[
R_N = \frac{\rho \ell_N}{A_N} = \frac{\rho (2\ell_o)}{(A_o / 2)} = 4 \frac{\rho \ell_o}{A_o} = 4R_O
\]
Remarks From Table 17.1, the resistivity of Nichrome is about 100 times that of copper, a typical good conductor. Therefore, a copper wire of the same radius would have a resistance per unit length of only 0.052 Ω/m, and a 1.00-m length of copper wire of the same radius would carry the same current (2.2 A) with an applied voltage of only 0.115 V. Because of its resistance to oxidation, Nichrome is often used for heating elements in toasters, irons, and electric heaters.

QUESTION 17.3
Would replacing the Nichrome with copper result in a higher current or lower current?

EXERCISE 17.3
What is the resistance of a 6.0-m length of Nichrome wire that has a radius 0.321 mm? How much current does it carry when connected to a 120-V source?

Answers 28 Ω; 4.3 A

QUICK QUIZ 17.6 Suppose an electrical wire is replaced with one having every linear dimension doubled (i.e., the length and radius have twice their original values). Does the wire now have (a) more resistance than before, (b) less resistance, or (c) the same resistance?

17.5 TEMPERATURE VARIATION OF RESISTANCE

The resistivity ρ, and hence the resistance, of a conductor depends on a number of factors. One of the most important is the temperature of the metal. For most metals, resistivity increases with increasing temperature. This correlation can be understood as follows: as the temperature of the material increases, its constituent atoms vibrate with greater amplitudes. As a result, the electrons find it more difficult to get by those atoms, just as it is more difficult to weave through a crowded room when the people are in motion than when they are standing still. The increased electron scattering with increasing temperature results in increased resistivity. Technically, thermal expansion also affects resistance; however, this is a very small effect.

Over a limited temperature range, the resistivity of most metals increases linearly with increasing temperature according to the expression

$$\rho = \rho_0 [1 + \alpha (T - T_0)] \quad [17.6]$$

where ρ is the resistivity at some temperature T (in Celsius degrees), ρ_0 is the resistivity at some reference temperature T_0 (usually taken to be 0°C), and α is a parameter called the temperature coefficient of resistivity. Temperature coefficients for various materials are provided in Table 17.1. The interesting negative values of α for semiconductors arise because these materials possess weakly bound charge carriers that become free to move and contribute to the current as the temperature rises.

Because the resistance of a conductor with a uniform cross section is proportional to the resistivity according to Equation 17.5 ($R = \rho l / A$), the temperature variation of resistance can be written

$$R = R_0 [1 + \alpha (T - T_0)] \quad [17.7]$$

Precise temperature measurements are often made using this property, as shown by the following example.
EXAMPLE 17.4 A Platinum Resistance Thermometer

Goal Apply the temperature dependence of resistance.

Problem A resistance thermometer, which measures temperature by measuring the change in resistance of a conductor, is made of platinum and has a resistance of \(50.0 \, \Omega\) at \(20.0^\circ\text{C}\). (a) When the device is immersed in a vessel containing melting indium, its resistance increases to \(76.8 \, \Omega\). From this information, find the melting point of indium. (b) The indium is heated further until it reaches a temperature of \(235^\circ\text{C}\). What is the ratio of the new current in the platinum to the current \(I_{\text{mp}}\) at the melting point?

Strategy For part (a), solve Equation 17.7 for \(T - T_0\) and get \(\alpha\) for platinum from Table 17.1, substituting known quantities. For part (b), use Ohm’s law in Equation 17.7.

Solution

(a) Find the melting point of indium.

Solve Equation 17.7 for \(T - T_0\):

\[
T - T_0 = \frac{R - R_0}{\alpha R_0} = \frac{76.8 \, \Omega - 50.0 \, \Omega}{[3.92 \times 10^{-3} \, \text{°C}^{-1}][50.0 \, \Omega]} = 137^\circ\text{C}
\]

Substitute \(T_0 = 20.0^\circ\text{C}\) and obtain the melting point of indium:

\[T = 157^\circ\text{C}\]

(b) Find the ratio of the new current to the old when the temperature rises from \(157^\circ\text{C}\) to \(235^\circ\text{C}\).

Write Equation 17.7, with \(R_0\) and \(T_0\) replaced by \(R_{\text{mp}}\) and \(T_{\text{mp}}\) the resistance and temperature at the melting point.

According to Ohm’s law, \(R = \frac{\Delta V}{I}\) and \(R_{\text{mp}} = \frac{\Delta V}{I_{\text{mp}}}\). Substitute these expressions into Equation 17.7:

\[
\frac{\Delta V}{I} = \frac{\Delta V}{I_{\text{mp}}} \left[1 + \alpha(T - T_{\text{mp}})\right]
\]

Cancel the voltage differences, invert the two expressions, and then divide both sides by \(I_{\text{mp}}\):

\[
\frac{I}{I_{\text{mp}}} = \frac{1}{1 + \alpha(T - T_{\text{mp}})}
\]

Substitute \(T = 235^\circ\text{C}\), \(T_{\text{mp}} = 157^\circ\text{C}\), and the value for \(\alpha\), obtaining the desired ratio:

\[
\frac{I}{I_{\text{mp}}} = 0.766
\]

Remark As the temperature rises, both the rms speed of the electrons in the metal and the resistance increase.

QUESTION 17.4

What happens to the drift speed of the electrons as the temperature rises? (a) It becomes larger. (b) It becomes smaller. (c) It remains unchanged.

EXERCISE 17.4

Suppose a wire made of an unknown alloy and having a temperature of \(20.0^\circ\text{C}\) carries a current of \(0.450\) A. At \(52.0^\circ\text{C}\) the current is \(0.370\) A for the same potential difference. Find the temperature coefficient of resistivity of the alloy.

Answer \(6.76 \times 10^{-3} \, (\text{°C})^{-1}\)

17.6 ELECTRICAL ENERGY AND POWER

If a battery is used to establish an electric current in a conductor, chemical energy stored in the battery is continuously transformed into kinetic energy of the charge carriers. This kinetic energy is quickly lost as a result of collisions between the charge carriers and fixed atoms in the conductor, causing an increase in the tem-
temperature of the conductor. In this way the chemical energy stored in the battery is continuously transformed into thermal energy.

To understand the process of energy transfer in a simple circuit, consider a battery with terminals connected to a resistor (Active Fig. 17.9; remember that the positive terminal of the battery is always at the higher potential). Now imagine following a quantity of positive charge ΔQ around the circuit from point A, through the battery and resistor, and back to A. Point A is a reference point that is grounded (the ground symbol is \mathbb{B}), and its potential is taken to be zero. As the charge ΔQ moves from A to B through the battery, the electrical potential energy of the system increases by the amount $\Delta Q \Delta V$ and the chemical potential energy in the battery decreases by the same amount. (Recall from Chapter 16 that $\Delta PE = q \Delta V$.) As the charge moves from C to D through the resistor, however, it loses this electrical potential energy during collisions with atoms in the resistor. In the process the energy is transformed to internal energy corresponding to increased vibrational motion of those atoms. Because we can ignore the very small resistance of the interconnecting wires, no energy transformation occurs for paths BC and DA. When the charge returns to point A, the net result is that some of the chemical energy in the battery has been delivered to the resistor and has caused its temperature to rise.

The charge ΔQ loses energy $\Delta Q \Delta V$ as it passes through the resistor. If Δt is the time it takes the charge to pass through the resistor, the instantaneous rate at which it loses electric potential energy is

$$\lim_{\Delta t \to 0} \frac{\Delta Q}{\Delta t} \Delta V = I \Delta V$$

where I is the current in the resistor and ΔV is the potential difference across it. Of course, the charge regains this energy when it passes through the battery, at the expense of chemical energy in the battery. The rate at which the system loses potential energy as the charge passes through the resistor is equal to the rate at which the system gains internal energy in the resistor. Therefore, the power \mathcal{P}, representing the rate at which energy is delivered to the resistor, is

$$\mathcal{P} = I \Delta V \tag{[17.8]}$$

Although this result was developed by considering a battery delivering energy to a resistor, Equation 17.8 can be used to determine the power transferred from a voltage source to any device carrying a current I and having a potential difference ΔV between its terminals.

Using Equation 17.8 and the fact that $\Delta V = IR$ for a resistor, we can express the power delivered to the resistor in the alternate forms

$$\mathcal{P} = I^2 R = \frac{\Delta V^2}{R} \tag{[17.9]}$$

When I is in amperes, ΔV in volts, and R in ohms, the SI unit of power is the watt (introduced in Chapter 5). The power delivered to a conductor of resistance R is often referred to as an $I^2 R$ loss. Note that Equation 17.9 applies only to resistors and not to nonohmic devices such as lightbulbs and diodes.

Regardless of the ways in which you use electrical energy in your home, you ultimately must pay for it or risk having your power turned off. The unit of energy used by electric companies to calculate consumption, the kilowatt-hour, is defined in terms of the unit of power and the amount of time it’s supplied. One kilowatt-hour (kWh) is the energy converted or consumed in 1 h at the constant rate of 1 kW. It has the numerical value

$$1 \text{ kWh} = (10^3 \text{ W})(3600 \text{ s}) = 3.60 \times 10^6 \text{ J} \tag{[17.10]}$$

On an electric bill, the amount of electricity used in a given period is usually stated in multiples of kilowatt-hours.
QUICK QUIZ 17.7 A voltage ΔV is applied across the ends of a Nichrome heater wire having a cross-sectional area A and length L. The same voltage is applied across the ends of a second Nichrome heater wire having a cross-sectional area A and length $2L$. Which wire gets hotter? (a) The shorter wire does. (b) The longer wire does. (c) More information is needed.

QUICK QUIZ 17.8 For the two resistors shown in Figure 17.10, rank the currents at points a through f from largest to smallest.
(a) $I_a > I_b > I_e > I_f$ (b) $I_e > I_f > I_d = I_b$ (c) $I_e < I_f < I_d = I_b$

QUICK QUIZ 17.9 Two resistors, A and B, are connected in a series circuit with a battery. The resistance of A is twice that of B. Which resistor dissipates more power? (a) Resistor A does. (b) Resistor B does. (c) More information is needed.

QUICK QUIZ 17.10 The diameter of wire A is greater than the diameter of wire B, but their lengths and resistivities are identical. For a given voltage difference across the ends, what is the relationship between P_A and P_B, the dissipated power for wires A and B, respectively? (a) $P_A = P_B$ (b) $P_A < P_B$ (c) $P_A > P_B$

EXAMPLE 17.5 The Cost of Lighting Up Your Life

Goal Apply the electric power concept and calculate the cost of power usage using kilowatt-hours.

Problem A circuit provides a maximum current of 20.0 A at an operating voltage of 1.20×10^2 V. (a) How many 75 W bulbs can operate with this voltage source? (b) At $0.120 \text{ per kilowatt-hour}$, how much does it cost to operate these bulbs for 8.00 h?

Strategy Find the necessary power with $P = I \Delta V$ then divide by 75.0 W per bulb to get the total number of bulbs. To find the cost, convert power to kilowatts and multiply by the number of hours, then multiply by the cost per kilowatt-hour.

Solution
(a) Find the number of bulbs that can be lighted.
Substitute into Equation 17.8 to get the total power: $P_{\text{total}} = I \Delta V = (20.0 \text{ A})(1.20 \times 10^2 \text{ V}) = 2.40 \times 10^3 \text{ W}$

Divide the total power by the power per bulb to get the number of bulbs:
Number of bulbs $= \frac{P_{\text{total}}}{P_{\text{bulb}}} = \frac{2.40 \times 10^3 \text{ W}}{75.0 \text{ W}} = 32.0$

APPLYING PHYSICS 17.2 LIGHTBULB FAILURES

Why do lightbulbs fail so often immediately after they’re turned on?

Explanation Once the switch is closed, the line voltage is applied across the bulb. As the voltage is applied across the cold filament when the bulb is first turned on, the resistance of the filament is low, the current is high, and a relatively large amount of power is delivered to the bulb. This current spike at the beginning of operation is the reason lightbulbs often fail immediately after they are turned on. As the filament warms, its resistance rises and the current decreases. As a result, the power delivered to the bulb decreases and the bulb is less likely to burn out.

FIGURE 17.10 (Quick Quiz 17.8)
(b) Calculate the cost of this electricity for an 8.00-h day.

Find the energy in kilowatt-hours:

\[
\text{Energy} = \dot{\mathcal{P}} t = (2.40 \times 10^5 \text{ W})\left(\frac{1.00 \text{ kW}}{1.00 \times 10^3 \text{ W}}\right)(8.00 \text{ h}) = 19.2 \text{ kWh}
\]

Multiply the energy by the cost per kilowatt-hour:

\[
\text{Cost} = (19.2 \text{ kWh})(0.12/\text{kWh}) = $2.30
\]

Remarks This amount of energy might correspond to what a small office uses in a working day, taking into account all power requirements (not just lighting). In general, resistive devices can have variable power output, depending on how the circuit is wired. Here, power outputs were specified, so such considerations were unnecessary.

QUESTION 17.5

Considering how hot the parts of an incandescent light bulb get during operation, guess what fraction of the energy emitted by an incandescent lightbulb is in the form of visible light. (a) 10% (b) 50% (c) 80%

EXERCISE 17.5

(a) How many Christmas tree lights drawing 5.00 W of power each could be run on a circuit operating at 1.20 × 10^3 V and providing 15.0 A of current? (b) Find the cost to operate one such string 24.0 h per day for the Christmas season (two weeks), using the rate $0.12/kWh.

Answers (a) 3.60 × 10^2 bulbs (b) $72.60

\textbf{EXAMPLE 17.6 The Power Converted by an Electric Heater}

Goal Calculate an electrical power output and link to its effect on the environment through the first law of thermodynamics.

Problem An electric heater is operated by applying a potential difference of 50.0 V to a Nichrome wire of total resistance 8.00 Ω. (a) Find the current carried by the wire and the power rating of the heater. (b) Using this heater, how long would it take to heat 2.50 × 10^3 moles of diatomic gas (e.g., a mixture of oxygen and nitrogen, or air) from a chilly 10.0°C to 25.0°C? Take the molar specific heat at constant volume of air to be \(\frac{5}{2}R\).

Strategy For part (a), find the current with Ohm’s law and substitute into the expression for power. Part (b) is an isovolumetric process, so the thermal energy provided by the heater all goes into the change in internal energy, \(\Delta U\). Calculate this quantity using the first law of thermodynamics and divide by the power to get the time.

Solution

(a) Compute the current and power output.

Apply Ohm’s law to get the current:

\[
I = \frac{\Delta V}{R} = \frac{50.0 \text{ V}}{8.00 \Omega} = 6.25 \text{ A}
\]

Substitute into Equation 17.9 to find the power:

\[
\dot{\mathcal{P}} = I^2R = (6.25 \text{ A})^2(8.00 \Omega) = 313 \text{ W}
\]

(b) How long does it take to heat the gas?

Calculate the thermal energy transfer from the first law. Note that \(W = 0\) because the volume doesn’t change.

\[
Q = \Delta U = nC_v \Delta T = (2.50 \times 10^3 \text{ mol})(\frac{5}{2} \times 8.31 \text{ J/mol-K})(298 \text{ K} - 283 \text{ K}) = 7.79 \times 10^5 \text{ J}
\]

Divide the thermal energy by the power to get the time:

\[
t = \frac{Q}{\dot{\mathcal{P}}} = \frac{7.79 \times 10^5 \text{ J}}{313 \text{ W}} = 2.49 \times 10^3 \text{ s}
\]
The number of moles of gas given here is approximately what would be found in a bedroom. Warming the air with this space heater requires only about 40 minutes. The calculation, however, doesn’t take into account conduction losses. Recall that a 20-cm-thick concrete wall, as calculated in Chapter 11, permitted the loss of more than 2 megajoules an hour by conduction!

QUESTION 17.6
If the heater wire is replaced by a wire with lower resistance, is the time required to heat the gas (a) unchanged, (b) increased, or (c) decreased?

EXERCISE 17.6
A hot-water heater is rated at $4.50 \times 10^3 \, \text{W}$ and operates at $2.40 \times 10^2 \, \text{V}$. (a) Find the resistance in the heating element and the current. (b) How long does it take to heat 125 L of water from 20.0°C to 50.0°C, neglecting conduction and other losses?

Answers
(a) 12.8 Ω, 18.8 A
(b) $3.49 \times 10^3 \, \text{s}$

17.7 SUPERCONDUCTORS

There is a class of metals and compounds with resistances that fall virtually to zero below a certain temperature T_c, called the *critical temperature*. These materials are known as superconductors. The resistance vs. temperature graph for a superconductor follows that of a normal metal at temperatures above T_c (Fig. 17.11). When the temperature is at or below T_c, however, the resistance suddenly drops to zero. This phenomenon was discovered in 1911 by Dutch physicist H. Kamerlingh Onnes as he and a graduate student worked with mercury, which is a superconductor below 4.1 K. Recent measurements have shown that the resistivities of superconductors below T_c are less than $4 \times 10^{-25} \, \Omega \cdot \text{m}$, around 10^{17} times smaller than the resistivity of copper and in practice considered to be zero.

Today thousands of superconductors are known, including such common metals as aluminum, tin, lead, zinc, and indium. Table 17.2 lists the critical temperatures of several superconductors. The value of T_c is sensitive to chemical composition, pressure, and crystalline structure. Interestingly, copper, silver, and gold, which are excellent conductors, don’t exhibit superconductivity.

A truly remarkable feature of superconductors is that once a current is set up in them, it persists *without any applied voltage* (because $R = 0$). In fact, steady currents in superconducting loops have been observed to persist for years with no apparent decay!

An important development in physics that created much excitement in the scientific community was the discovery of high-temperature copper-oxide-based superconductors. The excitement began with a 1986 publication by J. Georg Bednorz and K. Alex Müller, scientists at the IBM Zurich Research Laboratory in Switzerland, in which they reported evidence for superconductivity at a temperature near 30 K in an oxide of barium, lanthanum, and copper. Bednorz and Müller were awarded the Nobel Prize in Physics in 1987 for their important discovery. The discovery was remarkable because the critical temperature was significantly higher than that of any previously known superconductor. Shortly thereafter a new family of compounds was investigated, and research activity in the field of superconductivity proceeded vigorously. In early 1987 groups at the University of Alabama at Huntsville and the University of Houston announced the discovery of superconductivity at about 92 K in an oxide of yttrium, barium, and copper ($\text{YBa}_2\text{Cu}_3\text{O}_7$), shown as the gray disk in Figure 17.12. Late in 1987, teams of scientists from Japan and the United States reported superconductivity at 105 K in an oxide of bismuth, strontium, calcium, and copper. More recently, scientists have reported superconductivity at temperatures as high as 150 K in an oxide containing mercury. The search for novel superconducting materials continues, with the hope of someday obtaining a room-temperature superconducting material. This research is important both for scientific reasons and for practical applications.

FIGURE 17.11 Resistance versus temperature for a sample of mercury (Hg). The graph follows that of a normal metal above the critical temperature T_c. The resistance drops to zero at the critical temperature, which is 4.2 K for mercury, and remains at zero for lower temperatures.

TABLE 17.2
Critical Temperatures for Various Superconductors

<table>
<thead>
<tr>
<th>Material</th>
<th>T_c (K)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zn</td>
<td>0.88</td>
</tr>
<tr>
<td>Al</td>
<td>1.19</td>
</tr>
<tr>
<td>Sn</td>
<td>3.72</td>
</tr>
<tr>
<td>Hg</td>
<td>4.15</td>
</tr>
<tr>
<td>Pb</td>
<td>7.18</td>
</tr>
<tr>
<td>Nb</td>
<td>9.46</td>
</tr>
<tr>
<td>Nb$_3$Sn</td>
<td>18.05</td>
</tr>
<tr>
<td>Nb$_3$Ge</td>
<td>23.2</td>
</tr>
<tr>
<td>YBa$_2$Cu$_3$O$_7$</td>
<td>90</td>
</tr>
<tr>
<td>Bi–Sr–Ca–Cu–O</td>
<td>105</td>
</tr>
<tr>
<td>Tl–Ba–Ca–Cu–O</td>
<td>125</td>
</tr>
<tr>
<td>HgBa$_2$Ca$_2$Cu$_3$O$_8$</td>
<td>134</td>
</tr>
</tbody>
</table>
An important and useful application is the construction of superconducting magnets in which the magnetic field intensities are about ten times greater than those of the best normal electromagnets. Such magnets are being considered as a means of storing energy. The idea of using superconducting power lines to transmit power efficiently is also receiving serious consideration. Modern superconducting electronic devices consisting of two thin-film superconductors separated by a thin insulator have been constructed. Among these devices are magnetometers (magnetic-field measuring devices) and various microwave devices.

17.8 ELECTRICAL ACTIVITY IN THE HEART

Electrocardiograms

Every action involving the body’s muscles is initiated by electrical activity. The voltages produced by muscular action in the heart are particularly important to physicians. Voltage pulses cause the heart to beat, and the waves of electrical excitation that sweep across the heart associated with the heartbeat are conducted through the body via the body fluids. These voltage pulses are large enough to be detected by suitable monitoring equipment attached to the skin. A sensitive voltmeter making good electrical contact with the skin by means of contacts attached with conducting paste can be used to measure heart pulses, which are typically of the order of 1 mV at the surface of the body. The voltage pulses can be recorded on an instrument called an electrocardiograph, and the pattern recorded by this instrument is called an electrocardiogram (EKG). To understand the information contained in an EKG pattern, it is necessary first to describe the underlying principles concerning electrical activity in the heart.

The right atrium of the heart contains a specialized set of muscle fibers called the SA (sinoatrial) node that initiates the heartbeat (Fig. 17.13). Electric impulses that originate in these fibers gradually spread from cell to cell throughout the right and left atrial muscles, causing them to contract. The pulse that passes through the muscle cells is often called a depolarization wave because of its effect on individual cells. If an individual muscle cell were examined in its resting state, a double-layer electric charge distribution would be found on its surface, as shown in Figure 17.14a. The impulse generated by the SA node momentarily and locally allows positive charge on the outside of the cell to flow in and neutralize the negative charge on the inside layer. This effect changes the cell’s charge distribution to that shown in Figure 17.14b. Once the depolarization wave has passed through an individual heart muscle cell, the cell recovers the resting-state charge distribution (positive out, negative in) shown in Figure 17.14a in about 250 ms. When the impulse reaches the atrioventricular (AV) node (Fig. 17.13), the muscles of the atria begin to relax, and the pulse is directed to the ventricular muscles by the AV node. The muscles of the ventricles contract as the depolarization wave spreads through the ventricles along a group of fibers called the Purkinje fibers. The ventricles then relax after the pulse has passed through. At this point, the SA node is again triggered and the cycle is repeated.
A sketch of the electrical activity registered on an EKG for one beat of a normal heart is shown in Figure 17.15. The pulse indicated by P occurs just before the atria begin to contract. The QRS pulse occurs in the ventricles just before they contract, and the T pulse occurs when the cells in the ventricles begin to recover. EKGs for an abnormal heart are shown in Figure 17.16. The QRS portion of the pattern shown in Figure 17.16a is wider than normal, indicating that the patient may have an enlarged heart. (Why?) Figure 17.16b indicates that there is no constant relationship between the P pulse and the QRS pulse. This suggests a blockage in the electrical conduction path between the SA and AV nodes which results in the atria and ventricles beating independently and inefficient heart pumping. Finally, Figure 17.16c shows a situation in which there is no P pulse and an irregular spacing between the QRS pulses. This is symptomatic of irregular atrial contraction, which is called fibrillation. In this condition, the atrial and ventricular contractions are irregular.

As noted previously, the sinoatrial node directs the heart to beat at the appropriate rate, usually about 72 beats per minute. Disease or the aging process, however, can damage the heart and slow its beating, and a medical assist may be necessary in the form of a cardiac pacemaker attached to the heart. This matchbox-sized electrical device implanted under the skin has a lead that is connected to the wall of the right ventricle. Pulses from this lead stimulate the heart to maintain its proper rhythm. In general, a pacemaker is designed to produce pulses at a rate of about 60 per minute, slightly slower than the normal number of beats per minute, but sufficient to maintain life. The circuitry consists of a capacitor charging up to a certain voltage from a lithium battery and then discharging. The design of the circuit is such that if the heart is beating normally, the capacitor is not allowed to charge completely and send pulses to the heart.

An Emergency Room in Your Chest

In June 2001 an operation on Vice President Dick Cheney focused attention on the progress in treating heart problems with tiny implanted electrical devices. Aply called “an emergency room in your chest” by Cheney’s attending physician, devices called Implanted Cardioverter Defibrillators (ICDs) can monitor, record, and logically process heart signals and then supply different corrective signals to hearts beating too slowly, too rapidly, or irregularly. ICDs can even monitor and send signals to the atria and ventricles independently! Figure 17.17a shows a sketch of an ICD with conducting leads that are implanted in the heart. Figure 17.17b shows an actual titanium-encapsulated dual-chamber ICD.

The latest ICDs are sophisticated devices capable of a number of functions:

1. monitoring both atrial and ventricular chambers to differentiate between atrial and potentially fatal ventricular arrhythmias, which require prompt regulation
2. storing about a half hour of heart signals that can easily be read out by a physician
3. being easily reprogrammed with an external magnetic wand
4. performing complicated signal analysis and comparison
5. supplying either 0.25- to 10-V repetitive pacing signals to speed up or slow down a malfunctioning heart, or a high-voltage pulse of about 800 V to halt the potentially fatal condition of ventricular fibrillation, in which the heart quivers rapidly rather than beats (people who have experienced such a high-voltage jolt say that it feels like a kick or a bomb going off in the chest)
6. automatically adjusting the number of pacing pulses per minute to match the patient’s activity

ICDs are powered by lithium batteries and have implanted lifetimes of 4 to 6 years. Some basic properties of these adjustable ICDs are given in Table 17.3. In the table “tachycardia” means “rapid heartbeat” and “bradycardia” means “slow heartbeat.” A key factor in developing tiny electrical implants that serve as defibrillators is the development of capacitors with relatively large capacitance (125 μf) and small physical size.

TABLE 17.3

Properties of Implanted Cardioverter Defibrillators

<table>
<thead>
<tr>
<th>Physical Specifications</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Mass (g)</td>
<td>85</td>
</tr>
<tr>
<td>Size (cm)</td>
<td>$7.5 \times 6.2 \times 1.3$ (about five stacked silver dollars)</td>
</tr>
<tr>
<td>Antitachycardia Pacing</td>
<td></td>
</tr>
<tr>
<td>Number of bursts</td>
<td>1–15</td>
</tr>
<tr>
<td>Burst cycle length (ms)</td>
<td>200–552</td>
</tr>
<tr>
<td>Number of pulses per burst</td>
<td>2–20</td>
</tr>
<tr>
<td>Pulse amplitude (V)</td>
<td>7.5 or 10</td>
</tr>
<tr>
<td>Pulse width (ms)</td>
<td>1.0 or 1.9</td>
</tr>
<tr>
<td>High-Voltage Defibrillation</td>
<td></td>
</tr>
<tr>
<td>Pulse energy (J)</td>
<td>37 stored/33 delivered</td>
</tr>
<tr>
<td>Pulse amplitude (V)</td>
<td>801</td>
</tr>
<tr>
<td>Bradycardia Pacing</td>
<td></td>
</tr>
<tr>
<td>Base frequency (beats/minute)</td>
<td>40–100</td>
</tr>
<tr>
<td>Pulse amplitude (V)</td>
<td>0.25–7.5</td>
</tr>
<tr>
<td>Pulse width (ms)</td>
<td>0.05, 0.1–1.5, 1.9</td>
</tr>
</tbody>
</table>

Note: For more information, go to www.photonics.com/specs.html.
17.1 Electric Current
The average electric current I in a conductor is defined as

$$I_{av} = \frac{\Delta Q}{\Delta t} \quad [17.1a]$$

where ΔQ is the charge that passes through a cross section of the conductor in time Δt. The SI unit of current is the amperes (A); 1 A = 1 C/s. By convention, the direction of current is the direction of flow of positive charge.

The instantaneous current I is the limit of the average current as the time interval goes to zero:

$$I = \lim_{\Delta t \to 0} I_{av} = \lim_{\Delta t \to 0} \frac{\Delta Q}{\Delta t} \quad [17.1b]$$

17.2 A Microscopic View: Current and Drift Speed
The current in a conductor is related to the motion of the charge carriers by

$$I = nq \nu d \quad [17.2]$$

where n is the number of mobile charge carriers per unit volume, q is the charge on each carrier, ν is the drift speed of the charge, and d is the cross-sectional area of the conductor.

17.4 Resistance, Resistivity, and Ohm’s Law
The resistance R of a conductor is defined as the ratio of the potential difference across the conductor to the current in it:

$$R = \frac{\Delta V}{I} \quad [17.3]$$

The SI units of resistance are volts per ampere, or ohms (Ω); 1 Ω = 1 V/A.

Ohm’s law describes many conductors for which the applied voltage is directly proportional to the current it causes. The proportionality constant is the resistance:

$$\Delta V = IR \quad [17.4]$$

If a conductor has length ℓ and cross-sectional area A, its resistance is

$$R = \frac{\rho \ell}{A} \quad [17.5]$$

where ρ is an intrinsic property of the conductor called the electrical resistivity. The SI unit of resistivity is the ohm-meter (Ω·m).

17.5 Temperature Variation of Resistance
Over a limited temperature range, the resistivity of a conductor varies with temperature according to the expression

$$\rho = \rho_0 [1 + \alpha (T - T_0)] \quad [17.6]$$

where α is the temperature coefficient of resistivity and ρ_0 is the resistivity at some reference temperature T_0 (usually taken to be 20°C).

The resistance of a conductor varies with temperature according to the expression

$$R = R_0 [1 + \alpha (T - T_0)] \quad [17.7]$$

17.6 Electrical Energy and Power
If a potential difference ΔV is maintained across an electrical device, the power, or rate at which energy is supplied to the device, is

$$P = I \Delta V \quad [17.8]$$

Because the potential difference across a resistor is $\Delta V = IR$, the power delivered to a resistor can be expressed as

$$P = I^2 R = \frac{\Delta V^2}{R} \quad [17.9]$$

A kilowatt-hour is the amount of energy converted or consumed in one hour by a device supplied with power at the rate of 1 kW. It is equivalent to

$$1 \text{ kWh} = 3.60 \times 10^6 \text{ J} \quad [17.10]$$

MULTIPLE-CHOICE QUESTIONS

1. A wire carries a current of 1.6 A. How many electrons per second pass a given point in the wire? Choose the best estimate. (a) 10^{21} (b) 10^{18} (c) 10^{19} (d) 10^{20} (e) 10^{21}
2. Wire A has the same length and twice the radius of wire B. Both wires are made of the same material and carry the same current. Which of the following equations is true concerning the drift velocities v_A and v_B of electrons in the wires? (a) $v_A = 2v_B$ (b) $v_A = v_B$ (c) $v_A = v_B/2$ (d) $v_A = 4v_B$ (e) $v_A = v_B/4$
3. Wire B has the same resistivity, twice the length, and twice the radius of wire A. If wire A has a resistance R, what is the resistance of wire B? (a) $4R$ (b) $2R$ (c) R (d) $R/2$ (e) $R/4$
4. Three wires are made of copper having circular cross sections. Wire 1 has a length L and radius r. Wire 2 has a length L and radius 2r. Wire 3 has a length 2L and radius 3r. Which wire has the smallest resistance? (a) wire 1 (b) wire 2 (c) wire 3 (d) All three wires have the same resistance. (e) Not enough information is given to answer the question.
5. Which of the following combinations of units has units of energy? (a) C/s (b) kWh (c) kW (d) A·h (e) W/s
6. The current versus voltage behavior of a certain electrical device is shown in Figure MCQ17.6. When the potential difference across the device is 2 V, what is the resistance? (a) 1 Ω (b) \(\frac{1}{2} \) Ω (c) \(\frac{1}{3} \) Ω (d) undefined (e) none of these

7. The current vs. voltage behavior of a certain electrical device is shown in Figure MCQ17.6. When the potential difference across the device is 3 V, what is the resistance? (a) 0.83 Ω (b) 1.2 Ω (c) 3.0 Ω (d) 1.33 Ω (e) 2.3 Ω

8. A metal wire has a resistance of 10.00 Ω at a temperature of 20.0°C. If the same wire has a resistance of 10.55 Ω at 90.0°C, what is the resistance of this same wire when its temperature is −20°C? (a) 0.700 Ω (b) 9.69 Ω (c) 10.3 Ω (d) 13.8 Ω (e) 6.59 Ω

9. A color television set draws about 2.5 A when connected to a 120 V source. What is the cost (with electrical energy at 8 cents/kWh) of running the set for 8.0 hours? (a) 2.0 cents (b) 4.0 cents (c) 19 cents (d) 40 cents (e) 62 cents

10. A potential difference of 1.0 V is maintained across a 10.0-Ω resistor for a period of 20 s. What total charge passes through the wire in this time interval? (a) 200 C (b) 20 C (c) 2 C (d) 0.005 C (e) 0.05 C

11. Three resistors, A, B, and C, are connected in parallel and attached to a battery, with the resistance of A being the smallest and the resistance of C the greatest. Which resistor carries the highest current? (a) A (b) B (c) C (d) All wires carry the same current. (e) More information is needed to answer the question.

12. Three resistors, A, B, and C, are connected in series in a closed loop with a battery, with the resistance of A being the smallest and the resistance of C the greatest. Across which resistor is the voltage drop the greatest? (a) A (b) B (c) C (d) The voltage drops are the same for each. (e) More information is needed to answer the question.

13. The power delivered to a resistor is 4.0 W when a certain voltage is applied across it. How much power is delivered to the resistor when the voltage is doubled? (a) 2.0 W (b) 4.0 W (c) 8.0 W (d) 16 W (e) 32 W

CONCEPTUAL QUESTIONS

1. Car batteries are often rated in ampere-hours. Does this unit designate the amount of current, power, energy, or charge that can be drawn from the battery?

2. We have seen that an electric field must exist inside a conductor that carries a current. How is that possible in view of the fact that in electrostatics we concluded that the electric field must be zero inside a conductor?

3. Why don’t the free electrons in a metal fall to the bottom of the metal due to gravity? And charges in a conductor are supposed to reside on the surface; why don’t the free electrons all go to the surface?

4. In an analogy between traffic flow and electrical current, what would correspond to the charge \(Q \)? What would correspond to the current \(I \)?

5. Newspaper articles often have statements such as “10 000 volts of electricity surged through the victim’s body.” What is wrong with this statement?

6. Two lightbulbs are each connected to a voltage of 120 V. One has a power of 25 W, the other 100 W. Which lightbulb has the higher resistance? Which lightbulb carries more current?

7. When the voltage across a certain conductor is doubled, the current is observed to triple. What can you conclude about the conductor?

8. There is an old admonition given to experimenters to “keep one hand in the pocket” when working around high voltages. Why is this warning a good idea?

9. When is more power delivered to a lightbulb, immediately after it is turned on and the glow of the filament is increasing or after it has been on for a few seconds and the glow is steady?

10. Some homes have light dimmers that are operated by rotating a knob. What is being changed in the electric circuit when the knob is rotated?

11. What could happen to the drift velocity of the electrons in a wire and to the current in the wire if the electrons could move through it freely without resistance?

12. Use the atomic theory of matter to explain why the resistance of a material should increase as its temperature increases.
The Problems for this chapter may be assigned online at WebAssign.

1, 2, 3 = straightforward, intermediate, challenging

OP = denotes guided problem

ECP = denotes enhanced content problem

B = biomedical application

□ = denotes full solution available in Student Solutions Manual/Study Guide

SECTION 17.1 ELECTRIC CURRENT

SECTION 17.2 A MICROSCOPIC VIEW: CURRENT AND DRIFT SPEED

1. If a current of 80.0 mA exists in a metal wire, how many electrons flow past a given cross section of the wire in 10.0 min? In what direction do the electrons travel with respect to the current?

2. A copper wire has a circular cross section with a radius of 1.25 mm. (a) If the wire carries a current of 3.70 A, find the drift speed of the electrons in the wire. (See Example 17.2 for relevant data on copper.) (b) All other things being equal, what happens to the drift speed in wires made of metal having a larger number of conduction electrons per atom than copper? Explain.

3. In the Bohr model of the hydrogen atom, an electron in the lowest energy state moves at a speed of 2.19×10^6 m/s in a circular path having a radius of 5.29×10^{-11} m. What is the effective current associated with this orbiting electron?

4. A proton beam in an accelerator carries a current of 125 μA. If the beam is incident on a target, how many protons strike the target in a period of 23.0 s?

5. If the current carried by a conductor is doubled, what happens to (a) the charge carrier density? (b) The electron drift velocity?

6. If 3.25×10^{-3} kg of gold is deposited on the negative electrode of an electrolytic cell in a period of 2.78 h, what is the current in the cell during that period? Assume the gold ions carry one elementary unit of positive charge.

7. A 200-km-long high-voltage transmission line 2.0 cm in diameter carries a steady current of 1 000 A. If the conductor is copper with a free charge density of 8.5×10^{28} electrons per cubic meter, how many years does it take one electron to travel the full length of the cable?

8. An aluminum wire carrying a current of 5.0 A has a cross-sectional area of 4.0×10^{-6} m². Find the drift speed of the electrons in the wire. The density of aluminum is 2.7 g/cm³. (Assume three electrons are supplied by each atom.)

9. An iron wire has a cross-sectional area of 5.00×10^{-6} m². Carry out steps (a) through (e) to compute the drift speed of the conduction electrons in the wire.

(b) Starting with the density of iron and the result of part (a), compute the molar density of iron (the number of moles of iron per cubic meter). (c) Calculate the number density of iron atoms using Avogadro’s number.

(d) Obtain the number density of conduction electrons given that there are two conduction electrons per iron atom. (e) If the wire carries a current of 30.0 A, calculate the drift speed of conduction electrons.

SECTION 17.4 RESISTANCE, RESISTIVITY, AND OHM’S LAW

10. An electric heater carries a current of 13.5 A when operating at a voltage of 1.20×10^2 V. What is the resistance of the heater?

11. A person notices a mild shock if the current along a path through the thumb and index finger exceeds 80 μA. Compare the maximum possible voltage without shock across the thumb and index finger with a dry-skin resistance of 4.0×10^5 Ω and a wet-skin resistance of 2 000 Ω.

12. Suppose you wish to fabricate a uniform wire out of 1.00 g of copper. If the wire is to have a resistance $R = 0.500 \Omega$, and if all the copper is to be used, what will be (a) the length and (b) the diameter of the wire?

13. Nichrome wire of cross-sectional radius 0.791 mm is to be used in winding a heating coil. If the coil must carry a current of 9.25 A when a voltage of 1.20×10^2 V is applied across its ends, find (a) the required resistance of the coil and (b) the length of wire you must use to wind the coil.

14. Eighteen-gauge wire has a diameter of 1.024 mm. Calculate the resistance of 15 m of 18-gauge copper wire at 20°C.

15. A potential difference of 12 V is found to produce a current of 0.40 A in a 3.2-m length of wire with a uniform radius of 0.40 cm. What is (a) the resistance of the wire? (b) The resistivity of the wire?

16. Aluminum and copper wires of equal length are found to have the same resistance. What is the ratio of their radii?

17. A wire 50.0 m long and 2.00 mm in diameter is connected to a source with a potential difference of 9.11 V, and the current is found to be 36.0 A. Assume a temperature of 20°C and, using Table 17.1, identify the metal out of which the wire is made.

18. A rectangular block of copper has sides of length 10 cm, 20 cm, and 40 cm. If the block is connected to a 6.0-V source across two of its opposite faces, what are (a) the maximum current and (b) the minimum current the block can carry?

19. A wire of initial length L_0 and radius r_0 has a measured resistance of 1.0 Ω. The wire is drawn under tensile stress to a new uniform radius of $r = 0.25r_0$. What is the new resistance of the wire?
20. [ECP] The human body can exhibit a wide range of resistances to current depending on the path of the current, contact area, and sweatiness of the skin. Suppose the resistance across the chest from the left hand to the right hand is 1.0 \times 10^6 \Omega. (a) How much voltage is required to cause possible heart fibrillation in a man, which corresponds to 500 mA of direct current? (b) Why should rubber-soled shoes and rubber gloves be worn when working around electricity?

21. [ECP] Starting from Ohm’s law, show that a length of aluminum wire has a resistance of 20.22. OF RESISTANCE.

SECTION 17.5 TEMPERATURE VARIATION OF RESISTANCE

22. If a certain silver wire has a resistance of 6.00 \Omega at 20.0°C, what resistance will it have at 34.0°C?

23. While taking photographs in Death Valley on a day when the temperature is 58.0°C, Bill Hiker finds that a certain voltage applied to a copper wire produces a current of 1.000 A. Bill then travels to Antarctica and applies the same voltage to the same wire. What current does he register there if the temperature is 88.0°C? Assume no change occurs in the wire’s shape and size.

24. [ECP] A length of aluminum wire has a resistance of 30.0 \Omega at 20.0°C. When the wire is warmed in an oven and reaches thermal equilibrium, the resistance of the wire increases to 46.2 \Omega. (a) Neglecting thermal expansion, find the temperature of the oven. (b) Qualitatively, how would thermal expansion be expected to affect the answer?

25. A certain lightbulb has a tungsten filament having a resistance of 15 \Omega at 20°C and 160 \Omega when hot. Assume Equation 17.7 can be used over the large temperature range here. Find the temperature of the filament when it is hot.

26. At what temperature will aluminum have a resistivity that is three times the resistivity of copper at room temperature?

27. At 20°C, the carbon resistor in an electric circuit connected to a 5.0-V battery has a resistance of 2.0 \times 10^3 \Omega. What is the current in the circuit when the temperature of the carbon rises to 80°C?

28. A wire 3.00 m long and 0.450 mm^2 in cross-sectional area has a resistance of 41.0 \Omega at 20°C. If its resistance increases to 41.4 \Omega at 29.0°C, what is the temperature coefficient of resistivity?

29. (a) A 54.5-m length of copper wire at 20.0°C has a radius of 0.25 mm. If a potential difference of 9.0 V is applied across the length of the wire, determine the current in the wire. (b) If the wire is heated to 30.0°C while the 9.0 V potential difference is maintained, what is the resulting current in the wire?

30. A toaster rated at 1.050 W operates on a 120-V household circuit and a 4.00-m length of Nichrome wire as its heating element. The operating temperature of this element is 320°C. What is the cross-sectional area of the wire?

31. [ECP] In one form of plethysmograph (a device for measuring volume), a rubber capillary tube with an inside diameter of 1.00 mm is filled with mercury at 20°C. The resistance of the mercury is measured with the aid of electrodes sealed into the ends of the tube. If 100.00 cm of the tube is wound in a spiral around a patient’s upper arm, the blood flow during a heartbeat causes the arm to expand, stretching the tube to a length of 100.04 cm. From this observation, and assuming cylindrical symmetry, you can find the change in volume of the arm, which gives an indication of blood flow. (a) Calculate the resistance of the mercury. (b) Calculate the fractional change in resistance during the heartbeat. (Hint: The fraction by which the cross-sectional area of the mercury thread decreases is the fraction by which the length increases, since the volume of mercury is constant.) Take \rho_{Hg} = 9.4 \times 10^{-8} \Omega \cdot m.

SECTION 17.6 ELECTRICAL ENERGY AND POWER

33. Suppose your waffle iron is rated at 1.00 kW when connected to a 1.20 \times 10^3 V source. (a) What current does the waffle iron carry? (b) What is its resistance?

34. If electrical energy costs 12 cents, or $0.12, per kilowatt-hour, how much does it cost to (a) burn a 100-W lightbulb for 24 h? (b) Operate an electric oven for 5.0 h if it carries a current of 20.0 A at 220 V?

35. A certain compact disc player draws a current of 350 mA at 6.0 V. How much power is required to operate the player?

36. A high-voltage transmission line with a resistance of 0.31 \Omega/km carries a current of 1 000 A. The line is at a potential of 700 kV at the power station and carries the current to a city located 160 km from the station. (a) What is the power loss due to resistance in the line? (b) What fraction of the transmitted power does this loss represent?

37. The heating element of a coffeemaker operates at 120 V and carries a current of 2.00 A. Assuming the water absorbs all the energy converted by the resistor, calculate how long it takes to heat 0.500 kg of water from room temperature (25.0°C) to the boiling point.

38. The power supplied to a typical black-and-white television set is 90 W when the set is connected to 120 V. (a) How much electrical energy does this set consume in 1 hour? (b) A color television set draws about 2.5 A when connected to 120 V. How much time is required for it to consume the same energy as the black-and-white model consumes in 1 hour?
39. What is the required resistance of an immersion heater that will increase the temperature of 1.50 kg of water from 10.0°C to 50.0°C in 10.0 min while operating at 120 V?

40. A certain toaster has a heating element made of Nichrome resistance wire. When the toaster is first connected to a 120-V source of potential difference (and the wire is at a temperature of 20.0°C), the initial current is 1.80 A but the current begins to decrease as the resistive element warms up. When the toaster reaches its final operating temperature, the current has dropped to 1.53 A. (a) Find the power the toaster converts when it is at its operating temperature. (b) What is the final temperature of the heating element?

41. A copper cable is designed to carry a current of 300 A with a power loss of 2.00 W/m. What is the required radius of this cable?

42. Batteries are rated in terms of ampere-hours (A·h). For example, a battery that can deliver a current of 3.0 A for 5.0 h is rated at 15 A·h. (a) What is the total energy, in kilowatt-hours, stored in a 12 V battery rated at 55 A·h? (b) At $0.12 per kilowatt-hour, what is the value of the electricity that can be produced by this battery?

43. The potential difference across a resting neuron is about 75 mV and carries a current of about 0.20 mA. How much power does the neuron release?

44. The cost of electricity varies widely throughout the United States; $0.12/kWh is a typical value. At this unit price, calculate the cost of (a) leaving a 40.0-W porch light on for 2 weeks while you are on vacation, (b) making a piece of dark toast in 3.00 min with a 970-W toaster, and (c) drying a load of clothes in 40.0 min in a 5200-W dryer.

45. An 11-W energy-efficient fluorescent lamp is designed to produce the same illumination as a conventional 60-W lamp. How much does the energy-efficient lamp save during 100 hours of use? Assume a cost of $0.08/kWh for electrical energy.

46. An office worker uses an immersion heater to warm 250 g of water in a light, covered, insulated cup from 20°C to 100°C in 4.00 minutes. The heater is a Nichrome resistance wire connected to a 120-V power supply. Assume the wire is at 100°C throughout the 4.00-min time interval. Specify a diameter and a length the wire can have. Can it be made from less than 0.5 cm² of Nichrome?

47. The heating coil of a hot-water heater has a resistance of 20 Ω and operates at 210 V. If electrical energy costs $0.080/kWh, what does it cost to raise the 200 kg of water in the tank from 15°C to 80°C? (See Chapter 11.)

48. A tungsten wire in a vacuum has length 15.0 cm and radius 1.00 mm. A potential difference is applied across it. (a) What is the resistance of the wire at 293 K? (b) Suppose the wire reaches an equilibrium temperature such that it emits 75.0 W in the form of radiation. Neglecting absorption of any radiation from its environment, what is the temperature of the wire? (Note: $e = 0.320$ for tungsten.) (c) What is the resistance of the wire at the temperature found in part (b)? Assume the temperature changes linearly over this temperature range. (d) What voltage drop is required across the wire? (e) Why are tungsten lightbulbs energetically inefficient as light sources?

ADDITIONAL PROBLEMS

49. If a battery is rated at 60.0 A·h, how much total charge can it deliver before it goes “dead”?

50. A car owner forgets to turn off the headlights of his car while it is parked in his garage. If the 12-V battery in his car is rated at 90 A·h and each headlight requires 36 W of power, how long will it take the battery to completely discharge?

51. An electronic device requires a power of 15 W when connected to a 9.0-V battery. How much power is delivered to the device if it is connected to a 6.0-V battery? (Neglect the resistances of the batteries and assume the resistance of the device does not change.)

52. Determine the temperature at which the resistance of an aluminum wire will be twice its value at 20°C. (Assume its coefficient of resistivity remains constant.)

53. A particular wire has a resistivity of $3.0 \times 10^{-8} \Omega \cdot \text{m}$ and a cross-sectional area of $4.0 \times 10^{-6} \text{m}^2$. A length of this wire is to be used as a resistor that will develop 48 W of power when connected across a 20-V battery. What length of wire is required?

54. Birds resting on high-voltage power lines are a common sight. The copper wire on which a bird stands is 2.2 cm in diameter and carries a current of 50 A. If the bird’s feet are 4.0 cm apart, calculate the potential difference across its body.

55. An experiment is conducted to measure the electrical resistivity of Nichrome in the form of wires with different lengths and cross-sectional areas. For one set of measurements, a student uses 30-gauge wire, which has a cross-sectional area of $7.30 \times 10^{-8} \text{m}^2$. The student measures the potential difference across the wire and the current in the wire with a voltmeter and an ammeter, respectively. For each of the measurements given in the following table taken on wires of three different lengths, calculate the resistance of the wires and the corresponding value of the resistivity.

<table>
<thead>
<tr>
<th>L (m)</th>
<th>(\Delta V) (V)</th>
<th>I (A)</th>
<th>R (Ω)</th>
<th>(\mu) (Ω·m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.540</td>
<td>5.22</td>
<td>0.500</td>
<td>1.028</td>
<td>5.82</td>
</tr>
<tr>
<td>1.543</td>
<td>5.94</td>
<td>0.187</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

What is the average value of the resistivity, and how does this value compare with the value given in Table 17.1?

56. A carbon wire and a Nichrome wire are connected one after the other. If the combination has a total resistance of 10.0 kΩ at 20°C, what is the resistance of each wire at 20°C so that the resistance of the combination does not change with temperature?

57. You are cooking breakfast for yourself and a friend using a 1200-W waffle iron and a 500-W coffeepot. Usually, you
operate these appliances from a 110-V outlet for 0.500 h each day. (a) At 12 cents per kWh, how much do you spend to cook breakfast during a 30.0-day period? (b) You find yourself addicted to waffles and would like to upgrade to a 2400-W waffle iron that will enable you to cook twice as many waffles during a half-hour period, but you know that the circuit breaker in your kitchen is a 20-A breaker. Can you do the upgrade?

58. The current in a conductor varies in time as shown in Figure P17.58. (a) How many coulombs of charge pass through a cross section of the conductor in the interval from \(t = 0 \) to \(t = 5.0 \) s? (b) What constant current would transport the same total charge during the 5.0-s interval as does the actual current?

![Figure P17.58](image)

59. An electric car is designed to run off a bank of 12.0-V batteries with a total energy storage of \(2.00 \times 10^7 \) J. (a) If the electric motor draws 8.00 kW, what is the current delivered to the motor? (b) If the electric motor draws 8.00 kW as the car moves at a steady speed of 20.0 m/s, how far will the car travel before it is "out of juice"?

60. (a) A 115-g mass of aluminum is formed into a right circular cylinder, shaped so that its diameter equals its height. Calculate the resistance between the top and bottom faces of the cylinder at 20°C. (b) Calculate the resistance between opposite faces if the same mass of aluminum is formed into a cube.

61. A length of metal wire has a radius of \(5.00 \times 10^{-3} \) m and a resistance of 0.100 \(\Omega \). When the potential difference across the wire is 15.0 V, the electron drift speed is found to be \(3.17 \times 10^{-4} \) m/s. On the basis of these data, calculate the density of free electrons in the wire.

62. In a certain stereo system, each speaker has a resistance of 4.00 \(\Omega \). The system is rated at 60.0 W in each channel. Each speaker circuit includes a fuse rated at a maximum current of 4.00 A. Is this system adequately protected against overload?

63. A resistor is constructed by forming a material of resistivity \(3.5 \times 10^5 \) \(\Omega \cdot \) m into the shape of a hollow cylinder of length 4.0 cm and inner and outer radii 0.50 cm and 1.2 cm, respectively. In use, a potential difference is applied between the ends of the cylinder, producing a current parallel to the length of the cylinder. Find the resistance of the cylinder.

64. A 50.0-g sample of a conducting material is all that is available. The resistivity of the material is measured to be \(1 \times 10^{-8} \) \(\Omega \cdot \) m, and the density is 7.86 g/cm³. The material is to be shaped into a solid cylindrical wire that has a total resistance of 1.5 \(\Omega \). (a) What length of wire is required? (b) What must be the diameter of the wire?

65. An x-ray tube used for cancer therapy operates at 4.0 MV, with a beam current of 25 mA striking the metal target. Nearly all the power in the beam is transferred to a stream of water flowing through holes drilled in the target. What rate of flow, in kilograms per second, is needed if the rise in temperature (\(\Delta T \)) of the water is not to exceed 50°C?

66. When a straight wire is heated, its resistance changes according to the equation

\[
R = R_0 [1 + \alpha (T - T_0)]
\]

(Eq. 17.7), where \(\alpha \) is the temperature coefficient of resistivity. (a) Show that a more precise result, which includes the length and area of a wire change when it is heated, is

\[
R = R_0 \left[1 + \alpha (T - T_0) \right] \left[1 + \alpha' (T - T_0) \right] \]

where \(\alpha' \) is the coefficient of linear expansion. (See Chapter 10.) (b) Compare the two results for a 2.00-m-long copper wire of radius 0.100 mm, starting at 20.0°C and heated to 100.0°C.

67. A man wishes to vacuum his car with a canister vacuum cleaner marked 535 W at 120 V. The car is parked far from the building, so he uses an extension cord 15.0 m long to plug the cleaner into a 120-V source. Assume the cleaner has constant resistance. (a) If the resistance of each of the two conductors of the extension cord is 0.900 \(\Omega \), what is the actual power delivered to the cleaner? (b) If, instead, the power is to be at least 525 W, what must be the diameter of each of two identical copper conductors in the cord the young man buys? (c) Repeat part (b) if the power is to be at least 532 W. (Suggestion: A symbolic solution can simplify the calculations.)
18

DIRECT-CURRENT CIRCUITS

Batteries, resistors, and capacitors can be used in various combinations to construct electric circuits, which direct and control the flow of electricity and the energy it conveys. Such circuits make possible all the modern conveniences in a home: electric lights, electric stove tops and ovens, washing machines, and a host of other appliances and tools. Electric circuits are also found in our cars, in tractors that increase farming productivity, and in all types of medical equipment that saves so many lives every day.

In this chapter we study and analyze a number of simple direct-current circuits. The analysis is simplified by the use of two rules known as Kirchhoff’s rules, which follow from the principle of conservation of energy and the law of conservation of charge. Most of the circuits are assumed to be in steady state, which means that the currents are constant in magnitude and direction. We close the chapter with a discussion of circuits containing resistors and capacitors, in which current varies with time.

18.1 SOURCES OF EMF

A current is maintained in a closed circuit by a source of emf. Among such sources are any devices (for example, batteries and generators) that increase the potential energy of the circulating charges. A source of emf can be thought of as a “charge pump” that forces electrons to move in a direction opposite the electrostatic field inside the source. The emf E of a source is the work done per unit charge; hence the SI unit of emf is the volt.

Consider the circuit in Active Figure 18.1a consisting of a battery connected to a resistor. We assume the connecting wires have no resistance. If we neglect the internal resistance of the battery, the potential drop across the battery (the terminal voltage) equals the emf of the battery. Because a real battery always has some internal resistance r, however, the terminal voltage is not equal to the emf. The circuit of Active Figure 18.1a can be described schematically by the diagram

1The term was originally an abbreviation for electromotive force, but emf is not really a force, so the long form is discouraged.
in Active Figure 18.1b. The battery, represented by the dashed rectangle, consists of a source of emf E in series with an internal resistance r. Now imagine a positive charge moving through the battery from a to b in the figure. As the charge passes from the negative to the positive terminal of the battery, the potential of the charge increases by E. As the charge moves through the resistance r, however, its potential decreases by the amount Ir, where I is the current in the circuit. The terminal voltage of the battery, $\Delta V = V_a - V_b$, is therefore given by

$$\Delta V = E - Ir \tag{18.1}$$

From this expression, we see that E is equal to the terminal voltage when the current is zero, called the open-circuit voltage. By inspecting Figure 18.1b, we find that the terminal voltage ΔV must also equal the potential difference across the external resistance R_e, often called the load resistance; that is, $\Delta V = IR$. Combining this relationship with Equation 18.1, we arrive at

$$E = IR + Ir \tag{18.2}$$

Solving for the current gives

$$I = \frac{E}{R + r}$$

The preceding equation shows that the current in this simple circuit depends on both the resistance external to the battery and the internal resistance of the battery. If R is much greater than r, we can neglect r in our analysis (an option we usually select).

If we multiply Equation 18.2 by the current I, we get

$$IE = I^2R + Ir$$

This equation tells us that the total power output IE of the source of emf is converted at the rate I^2R at which energy is delivered to the load resistance, plus the rate Ir at which energy is delivered to the internal resistance. Again, if $r << R$, most of the power delivered by the battery is transferred to the load resistance.

Unless otherwise stated, in our examples and end-of-chapter problems we will assume the internal resistance of a battery in a circuit is negligible.

QUICK QUIZ 18.1 True or False: While discharging, the terminal voltage of a battery can never be greater than the emf of the battery.

QUICK QUIZ 18.2 Why does a battery get warm while in use?

18.2 Resistors in Series

When two or more resistors are connected end to end as in Active Figure 18.2, they are said to be in series. The resistors could be simple devices, such as lightbulbs or heating elements. When two resistors R_1 and R_2 are connected to a battery as in Active Figure 18.2 (page 596), the current is the same in the two resistors because any charge that flows through R_1 must also flow through R_2. This is analogous to water flowing through a pipe with two constrictions, corresponding to R_1 and R_2. Whatever volume of water flows in one end in a given time interval must exit the opposite end.

Because the potential difference between a and b in Active Figure 18.2b equals IR_1 and the potential difference between b and c equals IR_2, the potential difference between a and c is

$$\Delta V = IR_1 + IR_2 = I(R_1 + R_2)$$

Regardless of how many resistors we have in series, the sum of the potential differences across the resistors is equal to the total potential difference across the combination. As we will show later, this result is a consequence of the conservation of energy.

TIP 18.1 What’s Constant in a Battery?

Equation 18.2 shows that the current in a circuit depends on the resistance of the battery, so a battery can’t be considered a source of constant current. Even the terminal voltage of a battery given by Equation 18.1 can’t be considered constant because the internal resistance can change (due to warming, for example, during the operation of the battery). A battery is, however, a source of constant emf.
Chapter 18 Direct-Current Circuits

of energy. Active Figure 18.2c shows an equivalent resistor \(R_{eq} \) that can replace the two resistors of the original circuit. The equivalent resistor has the same effect on the circuit because it results in the same current in the circuit as the two resistors.

Applying Ohm’s law to this equivalent resistor, we have

\[
\Delta V = I R_{eq}
\]

Equating the preceding two expressions, we have

\[
IR_{eq} = I(R_1 + R_2)
\]

or

\[
R_{eq} = R_1 + R_2 \quad \text{(series combination)} \quad [18.3]
\]

An extension of the preceding analysis shows that the equivalent resistance of three or more resistors connected in series is

\[
R_{eq} = R_1 + R_2 + R_3 + \cdots \quad [18.4]
\]

Therefore, the equivalent resistance of a series combination of resistors is the algebraic sum of the individual resistances and is always greater than any individual resistance.

Note that if the filament of one lightbulb in Active Figure 18.2 were to fail, the circuit would no longer be complete (an open-circuit condition would exist) and the second bulb would also go out.

ACTIVE FIGURE 18.2
A series connection of two resistors, \(R_1 \) and \(R_2 \). The currents in the resistors are the same, and the equivalent resistance of the combination is given by \(R_{eq} = R_1 + R_2 \).

APPLYING PHYSICS 18.1 CHRISTMAS LIGHTS IN SERIES

A new design for Christmas lights allows them to be connected in series. A failed bulb in such a string would result in an open circuit, and all the bulbs would go out. How can the bulbs be redesigned to prevent that from happening?

Explanation If the string of lights contained the usual kind of bulbs, a failed bulb would be hard to locate. Each bulb would have to be replaced with a good bulb, one by one, until the failed bulb was found. If there happened to be two or more failed bulbs in

FIGURE 18.3 (Applying Physics 18.1) (a) Schematic diagram of a modern “miniature” holiday light bulb, with a jumper connection to provide a current path if the filament breaks. When the filament is intact, charges flow in the filament. (b) A holiday light bulb with a broken filament. In this case, charges flow in the jumper connection.
the string of lights, finding them would be a lengthy and annoying task.

Christmas lights use special bulbs that have an insulated loop of wire (a jumper) across the conducting supports to the bulb filaments (Fig. 18.3). If the filament breaks and the bulb fails, the bulb’s resistance increases dramatically. As a result, most of the applied voltage appears across the loop of wire. This voltage causes the insulation around the loop of wire to burn, causing the metal wire to make electrical contact with the supports. This produces a conducting path through the bulb, so the other bulbs remain lit.

QUICK QUIZ 18.3 In Figure 18.4 the current is measured with the ammeter at the bottom of the circuit. When the switch is opened, does the reading on the ammeter (a) increase, (b) decrease, or (c) not change?

QUICK QUIZ 18.4 The circuit in Figure 18.4 consists of two resistors, a switch, an ammeter, and a battery. When the switch is closed, power \(P_0 \) is delivered to resistor \(R_1 \). When the switch is opened, which of the following statements is true about the power \(P_0 \) delivered to \(R_1 \)? (a) \(P_0 < P_e \) (b) \(P_0 = P_e \) (c) \(P_0 > P_e \)

EXAMPLE 18.1 Four Resistors in Series

Goal Analyze several resistors connected in series.

Problem Four resistors are arranged as shown in Figure 18.5a. Find (a) the equivalent resistance of the circuit and (b) the current in the circuit if the emf of the battery is 6.0 V.

Strategy Because the resistors are connected in series, summing their resistances gives the equivalent resistance. Ohm’s law can then be used to find the current.

Solution

(a) Find the equivalent resistance of the circuit.

Apply Equation 18.4, summing the resistances:

\[
R_{eq} = R_1 + R_2 + R_3 + R_4 = 2.0 \Omega + 4.0 \Omega + 5.0 \Omega + 7.0 \Omega = 18.0 \Omega
\]

(b) Find the current in the circuit.

Apply Ohm’s law to the equivalent resistor in Figure 18.5b, solving for the current:

\[
I = \frac{\Delta V}{R_{eq}} = \frac{6.0 \text{ V}}{18.0 \ \Omega} = \frac{1}{3} \text{ A}
\]

Remarks A common misconception is that the current is “used up” and steadily declines as it progresses through a series of resistors. That would be a violation of conservation of charge.

QUESTION 18.1

The internal resistance of the battery is neglected in this example. How would it affect the final current, if taken into account?

EXERCISE 18.1

Because the current in the equivalent resistor is \(\frac{1}{3} \) A, the current in each resistor of the original circuit must also be \(\frac{1}{3} \) A. Find the voltage drop across each resistor.

Answers \(\Delta V_{20} = \frac{2}{3} \) V; \(\Delta V_{40} = \frac{4}{3} \) V; \(\Delta V_{50} = \frac{5}{3} \) V; \(\Delta V_{70} = \frac{7}{3} \) V
18.3 RESISTORS IN PARALLEL

Now consider two resistors connected in parallel, as in Active Figure 18.6. In this case the potential differences across the resistors are the same because each is connected directly across the battery terminals. The currents are generally not the same. When charges reach point a (called a junction) in Active Figure 18.6b, the current splits into two parts: I_1, flowing through R_1; and I_2, flowing through R_2. If R_1 is greater than R_2, then I_1 is less than I_2. In general, more charge travels through the path with less resistance. **Because charge is conserved, the current I that enters point a must equal the total current $I_1 + I_2$ leaving that point.** Mathematically, this is written

$$I = I_1 + I_2$$

The potential drop must be the same for the two resistors and must also equal the potential drop across the battery. Ohm’s law applied to each resistor yields

$$I_1 = \frac{\Delta V}{R_1}, \quad I_2 = \frac{\Delta V}{R_2}$$

Ohm’s law applied to the equivalent resistor in Active Figure 18.6c gives

$$I = \frac{\Delta V}{R_{eq}}$$

When these expressions for the currents are substituted into the equation $I = I_1 + I_2$ and the ΔV’s are cancelled, we obtain

$$\frac{1}{R_{eq}} = \frac{1}{R_1} + \frac{1}{R_2}$$

(parallel combination) \[18.5\]

An extension of this analysis to three or more resistors in parallel produces the following general expression for the equivalent resistance:

$$\frac{1}{R_{eq}} = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3} + \cdots$$ \[18.6\]

From this expression, we see that the inverse of the equivalent resistance of two or more resistors connected in parallel is the sum of the inverses of the individual resistances and is always less than the smallest resistance in the group.

ACTIVE FIGURE 18.6

(a) A parallel connection of two lightbulbs with resistances R_1 and R_2. (b) Circuit diagram for the two-resistor circuit. The potential differences across R_1 and R_2 are the same. (c) The equivalent resistance of the combination is given by the reciprocal relationship $1/R_{eq} = 1/R_1 + 1/R_2$.

Equivalent resistance of a parallel combination of resistors →
QUICK QUIZ 18.5 In Figure 18.7 the current is measured with the ammeter on the right side of the circuit diagram. When the switch is closed, does the reading on the ammeter (a) increase, (b) decrease, or (c) remain the same?

QUICK QUIZ 18.6 When the switch is open in Figure 18.7, power \(P_o \) is delivered to the resistor \(R_1 \). When the switch is closed, which of the following is true about the power \(P_c \) delivered to \(R_1 \)? (Neglect the internal resistance of the battery.) (a) \(P_c > P_o \) (b) \(P_c < P_o \) (c) \(P_c = P_o \)

EXAMPLE 18.2 Three Resistors in Parallel

Goal Analyze a circuit having resistors connected in parallel.

Problem Three resistors are connected in parallel as in Figure 18.8. A potential difference of 18 V is maintained between points \(a \) and \(b \). (a) Find the current in each resistor. (b) Calculate the power delivered to each resistor and the total power. (c) Find the equivalent resistance of the circuit. (d) Find the total power delivered to the equivalent resistance.

Strategy To get the current in each resistor we can use Ohm’s law and the fact that the voltage drops across parallel resistors are all the same. The rest of the problem just requires substitution into the equation for power delivered to a resistor, \(P = I^2R \), and the reciprocal-sum law for parallel resistors.

Solution

(a) Find the current in each resistor.

Apply Ohm’s law, solved for the current \(I \) delivered by the battery to find the current in each resistor:

\[
I_1 = \frac{\Delta V}{R_1} = \frac{18 \text{ V}}{3.0 \text{ } \Omega} = 6.0 \text{ A}
\]

\[
I_2 = \frac{\Delta V}{R_2} = \frac{18 \text{ V}}{6.0 \text{ } \Omega} = 3.0 \text{ A}
\]

\[
I_3 = \frac{\Delta V}{R_3} = \frac{18 \text{ V}}{9.0 \text{ } \Omega} = 2.0 \text{ A}
\]

(b) Calculate the power delivered to each resistor and the total power.

Apply \(P = I^2R \) to each resistor, substituting the results from part (a):

\[
3 \text{ } \Omega: \quad P_1 = I_1^2R_1 = (6.0 \text{ A})^2(3.0 \text{ } \Omega) = 110 \text{ W}
\]

\[
6 \text{ } \Omega: \quad P_2 = I_2^2R_2 = (3.0 \text{ A})^2(6.0 \text{ } \Omega) = 54 \text{ W}
\]

\[
9 \text{ } \Omega: \quad P_3 = I_3^2R_3 = (2.0 \text{ A})^2(9.0 \text{ } \Omega) = 36 \text{ W}
\]

Sum to get the total power:

\[
P_{\text{tot}} = 110 \text{ W} + 54 \text{ W} + 36 \text{ W} = 2.0 \times 10^2 \text{ W}
\]

(c) Find the equivalent resistance of the circuit.

Apply the reciprocal-sum rule, Equation 18.6:

\[
\frac{1}{R_{eq}} = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3}
\]

\[
\frac{1}{R_{eq}} = \frac{1}{3.0 \text{ } \Omega} + \frac{1}{6.0 \text{ } \Omega} + \frac{1}{9.0 \text{ } \Omega} = \frac{11}{18 \text{ } \Omega}
\]

\[
R_{eq} = \frac{18 \text{ } \Omega}{11} = 1.6 \text{ } \Omega
\]
(d) Compute the power dissipated by the equivalent resistance.

Use the alternate power equation:

\[P = \frac{(\Delta V)^2}{R_{eq}} = \frac{(18 \, \text{V})^2}{1.6 \, \Omega} = 2.0 \times 10^2 \, \text{W} \]

Remarks

There’s something important to notice in part (a): the smallest 3.0 Ω resistor carries the largest current, whereas the other, larger resistors of 6.0 Ω and 9.0 Ω carry smaller currents. The largest current is always found in the path of least resistance. In part (b) the power could also be found with \(P = \frac{(\Delta V)^2}{R} \). Note that \(P_1 = 108 \, \text{W} \), but is rounded to 110 W because there are only two significant figures. Finally, notice that the total power dissipated in the equivalent resistor is the same as the sum of the power dissipated in the individual resistors, as it should be.

QUESTION 18.2

If a fourth resistor were added in parallel to the other three, how would the equivalent resistance change? (a) It would be larger. (b) It would be smaller. (c) More information is required to determine the effect.

EXERCISE 18.2

Suppose the resistances in the example are 1.0 Ω, 2.0 Ω, and 3.0 Ω, respectively, and a new voltage source is provided. If the current measured in the 3.0-Ω resistor is 2.0 A, find (a) the potential difference provided by the new battery and the currents in each of the remaining resistors, (b) the power delivered to each resistor and the total power, (c) the equivalent resistance, and (d) the total current and the power dissipated by the equivalent resistor.

Answers

(a) \(E = 6.0 \, \text{V}, I_1 = 6.0 \, \text{A}, I_2 = 3.0 \, \text{A} \) (b) \(P_1 = 36 \, \text{W}, P_2 = 18 \, \text{W}, P_3 = 12 \, \text{W} \) (c) \(P_{tot} = 66 \, \text{W} \) (d) \(I = 11 \, \text{A}, P_{eq} = 66 \, \text{W} \)

QUICK QUIZ 18.7

Suppose you have three identical lightbulbs, some wire, and a battery. You connect one lightbulb to the battery and take note of its brightness. You add a second lightbulb, connecting it in parallel with the previous lightbulbs, and again take note of the brightness. Repeat the process with the third lightbulb, connecting it in parallel with the other two. As the lightbulbs are added, what happens to (a) the brightness of the lightbulbs? (b) The individual currents in the lightbulbs? (c) The power delivered by the battery? (d) The lifetime of the battery? (Neglect the battery’s internal resistance.)

QUICK QUIZ 18.8

If the lightbulbs in Quick Quiz 18.7 are connected one by one in series instead of in parallel, what happens to (a) the brightness of the lightbulbs? (b) The individual currents in the lightbulbs? (c) The power delivered by the battery? (d) The lifetime of the battery? (Again, neglect the battery’s internal resistance.)

Household circuits are always wired so that the electrical devices are connected in parallel, as in Active Figure 18.6a. In this way each device operates independently of the others so that if one is switched off, the others remain on. For example, if one of the lightbulbs in Active Figure 18.6 were removed from its socket, the other would continue to operate. Equally important is that each device operates at the same voltage. If the devices were connected in series, the voltage across any one device would depend on how many devices were in the combination and on their individual resistances.

In many household circuits, circuit breakers are used in series with other circuit elements for safety purposes. A circuit breaker is designed to switch off and open the circuit at some maximum value of the current (typically 15 A or 20 A) that depends on the nature of the circuit. If a circuit breaker were not used, excessive currents caused by operating several devices simultaneously could result in excessive wire temperatures, perhaps causing a fire. In older home construction, fuses...
were used in place of circuit breakers. When the current in a circuit exceeded some value, the conductor in a fuse melted and opened the circuit. The disadvantage of fuses is that they are destroyed in the process of opening the circuit, whereas circuit breakers can be reset.

APPLYING PHYSICS 18.2 LIGHTBULB COMBINATIONS

Compare the brightness of the four identical lightbulbs shown in Figure 18.9. What happens if bulb A fails and so cannot conduct current? What if C fails? What if D fails?

Explanation Bulbs A and B are connected in series across the emf of the battery, whereas bulb C is connected by itself across the battery. This means the voltage drop across C has the same magnitude as the battery emf, whereas this same emf is split between bulbs A and B. As a result, bulb C will glow more brightly than either of bulbs A and B, which will glow equally brightly. Bulb D has a wire connected across it—a short circuit—so the potential difference across bulb D is zero and it doesn’t glow. If bulb A fails, B goes out, but C stays lit. If C fails, there is no effect on the other bulbs. If D fails, the event is undetectable because D was not glowing initially.

APPLYING PHYSICS 18.3 THREE-WAY LIGHTBULBS

Figure 18.10 illustrates how a three-way lightbulb is constructed to provide three levels of light intensity. The socket of the lamp is equipped with a three-way switch for selecting different light intensities. The bulb contains two filaments. Why are the filaments connected in parallel? Explain how the two filaments are used to provide the three different light intensities.

Explanation If the filaments were connected in series and one of them were to fail, there would be no current in the bulb and the bulb would not glow, regardless of the position of the switch. When the filaments are connected in parallel and one of them (say, the 75-W filament) fails, however, the bulb will still operate in one of the switch positions because there is current in the other (100-W) filament. The three light intensities are made possible by selecting one of three values of filament resistance, using a single value of 120 V for the applied voltage. The 75-W filament offers one value of resistance, the 100-W filament offers a second value, and the third resistance is obtained by combining the two filaments in parallel. When switch S1 is closed and switch S2 is opened, only the 75-W filament carries current. When switch S1 is opened and switch S2 is closed, only the 100-W filament carries current. When both switches are closed, both filaments carry current and a total illumination corresponding to 175 W is obtained.

PROBLEM-SOLVING STRATEGY

SIMPLIFYING CIRCUITS WITH RESISTORS

1. **Combine all resistors in series** by summing the individual resistances and draw the new, simplified circuit diagram.

 Useful facts: \(R_{eq} = R_1 + R_2 + R_3 + \cdots \)

 The current in each resistor is the same.
2. **Combine all resistors in parallel** by summing the reciprocals of the resistances and then taking the reciprocal of the result. Draw the new, simplified circuit diagram.

Useful facts: \[\frac{1}{R_{eq}} = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3} + \cdots \]

The potential difference across each resistor is the same.

3. **Repeat** the first two steps as necessary, until no further combinations can be made. If there is only a single battery in the circuit, the result will usually be a single equivalent resistor in series with the battery.

4. **Use Ohm’s law**, \(V = IR \), to determine the current in the equivalent resistor. Then work backwards through the diagrams, applying the useful facts listed in step 1 or step 2 to find the currents in the other resistors. (In more complex circuits, Kirchhoff’s rules will be needed, as described in the next section).

EXAMPLE 18.3 Equivalent Resistance

Goal Solve a problem involving both series and parallel resistors.

Problem Four resistors are connected as shown in Figure 18.11a. (a) Find the equivalent resistance between points \(a \) and \(c \). (b) What is the current in each resistor if a 42-V battery is connected between \(a \) and \(c \)?

Strategy Reduce the circuit in steps, as shown in Figures 18.11b and 18.11c, using the sum rule for resistors in series and the reciprocal-sum rule for resistors in parallel. Finding the currents is a matter of applying Ohm’s law while working backwards through the diagrams.

Solution

(a) Find the equivalent resistance of the circuit.

The 8.0-\(\Omega \) and 4.0-\(\Omega \) resistors are in series, so use the sum rule to find the equivalent resistance between \(a \) and \(b \):

\[R_{eq} = R_1 + R_2 = 8.0 \, \Omega + 4.0 \, \Omega = 12.0 \, \Omega \]

The 6.0-\(\Omega \) and 3.0-\(\Omega \) resistors are in parallel, so use the reciprocal-sum rule to find the equivalent resistance between \(b \) and \(c \) (don’t forget to invert!):

\[\frac{1}{R_{eq}} = \frac{1}{R_1} + \frac{1}{R_2} = \frac{1}{6.0 \, \Omega} + \frac{1}{3.0 \, \Omega} = \frac{1}{2.0 \, \Omega} \]

\[R_{eq} = 2.0 \, \Omega \]

In the new diagram, 18.11b, there are now two resistors in series. Combine them with the sum rule to find the equivalent resistance of the circuit:

\[R_{eq} = R_1 + R_2 = 12.0 \, \Omega + 2.0 \, \Omega = 14.0 \, \Omega \]
18.4 Kirchhoff’s Rules and Complex DC Circuits

As demonstrated in the preceding section, we can analyze simple circuits using Ohm’s law and the rules for series and parallel combinations of resistors. There are, however, many ways in which resistors can be connected so that the circuits formed can’t be reduced to a single equivalent resistor. The procedure for analyzing more complex circuits can be facilitated by the use of two simple rules called Kirchhoff’s rules:

1. The sum of the currents entering any junction must equal the sum of the currents leaving that junction. (This rule is often referred to as the junction rule.)
2. The sum of the potential differences across all the elements around any closed circuit loop must be zero. (This rule is usually called the loop rule.)

The junction rule is a statement of conservation of charge. Whatever current enters a given point in a circuit must leave that point because charge can’t build up or disappear at a point. If we apply this rule to the junction in Figure 18.12a, we get

\[I_1 = I_2 + I_3 \]

Figure 18.12b represents a mechanical analog of the circuit shown in Figure 18.12a. In this analog water flows through a branched pipe with no leaks. The flow rate into the pipe equals the total flow rate out of the two branches.

The loop rule is equivalent to the principle of conservation of energy. Any charge that moves around any closed loop in a circuit (starting and ending at the same point) does not dissipate any energy, so the net potential difference around the loop must be zero. If we apply this rule to the loop in Figure 18.12a, we get

\[\Delta V_{\text{ac}} = \Delta V_{\text{bc}} = \Delta V_{\text{ab}} \]

Remarks As a final check, note that

\[V_{\text{bc}} = (6.0 \text{ V}) I_1 = (3.0 \text{ V}) I_2 \rightarrow 2.0 I_1 = I_2 \]

QUESTION 18.3
Which of the original resistors dissipates energy at the greatest rate?

EXERCISE 18.3
Suppose the series resistors in Example 18.3 are now 6.00 Ω and 3.00 Ω while the parallel resistors are 8.00 Ω (top) and 4.00 Ω (bottom), and the battery provides an emf of 27.0 V. Find (a) the equivalent resistance and (b) the currents \(I_1 \), \(I_2 \), and \(I_3 \).

Answers (a) 11.7 Ω (b) \(I_1 = 2.31 \text{ A}, I_2 = 0.770 \text{ A}, I_3 = 1.54 \text{ A} \)
point) must gain as much energy as it loses. It gains energy as it is pumped through a source of emf. Its energy may decrease in the form of a potential drop $-IR$ across a resistor or as a result of flowing backward through a source of emf, from the positive to the negative terminal inside the battery. In the latter case, electrical energy is converted to chemical energy as the battery is charged.

When applying Kirchhoff’s rules, you must make two decisions at the beginning of the problem:

1. Assign symbols and directions to the currents in all branches of the circuit. Don’t worry about guessing the direction of a current incorrectly; the resulting answer will be negative, but *its magnitude will be correct*. (Because the equations are linear in the currents, all currents are to the first power.)

2. When applying the loop rule, you must choose a direction for traversing the loop and be consistent in going either clockwise or counterclockwise. As you traverse the loop, record voltage drops and rises according to the following rules (summarized in Fig. 18.13, where it is assumed that movement is from point a toward point b):

 a. If a resistor is traversed in the direction of the current, the change in electric potential across the resistor is $-IR$ (Fig. 18.13a).

 b. If a resistor is traversed in the direction opposite the current, the change in electric potential across the resistor is $+IR$ (Fig. 18.13b).

 c. If a source of emf is traversed in the direction of the emf (from $-to +$ on the terminals), the change in electric potential is $+E$ (Fig. 18.13c).

 d. If a source of emf is traversed in the direction opposite the emf (from $+ to -$ on the terminals), the change in electric potential is $-E$ (Fig. 18.13d).

There are limits to the number of times the junction rule and the loop rule can be used. You can use the junction rule as often as needed as long as, each time you write an equation, you include in it a current that has not been used in a previous junction-rule equation. (If this procedure isn’t followed, the new equation will just be a combination of two other equations that you already have.) In general, the number of times the junction rule can be used is one fewer than the number of junction points in the circuit. The loop rule can also be used as often as needed, so long as a new circuit element (resistor or battery) or a new current appears in each new equation. **To solve a particular circuit problem, you need as many independent equations as you have unknowns.**

APPLYING KIRCHHOFF’S RULES TO A CIRCUIT

1. **Assign labels and symbols** to all the known and unknown quantities.

2. **Assign directions to the currents** in each part of the circuit. Although the assignment of current directions is arbitrary, you must stick with your original choices throughout the problem as you apply Kirchhoff’s rules.

3. **Apply the junction rule** to any junction in the circuit. The rule may be applied as many times as a new current (one not used in a previously found equation) appears in the resulting equation.

4. **Apply Kirchhoff’s loop rule** to as many loops in the circuit as are needed to solve for the unknowns. To apply this rule, you must correctly identify the change in electric potential as you cross each element in traversing the closed loop. Watch out for signs!

5. **Solve the equations** simultaneously for the unknown quantities, using substitution or any other method familiar to the student.

6. **Check your answers** by substituting them into the original equations.
EXAMPLE 18.4 Applying Kirchhoff’s Rules

Goal Use Kirchhoff’s rules to find currents in a circuit with three currents and one battery.

Problem Find the currents in the circuit shown in Figure 18.14 by using Kirchhoff’s rules.

Strategy There are three unknown currents in this circuit, so we must obtain three independent equations, which then can be solved by substitution. We can find the equations with one application of the junction rule and two applications of the loop rule. We choose junction c. (Junction d gives the same equation.) For the loops, we choose the bottom loop and the top loop, both shown by blue arrows, which indicate the direction we are going to traverse the circuit mathematically (not necessarily the direction of the current). The third loop gives an equation that can be obtained by a linear combination of the other two, so it provides no additional information and isn’t used.

Solution Apply the junction rule to point c. \(I_1 \) is directed into the junction, \(I_2 \) and \(I_3 \) are directed out of the junction.

Select the bottom loop and traverse it clockwise starting at point \(a \), generating an equation with the loop rule:

\[
\sum \Delta V = \Delta V_{ab} + \Delta V_{c4} + \Delta V_{9.0} = 0
\]

\[
6.0 \text{ V} - (4.0 \text{ } \Omega)I_1 - (9.0 \text{ } \Omega)I_2 = 0
\]

Select the top loop and traverse it clockwise from point c. Notice the gain across the 9.0-\(\Omega \) resistor because it is traversed against the direction of the current!

\[
\sum \Delta V = \Delta V_{5.0} + \Delta V_{9.0} = 0
\]

\[-(5.0 \text{ } \Omega)I_2 + (9.0 \text{ } \Omega)I_3 = 0\]

Rewrite the three equations, rearranging terms and dropping units for the moment, for convenience:

1. \(I_1 = I_2 + I_3 \)
2. \(4.0I_1 + 9.0I_3 = 6.0 \)
3. \(-5.0I_2 + 9.0I_3 = 0 \)

Solve Equation 3 for \(I_2 \) and substitute into Equation (1):

\[
I_2 = 1.8I_3
\]

\[
I_1 = I_2 + I_3 = 1.8I_3 + I_3 = 2.8I_3
\]

Substitute the latter expression into Equation (2) and solve for \(I_3 \):

\[
4.0(2.8I_3) + 9.0I_3 = 6.0 \rightarrow I_3 = 0.30 \text{ A}
\]

Substitute \(I_3 \) back into Equation (3) to get \(I_2 \):

\[
-5.0I_2 + 9.0(0.30 \text{ A}) = 0 \rightarrow I_2 = 0.54 \text{ A}
\]

Substitute \(I_3 \) into Equation (2) to get \(I_1 \):

\[
4.0I_1 + 9.0(0.30 \text{ A}) = 6.0 \rightarrow I_1 = 0.83 \text{ A}
\]

Remarks Substituting these values back into the original equations verifies that they are correct, with any small discrepancies due to rounding. The problem can also be solved by first combining resistors.

QUESTION 18.4 How would the answers change if the indicated directions of the currents in Figure 18.14 were all reversed?

EXERCISE 18.4 Suppose the 6.0-V battery is replaced by a battery of unknown emf and an ammeter measures \(I_1 = 1.5 \text{ A} \). Find the other two currents and the emf of the battery.

Answers \(I_2 = 0.96 \text{ A}, \; I_3 = 0.54 \text{ A}, \; \mathcal{E} = 11 \text{ V} \)

TIP 18.3 More Current Goes in the Path of Less Resistance

You may have heard the statement “Current takes the path of least resistance.” For a parallel combination of resistors, this statement is inaccurate because current actually follows all paths. The most current, however, travels in the path of least resistance.
EXAMPLE 18.5 Another Application of Kirchhoff’s Rules

Goal Find the currents in a circuit with three currents and two batteries when some current directions are chosen wrongly.

Problem Find \(I_1, I_2, \) and \(I_3 \) in Figure 18.15a.

Strategy Use Kirchhoff’s two rules, the junction rule once and the loop rule twice, to develop three equations for the three unknown currents. Solve the equations simultaneously.

Solution

Apply Kirchhoff’s junction rule to junction \(c \). Because of the chosen current directions, \(I_1 \) and \(I_2 \) are directed into the junction and \(I_3 \) is directed out of the junction.

Apply Kirchhoff’s loop rule to the loops \(abeda \) and \(befcb \). (Loop \(aefda \) gives no new information.) In loop \(befcb \), a positive sign is obtained when the 6.0-\(\Omega \) resistor is traversed because the direction of the path is opposite the direction of the current \(I_1 \).

Using Equation (1), eliminate \(I_3 \) from Equation (2) (ignore units for the moment):

\[10 - 6.0I_1 - 2.0(I_1 + I_2) = 0 \]

Divide each term in Equation (3) by 2 and rearrange the equation so that the currents are on the right side:

\[10 = 8.0I_1 + 2.0I_2 \]

Subtracting Equation (5) from Equation (4) eliminates \(I_2 \) and gives \(I_1 \):

\[22 = 11I_1 \rightarrow I_1 = 2.0 \text{ A} \]

Substituting this value of \(I_1 \) into Equation (5) gives \(I_2 \):

\[2.0I_2 = 3.0I_1 - 12 = 3.0(2.0) - 12 = -6.0 \text{ A} \]

\[I_2 = -3.0 \text{ A} \]

Finally, substitute the values found for \(I_1 \) and \(I_2 \) into Equation (1) to obtain \(I_3 \):

\[I_3 = I_1 + I_2 = 2.0 \text{ A} - 3.0 \text{ A} = -1.0 \text{ A} \]

Remarks The fact that \(I_1 \) and \(I_2 \) are both negative indicates that the wrong directions were chosen for these currents. Nonetheless, the magnitudes are correct. Choosing the right directions of the currents at the outset is unimportant because the equations are linear, and wrong choices result only in a minus sign in the answer.

QUESTION 18.5

Is it possible for the current in a battery to be directed from the positive terminal toward the negative terminal?

EXERCISE 18.5

Find the three currents in Figure 18.15b. (Note that the direction of one current was deliberately chosen wrongly!)

Answers \(I_1 = -1.0 \text{ A}, I_2 = 1.0 \text{ A}, I_3 = 2.0 \text{ A} \)
18.5 RC CIRCUITS

So far, we have been concerned with circuits with constant currents. We now consider direct-current circuits containing capacitors, in which the currents vary with time. Consider the series circuit in Active Figure 18.16. We assume the capacitor is initially uncharged with the switch opened. After the switch is closed, the battery begins to charge the plates of the capacitor and the charge passes through the resistor. As the capacitor is being charged, the circuit carries a changing current. The charging process continues until the capacitor is charged to its maximum equilibrium value, \(Q \) / \(C \), where \(e \) is the maximum voltage across the capacitor. Once the capacitor is fully charged, the current in the circuit is zero. If we assume the capacitor is uncharged before the switch is closed, and if the switch is closed at \(t = 0 \), we find that the charge on the capacitor varies with time according to the equation

\[
q = Q \left(1 - e^{-t/RC} \right) \tag{18.7}
\]

where \(e = 2.718 \ldots \) is Euler’s constant, the base of the natural logarithms. Active Figure 18.16b is a graph of this equation. The charge is zero at \(t = 0 \) and approaches its maximum value, \(Q \), as \(t \) approaches infinity. The voltage \(V \) across the capacitor at any time is obtained by dividing the charge by the capacitance: \(V = q/C \).

As you can see from Equation 18.7, it would take an infinite amount of time, in this model, for the capacitor to become fully charged. The reason is mathematical: in obtaining that equation, charges are assumed to be infinitely small, whereas in reality the smallest charge is that of an electron, with a magnitude of \(1.60 \times 10^{-19} \, C \). For all practical purposes, the capacitor is fully charged after a finite amount of time. The term \(RC \) that appears in Equation 18.7 is called the time constant \(\tau \) (Greek letter tau), so

\[
\tau = RC \tag{18.8}
\]

The time constant represents the time required for the charge to increase from zero to 63.2% of its maximum equilibrium value. This means that in a period of time equal to one time constant, the charge on the capacitor increases from zero to \(0.632Q \). This can be seen by substituting \(t = \tau = RC \) into Equation 18.7 and solving for \(q \). (Note that \(1 - e^{-1} = 0.632 \).) It’s important to note that a capacitor charges very slowly in a circuit with a long time constant, whereas it charges very rapidly in a circuit with a short time constant. After a time equal to ten time constants, the capacitor is more than 99.99% charged.

Now consider the circuit in Active Figure 18.17a, consisting of a capacitor with an initial charge \(Q \), a resistor, and a switch. Before the switch is closed, the potential difference across the charged capacitor is \(Q/C \). Once the switch is closed, the charge begins to flow through the resistor from one capacitor plate to the other until the capacitor is fully discharged. If the switch is closed at \(t = 0 \), it can be shown that the charge \(q \) on the capacitor varies with time according to the equation

\[
q = Q e^{-t/RC} \tag{18.9}
\]

The charge decreases exponentially with time, as shown in Active Figure 18.17b. In the interval \(t = \tau = RC \), the charge decreases from its initial value \(Q \) to 0.368\(Q \).
In other words, in a time equal to one time constant, the capacitor loses 63.2% of its initial charge. Because $\Delta V = q/C$, the voltage across the capacitor also decreases exponentially with time according to the equation $\Delta V = Ee^{-t/RC}$, where E (which equals Q/C) is the initial voltage across the fully charged capacitor.

APPLYING PHYSICS 18.4 TIMED WINDSHIELD WIPERS

Many automobiles are equipped with windshield wipers that can be used intermittently during light rainfall. How does the operation of this feature depend on the charging and discharging of a capacitor?

Explanation The wipers are part of an RC circuit with time constant that can be varied by selecting different values of R through a multiposition switch. The brief time that the wipers remain on and the time they are off are determined by the value of the time constant of the circuit.

APPLYING PHYSICS 18.5 BACTERIAL GROWTH

In biological applications concerned with population growth, an equation is used that is similar to the exponential equations encountered in the analysis of RC circuits. Applied to a number of bacteria, this equation is

$$N_f = N_i 2^n$$

where N_f is the number of bacteria present after n doubling times, N_i is the number present initially, and n is the number of growth cycles or doubling times. Doubling times vary according to the organism. The doubling time for the bacteria responsible for leprosy is about 30 days, and that for the salmonella bacteria responsible for food poisoning is about 20 minutes. Suppose only 10 salmonella bacteria find their way onto a turkey leg after your Thanksgiving meal. Four hours later you come back for a midnight snack. How many bacteria are present now?

Explanation The number of doubling times is 240 min/20 min = 12. Thus,

$$N_f = N_i 2^n = (10 \text{ bacteria}) (2^{12}) = 40960 \text{ bacteria}$$

So your system will have to deal with an invading host of about 41,000 bacteria, which are going to continue to double in a very promising environment.

APPLYING PHYSICS 18.6 ROADWAY FLASHERS

Many roadway construction sites have flashing yellow lights to warn motorists of possible dangers. What causes the lights to flash?

Explanation A typical circuit for such a flasher is shown in Figure 18.18. The lamp L is a gas-filled lamp that acts as an open circuit until a large potential difference causes a discharge, which gives off a bright light. During this discharge, charge flows through the gas between the electrodes of the lamp. When the switch is closed, the battery charges the capacitor. At the beginning, the current is high and the charge on the capacitor is low, so most of the potential difference appears across the resistance R. As the capacitor charges, more potential difference appears across it, reflecting the lower current and lower potential difference across the resistor. Eventually, the potential difference across the capacitor reaches a value at which the lamp will conduct, causing a flash. This flash discharges the capacitor through the lamp, and the process of charging begins again. The period between flashes can be adjusted by changing the time constant of the RC circuit.

![Figure 18.18](image-url)
QUICK QUIZ 18.9 The switch is closed in Figure 18.19. After a long time compared with the time constant of the circuit, what will the current be in the 2-Ω resistor? (a) 4 A (b) 3 A (c) 2 A (d) 1 A (e) More information is needed.

EXAMPLE 18.6 Charging a Capacitor in an RC Circuit

Goal Calculate elementary properties of a simple RC circuit.

Problem An uncharged capacitor and a resistor are connected in series to a battery, as in Active Figure 18.16a. If \(\mathcal{E} = 12.0 \text{ V}, C = 5.00 \mu\text{F}, \) and \(R = 8.00 \times 10^5 \Omega, \) find (a) the time constant of the circuit, (b) the maximum charge on the capacitor, (c) the charge on the capacitor after 6.00 s, (d) the potential difference across the resistor after 6.00 s, and (e) the current in the resistor at that time.

Strategy Finding the time constant in part (a) requires substitution into Equation 18.8. For part (b), the maximum charge occurs after a long time, when the current has dropped to zero. By Ohm’s law, \(\Delta V = IR, \) the potential difference across the resistor is also zero at that time, and Kirchhoff’s loop rule then gives the maximum charge. Finding the charge at some particular time, as in part (c), is a matter of substituting into Equation 18.7. Kirchhoff’s loop rule and the capacitance equation can be used to indirectly find the potential drop across the resistor in part (d), and then Ohm’s law yields the current.

Solution

(a) Find the time constant of the circuit.

Use the definition of the time constant, Equation 18.8:

\[
\tau = RC = (8.00 \times 10^5 \Omega)(5.00 \times 10^{-6} \text{ F}) = 4.00 \text{ s}
\]

(b) Calculate the maximum charge on the capacitor.

Apply Kirchhoff’s loop rule to the RC circuit, going clockwise, which means that the voltage difference across the battery is positive and the differences across the capacitor and resistor are negative:

\[
(1) \quad \Delta V_{\text{bat}} + \Delta V_C + \Delta V_R = 0
\]

From the definition of capacitance (Eq. 16.8) and Ohm’s law, we have \(\Delta V_C = -q/C \) and \(\Delta V_R = -IR. \) These are voltage drops, so they’re negative. Also, \(\Delta V_{\text{bat}} = +\mathcal{E}. \)

When the maximum charge \(q = Q \) is reached, \(I = 0. \)

Solve Equation (2) for the maximum charge:

\[
E - \frac{Q}{C} = 0 \quad \rightarrow \quad Q = CE
\]

Substitute to find the maximum charge:

\[
Q = (5.00 \times 10^{-6} \text{ F})(12.0 \text{ V}) = 60.0 \mu\text{C}
\]

(c) Find the charge on the capacitor after 6.00 s.

Substitute into Equation 18.7:

\[
q = Q(1 - e^{-t/\tau}) = (60.0 \mu\text{C})(1 - e^{-6.00 \text{ s}/4.00 \text{ s}}) = 46.6 \mu\text{C}
\]
(d) Compute the potential difference across the resistor after 6.00 s.

Compute the voltage drop \(\Delta V_C \) across the capacitor at that time:

\[
\Delta V_C = \frac{q}{C} = \frac{46.6 \mu C}{5.00 \mu F} = -9.32 \text{ V}
\]

Solve Equation 1 for \(\Delta V_R \) and substitute:

\[
\Delta V_R = -\Delta V_{bat} - \Delta V_C = -12.0 - (-9.32 \text{ V}) = -2.68 \text{ V}
\]

(e) Find the current in the resistor after 6.00 s.

Apply Ohm’s law, using the results of part (d) (remember that \(\Delta V_R = -IR \) here):

\[
I = \frac{-\Delta V_R}{R} = \frac{-(-2.68 \text{ V})}{(8.00 \times 10^5 \Omega)} = 3.35 \times 10^{-6} \text{ A}
\]

Remark In solving this problem, we paid scrupulous attention to signs. These signs must always be chosen when applying Kirchhoff’s loop rule and must remain consistent throughout the problem. Alternately, magnitudes can be used and the signs chosen by physical intuition. For example, the magnitude of the potential difference across the resistor must equal the magnitude of the potential difference across the battery minus the magnitude of the potential difference across the capacitor.

QUESTION 18.6

In an RC circuit as depicted in Figure 18.16a, what happens to the time required for the capacitor to be charged to half its maximum value if either the resistance or capacitance is increased? (a) It increases. (b) It decreases. (c) It remains the same.

EXERCISE 18.6

Find (a) the charge on the capacitor after 2.00 s have elapsed, (b) the magnitude of the potential difference across the capacitor after 2.00 s, and (c) the magnitude of the potential difference across the resistor at that same time.

Answers (a) 23.6 \(\mu C \) (b) 4.72 V (c) 7.28 V

EXAMPLE 18.7 Discharging a Capacitor in an RC Circuit

Goal Calculate some elementary properties of a discharging capacitor in an RC circuit.

Problem Consider a capacitor \(C \) being discharged through a resistor \(R \) as in Figure 18.17a (page 607). (a) How long does it take the charge on the capacitor to drop to one-fourth its initial value? Answer as a multiple of \(\tau \). (b) Compute the initial charge and time constant. (c) How long does it take to discharge all but the last quantum of charge, \(1.60 \times 10^{-19} \) C, if the initial potential difference across the capacitor is 12.0 V, the capacitance is equal to \(3.50 \times 10^{-6} \) F, and the resistance is 2.00 \(\Omega \)? (Assume an exponential decrease during the entire discharge process.)

Strategy This problem requires substituting given values into various equations, as well as a few algebraic manipulations involving the natural logarithm. In part (a) set \(q = \frac{1}{4}Q \) in Equation 18.9 for a discharging capacitor, where \(Q \) is the initial charge, and solve for time \(t \). In part (b) substitute into Equations 16.8 and 18.8 to find the initial capacitor charge and time constant, respectively. In part (c) substitute the results of part (b) and \(q = 1.60 \times 10^{-19} \) C into the discharging-capacitor equation, again solving for time.

Solution

(a) How long does it take the charge on the capacitor to reduce to one-fourth its initial value?

Apply Equation 18.9:

\[
q(t) = Qe^{-t/RC}
\]

Substitute \(q(t) = Q/4 \) into the preceding equation and cancel \(Q \):

\[
\frac{1}{4}Q = Qe^{-t/RC} \rightarrow \frac{1}{4} = e^{-t/RC}
\]

Take natural logarithms of both sides and solve for the time \(t \):

\[
\ln \left(\frac{1}{4} \right) = -t/RC
\]

\[
t = -RC \ln \left(\frac{1}{4} \right) = 1.39RC = 1.39\tau
\]
(b) Compute the initial charge and time constant from the given data.

Use the capacitance equation to find the initial charge:

\[C = \frac{Q}{\Delta V} \quad \Rightarrow \quad Q = C \Delta V = (3.50 \times 10^{-6} \text{ F})(12.0 \text{ V}) \]

\[Q = 4.20 \times 10^{-5} \text{ C} \]

Now calculate the time constant:

\[\tau = RC = (2.00 \Omega)(3.50 \times 10^{-6} \text{ F}) = 7.00 \times 10^{-6} \text{ s} \]

(c) How long does it take to drain all but the last quantum of charge?

Apply Equation 18.9, divide by \(\Delta t \), and take natural logarithms of both sides:

\[q(t) = Qe^{-t/\tau} \quad \Rightarrow \quad e^{-t/\tau} = \frac{q}{Q} \]

Take the natural logs of both sides:

\[-\frac{t}{\tau} = \ln\left(\frac{q}{Q}\right) \quad \Rightarrow \quad t = -\tau \ln\left(\frac{q}{Q}\right)\]

Substitute \(q = 1.60 \times 10^{-19} \text{ C} \) and the values for \(Q \) and \(\tau \) found in part (b):

\[t = -(7.00 \times 10^{-6} \text{ s})\ln\left(\frac{1.60 \times 10^{-19} \text{ C}}{4.20 \times 10^{-5} \text{ C}}\right) \]

\[= 2.32 \times 10^{-4} \text{ s} \]

Remarks. Part (a) shows how useful information can often be obtained even when no details concerning capacitors, resistances, or voltages are known. Part (c) demonstrates that capacitors can be rapidly discharged (or conversely, charged), despite the mathematical form of Equations 18.7 and 18.9, which indicate an infinite time would be required.

QUESTION 18.7

Suppose the initial voltage used to charge the capacitor were doubled. Would the time required for discharging all but the last quantum of charge (a) increase, (b) decrease, (c) remain the same?

EXERCISE 18.7

Suppose the same type of series circuit has \(R = 8.00 \times 10^4 \Omega \), \(C = 5.00 \mu \text{F} \), and an initial voltage across the capacitor of 6.00 V. (a) How long does it take the capacitor to lose half its initial charge? (b) How long does it take to lose all but the last 10 electrons on the negative plate?

Answers
(a) 0.277 s
(b) 12.2 s

18.6 HOUSEHOLD CIRCUITS

Household circuits are a practical application of some of the ideas presented in this chapter. In a typical installation the utility company distributes electric power to individual houses with a pair of wires, or power lines. Electrical devices in a house are then connected in parallel to these lines, as shown in Figure 18.20. The potential difference between the two wires is about 120 V. (These currents and voltages are actually alternating currents and voltages, but for the present discussion we will assume they are direct currents and voltages.) One of the wires is connected to ground, and the other wire, sometimes called the “hot” wire, is at a potential of 120 V. A meter and a circuit breaker (or a fuse) are connected in series with the wire entering the house, as indicated in the figure.

In modern homes, circuit breakers are used in place of fuses. When the current in a circuit exceeds some value (typically 15 A or 20 A), the circuit breaker acts as a switch and opens the circuit. Figure 18.21 shows one design for a circuit breaker. Current passes through a bimetallic strip, the top of which bends to the left when excessive current heats it. If the strip bends far enough to the left, it settles into a
A groove in the spring-loaded metal bar. When this settling occurs, the bar drops enough to open the circuit at the contact point. The bar also flips a switch that indicates that the circuit breaker is not operational. (After the overload is removed, the switch can be flipped back on.) Circuit breakers based on this design have the disadvantage that some time is required for the heating of the strip, so the circuit may not be opened rapidly enough when it is overloaded. Therefore, many circuit breakers are now designed to use electromagnets (discussed in Chapter 19).

The wire and circuit breaker are carefully selected to meet the current demands of a circuit. If the circuit is to carry currents as large as 30 A, a heavy-duty wire and an appropriate circuit breaker must be used. Household circuits that are normally used to power lamps and small appliances often require only 20 A. Each circuit has its own circuit breaker to accommodate its maximum safe load.

As an example, consider a circuit that powers a toaster, a microwave oven, and a heater (represented by \(R_1, R_2, \) and \(R_3 \) in Fig. 18.20). Using the equation \(V = I R \), we can calculate the current carried by each appliance. The toaster, rated at 1 000 W, draws a current of \(1000/120 \approx 8.33 \) A. The microwave oven, rated at 800 W, draws a current of 6.67 A, and the heater, rated at 1 300 W, draws a current of 10.8 A. If the three appliances are operated simultaneously, they draw a total current of 25.8 A. Therefore, the breaker should be able to handle at least this much current, or else it will be tripped. As an alternative, the toaster and microwave oven could operate on one 20-A circuit and the heater on a separate 20-A circuit.

Many heavy-duty appliances, such as electric ranges and clothes dryers, require 240 V to operate. The power company supplies this voltage by providing, in addition to a live wire that is 120 V above ground potential, another wire, also considered live, that is 120 V below ground potential (Fig. 18.22). Therefore, the potential drop across the two live wires is 240 V. An appliance operating from a 240-V line requires half the current of one operating from a 120-V line; consequently, smaller wires can be used in the higher-voltage circuit without becoming overheated.

18.7 ELECTRICAL SAFETY

A person can be electrocuted by touching a live wire while in contact with ground. Such a hazard is often due to frayed insulation that exposes the conducting wire. The ground contact might be made by touching a water pipe (which is normally at ground potential) or by standing on the ground with wet feet because impure water is a good conductor. Obviously, such situations should be avoided at all costs.

Electric shock can result in fatal burns, or it can cause the muscles of vital organs, such as the heart, to malfunction. The degree of damage to the body depends on the magnitude of the current, the length of time it acts, and the part of the body through which it passes. Currents of 5 mA or less can cause a sensation of shock, but ordinarily do little or no damage. If the current is larger than about 10 mA, the hand muscles contract and the person may be unable to let go of the live wire. If a current of about 100 mA passes through the body for just a few seconds, it can be fatal. Such large currents paralyze the respiratory muscles. In some cases, currents of about 1 A through the body produce serious (and sometimes fatal) burns.

As an additional safety feature for consumers, electrical equipment manufacturers now use electrical cords that have a third wire, called a case ground. To understand how this works, consider the drill being used in Figure 18.23. A two-wire device that has one wire, called the “hot” wire, is connected to the high-potential (120-V) side of the input power line, and the second wire is connected to ground (0 V). If the high-voltage wire comes in contact with the case of the drill (Fig. 18.23a), a short circuit occurs. In this undesirable circumstance, the pathway for the current is from the high-voltage wire through the person holding the drill and to Earth, a pathway that can be fatal. Protection is provided by a third wire, connected to the case of the drill (Fig. 18.23b). In this case, if a short occurs, the path of least resistance for the current is from the high-voltage wire through the case
and back to ground through the third wire. The resulting high current produced
will blow a fuse or trip a circuit breaker before the consumer is injured.

Special power outlets called ground-fault interrupters (GFIs) are now being
used in kitchens, bathrooms, basements, and other hazardous areas of new homes.
They are designed to protect people from electrical shock by sensing small cur-
tents—approximately 5 mA and greater—leaking to ground. When current above
this level is detected, the device shuts off (interrupts) the current in less than a
millisecond. (Ground-fault interrupters will be discussed in Chapter 20.)

18.8 CONDUCTION OF ELECTRICAL SIGNALS
BY NEURONS

The most remarkable use of electrical phenomena in living organisms is found in
the nervous system of animals. Specialized cells in the body called neurons form
a complex network that receives, processes, and transmits information from one
part of the body to another. The center of this network is located in the brain,
which has the ability to store and analyze information. On the basis of this infor-
mation, the nervous system controls parts of the body.

The nervous system is highly complex and consists of about 10^{10} interconnected
neurons. Some aspects of the nervous system are well known. Over the past several
decades the method of signal propagation through the nervous system has been
established. The messages transmitted by neurons are voltage pulses called action
potentials. When a neuron receives a strong enough stimulus, it produces identical
voltage pulses that are actively propagated along its structure. The strength of the
stimulus is conveyed by the number of pulses produced. When the pulses reach
the end of the neuron, they activate either muscle cells or other neurons. There is
a “firing threshold” for neurons: action potentials propagate along a neuron only
if the stimulus is sufficiently strong.

Neurons can be divided into three classes: sensory neurons, motor neurons,
and interneurons. The sensory neurons receive stimuli from sensory organs that
monitor the external and internal environment of the body. Depending on their
specialized functions, the sensory neurons convey messages about factors such as

This section is based on an essay by Paul Davidovits of Boston College.
The neuron consists of a cell body to which are attached input ends called dendrites and a long tail called the axon, which transmits the signal away from the cell. The far end of the axon branches into nerve endings that transmit the signal across small gaps to other neurons or to muscle cells. A simple sensorimotor neuron circuit is shown in Figure 18.25. A stimulus from a muscle produces nerve impulses that travel to the spine. Here the signal is transmitted to a motor neuron, which in turn sends impulses to control the muscle. Figure 18.26 shows an electron microscope image of neurons in the brain.

The axon, which is an extension of the neuron cell, conducts electric impulses away from the cell body. Some axons are extremely long. In humans, for example, the axons connecting the spine with the fingers and toes are more than 1 m long. The neuron can transmit messages because of the special active electrical characteristics of the axon. (The axon acts as an active source of energy like a battery, rather than like a passive stretch of resistive wire.) Much of the information about the electrical and chemical properties of the axon is obtained by inserting small needlelike probes into it. Figure 18.27 shows an experimental setup.

Note that the outside of the axon is grounded, so all measured voltages are with respect to a zero potential on the outside. With these probes it is possible to inject current into the axon, measure the resulting action potential as a function of time at a fixed point, and sample the cell’s chemical composition. Such experiments are usually difficult to run because the diameter of most axons is very small. Even the largest axons in the human nervous system have a diameter of only about 10^{-4} cm. The giant squid, however, has an axon with a diameter of about 0.5 mm, which is large enough for the convenient insertion of probes. Much of the information about signal transmission in the nervous system has come from experiments with the squid axon.

In the aqueous environment of the body, salts and other molecules dissociate into positive and negative ions. As a result, body fluids are relatively good conductors of electricity. The inside of the axon is filled with an ionic fluid that is separated from the surrounding body fluid by a thin membrane that is only about 5 nm to 10 nm thick. The resistivities of the internal and external fluids are about the same, but their chemical compositions are substantially different. The external fluid is similar to seawater: its ionic solutes are mostly positive sodium ions and negative chloride ions. Inside the axon, the positive ions are mostly potassium ions and the negative ions are mostly large organic ions.

Ordinarily, the concentrations of sodium and potassium ions inside and outside the axon would be equalized by diffusion. The axon, however, is a living cell with an energy supply and can change the permeability of its membranes on a time scale of milliseconds.
When the axon is not conducting an electric pulse, the axon membrane is highly permeable to potassium ions, slightly permeable to sodium ions, and impermeable to large organic ions. Consequently, although sodium ions cannot easily enter the axon, potassium ions can leave it. As the potassium ions leave the axon, however, they leave behind large negative organic ions, which cannot follow them through the membrane. As a result, a negative potential builds up inside the axon with respect to the outside. The final negative potential reached, which has been measured at about \(-70\) mV, holds back the outflow of potassium ions so that at equilibrium, the concentration of ions is as we have stated.

The mechanism for the production of an electric signal by the neuron is conceptually simple, but was experimentally difficult to sort out. When a neuron changes its resting potential because of an appropriate stimulus, the properties of its membrane change locally. As a result, there is a sudden flow of sodium ions into the cell that lasts for about 2 ms. This flow produces the \(+30\) mV peak in the action potential shown in Figure 18.28a. Immediately after, there is an increase in potassium ion flow out of the cell that restores the resting action potential of \(-70\) mV in an additional 3 ms. Both the Na\(^+\) and K\(^+\) ion flows have been measured by using radioactive Na and K tracers. The nerve signal has been measured to travel along the axon at speeds of 50 m/s to about 150 m/s. This flow of charged particles (or signal transmission) in a nerve axon is unlike signal transmission in a metal wire. In an axon charges move in a direction perpendicular to the direction of travel of the nerve signal, and the nerve signal moves much more slowly than a voltage pulse traveling along a metallic wire.

Although the axon is a highly complex structure and much of how Na\(^+\) and K\(^+\) ion channels open and close is not understood, standard electric circuit concepts of current and capacitance can be used to analyze axons. It is left as a problem (Problem 41) to show that the axon, having equal and opposite charges separated by a thin dielectric membrane, acts like a capacitor.

SUMMARY

18.1 Sources of emf

Any device, such as a battery or generator, that increases the electric potential energy of charges in an electric circuit is called a source of emf. Batteries convert chemical energy into electrical potential energy, and generators convert mechanical energy into electrical potential energy. The terminal voltage \(\Delta V\) of a battery is given by

\[
\Delta V = \mathcal{E} - Ir
\]

[18.1]
where E is the emf of the battery, I is the current, and r is the internal resistance of the battery. Generally, the internal resistance is small enough to be neglected.

18.2 Resistors in Series

The equivalent resistance of a set of resistors connected in series is

$$R_{eq} = R_1 + R_2 + R_3 + \cdots$$ \[18.4\]

The current remains at a constant value as it passes through a series of resistors. The potential difference across any two resistors in series is different, unless the resistors have the same resistance.

18.3 Resistors in Parallel

The equivalent resistance of a set of resistors connected in parallel is

$$\frac{1}{R_{eq}} = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3} + \cdots$$ \[18.6\]

The potential difference across any two parallel resistors is the same; the current in each resistor, however, will be different unless the resistances are equal.

18.4 Kirchhoff’s Rules and Complex DC Circuits

Complex circuits can be analyzed using Kirchhoff’s rules:

1. The sum of the currents entering any junction must equal the sum of the currents leaving that junction.
2. The sum of the potential differences across all the elements around any closed circuit loop must be zero.

The first rule, called the junction rule, is a statement of conservation of charge. The second rule, called the loop rule, is a statement of conservation of energy. Solving problems involves using these rules to generate as many equations as there are unknown currents. The equations can then be solved simultaneously.

18.5 RC Circuits

In a simple RC circuit with a battery, a resistor, and a capacitor in series, the charge on the capacitor increases according to the equation

$$q = Q(1 - e^{-t/RC})$$ \[18.7\]

The term RC in Equation 18.7 is called the time constant τ (Greek letter tau), so

$$\tau = RC$$ \[18.8\]

The time constant represents the time required for the charge to increase from zero to 63.2% of its maximum equilibrium value.

A simple RC circuit consisting of a charged capacitor in series with a resistor discharges according to the expression

$$q = Qe^{-t/RC}$$ \[18.9\]

Problems can be solved by substituting into these equations. The voltage ΔV across the capacitor at any time is obtained by dividing the charge by the capacitance: $\Delta V = q/C$. Using Kirchhoff’s loop rule yields the potential difference across the resistor. Ohm’s law applied to the resistor then gives the current.

Multiple-Choice Questions

1. The terminals of a battery are connected across two different resistors in series. Which of the following statements are correct? (There may be more than one correct statement.) (a) The smaller resistor carries more current. (b) The larger resistor carries less current. (c) The current in each resistor is the same. (d) The voltage difference across each resistor is the same. (e) The voltage difference is greatest across the resistor closest to the positive terminal.

2. The terminals of a battery are connected across two different resistors in parallel. Which of the following statements are correct? (There may be more than one correct statement.) (a) The larger resistor carries more current than the smaller resistor. (b) The larger resistor carries less current than the smaller resistor. (c) The voltage difference across each resistor is the same. (d) The voltage difference across the larger resistor is greater than the voltage difference across the smaller resistor. (e) The voltage difference is greater across the resistor closer to the battery.

3. A 1.00-Ω and a 2.00-Ω resistor are in parallel. What is the equivalent single resistance? (a) 1.50 Ω (b) 3.00 Ω (c) 0.667 Ω (d) 0.333 Ω (e) 1.33 Ω

4. Two lightbulbs are in series, one operating at 120 W and the other operating at 60.0 W. If the voltage drop across the series combination is 120 V, what is the current in the circuit? (a) 1.0 A (b) 1.5 A (c) 2.0 A (d) 2.5 A (e) 3.0 A

5. When connected to a 120 V source, an electric heater is rated at 1200 W and a toaster at 600 W. If both appliances are operating in parallel on a 120-V circuit, what total current is delivered by an external source? (a) 12 A (b) 24 A (c) 32 A (d) 8.0 A (e) 15 A

6. What is the current in the 10.0-Ω resistance in the circuit shown in Figure MCQ18.6? (a) 0.59 A (b) 1.0 A (c) 11.2 A (d) 16.0 A (e) 5.3 A

7. FIGURE MCQ18.6

7. Which of the following equations is not a consequence of Kirchhoff’s laws, when applied to Figure MCQ18.7?

For additional student resources, go to www.serwayphysics.com
(a) \(9 - l_1 - 2l_2 = 0\)
(b) \(l_1 + l_2 - l_3 = 0\)
(c) \(4 - 2l_2 - 3l_1 = 0\)
(d) \(5 - l_1 - 3l_2 = 0\)
(e) All these equations are correct.

FIGURE MCQ18.7

8. If the terminals of a battery are connected across two identical resistors in series, the total power delivered by the battery is 8.0 W. If the same battery is connected across the resistors in parallel, what is the total power delivered by the battery?
(a) 16 W
(b) 32 W
(c) 2.0 W
(d) 4.0 W
(e) 8.0 W

9. What is the time constant of the circuit shown in Figure MCQ18.9? Each of the five resistors has resistance \(R\), and each of the five capacitors has capacitance \(C\). The internal resistance of the battery is negligible.
(a) \(RC\)
(b) \(5RC\)
(c) \(10RC\)
(d) \(25RC\)
(e) None of these answers is correct.

FIGURE MCQ18.9

10. The capacitor in Figure MCQ18.10 has a large capacitance and is initially uncharged. After the switch is closed, what happens to the lightbulb?
(a) It never glows because the capacitor represents an open circuit.
(b) It glows only after the capacitor is fully charged.
(c) It glows for a very short time as the capacitor is being charged.
(d) It glows continuously.
(e) It glows intermittently.

FIGURE MCQ18.10

11. Several resistors are connected in parallel. Which of the following statements are true of the corresponding equivalent resistance?
There may be more than one correct statement.
(a) It is greater than the resistance of any of the individual resistors.
(b) It is less than the resistance of any of the individual resistors.
(c) It is dependent on the voltage applied across the series.
(d) It is equal to the sum of the resistances of all the resistors in the series.
(e) It is equal to the reciprocal of the sum of the inverses of the resistances of all the resistors.

FIGURE MCQ18.13

12. Several resistors are connected in series. Which of the following statements are true of the corresponding equivalent resistance?
There may be more than one correct statement.
(a) It is greater than the resistance of any of the individual resistors.
(b) It is less than the resistance of any of the individual resistors.
(c) It is dependent on the voltage applied across the group.
(d) It is equal to the sum of the resistances of all the individual resistors.
(e) It is equal to the reciprocal of the sum of the inverses of the resistances of all the resistors.

13. The capacitor in Figure MCQ18.13 is initially uncharged. When the switch is closed at \(t = 0\) s, what is the voltage drop across the capacitor after one time constant has elapsed?
(a) 2.05 V
(b) 3.25 V
(c) 6.63 V
(d) 3.79 V
(e) 4.43 V

Conceptual Questions

1. Is the direction of current in a battery always from the negative terminal to the positive one? Explain.

2. Given three lightbulbs and a battery, sketch as many different circuits as you can.

3. Suppose the energy transferred to a dead battery during charging is \(W\). The recharged battery is then used until fully discharged again. Is the total energy transferred out of the battery during use also \(W\)?

4. A short circuit is a circuit containing a path of very low resistance in parallel with some other part of the circuit. Discuss the effect of a short circuit on the portion of the circuit it parallels. Use a lamp with a frayed line cord as an example.

5. If you have your headlights on while you start your car, why do they dim while the car is starting?

6. If electrical power is transmitted over long distances, the resistance of the wires becomes significant. Why? Which mode of transmission would result in less energy loss, high current and low voltage or low current and high voltage? Discuss.

7. Connecting batteries in series increases the emf applied to a circuit. What advantage might there be to connecting them in parallel?

8. Two sets of Christmas lights are available. For set A, when one bulb is removed, the remaining bulbs remain illuminated. For set B, when one bulb is removed, the
remaining bulbs do not operate. Explain the difference in wiring for the two sets.

9. Suppose a parachutist lands on a high-voltage wire and grabs the wire as she prepares to be rescued. Will she be electrocuted? If the wire then breaks, should she continue to hold onto the wire as she falls to the ground?

10. (a) Two resistors are connected in series across a battery. Is the power delivered to each resistor (i) the same or (ii) not necessarily the same? (b) Two resistors are connected in parallel across a battery. Is the power delivered to each resistor (i) the same or (ii) not necessarily the same?

11. Why is it possible for a bird to sit on a high-voltage wire without being electrocuted? (See Fig. CQ18.11.)

12. A ski resort consists of a few chairlifts and several interconnected downhill runs on the side of a mountain, with a lodge at the bottom. The lifts are analogous to batteries, and the runs are analogous to resistors. Describe how two runs can be in series. Describe how three runs can be in parallel. Sketch a junction of one lift and two runs. One of the skiers is carrying an altimeter. State Kirchhoff’s junction rule and Kirchhoff’s loop rule for ski resorts.

13. Embodied in Kirchhoff’s rules are two conservation laws. What are they?

14. Why is it dangerous to turn on a light when you are in a bathtub?

PROBLEMS

The Problems for this chapter may be assigned online at WebAssign.

1, 2, 3 = straightforward, intermediate, challenging

- GP = denotes guided problem
- ECP = denotes enhanced content problem
- /H11005 = biomedical application
- □ = denotes full solution available in Student Solutions Manual/Study Guide

SECTION 18.1 SOURCES OF EMF

SECTION 18.2 RESISTORS IN SERIES

SECTION 18.3 RESISTORS IN PARALLEL

1. A battery having an emf of 9.00 V delivers 117 mA when connected to a 72.0-Ω load. Determine the internal resistance of the battery.

2. Three 9.0-Ω resistors are connected in series with a 12-V battery. Find (a) the equivalent resistance of the circuit and (b) the current in each resistor. (c) Repeat for the case in which all three resistors are connected in parallel across the battery.

3. A lightbulb marked “75 W [at] 120 V” is screwed into a socket at one end of a long extension cord in which each of the two conductors has a resistance of 0.800 Ω. The other end of the extension cord is plugged into a 120-V outlet. Draw a circuit diagram, and find the actual power of the bulb in the circuit described.

4. (a) Find the current in a 8.00-Ω resistor connected to a battery that has an internal resistance of 0.15 Ω if the voltage across the battery (the terminal voltage) is 9.00 V. (b) What is the emf of the battery?

5. (a) Find the equivalent resistance between points a and b in Figure P18.5. (b) Calculate the current in each resistor if a potential difference of 34.0 V is applied between points a and b.

6. Consider the combination of resistors shown in Figure P18.6. (a) Find the equivalent resistance between point a and b. (b) If a voltage of 35 V is applied between points a and b, find the current in each resistor.
7. What is the equivalent resistance of the combination of identical resistors between points \(a \) and \(b \) in Figure P18.7?

8. \(\text{GP} \) Consider the circuit shown in Figure P18.8. (a) Calculate the equivalent resistance of the 10.0-\(\Omega \) and 5.00-\(\Omega \) resistors connected in parallel. (b) Using the result of part (a), calculate the combined resistance of the 10.0-\(\Omega \), 5.00-\(\Omega \), and 4.00-\(\Omega \) resistors. (c) Calculate the equivalent resistance of the combined resistance found in part (b) and the parallel 3.00-\(\Omega \) resistor. (d) Combine the equivalent resistance found in part (c) with the 2.00-\(\Omega \) resistor. (e) Calculate the total current in the circuit. (f) What is the voltage drop across the 2.00-\(\Omega \) resistor? (g) Subtracting the result of part (f) from the battery voltage, find the voltage across the 3.00-\(\Omega \) resistor. (h) Calculate the current in the 3.00-\(\Omega \) resistor.

9. Consider the circuit shown in Figure P18.9. Find (a) the current in the 20.0-\(\Omega \) resistor and (b) the potential difference between points \(a \) and \(b \).

10. \(\text{ECP} \) Consider the two circuits shown in Figure P18.10 in which the lightbulbs and batteries are identical. The resistance of each lightbulb is \(R \). (a) Find the currents in each lightbulb. (b) How does the brightness of B compare with that of C? Explain. (c) How does the brightness of A compare with that of B and C? Explain.

11. The resistance between terminals \(a \) and \(b \) in Figure P18.11 is 75 \(\Omega \). If the resistors labeled \(R \) have the same value, determine \(R \).

12. \(\text{ECP} \) Three identical resistors are connected as shown in Figure P18.12. The maximum power that can safely be delivered by a battery connected between \(a \) and \(b \) is 24 W. (a) What is the equivalent resistance between points \(a \) and \(b' \)? (b) Find an expression for the maximum voltage that can be applied between \(a \) and \(b' \). (c) What is the power delivered to each resistor when the maximum voltage is applied between \(a \) and \(b' \)?

13. Find the current in the 12-\(\Omega \) resistor in Figure P18.13.

14. \(\text{ECP} \) (a) Is it possible to reduce the circuit shown in Figure P18.14 (page 620) to a single equivalent resistor connected across the battery? Explain. (b) Find the current in the 2.00-\(\Omega \) resistor. (c) Calculate the power delivered by the battery to the circuit.
15. (a) You need a 45-Ω resistor, but the stockroom has only 20-Ω and 50-Ω resistors. How can the desired resistance be achieved under these circumstances? (b) What can you do if you need a 35-Ω resistor?

SECTION 18.4 KIRCHHOFF’S RULES AND COMPLEX DC CIRCUITS

Note: For some circuits, the currents are not necessarily in the direction shown.

16. (a) Find the current in each resistor of Figure P18.16 by using the rules for resistors in series and parallel. (b) Write three independent equations for the three currents using Kirchoff’s laws: one with the node rule; a second using the loop rule through the battery, the 6.0-Ω resistor, and the 24.0-Ω resistor; and the third using the loop rule through the 12.0-Ω and 24.0-Ω resistors. Solve to check the answers found in part (a).

17. The ammeter shown in Figure P18.17 reads 2.00 A. Find I_1, I_2, and E.

18. Determine the potential difference ΔV_{ab} for the circuit in Figure P18.18.

19. Figure P18.19 shows a circuit diagram. Determine (a) the current, (b) the potential of wire A relative to ground, and (c) the voltage drop across the 1 500-Ω resistor.

20. In the circuit of Figure P18.20, the current I_1 is 3.0 A and the values of E and R are unknown. What are the currents I_2 and I_3?

21. (a) In Figure P18.21 find the current in each resistor and (b) the power delivered to each resistor.

22. Four resistors are connected to a battery with a terminal voltage of 12 V, as shown in Figure P18.22. (a) How would you reduce the circuit to an equivalent single resistor connected to the battery? Use this procedure to find the equivalent resistance of the circuit. (b) Find the current delivered by the battery to this equivalent resistance. (c) Determine the power delivered by the battery. (d) Determine the power delivered to the 50.0-Ω resistor.
23. Using Kirchhoff’s rules, (a) find the current in each resistor shown in Figure P18.23 and (b) find the potential difference between points c and f.

24. Two 1.50-V batteries—with their positive terminals in the same direction—are inserted in series into the barrel of a flashlight. One battery has an internal resistance of 0.255 Ω, the other an internal resistance of 0.153 Ω. When the switch is closed, a current of 0.600 A passes through the lamp. (a) What is the lamp’s resistance? (b) What fraction of the power dissipated is dissipated in the batteries?

25. Can the circuit shown in Figure P18.25 be reduced to a single resistor connected to the batteries? Explain. (b) Calculate each of the unknown currents I_1, I_2, and I_3 for the circuit.

26. A dead battery is charged by connecting it to the live battery of another car with jumper cables (Fig. P18.26). Determine the current in the starter and in the dead battery.

27. Can the circuit shown in Figure P18.27 be reduced to a single resistor connected to the batteries? Explain. (b) Find the magnitude of the current and its direction in each resistor.

28. For the circuit shown in Figure P18.28, use Kirchhoff’s rules to obtain equations for (a) the upper loop, (b) the lower loop, and (c) the node on the left side. In each case suppress units for clarity and simplify, combining like terms. (d) Solve the node equation for I_{36}. (e) Using the equation found in (d), eliminate I_{36} from the equation found in part (b). (f) Solve the equations found in part (a) and part (e) simultaneously for the two unknowns for I_{12} and I_{18}, respectively. (g) Substitute the answers found in part (f) into the node equation found in part (d), solving for I_{36}. (h) What is the significance of the negative answer for I_{12}?

29. Find the potential difference across each resistor in Figure P18.29.

30. Show that $t = RC$ has units of time.

31. Consider the series RC-circuit shown in Active Figure 18.16 for which $R = 75.0 \, \text{kΩ}$, $C = 25.0 \, \text{μF}$, and $E = 12.0 \, \text{V}$. Find (a) the time constant of the circuit and (b) the charge on the capacitor one time constant after the switch is closed.

32. An uncharged capacitor and a resistor are connected in series to a source of emf. If $E = 9.00 \, \text{V}$, $C = 20.0 \, \text{μF}$, and $R = 100 \, \text{Ω}$, find (a) the time constant of the circuit, (b) the maximum charge on the capacitor, and (c) the charge on the capacitor after one time constant.
33. Consider a series RC circuit for which \(R = 1.0 \, \text{M} \Omega \), \(C = 5.0 \, \mu \text{F} \), and \(V = 30 \, \text{V} \). Find the charge on the capacitor 10 s after the switch is closed.

34. A series combination of a 12 M\(\Omega \) resistor and an unknown capacitor is connected to a 12 V battery. One second after the circuit is completed, the voltage across the capacitor is 10 V. Determine the capacitance of the capacitor.

35. A charged capacitor is connected to a resistor and a switch as in Active Figure 18.17. The circuit has a time constant of 1.5 s. After the switch is closed, the charge on the capacitor is 75% of its initial charge. (a) Find the time it takes to reach this charge. (b) If \(R = 250 \, \text{k} \Omega \), what is the value of \(C \)?

36. A series RC circuit has a time constant of 0.960 s. The battery has an emf of 48.0 V, and the maximum current in the circuit is 0.500 mA. What are (a) the value of the capacitance and (b) the charge stored in the capacitor 1.92 s after the switch is closed?

SECTION 18.6 HOUSEHOLD CIRCUITS

37. What minimum number of 75-W lightbulbs must be connected in parallel to a single 120-V household circuit to trip a 30.0-A circuit breaker?

38. A lamp (\(R = 150 \, \Omega \)), an electric heater (\(R = 25 \, \Omega \)), and a fan (\(R = 50 \, \Omega \)) are connected in parallel across a 120-V line. (a) What total current is supplied to the circuit? (b) What is the voltage across the fan? (c) What is the current in the lamp? (d) What power is expended in the heater?

39. A heating element in a stove is designed to dissipate 3,000 W when connected to 240 V. (a) Assuming the resistance is constant, calculate the current in the heating element if it is connected to 120 V. (b) Calculate the power it dissipates at that voltage.

40. A coffee maker is rated at 1 200 W, a toaster at 1 100 W, and a waffle maker at 1 400 W. The three appliances are connected in parallel to a common 120-V household circuit. (a) What is the current in each appliance when operating independently? (b) What total current is delivered to the appliances when all are operating simultaneously? (c) Is a 15-A circuit breaker sufficient in this situation? Explain.

SECTION 18.8 CONDUCTION OF ELECTRICAL SIGNALS BY NEURONS

41. Assume a length of axon membrane of about 0.10 m is excited by an action potential (length excited = nerve speed \(\times \) pulse duration = 50.0 m/s \(\times \) 2.0 \(\times \) \(10^{-3} \) s = 0.10 m). In the resting state, the outer surface of the axon wall is charged positively with K\(^+\) ions and the inner wall has an equal and opposite charge of negative organic ions, as shown in Figure P18.41. Model the axon as a parallel-plate capacitor and take \(C = \varepsilon_0 A/d \) and \(Q = C \Delta V \) to investigate the charge as follows. Use typical values for a cylindrical axon of cell wall thickness \(d = 1.0 \times 10^{-3} \) m, axon radius \(r = 1.0 \times 10^{4} \) \(\mu \)m, and cell wall dielectric constant \(\varepsilon = 3.0 \). (a) Calculate the positive charge on the outside of a 0.10-m piece of axon when it is not conducting an electric pulse. How many K\(^+\) ions are on the outside of the axon assuming an initial potential difference of \(7.0 \times 10^{-2} \) V? Is this a large charge per unit area? (b) If it takes 2.0 ms for the Na\(^+\) ions to enter the axon, what is the average current in the axon wall in this process? (d) How much energy does it take to raise the potential of the inner axon wall to \(+3.0 \times 10^{-2} \) V, starting from the resting potential of \(-7.0 \times 10^{-2} \) V?
46. A circuit shown in Figure P18.46, the voltmeter reads 6.0 V and the ammeter reads 3.0 mA. Find (a) the value of \(R \), (b) the emf of the battery, and (c) the voltage across the 3.0 kV resistor. (d) What assumptions did you have to make to solve this problem?

47. Find (a) the equivalent resistance of the circuit in Figure P18.47, (b) each current in the circuit, (c) the potential difference across each resistor, and (d) the power dissipated by each resistor.

48. Three 60.0-W, 120-V lightbulbs are connected across a 120-V power source, as shown in Figure P18.48. Find (a) the total power delivered to the three bulbs and (b) the potential difference across each bulb. Assume the resistance of each bulb is constant (even though, in reality, the resistance increases markedly with current).

49. An automobile battery has an emf of 12.6 V and an internal resistance of 0.080 \(\Omega \). The headlights have a total resistance of 5.00 \(\Omega \) (assumed constant). What is the potential difference across the headlight bulbs (a) when they are the only load on the battery and (b) when the starter motor is operated, taking an additional 35.0 A from the battery?

50. In Figure P18.50 suppose the switch has been closed for a length of time sufficiently long for the capacitor to become fully charged. Find (a) the steady-state current in each resistor and (b) the charge on the capacitor.

51. A circuit consists of three identical lamps, each of resistance \(R \), connected to a battery as in Figure P18.51. (a) Calculate an expression for the equivalent resistance of the circuit when the switch is open. Repeat the calculation when the switch is closed. (b) Write an expression for the power supplied by the battery when the switch is open. Repeat the calculation when the switch is closed. (c) Using the results already obtained, explain what happens to the brightness of the lamps when the switch is closed.

52. The resistance between points \(a \) and \(b \) in Figure P18.52 drops to one-half its original value when switch \(S \) is closed. Determine the value of \(R \).

53. A generator has a terminal voltage of 110 V when it delivers 10.0 A and 106 V when it delivers 30.0 A. Calculate the emf and the internal resistance of the generator.

54. An emf of 10 V is connected to a series \(RC \) circuit consisting of a resistor of 2.0 \(\times 10^6 \) \(\Omega \) and a capacitor of 3.0 \(\mu F \). Find the time required for the charge on the capacitor to reach 90% of its final value.

55. The student engineer of a campus radio station wishes to verify the effectiveness of the lightning rod on the antenna mast (Fig. P18.55, page 624). The unknown resistance \(R_x \) is between points \(C \) and \(E \). Point \(E \) is a “true ground,” but is inaccessible for direct measurement because the stratum in which it is located is several meters below Earth’s
56. The resistor R in Figure P18.56 dissipates 20 W of power. Determine the value of R.

57. A voltage ΔV is applied to a series configuration of n resistors, each of resistance R. The circuit components are reconnected in a parallel configuration, and voltage ΔV is again applied. Show that the power consumed by the series configuration is $1/n^2$ times the power consumed by the parallel configuration.

58. For the network in Figure P18.58, show that the resistance between points a and b is $R_{ab} = \frac{R_1 R_2}{R_1 + R_2}$. (Hint: Connect a battery with emf E across points a and b and determine E/I, where I is the current in the battery.)

59. A battery with an internal resistance of 10.0 Ω produces an open-circuit voltage of 12.0 V. A variable load resistance with a range from 0 to 30.0 Ω is connected across the battery. (Note: A battery has a resistance that depends on the condition of its chemicals and that increases as the battery ages. This internal resistance can be represented in a simple circuit diagram as a resistor in series with the battery.) (a) Graph the power dissipated in the load resistor as a function of the load resistance. (b) With your graph, demonstrate the following important theorem: The power delivered to a load is a maximum if the load resistance equals the internal resistance of the source.

60. The circuit in Figure P18.60 contains two resistors, $R_1 = 2.0 \, \text{k}\Omega$ and $R_2 = 3.0 \, \text{k}\Omega$, and two capacitors, $C_1 = 2.0 \, \mu\text{F}$ and $C_2 = 3.0 \, \mu\text{F}$, connected to a battery with emf $E = 120 \, \text{V}$. If there are no charges on the capacitors before switch S is closed, determine the charges q_1 and q_2 on capacitors C_1 and C_2, respectively, as functions of time, after the switch is closed. (Hint: First reconstruct the circuit so that it becomes a simple RC circuit containing a single resistor and single capacitor in series, connected to the battery, and then determine the total charge q stored in the circuit.)

61. Consider the circuit shown in Figure P18.61. Find (a) the potential difference between points a and b and (b) the current in the 20.0 Ω resistor.

62. In Figure P18.62, $R_1 = 0.100 \, \Omega$, $R_2 = 1.00 \, \Omega$, and $R_3 = 10.0 \, \Omega$. Find the equivalent resistance of the circuit and the current in each resistor when a 5.00-V power supply is connected between (a) points A and B, (b) points A and C, and (c) points A and D.

63. What are the expected readings of the ammeter and voltmeter for the circuit in Figure P18.63?
64. Consider the two arrangements of batteries and bulbs shown in Figure P18.64. The two bulbs are identical and have resistance \(R \), and the two batteries are identical with output voltage \(\Delta V \). (a) In case 1, with the two bulbs in series, compare the brightness of each bulb, the current in each bulb, and the power delivered to each bulb. (b) In case 2, with the two bulbs in parallel, compare the brightness of each bulb, the current in each bulb, and the power supplied to each bulb. (c) Which bulbs are brighter, those in case 1 or those in case 2? (d) In each case, if one bulb fails, will the other go out as well? If the other bulb doesn’t fail, will it get brighter or stay the same? (Problem 64 is courtesy of E. F. Redish. For other problems of this type, visit http://www.physics.umd.edu/perg/)

65. The given pair of capacitors in Figure P18.65 are fully charged by a 12.0-V battery. The battery is disconnected and the circuit closed. After 1.00 ms, how much charge remains on (a) the 3.00-\(\mu \)F capacitor? (b) The 2.00-\(\mu \)F capacitor? (c) What is the current in the resistor?

66. What is the equivalent resistance of the collection of resistors shown in Figure P18.66?

67. An electric eel generates electric currents through its highly specialized Hunter’s organ, in which thousands of disk-shaped cells called electrocytes are lined up in series, very much in the same way batteries are lined up inside a flashlight. When activated, each electrocyte can maintain a potential difference of about 150 mV at a current of 1 A for about 2.0 ms. Suppose a grown electric eel has \(4.0 \times 10^3 \) electrocytes and can deliver up to 300 shocks in rapid series over about 1 s. (a) What maximum electrical power can an electric eel generate? (b) Approximately how much energy does it release in one shock? (c) How high would a mass of 1 kg have to be lifted so that its gravitational potential energy equals the energy released in 300 such shocks?
Aurora borealis, the northern lights. Displays such as this one are caused by cosmic ray particles trapped in the magnetic field of Earth. When the particles collide with atoms in the atmosphere, they cause the atoms to emit visible light.

19.1 Magnets

19.2 Earth’s Magnetic Field

19.3 Magnetic Fields

19.4 Magnetic Force on a Current-Carrying Conductor

19.5 Torque on a Current Loop and Electric Motors

19.6 Motion of a Charged Particle in a Magnetic Field

19.7 Magnetic Field of a Long, Straight Wire and Ampère’s Law

19.8 Magnetic Force Between Two Parallel Conductors

19.9 Magnetic Fields of Current Loops and Solenoids

19.10 Magnetic Domains

MAGNETISM

In terms of applications, magnetism is one of the most important fields in physics. Large electromagnets are used to pick up heavy loads. Magnets are used in such devices as meters, motors, and loudspeakers. Magnetic tapes and disks are used routinely in sound- and video-recording equipment and to store computer data. Intense magnetic fields are used in magnetic resonance imaging (MRI) devices to explore the human body with better resolution and greater safety than x-rays can provide. Giant superconducting magnets are used in the cyclotrons that guide particles into targets at nearly the speed of light. Rail guns (Fig. 19.1) use magnetic forces to fire high-speed projectiles, and magnetic bottles hold antimatter, a possible key to future space propulsion systems.

Magnetism is closely linked with electricity. Magnetic fields affect moving charges, and moving charges produce magnetic fields. Changing magnetic fields can even create electric fields. These phenomena signify an underlying unity of electricity and magnetism, which James Clerk Maxwell first described in the 19th century. The ultimate source of any magnetic field is electric current.

19.1 MAGNETS

Most people have had experience with some form of magnet. You are most likely familiar with the common iron horseshoe magnet that can pick up iron-containing objects such as paper clips and nails. In the discussion that follows, we assume the magnet has the shape of a bar. Iron objects are most strongly attracted to either end of such a bar magnet, called its poles. One end is called the north pole and the other the south pole. The names come from the behavior of a magnet in the presence of Earth’s magnetic field. If a bar magnet is suspended from its midpoint by a piece of string so that it can swing freely in a horizontal plane, it will rotate until its north pole points to the north and its south pole points to the south. The same idea is used to construct a simple compass. Magnetic poles also exert attractive or repulsive forces on each other similar to the electrical forces between
charged objects. In fact, simple experiments with two bar magnets show that **like poles repel each other and unlike poles attract each other**.

Although the force between opposite magnetic poles is similar to the force between positive and negative electric charges, there is an important difference: positive and negative electric charges can exist in isolation of each other; north and south poles don't. No matter how many times a permanent magnet is cut, each piece always has a north pole and a south pole. There is some theoretical basis, however, for the speculation that magnetic monopoles (isolated north or south poles) exist in nature, and the attempt to detect them is currently an active experimental field of investigation.

An unmagnetized piece of iron can be magnetized by stroking it with a magnet. Magnetism can also be induced in iron (and other materials) by other means. For example, if a piece of unmagnetized iron is placed near a strong permanent magnet, the piece of iron eventually becomes magnetized. The process can be accelerated by heating and then cooling the iron.

Naturally occurring magnetic materials such as magnetite are magnetized in this way because they have been subjected to Earth's magnetic field for long periods of time. The extent to which a piece of material retains its magnetism depends on whether it is classified as magnetically hard or soft. **Soft** magnetic materials, such as iron, are easily magnetized, but also tend to lose their magnetism easily. In contrast, **hard** magnetic materials, such as cobalt and nickel, are difficult to magnetize, but tend to retain their magnetism.

In earlier chapters we described the interaction between charged objects in terms of electric fields. Recall that an electric field surrounds any stationary electric charge. The region of space surrounding a moving charge includes a magnetic field as well. A magnetic field also surrounds a properly magnetized magnetic material.

To describe any type of vector field, we must define its magnitude, or strength, and its direction. The direction of a magnetic field \(\mathbf{B} \) at any location is the direction in which the north pole of a compass needle points at that location. Active Figure 19.2a shows how the magnetic field of a bar magnet can be traced with the aid of a compass, defining a **magnetic field line**. Several magnetic field lines of a
bar magnet traced out in this way appear in the two-dimensional representation in Active Figure 19.2b. Magnetic field patterns can be displayed by placing small iron filings in the vicinity of a magnet, as in Figure 19.3.

Forensic scientists use a technique similar to that shown in Figure 19.3 to find fingerprints at a crime scene. One way to find latent, or invisible, prints is by sprinkling a powder of iron dust on a surface. The iron adheres to any perspiration or body oils that are present and can be spread around on the surface with a magnetic brush that never comes into contact with the powder or the surface.

19.2 EARTH’S MAGNETIC FIELD

A small bar magnet is said to have north and south poles, but it’s more accurate to say it has a “north-seeking” pole and a “south-seeking” pole. By these expressions, we mean that if such a magnet is used as a compass, one end will “seek,” or point to, the geographic North Pole of Earth and the other end will “seek,” or point to, the geographic South Pole of Earth. We conclude that the geographic North Pole of Earth corresponds to a magnetic south pole, and the geographic South Pole of Earth corresponds to a magnetic north pole. In fact, the configuration of Earth’s magnetic field, pictured in Figure 19.4, very much resembles what would be observed if a huge bar magnet were buried deep in the Earth’s interior.

If a compass needle is suspended in bearings that allow it to rotate in the vertical plane as well as in the horizontal plane, the needle is horizontal with respect to Earth’s surface only near the equator. As the device is moved northward, the
needle rotates so that it points more and more toward the surface of Earth. The angle between the direction of the magnetic field and the horizontal is called the dip angle. Finally, at a point just north of Hudson Bay in Canada, the north pole of the needle points directly downward, with a dip angle of 90°. That site, first found in 1832, is considered to be the location of the south magnetic pole of Earth. It is approximately 1300 miles from Earth’s geographic North Pole and varies with time. Similarly, Earth’s magnetic north pole is about 1200 miles from its geographic South Pole. This means that compass needles point only approximately north. The difference between true north, defined as the geographic North Pole, and north indicated by a compass varies from point to point on Earth, a difference referred to as magnetic declination. For example, along a line through South Carolina and the Great Lakes a compass indicates true north, whereas in Washington state it aligns 25° east of true north (Fig. 19.5).

Although the magnetic field pattern of Earth is similar to the pattern that would be set up by a bar magnet placed at its center, the source of Earth’s field can’t consist of large masses of permanently magnetized material. Earth does have large deposits of iron ore deep beneath its surface, but the high temperatures in the core prevent the iron from retaining any permanent magnetization. It’s considered more likely that the true source of Earth’s magnetic field is electric current in the liquid part of its core. This current, which is not well understood, may be driven by an interaction between the planet’s rotation and convection in the hot liquid core. There is some evidence that the strength of a planet’s magnetic field is related to the planet’s rate of rotation. For example, Jupiter rotates faster than Earth, and recent space probes indicate that Jupiter’s magnetic field is stronger than Earth’s, even though Jupiter lacks an iron core. Venus, on the other hand, rotates more slowly than Earth, and its magnetic field is weaker. Investigation into the cause of Earth’s magnetism continues.

An interesting fact concerning Earth’s magnetic field is that its direction reverses every few million years. Evidence for this phenomenon is provided by basalt (an iron-containing rock) that is sometimes spewed forth by volcanic activity on the ocean floor. As the lava cools, it solidifies and retains a picture of the direction of Earth’s magnetic field. When the basalt deposits are dated, they provide evidence for periodic reversals of the magnetic field. The cause of these field reversals is still not understood.

It has long been speculated that some animals, such as birds, use the magnetic field of Earth to guide their migrations. Studies have shown that a type of anaerobic bacterium that lives in swamps has a magnetized chain of magnetite as part of its internal structure. (The term anaerobic means that these bacteria live and grow without oxygen; in fact, oxygen is toxic to them.) The magnetized chain acts as a compass needle that enables the bacteria to align with Earth’s magnetic field. When they find themselves out of the mud on the bottom of the swamp, they return to their oxygen-free environment by following the magnetic field lines of Earth. Further evidence for their magnetic sensing ability is that bacteria found in the northern hemisphere have internal magnetite chains that are opposite in polarity to those of similar bacteria in the southern hemisphere. Similarly, in the northern hemisphere, Earth’s field has a downward component, whereas in the southern hemisphere it has an upward component. Recently, a meteorite originating on Mars has been found to contain a chain of magnetite. NASA scientists believe it may be a fossil of ancient Martian bacterial life.

The magnetic field of Earth is used to label runways at airports according to their direction. A large number is painted on the end of the runway so that it can be read by the pilot of an incoming airplane. This number describes the direction in which the airplane is traveling, expressed as the magnetic heading, in degrees measured clockwise from magnetic north divided by 10. A runway marked 9 would be directed toward the east (90° divided by 10), whereas a runway marked 18 would be directed toward magnetic south.
19.3 MAGNETIC FIELDS

Experiments show that a stationary charged particle doesn’t interact with a static magnetic field. When a charged particle is moving through a magnetic field, however, a magnetic force acts on it. This force has its maximum value when the charge moves in a direction perpendicular to the magnetic field lines, decreases in value at other angles, and becomes zero when the particle moves along the field lines. This is quite different from the electric force, which exerts a force on a charged particle whether it’s moving or at rest. Further, the electric force is directed parallel to the electric field whereas the magnetic force on a moving charge is directed perpendicular to the magnetic field.

In our discussion of electricity, the electric field at some point in space was defined as the electric force per unit charge acting on some test charge placed at that point. In a similar way, we can describe the properties of the magnetic field \(\mathbf{B} \) at some point in terms of the magnetic force exerted on a test charge at that point. Our test object is a charge \(q \) moving with velocity \(\mathbf{v} \). It is found experimentally that the strength of the magnetic force on the particle is proportional to the magnitude of the charge \(q \), the magnitude of the velocity \(\mathbf{v} \), the strength of the external magnetic field \(\mathbf{B} \), and the sine of the angle \(\theta \) between the direction of \(\mathbf{v} \) and the direction of \(\mathbf{B} \). These observations can be summarized by writing the magnitude of the magnetic force as

\[
F = qvB \sin \theta \tag{19.1}
\]

This expression is used to define the magnitude of the magnetic field as

\[
B = \frac{F}{qv \sin \theta} \tag{19.2}
\]

If \(F \) is in newtons, \(q \) in coulombs, and \(v \) in meters per second, the SI unit of magnetic field is the tesla (T), also called the weber (Wb) per square meter (1 T = 1 Wb/m\(^2\)). If a 1-C charge moves in a direction perpendicular to a magnetic field of magnitude 1 T with a speed of 1 m/s, the magnetic force exerted on the charge is 1 N. We can express the units of \(B \) as

\[
[B] = T = \frac{\text{Wb}}{\text{m}^2} = \frac{\text{N}}{\text{C} \cdot \text{m/s}} = \frac{\text{N}}{\text{A} \cdot \text{m}} \tag{19.3}
\]

In practice, the cgs unit for magnetic field, the gauss (G), is often used. The gauss is related to the tesla through the conversion

\[1 \text{ T} = 10^4 \text{ G} \]

Conventional laboratory magnets can produce magnetic fields as large as about 25 000 G, or 2.5 T. Superconducting magnets that can generate magnetic fields as great as \(3 \times 10^3 \text{ G} \), or 30 T, have been constructed. These values can be compared with the value of Earth’s magnetic field near its surface, which is about 0.5 G, or \(0.5 \times 10^{-4} \text{ T} \).
From Equation 19.1 we see that the force on a charged particle moving in a magnetic field has its maximum value when the particle’s motion is perpendicular to the magnetic field, corresponding to \(\theta = 90^\circ \), so that \(\sin \theta = 1 \). The magnitude of this maximum force has the value

\[
F_{\text{max}} = qvB \quad [19.4]
\]

Also from Equation 19.1, \(F \) is zero when \(\vec{v} \) is parallel to \(\vec{B} \) (corresponding to \(\theta = 0^\circ \) or \(180^\circ \)), so no magnetic force is exerted on a charged particle when it moves in the direction of the magnetic field or opposite the field.

Experiments show that the direction of the magnetic force is always perpendicular to both \(\vec{v} \) and \(\vec{B} \), as shown in Figure 19.6 for a positively charged particle. To determine the direction of the force, we employ right-hand rule number 1:

1. Point the fingers of your right hand in the direction of the velocity \(\vec{v} \).
2. Curl the fingers in the direction of the magnetic field \(\vec{B} \), moving through the smallest angle (as in Fig. 19.7).
3. Your thumb is now pointing in the direction of the magnetic force \(\vec{F} \) exerted on a positive charge.

If the charge is negative rather than positive, the force \(\vec{F} \) is directed opposite that shown in Figures 19.6 and 19.7. So if \(q \) is negative, simply use the right-hand rule to find the direction for positive \(q \) and then reverse that direction for the negative charge.

QUICK QUIZ 19.1 A charged particle moves in a straight line through a region of space. Which of the following answers must be true? (Assume any other fields are negligible.) The magnetic field (a) has a magnitude of zero (b) has a zero component perpendicular to the particle’s velocity (c) has a zero component parallel to the particle’s velocity in that region.

QUICK QUIZ 19.2 The north-pole end of a bar magnet is held near a stationary positively charged piece of plastic. Is the plastic (a) attracted, (b) repelled, or (c) unaffected by the magnet?

EXAMPLE 19.1 A Proton Traveling in Earth’s Magnetic Field

Goal Calculate the magnitude and direction of a magnetic force.

Problem A proton moves with a speed of \(1.00 \times 10^5 \) m/s through Earth’s magnetic field, which has a value of 55.0 \(\mu \text{T} \) at a particular location. When the proton moves eastward, the magnetic force acting on it is directed straight upward, and when it moves northward, no magnetic force acts on it. (a) What is the direction of the magnetic field, and (b) what is the strength of the magnetic force when the proton moves eastward? (c) Calculate the gravitational force on the proton and compare it with the magnetic force. Compare it also with the electric force if there were an electric field with a magnitude equal to \(E = 1.50 \times 10^2 \text{ N/C} \) at that location, a common value at Earth’s surface. Note that the mass of the proton is \(1.67 \times 10^{-27} \text{ kg} \).

Strategy The direction of the magnetic field can be found from an application of the right-hand rule, together with the fact that no force is exerted on the proton when it’s traveling north. Substituting into Equation 19.1 yields the magnitude of the magnetic field.

Solution

(a) Find the direction of the magnetic field.

No magnetic force acts on the proton when it’s going north, so the angle such a proton makes with the magnetic field direction must be either \(0^\circ \) or \(180^\circ \). Therefore, the magnetic field \(\vec{B} \) must point either north or south. Now apply the right-hand rule. When the particle travels east, the magnetic force is directed upward. Point your thumb in the direction of the force and your fingers in the direction of the velocity eastward. When you curl your fingers, they point north, which must therefore be the direction of the magnetic field.
(b) Find the magnitude of the magnetic force.

Substitute the given values and the charge of a proton into Equation 19.1. From part (a), the angle between the velocity \(\vec{v} \) of the proton and the magnetic field \(\vec{B} \) is 90.0°.

\[
F = qvB \sin \theta = (1.60 \times 10^{-19} \text{ C})(1.00 \times 10^{5} \text{ m/s}) \\
\times (55.0 \times 10^{-6} \text{ T}) \sin (90.0°) \\
= 8.80 \times 10^{-19} \text{ N}
\]

(c) Calculate the gravitational force on the proton and compare it with the magnetic force and also with the electric force if \(E = 1.50 \times 10^{5} \text{ N/C} \).

\[
F_{\text{grav}} = mg = (1.67 \times 10^{-27} \text{ kg})(9.80 \text{ m/s}^2) \\
= 1.64 \times 10^{-26} \text{ N}
\]

\[
F_{\text{elec}} = qE = (1.60 \times 10^{-19} \text{ C})(1.50 \times 10^{5} \text{ N/C}) \\
= 2.40 \times 10^{-17} \text{ N}
\]

Remarks: The information regarding a proton moving north was necessary to fix the direction of the magnetic field. Otherwise, an upward magnetic force on an eastward-moving proton could be caused by a magnetic field pointing anywhere northeast or northwest. Notice in part (c) the relative strengths of the forces, with the electric force larger than the magnetic force and both much larger than the gravitational force, all for typical field values found in nature.

QUESTION 19.1

An electron and proton moving with the same velocity enter a uniform magnetic field. In what two ways does the magnetic field affect the electron differently from the proton?

EXERCISE 19.1

Suppose an electron is moving due west in the same magnetic field as in Example 19.1 at a speed of \(2.50 \times 10^{5} \text{ m/s} \). Find the magnitude and direction of the magnetic force on the electron.

Answer: \(2.20 \times 10^{-18} \text{ N}, \) straight up. (Don’t forget, the electron is negatively charged!)

EXAMPLE 19.2 A Proton Moving in a Magnetic Field

Goal Calculate the magnetic force and acceleration when a particle moves at an angle other than 90° to the field.

Problem A proton moves at \(8.00 \times 10^{6} \text{ m/s} \) along the x-axis. It enters a region in which there is a magnetic field of magnitude 2.50 T, directed at an angle of 60.0° with the x-axis and lying in the xy-plane (Fig. 19.8). (a) Find the initial magnitude and direction of the magnetic force on the proton. (b) Calculate the proton’s initial acceleration.

Strategy Finding the magnitude and direction of the magnetic force requires substituting values into the equation for magnetic force, Equation 19.1, and using the right-hand rule. Applying Newton’s second law solves part (b).

Solution

(a) Find the magnitude and direction of the magnetic force on the proton.

Substitute \(v = 8.00 \times 10^{6} \text{ m/s} \), the magnetic field strength \(B = 2.50 \text{ T} \), the angle, and the charge of a proton into Equation 19.1:

\[
F = qvB \sin \theta \\
= (1.60 \times 10^{-19} \text{ C})(8.00 \times 10^{6} \text{ m/s})(2.50 \text{ T})(\sin 60°) \\
= 2.77 \times 10^{-12} \text{ N}
\]
Apply right-hand rule number 1 to find the initial direction of the magnetic force:

Point the fingers of the right hand in the x-direction (the direction of \vec{v}) and then curl them toward \vec{B}. The thumb points upward, in the positive z-direction.

(b) Calculate the proton’s initial acceleration.

Substitute the force and the mass of a proton into Newton’s second law:

$$ma = F \rightarrow (1.67 \times 10^{-27} \text{ kg})a = 2.77 \times 10^{-12} \text{ N}$$

$$a = 1.66 \times 10^{15} \text{ m/s}^2$$

Remarks The initial acceleration is also in the positive z-direction. Because the direction of \vec{v} changes, however, the subsequent direction of the magnetic force also changes. In applying right-hand rule number 1 to find the direction, it was important to take into consideration the charge. A negatively charged particle accelerates in the opposite direction.

QUESTION 19.2

Can a constant magnetic field change the speed of a charged particle? Explain.

EXERCISE 19.2

Calculate the acceleration of an electron that moves through the same magnetic field as in Example 19.2, at the same velocity as the proton. The mass of an electron is $9.11 \times 10^{-31} \text{ kg}$.

Answer $3.04 \times 10^{18} \text{ m/s}^2$ in the negative z-direction

19.4 MAGNETIC FORCE ON A CURRENT-CARRYING CONDUCTOR

If a magnetic field exerts a force on a single charged particle when it moves through a magnetic field, it should be no surprise that magnetic forces are exerted on a current-carrying wire as well (see Fig. 19.9). Because the current is a collection of many charged particles in motion, the resultant force on the wire is due to the sum of the individual forces on the charged particles. The force on the particles is transmitted to the “bulk” of the wire through collisions with the atoms making up the wire.

Some explanation is in order concerning notation in many of the figures. To indicate the direction of \vec{B}, we use the following conventions:

- If \vec{B} is directed into the page, as in Figure 19.10, we use a series of green crosses, representing the tails of arrows. If \vec{B} is directed out of the page, we use a series of green dots, representing the tips of arrows. If \vec{B} lies in the plane of the page, we use a series of green field lines with arrowheads.

The force on a current-carrying conductor can be demonstrated by hanging a wire between the poles of a magnet, as in Figure 19.10. In this figure, the magnetic field has been directed into the page. Thus, if a current is supplied to the wire, it will experience a force to the left (as shown in Figure 19.10b).

FIGURE 19.9 This apparatus demonstrates the force on a current-carrying conductor in an external magnetic field. Why does the bar swing away from the magnet after the switch is closed?

FIGURE 19.10 A segment of a flexible vertical wire partially stretched between the poles of a magnet, with the field (green crosses) directed into the page. (a) When there is no current in the wire, it remains vertical. (b) When the current is upward, the wire deflects to the left. (c) When the current is downward, the wire deflects to the right.
field is directed into the page and covers the region within the shaded area. The wire deflects to the right or left when it carries a current.

We can quantify this discussion by considering a straight segment of wire of length \(\ell \) and cross-sectional area \(A \) carrying current \(I \) in a uniform external magnetic field \(\mathbf{B} \), as in Figure 19.11. We assume that the magnetic field is perpendicular to the wire and is directed into the page. A force of magnitude \(F_{\text{max}} = qv_dB \) is exerted on each charge carrier in the wire, where \(v_d \) is the drift velocity of the charge. To find the total force on the wire, we multiply the force on one charge carrier by the number of carriers in the segment. Because the volume of the segment is \(\Delta V \), the number of carriers is \(n\Delta V \), where \(n \) is the number of carriers per unit volume. Hence, the magnitude of the total magnetic force on the wire of length \(\ell \) is as follows:

Total force = force on each charge carrier \(\times \) total number of carriers

\[
F_{\text{max}} = (qv_dB)(n\Delta V)
\]

This equation can be used only when the current and the magnetic field are at right angles to each other.

If the wire is not perpendicular to the field but is at some arbitrary angle, as in Figure 19.12, the magnitude of the magnetic force on the wire is

\[
F = BI\ell \sin \theta
\]

where \(\theta \) is the angle between \(\mathbf{B} \) and the direction of the current. The direction of this force can be obtained by the use of right-hand rule number 1. In this case, however, you must place your fingers in the direction of the positive current \(I \), rather than in the direction of \(\mathbf{v} \). The current, naturally, is made up of charges moving at some velocity, so this really isn’t a separate rule. In Figure 19.12 the direction of the magnetic force on the wire is out of the page.

Finally, when the current is either in the direction of the field or opposite the direction of the field, the magnetic force on the wire is zero.

A magnetic force acting on a current-carrying wire in a magnetic field is the operating principle of most speakers in sound systems. One speaker design, shown in Figure 19.13, consists of a coil of wire called the voice coil, a flexible paper cone that acts as the speaker, and a permanent magnet. The coil of wire surrounding the north pole of the magnet is shaped so that the magnetic field lines are directed radially outward from the coil’s axis. When an electrical signal is sent to the coil, producing a current in the coil as in Figure 19.13, a magnetic force to the left acts on the coil. (This can be seen by applying right-hand rule number 1 to each turn of wire.) When the current reverses direction, as it would for a current that varied sinusoidally, the magnetic force on the coil also reverses direction, and the cone, which is attached to the coil, accelerates to the right. An alternating current through the coil causes an alternating force on the coil, which results in vibrations of the cone.
The vibrating cone creates sound waves as it pushes and pulls on the air in front of it. In this way, a 1-kHz electrical signal is converted to a 1-kHz sound wave.

An application of the force on a current-carrying conductor is illustrated by the electromagnetic pump shown in Figure 19.14 (page 634). Artificial hearts require a pump to keep the blood flowing, and kidney dialysis machines also require a pump to assist the heart in pumping blood that is to be cleansed. Ordinary mechanical pumps create problems because they damage the blood cells as they move through the pump. The mechanism shown in the figure has demonstrated some promise in such applications. A magnetic field is established across a segment of the tube containing the blood, flowing in the direction of the velocity \(\vec{v} \). An electric current passing through the fluid in the direction shown has a magnetic force acting on it in the direction of \(\vec{v} \), as applying the right-hand rule shows. This force helps to keep the blood in motion.

APPLICATION

Electromagnetic Pumps for Artificial Hearts and Kidneys

APPLICATION Electromagnetic Pumps for Artificial Hearts and Kidneys

19.4 Magnetic Force on a Current-Carrying Conductor

APPL YING PHYSICS 19.2 LIGHTNING STRIKES

In a lightning strike there is a rapid movement of negative charge from a cloud to the ground. In what direction is a lightning strike deflected by Earth’s magnetic field?

Explanation The downward flow of negative charge in a lightning stroke is equivalent to a current moving upward. Consequently, we have an upward-moving current in a northward-directed magnetic field. According to right-hand rule number 1, the lightning strike would be deflected toward the west.

EXAMPLE 19.3 A Current-Carrying Wire in Earth’s Magnetic Field

Goal Compare the magnetic force on a current-carrying wire with the gravitational force exerted on the wire.

Problem A wire carries a current of 22.0 A from west to east. Assume the magnetic field of Earth at this location is horizontal and directed from south to north and it has a magnitude of \(0.500 \times 10^{-4} \, \text{T} \). (a) Find the magnitude and direction of the magnetic force on a 36.0-m length of wire. (b) Calculate the gravitational force on the same length of wire if it’s made of copper and has a cross-sectional area of \(2.50 \times 10^{-6} \, \text{m}^2 \).

Solution

(a) Calculate the magnetic force on the wire.

Substitute into Equation 19.6, using the fact that the magnetic field and the current are at right angles to each other:

\[
F = BIL \sin \theta = (0.500 \times 10^{-4} \, \text{T})(22.0 \, \text{A})(36.0 \, \text{m}) \sin 90.0^\circ
\]

\[
= 3.96 \times 10^{-2} \, \text{N}
\]

Apply right-hand rule number 1 to find the direction of the magnetic force:

With the fingers of your right hand pointing west in the direction of the current, curl them north in the direction of the magnetic field. Your thumb points upward.

(b) Calculate the gravitational force on the wire segment.

First, obtain the mass of the wire from the density of copper, the length, and cross-sectional area of the wire:

\[
m = \rho V = \rho (AC)
\]

\[
= (8.92 \times 10^3 \, \text{kg/m}^3)(2.50 \times 10^{-6} \, \text{m}^2 \cdot 36.0 \, \text{m})
\]

\[
= 0.803 \, \text{kg}
\]

To get the gravitational force, multiply the mass by the acceleration of gravity:

\[
F_{\text{grav}} = mg = 7.87 \, \text{N}
\]
Remarks This calculation demonstrates that under normal circumstances, the gravitational force on a current-carrying conductor is much greater than the magnetic force due to Earth’s magnetic field.

QUESTION 19.3
What magnetic force is exerted on a wire carrying current parallel to the direction of the magnetic field?

EXERCISE 19.3
What current would make the magnetic force in the example equal in magnitude to the gravitational force?

Answer \(4.37 \times 10^3\) A, a large current that would very rapidly heat and melt the wire.

19.5 TORQUE ON A CURRENT LOOP AND ELECTRIC MOTORS

In the preceding section we showed how a magnetic force is exerted on a current-carrying conductor when the conductor is placed in an external magnetic field. With this starting point, we now show that a torque is exerted on a current loop placed in a magnetic field. The results of this analysis will be of great practical value when we discuss generators and motors in Chapter 20.

Consider a rectangular loop carrying current \(I\) in the presence of an external uniform magnetic field in the plane of the loop, as shown in Figure 19.15a. The forces on the sides of length \(a\) are zero because these wires are parallel to the field. The magnitudes of the magnetic forces on the sides of length \(b\), however, are

\[
F_1 = F_2 = BIBb
\]

The direction of \(F_1\), the force on the left side of the loop, is out of the page and that of \(F_2\), the force on the right side of the loop, is into the page. If we view the loop from the side, as in Figure 19.15b, the forces are directed as shown. If we assume the loop is pivoted so that it can rotate about point \(O\), we see that these two forces produce a torque about \(O\) that rotates the loop clockwise. The magnitude of this torque, \(\tau_{max}\), is

\[
\tau_{max} = F_1 \frac{a}{2} + F_2 \frac{a}{2} = \left(BIBb \right) \frac{a}{2} + \left(BIBb \right) \frac{a}{2} = BIBa
\]

where the moment arm about \(O\) is \(a/2\) for both forces. Because the area of the loop is \(A = ab\), the torque can be expressed as

\[
\tau_{max} = BIA \quad [19.7]
\]

This result is valid only when the magnetic field is parallel to the plane of the loop, as in Figure 19.15b. If the field makes an angle \(\theta\) with a line perpendicular to the

![FIGURE 19.15](image.png)
plane of the loop, as in Figure 19.15c, the moment arm for each force is given by $(a/2) \sin \theta$. An analysis similar to the previous one gives, for the magnitude of the torque,

$$\tau = BIA \sin \theta$$ \hspace{1cm} [19.8]

This result shows that the torque has the maximum value BIA when the field is parallel to the plane of the loop ($\theta = 90^\circ$) and is zero when the field is perpendicular to the plane of the loop ($\theta = 0$). As seen in Figure 19.15c, the loop tends to rotate to smaller values of θ (so that the normal to the plane of the loop rotates toward the direction of the magnetic field).

Although the foregoing analysis was for a rectangular loop, a more general derivation shows that Equation 19.8 applies regardless of the shape of the loop. Further, the torque on a coil with N turns is

$$\tau = NIAB \sin \theta$$ \hspace{1cm} [19.9a]

The quantity $\mu = IAN$ is defined as the magnitude of a vector $\vec{\mu}$ called the magnetic moment of the coil. The vector $\vec{\mu}$ always points perpendicular to the plane of the loop(s) and is such that if the thumb of the right hand points in the direction of $\vec{\mu}$, the fingers of the right hand point in the direction of the current. The angle θ in Equations 19.8 and 19.9 lies between the directions of the magnetic moment $\vec{\mu}$ and the magnetic field \vec{B}. The magnetic torque can then be written

$$\tau = \mu B \sin \theta$$ \hspace{1cm} [19.9b]

QUICK QUIZ 19.3 A square and a circular loop with the same area lie in the xy-plane, where there is a uniform magnetic field \vec{B} pointing at some angle θ with respect to the positive z-direction. Each loop carries the same current, in the same direction. Which magnetic torque is larger? (a) the torque on the square loop (b) the torque on the circular loop (c) the torques are the same (d) more information is needed

EXAMPLE 19.4 The Torque on a Circular Loop in a Magnetic Field

Goal Calculate a magnetic torque on a loop of current.

Problem A circular wire loop of radius 1.00 m is placed in a magnetic field of magnitude 0.500 T. The normal to the plane of the loop makes an angle of 30.0° with the magnetic field (Fig. 19.16a). The current in the loop is 2.00 A in the direction shown. (a) Find the magnetic moment of the loop and the magnitude of the torque at this instant. (b) The same current is carried by the rectangular 2.00-m by 3.00-m coil with three loops shown in Figure 19.16b. Find the magnetic moment of the coil and the magnitude of the torque acting on the coil at that instant.

Strategy For each part, we just have to calculate the area, use it in the calculation of the magnetic moment, and multiply the result by $B \sin \theta$. Altogether, this process amounts to substituting values into Equation 19.9b.

FIGURE 19.16 (Example 19.4) (a) A circular current loop in an external magnetic field \vec{B}. (b) A rectangular current loop in the same field. (c) (Exercise 19.4)
Remarks
In calculating a magnetic torque, it’s not strictly necessary to calculate the magnetic moment. Instead, Equation 19.9a can be used directly.

QUESTION 19.4
What happens to the magnitude of the torque if the angle increases toward 90°? Goes beyond 90°?

EXERCISE 19.4
Suppose a right triangular coil with base of 2.00 m and height 3.00 m having two loops carries a current of 2.00 A as shown in Figure 19.16c. Find the magnetic moment and the torque on the coil. The magnetic field is again 0.500 T and makes an angle of 30.0° with respect to the normal direction.

Answers \(\mu = 12.0 \text{ A} \cdot \text{m}^2, \tau = 3.00 \text{ N} \cdot \text{m} \)

Electric Motors

It’s hard to imagine life in the 21st century without electric motors. Some appliances that contain motors include computer disk drives, CD players, VCR and DVD players, food processors and blenders, car starters, furnaces, and air conditioners. The motors convert electrical energy to kinetic energy of rotation and consist of a rigid current-carrying loop that rotates when placed in the field of a magnet.

As we have just seen (Fig. 19.15), the torque on such a loop rotates the loop to smaller values of \(\theta \) until the torque becomes zero, when the magnetic field is perpendicular to the plane of the loop and \(\theta = 0 \). If the loop turns past this angle and the current remains in the direction shown in the figure, the torque reverses direction and turns the loop in the opposite direction, that is, counterclockwise. To overcome this difficulty and provide continuous rotation in one direction, the current in the loop must periodically reverse direction. In alternating current (AC) motors, such a reversal occurs naturally 120 times each second. In direct current (DC) motors, the reversal is accomplished mechanically with split-ring contacts (commutators) and brushes, as shown in Active Figure 19.17.

Although actual motors contain many current loops and commutators, for simplicity Active Figure 19.17 shows only a single loop and a single set of split-ring contacts rigidly attached to and rotating with the loop. Electrical stationary contacts...
called *brushes* are maintained in electrical contact with the rotating split ring. These brushes are usually made of graphite because it is a good electrical conductor as well as a good lubricant. Just as the loop becomes perpendicular to the magnetic field and the torque becomes zero, inertia carries the loop forward in the clockwise direction and the brushes cross the gaps in the ring, causing the loop current to reverse its direction. This reversal provides another pulse of torque in the clockwise direction for another 180°, the current reverses, and the process repeats itself. Figure 19.18 shows a modern motor used to power a hybrid gas–electric car.

19.6 MOTION OF A CHARGED PARTICLE IN A MAGNETIC FIELD

Consider the case of a positively charged particle moving in a uniform magnetic field so that the direction of the particle’s velocity is *perpendicular to the field*, as in Active Figure 19.19. The label \mathbf{B}_m and the crosses indicate that \mathbf{B} is directed into the page. Application of the right-hand rule at point P shows that the direction of the magnetic force \mathbf{F} at that location is upward. The force causes the particle to alter its direction of travel and to follow a curved path. Application of the right-hand rule at any point shows that the magnetic force is always directed toward the center of the circular path; therefore, the magnetic force causes a centripetal acceleration, which changes only the direction of \mathbf{v} and not its magnitude. Because \mathbf{F} produces the centripetal acceleration, we can equate its magnitude, qvB, in this case, to the mass of the particle multiplied by the centripetal acceleration v^2/r. From Newton’s second law, we find that

$$F = qvB = \frac{mv^2}{r}$$

which gives

$$r = \frac{mv}{qB} \quad [19.10]$$

This equation says that the radius of the path is proportional to the momentum mv of the particle and is inversely proportional to the charge and the magnetic field. Equation 19.10 is often called the *cyclotron equation* because it’s used in the design of these instruments (popularly known as atom smashers).

If the initial direction of the velocity of the charged particle is not perpendicular to the magnetic field, as shown in Active Figure 19.20, the path followed by the particle is a spiral (called a helix) along the magnetic field lines.
Chapter 19
Magnetism

QUICK QUIZ 19.4
As a charged particle moves freely in a circular path in the presence of a constant magnetic field applied perpendicular to the particle's velocity, the particle's kinetic energy (a) remains constant, (b) increases, or (c) decreases.

APPLYING PHYSICS 19.3 TRAPPING CHARGES

Storing charged particles is important for a variety of applications. Suppose a uniform magnetic field exists in a finite region of space. Can a charged particle be injected into this region from the outside and remain trapped in the region by magnetic force alone?

Explanation
It's best to consider separately the components of the particle velocity parallel and perpendicular to the field lines in the region. There is no magnetic force on the particle associated with the velocity component parallel to the field lines, so that velocity component remains unchanged.

Now consider the component of velocity perpendicular to the field lines. This component will result in a magnetic force that is perpendicular to both the field lines and the velocity component itself. The path of a particle for which the force is always perpendicular to the velocity is a circle. The particle therefore follows a circular arc and exits the field on the other side of the circle, as shown in Figure 19.21 for a particle with constant kinetic energy. On the other hand, a particle can become trapped if it loses some kinetic energy in a collision after entering the field, as in Active Figure 19.20.

FIGURE 19.21 (Applying Physics 19.3)

Particles can be injected and contained if, in addition to the magnetic field, electrostatic fields are involved. These fields are used in the Penning trap. With these devices, it's possible to store charged particles for extended periods. Such traps are useful, for example, in the storage of antimatter, which disintegrates completely on contact with ordinary matter.

EXAMPLE 19.5 The Mass Spectrometer: Identifying Particles

Goal
Use the cyclotron equation to identify a particle.

Problem
A charged particle enters the magnetic field of a mass spectrometer at a speed of 1.79×10^6 m/s. It subsequently moves in a circular orbit with a radius of 16.0 cm in a uniform magnetic field of magnitude 0.350 T having a direction perpendicular to the particle's velocity. Find the particle's mass-to-charge ratio and identify it based on the table on page 641.

Strategy
After finding the mass-to-charge ratio with Equation 19.10, compare it with the values in the table, identifying the particle.

Solution
Write the cyclotron equation:

$$r = \frac{mv}{qB}$$

Solve this equation for the mass divided by the charge, m/q, and substitute values:

$$\frac{m}{q} = \frac{rB}{v} = \frac{(0.160 \text{ m})(0.350 \text{ T})}{1.79 \times 10^6 \text{ m/s}} = 3.13 \times 10^{-8} \text{ kg/C}$$
Identify the particle from the table. All particles are completely ionized.

<table>
<thead>
<tr>
<th>Particle</th>
<th>m (kg)</th>
<th>q (C)</th>
<th>m/q (kg/C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hydrogen</td>
<td>1.67×10^{-27}</td>
<td>1.60×10^{-19}</td>
<td>1.04×10^{-8}</td>
</tr>
<tr>
<td>Deuterium</td>
<td>3.35×10^{-27}</td>
<td>1.60×10^{-19}</td>
<td>2.09×10^{-8}</td>
</tr>
<tr>
<td>Tritium</td>
<td>5.01×10^{-27}</td>
<td>1.60×10^{-19}</td>
<td>3.13×10^{-8}</td>
</tr>
<tr>
<td>Helium-3</td>
<td>5.01×10^{-27}</td>
<td>3.20×10^{-19}</td>
<td>1.57×10^{-8}</td>
</tr>
</tbody>
</table>

The particle is tritium.

Remarks

The mass spectrometer is an important tool in both chemistry and physics. Unknown chemicals can be heated and ionized, and the resulting particles passed through the mass spectrometer and subsequently identified.

QUESTION 19.5

What happens to the momentum of a charged particle in a uniform magnetic field?

EXERCISE 19.5

Suppose a second charged particle enters the mass spectrometer at the same speed as the particle in Example 19.5. If it travels in a circle with radius 10.7 cm, find the mass-to-charge ratio and identify the particle from the table above.

Answers

2.09 × 10⁻⁸ kg/C; deuterium

EXAMPLE 19.6 The Mass Spectrometer: Separating Isotopes

Goal

Apply the cyclotron equation to the process of separating isotopes.

Problem

Two singly ionized atoms move out of a slit at point S in Figure 19.22 and into a magnetic field of magnitude 0.100 T pointing into the page. Each has a speed of 1.00×10^6 m/s. The nucleus of the first atom contains one proton and has a mass of 1.67×10^{-27} kg, whereas the nucleus of the second atom contains a proton and a neutron and has a mass of 3.34×10^{-27} kg. Atoms with the same number of protons in the nucleus but different masses are called isotopes. The two isotopes here are hydrogen and deuterium. Find their distance of separation when they strike a photographic plate at P.

Strategy

Apply the cyclotron equation to each atom, finding the radius of the path of each. Double the radii to find the path diameters and then find their difference.

Solution

Use Equation 19.10 to find the radius of the circular path followed by the lighter isotope, hydrogen:

$$r_1 = \frac{m_1v}{qB} = \frac{(1.67 \times 10^{-27} \text{ kg})(1.00 \times 10^6 \text{ m/s})}{(1.60 \times 10^{-19} \text{ C})(0.100 \text{ T})} = 0.104 \text{ m}$$

Use the same equation to calculate the radius of the path of deuterium, the heavier isotope:

$$r_2 = \frac{m_2v}{qB} = \frac{(3.34 \times 10^{-27} \text{ kg})(1.00 \times 10^6 \text{ m/s})}{(1.60 \times 10^{-19} \text{ C})(0.100 \text{ T})} = 0.209 \text{ m}$$

Multiply the radii by 2 to find the diameters and take the difference, getting the separation x between the isotopes:

$$x = 2r_2 - 2r_1 = 0.210 \text{ m}$$

Remarks

During World War II, mass spectrometers were used to separate the radioactive uranium isotope U-235 from its far more common isotope, U-238.
QUESTION 19.6
Estimate the radius of the circle traced out by a singly ionized lead atom moving at the same speed.

EXERCISE 19.6
Use the same mass spectrometer as in Example 19.6 to find the separation between two isotopes of helium: normal helium-4, which has a nucleus consisting of two protons and two neutrons, and helium-3, which has two protons and a single neutron. Assume both nuclei, doubly ionized (having a charge of \(2e = 3.20 \times 10^{-19} \text{ C}\), enter the field at \(1.00 \times 10^6 \text{ m/s}\). The helium-4 nucleus has a mass of \(6.64 \times 10^{-27} \text{ kg}\), and the helium-3 nucleus has a mass of \(5.01 \times 10^{-27} \text{ kg}\).

Answer 0.102 m

19.7 MAGNETIC FIELD OF A LONG, STRAIGHT WIRE AND AMPÈRE’S LAW

During a lecture demonstration in 1819, Danish scientist Hans Oersted (1777–1851) found that an electric current in a wire deflected a nearby compass needle. This momentous discovery, linking a magnetic field with an electric current for the first time, was the beginning of our understanding of the origin of magnetism.

A simple experiment first carried out by Oersted in 1820 clearly demonstrates that a current-carrying conductor produces a magnetic field. In this experiment, several compass needles are placed in a horizontal plane near a long vertical wire, as in Active Figure 19.23a. When there is no current in the wire, all needles point in the same direction (that of Earth’s field), as one would expect. When the wire carries a strong, steady current, however, the needles all deflect in directions tangent to the circle, pointing in the direction of the magnetic field, as in Active Figure 19.23b. These observations show that the direction of the magnetic field is consistent with the following convenient rule, **right-hand rule number 2**:

Point the thumb of your right hand along a wire in the direction of positive current, as in Figure 19.24a. Your fingers then naturally curl in the direction of the magnetic field \(\mathbf{B}\).

When the current is reversed, the filings in Figure 19.24b also reverse.
Because the filings point in the direction of \mathbf{B}, we conclude that the lines of \mathbf{B} form circles about the wire. By symmetry, the magnitude of \mathbf{B} is the same everywhere on a circular path centered on the wire and lying in a plane perpendicular to the wire. By varying the current and distance from the wire, it can be experimentally determined that \mathbf{B} is proportional to the current and inversely proportional to the distance from the wire. These observations lead to a mathematical expression for the strength of the magnetic field due to the current I in a long, straight wire:

$$B = \frac{\mu_0 I}{2\pi r} \quad [19.11]$$

The proportionality constant μ_0, called the permeability of free space, has the value

$$\mu_0 = 4\pi \times 10^{-7}\ T\cdot m/A \quad [19.12]$$

Ampère’s Law and a Long, Straight Wire

Equation 19.11 enables us to calculate the magnetic field due to a long, straight wire carrying a current. A general procedure for deriving such equations was proposed by French scientist André-Marie Ampère (1775–1836); it provides a relation between the current in an arbitrarily shaped wire and the magnetic field produced by the wire.

Consider an arbitrary closed path surrounding a current as in Figure 19.25. The path consists of many short segments, each of length $\Delta \ell$. Multiply one of these lengths by the component of the magnetic field parallel to that segment, where the product is labeled $B_i \Delta \ell$. According to Ampère, the sum of all such products over the closed path is equal to μ_0 times the net current I that passes through the surface bounded by the closed path. This statement, known as Ampère’s circuital law, can be written

$$\sum B_i \Delta \ell = \mu_0 I \quad [19.13]$$

where B_i is the component of \mathbf{B} parallel to the segment of length $\Delta \ell$ and $\sum B_i \Delta \ell$ means that we take the sum over all the products $B_i \Delta \ell$ around the closed path. Ampère’s law is the fundamental law describing how electric currents create magnetic fields in the surrounding empty space.

We can use Ampère’s circuital law to derive the magnetic field due to a long, straight wire carrying a current I. As discussed earlier, each of the magnetic field lines of this configuration forms a circle with the wire at its centers. The magnetic field is tangent to this circle at every point, and its magnitude has the same value B over the entire circumference of a circle of radius r, so $B_i = B$, as shown in Figure 19.26. In calculating the sum $\sum B_i \Delta \ell$ over the circular path, notice that B_i can be removed from the sum (because it has the same value B for each element on the circle). Equation 19.13 then gives

$$\sum B_i \Delta \ell = B \sum \Delta \ell = B(2\pi r) = \mu_0 I$$

Figures

- **Figure 19.25** An arbitrary closed path around a current is used to calculate the magnetic field set up by the wire.
- **Figure 19.26** A closed, circular path of radius r around a long, straight, current-carrying wire is used to calculate the magnetic field set up by the wire.

Ampère, a Frenchman, is credited with the discovery of electromagnetism, the relationship between electric currents and magnetic fields.
Dividing both sides by the circumference \(2\pi r\), we obtain

\[
B = \frac{\mu_0 I}{2\pi r}
\]

This result is identical to Equation 19.11, which is the magnetic field due to the current \(I\) in a long, straight wire.

Ampère’s circuital law provides an elegant and simple method for calculating the magnetic fields of highly symmetric current configurations, but it can’t easily be used to calculate magnetic fields for complex current configurations that lack symmetry. In addition, Ampère’s circuital law in this form is valid only when the currents and fields don’t change with time.

EXAMPLE 19.7 The Magnetic Field of a Long Wire

Goal Calculate the magnetic field of a long, straight wire and the force that the field exerts on a particle.

Problem A long, straight wire carries a current of 5.00 A. At one instant, a proton, 4.00 mm from the wire, travels at a speed of \(1.50 \times 10^3\) m/s parallel to the wire and in the same direction as the current (Fig. 19.27). (a) Find the magnitude and direction of the magnetic field created by the wire. (b) Find the magnitude and direction of the magnetic force the wire’s magnetic field exerts on the proton.

Strategy First use Equation 19.11 to find the magnitude of the magnetic field at the given point. Use right-hand rule number 2 to find the direction of the magnetic field. Finally, substitute into Equation 19.1, computing the magnetic force on the proton.

Solution

(a) Find the magnitude and direction of the wire’s magnetic field.

Use Equation 19.11 to calculate the magnitude of the magnetic field 4.00 mm from the wire:

\[
B = \frac{\mu_0 I}{2\pi r} = \frac{(4\pi \times 10^{-7}\text{ T} \cdot \text{m/A})(5.00\text{ A})}{2\pi (4.00 \times 10^{-3}\text{ m})}
\]

\[
= 2.50 \times 10^{-4}\text{ T}
\]

Apply right-hand rule number 2 to find the direction of the magnetic field \(\mathbf{B}\):

With the right thumb pointing in the direction of the current in Figure 19.27, the fingers curl into the page at the location of the proton. The angle \(\theta\) between \(\mathbf{v}\) and \(\mathbf{B}\) is therefore 90°.

(b) Compute the magnetic force exerted by the wire on the proton.

Substitute into Equation 19.1, which gives the magnitude of the magnetic force on a charged particle:

\[
F = q\mathbf{v} \cdot \mathbf{B} \sin \theta = (1.60 \times 10^{-19}\text{ C})(1.50 \times 10^3\text{ m/s})
\]

\[
\times (2.50 \times 10^{-4}\text{ T})(\sin 90°)
\]

\[
= 6.00 \times 10^{-20}\text{ N}
\]

Find the direction of the magnetic force with right-hand rule number 1:

Point your right fingers in the direction of \(\mathbf{v}\), curling them into the page toward \(\mathbf{B}\). Your thumb points to the left, which is the direction of the magnetic force.

Remarks The location of the proton is important. On the left-hand side, the wire’s magnetic field points outward and the magnetic force on the proton is to the right.
19.8 Magnetic Force Between Two Parallel Conductors

As we have seen, a magnetic force acts on a current-carrying conductor when the conductor is placed in an external magnetic field. Because a conductor carrying a current creates a magnetic field around itself, it is easy to understand that two current-carrying wires placed close together exert magnetic forces on each other.

Consider two long, straight, parallel wires separated by the distance d and carrying currents I_1 and I_2 in the same direction, as shown in Active Figure 19.28. Wire 1 is directly above wire 2. What’s the magnetic force on one wire due to a magnetic field set up by the other wire?

In this calculation we are finding the force on wire 1 due to the magnetic field of wire 2. The current I_2 sets up magnetic field \mathbf{B}_2 at wire 1. The direction of \mathbf{B}_2 is perpendicular to the wire, as shown in the figure. Using Equation 19.11, we find that the magnitude of this magnetic field is

$$B_2 = \frac{\mu_0 I_2}{2\pi d}$$

According to Equation 19.5, the magnitude of the magnetic force on wire 1 in the presence of field \mathbf{B}_2 due to I_2 is

$$F_1 = B_2 I_1 \ell = \left(\frac{\mu_0 I_2}{2\pi d}\right) I_1 \ell = \frac{\mu_0 I_1 I_2 \ell}{2\pi d}$$

We can rewrite this relationship in terms of the force per unit length:

$$\frac{F_1}{\ell} = \frac{\mu_0 I_1 I_2}{2\pi d} \tag{19.14}$$

The direction of \mathbf{F}_1 is downward, toward wire 2, as indicated by right-hand rule number 1. This calculation is completely symmetric, which means that the force \mathbf{F}_2 on wire 2 is equal to and opposite \mathbf{F}_1, as expected from Newton’s third law of action–reaction.

We have shown that parallel conductors carrying currents in the same direction attract each other. You should use the approach indicated by Figure 19.28 and the steps leading to Equation 19.14 to show that parallel conductors carrying currents in opposite directions repel each other.

The force between two parallel wires carrying a current is used to define the SI unit of current, the ampere (A), as follows:

If two long, parallel wires 1 m apart carry the same current and the magnetic force per unit length on each wire is 2×10^{-7} N/m, the current is defined to be 1 A.

The SI unit of charge, the coulomb (C), can now be defined in terms of the ampere as follows:

If a conductor carries a steady current of 1 A, the quantity of charge that flows through any cross section in 1 s is 1 C.
QUICK QUIZ 19.5 Which of the following actions would double the magnitude of the magnetic force per unit length between two parallel current-carrying wires? Choose all correct answers. (a) Double one of the currents. (b) Double the distance between them. (c) Reduce the distance between them by half. (d) Double both currents.

QUICK QUIZ 19.6 If, in Figure 19.28, \(I_1 = 2 \text{ A} \) and \(I_2 = 6 \text{ A} \), which of the following is true? (a) \(F_1 = 3F_2 \) (b) \(F_1 = F_2 \) (c) \(F_1 = F_2/3 \)

EXAMPLE 19.8 Levitating a Wire

Goal Calculate the magnetic force of one current-carrying wire on a parallel current-carrying wire.

Problem Two wires, each having a weight per unit length of \(1.00 \times 10^{-4} \text{ N/m} \), are parallel with one directly above the other. Assume the wires carry currents that are equal in magnitude and opposite in direction. The wires are 0.10 m apart, and the sum of the magnetic force and gravitational force on the upper wire is zero. Find the current in the wires. (Neglect Earth’s magnetic field.)

Strategy The upper wire must be in equilibrium under the forces of magnetic repulsion and gravity. Set the sum of the forces equal to zero and solve for the unknown current, \(I \).

Solution Set the sum of the forces equal to zero and substitute the appropriate expressions. Notice that the magnetic force between the wires is repulsive.

\[
F_{\text{grav}} + F_{\text{mag}} = 0
\]

\[
-mg + \frac{\mu_0 I_1 I_2}{2\pi d} \ell = 0
\]

The currents are equal, so \(I_1 = I_2 = I \). Make these substitutions and solve for \(I^2 \):

\[
\frac{\mu_0 I^2}{2\pi d} \ell = mg \rightarrow I^2 = \frac{(2\pi)(mg/\ell)}{\mu_0}
\]

Substitute given values, finding \(I^2 \), then take the square root. Notice that the weight per unit length, \(mg/\ell \), is given.

\[
I^2 = \frac{(2\pi \cdot 0.100 \text{ m})(1.00 \times 10^{-4} \text{ N/m})}{(4\pi \times 10^{-7} \text{ T} \cdot \text{ m})} = 50.0 \text{ A}^2
\]

\[
I = 7.07 \text{ A}
\]

Remark Exercise 19.3 showed that using Earth’s magnetic field to levitate a wire required extremely large currents. Currents in wires can create much stronger magnetic fields than Earth’s magnetic field in regions near the wire.

QUESTION 19.8 Why can’t cars be constructed that can magnetically levitate in Earth’s magnetic field?

EXERCISE 19.8 If the current in each wire is doubled, how far apart should the wires be placed if the magnitudes of the gravitational and magnetic forces on the upper wire are to be equal?

Answer 0.400 m

19.9 MAGNETIC FIELDS OF CURRENT LOOPS AND SOLENOIDS

The strength of the magnetic field set up by a piece of wire carrying a current can be enhanced at a specific location if the wire is formed into a loop. You can understand this by considering the effect of several small segments of the current loop, as in Figure 19.29. The small segment at the top of the loop, labeled \(\Delta x \), produces a magnetic field of magnitude \(B \) at the loop’s center, directed out of the page. The
direction of \vec{B} can be verified using right-hand rule number 2 for a long, straight wire. Imagine holding the wire with your right hand, with your thumb pointing in the direction of the current. Your fingers then curl around in the direction of \vec{B}.

A segment of length Δx_2 at the bottom of the loop also contributes to the field at the center, increasing its strength. The field produced at the center by the segment Δx_2 has the same magnitude as B_1 and is also directed out of the page. Similarly, all other such segments of the current loop contribute to the field. The net effect is a magnetic field for the current loop as pictured in Figure 19.30a.

Notice in Figure 19.30a that the magnetic field lines enter at the bottom of the current loop and exit at the top. Compare this figure with Figure 19.30b, illustrating the field of a bar magnet. The two fields are similar. One side of the loop acts as though it were the north pole of a magnet, and the other acts as a south pole. The similarity of these two fields will be used to discuss magnetism in matter in an upcoming section.

APPLYING PHYSICS 19.4 TWISTED WIRES

In electrical circuits it is often the case that insulated wires carrying currents in opposite directions are twisted together. What is the advantage of doing this?

Explanation If the wires are not twisted together, the combination of the two wires forms a current loop, which produces a relatively strong magnetic field. This magnetic field generated by the loop could be strong enough to affect adjacent circuits or components. When the wires are twisted together, their magnetic fields tend to cancel.

The magnitude of the magnetic field at the center of a circular loop carrying current I as in Figure 19.30a is given by

$$B = \frac{\mu_0 I}{2R}$$

This equation must be derived with calculus. It can be shown, however, to be reasonable by calculating the field at the center of four long wires, each carrying current I and forming a square, as in Figure 19.31, with a circle of radius R inscribed within it. Intuitively, this arrangement should give a magnetic field at the center that is similar in magnitude to the field produced by the circular loop. The current in the circular wire is closer to the center, so that wire would have a magnetic field somewhat stronger than just the four legs of the rectangle, but the lengths of the straight wires beyond the rectangle compensate for it. Each wire contributes the same magnetic field at the exact center, so the total field is given by

$$B = 4 \times \frac{\mu_0 I}{2\pi R} = \frac{4}{\pi} \left(\frac{\mu_0 I}{2R}\right) = \left(1.27\right)\left(\frac{\mu_0 I}{2R}\right)$$

This result is approximately the same as the field produced by the circular loop of current.
When the coil has \(N \) loops, each carrying current \(I \), the magnetic field at the center is given by

\[
B = N \frac{\mu_0 I}{2R}
\]

Magnetic Field of a Solenoid

If a long, straight wire is bent into a coil of several closely spaced loops, the resulting device is a solenoid, often called an electromagnet. This device is important in many applications because it acts as a magnet only when it carries a current. The magnetic field inside a solenoid increases with the current and is proportional to the number of coils per unit length.

Figure 19.32 shows the magnetic field lines of a loosely wound solenoid of length \(\ell \) and total number of turns \(N \). Notice that the field lines inside the solenoid are nearly parallel, uniformly spaced, and close together. As a result, the field inside the solenoid is strong and approximately uniform. The exterior field at the sides of the solenoid is nonuniform, much weaker than the interior field, and opposite in direction to the field inside the solenoid.

If the turns are closely spaced, the field lines are as shown in Figure 19.33a, entering at one end of the solenoid and emerging at the other. One end of the solenoid acts as a north pole and the other end acts as a south pole. If the length of the solenoid is much greater than its radius, the lines that leave the north end of the solenoid spread out over a wide region before returning to enter the south end. The more widely separated the field lines are, the weaker the field. This is in contrast to a much stronger field inside the solenoid, where the lines are close together. Also, the field inside the solenoid has a constant magnitude at all points far from its ends. As will be shown subsequently, these considerations allow the application of Ampere’s law to the solenoid, giving a result of

\[
B = \mu_0 n I
\]

for the field inside the solenoid, where \(n = N/\ell \) is the number of turns per unit length of the solenoid.

So-called steering magnets placed along the neck of the picture tube in a television set, as in Figure 19.34, are used to make the electron beam move to the desired locations on the screen, tracing out the images. The rate at which the electron beam sweeps over the screen is so fast that to the eye it looks like a picture rather than a sequence of dots.
EXAMPLE 19.9 The Magnetic Field Inside a Solenoid

Goal Calculate the magnetic field of a solenoid from given data and the momentum of a charged particle in this field.

Problem A certain solenoid consists of 100 turns of wire and has a length of 10.0 cm. (a) Find the magnitude of the magnetic field inside the solenoid when it carries a current of 0.500 A. (b) What is the momentum of a proton orbiting inside the solenoid in a circle with a radius of 0.020 m? The axis of the solenoid is perpendicular to the plane of the orbit. (c) Approximately how much wire would be needed to build this solenoid? Assume the solenoid’s radius is 5.00 cm.

Strategy In part (a) calculate the number of turns per meter and substitute that and given information into Equation 19.16, getting the magnitude of the magnetic field. Part (b) is an application of Newton’s second law.

Solution

(a) Find the magnitude of the magnetic field inside the solenoid when it carries a current of 0.500 A.

Calculate the number of turns per unit length:

\[n = \frac{N}{L} = \frac{100 \text{ turns}}{0.100 \text{ m}} = 1.00 \times 10^3 \text{ turns/m} \]

Substitute \(n \) and \(I \) into Equation 19.16 to find the magnitude of the magnetic field:

\[B = \mu_0 nI \]

\[= (4\pi \times 10^{-7} \text{ T} \cdot \text{m}/\text{A})(1.00 \times 10^3 \text{ turns/m})(0.500 \text{ A}) \]

\[= 0.28 \times 10^{-4} \text{ T} \]

(b) Find the momentum of a proton orbiting in a circle of radius 0.020 m near the center of the solenoid.

Write Newton’s second law for the proton:

\[ma = F = qvB \]

Substitute the centripetal acceleration \(a = v^2/r \):

\[m \frac{v^2}{r} = qvB \]

Cancel one factor of \(v \) on both sides and multiply by \(r \), getting the momentum \(mv \):

\[mv = rqB = (0.020 \text{ m})(1.60 \times 10^{-19} \text{ C})(6.28 \times 10^{-4} \text{ T}) \]

\[p = mv = 2.01 \times 10^{-24} \text{ kg} \cdot \text{m/s} \]

(c) Approximately how much wire would be needed to build this solenoid?

Multiply the number of turns by the circumference of one loop:

\[\text{Length of wire} = (\text{number of turns})(2\pi r) \]

\[= (1.00 \times 10^3 \text{ turns})(2\pi \cdot 0.050 \text{ m}) \]

\[= 31.4 \text{ m} \]

Remarks An electron in part (b) would have the same momentum as the proton, but a much higher speed. It would also orbit in the opposite direction. The length of wire in part (c) is only an estimate because the wire has a certain thickness, slightly increasing the size of each loop. In addition, the wire loops aren’t perfect circles because they wind slowly up along the solenoid.

QUESTION 19.9
What would happen to the orbiting proton if the solenoid were oriented vertically?

EXERCISE 19.9
Suppose you have a 32.0-m length of copper wire. If the wire is wrapped into a solenoid 0.240 m long and having a radius of 0.040 m, how strong is the resulting magnetic field in its center when the current is 12.0 A?

Answer \(8.00 \times 10^{-3} \text{ T} \)
Ampère’s Law Applied to a Solenoid

We can use Ampère’s law to obtain the expression for the magnetic field inside a solenoid carrying a current I. A cross section taken along the length of part of our solenoid is shown in Figure 19.35. \mathbf{B} inside the solenoid is uniform and parallel to the axis, and \mathbf{B} outside is approximately zero. Consider a rectangular path of length L and width w, as shown in the figure. We can apply Ampère’s law to this path by evaluating the sum of $B_\ell \Delta \ell$ over each side of the rectangle. The contribution along side 3 is clearly zero because $\mathbf{B} = 0$ in this region. The contributions from sides 2 and 4 are both zero because \mathbf{B} is perpendicular to $\Delta \ell$ along these paths. Side 1 of length L gives a contribution BL to the sum because \mathbf{B} is uniform along this path and parallel to $\Delta \ell$. Therefore, the sum over the closed rectangular path has the value

$$\sum B_\ell \Delta \ell = BL.$$

The right side of Ampère’s law involves the total current that passes through the area bounded by the path chosen. In this case, the total current through the rectangular path equals the current through each turn of the solenoid, multiplied by the number of turns. If N is the number of turns in the length L, then the total current through the rectangular path equals NI. Ampère’s law applied to this path therefore gives

$$\sum B_\ell \Delta \ell = BL = \mu_0 NI$$

or

$$B = \mu_0 \frac{N}{L} I = \mu_0 n I$$

where $n = N/L$ is the number of turns per unit length.

19.10 MAGNETIC DOMAINS

The magnetic field produced by a current in a coil of wire gives us a hint as to what might cause certain materials to exhibit strong magnetic properties. A single coil like that in Figure 19.30a has a north pole and a south pole, but if that is true for a coil of wire, it should also be true for any current confined to a circular path. In particular, an individual atom should act as a magnet because of the motion of the electrons about the nucleus. Each electron, with its charge of 1.6×10^{-19} C, circles the atom once in about 10^{-16} s. If we divide the electric charge by this time interval, we see that the orbiting electron is equivalent to a current of 1.6×10^{-3} A. Such a current produces a magnetic field on the order of 20 T at the center of the circular path. From this we see that a very strong magnetic field would be produced if several of these atomic magnets could be aligned inside a material. This doesn’t occur, however, because the simple model we have described is not the complete story. A thorough analysis of atomic structure shows that the magnetic field produced by one electron in an atom is often canceled by an oppositely revolving electron in the same atom. The net result is that the magnetic effect produced by the electrons orbiting the nucleus is either zero or very small for most materials.

The magnetic properties of many materials can be explained by the fact that an electron not only circles in an orbit, but also spins on its axis like a top, with spin magnetic moment as shown (Fig. 19.36). (This classical description should not be taken too literally. The property of electron spin can be understood only in the context of quantum mechanics, which we will not discuss here.) The spinning electron represents a charge in motion that produces a magnetic field. The field due to the spinning is generally stronger than the field due to the orbital motion. In atoms containing many electrons, the electrons usually pair up with their spins oppo-
site each other so that their fields cancel each other. That is why most substances are not magnets. In certain strongly magnetic materials, such as iron, cobalt, and nickel, however, the magnetic fields produced by the electron spins don't cancel completely. Such materials are said to be ferromagnetic. In ferromagnetic materials strong coupling occurs between neighboring atoms, forming large groups of atoms with spins that are aligned. Called domains, the sizes of these groups typically range from about 10^{-4} cm to 0.1 cm. In an unmagnetized substance the domains are randomly oriented, as shown in Figure 19.37a. When an external field is applied, as in Figure 19.37b, the magnetic field of each domain tends to come nearer to alignment with the external field, resulting in magnetization.

In what are called hard magnetic materials, domains remain aligned even after the external field is removed; the result is a permanent magnet. In soft magnetic materials, such as iron, once the external field is removed, thermal agitation produces motion of the domains and the material quickly returns to an unmagnetized state.

The alignment of domains explains why the strength of an electromagnet is increased dramatically by the insertion of an iron core into the magnet's center. The magnetic field produced by the current in the loops causes the domains to align, thus producing a large net external field. The use of iron as a core is also advantageous because it is a soft magnetic material that loses its magnetism almost instantaneously after the current in the coils is turned off.

The formation of domains in ferromagnetic substances also explains why such substances are attracted to permanent magnets. The magnetic field of a permanent magnet realigns domains in a ferromagnetic object so that the object becomes temporarily magnetized. The object's poles are then attracted to the corresponding opposite poles of the permanent magnet. The object can similarly attract other ferromagnetic objects, as illustrated in Figure 19.38.

Types of Magnetic Materials

Magnetic materials can be classified according to how they react to the application of a magnetic field. In ferromagnetic materials the atoms have permanent magnetic moments that align readily with an externally applied magnetic field. Examples of ferromagnetic materials are iron, cobalt, and nickel. Such substances can retain some of their magnetization even after the applied magnetic field is removed.

Paramagnetic materials also have magnetic moments that tend to align with an externally applied magnetic field, but the response is extremely weak compared with that of ferromagnetic materials. Examples of paramagnetic substances are aluminum, calcium, and platinum. A ferromagnetic material can become paramagnetic when warmed to a certain critical temperature, the Curie temperature, that depends on the material.

In diamagnetic materials, an externally applied magnetic field induces a very weak magnetization that is opposite the applied field. Ordinarily diamagnetism isn't observed because paramagnetic and ferromagnetic effects are far stronger. In Figure 19.39, however, a very high magnetic field exerts a levitating force on the diamagnetic water molecules in a frog.

FIGURE 19.37 (a) Random orientation of domains in an unmagnetized substance. (b) When an external magnetic field \mathbf{B} is applied, the domains tend to align with the magnetic field. (c) As the field is made even stronger, the domains not aligned with the external field become very small.

FIGURE 19.38 The permanent magnet (red) temporarily magnetizes some paperclips, which then cling to each other through magnetic forces.

FIGURE 19.39 Diamagnetism. A frog is levitated in a 16-T magnetic field at the Nijmegen High Field Magnet Laboratory in the Netherlands. The levitation force is exerted on the diamagnetic water molecules in the frog’s body. The frog suffered no ill effects from the levitation experience.
SUMMARY

19.3 Magnetic Fields
The magnetic force that acts on a charge \(q \) moving with velocity \(\mathbf{v} \) in a magnetic field \(\mathbf{B} \) has magnitude

\[
F = q \mathbf{v} \times \mathbf{B} \sin \theta \tag{19.1}
\]

where \(\theta \) is the angle between \(\mathbf{v} \) and \(\mathbf{B} \).

To find the direction of this force, use right-hand rule number 1: point the fingers of your open right hand in the direction of \(\mathbf{v} \) and then curl them in the direction of \(\mathbf{B} \). Your thumb then points in the direction of the magnetic force \(\mathbf{F} \).

If the charge is negative rather than positive, the force is directed opposite the force given by the right-hand rule.

The SI unit of the magnetic field is the tesla (T), or weber per square meter (Wb/m²). An additional commonly used unit for the magnetic field is the gauss (G); 1 T = 10⁴ G.

19.4 Magnetic Force on a Current-Carrying Conductor
If a straight conductor of length \(\ell \) carries current \(I \), the magnetic force on that conductor when it is placed in a uniform external magnetic field \(\mathbf{B} \) is

\[
F = BI \ell \sin \theta \tag{19.6}
\]

where \(\theta \) is the angle between the direction of the current and the direction of the magnetic field.

Right-hand rule number 1 also gives the direction of the magnetic force on the conductor. In this case, however, you must point your fingers in the direction of the current rather than in the direction of \(\mathbf{v} \).

19.5 Torque on a Current Loop and Electric Motors
The torque \(\tau \) on a current-carrying loop of wire in a magnetic field \(\mathbf{B} \) has magnitude

\[
\tau = BI \alpha \sin \theta \tag{19.8}
\]

where \(I \) is the current in the loop and \(\alpha \) is its cross-sectional area. The magnitude of the magnetic moment of a current-carrying coil is defined by \(\mu = IM \alpha \), where \(M \alpha \) is the number of loops. The magnetic moment is considered a vector, \(\mu \), that is perpendicular to the plane of the loop. The angle between \(\mathbf{B} \) and \(\mu \) is \(\theta \).

19.6 Motion of a Charged Particle in a Magnetic Field
If a charged particle moves in a uniform magnetic field so that its initial velocity is perpendicular to the field, it will move in a circular path in a plane perpendicular to the magnetic field. The radius \(r \) of the circular path can be found from Newton's second law and centripetal acceleration, and is given by

\[
r = \frac{mv}{qB} \tag{19.10}
\]

where \(m \) is the mass of the particle and \(q \) is its charge.

19.7 Magnetic Field of a Long, Straight Wire and Ampère's Law
The magnetic field at distance \(r \) from a long, straight wire carrying current \(I \) has the magnitude

\[
B = \frac{\mu_0 I}{2\pi r} \tag{19.11}
\]

where \(\mu_0 = 4\pi \times 10^{-7} \text{ T} \cdot \text{m/A} \) is the permeability of free space. The magnetic field lines around a long, straight wire are circles concentric with the wire.

Ampère's law can be used to find the magnetic field around certain simple current-carrying conductors. It can be written

\[
\sum B_0 \Delta \ell = \mu_0 I \tag{19.13}
\]

where \(B_0 \) is the component of \(\mathbf{B} \) tangent to a small current element of length \(\Delta \ell \) that is part of a closed path and \(I \) is the total current that penetrates the closed path.

19.8 Magnetic Force Between Two Parallel Conductors
The force per unit length on each of two parallel wires separated by the distance \(d \) and carrying currents \(I_1 \) and \(I_2 \) has the magnitude

\[
F = \frac{\mu_0 I_1 I_2}{2\pi d} \tag{19.14}
\]

The forces are attractive if the currents are in the same direction and repulsive if they are in opposite directions.

19.9 Magnetic Field of Current Loops and Solenoids
The magnetic field at the center of a coil of \(N \) circular loops of radius \(R \), each carrying current \(I \), is given by

\[
B = \frac{N\mu_0 I}{2R} \tag{19.15}
\]

The magnetic field inside a solenoid has the magnitude

\[
B = \mu_0 nI \tag{19.16}
\]

where \(n = N/\ell \) is the number of turns of wire per unit length.
Multiple-Choice Questions

1. An electron moves across Earth’s equator at a speed of 2.5×10^6 m/s and in a direction 35° N of E. At this point, Earth’s magnetic field has a direction due north, is parallel to the surface, and has a magnitude of 0.10×10^{-4} T. What is the force acting on the electron due to its interaction with Earth’s magnetic field? (a) 5.1×10^{-18} N due west (b) 4.0×10^{-18} N toward Earth’s surface (c) 2.4×10^{-18} N away from Earth’s surface (d) 3.3×10^{-18} N toward Earth’s surface (e) 4.0×10^{-18} N away from Earth’s surface.

2. A wire of length 0.50 m carries a current of 0.10 A in the positive x-direction, parallel to the ground. If the wire has a weight of 1.0×10^{-2} N, what is the minimum magnitude magnetic field that exerts a magnetic force on the wire equal to the wire’s weight? (a) 0.20 T (b) 0.30 T (c) 0.40 T (d) 0.50 T (e) 0.60 T.

3. A rectangular coil of wire consisting of ten loops, each with length 0.20 m and width 0.30 m, lies in the xy-plane. If the coil carries a current of 2.0 A, what is the torque exerted by a magnetic field of magnitude 0.010 T directed at an angle of 30.0° with respect to the positive z-axis? (a) 1.2×10^{-2} N·m (b) 2.4×10^{-2} N·m (c) 6.0×10^{-2} N·m (d) 4.0×10^{-2} N·m (e) 3.0×10^{-2} N·m.

4. A proton enters a constant magnetic field of magnitude $0.050 \ T$ and traverses a semicircle of radius 1.0 mm before leaving the field. What is the proton’s speed? (a) 1.6×10^5 m/s (b) 2.5×10^5 m/s (c) 2.8×10^5 m/s (d) 1.8×10^5 m/s (e) 4.8×10^5 m/s.

5. A long wire carries a current of 1 A. Find the magnitude of the magnetic field 2 m away from the wire. (a) $1 \times 10^{-3} \ T$ (b) $1 \times 10^{-4} \ T$ (c) $1 \times 10^{-5} \ T$ (d) $1 \times 10^{-7} \ T$ (e) $1 \times 10^{-10} \ T$.

6. Estimate the magnitude of the magnetic force per unit length between a pair of parallel wires separated by 2 m if they each carry a current of 3 A. (a) $1 \times 10^{-2} \ N/m$ (b) $1 \times 10^{-3} \ N/m$ (c) $1 \times 10^{-4} \ N/m$ (d) $1 \times 10^{-5} \ N/m$ (e) $1 \times 10^{-8} \ N/m$.

7. What is the magnitude of the magnetic field at the core of a 120-turn solenoid of length 0.50 m carrying a current of 2.0 A? (a) $2.4 \times 10^{-2} \ T$ (b) $4.8 \times 10^{-3} \ T$ (c) $1.2 \times 10^{-2} \ T$ (d) $3.6 \times 10^{-3} \ T$ (e) $6.0 \times 10^{-4} \ T$.

8. A uniform magnetic field cannot exert a magnetic force on a particle in which of the following circumstances? (There may be more than one correct statement.) (a) The particle is charged. (b) The particle moves perpendicular to the field. (c) The particle moves parallel to the field. (d) The magnitude of the magnetic field changes with time. (e) The particle is at rest.

9. A charged particle is traveling through a uniform magnetic field. Which of the following statements are true of the magnetic field? (There may be more than one correct statement.) (a) It exerts a force on the particle that is parallel to the field. (b) It exerts a force on the particle along the direction of its motion. (c) It increases the kinetic energy of the particle. (d) It exerts a force that is perpendicular to the direction of motion. (e) It doesn’t change the magnitude of the momentum of the particle.

10. A proton moving horizontally enters a region where a uniform magnetic field is directed perpendicular to the proton’s velocity, as shown in Figure MCQ19.10. After the proton enters the field, does it (a) deflect downward, with its speed remaining constant; (b) continue to move in the horizontal direction with constant velocity; (c) move in a circular orbit and become trapped by the field; (d) deflect upward, moving in a semicircular path with constant speed, and exit the field moving to the left; or (e) deflect out of the plane of the paper?

11. Two long, parallel wires each carry the same current as in Figure MCQ19.11. Is the total magnetic field at the point P midway between the wires (a) zero, (b) directed into the page, (c) directed out of the page, (d) directed to the left, or (e) directed to the right?

12. Two long, straight wires cross each other at right angles, and each carries the same current as in Figure MCQ19.12. Which of the following statements are true regarding the total magnetic field at the various points due to the two wires? (There may be more than one correct statement.) (a) The field is strongest at points B and D. (b) The field is strongest at points A and C. (c) The field is out of the page at point B and into the page at point D. (d) The field is out of the page at point C and out of the page at point D. (e) The field has the same magnitude at all four points.

13. Two long, parallel wires carry currents of 20 A and 10 A in opposite directions, as in Figure MCQ19.13. Which
Magnetism

of the following statements must be true? (There may be more than one correct statement.)
(a) In region I the magnetic field is into the page and is never zero.
(b) In region II the field is into the page and can be zero.
(c) In region III it is possible for the field to be zero.
(d) In region I the magnetic field is out of the page and is never zero.
(e) There are no points where the field is zero.

15. A long, straight wire carries a current \(I \) as in Figure MCQ19.15. Which of the following statements are true regarding the magnetic field due to the wire? (There may be more than one correct statement.)
(a) The field is proportional to \(I/r \) and is out of the page at \(P \).
(b) The field is proportional to \(I/r^2 \) and is out of the page at \(P \).
(c) The field is proportional to \(I/r \) and is into the page at \(P \).
(d) The field strength is proportional to \(I \), but doesn’t depend on \(r \).
(e) The field is proportional to \(I/r^2 \) and is into the page at \(P \).

14. A magnetic field exerts a torque on each of the current-carrying single loops of wire shown in Figure MCQ19.14. The loops lie in the xy-plane, each carrying the same magnitude current, and the uniform magnetic field points in the positive x-direction. Rank the coils by the magnitude of the torque exerted on them by the field, from largest to smallest.
(a) A, B, C
(b) A, C, B
(c) B, A, C
(d) B, C, A
(e) C, A, B

16. Solenoid A has length \(L \) and \(N \) turns, solenoid B has length \(2L \) and \(N \) turns, and solenoid C has length \(L/2 \) and \(2N \) turns. If each solenoid carries the same current, rank by the strength of the magnetic field in the center of each solenoid from largest to smallest.
(a) A, B, C
(b) A, C, B
(c) B, C, A
(d) C, A, B
(e) C, B, A

CONCEPTUAL QUESTIONS

1. In your home television set, a beam of electrons moves from the back of the picture tube to the screen, where it strikes a fluorescent dot that glows with a particular color when hit. Earth’s magnetic field at the location of the television set is horizontal and toward the north. In which direction(s) should the set be oriented so that the beam undergoes the largest deflection?

2. Can a constant magnetic field set a proton at rest into motion? Explain your answer.

3. How can the motion of a charged particle be used to distinguish between a magnetic field and an electric field in a certain region?

4. Which way would a compass point if you were at Earth’s north magnetic pole?

5. Why does the picture on a television screen become distorted when a magnet is brought near the screen as in Figure CQ19.5? Caution: You should not do this experiment at home on a color television set because it may permanently affect the picture quality.

6. A magnet attracts a piece of iron. The iron can then attract another piece of iron. On the basis of domain alignment, explain what happens in each piece of iron.

7. A Hindu ruler once suggested that he be entombed in a magnetic coffin with the polarity arranged so that he could be forever suspended between heaven and Earth. Is such magnetic levitation possible? Discuss.
8. Will a nail be attracted to either pole of a magnet? Explain what is happening inside the nail when it is placed near the magnet.

9. Suppose you move along a wire at the same speed as the drift speed of the electrons in the wire. Do you now measure a magnetic field of zero?

10. Is the magnetic field created by a current loop uniform? Explain.

11. Can you use a compass to detect the currents in wires in the walls near light switches in your home?

12. Why do charged particles from outer space, called cosmic rays, strike Earth more frequently at the poles than at the equator?

13. Parallel wires exert magnetic forces on each other. What about perpendicular wires? Imagine two wires oriented perpendicular to each other and almost touching. Each wire carries a current. Is there a force between the wires?

14. How can a current loop be used to determine the presence of a magnetic field in a given region of space?

15. A hanging Slinky® toy is attached to a powerful battery and a switch. When the switch is closed so that the toy now carries current, does the Slinky compress or expand?

16. Figure CQ19.16 shows four permanent magnets, each having a hole through its center. Notice that the blue and yellow magnets are levitated above the red ones. (a) How does this levitation occur? (b) What purpose do the rods serve? (c) What can you say about the poles of the magnets from this observation? (d) If the upper magnet were inverted, what do you suppose would happen?

17. The electron beam at the top of the photograph in Figure CQ19.17 is projected to the right. The beam deflects downward in the presence of a magnetic field produced by a pair of current-carrying coils. (a) What is the direction of the magnetic field? (b) What would happen to the beam if the magnetic field were reversed in direction?
3. Find the direction of the magnetic field acting on the positively charged particle moving in the various situations shown in Figure P19.3 if the direction of the magnetic force acting on it is as indicated.

4. Determine the initial direction of the deflection of charged particles as they enter the magnetic fields, as shown in Figure P19.4.

5. A laboratory electromagnet produces a magnetic field of magnitude 1.50 T. A proton moves through this field with a speed of 6.00 \times 10^6 \text{ m/s}. (a) Find the magnitude of the maximum magnetic force that could be exerted on the proton. (b) What is the magnitude of the maximum acceleration of the proton? (c) Would the field exert the same magnetic force on an electron moving through the field with the same speed? Would the electron undergo the same acceleration? Explain.

6. The magnetic field of Earth at a certain location is directed vertically downward and has a magnitude of 50.0 \mu T. A proton is moving horizontally toward the west in this field with a speed of 6.20 \times 10^6 \text{ m/s}. What are the direction and magnitude of the magnetic force the field exerts on the proton?

7. What velocity would a proton need to circle Earth 1,000 km above the magnetic equator, where Earth's magnetic field is directed horizontally north and has a magnitude of 4.00 \times 10^{-7} \text{ T}?

8. An electron is accelerated through 2,400 V from rest and then enters a region where there is a uniform 1.70-T magnetic field. What are (a) the maximum and (b) the minimum magnitudes of the magnetic force acting on this electron?

9. An electron moving in a direction perpendicular to a uniform magnetic field at a speed of 1.5 \times 10^7 \text{ m/s} undergoes an acceleration of 4.0 \times 10^{10} \text{ m/s}^2 to the right (the positive x-direction) when its velocity is upward (the positive y-direction). Determine the magnitude and direction of the field.

10. Sodium ions (Na\(^{+}\)) move at 0.851 \text{ m/s} through a bloodstream in the arm of a person standing near a large magnet. The magnetic field has a strength of 0.254 T and makes an angle of 51.0° with the motion of the sodium ions. The arm contains 100 cm\(^3\) of blood with a concentration of \(3.00 \times 10^{20}\) Na\(^{+}\) ions per cubic centimeter. If no other ions were present in the arm, what would be the magnetic force on the arm?

11. At the equator, near the surface of Earth, the magnetic field is approximately 50.0 \mu T northward and the electric field is about 100 N/C downward in fair weather. Find the gravitational, electric, and magnetic forces on an electron with an instantaneous velocity of 6.00 \times 10^6 \text{ m/s} directed to the east in this environment.

SECTION 19.4 MAGNETIC FORCE ON A CURRENT-CARRYING CONDUCTOR

12. In Figure P19.2 assume in each case the velocity vector shown is replaced with a wire carrying a current in the direction of the velocity vector. For each case, find the direction of the magnetic force acting on the wire.

13. A current \(I = 15 \text{ A}\) is directed along the positive x-axis and perpendicular to a magnetic field. A magnetic force per unit length of 0.12 N/m acts on the conductor in the negative y-direction. Calculate the magnitude and direction of the magnetic field in the region through which the current passes.

14. A straight wire carrying a 3.0-A current is placed in a uniform magnetic field of magnitude 0.28 T directed perpendicular to the wire. (a) Find the magnitude of the magnetic force on a section of the wire having a length of 14 cm. (b) Explain why you can’t determine the direction of the magnetic force from the information given in the problem.

15. In Figure P19.3 assume in each case the velocity vector shown is replaced with a wire carrying a current in the direction of the velocity vector. For each case, find the direction of the magnetic field that will produce the magnetic force shown.

16. A wire having a mass per unit length of 0.500 g/cm carries a 2.00-A current horizontally to the south. What are the direction and magnitude of the minimum magnetic field needed to lift this wire vertically upward?

17. A wire carries a current of 10.0 A in a direction that makes an angle of 30.0° with the direction of a magnetic field of strength 0.300 T. Find the magnetic force on a 5.00-m length of the wire.

18. At a certain location, Earth has a magnetic field of 0.60 \times 10^{-4} \text{ T}, pointing 75° below the horizontal in a north–south plane. A 10.0-m-long straight wire carries a 15-A current. (a) If the current is directed horizontally
toward the east, what are the magnitude and direction of the magnetic force on the wire? (b) What are the magnitude and direction of the force if the current is directed vertically upward?

20. A conductor suspended by two flexible wires as shown in Figure P19.20 has a mass per unit length of 0.040 kg/m. What current must exist in the conductor for the tension in the supporting wires to be zero when the magnetic field is 3.60 T into the page? What is the required direction for the current?

21. Consider the system pictured in Figure P19.21. A 15-cm length of conductor of mass 15 g, free to move vertically, is placed between two thin, vertical conductors, and a uniform magnetic field acts perpendicular to the page. When a 5.0-A current is directed as shown in the figure, the horizontal wire moves upward at constant velocity in the presence of gravity. (a) What forces act on the horizontal wire, and under what condition is the wire able to move upward at constant velocity? (b) Find the magnitude and direction of the minimum magnetic field required to move the wire at constant speed. (c) What happens if the magnetic field exceeds this minimum value? (The wire slides without friction on the two vertical conductors.)

22. A wire 2.80 m in length carries a current of 5.00 A in a region where a uniform magnetic field has a magnitude of 0.390 T. Calculate the magnitude of the magnetic force on the wire, assuming the angle between the magnetic field and the current is (a) 60.0°, (b) 90.0°, and (c) 120°.

23. In Figure P19.23 the cube is 40.0 cm on each edge. Four straight segments of wire—ab, bc, cd, and da—form a closed loop that carries a current I = 5.00 A in the direction shown. A uniform magnetic field of magnitude B = 0.020 T is in the positive y-direction. Determine the magnitude and direction of the magnetic force on each segment.

24. A horizontal power line of length 58 m carries a current of 2.2 kA as shown in Figure P19.24. Earth’s magnetic field at this location has a magnitude of 5.0 × 10^{-5} T and makes an angle of 65° with the power line. Find the magnitude and direction of the magnetic force on the power line.

SECTION 19.5 TORQUE ON A CURRENT LOOP AND ELECTRIC MOTORS

25. A 50-turn coil of radius 5.0 cm rotates in a uniform magnetic field having a magnitude of 0.50 T. If the coil carries a current of 25 mA, find the magnitude of the maximum torque exerted on the coil.

26. A current of 17.0 mA is maintained in a single circular loop with a circumference of 2.00 m. A magnetic field of 0.800 T is directed parallel to the plane of the loop. What is the magnitude of the torque exerted by the magnetic field on the loop?

27. An eight-turn coil encloses an elliptical area having a major axis of 40.0 cm and a minor axis of 30.0 cm (Fig. P19.27). The coil lies in the plane of the page and has a 6.00-A current flowing clockwise around it. If the coil is in a uniform magnetic field of 2.00 × 10^{-4} T directed toward the left of the page, what is the magnitude of the torque on the coil? (Hint: The area of an ellipse is A = πab, where a and b are, respectively, the semimajor and semiminor axes of the ellipse.)

28. A rectangular loop consists of 100 closely wrapped turns and has dimensions 0.40 m by 0.30 m. The loop is hinged along the y-axis, and the plane of the coil makes an angle of 30.0° with the x-axis (Fig. P19.28, page 658). What is the magnitude of the torque exerted on the loop by a uniform magnetic field of 0.80 T directed along the x-axis when the current in the windings has a value of 1.2 A in
29. A 200-turn rectangular coil having dimensions of 3.0 cm by 5.0 cm is placed in a uniform magnetic field of magnitude 0.90 T. (a) Find the current in the coil if the maximum torque exerted on it by the magnetic field is 0.15 N·m. (b) Find the magnitude of the torque on the coil when the magnetic field makes an angle of 25° with the normal to the plane of the coil.

30. A copper wire is 8.00 m long and has a cross-sectional area of 1.00 × 10⁻⁴ m². The wire forms a one-turn loop in the shape of square and is then connected to a battery that applies a potential difference of 0.100 V. If the loop is placed in a uniform magnetic field of magnitude 0.400 T, what is the maximum torque that can act on it? The resistivity of copper is 1.70 × 10⁻⁸ Ω·m.

31. A long piece of wire with a mass of 0.100 kg and a total length of 4.00 m is used to make a square coil with a side of 0.100 m. The coil is hinged along a horizontal side, carries a 3.40-A current, and is placed in a vertical magnetic field with a magnitude of 0.010 T. (a) Determine the angle that the plane of the coil makes with the vertical when the coil is in equilibrium. (b) Find the torque acting on the coil due to the magnetic force at equilibrium.

32. A rectangular loop has dimensions 0.500 m by 0.500 m. The loop is hinged along the x-axis and lies in the xy-plane (Fig. P19.32). A uniform magnetic field of 1.50 T is directed at an angle of 40.0° with respect to the positive y-axis and lies parallel everywhere to the yz-plane. The loop carries a current of 0.900 A in the direction shown. (Ignore gravitation.) (a) In what direction is magnetic force exerted on wire segment ab? What is the direction of the magnetic torque associated with this force, as computed with respect to the x-axis? (b) What is the direction of the magnetic force exerted on segment cd? What is the direction of the magnetic torque associated with this force, again computed with respect to the x-axis? (c) Can the forces examined in parts (a) and (b) combine to cause the loop to rotate around the x-axis? Can they affect the motion of the loop in any way? Explain. (d) What is the direction (in the yz-plane) of the magnetic force exerted on segment bc? Measuring torques with respect to the x-axis, what is the direction of the torque exerted by the force on segment bc? (e) Looking toward the origin along the positive x-axis, will the loop rotate clockwise or counterclockwise? (f) Compute the magnitude of the magnetic moment of the loop. (g) What is the angle between the magnetic moment vector and the magnetic field? (h) Compute the torque on the loop using the values found for the magnetic moment and magnetic field.

SECTION 19.6 MOTION OF A CHARGED PARTICLE IN A MAGNETIC FIELD

33. An electron moves in a circular path perpendicular to a uniform magnetic field with a magnitude of 2.0 mT. If the speed of the electron is 1.5 × 10⁷ m/s, determine (a) the radius of the circular path and (b) the time it takes to complete one revolution.

34. A proton travels with a speed of 5.02 × 10⁶ m/s at an angle of 60° with the direction of a magnetic field of magnitude 0.180 T in the positive x-direction. What are (a) the magnitude of the magnetic force on the proton and (b) the proton's acceleration?

35. Figure P19.35a is a diagram of a device called a velocity selector, in which particles of a specific velocity pass through undeflected while those with greater or lesser velocities are deflected either upwards or downwards. An electric field is directed perpendicular to a magnetic field, producing an electric force and a magnetic force on the charged particle that can be equal in magnitude and opposite in direction (Fig. P19.35b) and hence cancel. Show that particles with a speed of \(v = E/B \) will pass through the velocity selector undeflected.
the velocity selector is 950 V/m, and the magnetic fields in both the velocity selector and the deflection chamber have magnitudes of 0.990 T. Calculate the radius of the path in the system for a singly charged ion with mass \(m = 2.18 \times 10^{-26} \) kg. (*Hint:* See Problem 35.)

37. A singly charged positive ion has a mass of \(2.50 \times 10^{-26} \) kg. After being accelerated through a potential difference of 250 V, the ion enters a magnetic field of 0.500 T, in a direction perpendicular to the field. Calculate the radius of the path of the ion in the field.

38. A mass spectrometer is used to examine the isotopes of uranium. Ions in the beam emerge from the velocity selector at a speed of \(3.00 \times 10^5 \) m/s and enter a uniform magnetic field of 0.600 T directed perpendicularly to the velocity of the ions. What is the distance between the impact points formed on the photographic plate by singly charged ions of \(^{235}\text{U} \) and \(^{238}\text{U} \)?

39. A proton is at rest at the plane vertical boundary of a region containing a uniform vertical magnetic field \(B \). An alpha particle moving horizontally makes a head-on elastic collision with the proton. Immediately after the collision, both particles enter the magnetic field, moving perpendicular to the direction of the field. The radius of the proton’s trajectory is \(R \). Find the radius of the alpha particle’s trajectory. The mass of the alpha particle is four times that of the proton, and its charge is twice that of the proton.

40. A particle with a charge \(q \) and kinetic energy \(K \) travels in a uniform magnetic field of magnitude \(B \). If the particle moves in a circular path of radius \(R \), find an expression for its speed in terms of its kinetic energy \(K \), charge \(q \), the magnitude of the magnetic field \(B \), and the radius \(R \).

41. A particle passes through a mass spectrometer as illustrated in Figure P19.36. The electric field between the plates of the velocity selector has a magnitude of 8 250 V/m, and the magnetic fields in both the velocity selector and the deflection chamber have magnitudes of 0.093 T. In the deflection chamber the particle strikes a photographic plate 39.0 cm removed from its exit point after traveling in a semicircle. (a) What is the mass-to-charge ratio of the particle? (b) What is the mass of the particle if it is doubly ionized? (c) What is its identity, assuming it’s an element?

42. A cosmic-ray proton in interstellar space has an energy of 10.0 MeV and executes a circular orbit having a radius equal to that of Mercury’s orbit around the Sun, which is \(5.80 \times 10^8 \) m. What is the magnetic field in that region of space?

SECTION 19.7 MAGNETIC FIELD OF A LONG, STRAIGHT WIRE AND AMPÈRE'S LAW

43. A lightning bolt may carry a current of \(1.00 \times 10^4 \) A for a short time. What is the resulting magnetic field 100 m from the bolt? Suppose the bolt extends far above and below the point of observation.

44. In each of parts (a), (b), and (c) of Figure P19.44, find the direction of the current in the wire that would produce a magnetic field directed as shown.

45. Neurons in our bodies carry weak currents that produce detectable magnetic fields. A technique called *magnetoencephalography*, or MEG, is used to study electrical activity in the brain using this concept. This technique is capable of detecting magnetic fields as weak as \(1.0 \times 10^{-15} \) T. Model the neuron as a long wire carrying a current and find the current it must carry to produce a field of this magnitude at a distance of 4.0 cm from the neuron.

46. In 1962 measurements of the magnetic field of a large tornado were made at the Geophysical Observatory in Tulsa, Oklahoma. If the magnitude of the tornado’s field was \(B = 1.50 \times 10^{-3} \) T pointing north when the tornado was 9.00 km east of the observatory, what current was carried up or down the funnel of the tornado? Model the vortex as a long, straight wire carrying a current.

47. A cardiac pacemaker can be affected by a static magnetic field as small as 1.7 mT. How close can a pacemaker wearer come to a long, straight wire carrying 20 A?

48. The two wires shown in Figure P19.48 carry currents of 5.00 A in opposite directions and are separated by 10.0 cm. Find the direction and magnitude of the net magnetic field (a) at a point midway between the wires; (b) at point \(P_2 \), 10.0 cm to the right of the wire on the right; and (c) at point \(P_3 \), 20.0 cm to the left of the wire on the left.
49. Four long, parallel conductors carry equal currents of $I = 5.00$ A. Figure P19.49 is an end view of the conductors. The direction of the current is into the page at points A and B (indicated by the crosses) and out of the page at C and D (indicated by the dots). Calculate the magnitude and direction of the magnetic field at point P, located at the center of the square with edge of length 0.200 m.

50. The two wires in Figure P19.50 carry currents of 3.00 A and 5.00 A in the direction indicated. (a) Find the direction and magnitude of the magnetic field at a point midway between the wires. (b) Find the magnitude and direction of the magnetic field at point P, located 20.0 cm above the wire carrying the 5.00-A current.

51. A wire carries a 7.00-A current along the x-axis, and another wire carries a 6.00-A current along the y-axis, as shown in Figure P19.51. What is the magnetic field at point P, located at $x = 4.00$ m, $y = 3.00$ m?

52. A long, straight wire lies on a horizontal table in the xy-plane and carries a current of 1.20 μA in the positive x-direction along the x-axis. A proton is traveling in the negative x-direction at speed 2.30×10^6 m/s a distance d above the wire (i.e. $z = d$). (a) What is the direction of the magnetic field of the wire at the position of the proton? (b) What is the direction of the magnetic force acting on the proton? (c) Explain why the direction of the proton’s motion doesn’t change. (d) Using Newton’s second law, find a symbolic expression for a in terms of the acceleration of gravity g, the proton mass m, its speed v, charge q, and the current I. (e) Find the numeric answer for the distance d using the results of part (d).

53. The magnetic field 40.0 cm away from a long, straight wire carrying current 2.00 A is 1.00 μT. (a) At what distance is it 0.100 μT? (b) At one instant, the two conductors in a long household extension cord carry equal 2.00-A currents in opposite directions. The two wires are 3.00 mm apart. Find the magnetic field 40.0 cm away from the middle of the straight cord, in the plane of the two wires. (c) At what distance is it one-tenth as large? (d) The center wire in a coaxial cable carries current 2.00 A in one direction, and the sheath around it carries current 2.00 A in the opposite direction. What magnetic field does the cable create at points outside?

54. Two long, parallel wires separated by a distance $2d$ carry equal currents in the same direction. An end view of the two wires is shown in Figure P19.54, where the currents are out of the page. (a) What is the direction of the magnetic field at P on the x-axis set up by the two wires? (b) Find an expression for the magnitude of the field at P. (c) From your result to part (b), determine the field at a point midway between the two wires. Does your result meet with your expectation? Explain.

SECTION 19.8 MAGNETIC FORCE BETWEEN TWO PARALLEL CONDUCTORS

55. Two parallel wires are separated by 6.00 cm, each carrying 3.0 A of current in same direction. What is the magnitude of the force per unit length between the wires? Is the force attractive or repulsive?

56. Two parallel wires separated by 4.0 cm repel each other with a force per unit length of 2.0×10^{-14} Nm. The current in one wire is 5.0 A. (a) Find the current in the other wire. (b) Are the currents in the same direction or in opposite directions? (c) What would happen if the direction of one current were reversed and doubled?

57. A wire with a weight per unit length of 0.080 N/m is suspended directly above a second wire. The top wire carries a current of 30.0 A, and the bottom wire carries a current of 60.0 A. Find the distance of separation between the wires so that the top wire will be held in place by magnetic repulsion.

58. In Figure P19.58 the current in the long, straight wire is $I_1 = 5.00$ A, and the wire lies in the plane of the rectangular loop, which carries 10.0 A. The dimensions shown are $c = 0.100$ m, $a = 0.150$ m, and $\ell = 0.450$ m. Find the magnitude and direction of the net force exerted by the magnetic field due to the straight wire on the loop.
SECTION 19.9 MAGNETIC FIELDS OF CURRENT LOOPS AND SOLENOIDS

59. A 30-turn circular coil of length 6.0 cm produces a magnetic field of magnitude 2.0 mT at its center. Find the current in the loop.

60. A certain superconducting magnet in the form of a solenoid of length 0.50 m can generate a magnetic field of 9.0 T in its core when its coils carry a current of 75 A. The windings, made of a niobium–titanium alloy, must be cooled to 4.2 K. Find the number of turns in the solenoid.

61. It is desired to construct a solenoid that will have a resistance of 5.00 Ω (at 20°C) and produce a magnetic field of 4.00 × 10⁻² T at its center when it carries a current of 4.00 A. The solenoid is to be constructed from copper wire having a diameter of 0.500 mm. If the radius of the solenoid is to be 1.00 cm, determine (a) the number of turns of wire needed and (b) the length the solenoid should have.

62. A single-turn square loop of wire 2.00 cm on a side carries a counterclockwise current of 0.200 A. The loop is inside a solenoid, with the plane of the loop perpendicular to the magnetic field of the solenoid. The solenoid has 30 turns per centimeter and carries a counterclockwise current of 15.0 A. Find the force on each side of the loop and the torque acting on the loop.

63. An electron is moving at a speed of 1.0 × 10⁴ m/s in a circular path of radius 2.0 cm inside a solenoid. The magnetic field of the solenoid is perpendicular to the plane of the electron’s path. Find (a) the strength of the magnetic field inside the solenoid and (b) the current in the solenoid if it has 25 turns per centimeter.

ADDITIONAL PROBLEMS

64. Figure P19.64 is a setup that can be used to measure magnetic fields. A rectangular coil of wire contains N turns has a width w. The coil is attached to one arm of a balance and is suspended between the poles of a magnet. The field is uniform and perpendicular to the plane of the coil. The system is first balanced when the current in the coil is zero. When the switch is closed and the coil carries a current I, a mass m must be added to the right side to balance the system. What is the magnitude of the magnetic field?

65. Two coplanar circular loops of wire carry currents of I₁ = 5.0 A and I₂ = 3.0 A in opposite directions as in Figure P19.65. (a) If r = 9.0 cm, what is the magnitude and direction of the net magnetic field at the center of the two loops? (b) Determine the value of r such that the net field at the center is zero.

66. An electron enters a region of magnetic field of magnitude 0.010 T, traveling perpendicular to the linear boundary of the region. The direction of the field is perpendicular to the velocity of the electron. (a) Determine the time it takes for the electron to leave the “field-filled” region, noting that its path is a semicircle. (b) Find the kinetic energy of the electron if the radius of its semicircular path is 2.00 cm.

67. Two long, straight wires cross each other at right angles, as shown in Figure P19.67. (a) Find the direction and magnitude of the magnetic field at point P, which is in the same plane as the two wires. (b) Find the magnetic field at a point 30.0 cm above the point of intersection (30.0 cm out of the page, toward you).

68. A 0.200-kg metal rod carrying a current of 10.0 A glides on two horizontal rails 0.500 m apart. What vertical magnetic field is required to keep the rod moving at a constant speed if the coefficient of kinetic friction between the rod and rails is 0.100?

69. Using an electromagnetic flowmeter (Fig. P19.69), a heart surgeon monitors the flow rate of blood through an artery. Electrodes A and B make contact with the outer
surface of the blood vessel, which has interior diameter 3.00 mm. (a) For a magnetic field magnitude of 0.0400 T, a potential difference of 160 mV appears between the electrodes. Calculate the speed of the blood. (b) Verify that electrode A is positive, as shown. Does the sign of the emf depend on whether the mobile ions in the blood are predominantly positively or negatively charged? Explain.

70. A uniform horizontal wire with a linear mass density of 0.50 g/m carries a 2.0-A current. It is placed in a constant magnetic field with a strength of 4.0×10^{-3} T. The field is horizontal and perpendicular to the wire. As the wire moves upward starting from rest, (a) what is its acceleration and (b) how long does it take to rise 50 cm? Neglect the magnetic field of Earth.

71. Three long, parallel conductors carry currents of $I = 2.0$ A. Figure P19.71 is an end view of the conductors, with each current coming out of the page. Given that $a = 1.0$ cm, determine the magnitude and direction of the magnetic field at points A, B, and C.

72. Two long, parallel wires, each with a mass per unit length of 40 g/m, are supported in a horizontal plane by 6.0-cm-long strings, as shown in Figure P19.72. Each wire carries the same current I, causing the wires to repel each other so that the angle θ between the supporting strings is 16°. (a) Are the currents in the same or opposite directions? (b) Determine the magnitude of each current.

73. Protons having a kinetic energy of 5.00 MeV are moving in the positive x-direction and enter a magnetic field of 0.0500 T in the z-direction, out of the plane of the page, and extending from $x = 0$ to $x = 1.00$ m as in Figure P19.73. (a) Calculate the y-component of the protons’ momentum as they leave the magnetic field. (b) Find the angle α between the initial velocity vector of the proton beam and the velocity vector after the beam emerges from the field. (Hint: Neglect relativistic effects and note that $1 \text{ eV} = 1.60 \times 10^{-19}$ J.)

74. A straight wire of mass 10.0 g and length 5.0 cm is suspended from two identical springs that, in turn, form a closed circuit (Fig. P19.74). The springs stretch a distance of 0.50 cm under the weight of the wire. The circuit has a total resistance of 12 Ω. When a magnetic field directed out of the page (indicated by the dots in the figure) is turned on, the springs are observed to stretch an additional 0.30 cm. What is the strength of the magnetic field? (The upper portion of the circuit is fixed.)

75. A 1.00-kg ball having net charge $Q = 5.00 \mu$C is thrown out of a window horizontally at a speed $v = 20.0$ m/s. The window is at a height $h = 20.0$ m above the ground. A uniform horizontal magnetic field of magnitude $B = 0.0100$ T is perpendicular to the plane of the ball’s trajectory. Find the magnitude of the magnetic force acting on the ball just before it hits the ground. (Hint: Ignore magnetic forces in finding the ball’s final velocity.)

76. Two long, parallel conductors separated by 10.0 cm carry currents in the same direction. The first wire carries a current $I_1 = 5.00$ A, and the second carries $I_2 = 8.00$ A. (a) What is the magnitude of the magnetic field created by I_1 at the location of I_2? (b) What is the force per unit length exerted by I_1 on I_2? (c) What is the magnitude of the magnetic field created by I_2 at the location of I_1? (d) What is the force per length exerted by I_2 on I_1?
INDUCED VOLTAGES AND INDUCTANCE

In 1819 Hans Christian Oersted discovered that an electric current exerted a force on a magnetic compass. Although there had long been speculation that such a relationship existed, Oersted’s finding was the first evidence of a link between electricity and magnetism. Because nature is often symmetric, the discovery that electric currents produce magnetic fields led scientists to suspect that magnetic fields could produce electric currents. Indeed, experiments conducted by Michael Faraday in England and independently by Joseph Henry in the United States in 1831 showed that a changing magnetic field could induce an electric current in a circuit. The results of these experiments led to a basic and important law known as Faraday’s law. In this chapter we discuss Faraday’s law and several practical applications, one of which is the production of electrical energy in power generation plants throughout the world.

20.1 INDUCED EMF AND MAGNETIC FLUX

An experiment first conducted by Faraday demonstrated that a current can be produced by a changing magnetic field. The apparatus shown in Figure 20.1 (page 664) consists of a coil connected to a switch and a battery. We call this coil the primary coil and the corresponding circuit the primary circuit. The coil is wrapped around an iron ring to intensify the magnetic field produced by the current in the coil. A second coil, called the secondary coil, at the right, is wrapped around the iron ring and is connected to an ammeter. The corresponding circuit is called the secondary circuit. It’s important to notice that there is no battery in the secondary circuit.

At first glance, you might guess that no current would ever be detected in the secondary circuit. When the switch in the primary circuit in Figure 20.1 is suddenly closed, however, something amazing happens: the ammeter measures a current in the secondary circuit and then returns to zero! When the switch is opened
again, the ammeter reads a current in the opposite direction and again returns to zero. Finally, whenever there is a steady current in the primary circuit, the ammeter reads zero.

From such observations, Faraday concluded that an electric current could be produced by a changing magnetic field. (A steady magnetic field doesn’t produce a current unless the coil is moving, as explained below.) The current produced in the secondary circuit occurs for only an instant while the magnetic field through the secondary coil is changing. In effect, the secondary circuit behaves as though a source of emf were connected to it for a short time. It’s customary to say that an induced emf is produced in the secondary circuit by the changing magnetic field.

Magnetic Flux

To evaluate induced emfs quantitatively, we need to understand what factors affect the phenomenon. Although changing magnetic fields always induce electric fields, in other situations the magnetic field remains constant, yet an induced electric field is still produced. The best example of this is an electric generator: A loop of conductor rotating in a constant magnetic field creates an electric current.

The physical quantity associated with magnetism that creates an electric field is a changing magnetic flux. Magnetic flux is defined in the same way as electric flux (Section 15.9) and is proportional to both the strength of the magnetic field passing through the plane of a loop of wire and the area of the loop.

The magnetic flux Φ_B through a loop of wire with area A is defined by

$$\Phi_B = B_\perp A = BA \cos \theta$$

where B_\perp is the component of \mathbf{B} perpendicular to the plane of the loop, as in Figure 20.2a, and θ is the angle between \mathbf{B} and the normal (perpendicular) to the plane of the loop.

SI unit: weber (Wb)
From Equation 20.1, it follows that \(B_z = B \cos \theta \). The magnetic flux, in other words, is the magnitude of the part of \(\mathbf{B} \) that is perpendicular to the plane of the loop times the area of the loop. Figure 20.2b is an edge view of the loop and the penetrating magnetic field lines. When the field is perpendicular to the plane of the loop as in Figure 20.3a, \(\theta = 0^\circ \) and \(\Phi_B \) has a maximum value, \(\Phi_{B,\text{max}} = BA \). When the plane of the loop is parallel to \(\mathbf{B} \) as in Figure 20.3b, \(\theta = 90^\circ \) and \(\Phi_B = 0 \). The flux can also be negative. For example, when \(\theta = 180^\circ \), the flux is equal to \(-BA \).

Because the SI unit of \(B \) is the tesla, or weber per square meter, the unit of flux is \(\text{T} \cdot \text{m}^2 \), or weber (Wb).

We can emphasize the qualitative meaning of Equation 20.1 by first drawing magnetic field lines, as in Figure 20.3. The number of lines per unit area increases as the field strength increases. The value of the magnetic flux is proportional to the total number of lines passing through the loop. We see that the most lines pass through the loop when its plane is perpendicular to the field, as in Figure 20.3a, so the flux has its maximum value at that time. As Figure 20.3b shows, no lines pass through the loop when its plane is parallel to the field, so in that case \(\Phi_B = 0 \).

APPLYING PHYSICS 20.1 FLUX COMPARED

Argentina has more land area \((2.8 \times 10^6 \text{ km}^2)\) than Greenland \((2.2 \times 10^6 \text{ km}^2)\). Why is the magnetic flux of Earth’s magnetic field larger through Greenland than through Argentina?

Explanation Greenland (latitude 60° north to 80° north) is closer to a magnetic pole than Argentina (latitude 20° south to 50° south), so the magnetic field is stronger there. That in itself isn’t sufficient to conclude that the magnetic flux is greater, but Greenland’s proximity to a pole also means that the angle magnetic field lines make with the vertical is smaller than in Argentina. As a result, more field lines penetrate the surface in Greenland, despite Argentina’s slightly larger area.

EXAMPLE 20.1 Magnetic Flux

Goal Calculate magnetic flux and a change in flux.

Problem A conducting circular loop of radius 0.250 m is placed in the \(xy \)-plane in a uniform magnetic field of 0.360 T that points in the positive \(z \)-direction, the same direction as the normal to the plane. (a) Calculate the magnetic flux through the loop. (b) Suppose the loop is rotated clockwise around the \(x \)-axis, so the normal direction now points at a 45.0° angle with respect to the \(z \)-axis. Recalculate the magnetic flux through the loop. (c) What is the change in flux due to the rotation of the loop?

Strategy After finding the area, substitute values into the equation for magnetic flux for each part.

Solution

(a) Calculate the initial magnetic flux through the loop.

First, calculate the area of the loop:

\[
A = \pi r^2 = \pi (0.250 \text{ m})^2 = 0.196 \text{ m}^2
\]

Substitute \(A, B, \) and \(\theta = 0^\circ \) into Equation 20.1 to find the initial magnetic flux:

\[
\Phi_B = AB \cos \theta = (0.196 \text{ m}^2)(0.360 \text{ T}) \cos (0^\circ)
= 0.070 \text{ T} \cdot \text{m}^2 = 0.070 \text{ Wb}
\]

(b) Calculate the magnetic flux through the loop after it has rotated 45.0° around the \(x \)-axis.

Make the same substitutions as in part (a), except the angle between \(\mathbf{B} \) and the normal is now \(\theta = 45.0^\circ \):

\[
\Phi_B = AB \cos \theta = (0.196 \text{ m}^2)(0.360 \text{ T}) \cos (45^\circ)
= 0.049 \text{ T} \cdot \text{m}^2 = 0.049 \text{ Wb}
\]
Remarks Notice that the rotation of the loop, not any change in the magnetic field, is responsible for the change in flux. This changing magnetic flux is essential in the functioning of electric motors and generators.

QUESTION 20.1
True or False: If the loop is rotated in the opposite direction by the same amount, the change in magnetic flux has the same magnitude but opposite sign.

EXERCISE 20.1
The loop, having rotated by \(45^\circ\), rotates clockwise another \(30^\circ\), so the normal to the plane points at an angle of \(75^\circ\) with respect to the direction of the magnetic field. Find (a) the magnetic flux through the loop when \(\theta = 75^\circ\) and (b) the change in magnetic flux during the rotation from \(45^\circ\) to \(75^\circ\).

Answers (a) 0.0183 Wb (b) \(-0.0316\) Wb

\[\Delta \Phi_B = 0.0499 \text{ Wb} - 0.0706 \text{ Wb} = -0.0207 \text{ Wb} \]

(c) Find the change in the magnetic flux due to the rotation of the loop.

Subtract the result of part (a) from the result of part (b):

\[\Delta \Phi_B = 0.0499 \text{ Wb} - 0.0706 \text{ Wb} = -0.0207 \text{ Wb} \]

20.2 FARADAY’S LAW OF INDUCTION

The usefulness of the concept of magnetic flux can be made obvious by another simple experiment that demonstrates the basic idea of electromagnetic induction. Consider a wire loop connected to an ammeter as in Active Figure 20.4. If a magnet is moved toward the loop, the ammeter reads a current in one direction, as in Active Figure 20.4a. When the magnet is held stationary, as in Active Figure 20.4b, the ammeter reads zero current. If the magnet is moved away from the loop, the ammeter reads a current in the opposite direction, as in Active Figure 20.4c. If the magnet is held stationary and the loop is moved either toward or away from the magnet, the ammeter also reads a current. From these observations, it can be concluded that a current is set up in the circuit as long as there is relative motion between the magnet and the loop. The same experimental results are found whether the loop moves or the magnet moves. We call such a current an induced current because it is produced by an induced emf.

This experiment is similar to the Faraday experiment discussed in Section 20.1. In each case, an emf is induced in a circuit when the magnetic flux through the circuit changes with time. It turns out that the instantaneous emf induced in a circuit equals the negative of the rate of change of magnetic flux with respect to time through the circuit. This is Faraday’s law of magnetic induction.

ACTIVE FIGURE 20.4

(a) When a magnet is moved toward a wire loop connected to an ammeter, the ammeter reads a current as shown, indicating that a current \(I\) is induced in the loop.

(b) When the magnet is held stationary, no current is induced in the loop, even when the magnet is inside the loop. (c) When the magnet is moved away from the loop, the ammeter reads a current in the opposite direction, indicating an induced current going opposite the direction of the current in part (a).
If a circuit contains \(N \) tightly wound loops and the magnetic flux through each loop changes by the amount \(\Delta \Phi_B \) during the interval \(\Delta t \), the average emf induced in the circuit during time \(\Delta t \) is

\[
\mathcal{E} = -N \frac{\Delta \Phi_B}{\Delta t}
\]

[20.2]

Because \(\Phi_B = BA \cos \theta \), a change of any of the factors \(B \), \(A \), or \(\theta \) with time produces an emf. We explore the effect of a change in each of these factors in the following sections. The minus sign in Equation 20.2 is included to indicate the polarity of the induced emf. This polarity determines which of two directions current will flow in a loop, a direction given by Lenz’s law:

The current caused by the induced emf travels in the direction that creates a magnetic field with flux opposing the change in the original flux through the circuit.

Lenz’s law says that if the magnetic flux through a loop is becoming more positive, say, then the induced emf creates a current and associated magnetic field that produces negative magnetic flux. Some mistakenly think this “counter magnetic field” created by the induced current, called \(\mathbf{B}_{\text{ind}} \) (“ind” for induced), will always point in a direction opposite the applied magnetic field \(\mathbf{B} \), but that is only true half the time! Figure 20.5a shows a field penetrating a loop. The graph in Figure 20.5b shows that the magnitude of the magnetic field \(B \) shrinks with time, which means that the flux of \(B \) is shrinking with time, so the induced field \(\mathbf{B}_{\text{ind}} \) will actually be in the same direction as \(B \). In effect, \(\mathbf{B}_{\text{ind}} \) “shores up” the field \(B \), slowing the loss of flux through the loop.

The direction of the current in Figure 20.5a can be determined by right-hand rule number 2: Point your right thumb in the direction that will cause the fingers on your right hand to curl in the direction of the induced field \(\mathbf{B}_{\text{ind}} \). In this case, that direction is counterclockwise: with the right thumb pointed in the direction of the current, your fingers curl down outside the loop and around and up through the inside of the loop. Remember, inside the loop is where it’s important for the induced magnetic field to be pointing up.

QUICK QUIZ 20.1 Figure 20.6 is a graph of the magnitude \(B \) versus time for a magnetic field that passes through a fixed loop and is oriented perpendicular to the plane of the loop. Rank the magnitudes of the emf generated in the loop at the three instants indicated from largest to smallest.

EXAMPLE 20.2 Faraday and Lenz to the Rescue

Goal Calculate an induced emf and current with Faraday’s law and apply Lenz’s law when the magnetic field changes with time.

Problem A coil with 25 turns of wire is wrapped on a frame with a square cross section 1.80 cm on a side. Each turn has the same area, equal to that of the frame, and the total resistance of the coil is 0.350 \(\Omega \). An applied uniform magnetic field is perpendicular to the plane of the coil, as in Figure 20.7. (a) If the field changes uniformly from 0.00 T to 0.500 T in 0.800 s, what is the induced emf in the coil while the field is changing? Find (b) the magnitude and (c) the direction of the induced current in the coil while the field is changing.
Strategy
Part (a) requires substituting into Faraday’s law, Equation 20.2. The necessary information is given, except for \(\Delta \Phi_B \), the change in the magnetic flux during the elapsed time. Compute the initial and final magnetic fluxes with Equation 20.1, find the difference, and assemble all terms in Faraday’s law. The current can then be found with Ohm’s law, and its direction with Lenz’s law.

Solution
(a) Find the induced emf in the coil.
To compute the flux, the area of the coil is needed:
\[
A = l^2 = (0.018 \text{ m})^2 = 3.24 \times 10^{-4} \text{ m}^2
\]

The magnetic flux \(\Phi_{B_i} \) through the coil at \(t = 0 \) is zero because \(B = 0 \). Calculate the flux at \(t = 0.800 \text{ s} \):

\[
\Phi_{B_i} = B_i A \cos \theta = (0.500 \text{ T})(3.24 \times 10^{-4} \text{ m}^2) \cos (0^\circ) = 1.62 \times 10^{-4} \text{ Wb}
\]

Compute the change in the magnetic flux through the cross section of the coil over the 0.800-s interval:

\[
\Delta \Phi_B = \Phi_{B_f} - \Phi_{B_i} = 1.62 \times 10^{-4} \text{ Wb}
\]

Substitute into Faraday’s law of induction to find the induced emf in the coil:

\[
E = -N \frac{\Delta \Phi_B}{\Delta t} = -25 \text{ turns} \left(\frac{1.62 \times 10^{-4} \text{ Wb}}{0.800 \text{ s}} \right) = -5.06 \times 10^{-3} \text{ V}
\]

(b) Find the magnitude of the induced current in the coil.
Substitute the voltage difference and the resistance into Ohm’s law:

\[
I = \frac{\Delta V}{R} = \frac{5.06 \times 10^{-3} \text{ V}}{0.350 \Omega} = 1.45 \times 10^{-2} \text{ A}
\]

(c) Find the direction of the induced current in the coil.

The magnetic field is increasing up through the loop, in the same direction as the normal to the plane; hence, the flux is positive and is also increasing. A downward-pointing induced magnetic field will create negative flux, opposing the change. If you point your right thumb in the clockwise direction along the loop, your fingers curl down through the loop, which is the correct direction for the counter magnetic field. Hence the current must proceed in a clockwise direction.

Remark
Lenz’s law can best be handled by first sketching a diagram.

QUESTION 20.2
What average emf is induced in the loop if, instead, the magnetic field changes uniformly from 0.500 T to 0? How would that affect the induced current?

EXERCISE 20.2
Suppose the magnetic field changes uniformly from 0.500 T to 0.200 T in the next 0.600 s. Compute (a) the induced emf in the coil and (b) the magnitude and direction of the induced current.

Answers
(a) \(4.05 \times 10^{-3} \text{ V} \)
(b) \(1.16 \times 10^{-2} \text{ A} \), counterclockwise

FIGURE 20.8 Essential components of a ground fault interrupter (contents of the gray box in Fig. 20.9a). In newer homes such devices are built directly into wall outlets. The purpose of the sensing coil and circuit breaker is to cut off the current before damage is done.

APPLICATION
Ground fault interrupters
The ground fault interrupter (GFI) is an interesting safety device that protects people against electric shock when they touch appliances and power tools. Its operation makes use of Faraday’s law. Figure 20.8 shows the essential parts of a ground fault interrupter. Wire 1 leads from the wall outlet to the appliance to be protected, and wire 2 leads from the appliance back to the wall outlet. An iron ring surrounds the two wires to confine the magnetic field set up by each wire. A sensing coil, which can activate a circuit breaker when changes in magnetic flux occur, is wrapped around part of the iron ring. Because the currents in the wires are in opposite directions, the net
magnetic field through the sensing coil due to the currents is zero. If a short circuit occurs in the appliance so that there is no returning current, however, the net magnetic field through the sensing coil is no longer zero. A short circuit can happen if, for example, one of the wires loses its insulation, providing a path through you to ground if you happen to be touching the appliance and are grounded as in Figure 18.23a. Because the current is alternating, the magnetic flux through the sensing coil changes with time, producing an induced voltage in the coil. This induced voltage is used to trigger a circuit breaker, stopping the current quickly (in about 1 ms) before it reaches a level that might be harmful to the person using the appliance. A ground fault interrupter provides faster and more complete protection than even the case-ground-and-circuit-breaker combination shown in Figure 18.23b. For this reason, ground fault interrupters are commonly found in bathrooms, where electricity poses a hazard to people. (See Fig. 20.9.)

Another interesting application of Faraday’s law is the production of sound in an electric guitar. A vibrating string induces an emf in a coil (Fig. 20.10). The pickup coil is placed near the vibrating guitar string, which is made of a metal that can be magnetized. The permanent magnet inside the coil magnetizes the portion of the string nearest the coil. When the guitar string vibrates at some frequency, its magnetized segment produces a changing magnetic flux through the pickup coil. The changing flux induces a voltage in the coil; the voltage is fed to an amplifier. The output of the amplifier is sent to the loudspeakers, producing the sound waves that we hear.

Sudden infant death syndrome, or SIDS, is a devastating affliction in which a baby suddenly stops breathing during sleep without an apparent cause. One type of monitoring device, called an apnea monitor, is sometimes used to alert caregivers of the cessation of breathing. The device uses induced currents, as shown in
Induced Voltages and Inductance

Figure 20.11. A coil of wire attached to one side of the chest carries an alternating current. The varying magnetic flux produced by this current passes through a pickup coil attached to the opposite side of the chest. Expansion and contraction of the chest caused by breathing or movement change the strength of the voltage induced in the pickup coil. If breathing stops, however, the pattern of the induced voltage stabilizes, and external circuits monitoring the voltage sound an alarm to the caregivers after a momentary pause to ensure that a problem actually does exist.

20.3 MOTIONAL EMF

In Section 20.2 we considered emfs induced in a circuit when the magnetic field changes with time. In this section we describe a particular application of Faraday’s law in which a so-called motional emf is produced. It is the emf induced in a conductor moving through a magnetic field.

First consider a straight conductor of length \(\ell \) moving with constant velocity through a uniform magnetic field \(\mathbf{B} \) directed perpendicular to \(\mathbf{v} \). The vector \(\mathbf{F}_m \) is the magnetic force on an electron in the conductor. An emf of \(B\ell v \) is induced between the ends of the bar.

Because there is an excess of positive charge at the upper end and an excess of negative charge at the lower end, the upper end is at a higher potential than the lower end. There is a potential difference across a conductor as long as it moves through a field. If the motion is reversed, the polarity of the potential difference is also reversed.

A more interesting situation occurs if the moving conductor is part of a closed conducting path. This situation is particularly useful for illustrating how a changing loop area induces a current in a closed circuit described by Faraday’s law. Consider a circuit consisting of a conducting bar of length \(\ell \), sliding along two fixed, parallel conducting rails, as in Active Figure 20.13a. For simplicity, assume the moving bar has zero resistance and the stationary part of the circuit has constant resistance \(R \). A uniform and constant magnetic field \(\mathbf{B} \) is applied perpendicular to
the plane of the circuit. As the bar is pulled to the right with velocity v under the influence of an applied force F_{app}, a magnetic force along the length of the bar acts on the free charges in the bar. This force in turn sets up an induced current because the charges are free to move in a closed conducting path. In this case, the changing magnetic flux through the loop and the corresponding induced emf across the moving bar arise from the change in area of the loop as the bar moves through the magnetic field.

Assume the bar moves a distance Δx in time Δt, as shown in Figure 20.14. The increase in flux $\Delta \Phi_B$ through the loop in that time is the amount of flux that now passes through the portion of the circuit that has area $\ell \Delta x$:

$$\Delta \Phi_B = B A = B \ell \Delta x$$

Using Faraday’s law and noting that there is one loop ($N = 1$), we find that the magnitude of the induced emf is

$$|\mathcal{E}| = \frac{\Delta \Phi_B}{\Delta t} = B \ell \frac{\Delta x}{\Delta t} = B \ell v$$

This induced emf is often called a motional emf because it arises from the motion of a conductor through a magnetic field.

Further, if the resistance of the circuit is R, the magnitude of the induced current in the circuit is

$$I = \frac{|\mathcal{E}|}{R} = \frac{B \ell v}{R}$$

Active Figure 20.13b shows the equivalent circuit diagram for this example.

APPLYING PHYSICS 20.2 SPACE CATAPULT

Applying a force on the bar will result in an induced emf in the circuit shown in Active Figure 20.13. Suppose we remove the external magnetic field in the diagram and replace the resistor with a high-voltage source and a switch, as in Figure 20.15. What will happen when the switch is closed? Will the bar move, and does it matter which way we connect the high-voltage source?

Explanation Suppose the source is capable of establishing high current. Then the two horizontal conducting rods will create a strong magnetic field in the area between them, directed into the page. (The movable bar also creates a magnetic field, but this field can’t exert force on the bar itself.) Because the moving bar carries a downward current, a magnetic force is exerted on the bar, directed to the right. Hence, the bar accelerates along the rails away from the power supply. If the polarity of the power were reversed, the magnetic field would be out of the page, the current in the bar would be upward, and the force on the bar would still be directed to the right. The $B \ell v$ force exerted by a magnetic field according to Equation 19.6 causes the bar to accelerate away from the voltage source. Studies have shown that it’s possible to launch payloads into space with this technology. (This is the working principle of a rail gun.) Very large accelerations can be obtained with currently available technology, with payloads being accelerated to a speed of several kilometers per second in a fraction of a second. This acceleration is larger than humans can tolerate.

Rail guns have been proposed as propulsion systems for moving asteroids into more useful orbits. The material of the asteroid could be mined and launched off the surface by a rail gun, which would act like a rocket engine, modifying the velocity and hence the orbit of the asteroid. Some asteroids contain trillions of dollars worth of valuable metals.
QUICK QUIZ 20.2 A horizontal metal bar oriented east-west drops straight down in a location where Earth’s magnetic field is due north. As a result, an emf develops between the ends. Which end is positively charged? (a) the east end (b) the west end (c) neither end carries a charge

QUICK QUIZ 20.3 You intend to move a rectangular loop of wire into a region of uniform magnetic field at a given speed so as to induce an emf in the loop. The plane of the loop must remain perpendicular to the magnetic field lines. In which orientation should you hold the loop while you move it into the region with the magnetic field to generate the largest emf? (a) with the long dimension of the loop parallel to the velocity vector (b) with the short dimension of the loop parallel to the velocity vector (c) either way because the emf is the same regardless of orientation

EXAMPLE 20.3 A Potential Difference Induced Across Airplane Wings

Goal Find the emf induced by motion through a magnetic field.

Problem An airplane with a wingspan of 30.0 m flies due north at a location where the downward component of Earth's magnetic field is 0.600×10^{-4} T. There is also a component pointing due north that has a magnitude of 0.470×10^{-4} T. (a) Find the difference in potential between the wingtips when the speed of the plane is 2.50×10^2 m/s. (b) Which wingtip is positive?

Strategy Because the plane is flying north, the northern component of magnetic field won’t have any effect on the induced emf. The induced emf across the wing is caused solely by the downward component of the Earth's magnetic field. Substitute the given quantities into Equation 20.4. Use right-hand rule number 1 to find the direction positive charges would be propelled by the magnetic force.

Solution

(a) Calculate the difference in potential across the wingtips.

Write the motional emf equation and substitute the given quantities:

$$E = Bfv = (0.600 \times 10^{-4} \text{T})(30.0 \text{ m})(2.50 \times 10^2 \text{ m/s})$$

$$= 0.450 \text{ V}$$

(b) Which wingtip is positive?

Apply right-hand rule number 1: Point the fingers of your right hand north, in the direction of the velocity, and curl them down, in the direction of the magnetic field. Your thumb points west.

Remark An induced emf such as this one can cause problems on an aircraft.

QUESTION 20.3 In what directions are magnetic forces exerted on electrons in the metal aircraft if it is flying due west? (a) north (b) south (c) east (d) west (e) up (f) down

EXERCISE 20.3 Suppose the magnetic field in a given region of space is parallel to Earth's surface, points north, and has magnitude 1.80×10^{-4} T. A metal cable attached to a space station stretches radially outwards 2.50 km. (a) Estimate the potential difference that develops between the ends of the cable if it’s traveling eastward around Earth at 7.70×10^3 m/s. (b) Which end of the cable is positive, the lower end or the upper end?

Answers (a) $3.47 \times 10^3 \text{ V}$ (b) The upper end is positive.
The sliding bar in Figure 20.13a has a length of 0.500 m and moves at 2.00 m/s in a magnetic field of magnitude 0.250 T. Using the concept of motional emf, find the induced voltage in the moving rod. (b) If the resistance in the circuit is 0.500 Ω, find the current in the circuit and the power delivered to the resistor. (Note: The current in this case goes counterclockwise around the loop.) (c) Calculate the magnetic force on the bar. (d) Use the concepts of work and power to calculate the applied force.

Strategy For part (a), substitute into Equation 20.4 for the motional emf. Once the emf is found, substitution into Ohm’s law gives the current. In part (c), use Equation 19.6 for the magnetic force on a current-carrying conductor. In part (d), use the fact that the power dissipated by the resistor multiplied by the elapsed time must equal the work done by the applied force.

Solution
(a) Find the induced emf with the concept of motional emf.
Substitute into Equation 20.4 to find the induced emf:

\[E = BLv = (0.250 \text{ T})(0.500 \text{ m})(2.00 \text{ m/s}) = 0.250 \text{ V} \]

(b) Find the induced current in the circuit and the power dissipated by the resistor.
Substitute the emf and the resistance into Ohm’s law to find the induced current:

\[I = \frac{E}{R} = \frac{0.250 \text{ V}}{0.500 \Omega} = 0.500 \text{ A} \]

Substitute \(I = 0.500 \text{ A} \) and \(E = 0.250 \text{ V} \) into Equation 17.8 to find the power dissipated by the 0.500-Ω resistor:

\[P = I \Delta V = (0.500 \text{ A})(0.250 \text{ V}) = 0.125 \text{ W} \]

(c) Calculate the magnitude and direction of the magnetic force on the bar.
Substitute values for \(I, B, \) and \(\ell \) into Equation 19.6, with \(\sin \theta = \sin (90^\circ) = 1 \), to find the magnitude of the force:

\[F_m = IB\ell = (0.500 \text{ A})(0.250 \text{ T})(0.500 \text{ m}) = 6.25 \times 10^{-2} \text{ N} \]

Apply right-hand rule number 2 to find the direction of the force:
Point the fingers of your right hand in the direction of the positive current, then curl them in the direction of the magnetic field. Your thumb points in the negative x-direction.

(d) Find the value of \(F_{app} \), the applied force.
Set the work done by the applied force equal to the dissipated power times the elapsed time:

\[W_{app} = F_{app}d = P\Delta t \]

Solve for \(F_{app} \) and substitute \(d = v\Delta t \):

\[F_{app} = \frac{P\Delta t}{d} = \frac{P\Delta t}{v\Delta t} = \frac{P}{v} = \frac{0.125 \text{ W}}{2.00 \text{ m/s}} = 6.25 \times 10^{-2} \text{ N} \]

Remarks Part (d) could be solved by using Newton’s second law for an object in equilibrium: Two forces act horizontally on the bar and the acceleration of the bar is zero, so the forces must be equal in magnitude and opposite in direction. Notice the agreement between the answers for \(F_m \) and \(F_{app} \) despite the very different concepts used.

QUESTION 20.4
Suppose the applied force and magnetic field in Figure 20.13a are removed, but a battery creates a current in the same direction as indicated. What happens to the bar?
EXERCISE 20.4
Suppose the current suddenly increases to 1.25 A in the same direction as before due to an increase in speed of the bar. Find (a) the emf induced in the rod and (b) the new speed of the rod.

Answers (a) 0.625 V (b) 5.00 m/s

20.4 LENZ’S LAW REVISITED (THE MINUS SIGN IN FARADAY’S LAW)

To reach a better understanding of Lenz’s law, consider the example of a bar moving to the right on two parallel rails in the presence of a uniform magnetic field directed into the paper (Fig. 20.16a). As the bar moves to the right, the magnetic flux through the circuit increases with time because the area of the loop increases. Lenz’s law says that the induced current must be in a direction such that the flux it produces opposes the change in the external magnetic flux. Because the flux due to the external field is increasing into the paper, the induced current, to oppose the change, must produce a flux out of the paper. Hence, the induced current must be counterclockwise when the bar moves to the right. (Use right-hand rule number 2 from Chapter 19 to verify this direction.) On the other hand, if the bar is moving to the left, as in Figure 20.16b, the magnetic flux through the loop decreases with time. Because the flux is into the paper, the induced current has to be clockwise to produce its own flux into the paper (which opposes the decrease in the external flux). In either case, the induced current tends to maintain the original flux through the circuit.

Now we examine this situation from the viewpoint of energy conservation. Suppose the bar is given a slight push to the right. In the preceding analysis, we found that this motion led to a counterclockwise current in the loop. Let’s see what would happen if we assume the current is clockwise, opposite the direction required by Lenz’s law. For a clockwise current I, the direction of the magnetic force $B\times I$ on the sliding bar is to the right. This force accelerates the rod and increases its velocity. In turn, the area of the loop increases more rapidly, thereby increasing the induced current, which increases the force, which increases the current, and so forth. In effect, the system acquires energy with zero input energy. This is inconsistent with all experience and with the law of conservation of energy, so we’re forced to conclude that the current must be counterclockwise.

Consider another situation. A bar magnet is moved to the right toward a stationary loop of wire, as in Figure 20.17a. As the magnet moves, the magnetic flux through the loop increases with time. To counteract this rise in flux, the induced current produces a flux to the left, as in Figure 20.17b; hence, the induced current is in the direction shown. Note that the magnetic field lines associated with the induced current oppose the motion of the magnet. The left face of the current loop is therefore a north pole, and the right face is a south pole.

FIGURE 20.16 (a) As the conducting bar slides on the two fixed conducting rails, the magnetic flux through the loop increases with time. By Lenz’s law, the induced current must be counterclockwise so as to produce a counteracting flux out of the paper. (b) When the bar moves to the left, the induced current must be clockwise. Why?

FIGURE 20.17 (a) When the magnet is moved toward the stationary conducting loop, a current is induced in the direction shown. (b) This induced current produces its own flux to the left to counteract the increasing external flux to the right. (c) When the magnet is moved away from the stationary conducting loop, a current is induced in the direction shown. (d) This induced current produces its own flux to the right to counteract the decreasing external flux to the right.
On the other hand, if the magnet were moving to the left, as in Figure 20.17c, its flux through the loop, which is toward the right, would decrease with time. Under these circumstances, the induced current in the loop would be in a direction to set up a field directed from left to right through the loop, in an effort to maintain a constant number of flux lines. Hence, the induced current in the loop would be as shown in Figure 20.17d. In this case, the left face of the loop would be a south pole and the right face would be a north pole.

As another example, consider a coil of wire placed near an electromagnet, as in Figure 20.18a. We wish to find the direction of the induced current in the coil at various times: at the instant the switch is closed, after the switch has been closed for several seconds, and when the switch is opened.

When the switch is closed, the situation changes from a condition in which no lines of flux pass through the coil to one in which lines of flux pass through in the direction shown in Figure 20.18b. To counteract this change in the number of lines, the coil must set up a field from left to right in the figure, which requires a current directed as shown in Figure 20.18b.

After the switch has been closed for several seconds, there is no change in the number of lines through the loop; hence, the induced current is zero.

Opening the switch causes the magnetic field to change from a condition in which flux lines thread through the coil from right to left to a condition of zero flux. The induced current must then be as shown in Figure 20.18c so as to set up its own field from right to left.

QUICK QUIZ 20.4 A bar magnet is falling toward the center of a loop of wire, with the north pole oriented downwards. Viewed from the same side of the loop as the magnet, as the north pole approaches the loop, what is the direction of the induced current? (a) clockwise (b) zero (c) counterclockwise (d) along the length of the magnet

QUICK QUIZ 20.5 Two circular loops are side by side and lie in the xy-plane. A switch is closed, starting a counterclockwise current in the left-hand loop, as viewed from a point on the positive z-axis passing through the center of the loop. Which of the following statements is true of the right-hand loop? (a) The current remains zero. (b) An induced current moves counterclockwise. (c) An induced current moves clockwise.

Tape Recorders

One common practical use of induced currents and emfs is associated with the tape recorder. Many different types of tape recorders are made, but the basic principles are the same for all. A magnetic tape moves past a recording and playback head, as in Figure 20.19a (page 676). The tape is a plastic ribbon coated with iron oxide or chromium oxide.

The recording process makes use of a current in an electromagnet producing a magnetic field. Figure 20.19b illustrates the steps in the process. A sound wave sent into a microphone is transformed into an electric current, amplified, and allowed to pass through a wire coiled around a doughnut-shaped piece of iron, which functions
as the recording head. The iron ring and the wire constitute an electromagnet, in which the lines of the magnetic field are contained completely inside the iron except at the point where a slot is cut in the ring. Here the magnetic field fringes out of the iron and magnetizes the small pieces of iron oxide embedded in the tape. As the tape moves past the slot, it becomes magnetized in a pattern that reproduces both the frequency and the intensity of the sound signal entering the microphone.

To reconstruct the sound signal, the previously magnetized tape is allowed to pass through a recorder head operating in the playback mode. A second wire-wound doughnut-shaped piece of iron with a slot in it passes close to the tape so that the varying magnetic fields on the tape produce changing field lines through the wire coil. The changing flux induces a current in the coil that corresponds to the current in the recording head that originally produced the tape. This changing electric current can be amplified and used to drive a speaker. Playback is thus an example of induction of a current by a moving magnet.

Hard drives in computers also use induction to write data, though for faster access the data is written to a coated, spinning disk rather than tape. The read heads, however, now use the giant magnetoresistance effect, or GMR, rather than induction. The greater sensitivity of the new read heads led to larger storage capacity.

20.5 Generators

Generators and motors are important practical devices that operate on the principle of electromagnetic induction. First, consider the alternating-current (AC) generator, a device that converts mechanical energy to electrical energy. In its simplest form, the AC generator consists of a wire loop rotated in a magnetic field by some external means (Active Fig. 20.20a). In commercial power plants, the energy required to rotate the loop can be derived from a variety of sources. In a hydroelectric plant, for example, falling water directed against the blades of a turbine produces the rotary motion; in a coal-fired plant, heat produced by burning coal.
is used to convert water to steam, and this steam is directed against the turbine blades. As the loop rotates, the magnetic flux through it changes with time, inducing an emf and a current in an external circuit. The ends of the loop are connected to slip rings that rotate with the loop. Connections to the external circuit are made by stationary brushes in contact with the slip rings.

We can derive an expression for the emf generated in the rotating loop by making use of the equation for motional emf,

\[E = B \ell v \sin \theta \]

where \(E \) is the emf generated, \(B \) is the magnetic field strength, \(\ell \) is the length of the wire, and \(v \) is the component of velocity perpendicular to the field. The emf generated in wire \(BC \) equals \(B \ell v \sin \theta \), where \(\ell \) is the length of the wire and \(v \) is the component of velocity perpendicular to the field. An emf of \(B \ell v \sin \theta \) is also generated in wire \(DA \), and the sense of this emf is the same as that in wire \(BC \). Because \(v \sin \theta = v \sin (v \sin \theta) \), the total induced emf is

\[E = 2B \ell v \sin \theta \]

[20.6]

If the loop rotates with a constant angular speed \(\omega \), we can use the relation \(\theta = \omega t \) in Equation 20.6. Furthermore, because every point on the wires \(BC \) and \(DA \) rotates in a circle about the axis of rotation with the same angular speed \(\omega \), we have \(v = v_{\omega} = a/2 \omega \), where \(a \) is the length of sides \(AB \) and \(CD \). Equation 20.6 therefore reduces to

\[E = 2B \ell \left(\frac{a}{2} \right) \omega \sin \omega t = B \ell a \omega \sin \omega t \]

If a coil has \(N \) turns, the emf is \(N \) times as large because each loop has the same emf induced in it. Further, because the area of the loop is \(A = \ell a \), the total emf is

\[E = NBA \omega \sin \omega t \]

[20.7]

This result shows that the emf varies sinusoidally with time, as plotted in Active Figure 20.20b. Note that the maximum emf has the value

\[E_{\text{max}} = NBA \omega \]

[20.8]

which occurs when \(\omega t = 90^\circ \) or \(270^\circ \). In other words, \(E = E_{\text{max}} \) when the plane of the loop is parallel to the magnetic field. Further, the emf is zero when \(\omega t = 0 \) or \(180^\circ \), which happens whenever the magnetic field is perpendicular to the plane of the loop. In the United States and Canada the frequency of rotation for commercial generators is 60 Hz, whereas in some European countries 50 Hz is used. (Recall that \(\omega = 2\pi f \), where \(f \) is the frequency in hertz.)

The direct-current (DC) generator is illustrated in Active Figure 20.22a (page 678). The components are essentially the same as those of the AC generator except...
that the contacts to the rotating loop are made by a split ring, or commutator. In this design the output voltage always has the same polarity and the current is a pulsating direct current, as in Active Figure 20.22b. Note that the contacts to the split ring reverse their roles every half cycle. At the same time, the polarity of the induced emf reverses. Hence, the polarity of the split ring remains the same.

A pulsating DC current is not suitable for most applications. To produce a steady DC current, commercial DC generators use many loops and commutators distributed around the axis of rotation so that the sinusoidal pulses from the loops overlap in phase. When these pulses are superimposed, the DC output is almost free of fluctuations.

ACTIVE FIGURE 20.22
(a) A schematic diagram of a DC generator. (b) The emf fluctuates in magnitude, but always has the same polarity.

EXAMPLE 20.5 emf Induced in an AC Generator

Goal Understand physical aspects of an AC generator.

Problem An AC generator consists of eight turns of wire, each having area \(A = 0.090 \text{ m}^2 \), with a total resistance of \(R = 12.0 \Omega \). The coil rotates in a magnetic field of \(B = 0.500 \text{ T} \) at a constant frequency of \(f = 60.0 \text{ Hz} \), with axis of rotation perpendicular to the direction of the magnetic field. (a) Find the maximum induced emf. (b) What is the maximum induced current? (c) Determine the induced emf and current as functions of time. (d) What maximum torque must be applied to keep the coil turning?

Strategy From the given frequency, calculate the angular frequency \(\omega \) and substitute it, together with given quantities, into Equation 20.8. As functions of time, the emf and current have the form \(A \sin \omega t \), where \(A \) is the maximum emf or current, respectively. For part (d), calculate the magnetic torque on the coil when the current is at a maximum. (See Chapter 19.) The applied torque must do work against this magnetic torque to keep the coil turning.

Solution

(a) Find the maximum induced emf.

First, calculate the angular frequency of the rotational motion:

\[
\omega = 2\pi f = 2\pi(60.0 \text{ Hz}) = 377 \text{ rad/s}
\]

Substitute the values for \(N, A, B \), and \(\omega \) into Equation 20.8, obtaining the maximum induced emf:

\[
E_{\text{max}} = NAB\omega = 8(0.090 \text{ m}^2)(0.500 \text{ T})(377 \text{ rad/s}) = 136 \text{ V}
\]

(b) What is the maximum induced current?

Substitute the maximum induced emf \(E_{\text{max}} \) and the resistance \(R \) into Ohm’s law to find the maximum induced current:

\[
I_{\text{max}} = \frac{E_{\text{max}}}{R} = \frac{136 \text{ V}}{12.0 \Omega} = 11.3 \text{ A}
\]

(c) Determine the induced emf and the current as functions of time.

Substitute \(E_{\text{max}} \) and \(\omega \) into Equation 20.7 to obtain the variation of \(E \) with time \(t \) in seconds:

\[
E = E_{\text{max}} \sin \omega t = (136 \text{ V}) \sin 377t
\]
Remark The number of loops, \(N \), can’t be arbitrary because there must be a force strong enough to turn the coil.

QUESTION 20.5
What effect does doubling the frequency have on the maximum induced emf?

EXERCISE 20.5
An AC generator is to have a maximum output of 301 V. Each circular turn of wire has an area of 0.100 m\(^2\) and a resistance of 0.80 \(\Omega \). The coil rotates in a magnetic field of 0.600 T with a frequency of 40.0 Hz, with the axis of rotation perpendicular to the direction of the magnetic field. (a) How many turns of wire should the coil have to produce the desired emf? (b) Find the maximum current induced in the coil. (c) Determine the induced emf as a function of time.

Answers
(a) 20 turns
(b) 18.8 A
(c) \(\mathcal{E} = (301 \text{ V}) \sin 251t \)

Motors and Back emf
Motors are devices that convert electrical energy to mechanical energy. Essentially, a motor is a generator run in reverse: instead of a current being generated by a rotating loop, a current is supplied to the loop by a source of emf, and the magnetic torque on the current-carrying loop causes it to rotate.

A motor can perform useful mechanical work when a shaft connected to its rotating coil is attached to some external device. As the coil in the motor rotates, however, the changing magnetic flux through it induces an emf that acts to reduce the current in the coil. If it increased the current, Lenz’s law would be violated. The phrase **back emf** is used for an emf that tends to reduce the applied current. The back emf increases in magnitude as the rotational speed of the coil increases. We can picture this state of affairs as the equivalent circuit in Figure 20.23. For illustrative purposes, assume the external power source supplying current in the coil of the motor has a voltage of 120 V, the coil has a resistance of 10 \(\Omega \), and the back emf induced in the coil at this instant is 70 V. The voltage available to supply current equals the difference between the applied voltage and the back emf, or 50 V in this case. The current is always reduced by the back emf.

When a motor is turned on, there is no back emf initially and the current is very large because it’s limited only by the resistance of the coil. As the coil begins to rotate, the induced back emf opposes the applied voltage and the current in the coil is reduced. If the mechanical load increases, the motor slows down, which decreases the back emf. This reduction in the back emf increases the current in the coil and therefore also increases the power needed from the external voltage source. As a result, the power requirements for starting a motor and for running it under heavy loads are greater than those for running the motor under average loads. If the motor is allowed to run under no mechanical load, the back emf reduces the current to a value just large enough to balance energy losses by heat and friction.
EXAMPLE 20.6 Induced Current in a Motor

Goal Apply the concept of a back emf in calculating the induced current in a motor.

Problem A motor has coils with a resistance of 10.0 Ω and is supplied by a voltage of \(\Delta V = 1.20 \times 10^2 \) V. When the motor is running at its maximum speed, the back emf is 70.0 V. Find the current in the coils (a) when the motor is first turned on and (b) when the motor has reached its maximum rotation rate.

Strategy For each part, find the net voltage, which is the applied voltage minus the induced emf. Divide the net voltage by the resistance to get the current.

Solution

(a) Find the initial current, when the motor is first turned on.

If the coil isn’t rotating, the back emf is zero and the current has its maximum value. Calculate the difference between the emf and the initial back emf and divide by the resistance \(R \), obtaining the initial current:

\[
I = \frac{E - E_{\text{back}}}{R} = \frac{1.20 \times 10^2 \text{ V} - 0}{10.0 \text{ Ω}} = 12.0 \text{ A}
\]

(b) Find the current when the motor is rotating at its maximum rate.

Repeat the calculation, using the maximum value of the back emf:

\[
I = \frac{E - E_{\text{back}}}{R} = \frac{1.20 \times 10^2 \text{ V} - 70.0 \text{ V}}{10.0 \text{ Ω}} = \frac{50.0 \text{ V}}{10.0 \text{ Ω}} = 5.00 \text{ A}
\]

Remark The phenomenon of back emf is one way in which the rotation rate of electric motors is limited.

QUESTION 20.6

As a motor speeds up, what happens to the magnitude of the magnetic torque? (a) It increases. (b) It decreases. (c) It remains constant.

EXERCISE 20.6

If the current in the motor is 8.00 A at some instant, what is the back emf at that time?

Answer 40.0 V

20.6 SELF-INDUCTION

Consider a circuit consisting of a switch, a resistor, and a source of emf, as in Figure 20.24. When the switch is closed, the current doesn’t immediately change from zero to its maximum value, \(E/R \). The law of electromagnetic induction, Faraday’s law, prevents this change. What happens instead is the following: as the current increases with time, the magnetic flux through the loop due to this current also increases. The increasing flux induces an emf in the circuit that opposes the change in magnetic flux. By Lenz’s law, the induced emf is in the direction indicated by the dashed battery in the figure. The net potential difference across the resistor is the emf of the battery minus the opposing induced emf. As the magnitude of the current increases, the rate of increase lessens and hence the induced emf decreases. This opposing emf results in a gradual increase in the current. For the same reason, when the switch is opened, the current doesn’t immediately fall to zero. This effect is called self-induction because the changing flux through the circuit arises from the circuit itself. The emf that is set up in the circuit is called a self-induced emf.

As a second example of self-inductance, consider Figure 20.25, which shows a coil wound on a cylindrical iron core. (A practical device would have several hundred turns.) Assume the current changes with time. When the current is in the direction shown, a magnetic field is set up inside the coil, directed from right to left. As a result, some lines of magnetic flux pass through the cross-sectional area
of the coil. As the current changes with time, the flux through the coil changes and induces an emf in the coil. Lenz’s law shows that this induced emf has a direction that opposes the change in the current. If the current is increasing, the induced emf is as pictured in Figure 20.25b, and if the current is decreasing, the induced emf is as shown in Figure 20.25c.

To evaluate self-inductance quantitatively, first note that, according to Faraday’s law, the induced emf is given by Equation 20.2:

\[E = -N \frac{\Delta \Phi_B}{\Delta t} \]

The magnetic flux is proportional to the magnetic field, which is proportional to the current in the coil. Therefore, the self-induced emf must be proportional to the rate of change of the current with time, or

\[E = -L \frac{\Delta I}{\Delta t} \tag{20.9} \]

where \(L \) is a proportionality constant called the inductance of the device. The negative sign indicates that a changing current induces an emf in opposition to the change. In other words, if the current is increasing (\(\Delta I \) positive), the induced emf is negative, indicating opposition to the increase in current. Likewise, if the current is decreasing (\(\Delta I \) negative), the sign of the induced emf is positive, indicating that the emf is acting to oppose the decrease.

The inductance of a coil depends on the cross-sectional area of the coil and other quantities, which can all be grouped under the general heading of geometric factors. The SI unit of inductance is the henry (H), which, from Equation 20.9, is equal to 1 volt-second per ampere:

\[1 \text{ H} = 1 \text{ V} \cdot \text{s/A} \]

In the process of calculating self-inductance, it is often convenient to equate Equations 20.2 and 20.9 to find an expression for \(L \):

\[N \frac{\Delta \Phi_B}{\Delta t} = L \frac{\Delta I}{\Delta t} \]

\[L = N \frac{\Delta \Phi_B}{\Delta I} = \frac{N \Phi_B}{I} \tag{20.10} \]

APPLYING PHYSICS 20.3 MAKING SPARKS FLY

In some circuits a spark occurs between the poles of a switch when the switch is opened. Why isn’t there a spark when the switch for this circuit is closed?

Explanation According to Lenz’s law, the direction of induced emfs is such that the induced magnetic field opposes change in the original magnetic flux. When the switch is opened, the sudden drop in the magnetic field in the circuit induces an emf in a direction that opposes change in the original current. This induced emf can cause a spark as the current bridges the air gap between the poles of the switch. The spark doesn’t occur when the switch is closed, because the original current is zero and the induced emf opposes any change in that current.
In general, determining the inductance of a given current element can be challenging. Finding an expression for the inductance of a common solenoid, however, is straightforward. Let the solenoid have \(N \) turns and length \(\ell \). Assume \(\ell \) is large compared with the radius and the core of the solenoid is air. We take the interior magnetic field to be uniform and given by Equation 19.16,

\[
B = \mu_0 n I = \mu_0 \frac{N}{\ell} I
\]

where \(n = N/\ell \) is the number of turns per unit length. The magnetic flux through each turn is therefore

\[
\Phi_B = BA = \mu_0 \frac{N}{\ell} AI
\]

where \(A \) is the cross-sectional area of the solenoid. From this expression and Equation 20.10, we find that

\[
L = \frac{N \Phi_B}{I} = \frac{\mu_0 N^2 A}{\ell} \quad [20.11a]
\]

This equation shows that \(L \) depends on the geometric factors \(\ell \) and \(A \) and on \(\mu_0 \), and is proportional to the square of the number of turns. Because \(N = n\ell \), we can also express the result in the form

\[
L = \mu_0 \frac{(n\ell)^2}{\ell} A = \mu_0 n^2 A\ell = \mu_0 n^2 V \quad [20.11b]
\]

where \(V = A\ell \) is the volume of the solenoid.

EXAMPLE 20.7 Inductance, Self-Induced emf, and Solenoids

Goal Calculate the inductance and self-induced emf of a solenoid.

Problem (a) Calculate the inductance of a solenoid containing 300 turns if the length of the solenoid is 25.0 cm and its cross-sectional area is \(4.00 \times 10^{-4} \) m\(^2\). (b) Calculate the self-induced emf in the solenoid described in part (a) if the current in the solenoid decreases at the rate of 50.0 A/s.

Strategy Substituting given quantities into Equation 20.11a gives the inductance \(L \). For part (b), substitute the result of part (a) and \(\Delta I/\Delta t = -50.0 \) A/s into Equation 20.9 to get the self-induced emf.

Solution

(a) Calculate the inductance of the solenoid.

Substitute the number \(N \) of turns, the area \(A \), and the length \(\ell \) into Equation 20.11a to find the inductance:

\[
L = \frac{\mu_0 N^2 A}{\ell} = \frac{(4\pi \times 10^{-7} \text{T} \cdot \text{m/A}) (300)^2 (4.00 \times 10^{-4} \text{m}^2)}{25.0 \times 10^{-2} \text{m}} = 1.81 \times 10^{-4} \text{T} \cdot \text{m}^2 / \text{A} = 0.181 \text{mH}
\]

(b) Calculate the self-induced emf in the solenoid.

Substitute \(L \) and \(\Delta I/\Delta t = -50.0 \) A/s into Equation 20.9, finding the self-induced emf:

\[
\mathcal{E} = -L \frac{\Delta I}{\Delta t} = -(1.81 \times 10^{-4} \text{H})(-50.0 \text{ A/s}) = 9.05 \text{ mV}
\]

Remark Notice that \(\Delta I/\Delta t \) is negative because the current is decreasing with time.

QUESTION 20.7

If the solenoid were wrapped into a circle so as to become a toroidal solenoid, what would be true of its self-inductance? (a) It would be the same. (b) It would be larger. (c) It would be smaller.
EXERCISE 20.7
A solenoid is to have an inductance of 0.285 mH, a cross-sectional area of \(6.00 \times 10^{-4} \text{ m}^2\), and a length of 36.0 cm.
(a) How many turns per unit length should it have? (b) If the self-induced emf is \(-12.5 \text{ mV}\) at a given time, at what rate is the current changing at that instant?

Answers (a) \(1.02 \times 10^3\) turns/m (b) 43.9 A/s

20.7 RL CIRCUITS
A circuit element that has a large inductance, such as a closely wrapped coil of many turns, is called an inductor. The circuit symbol for an inductor is \(\text{R}\). We will always assume the self-inductance of the remainder of the circuit is negligible compared with that of the inductor in the circuit.

To gain some insight into the effect of an inductor in a circuit, consider the two circuits in Figure 20.26. Figure 20.26a shows a resistor connected to the terminals of a battery. For this circuit, Kirchhoff’s loop rule is \(\Delta V_R = -IR = 0\). The voltage drop across the resistor is

\[\Delta V_R = -IR \quad [20.12]\]

In this case, we interpret resistance as a measure of opposition to the current. Now consider the circuit in Figure 20.26b, consisting of an inductor connected to the terminals of a battery. At the instant the switch in this circuit is closed, because \(IR = 0\), the emf of the battery equals the back emf generated in the coil. Hence, we have

\[\mathcal{E}_L = -L \frac{\Delta I}{\Delta t} \quad [20.13]\]

From this expression, we can interpret \(L\) as a measure of opposition to the rate of change of current.

Active Figure 20.27 shows a circuit consisting of a resistor, an inductor, and a battery. Suppose the switch is closed at \(t = 0\). The current begins to increase, but the inductor produces an emf that opposes the increasing current. As a result, the current can’t change from zero to its maximum value of \(E/R\) instantaneously. Equation 20.13 shows that the induced emf is a maximum when the current is changing most rapidly, which occurs when the switch is first closed. As the current approaches its steady-state value, the back emf of the coil falls off because the current is changing more slowly. Finally, when the current reaches its steady-state value, the rate of change is zero and the back emf is also zero. Active Figure 20.28 plots current in the circuit as a function of time. This plot is similar to that of the charge on a capacitor as a function of time, discussed in Chapter 18. In that case, we found it convenient to introduce a quantity called the time constant of the circuit, which told us something about the time required for the capacitor to approach its steady-state charge. In the same way, time constants are defined for circuits containing resistors and inductors. The time constant \(\tau\) for an RL circuit is the time required for the current in the circuit to reach 63.2% of its final value \(E/R\); the time constant of an RL circuit is given by

\[\tau = \frac{L}{R} \quad [20.14]\]

Using methods of calculus it can be shown that the current in such a circuit is given by

\[I = \frac{E}{R} \left(1 - e^{-t/\tau}\right) \quad [20.15]\]

This equation is consistent with our intuition: when the switch is closed at \(t = 0\), the current is initially zero, rising with time to some maximum value. Notice the mathematical similarity between Equation 20.15 and Equation 18.7, which features a
capacitor instead of an inductor. As in the case of a capacitor, the equation’s form suggests an infinite amount of time is required for the current in the inductor to reach its maximum value. That is an artifact of assuming current is composed of moving charges that are infinitesimal, as will be demonstrated in Example 20.9.

QUICK QUIZ 20.6 The switch in the circuit shown in Figure 20.29 is closed, and the lightbulb glows steadily. The inductor is a simple air-core solenoid. An iron rod is inserted into the interior of the solenoid, increasing the magnitude of the magnetic field in the solenoid. As the rod is inserted, the brightness of the lightbulb (a) increases, (b) decreases, or (c) remains the same.

ACTIVE FIGURE 20.28 A plot of current versus time for the RL circuit shown in Figure 20.27. The switch is closed at \(t = 0 \), and the current increases toward its maximum value \(\frac{E}{R} \). The time constant is the time it takes the current to reach 63.2% of its maximum value.

EXAMPLE 20.8 An RL Circuit

Goal Calculate a time constant and relate it to current in an RL circuit.

Problem A 12.6-V battery is in a circuit with a 30.0-mH inductor and a 0.150-Ω resistor, as in Active Figure 20.27. The switch is closed at \(t = 0 \). (a) Find the time constant of the circuit. (b) Find the current after one time constant has elapsed. (c) Find the voltage drops across the resistor when \(t = 0 \) and \(t = one time constant. (d) What’s the rate of change of the current after one time constant?

Strategy Part (a) requires only substitution into the definition of time constant. With this value and Ohm’s law, the current after one time constant can be found, and multiplying this current by the resistance yields the voltage drop across the resistor after one time constant. With the voltage drop and Kirchhoff’s loop law, the voltage across the inductor can be found. This value can be substituted into Equation 20.13 to obtain the rate of change of the current.

Solution

(a) What’s the time constant of the circuit?

Substitute the inductance \(L \) and resistance \(R \) into Equation 20.14, finding the time constant:

\[
\tau = \frac{L}{R} = \frac{30.0 \times 10^{-3} \text{H}}{0.150 \text{Ω}} = 0.200 \text{s}
\]

(b) Find the current after one time constant has elapsed.

First, use Ohm’s law to compute the final value of the current after many time constants have elapsed:

\[
I_{\text{max}} = \frac{E}{R} = \frac{12.6 \text{ V}}{0.150 \text{Ω}} = 84.0 \text{ A}
\]

After one time constant, the current rises to 63.2% of its final value:

\[
I_1 = (0.632)I_{\text{max}} = (0.632)(84.0 \text{ A}) = 53.1 \text{ A}
\]

(c) Find the voltage drops across the resistance when \(t = 0 \) and \(t = one time constant.

Initially, the current in the circuit is zero, so, from Ohm’s law, the voltage across the resistor is zero:

\[
\Delta V_R = IR
\]

\[
\Delta V_R (t = 0 \text{ s}) = (0 \text{ A})(0.150 \Omega) = 0
\]

Next, using Ohm’s law, find the magnitude of the voltage drop across the resistor after one time constant:

\[
\Delta V_R (t = 0.200 \text{ s}) = (53.1 \text{ A})(0.150 \Omega) = 7.97 \text{ V}
\]

(d) What’s the rate of change of the current after one time constant?

Using Kirchhoff’s voltage rule, calculate the voltage drop across the inductor at that time:

\[
\mathcal{E} + \Delta V_R + \Delta V_L = 0
\]
Solve for ΔV_I:

$$\Delta V_L = -E - \Delta V_R = -12.6 \, \text{V} - (-7.97 \, \text{V}) = -4.6 \, \text{V}$$

Now solve Equation 20.13 for $\Delta I/\Delta t$ and substitute:

$$\Delta V_L = -L \frac{\Delta I}{\Delta t}$$

$$\frac{\Delta I}{\Delta t} = \frac{-\Delta V_L}{L} = -\frac{-4.6 \, \text{V}}{30.0 \times 10^{-3} \, \text{H}} = 150 \, \text{A/s}$$

Remarks The values used in this problem were taken from actual components salvaged from the starter system of a car. Because the current in such an RL circuit is initially zero, inductors are sometimes referred to as “choke” because they temporarily choke off the current. In solving part (d), we traversed the circuit in the direction of positive current, so the voltage difference across the battery was positive and the differences across the resistor and inductor were negative.

QUESTION 20.8

Find the current in the circuit after two time constants.

EXERCISE 20.8

A 12.6-V battery is in series with a resistance of 0.350 Ω and an inductor. (a) After a long time, what is the current in the circuit? (b) What is the current after one time constant? (c) What’s the voltage drop across the inductor at this time? (d) Find the inductance if the time constant is 0.130 s.

Answers

(a) 36.0 A
(b) 22.8 A
(c) 4.62 V
(d) $4.55 \times 10^{-2} \, \text{H}$

EXAMPLE 20.9 Formation of a Magnetic Field

Goal Understand the role of time in setting up an inductor’s magnetic field.

Problem Given the RL circuit of Example 20.8, find the time required for the current to reach 99.9% of its maximum value after the switch is closed.

Strategy The solution requires solving Equation 20.15 for time followed by substitution. Notice that the maximum current is $I_{\text{max}} = \frac{E}{R}$.

Solution

Write Equation 20.15, with I_f substituted for the current:

$$I_f = \frac{E}{R} \left(1 - e^{-t/\tau} \right) = I_{\text{max}} \left(1 - e^{-t/\tau} \right)$$

Divide both sides by I_{max}:

$$\frac{I_f}{I_{\text{max}}} = 1 - e^{-t/\tau}$$

Subtract 1 from both sides and then multiply both sides by -1:

$$1 - \frac{I_f}{I_{\text{max}}} = e^{-t/\tau}$$

Take the natural log of both sides:

$$\ln \left(1 - \frac{I_f}{I_{\text{max}}} \right) = \ln \left(e^{-t/\tau} \right) = -t/\tau$$

Solve for t and substitute the expression for τ from Equation 20.14:

$$t = -\frac{L}{R} \ln \left(1 - \frac{I_f}{I_{\text{max}}} \right)$$

Substitute values, obtaining the desired time:

$$t = -\frac{30.0 \times 10^{-3} \, \text{H}}{0.150 \, \text{\Omega}} \ln \left(1 - 0.999 \right) = 1.38 \, \text{s}$$

Remarks From this calculation, it’s found that forming the magnetic field in an inductor and approaching the maximum current occurs relatively rapidly. Contrary to what might be expected from the mathematical form of Equation 20.15, an infinite amount of time is not actually required.
QUESTION 20.9
If the inductance were doubled, by what factor would the length of time found be changed? (a) 1 (i.e., no change) (b) 2 (c) \(\frac{1}{2} \)

EXERCISE 20.9
Suppose a series \(RL \) circuit is composed of a 2.00-\(\Omega \) resistor, a 15.0 H inductor, and a 6.00 V battery. (a) What is the time constant for this circuit? (b) Once the switch is closed, how long does it take the current to reach half its maximum value?

Answers (a) 7.50 s (b) 5.20 s

20.8 ENERGY STORED IN A MAGNETIC FIELD

The emf induced by an inductor prevents a battery from establishing an instantaneous current in a circuit. The battery has to do work to produce a current. We can think of this needed work as energy stored in the inductor in its magnetic field. In a manner similar to that used in Section 16.9 to find the energy stored in a capacitor, we find that the energy stored by an inductor is

\[
PE_L = \frac{1}{2} LI^2
\] \hspace{1cm} [20.16]

Notice that the result is similar in form to the expression for the energy stored in a charged capacitor (Eq. 16.18):

\[
PE_C = \frac{1}{2} C(DV)^2
\]

EXAMPLE 20.10 Magnetic Energy

Goal Relate the storage of magnetic energy to currents in an \(RL \) circuit.

Problem A 12.0-V battery is connected in series to a 25.0-\(\Omega \) resistor and a 5.00-H inductor. (a) Find the maximum current in the circuit. (b) Find the energy stored in the inductor at this time. (c) How much energy is stored in the inductor when the current is changing at a rate of 1.50 A/s?

Strategy In part (a) Ohm’s law and Kirchhoff’s voltage rule yield the maximum current because the voltage across the inductor is zero when the current is maximal. Substituting the current into Equation 20.16 gives the energy stored in the inductor. In part (c) the given rate of change of the current can be used to calculate the voltage drop across the inductor at the specified time. Kirchhoff’s voltage rule and Ohm’s law then give the current \(I \) at that time, which can be used to find the energy stored in the inductor.

Solution

(a) Find the maximum current in the circuit.

Apply Kirchhoff’s voltage rule to the circuit:

\[
\Delta V_{\text{batt}} + \Delta V_R + \Delta V_L = 0
\]

\[
E = IR - L \frac{\Delta I}{\Delta t} = 0
\]

When the maximum current is reached, \(\Delta I/\Delta t \) is zero, so the voltage drop across the inductor is zero. Solve for the maximum current \(I_{\text{max}} \):

\[
I_{\text{max}} = \frac{E}{R} = \frac{12.0 \text{ V}}{25.0 \Omega} = 0.480 \text{ A}
\]

(b) Find the energy stored in the inductor at this time.

Substitute known values into Equation 20.16:

\[
PE_L = \frac{1}{2} L I_{\text{max}}^2 = \frac{1}{2}(5.00 \text{ H})(0.480 \text{ A})^2 = 0.576 \text{ J}
\]
Remarks
Notice how important it is to combine concepts from previous chapters. Here, Ohm’s law and Kirchhoff’s loop rule were essential to the solution of the problem.

QUESTION 20.10
True or False: The larger the value of the inductance in such an RL circuit, the larger the maximum current.

EXERCISE 20.10
For the same circuit, find the energy stored in the inductor when the rate of change of the current is 1.00 A/s.

Answer 0.196 J

(c) Find the energy in the inductor when the current changes at a rate of 1.50 A/s.

Apply Kirchhoff’s voltage rule to the circuit once again:

\[E - IR - L \frac{\Delta I}{\Delta t} = 0 \]

Solve this equation for the current \(I \) and substitute:

\[I = \frac{1}{R} \left(E - L \frac{\Delta I}{\Delta t} \right) = \frac{1}{25.0 \ \Omega} \left[12.0 \ V - (5.00 \ H)(1.50 \ A/s) \right] = 0.180 \ A \]

Finally, substitute the value for the current into Equation 20.15, finding the energy stored in the inductor:

\[PE_L = \frac{1}{2} LI^2 = \frac{1}{2}(5.00 \ H)(0.180 \ A)^2 = 0.0810 \ J \]

20.5 Generators
When a coil of wire with \(N \) turns, each of area \(A \), rotates with constant angular speed \(\omega \) in a uniform magnetic field \(\mathbf{B} \), the emf induced in the coil is

\[E = NBA \omega \sin \omega t \quad [20.7] \]

Such generators naturally produce alternating current (AC), which changes direction with frequency \(\omega/2\pi \). The AC current can be transformed to direct current.

20.7 RL Circuits
When the current in a coil changes with time, an emf is induced in the coil according to Faraday’s law. This self-induced emf is defined by the expression

\[E = -L \frac{\Delta I}{\Delta t} \quad [20.9] \]

where \(L \) is the inductance of the coil. The SI unit for inductance is the henry (H); 1 H = 1 V·s/A.

The inductance of a coil can be found from the expression

\[L = \frac{N \Phi_B}{I} \quad [20.10] \]

where \(N \) is the number of turns on the coil, \(I \) is the current in the coil, and \(\Phi_B \) is the magnetic flux through the coil produced by that current. For a solenoid, the inductance is given by

\[L = \frac{\mu_0 N^2 A}{\ell} \quad [20.11a] \]
If a resistor and inductor are connected in series to a battery and a switch is closed at \(t = 0 \), the current in the circuit doesn’t rise instantly to its maximum value. After one time constant \(\tau = L/R \), the current in the circuit is 65.2% of its final value \(E/R \). As the current approaches its final, maximum value, the voltage drop across the inductor approaches zero. The current \(I \) in such a circuit any time \(t \) after the circuit is completed is

\[
I = \frac{E}{R} \left(1 - e^{-t/\tau} \right) \tag{20.15}
\]

20.8 Energy Stored in a Magnetic Field

The energy stored in the magnetic field of an inductor carrying current \(I \) is

\[
PE_L = \frac{1}{2} LI^2 \tag{20.16}
\]

As the current in an RL circuit approaches its maximum value, the stored energy also approaches a maximum value.

MULTIPLE-CHOICE QUESTIONS

1. What is the magnetic flux through a rectangle lying in the \(xy \)-plane with length 2.0 m and width 1.0 m if a uniform magnetic field has magnitude 3.0 T and makes an angle of 30.0° with respect to the \(xy \)-plane? (a) 1.4 Wb (b) 2.2 Wb (c) 3.0 Wb (d) 4.1 Wb (e) 5.2 Wb

2. A 10-turn square coil 0.5 m on a side lies in the \(xy \)-plane. A uniform magnetic field with magnitude 1.0 T in the negative \(z \)-direction changes steadily to 3.0 T in the positive \(z \)-direction, a process that takes 2.0 s. What is the magnitude of the induced emf in the coil? (a) 2.0 V (b) 5.0 V (c) 3.0 V (d) 4.0 V (e) 6.0 V

3. A small airplane with a wingspan of 12 m flies horizontally and due north at a speed of 60.0 m/s in a region where the magnetic field of Earth is 60.0 \(\mu T \) directed 60.0° below the horizontal. What is the magnitude of the induced emf between the tips of the airplane’s wings? (a) 51 mV (b) 31 mV (c) 37 mV (d) 44 mV (e) 22 mV

4. A generator contains a 100-turn coil that rotates 10.0 times per second. If each turn has an area of 0.100 m\(^2\) and the magnetic field through the coils is 0.050 0 T, what is the maximum emf induced in the coil? (a) 31.4 V (b) 62.8 V (c) 0.314 V (d) 6.28 V (e) 3.14 V

5. The current in a 5.00-H inductor decreases uniformly at a rate of 2.00 A/s. What is the voltage drop across the inductor? (a) 2.50 V (b) 5.00 V (c) 0.400 V (d) 10.0 V (e) 7.50 V

6. A 5.0-H inductor is connected in series with a 10.0-V battery, a switch, and a 2.5-\(\Omega \) resistor. After closing the switch and completing the circuit, what is the estimated length of time required for the current to reach half its maximum value? (Select the closest answer.) (a) 200 s (b) 50 s (c) 20 s (d) 2 s (e) 0.2 s

7. The current is doubled in an inductor. By what factor does the stored energy change? (a) \(\frac{1}{2} \) (b) 1 (c) 2 (d) 4 (e) \(\frac{1}{4} \)

8. When a coil is placed in a constant external magnetic field directed perpendicular to the plane of the coil, which of the following actions does not induce an emf in the coil? (a) Collapsing the coil. (b) Changing the strength of the magnetic field. (c) Moving the coil through the field without changing its orientation with respect to the field. (d) Rotating the coil. (e) Removing the coil from the field.

9. A rectangular loop is placed near a long wire carrying a current \(I \), as shown in Figure MCQ20.9. If \(I \) decreases in time, what can be said of the current induced in the loop? (a) The current has a direction that depends on the size of the loop. (b) The current is clockwise. (c) The current is counterclockwise. (d) The current is zero. (e) The magnitude of the current depends on the size of the loop.

10. Two rectangular loops of wire lie in the same plane, as shown in Figure MCQ20.10. If the current \(I \) in the outer loop is counterclockwise and increases with time, what is true of the current induced in the inner loop? (a) It is zero. (b) It is clockwise. (c) It is counterclockwise. (d) Its magnitude depends on the dimensions of the loops. (e) Its direction depends on the dimensions of the loops.

11. A bar magnet is held above the center of a wire loop lying in the horizontal plane, as shown in Figure MCQ20.11. The south end of the magnet is toward the loop. After the magnet is dropped, what is true of the current in the resistor as viewed from above? (a) It is clockwise as the
Eddy currents are induced currents set up in a piece of metal when it moves through a nonuniform magnetic field. For example, consider the flat metal plate swinging at the end of a bar as a pendulum, as shown in Figure CQ20.9. At position 1, the pendulum is moving from a region where there is no magnetic field into a region where the field B is directed into the paper. Show that at position 1 the direction of the eddy current is counterclockwise. Also, at position 2 the pendulum is moving out of the field into a region of zero field. Show that the direction of the eddy current is clockwise in this case. Use right-hand rule number 2 to show that these eddy currents lead to a magnetic force on the plate directed as shown in the figure. Because the induced eddy current always produces a retarding force when the plate enters or leaves the field, the swinging plate quickly comes to rest.

CONCEPTUAL QUESTIONS

1. A circular loop is located in a uniform and constant magnetic field. Describe how an emf can be induced in the loop in this situation.

2. Does dropping a magnet down a copper tube produce a current in the tube? Explain.

3. A spacecraft orbiting Earth has a coil of wire in it. An astronaut measures a small current in the coil, although there is no battery connected to it and there are no magnets in the spacecraft. What is causing the current?

4. A loop of wire is placed in a uniform magnetic field. For what orientation of the loop is the magnetic flux a maximum? For what orientation is the flux zero?

5. As the conducting bar in Figure CQ20.5 moves to the right, an electric field directed downward is set up. If the bar were moving to the left, explain why the electric field would be upward.

6. As the bar in Figure CQ20.5 moves perpendicular to the field, is an external force required to keep it moving with constant speed?

7. Wearing a metal bracelet in a region of strong magnetic field could be hazardous. Discuss this statement.

8. How is electrical energy produced in dams? (That is, how is the energy of motion of the water converted to AC electricity?)

9. Eddy currents are induced currents set up in a piece of metal when it moves through a nonuniform magnetic field. For example, consider the flat metal plate swinging at the end of a bar as a pendulum, as shown in Figure CQ20.9. At position 1, the pendulum is moving from a region where there is no magnetic field into a region where the field B is directed into the paper. Show that at position 1 the direction of the eddy current is counterclockwise. Also, at position 2 the pendulum is moving out of the field into a region of zero field. Show that the direction of the eddy current is clockwise in this case. Use right-hand rule number 2 to show that these eddy currents lead to a magnetic force on the plate directed as shown in the figure. Because the induced eddy current always produces a retarding force when the plate enters or leaves the field, the swinging plate quickly comes to rest.

10. A bar magnet is dropped toward a conducting ring lying on the floor. As the magnet falls toward the ring, does it move as a freely falling object?

11. A piece of aluminum is dropped vertically downward between the poles of an electromagnet. Does the magnetic field affect the velocity of the aluminum? Hint: See Conceptual Question 9.
12. Is it possible to induce a constant emf for an infinite amount of time?

13. Why is the induced emf that appears in an inductor called a back (counter) emf?

14. A magneto is used to cause the spark in a spark plug in many lawn mowers today. A magneto consists of a permanent magnet mounted on a flywheel so that it spins past a fixed coil. Explain how this arrangement generates a large enough potential difference to cause the spark.

SECTION 20.1 INDUCED EMF AND MAGNETIC FLUX

1. A uniform magnetic field of magnitude 0.50 T is directed perpendicular to the plane of a rectangular loop having dimensions 8.0 cm by 12 cm. Find the magnetic flux through the loop.

2. Find the flux of Earth’s magnetic field of magnitude 5.00 \times 10^{-5} \text{T} through a square loop of area 20.0 \text{cm}^2 (a) when the field is perpendicular to the plane of the loop, (b) when the field makes a 30.0° angle with the normal to the plane of the loop, and (c) when the field makes a 90.0° angle with the normal to the plane.

3. A circular loop of radius 12.0 cm is placed in a uniform magnetic field. (a) When the field is directed perpendicular to the plane of the loop and the magnetic flux through the loop is 8.00 \times 10^{-7} \text{T} \cdot \text{m}^2, what is the strength of the magnetic field? (b) If the magnetic field is directed parallel to the plane of the loop, what is the magnetic flux through the loop?

4. A long, straight wire carrying a current of 2.00 A is placed along the axis of a cylinder of radius 0.500 m and a length of 3.00 m. Determine the total magnetic flux through the cylinder.

5. A long, straight wire lies in the plane of a circular coil with a radius of 0.010 m. The wire carries a current of 2.0 A and is placed along a diameter of the coil. (a) What is the net flux through the coil? (b) If the wire passes through the center of the coil and is perpendicular to the plane of the coil, what is the net flux through the coil?

6. A 400-turn solenoid of length 36.0 cm and radius 3.00 cm carries a current of 5.00 A. Find (a) the magnetic field strength inside the coil at its midpoint and (b) the magnetic flux through a circular cross-sectional area of the solenoid at its midpoint.

7. A cube of edge length \(\ell = 2.5 \text{ cm} \) is positioned as shown in Figure P20.7. There is a uniform magnetic field throughout the region with components \(B_x = +5.0 \text{T} \), \(B_y = +4.0 \text{T} \), and \(B_z = +3.0 \text{T} \). (a) Calculate the flux through the shaded face of the cube. (b) What is the total flux emerging from the volume enclosed by the cube (i.e., the total flux through all six faces)?

8. Transcranial magnetic stimulation (TMS) is a noninvasive technique used to stimulate regions of the human brain. A small coil is placed on the scalp, and a brief burst of current in the coil produces a rapidly changing magnetic field inside the brain. The induced emf can be sufficient to stimulate neuronal activity. One such device generates a magnetic field within the brain that rises from zero to 1.5 T in 120 ms. Determine the induced emf within a circle of tissue of radius 1.6 mm and that is perpendicular to the direction of the field.

9. A rectangular coil is located in a uniform magnetic field of magnitude 0.30 T directed perpendicular to the plane of the coil. If the area of the coil increases at the rate of 5.0 \times 10^{-3} \text{m}^2/\text{s}, what is the magnitude of the emf induced in the coil?

10. The flexible loop in Figure P20.10 has a radius of 12 cm and is in a magnetic field of strength 0.15 T. The loop is grasped at points A and B and stretched until its area is nearly zero. If it takes 0.20 s to close the loop, what is the magnitude of the average induced emf in it during this time?

11. A wire loop of radius 0.30 m lies so that an external magnetic field of magnitude 0.30 T is perpendicular to the loop. The field reverses its direction, and its magnitude changes to 0.20 T in 1.5 s. Find the magnitude of the average induced emf in the loop during this time.
12. A circular loop of wire of radius 12.0 cm is placed in a magnetic field directed perpendicular to the plane of the loop, as shown in Figure P20.10. If the field decreases at the rate of 0.050 T/s in some time interval, what is the magnitude of the emf induced in the loop during this interval?

13. The plane of a rectangular coil, 5.0 cm by 8.0 cm, is perpendicular to the direction of a magnetic field \(\mathbf{B} \). If the coil has 75 turns and a total resistance of 8.0 \(\Omega \), at what rate must the magnitude of \(\mathbf{B} \) change to induce a current of 0.10 A in the windings of the coil?

14. A square, single-turn wire loop 1.00 cm on a side is placed inside a solenoid that has a circular cross section of radius 3.00 cm, as shown in Figure P20.14. The solenoid is 20.0 cm long and wound with 100 turns of wire. (a) If the current in the solenoid is 3.00 A, what is the flux through the loop? (b) If the current in the solenoid is reduced to zero in 3.00 s, what is the magnitude of the average induced emf in the loop?

15. A 300-turn solenoid with a length of 20.0 cm and a radius of 1.50 cm carries a current of 2.00 A. A second coil of four turns is wrapped tightly around this solenoid, so it can be considered to have the same radius as the solenoid. The current in the 300-turn solenoid increases steadily to 5.00 A in 0.900 s. (a) Use Ampere’s law to calculate the initial magnetic field in the middle of the 300-turn solenoid. (b) Calculate the magnetic field of the 300-turn solenoid after 0.900 s. (c) Calculate the area of the 4-turn coil. (d) Calculate the change in the magnetic flux through the 4-turn coil during the same period. (e) Calculate the average induced emf in the 4-turn coil. Is it equal to the instantaneous induced emf? Explain. (f) Why could contributions to the magnetic field by the current in the 4-turn coil be neglected in this calculation?

16. A circular coil enclosing an area of 100 cm\(^2\) is made of 200 turns of copper wire. The wire making up the coil has resistance of 5.0 \(\Omega \), and the ends of the wire are connected to form a closed circuit. Initially, a 1.1-T uniform magnetic field points perpendicularly upward through the plane of the coil. The direction of the field then reverses so that the final magnetic field has a magnitude of 1.1 T and points downward through the coil. If the time required for the field to reverse directions is 0.10 s, what average current flows through the coil during that time?

17. To monitor the breathing of a hospital patient, a thin belt is girded around the patient’s chest as in Figure P20.17. The belt is a 200-turn coil. When the patient inhales, the area enclosed by the coil increases by 39.0 cm\(^2\). The magnitude of Earth’s magnetic field is 50.0 \(\mu T \) and makes an angle of 28.0° with the plane of the coil. Assuming a patient takes 1.80 s to inhale, find the magnitude of the average induced emf in the coil during that time.

18. An \(N \)-turn circular wire coil of radius \(r \) lies in the xy-plane, as shown in Figure P20.10. A uniform magnetic field is turned on, increasing steadily from 0 to \(B_0 \) in the positive z-direction in \(t \) seconds. (a) Find a symbolic expression for the emf, \(\mathcal{E} \), induced in the coil in terms of the variables given. (b) Looking down on at the xy-plane from the positive z-axis, is the direction of the induced current clockwise or counterclockwise? (c) If each loop has resistance \(R \), find an expression for the magnitude of the induced current, \(I \).

SECTION 20.3 MOTIONAL emf

19. A pickup truck has a width of 79.8 in. If it is traveling north at 37 m/s through a magnetic field with vertical component of 35 \(\mu T \), what magnitude emf is induced between the driver and passenger sides of the truck?

20. A 2.00-m length of wire is held in an east–west direction and moves horizontally to the north with a speed of 15.0 m/s. The vertical component of Earth’s magnetic field in this region is 40.0 \(\mu T \) directed downward. Calculate the induced emf between the ends of the wire and determine which end is positive.

21. An automobile has a vertical radio antenna 1.20 m long. The automobile travels at 65.9 km/h on a horizontal road where Earth’s magnetic field is 50.0 \(\mu T \), directed toward the north and downward at an angle of 65.0° below the horizontal. (a) Specify the direction the automobile should move so as to generate the maximum motional emf in the antenna, with the top of the antenna positive relative to the bottom. (b) Calculate the magnitude of this induced emf.

22. An astronaut is connected to her spacecraft by a 25-m-long tether cord as she and the spacecraft orbit Earth in a circular path at a speed of 3.0 \(\times 10^3 \) m/s. At one instant, the voltage measured between the ends of a wire embedded in the cord is measured to be 0.45 V. Assume the long dimension of the cord is perpendicular to the vertical component of Earth’s magnetic field at that instant. (a) What is the magnitude of the vertical component of Earth’s field at this location? (b) Does the measured voltage change as the system moves from one location to another? Explain.
23. A Boeing 747 jet with a wingspan of 60.0 m is flying horizontally at a speed of 300 m/s over Phoenix, Arizona, at a location where Earth’s magnetic field is 50.0 μT at 58.0° below the horizontal. What voltage is generated between the wingtips?

24. Consider the arrangement shown in Figure P20.24. Assume $R = 6.00 \Omega$, $\ell = 1.20 \text{ m}$, and a uniform 2.50-T magnetic field is directed into the page. At what speed should the bar be moved to produce a current of 0.500 A in the resistor?

25. A bar magnet is positioned near a coil of wire, as shown in Figure P20.25. What is the direction of the current in the resistor when the magnet is moved (a) to the left and (b) to the right?

26. In Figure P20.26 what is the direction of the current induced in the resistor at the instant the switch is closed?

27. A copper bar is moved to the right while its axis is maintained in a direction perpendicular to a magnetic field, as shown in Figure P20.27. If the top of the bar becomes positive relative to the bottom, what is the direction of the magnetic field?

28. Find the direction of the current in the resistor shown in Figure P20.28 (a) at the instant the switch is closed, (b) after the switch has been closed for several minutes, and (c) at the instant the switch is opened.

29. Find the direction of the current in the resistor R shown in Figure P20.29 after each of the following steps (taken in the order given): (a) The switch is closed. (b) The variable resistance in series with the battery is decreased. (c) The circuit containing resistor R is moved to the left. (d) The switch is opened.

30. A conducting rectangular loop of mass M, resistance R, and dimensions w by ℓ falls from rest into a magnetic field B, as shown in Figure P20.30. During the time interval before the top edge of the loop reaches the field, the loop approaches a terminal speed v_T. (a) Show that $v_T = \frac{MgR}{\ell B^2 w^2}$. (b) Why is v_T proportional to R^0? (c) Why is it inversely proportional to B^2?

31. A rectangular coil with resistance R has N turns, each of length ℓ and width w, as shown in Figure P20.31. The coil moves into a uniform magnetic field B with constant velocity \mathbf{v}. What are the magnitude and direction of the total magnetic force on the coil (a) as it enters the magnetic field, (b) as it moves within the field, and (c) as it leaves the field?

32. A conducting bar of length ℓ moves to the right on two frictionless rails, as shown in Figure P20.24. A uniform magnetic field directed into the page has a magnitude of 0.30 T. Assume $\ell = 35 \text{ cm}$ and $R = 9.0 \Omega$. (a) At
what constant speed should the bar move to produce an 8.5-mA current in the resistor? What is the direction of this induced current? (b) At what rate is energy delivered to the resistor? (c) Explain the origin of the energy being delivered to the resistor.

SECTION 20.5 GENERATORS

33. A generator produces 24.0 V when turning at 900 rev/min. What potential difference does it produce when turning at 500 rev/min?

34. A 100-turn square wire coil of area 0.040 \(m^2 \) rotates about a vertical axis at 1 500 rev/min, as indicated in Figure P20.34. The horizontal component of Earth’s magnetic field at the location of the loop is \(2.0 \times 10^{-3} \) T. Calculate the maximum emf induced in the coil by Earth’s field.

FIGURE P20.34

35. Considerable scientific work is currently under way to determine whether weak oscillating magnetic fields such as those found near outdoor electric power lines can affect human health. One study indicated that a magnetic field of magnitude \(1.0 \times 10^{-3} \) T, oscillating at 60 Hz, might stimulate red blood cells to become cancerous. If the diameter of a red blood cell is 8.0 \(\mu m \), determine the maximum emf that can be generated around the perimeter of the cell.

36. A flat coil enclosing an area of 0.10 \(m^2 \) is rotating at 60 rev/s, with its axis of rotation perpendicular to a 0.20-T magnetic field. (a) If there are 1 000 turns on the coil, what is the maximum voltage induced in the coil? (b) When the maximum induced voltage occurs, what is the orientation of the coil with respect to the magnetic field?

37. In a model AC generator, a 500-turn rectangular coil 8.0 cm by 20 cm rotates at 120 rev/min in a uniform magnetic field of 0.60 T. (a) What is the maximum emf induced in the coil? (b) What is the instantaneous value of the emf in the coil at \(t = (\pi/32) \) s? Assume the emf is zero at \(t = 0 \). (c) What is the smallest value of \(t \) for which the emf will have its maximum value?

38. A motor has coils with a resistance of 30 \(\Omega \) and operates from a voltage of 240 V. When the motor is operating at its maximum speed, the back emf is 145 V. Find the current in the coils (a) when the motor is first turned on and (b) when the motor has reached maximum speed. (c) If the current in the motor is 6.0 A at some instant, what is the back emf at that time?

39. A coil of 10.0 \(\mu m \) is in the shape of an ellipse having a major axis of 10.0 cm and a minor axis of 4.00 cm. The coil rotates at 100 rpm in a region in which the magnitude of Earth’s magnetic field is 50 \(\mu T \). What is the maximum voltage induced in the coil if the axis of rotation of the coil is along its major axis and is aligned (a) perpendicular to Earth’s magnetic field and (b) parallel to Earth’s magnetic field? (Note: The area of an ellipse is given by \(A = \pi ab \), where \(a \) is the length of the semimajor axis and \(b \) is the length of the semiminor axis.)

SECTION 20.6 SELF-INDUCTANCE

40. A technician wraps wire around a tube of length 36 cm having a diameter of 8.0 cm. When the windings are evenly spread over the full length of the tube, the result is a solenoid containing 580 turns of wire. (a) Find the self-inductance of this solenoid. (b) If the current in this solenoid increases at the rate of 4.0 A/s, what is the self-induced emf in the solenoid?

41. The current in a coil changes from 3.5 A to 2.0 A in 0.50 s. If the average emf induced in the coil is 12 mV, what is the self-inductance of the coil?

42. Show that the two expressions for inductance given by

\[
I = \frac{N\Phi_p}{t} \quad \text{and} \quad I = \frac{-E}{\Delta t/\Delta t}
\]

have the same units.

43. A solenoid of radius 2.5 cm has 400 turns and a length of 20 cm. Find (a) its inductance and (b) the rate at which current must change through it to produce an emf of 75 mV.

44. An emf of 24.0 mV is induced in a 500-turn coil when the current is changing at a rate of 10.0 A/s. What is the magnetic flux through each turn of the coil at an instant when the current is 4.00 A?

SECTION 20.7 RL CIRCUITS

45. A battery is connected in series with a 3.0-\(\Omega \) resistor and a 12-mH inductor. The maximum current in the circuit is 150 mA. Find (a) the time constant of this circuit and (b) the emf of the battery.

46. An RL circuit with \(L = 3.00 \) H and an RC circuit with \(C = 3.00 \mu F \) have the same time constant. If the two circuits have the same resistance \(R \), (a) what is the value of \(R \) and (b) what is this common time constant?

47. A battery is connected in series with a 0.30-\(\Omega \) resistor and an inductor, as shown in Figure 20.27. The switch is closed at \(t = 0 \). The time constant of the circuit is 0.25 s, and the maximum current in the circuit is 8.0 A. Find (a) the emf of the battery, (b) the inductance of the circuit, (c) the current in the circuit after one time constant has elapsed, and (d) the voltage across the resistor and the voltage across the inductor after one time constant has elapsed.

48. A 25-mH inductor, an 8.0-\(\Omega \) resistor, and a 6.0-V battery are connected in series. The switch is closed at \(t = 0 \). Find the voltage drop across the resistor (a) at \(t = 0 \) and (b) after one time constant has passed. Also, find the voltage drop across the inductor (c) at \(t = 0 \) and (d) after one time constant has elapsed.

49. Calculate the resistance in an RL circuit in which \(L = 2.50 \) H and the current increases to 90.0% of its final value in 3.00 s.
50. Consider the circuit shown in Figure P20.50. Take $E = 6.00\, \text{V}$, $L = 8.00\, \text{mH}$, and $R = 4.00\, \Omega$. (a) What is the inductive time constant of the circuit? (b) Calculate the current in the circuit 250 μs after the switch is closed. (c) What is the value of the final steady-state current? (d) How long does it take the current to reach 80.0% of its maximum value?

![FIGURE P20.50](image)

SECTION 20.8 ENERGY STORED IN A MAGNETIC FIELD

51. (a) If an inductor carrying a 1.70-A current stores an energy of 0.300 mJ, what is its inductance? (b) How much energy does the same inductor store if it carries a 3.0-A current?

52. A 300-turn solenoid has a radius of 5.00 cm and a length of 20.0 cm. Find (a) the inductance of the solenoid and (b) the energy stored in the solenoid when the current in its windings is 0.500 A.

53. A 24-V battery is connected in series with a resistor and an inductor, with $R = 8.0\, \Omega$ and $L = 2.0\, \text{H}$, respectively. Find the energy stored in the inductor (a) when the current reaches its maximum value and (b) one time constant after the switch is closed.

54. A 60.0-m length of insulated copper wire is wound to form a solenoid of radius 2.0 cm. The copper wire has a radius of 0.50 mm. (a) What is the resistance of the wire? (b) Treating each turn of the solenoid as a circle, how many turns can be made with the wire? (c) How long is the resulting solenoid? (d) What is the self-inductance of the solenoid? (e) If the solenoid is attached to a battery with an emf of 6.0 V and internal resistance of 350 mΩ, compute the time constant of the circuit. (f) What is the maximum current attained? (g) How long would it take to reach 99.9% of its maximum current? (h) What maximum energy is stored in the inductor?

ADDITIONAL PROBLEMS

55. In Figure P20.55 the bar magnet is being moved toward the loop. Is $(V_a - V_b)$ positive, negative, or zero during this motion? Explain.

![FIGURE P20.55](image)

56. A 500-turn circular-loop coil 15.0 cm in diameter is initially aligned so that its axis is parallel to Earth’s magnetic field. In 2.77 ms the coil is flipped so that its axis is perpendicular to Earth’s magnetic field. If an average voltage of 0.166 V is thereby induced in the coil, what is the value of the Earth’s magnetic field at that location?

57. An 820-turn wire coil of resistance 24.0 Ω is placed on top of a 12 500-turn, 7.00-cm-long solenoid, as in Figure P20.57. Both coil and solenoid have cross-sectional areas of 1.00×10^{-4} m2. (a) How long does it take the solenoid current to reach 0.632 times its maximum value? (b) Determine the average back emf caused by the self-inductance of the solenoid during this interval. The magnetic field produced by the solenoid at the location of the coil is one-half as strong as the field at the center of the solenoid. (c) Determine the average rate of change in magnetic flux through each turn of the coil during the stated interval. (d) Find the magnitude of the average induced current in the coil.

![FIGURE P20.57](image)

58. A spacecraft is in a circular orbit of radius 3.0×10^3 km around a 2.0×10^{30} kg pulsar. The magnetic field of the pulsar at that radial distance is 1.0×10^{-2} T directed perpendicular to the velocity of the spacecraft. The spacecraft is 0.20 km long with a radius of 0.040 km and moves counterclockwise in the xy-plane around the pulsar. (a) What is the speed of the spacecraft? (b) If the magnetic field points in the positive z-direction, is the emf induced from the back to the front of the spacecraft or from side to side? (c) Compute the induced emf. (d) Describe the hazards for astronauts inside any spacecraft moving in the vicinity of a pulsar.

59. A conducting rod of length L moves on two horizontal frictionless rails, as in Figure P20.24. A constant force of magnitude $1.00\, \text{N}$ moves the bar at a uniform speed of 2.00 m/s through a magnetic field \mathbf{B} that is directed into the page. (a) What is the current in an 8.00-Ω resistor R? (b) What is the rate of energy dissipation in the resistor? (c) What is the mechanical power delivered by the constant force?

60. When the coil of a motor is rotating at maximum speed, the current in the windings is 4.0 A. When the motor is first turned on, the current in the windings is 11 A. If the motor is operated at 120 V, find (a) the resistance of the windings and (b) the back emf in the coil at maximum speed.

61. The bolt of lightning depicted in Figure P20.61 passes 200 m from a 100-turn coil oriented as shown. If the current in the lightning bolt falls from 6.02×10^6 A to zero...
in 10.5 μs, what is the average voltage induced in the coil? Assume the distance to the center of the coil determines the average magnetic field at the coil’s position. Treat the lightning bolt as a long, vertical wire.

Assuming the distance to the center of the coil determines the average magnetic field at the coil’s position. Treat the lightning bolt as a long, vertical wire.

69. In 0.5 m, what is the average voltage induced in the coil? Assume the distance to the center of the coil determines the average magnetic field at the coil’s position. Treat the lightning bolt as a long, vertical wire.

In 10.5 μs, what is the average voltage induced in the coil? Assume the distance to the center of the coil determines the average magnetic field at the coil’s position. Treat the lightning bolt as a long, vertical wire.

FIGURE P20.61

62. The square loop in Figure P20.62 is made of wires with a total series resistance of 10.0 Ω. It is placed in a uniform 0.100-T magnetic field directed perpendicular into the plane of the paper. The loop, which is hinged at each corner, is pulled as shown until the separation between points A and B is 3.00 m. If this process takes 0.100 s, what is the average current generated in the loop? What is the direction of the current?

63. The magnetic field shown in Figure P20.63 has a uniform magnitude of 25.0 mT directed into the paper. The initial diameter of the kink is 2.00 cm. (a) The wire is quickly pulled taut, and the kink shrinks to a diameter of zero in 50.0 ms. Determine the average voltage induced between endpoints A and B. Include the polarity. (b) Suppose the kink is undisturbed, but the magnetic field increases to 100 mT in 4.00 \times 10^{-3} s. Determine the average voltage across terminals A and B, including polarity, during this period.

64. An aluminum ring of radius 5.00 cm and resistance 3.00×10^{-4} Ω is placed around the top of a long air-core solenoid with 1000 turns per meter and a smaller radius of 3.00 cm, as in Figure P20.64. If the current in the solenoid is increasing at a constant rate of 270 A/s, what is the induced current in the ring? Assume the magnetic field produced by the solenoid over the area at the end of the solenoid is one-half as strong as the field at the center of the solenoid. Assume also the solenoid produces a negligible field outside its cross-sectional area.

65. In Figure P20.65 the rolling axle, 1.50 m long, is pushed along horizontal rails at a constant speed $v = 3.00$ m/s. A resistor $R = 0.400$ Ω is connected to the rails at points a and b, directly opposite each other. (The wheels make good electrical contact with the rails, so the axle, rails, and R form a closed-loop circuit. The only significant resistance in the circuit is R.) A uniform magnetic field $B = 0.800$ T is directed vertically downward. (a) Find the induced current I in the resistor. (b) What horizontal force F is required to keep the axle rolling at constant speed? (c) Which end of the resistor, a or b, is at the higher electric potential? (d) After the axle rolls past the resistor, does the current in R reverse direction?

66. An N-turn square coil with side ℓ and resistance R is pulled to the right at constant speed v in the positive x-direction in the presence of a uniform magnetic field B acting perpendicular to the coil, as shown in Figure P20.66. At $t = 0$, the right side of the coil is at the edge of the field. After a time t has elapsed, the entire coil is in the region where $B \neq 0$. In terms of the quantities N, B, ℓ, v, and R, find symbolic expressions for (a) the magnitude of the induced emf in the loop during the time interval t, (b) the magnitude of the induced current in the coil, (c) the power delivered to the coil, and (d) the force required to remove the coil from the field. (e) What is the direction of the induced current in the coil? What is the direction of the magnetic force on the loop while it is being pulled out of the field?

FIGURE P20.66
Arecibo, a large radio telescope in Puerto Rico, gathers electromagnetic radiation in the form of radio waves. These long wavelengths pass through obscuring dust clouds, allowing astronomers to create images of the core region of the Milky Way galaxy, which can’t be observed in the visible spectrum.

21

21.1 Resistors in an AC Circuit
21.2 Capacitors in an AC Circuit
21.3 Inductors in an AC Circuit
21.4 The RLC Series Circuit
21.5 Power in an AC Circuit
21.6 Resonance in a Series RLC Circuit
21.7 The Transformer
21.8 Maxwell’s Predictions
21.9 Hertz’s Confirmation of Maxwell’s Predictions
21.10 Production of Electromagnetic Waves by an Antenna
21.11 Properties of Electromagnetic Waves
21.12 The Spectrum of Electromagnetic Waves
21.13 The Doppler Effect for Electromagnetic Waves

ALTERNATING-CURRENT CIRCUITS AND ELECTROMAGNETIC WAVES

Every time we turn on a television set, a stereo system, or any other electric appliances, we call on alternating currents (AC) to provide the power to operate them. We begin our study of AC circuits by examining the characteristics of a circuit containing a source of emf and one other circuit element: a resistor, a capacitor, or an inductor. Then we examine what happens when these elements are connected in combination with each other. Our discussion is limited to simple series configurations of the three kinds of elements.

We conclude this chapter with a discussion of electromagnetic waves, which are composed of fluctuating electric and magnetic fields. Electromagnetic waves in the form of visible light enable us to view the world around us; infrared waves warm our environment; radio-frequency waves carry our television and radio programs, as well as information about processes in the core of our galaxy; and X-rays allow us to perceive structures hidden inside our bodies and study properties of distant, collapsed stars. Light is key to our understanding of the universe.

21.1 RESISTORS IN AN AC CIRCUIT

An AC circuit consists of combinations of circuit elements and an AC generator or an AC source, which provides the alternating current. We have seen that the output of an AC generator is sinusoidal and varies with time according to

$$\Delta v = \Delta V_{\text{max}} \sin 2\pi f t$$ \hspace{1cm} [21.1]$$

where Δv is the instantaneous voltage, ΔV_{max} is the maximum voltage of the AC generator, and f is the frequency at which the voltage changes, measured in hertz (Hz). (Compare Equations 20.7 and 20.8 with Equation 21.1.) We first consider a
simple circuit consisting of a resistor and an AC source (designated by the symbol \(\sim \)), as in Active Figure 21.1. The current and the voltage versus time across the resistor are shown in Active Figure 21.2.

To explain the concept of alternating current, we begin by discussing the current versus time curve in Active Figure 21.2. At point \(a \) on the curve, the current has a maximum value in one direction, arbitrarily called the positive direction. Between points \(a \) and \(b \), the current is decreasing in magnitude but is still in the positive direction. At point \(b \), the current is momentarily zero; it then begins to increase in the opposite (negative) direction between points \(b \) and \(c \). At point \(c \), the current has reached its maximum value in the negative direction.

The current and voltage are in step with each other because they vary identically with time. Because the current and the voltage reach their maximum values at the same time, they are said to be in phase. Notice that the average value of the current over one cycle is zero because the current is maintained in one direction (the positive direction) for the same amount of time and at the same magnitude as it is in the opposite direction (the negative direction). The direction of the current, however, has no effect on the behavior of the resistor in the circuit: the collisions between electrons and the fixed atoms of the resistor result in an increase in the resistor’s temperature regardless of the direction of the current.

We can quantify this discussion by recalling that the rate at which electrical energy is dissipated in a resistor, the power \(\mathcal{P} \), is

\[
\mathcal{P} = i^2R
\]

where \(i \) is the instantaneous current in the resistor. Because the heating effect of a current is proportional to the square of the current, it makes no difference whether the sign associated with the current is positive or negative. The heating effect produced by an alternating current with a maximum value of \(I_{\text{max}} \) is not the same as that produced by a direct current of the same value, however. The reason is that the alternating current has this maximum value for only an instant of time during a cycle. The important quantity in an AC circuit is a special kind of average value of current, called the **rms current**: the direct current that dissipates the same amount of energy in a resistor that is dissipated by the actual alternating current. To find the rms current, we first square the current, then find its average value, and finally take the square root of this average value. Hence, the rms current is the square root of the average (mean) of the square of the current. Because \(i^2 \) varies as \(\sin^2 2\pi ft \), the average value of \(i^2 \) is \(\frac{1}{2}I_{\text{max}}^2 \) (Fig. 21.3b, page 698).1 Therefore, the rms current \(I_{\text{rms}} \) is related to the maximum value of the alternating current \(I_{\text{max}} \) by

\[
I_{\text{rms}} = \frac{I_{\text{max}}}{\sqrt{2}} = 0.707I_{\text{max}}
\]

This equation says that an alternating current with a maximum value of 3 A produces the same heating effect in a resistor as a direct current of \((3/\sqrt{2})\) A. We can therefore say that the average power dissipated in a resistor that carries alternating current \(I \) is

\[
\mathcal{P}_{\text{av}} = I_{\text{rms}}^2R
\]

1We can show that \((i^2)_{\text{av}} = \frac{I_{\text{rms}}^2}{2} \) as follows: The current in the circuit varies with time according to the expression \(i = I_{\text{max}} \sin 2\pi ft \), so \(i^2 = I_{\text{max}}^2 \sin^2 2\pi ft \). Therefore, we can find the average value of \(i^2 \) by calculating the average value of \(\sin^2 2\pi ft \). Note that a graph of \(\cos^2 2\pi ft \) versus time is identical to a graph of \(\sin^2 2\pi ft \) versus time, except that the points are shifted on the time axis. Thus, the time average of \(\sin^2 2\pi ft \) is equal to the time average of \(\cos^2 2\pi ft \), taken over one or more cycles. That is,

\[
(\sin^2 2\pi ft)_{\text{av}} = (\cos^2 2\pi ft)_{\text{av}}
\]

With this fact and the trigonometric identity \(\sin^2 \theta + \cos^2 \theta = 1 \), we get

\[
(\sin^2 2\pi ft)_{\text{av}} + (\cos^2 2\pi ft)_{\text{av}} = 2(\sin^2 2\pi ft)_{\text{av}} = 1
\]

\[
(\sin^2 2\pi ft)_{\text{av}} = \frac{1}{2}
\]

When this result is substituted into the expression \(i^2 = I_{\text{max}}^2 \sin^2 2\pi ft \), we get \((i^2)_{\text{av}} = \frac{I_{\text{rms}}^2}{2} \). Therefore, \(I_{\text{rms}} = I_{\text{max}}/\sqrt{2} \), where \(I_{\text{rms}} \) is the rms current.
Alternating voltages are also best discussed in terms of rms voltages, with a relationship identical to the preceding one,

\[V_{\text{rms}} = \frac{V_{\text{max}}}{\sqrt{2}} \]

where \(V_{\text{rms}} \) is the rms voltage and \(V_{\text{max}} \) is the maximum value of the alternating voltage.

When we speak of measuring an AC voltage of 120 V from an electric outlet, we actually mean an rms voltage of 120 V. A quick calculation using Equation 21.3 shows that such an AC voltage actually has a peak value of about 170 V. In this chapter we use rms values when discussing alternating currents and voltages. One reason is that AC ammeters and voltmeters are designed to read rms values. Further, if we use rms values, many of the equations for alternating current will have the same form as those used in the study of direct-current (DC) circuits. Table 21.1 summarizes the notations used throughout this chapter.

Consider the series circuit in Figure 21.1, consisting of a resistor connected to an AC generator. A resistor impedes the current in an AC circuit, just as it does in a DC circuit. Ohm's law is therefore valid for an AC circuit, and we have

\[V_{\text{rms}} = I_{\text{rms}} R \]

The rms voltage across a resistor is equal to the rms current in the circuit times the resistance. This equation is also true if maximum values of current and voltage are used:

\[V_{\text{max}} = I_{\text{max}} R \]

QUICK QUIZ 21.1 Which of the following statements can be true for a resistor connected in a simple series circuit to an operating AC generator? (a) \(P_{\text{av}} = 0 \) and \(i_{\text{av}} = 0 \) (b) \(P_{\text{av}} = 0 \) and \(i_{\text{av}} > 0 \) (c) \(P_{\text{av}} > 0 \) and \(i_{\text{av}} = 0 \) (d) \(P_{\text{av}} > 0 \) and \(i_{\text{av}} > 0 \)

EXAMPLE 21.1 What Is the rms Current?

Goal Perform basic AC circuit calculations for a purely resistive circuit.

Problem An AC voltage source has an output of \(\Delta v = (2.00 \times 10^2 \text{ V}) \sin 2\pi ft \). This source is connected to a 1.00 \(\times 10^4 \) \(\Omega \) resistor as in Figure 21.1. Find the rms voltage and rms current in the resistor.

Strategy Compare the expression for the voltage output just given with the general form, \(\Delta v = V_{\text{max}} \sin 2\pi ft \), finding the maximum voltage. Substitute this result into the expression for the rms voltage.
Remark
Notice how the concept of rms values allows the handling of an AC circuit quantitatively in much the same way as a DC circuit.

QUESTION 21.1
True or False: The rms current in an AC circuit oscillates sinusoidally with time.

EXERCISE 21.1
Find the maximum current in the circuit and the average power delivered to the circuit.

Answer 2.00 A; 2.00 x 10^3 W

Solution
Obtain the maximum voltage by comparison of the given expression for the output with the general expression:

\[\Delta v = (2.00 \times 10^2 \, \text{V}) \sin 2\pi ft \quad \Delta v = \Delta V_{\text{max}} \sin 2\pi ft \]

\[\Delta V_{\text{max}} = 2.00 \times 10^2 \, \text{V} \]

Next, substitute into Equation 21.3 to find the rms voltage of the source:

\[\Delta V_{\text{rms}} = \frac{\Delta V_{\text{max}}}{\sqrt{2}} = \frac{2.00 \times 10^2 \, \text{V}}{\sqrt{2}} = 141 \, \text{V} \]

Substitute this result into Ohm’s law to find the rms current:

\[I_{\text{rms}} = \frac{\Delta V_{\text{rms}}}{R} = \frac{141 \, \text{V}}{1.00 \times 10^2 \, \Omega} = 1.41 \, \text{A} \]

Remark
Notice how the concept of rms values allows the handling of an AC circuit quantitatively in much the same way as a DC circuit.

QUESTION 21.1
True or False: The rms current in an AC circuit oscillates sinusoidally with time.

EXERCISE 21.1
Find the maximum current in the circuit and the average power delivered to the circuit.

Answer 2.00 A; 2.00 x 10^3 W

APPLYING PHYSICS 21.1 ELECTRIC FIELDS AND CANCER TREATMENT

Cancer cells multiply far more frequently than most normal cells, spreading throughout the body, using its resources and interfering with normal functioning. Most therapies damage both cancerous and healthy cells, so finding methods that target cancer cells is important in developing better treatments for the disease.

Because cancer cells multiply so rapidly, it’s natural to consider treatments that prevent or disrupt cell division. Treatments such as chemotherapy interfere with the cell division cycle, but can also damage healthy cells. It has recently been found that alternating electric fields produced by AC currents in the range of 100 kHz can disrupt the cell division cycle, either by slowing the division or by causing a dividing cell to disintegrate. Healthy cells that divide at only a very slow rate are less vulnerable than the rapidly-dividing cancer cells, so such therapy holds out promise for certain types of cancer.

The alternating electric fields are thought to affect the process of mitosis, which is the dividing of the cell nucleus into two sets of identical chromosomes. Near the end of the first phase of mitosis, called the prophase, the mitotic spindle forms, a structure of fine filaments that guides the two replicated sets of chromosomes into separate daughter cells. The mitotic spindle is made up of a polymerization of dimers of tubulin, a protein with a large electric dipole moment. The alternating electric field exerts forces on these dipoles, disrupting their proper functioning.

Electric field therapy is especially promising for the treatment of brain tumors because healthy brain cells don’t divide and therefore would be unharmed by the alternating electric fields. Research on such therapies is ongoing.

21.2 CAPACITORS IN AN AC CIRCUIT

To understand the effect of a capacitor on the behavior of a circuit containing an AC voltage source, we first review what happens when a capacitor is placed in a circuit containing a DC source, such as a battery. When the switch is closed in a series circuit containing a battery, a resistor, and a capacitor, the initial charge
on the plates of the capacitor is zero. The motion of charge through the circuit is therefore relatively free, and there is a large current in the circuit. As more charge accumulates on the capacitor, the voltage across it increases, opposing the current. After some time interval, which depends on the time constant RC, the current approaches zero. Consequently, a capacitor in a DC circuit limits or impedes the current so that it approaches zero after a brief time.

Now consider the simple series circuit in Figure 21.4, consisting of a capacitor connected to an AC generator. We sketch curves of current versus time and voltage versus time, and then attempt to make the graphs seem reasonable. The curves are shown in Figure 21.5. First, notice that the segment of the current curve from a to b indicates that the current starts out at a rather large value. This large value can be understood by recognizing that there is no charge on the capacitor at $t = 0$; as a consequence, there is nothing in the circuit except the resistance of the wires to hinder the flow of charge at this instant. The current decreases, however, as the voltage across the capacitor increases from c to d on the voltage curve. When the voltage is at point d, the current reverses and begins to increase in the opposite direction (from b to e on the current curve). During this time, the voltage across the capacitor decreases from d to f because the plates are now losing the charge they accumulated earlier. The remainder of the cycle for both voltage and current is a repeat of what happened during the first half of the cycle. The current reaches a maximum value in the opposite direction at point e on the current curve and then decreases as the voltage across the capacitor builds up.

In a purely resistive circuit, the current and voltage are always in step with each other. That isn’t the case when a capacitor is in the circuit. In Figure 21.5, when an alternating voltage is applied across a capacitor, the voltage reaches its maximum value one-quarter of a cycle after the current reaches its maximum value. We say that the voltage across a capacitor always lags the current by 90°.

The impeding effect of a capacitor on the current in an AC circuit is expressed in terms of a factor called the capacitive reactance X_C, defined as

$$X_C = \frac{1}{2\pi fC} \quad \text{[21.5]}$$

When C is in farads and f is in hertz, the unit of X_C is the ohm. Notice that $2\pi f = \omega$, the angular frequency.

From Equation 21.5, as the frequency f of the voltage source increases, the capacitive reactance X_C (the impeding effect of the capacitor) decreases, so the current increases. At high frequency, there is less time available to charge the capacitor, so less charge and voltage accumulate on the capacitor, which translates into less opposition to the flow of charge and, consequently, a higher current. The analogy between capacitive reactance and resistance means that we can write an equation of the same form as Ohm’s law to describe AC circuits containing capacitors. This equation relates the rms voltage and rms current in the circuit to the capacitive reactance:

$$\Delta V_{\text{rms}} = I_{\text{rms}} X_C \quad \text{[21.6]}$$

EXAMPLE 21.2 A Purely Capacitive AC Circuit

Goal Perform basic AC circuit calculations for a capacitive circuit.

Problem An 8.00-μF capacitor is connected to the terminals of an AC generator with an rms voltage of 1.50×10^2 V and a frequency of 60.0 Hz. Find the capacitive reactance and the rms current in the circuit.

Strategy Substitute values into Equations 21.5 and 21.6.
Remark Again, notice how similar the technique is to that of analyzing a DC circuit with a resistor.

QUESTION 21.2
True or False: The larger the capacitance of a capacitor, the larger the capacitive reactance.

EXERCISE 21.2
If the frequency is doubled, what happens to the capacitive reactance and the rms current?

Answer X_C is halved, and I_{rms} is doubled.

21.3 INDUCTORS IN AN AC CIRCUIT

Now consider an AC circuit consisting only of an inductor connected to the terminals of an AC source, as in Active Figure 21.6. (In any real circuit there is some resistance in the wire forming the inductive coil, but we ignore this consideration for now.) The changing current output of the generator produces a back emf that impedes the current in the circuit. The magnitude of this back emf is

$$\Delta v_L = L \frac{\Delta I}{\Delta t} \tag{21.7}$$

The effective resistance of the coil in an AC circuit is measured by a quantity called the inductive reactance, X_L:

$$X_L = \frac{\Delta V}{\Delta I} = \frac{2\pi f L}{\Delta I} \tag{21.8}$$

When f is in hertz and L is in henries, the unit of X_L is the ohm. The inductive reactance increases with increasing frequency and increasing inductance. Contrast these facts with capacitors, where increasing frequency or capacitance decreases the capacitive reactance.

To understand the meaning of inductive reactance, compare Equation 21.8 with Equation 21.7. First, note from Equation 21.8 that the inductive reactance depends on the inductance L, which is reasonable because the back emf (Eq. 21.7) is large for large values of L. Second, note that the inductive reactance depends on the frequency f. This dependence, too, is reasonable because the back emf depends on $\Delta I/\Delta t$, a quantity that is large when the current changes rapidly, as it would for high frequencies.

With inductive reactance defined in this way, we can write an equation of the same form as Ohm’s law for the voltage across the coil or inductor:

$$\Delta V_{rms} = I_{rms} X_L \tag{21.9}$$

where ΔV_{rms} is the rms voltage across the coil and I_{rms} is the rms current in the coil.

Active Figure 21.7 shows the instantaneous voltage and instantaneous current across the coil as functions of time. When a sinusoidal voltage is applied across an inductor, the voltage reaches its maximum value one-quarter of an oscillation period before the current reaches its maximum value. In this situation we say that the voltage across an inductor always leads the current by 90°.

Solution
Substitute the values of f and C into Equation 21.5:

$$X_C = \frac{1}{2\pi fC} = \frac{1}{2\pi(60.0 \text{ Hz})(8.00 \times 10^{-6} \text{ F})} = 332 \Omega$$

Solve Equation 21.6 for the current and substitute the values for X_C and the rms voltage to find the rms current:

$$I_{rms} = \frac{\Delta V_{rms}}{X_C} = \frac{1.50 \times 10^2 \text{ V}}{332 \Omega} = 0.452 \text{ A}$$

ACTIVE FIGURE 21.6
A series circuit consisting of an inductor L connected to an AC generator.

ACTIVE FIGURE 21.7
Plots of current and voltage across an inductor versus time in an AC circuit. The voltage leads the current by 90°.
To see why there is a phase relationship between voltage and current, we examine a few points on the curves of Active Figure 21.7. At point a on the current curve, the current is beginning to increase in the positive direction. At this instant the rate of change of current, \(\Delta I/\Delta t\) (the slope of the current curve), is at a maximum, and we see from Equation 21.7 that the voltage across the inductor is consequently also at a maximum. As the current rises between points a and b on the curve, \(\Delta I/\Delta t\) gradually decreases until it reaches zero at point b. As a result, the voltage across the inductor is decreasing during this same time interval, as the segment between c and d on the voltage curve indicates. Immediately after point b, the current begins to decrease, although it still has the same direction it had during the previous quarter cycle. As the current decreases to zero (from b to e on the curve), a voltage is again induced in the coil (from d to f), but the polarity of this voltage is opposite the polarity of the voltage induced between c and d. This occurs because back emfs always oppose the change in the current.

We could continue to examine other segments of the curves, but no new information would be gained because the current and voltage variations are repetitive.

EXAMPLE 21.3
A Purely Inductive AC Circuit

Goal Perform basic AC circuit calculations for an inductive circuit.

Problem In a purely inductive AC circuit (see Active Fig. 21.6), \(L = 25.0 \, \text{mH}\) and the rms voltage is \(1.50 \times 10^2 \, \text{V}\). Find the inductive reactance and rms current in the circuit if the frequency is 60.0 Hz.

Solution Substitute \(L\) and \(f\) into Equation 21.8 to get the inductive reactance:

\[
X_L = \frac{2\pi f L}{\text{rms}} = \frac{2\pi (60.0 \, \text{s}^{-1})(25.0 \times 10^{-3} \, \text{H})}{9.42 \, \Omega} = 9.42 \, \Omega
\]

Solve Equation 21.9 for the rms current and substitute:

\[
I_{\text{rms}} = \frac{\Delta V_{\text{rms}}}{X_L} = \frac{1.50 \times 10^2 \, \text{V}}{9.42 \, \Omega} = 15.9 \, \text{A}
\]

Remark The analogy with DC circuits is even closer than in the capacitive case because in the inductive equivalent of Ohm’s law, the voltage across an inductor is proportional to the inductance \(L\), just as the voltage across a resistor is proportional to \(R\) in Ohm’s law.

QUESTION 21.3 True or False: A larger inductance or frequency results in a larger inductive reactance.

EXERCISE 21.3 Calculate the inductive reactance and rms current in a similar circuit if the frequency is again 60.0 Hz, but the rms voltage is 85.0 V and the inductance is 47.0 mH.

Answer \(X_L = 17.7 \, \Omega\), \(I = 4.80 \, \text{A}\)

21.4 THE RLC SERIES CIRCUIT

In the foregoing sections we examined the effects of an inductor, a capacitor, and a resistor when they are connected separately across an AC voltage source. We now consider what happens when these elements are combined.

Active Figure 21.8 shows a circuit containing a resistor, an inductor, and a capacitor connected in series across an AC source that supplies a total voltage \(\Delta v\) at some instant. The current in the circuit is the same at all points in the circuit at any instant and varies sinusoidally with time, as indicated in Active Figure 21.9a. This fact can be expressed mathematically as

\[
i = I_{\text{max}} \sin 2\pi ft
\]
Earlier, we learned that the voltage across each element may or may not be in phase with the current. The instantaneous voltages across the three elements, shown in Active Figure 21.9, have the following phase relations to the instantaneous current:

1. The instantaneous voltage Δv_R across the resistor is in phase with the instantaneous current. (See Active Fig. 21.9b.)
2. The instantaneous voltage Δv_L across the inductor leads the current by 90°. (See Active Fig. 21.9c.)
3. The instantaneous voltage Δv_C across the capacitor lags the current by 90°. (See Active Fig. 21.9d.)

The net instantaneous voltage Δv supplied by the AC source equals the sum of the instantaneous voltages across the separate elements: $\Delta v = \Delta v_R + \Delta v_L + \Delta v_C$. This doesn’t mean, however, that the voltages measured with an AC voltmeter across R, C, and L all sum to the measured source voltage! In fact, the measured voltages don’t sum to the measured source voltage because the voltages across R, C, and L all have different phases.

To account for the different phases of the voltage drops, we use a technique involving vectors. We represent the voltage across each element with a rotating vector, as in Figure 21.10. The rotating vectors are referred to as phasors, and the diagram is called a phasor diagram. This particular diagram represents the circuit voltage given by the expression $\Delta v = V_{\text{max}} \sin (2\pi ft + \phi)$, where V_{max} is the maximum voltage (the magnitude or length of the rotating vector or phasor) and ϕ is the angle between the phasor and the positive x-axis when $t = 0$. The phasor can be viewed as a vector of magnitude V_{max} rotating at a constant frequency f so that its projection along the y-axis is the instantaneous voltage in the circuit. Because ϕ is the phase angle between the voltage and current in the circuit, the phasor for the current (not shown in Fig. 21.10) lies along the positive x-axis when $t = 0$ and is expressed by the relation $i = I_{\text{max}} \sin (2\pi ft)$.

The phasor diagrams in Figure 21.11 are useful for analyzing the series RLC circuit. Voltages in phase with the current are represented by vectors along the positive x-axis, and voltages out of phase with the current lie along other directions. ΔV_R is horizontal and to the right because it’s in phase with the current. Likewise, ΔV_L is represented by a phasor along the positive y-axis because it leads the current by 90°. Finally, ΔV_C is along the negative y-axis because it lags the current by 90°. If the phasors are added as vector quantities so as to account for the different phases of the voltages across R, L, and C, Figure 21.11a shows that the only x-component for the voltages is ΔV_R, and the net y-component is $\Delta V_L - \Delta V_C$. We now add the phasors vectorially to find the phasor V_{max} (Fig. 21.11b), which represents the maximum voltage.

3 A mnemonic to help you remember the phase relationships in RLC circuits is “ELI the ICE man.” E represents the voltage E, I the current,I the inductance, and C the capacitance. Thus, the name ELI means that in an inductive circuit, the voltage E leads the current I. In a capacitive circuit ICE means that the current leads the voltage.
The right triangle in Figure 21.11b gives the following equations for the maximum voltage and the phase angle ϕ between the maximum voltage and the current:

$$\Delta V_{\text{max}} = \sqrt{\Delta V_R^2 + (\Delta V_L - \Delta V_C)^2}$$ \hspace{1cm} [21.10]

$$\tan \phi = \frac{\Delta V_L - \Delta V_C}{\Delta V_R}$$ \hspace{1cm} [21.11]

In these equations, all voltages are maximum values. Although we choose to use maximum voltages in our analysis, the preceding equations apply equally well to rms voltages because the two quantities are related to each other by the same factor for all circuit elements. The result for the maximum voltage ΔV_{max} given by Equation 21.10 reinforces the fact that the voltages across the resistor, capacitor, and inductor are not in phase, so one cannot simply add them to get the voltage across the combination of element or to get the source voltage.

QUICK QUIZ 21.2 For the circuit of Figure 21.8, is the instantaneous voltage of the source equal to (a) the sum of the maximum voltages across the elements, (b) the sum of the instantaneous voltages across the elements, or (c) the sum of the rms voltages across the elements?

We can write Equation 21.10 in the form of Ohm's law, using the relations $\Delta V_R = I_{\text{max}} R$, $\Delta V_L = I_{\text{max}} X_L$, and $\Delta V_C = I_{\text{max}} X_C$, where I_{max} is the maximum current in the circuit:

$$\Delta V_{\text{max}} = I_{\text{max}} \sqrt{R^2 + (X_L - X_C)^2}$$ \hspace{1cm} [21.12]

It's convenient to define a parameter called the impedance Z of the circuit as

$$Z = \sqrt{R^2 + (X_L - X_C)^2}$$ \hspace{1cm} [21.13]

so that Equation 21.12 becomes

$$\Delta V_{\text{max}} = I_{\text{max}} Z$$ \hspace{1cm} [21.14]

Equation 21.14 is in the form of Ohm's law, $\Delta V = IR$, with R replaced by the impedance in ohms. Indeed, Equation 21.14 can be regarded as a generalized form of Ohm's law applied to a series AC circuit. Both the impedance and therefore the current in an AC circuit depend on the resistance, the inductance, the capacitance, and the frequency (because the reactances are frequency dependent).

It's useful to represent the impedance Z with a vector diagram such as the one depicted in Figure 21.11c. A right triangle is constructed with right side $X_L - X_C$, base R, and hypotenuse Z. Applying the Pythagorean theorem to this triangle, we see that

$$Z = \sqrt{R^2 + (X_L - X_C)^2}$$

which is Equation 21.13. Furthermore, we see from the vector diagram in Figure 21.11c that the phase angle ϕ between the current and the voltage obeys the relationship

$$\tan \phi = \frac{X_L - X_C}{R}$$ \hspace{1cm} [21.15]

The physical significance of the phase angle will become apparent in Section 21.5.

Table 21.2 provides impedance values and phase angles for some series circuits containing different combinations of circuit elements.

Parallel alternating current circuits are also useful in everyday applications. We won't discuss them here, however, because their analysis is beyond the scope of this book.
QUICK QUIZ 21.3 If switch A is closed in Figure 21.12, what happens to the impedance of the circuit? (a) It increases. (b) It decreases. (c) It doesn’t change.

QUICK QUIZ 21.4 Suppose $X_L > X_C$. If switch A is closed in Figure 21.12, what happens to the phase angle? (a) It increases. (b) It decreases. (c) It doesn’t change.

QUICK QUIZ 21.5 Suppose $X_L > X_C$. If switch A is left open and switch B is closed in Figure 21.12, what happens to the phase angle? (a) It increases. (b) It decreases. (c) It doesn’t change.

QUICK QUIZ 21.6 Suppose $X_L > X_C$ in Figure 21.12 and, with both switches open, a piece of iron is slipped into the inductor. During this process, what happens to the brightness of the bulb? (a) It increases. (b) It decreases. (c) It doesn’t change.

PROBLEM-SOLVING STRATEGY

RLC CIRCUITS

The following procedure is recommended for solving series RLC circuit problems:

1. Calculate the inductive and capacitive reactances, X_L and X_C.
2. Use X_L and X_C together with the resistance R to calculate the impedance Z of the circuit.
3. Find the maximum current or maximum voltage drop with the equivalent of Ohm’s law, $I_{\text{max}} = V_{\text{max}}/Z$.
4. Calculate the voltage drops across the individual elements with the appropriate variations of Ohm’s law: $V_{L,\text{max}} = I_{\text{max}}R$, $V_{L,\text{max}} = I_{\text{max}}X_L$, and $V_{C,\text{max}} = I_{\text{max}}X_C$.
5. Obtain the phase angle using $\tan \phi = (X_L - X_C)/R$.

NOTE

In each case an AC voltage (not shown) is applied across the combination of elements (that is, across the dots).

TABLE 21.2

<table>
<thead>
<tr>
<th>Circuit Elements</th>
<th>Impedance Z</th>
<th>Phase Angle ϕ</th>
</tr>
</thead>
<tbody>
<tr>
<td>R</td>
<td>R</td>
<td>0°</td>
</tr>
<tr>
<td>$\frac{R}{L}$</td>
<td>X_C</td>
<td>-90°</td>
</tr>
<tr>
<td>$\frac{R}{L}$</td>
<td>X_L</td>
<td>$+90^\circ$</td>
</tr>
<tr>
<td>$\frac{R}{L} C$</td>
<td>$\sqrt{R^2 + X_C^2}$</td>
<td>Negative, between -90° and 0°</td>
</tr>
<tr>
<td>$\frac{R}{L} L$</td>
<td>$\sqrt{R^2 + X_L^2}$</td>
<td>Positive, between 0° and 90°</td>
</tr>
<tr>
<td>$\frac{R}{L} L C$</td>
<td>$\sqrt{R^2 + (X_L - X_C)^2}$</td>
<td>Negative if $X_C > X_L$ Positive if $X_C < X_L$</td>
</tr>
</tbody>
</table>

FIGURE 21.12

A diagram of an RLC circuit with switches A and B.

NIKOLA TESLA

(1856–1943)

Tesla was born in Croatia, but spent most of his professional life as an inventor in the United States. He was a key figure in the development of alternating-current electricity, high-voltage transformers, and the transport of electrical power via AC transmission lines. Tesla’s viewpoint was at odds with the ideas of Edison, who committed himself to the use of direct current in power transmission. Tesla’s AC approach won out.
EXAMPLE 21.4 An RLC Circuit

Goal Analyze a series RLC AC circuit and find the phase angle.

Problem A series RLC AC circuit has resistance \(R = 2.50 \times 10^2 \, \Omega \), inductance \(L = 0.600 \, \text{H} \), capacitance \(C = 3.50 \, \mu \text{F} \), frequency \(f = 60.0 \, \text{Hz} \), and maximum voltage \(\Delta V_{\max} = 1.50 \times 10^2 \, \text{V} \). Find (a) the impedance of the circuit, (b) the maximum current in the circuit, (c) the phase angle, and (d) the maximum voltages across the elements.

Strategy Calculate the inductive and capacitive reactances, which can be used with the resistance to calculate the impedance and phase angle. The impedance and Ohm’s law yield the maximum current.

Solution

(a) Find the impedance of the circuit.

First, calculate the inductive and capacitive reactances:

\[X_L = 2\pi fL = 226 \, \Omega \quad X_C = \frac{1}{2\pi fC} = 758 \, \Omega \]

Substitute these results and the resistance \(R \) into Equation 21.13 to obtain the impedance of the circuit:

\[Z = \sqrt{R^2 + (X_L - X_C)^2} = \sqrt{(2.50 \times 10^2 \, \Omega)^2 + (226 \, \Omega - 758 \, \Omega)^2} = 588 \, \Omega \]

(b) Find the maximum current in the circuit.

Use Equation 21.12, the equivalent of Ohm’s law, to find the maximum current:

\[I_{\max} = \frac{\Delta V_{\max}}{Z} = \frac{1.50 \times 10^2 \, \text{V}}{588 \, \Omega} = 0.255 \, \text{A} \]

(c) Find the phase angle.

Calculate the phase angle between the current and the voltage with Equation 21.15:

\[\phi = \tan^{-1} \left(\frac{X_L - X_C}{R} \right) = \tan^{-1} \left(\frac{226 \, \Omega - 758 \, \Omega}{2.50 \times 10^2 \, \Omega} \right) = -64.8° \]

(d) Find the maximum voltages across the elements.

Substitute into the “Ohm’s law” expressions for each individual type of current element:

\[\Delta V_{R,\max} = I_{\max} R = (0.255 \, \text{A})(2.50 \times 10^2 \, \Omega) = 63.8 \, \text{V} \]
\[\Delta V_{L,\max} = I_{\max} X_L = (0.255 \, \text{A})(2.26 \times 10^2 \, \Omega) = 57.6 \, \text{V} \]
\[\Delta V_{C,\max} = I_{\max} X_C = (0.255 \, \text{A})(7.58 \times 10^2 \, \Omega) = 193 \, \text{V} \]

Remarks Because the circuit is more capacitive than inductive \((X_C > X_L) \), \(\phi \) is negative. A negative phase angle means that the current leads the applied voltage. Notice also that the sum of the maximum voltages across the elements is \(\Delta V_R + \Delta V_L + \Delta V_C = 314 \, \text{V} \), which is much greater than the maximum voltage of the generator, 150 V. As we saw in Quick Quiz 21.2, the sum of the maximum voltages is a meaningless quantity because when alternating voltages are added, both their amplitudes and their phases must be taken into account. We know that the maximum voltages across the various elements occur at different times, so it doesn’t make sense to add all the maximum values. The correct way to “add” the voltages is through Equation 21.10.

QUESTION 21.4

True or False: In an RLC circuit, the impedance must always be greater than or equal to the resistance.

EXERCISE 21.4

Analyze a series RLC AC circuit for which \(R = 175 \, \Omega \), \(L = 0.500 \, \text{H} \), \(C = 22.5 \, \mu \text{F} \), \(f = 60.0 \, \text{Hz} \), and \(\Delta V_{\max} = 325 \, \text{V} \). Find (a) the impedance, (b) the maximum current, (c) the phase angle, and (d) the maximum voltages across the elements.

Answers (a) 189 \, \Omega \quad (b) 1.72 \, \text{A} \quad (c) 22.0° \quad (d) \Delta V_{R,\max} = 301 \, \text{V}, \Delta V_{L,\max} = 324 \, \text{V}, \Delta V_{C,\max} = 203 \, \text{V}
21.5 POWER IN AN AC CIRCUIT

No power losses are associated with pure capacitors and pure inductors in an AC circuit. A pure capacitor, by definition, has no resistance or inductance, whereas a pure inductor has no resistance or capacitance. (These definitions are idealizations; in a real capacitor, for example, inductive effects could become important at high frequencies.) We begin by analyzing the power dissipated in an AC circuit that contains only a generator and a capacitor.

When the current increases in one direction in an AC circuit, charge accumulates on the capacitor and a voltage drop appears across it. When the voltage reaches its maximum value, the energy stored in the capacitor is

\[P_{EC} = \frac{1}{2}C(\Delta V_{max})^2 \]

This energy storage is only momentary, however: When the current reverses direction, the charge leaves the capacitor plates and returns to the voltage source. During one-half of each cycle the capacitor is being charged, and during the other half the charge is being returned to the voltage source. Therefore, the average power supplied by the source is zero. In other words, no power losses occur in a capacitor in an AC circuit.

Similarly, the source must do work against the back emf of an inductor that is carrying a current. When the current reaches its maximum value, the energy stored in the inductor is a maximum and is given by

\[P_{EL} = \frac{1}{2}L I^2_{max} \]

When the current begins to decrease in the circuit, this stored energy is returned to the source as the inductor attempts to maintain the current in the circuit. The average power delivered to a resistor in an RLC circuit is

\[\varphi_{av} = I^2_{rms}R \quad [21.16] \]

The average power delivered by the generator is converted to internal energy in the resistor. No power loss occurs in an ideal capacitor or inductor.

An alternate equation for the average power loss in an AC circuit can be found by substituting (from Ohm’s law) \(R = \Delta V_{rms}/I_{rms} \) into Equation 21.16:

\[\varphi_{av} = I_{rms} \Delta V_{rms} \]

It’s convenient to refer to a voltage triangle that shows the relationship among \(\Delta V_{rms} \), \(\Delta V_{rms} \), and \(\Delta V_{rms} - \Delta V_{rms} \), such as Figure 21.11b. (Remember that Fig. 21.11 applies to both maximum and rms voltages.) From this figure, we see that the voltage drop across a resistor can be written in terms of the voltage of the source, \(\Delta V_{rms} \):

\[\Delta V_{rms} = \Delta V_{rms} \cos \phi \]

Hence, the average power delivered by a generator in an AC circuit is

\[\varphi_{av} = I_{rms} \Delta V_{rms} \cos \phi \quad [21.17] \]

where the quantity \(\cos \phi \) is called the power factor.

Equation 21.17 shows that the power delivered by an AC source to any circuit depends on the phase difference between the source voltage and the resulting current. This fact has many interesting applications. For example, factories often use devices such as large motors in machines, generators, and transformers that have a large inductive load due to all the windings. To deliver greater power to such devices without using excessively high voltages, factory technicians introduce capacitance in the circuits to shift the phase.
Remark
The same result can be obtained from Equation 21.16, \(\dot{P}_{av} = I_{rms}^2 R \).

QUESTION 21.5
Under what circumstance can the average power of an RLC circuit be zero?

EXERCISE 21.5
Repeat this problem, using the system described in Exercise 21.4.

Answer
259 W

EXAMPLE 21.5 Average Power in an RLC Series Circuit

Goal
Understand power in RLC series circuits.

Problem
Calculate the average power delivered to the series RLC circuit described in Example 21.4.

Strategy
After finding the rms current and rms voltage with Equations 21.2 and 21.3, substitute into Equation 21.17, using the phase angle found in Example 21.4.

Solution
First, use Equations 21.2 and 21.3 to calculate the rms current and rms voltage:

- \(I_{rms} = \frac{I_{max}}{\sqrt{2}} = \frac{0.255 \text{ A}}{\sqrt{2}} = 0.180 \text{ A} \)
- \(\Delta V_{rms} = \frac{\Delta V_{max}}{\sqrt{2}} = \frac{1.50 \times 10^2 \text{ V}}{\sqrt{2}} = 106 \text{ V} \)

Substitute these results and the phase angle \(\phi = -64.8^\circ \) into Equation 21.17 to find the average power:

\[\dot{P}_{av} = I_{rms} \Delta V_{rms} \cos \phi = (0.180 \text{ A})(106 \text{ V}) \cos (-64.8^\circ) = 8.12 \text{ W} \]

Remark
The same result can be obtained from Equation 21.16, \(\dot{P}_{av} = I_{rms}^2 R \).

21.6 RESONANCE IN A SERIES RLC CIRCUIT

In general, the rms current in a series RLC circuit can be written

\[I_{rms} = \frac{\Delta V_{rms}}{Z} = \frac{\Delta V_{rms}}{\sqrt{R^2 + (X_L - X_C)^2}} \] \[\text{[21.18]} \]

From this equation, we see that if the frequency is varied, the current has its maximum value when the impedance has its minimum value, which occurs when \(X_L = X_C \). In such a circumstance, the impedance of the circuit reduces to \(Z = R \). The frequency \(f_0 \) at which this happens is called the resonance frequency of the circuit. To find \(f_0 \), we set \(X_L = X_C \), which gives, from Equations 21.5 and 21.8,

\[2\pi f_0 L = \frac{1}{2\pi f_0 C} \]

\[f_0 = \frac{1}{2\pi \sqrt{LC}} \] \[\text{[21.19]} \]

Figure 21.13 is a plot of current as a function of frequency for a circuit containing a fixed value for both the capacitance and the inductance. From Equation 21.18, it must be concluded that the current would become infinite at resonance when \(R = 0 \). Although Equation 21.18 predicts this result, real circuits always have some resistance, which limits the value of the current.

The tuning circuit of a radio is an important application of a series resonance circuit. The radio is tuned to a particular station (which transmits a specific radio-frequency signal) by varying a capacitor, which changes the resonance frequency of the tuning circuit. When this resonance frequency matches that of the incoming radio wave, the current in the tuning circuit increases.
When you walk through the doorway of a courthouse metal detector, as the person in Figure 21.14 is doing, you are really walking through a coil of many turns. How might the metal detector work?

Explanation The metal detector is essentially a resonant circuit. The portal you step through is an inductor (a large loop of conducting wire) that is part of the circuit. The frequency of the circuit is tuned to the resonant frequency of the circuit when there is no metal in the inductor. When you walk through with metal in your pocket, you change the effective inductance of the resonance circuit, resulting in a change in the current in the circuit. This change in current is detected, and an electronic circuit causes a sound to be emitted as an alarm.

EXAMPLE 21.6 A Circuit in Resonance

Goal Understand resonance frequency and its relation to inductance, capacitance, and the rms current.

Problem Consider a series RLC circuit for which \(R = 1.50 \times 10^2 \Omega \), \(L = 20.0 \) mH, \(\Delta V_{\text{rms}} = 20.0 \) V, and \(f = 796 \) s\(^{-1}\).

(a) Determine the value of the capacitance for which the rms current is a maximum. (b) Find the maximum rms current in the circuit.

Strategy The current is a maximum at the resonance frequency \(f_0 \), which should be set equal to the driving frequency, 796 s\(^{-1}\). The resulting equation can be solved for \(C \). For part (b), substitute into Equation 21.18 to get the maximum rms current.

Solution

(a) Find the capacitance giving the maximum current in the circuit (the resonance condition).

Solve the resonance frequency for the capacitance:

\[
f_0 = \frac{1}{2\pi \sqrt{LC}} \quad \Rightarrow \quad \sqrt{LC} = \frac{1}{2\pi f_0} \quad \Rightarrow \quad LC = \frac{1}{4\pi^2 f_0^2}
\]

\[
C = \frac{1}{4\pi^2 f_0^2 L}
\]

Insert the given values, substituting the source frequency for the resonance frequency, \(f_0 \):

\[
C = \frac{1}{4\pi^2 (796 \text{ Hz})^2 (20.0 \times 10^{-3} \text{ H})} = 2.00 \times 10^{-6} \text{ F}
\]

(b) Find the maximum rms current in the circuit.

The capacitive and inductive reactances are equal, so \(Z = R = 1.50 \times 10^2 \) \(\Omega \). Substitute into Equation 21.18 to find the rms current:

\[
I_{\text{rms}} = \frac{\Delta V_{\text{rms}}}{Z} = \frac{20.0 \text{ V}}{1.50 \times 10^2 \Omega} = 0.133 \text{ A}
\]

Remark Because the impedance \(Z \) is in the denominator of Equation 21.18, the maximum current will always occur when \(X_L = X_C \), because that yields the minimum value of \(Z \).

QUESTION 21.6

True or False: The magnitude of the current in an RLC circuit is never larger than the rms current.
EXERCISE 21.6
Consider a series RLC circuit for which \(R = 1.20 \times 10^2 \, \Omega \), \(C = 3.10 \times 10^{-5} \, \text{F} \), \(\Delta V_{\text{rms}} = 35.0 \, \text{V} \), and \(f = 60.0 \, \text{Hz} \).
(a) Determine the value of the inductance for which the rms current is a maximum. (b) Find the maximum rms current in the circuit.
Answers
(a) 0.227 H
(b) 0.292 A

21.7 THE TRANSFORMER

It’s often necessary to change a small AC voltage to a larger one or vice versa. Such changes are effected with a device called a transformer.

In its simplest form the AC transformer consists of two coils of wire wound around a core of soft iron, as shown in Figure 21.15. The coil on the left, which is connected to the input AC voltage source and has \(N_1 \) turns, is called the primary winding, or the primary. The coil on the right, which is connected to a resistor \(R \) and consists of \(N_2 \) turns, is the secondary. The purposes of the common iron core are to increase the magnetic flux and to provide a medium in which nearly all the flux through one coil passes through the other.

When an input AC voltage \(V_1 \) is applied to the primary, the induced voltage across it is given by
\[
\Delta V_1 = -N_1 \frac{\Delta \Phi_B}{\Delta t} \quad \text{[21.20]}
\]
where \(\Phi_B \) is the magnetic flux through each turn. If we assume that no flux leaks from the iron core, then the flux through each turn of the primary equals the flux through each turn of the secondary. Hence, the voltage across the secondary coil is
\[
\Delta V_2 = -N_2 \frac{\Delta \Phi_B}{\Delta t} \quad \text{[21.21]}
\]
The term \(\Delta \Phi_B/\Delta t \) is common to Equations 21.20 and 21.21 and can be algebraically eliminated, giving
\[
\Delta V_2 = \frac{N_2}{N_1} \Delta V_1 \quad \text{[21.22]}
\]
When \(N_2 \) is greater than \(N_1 \), \(\Delta V_2 \) exceeds \(\Delta V_1 \) and the transformer is referred to as a step-up transformer. When \(N_2 \) is less than \(N_1 \), making \(\Delta V_2 \) less than \(\Delta V_1 \), we have a step-down transformer.

By Faraday’s law, a voltage is generated across the secondary only when there is a change in the number of flux lines passing through the secondary. The input current in the primary must therefore change with time, which is what happens when an alternating current is used. When the input at the primary is a direct current, however, a voltage output occurs at the secondary only at the instant a switch in the primary circuit is opened or closed. Once the current in the primary reaches a steady value, the output voltage at the secondary is zero.

It may seem that a transformer is a device in which it is possible to get something for nothing. For example, a step-up transformer can change an input voltage from, say, 10 V to 100 V. This means that each coulomb of charge leaving the secondary has 100 J of energy, whereas each coulomb of charge entering the primary has only 10 J of energy. That is not the case, however, because the power input to the primary equals the power output at the secondary:
\[
I_1 \Delta V_1 = I_2 \Delta V_2 \quad \text{[21.23]}
\]
Although the voltage at the secondary may be, say, ten times greater than the voltage at the primary, the current in the secondary will be smaller than the primary’s...
current by a factor of ten. Equation 21.23 assumes an ideal transformer in which there are no power losses between the primary and the secondary. Real transformers typically have power efficiencies ranging from 90% to 99%. Power losses occur because of such factors as eddy currents induced in the iron core of the transformer, which dissipate energy in the form of I^2R losses.

When electric power is transmitted over large distances, it’s economical to use a high voltage and a low current because the power lost via resistive heating in the transmission lines varies as I^2R. If a utility company can reduce the current by a factor of ten, for example, the power loss is reduced by a factor of one hundred. In practice, the voltage is stepped up to around 230 000 V at the generating station, then stepped down to around 20 000 V at a distribution station, and finally stepped down to 120 V at the customer’s utility pole.

EXAMPLE 21.7 Distributing Power to a City

Goal Understand transformers and their role in reducing power loss.

Problem A generator at a utility company produces 1.00×10^2 A of current at 4.00×10^3 V. The voltage is stepped up to 2.40×10^5 V by a transformer before being sent on a high-voltage transmission line across a rural area to a city. Assume the effective resistance of the power line is $30.0 \, \Omega$ and that the transformers are ideal. (a) Determine the percentage of power lost in the transmission line. (b) What percentage of the original power would be lost in the transmission line if the voltage were not stepped up?

Solution

(a) Determine the percentage of power lost in the line.

Substitute into Equation 21.23 to find the current in the transmission line:

$$I_2 = I_1 \frac{\Delta V_1}{\Delta V_2} = \frac{(1.00 \times 10^2 \, \text{A})(4.00 \times 10^3 \, \text{V})}{2.40 \times 10^3 \, \text{V}} = 1.67 \, \text{A}$$

Now use Equation 21.16 to find the power lost in the transmission line:

$$(1) \quad P_{\text{lost}} = I_2^2 R = (1.67 \, \text{A})^2 (30.0 \, \Omega) = 83.7 \, \text{W}$$

Calculate the power output of the generator:

$$P = I_1 \Delta V_1 = (1.00 \times 10^2 \, \text{A})(4.00 \times 10^3 \, \text{V}) = 4.00 \times 10^5 \, \text{W}$$

Finally, divide P_{lost} by the power output and multiply by 100 to find the percentage of power lost:

$$\text{% power lost} = \left(\frac{83.7 \, \text{W}}{4.00 \times 10^5 \, \text{W}} \right) \times 100 = 0.0209\%$$

(b) What percentage of the original power would be lost in the transmission line if the voltage were not stepped up?

Replace the stepped-up current in Equation (1) by the original current of 1.00×10^2 A:

$$P_{\text{lost}} = I^2 R = (1.00 \times 10^2 \, \text{A})^2 (30.0 \, \Omega) = 3.00 \times 10^5 \, \text{W}$$

Calculate the percentage loss, as before:

$$\text{% power lost} = \left(\frac{3.00 \times 10^5 \, \text{W}}{4.00 \times 10^5 \, \text{W}} \right) \times 100 = 75\%$$
Remarks This example illustrates the advantage of high-voltage transmission lines. At the city, a transformer at a substation steps the voltage back down to about 4000 V, and this voltage is maintained across utility lines throughout the city. When the power is to be used at a home or business, a transformer on a utility pole near the establishment reduces the voltage to 240 V or 120 V.

QUESTION 21.7
If the voltage is stepped up to double the amount in this problem, by what factor is the power loss changed? (a) 2 (b) no change (c) \(\frac{1}{2}\) (d) \(\frac{1}{4}\)

EXERCISE 21.7
Suppose the same generator has the voltage stepped up to only \(7.50 \times 10^7\) V and the resistance of the line is 85.0 Ω. Find the percentage of power lost in this case.

Answer 0.604%

21.8 MAXWELL’S PREDICTIONS
During the early stages of their study and development, electric and magnetic phenomena were thought to be unrelated. In 1865, however, James Clerk Maxwell (1831–1879) provided a mathematical theory that showed a close relationship between all electric and magnetic phenomena. In addition to unifying the formerly separate fields of electricity and magnetism, his brilliant theory predicted that electric and magnetic fields can move through space as waves. The theory he developed is based on the following four pieces of information:

1. Electric field lines originate on positive charges and terminate on negative charges.
2. Magnetic field lines always form closed loops; they don’t begin or end anywhere.
3. A varying magnetic field induces an emf and hence an electric field. This fact is a statement of Faraday’s law (Chapter 20).
4. Magnetic fields are generated by moving charges (or currents), as summarized in Ampère’s law (Chapter 19).

The first statement is a consequence of the nature of the electrostatic force between charged particles, given by Coulomb’s law. It embodies the fact that free charges (electric monopoles) exist in nature.

The second statement—that magnetic fields form continuous loops—is exemplified by the magnetic field lines around a long, straight wire, which are closed circles, and the magnetic field lines of a bar magnet, which form closed loops. It says, in contrast to the first statement, that free magnetic charges (magnetic monopoles) don’t exist in nature.

The third statement is equivalent to Faraday’s law of induction, and the fourth is equivalent to Ampère’s law.

In one of the greatest theoretical developments of the 19th century, Maxwell used these four statements within a corresponding mathematical framework to prove that electric and magnetic fields play symmetric roles in nature. It was already known from experiments that a changing magnetic field produced an electric field according to Faraday’s law. Maxwell believed that nature was symmetric, and he therefore hypothesized that a changing electric field should produce...
a magnetic field. This hypothesis could not be proven experimentally at the time it was developed because the magnetic fields generated by changing electric fields are generally very weak and therefore difficult to detect.

To justify his hypothesis, Maxwell searched for other phenomena that might be explained by it. He turned his attention to the motion of rapidly oscillating (accelerating) charges, such as those in a conducting rod connected to an alternating voltage. Such charges are accelerated and, according to Maxwell's predictions, generate changing electric and magnetic fields. The changing fields cause electromagnetic disturbances that travel through space as waves, similar to the spreading water waves created by a pebble thrown into a pool. The waves sent out by the oscillating charges are fluctuating electric and magnetic fields, so they are called electromagnetic waves. From Faraday’s law and from Maxwell’s own generalization of Ampère’s law, Maxwell calculated the speed of the waves to be equal to the speed of light, \(c = 3 \times 10^8 \text{ m/s} \). He concluded that visible light and other electromagnetic waves consist of fluctuating electric and magnetic fields traveling through empty space, with each varying field inducing the other! His was truly one of the greatest discoveries of science, on a par with Newton's discovery of the laws of motion. Like Newton’s laws, it had a profound influence on later scientific developments.

21.9 Hertz's Confirmation of Maxwell’s Predictions

In 1887, after Maxwell’s death, Heinrich Hertz (1857–1894) was the first to generate and detect electromagnetic waves in a laboratory setting, using \(LC \) circuits. In such a circuit a charged capacitor is connected to an inductor, as in Figure 21.16. When the switch is closed, oscillations occur in the current in the circuit and in the charge on the capacitor. If the resistance of the circuit is neglected, no energy is dissipated and the oscillations continue.

In the following analysis, we neglect the resistance in the circuit. We assume the capacitor has an initial charge of \(Q_{\text{max}} \) and the switch is closed at \(t = 0 \). When the capacitor is fully charged, the total energy in the circuit is stored in the electric field of the capacitor and is equal to \(Q_{\text{max}}^2 / 2C \). At this time, the current is zero, so no energy is stored in the inductor. As the capacitor begins to discharge, the energy stored in its electric field decreases. At the same time, the current increases and energy equal to \(LI^2 / 2 \) is now stored in the magnetic field of the inductor. Thus, energy is transferred from the electric field of the capacitor to the magnetic field of the inductor. When the capacitor is fully discharged, it stores no energy. At this time, the current reaches its maximum value and all the energy is stored in the inductor. The process then repeats in the reverse direction. The energy continues to transfer between the inductor and the capacitor, corresponding to oscillations in the current and charge.

As we saw in Section 21.6, the frequency of oscillation of an \(LC \) circuit is called the resonance frequency of the circuit and is given by

\[
\nu_0 = \frac{1}{2\pi\sqrt{LC}}
\]

The circuit Hertz used in his investigations of electromagnetic waves is similar to that just discussed and is shown schematically in Figure 21.17. An induction coil (a large coil of wire) is connected to two metal spheres with a narrow gap between them to form a capacitor. Oscillations are initiated in the circuit by short voltage pulses sent via the coil to the spheres, charging one positive, the other negative. Because \(L \) and \(C \) are quite small in this circuit, the frequency of oscillation is quite high. \(f = 100 \text{ MHz} \). This circuit is called a transmitter because it produces electromagnetic waves.

Several meters from the transmitter circuit, Hertz placed a second circuit, the receiver, which consisted of a single loop of wire connected to two spheres. It had its own effective inductance, capacitance, and natural frequency of oscillation.
Hertz found that energy was being sent from the transmitter to the receiver when the resonance frequency of the receiver was adjusted to match that of the transmitter. The energy transfer was detected when the voltage across the spheres in the receiver circuit became high enough to produce ionization in the air, which caused sparks to appear in the air gap separating the spheres. Hertz’s experiment is analogous to the mechanical phenomenon in which a tuning fork picks up the vibrations from another, identical tuning fork.

Hertz hypothesized that the energy transferred from the transmitter to the receiver is carried in the form of waves, now recognized as electromagnetic waves. In a series of experiments, he also showed that the radiation generated by the transmitter exhibits wave properties: interference, diffraction, reflection, refraction, and polarization. As you will see shortly, all these properties are exhibited by light. It became evident that Hertz’s electromagnetic waves had the same known properties of light waves and differed only in frequency and wavelength. Hertz effectively confirmed Maxwell’s theory by showing that Maxwell’s mysterious electromagnetic waves existed and had all the properties of light waves.

Perhaps the most convincing experiment Hertz performed was the measurement of the speed of waves from the transmitter, accomplished as follows: waves of known frequency from the transmitter were reflected from a metal sheet so that an interference pattern was set up, much like the standing-wave pattern on a stretched string. As we learned in our discussion of standing waves, the distance between nodes is $\lambda/2$, so Hertz was able to determine the wavelength λ. Using the relationship $v = \lambda f$, he found that v was close to 3×10^8 m/s, the known speed of visible light. Hertz’s experiments thus provided the first evidence in support of Maxwell’s theory.

21.10 PRODUCTION OF ELECTROMAGNETIC WAVES BY AN ANTENNA

In the previous section we found that the energy stored in an LC circuit is continually transferred between the electric field of the capacitor and the magnetic field of the inductor. This energy transfer, however, continues for prolonged periods of time only when the changes occur slowly. If the current alternates rapidly, the circuit loses some of its energy in the form of electromagnetic waves. In fact, electromagnetic waves are radiated by any circuit carrying an alternating current. The fundamental mechanism responsible for this radiation is the acceleration of a charged particle. **Whenever a charged particle accelerates, it radiates energy.**

An alternating voltage applied to the wires of an antenna forces electric charges in the antenna to oscillate. This common technique for accelerating charged particles is the source of the radio waves emitted by the broadcast antenna of a radio station.

Figure 21.18 illustrates the production of an electromagnetic wave by oscillating electric charges in an antenna. Two metal rods are connected to an AC source, which causes charges to oscillate between the rods. The output voltage of the generator is sinusoidal. At $t = 0$, the upper rod is given a maximum positive charge and the bottom rod an equal negative charge, as in Figure 21.18a. The electric field near the antenna at this instant is also shown in the figure. As the charges oscil-
late, the rods become less charged, the field near the rods decreases in strength, and the downward-directed maximum electric field produced at $t = 0$ moves away from the rod. When the charges are neutralized, as in Figure 21.18b, the electric field has dropped to zero, after an interval equal to one-quarter of the period of oscillation. Continuing in this fashion, the upper rod soon obtains a maximum negative charge and the lower rod becomes positive, as in Figure 21.18c, resulting in an electric field directed upward. This occurs after an interval equal to one-half the period of oscillation. The oscillations continue as indicated in Figure 21.18d. Note that the electric field near the antenna oscillates in phase with the charge distribution: the field points down when the upper rod is positive and up when the upper rod is negative. Further, the magnitude of the field at any instant depends on the amount of charge on the rods at that instant.

As the charges continue to oscillate (and accelerate) between the rods, the electric field set up by the charges moves away from the antenna in all directions at the speed of light. Figure 21.18 shows the electric field pattern on one side of the antenna at certain times during the oscillation cycle. As you can see, one cycle of charge oscillation produces one full wavelength in the electric field pattern.

Because the oscillating charges create a current in the rods, a magnetic field is also generated when the current in the rods is upward, as shown in Figure 21.19. The magnetic field lines circle the antenna (recall right-hand rule number 2) and are perpendicular to the electric field at all points. As the current changes with time, the magnetic field lines spread out from the antenna. At great distances from the antenna, the strengths of the electric and magnetic fields become very weak. At these distances, however, it is necessary to take into account the facts that (1) a changing magnetic field produces an electric field and (2) a changing electric field produces a magnetic field, as predicted by Maxwell. These induced electric and magnetic fields are in phase: at any point, the two fields reach their maximum values at the same instant. This synchrony is illustrated at one instant of time in Active Figure 21.20. Note that (1) the E and B fields are perpendicular to each other and (2) both fields are perpendicular to the direction of motion of the wave. This second property is characteristic of transverse waves. Hence, we see that an electromagnetic wave is a transverse wave.

21.11 PROPERTIES OF ELECTROMAGNETIC WAVES

We have seen that Maxwell’s detailed analysis predicted the existence and properties of electromagnetic waves. In this section we summarize what we know about electromagnetic waves thus far and consider some additional properties. In our discussion here and in future sections, we will often make reference to a type of wave called a plane wave. A plane electromagnetic wave is a wave traveling from a very distant source. Active Figure 21.20 pictures such a wave at a given instant of time. In this case the oscillations of the electric and magnetic fields take place in planes perpendicular to the x-axis and are therefore perpendicular to the direction of travel of the wave. Because of the latter property, electromagnetic waves are transverse waves. In the figure the electric field E is in the y-direction and the magnetic field B is in the z-direction. Light propagates in a direction perpendicular to these two fields. That direction is determined by yet another right-hand rule: (1) point the fingers of your right hand in the direction of E, (2) curl them in the direction of B, and (3) the right thumb then points in the direction of propagation of the wave.

Electromagnetic waves travel with the speed of light. In fact, it can be shown that the speed of an electromagnetic wave is related to the permeability and permittivity of the medium through which it travels. Maxwell found this relationship for free space to be

$$c = \frac{1}{\sqrt{\mu_0 \varepsilon_0}}$$

[T21.24] ▶ Speed of light
where \(c \) is the speed of light, \(\mu_0 = 4\pi \times 10^{-7} \text{ N} \cdot \text{s}^2/\text{C}^2 \) is the permeability constant of vacuum, and \(\varepsilon_0 = 8.854 \times 10^{-12} \text{ C}^2/\text{N} \cdot \text{m}^2 \) is the permittivity of free space. Substituting these values into Equation 21.24, we find that

\[
\frac{c}{c} = 2.99792 \times 10^8 \text{ m/s} \tag{21.25}
\]

Because electromagnetic waves travel at the same speed as light in vacuum, scientists concluded (correctly) that light is an electromagnetic wave.

Maxwell also proved the following relationship for electromagnetic waves:

\[
\frac{E}{B} = c \tag{21.26}
\]

which states that the ratio of the magnitude of the electric field to the magnitude of the magnetic field equals the speed of light.

Electromagnetic waves carry energy as they travel through space, and this energy can be transferred to objects placed in their paths. The average rate at which energy passes through an area perpendicular to the direction of travel of a wave, or the average power per unit area, is called the intensity \(I \) of the wave and is given by

\[
I = \frac{E_{\text{max}}B_{\text{max}}}{2\mu_0} \tag{21.27}
\]

where \(E_{\text{max}} \) and \(B_{\text{max}} \) are the maximum values of \(E \) and \(B \). The quantity \(I \) is analogous to the intensity of sound waves introduced in Chapter 14. From Equation 21.26, we see that \(E_{\text{max}} = cB_{\text{max}} = B_{\text{max}}/\sqrt{\mu_0\varepsilon_0} \). Equation 21.27 can therefore also be expressed as

\[
I = \frac{E_{\text{max}}^2}{2\mu_0c} = \frac{c}{2\mu_0} B_{\text{max}}^2 \tag{21.28}
\]

Note that in these expressions we use the average power per unit area. A detailed analysis would show that the energy carried by an electromagnetic wave is shared equally by the electric and magnetic fields.

Electromagnetic waves have an average intensity given by Equation 21.28. When the waves strike an area \(A \) of an object’s surface for a given time \(\Delta t \), energy \(U = IA \Delta t \) is transferred to the surface. Momentum is transferred, as well. Hence, pressure is exerted on a surface when an electromagnetic wave impinges on it. In what follows, we assume the electromagnetic wave transports a total energy \(U \) to a sur-
face in a time Δt. If the surface absorbs all the incident energy U in this time, Maxwell showed that the total momentum \vec{p} delivered to this surface has a magnitude

$$p = \frac{U}{c} \quad \text{(complete absorption)} \quad [21.29]$$

If the surface is a perfect reflector, then the momentum transferred in a time Δt for normal incidence is twice that given by Equation 21.29. This is analogous to a molecule of gas bouncing off the wall of a container in a perfectly elastic collision. If the molecule is initially traveling in the positive x-direction at velocity v and after the collision is traveling in the negative x-direction at velocity $-v$, its change in momentum is given by $\Delta p = mv - (-mv) = 2mv$. Light bouncing off a perfect reflector is a similar process, so for complete reflection,

$$p = \frac{2U}{c} \quad \text{(complete reflection)} \quad [21.30]$$

Although radiation pressures are very small (about $5 \times 10^{-6} \text{ N/m}^2$ for direct sunlight), they have been measured with a device such as the one shown in Figure 21.21. Light is allowed to strike a mirror and a black disk that are connected to each other by a horizontal bar suspended from a fine fiber. Light striking the black disk is completely absorbed, so all the momentum of the light is transferred to the disk. Light striking the mirror head-on is totally reflected; hence, the momentum transfer to the mirror is twice that transmitted to the disk. As a result, the horizontal bar supporting the disks twists counterclockwise as seen from above. The bar comes to equilibrium at some angle under the action of the torques caused by radiation pressure and the twisting of the fiber. The radiation pressure can be determined by measuring the angle at which equilibrium occurs. It’s interesting that similar experiments demonstrate that electromagnetic waves carry angular momentum, as well.

In summary, electromagnetic waves traveling through free space have the following properties:

1. Electromagnetic waves travel at the speed of light.
2. Electromagnetic waves are transverse waves because the electric and magnetic fields are perpendicular to the direction of propagation of the wave and to each other.
3. The ratio of the electric field to the magnetic field in an electromagnetic wave equals the speed of light.
4. Electromagnetic waves carry both energy and momentum, which can be delivered to a surface.

Applying Physics 21.3 Solar System Dust

In the interplanetary space in the Solar System, there is a large amount of dust. Although interplanetary dust can in theory have a variety of sizes—from molecular size upward—why are there very few dust particles smaller than about 0.2 μm in the solar system? *Hint:* The solar system originally contained dust particles of all sizes.

Explanation Dust particles in the solar system are subject to two forces: the gravitational force toward the Sun and the force from radiation pressure, which is directed away from the Sun. The gravitational force is proportional to the cube of the radius of a spherical dust particle because it is proportional to the mass (ρV) of the particle. The radiation pressure is proportional to the square of the radius because it depends on the cross-sectional area of the particle. For large particles, the gravitational force is larger than the force of radiation pressure, and the weak attraction to the Sun causes such particles to move slowly toward it. For small particles, less than about 0.2 μm, the larger force from radiation pressure sweeps them out of the solar system.
QUICK QUIZ 21.7 In an apparatus such as that in Figure 21.21, suppose the black disk is replaced by one with half the radius. Which of the following are different after the disk is replaced? (a) radiation pressure on the disk (b) radiation force on the disk (c) radiation momentum delivered to the disk in a given time interval

EXAMPLE 21.8 A Hot Tin Roof (Solar-Powered Homes)

Goal Calculate some basic properties of light and relate them to thermal radiation.

Problem Assume the Sun delivers an average power per unit area of about 1.00×10^3 W/m² to Earth’s surface. (a) Calculate the total power incident on a flat tin roof 8.00 m by 20.0 m. Assume the radiation is incident normal (perpendicular) to the roof. (b) Calculate the peak electric field of the light. (c) Compute the peak magnetic field of the light. (d) The tin roof reflects some light, and convection, conduction, and radiation transport the rest of the thermal energy away until some equilibrium temperature is established. If the roof is a perfect blackbody and rids itself of one-half of the incident radiation through thermal radiation, what’s its equilibrium temperature? Assume the ambient temperature is 298 K.

Solution (a) Calculate the power delivered to the roof.

Multiply the intensity by the area to get the power:

$$P = I A = (1.00 \times 10^3 \text{ W/m}^2)(8.00 \text{ m} \times 20.0 \text{ m})$$

$$= 1.60 \times 10^5 \text{ W}$$

(b) Calculate the peak electric field of the light.

Solve Equation 21.28 for \(E_{\text{max}}\):

$$I = \frac{E_{\text{max}}^2}{2\mu_0 c} \quad \Rightarrow \quad E_{\text{max}} = \sqrt{\frac{2\mu_0 I}{c}}$$

$$E_{\text{max}} = \sqrt{24\pi \times 10^{-7} \text{ N·s}^2/\text{C}^2(3.00 \times 10^8 \text{ m/s})(1.00 \times 10^3 \text{ W/m}^2)}$$

$$= 868 \text{ V/m}$$

(c) Compute the peak magnetic field of the light.

Obtain \(B_{\text{max}}\) using Equation 21.26:

$$B_{\text{max}} = \frac{E_{\text{max}}}{c} = \frac{868 \text{ V/m}}{3.00 \times 10^8 \text{ m/s}} = 2.89 \times 10^{-8} \text{ T}$$

(d) Find the equilibrium temperature of the roof.

Substitute into Stefan’s law. Only one-half the incident power should be substituted, and twice the area of the roof (both the top and the underside of the roof count).

$$\varphi = \sigma e A (T^4 - T_0^4)$$

$$T^4 = T_0^4 + \frac{\varphi}{\sigma e A}$$

$$= (298 \text{ K})^4 + \frac{(0.500)(1.60 \times 10^5 \text{ W/m}^2)}{(5.67 \times 10^{-8} \text{ W/m}^2\text{·K}^4)(1)(3.20 \times 10^2 \text{ m}^2)}$$

$$T = 333 \text{ K} = 60 \times 10^3 \text{ °C}$$
Remarks If the incident power could all be converted to electric power, it would be more than enough for the average home. Unfortunately, solar energy isn’t easily harnessed, and the prospects for large-scale conversion are not as bright as they may appear from this simple calculation. For example, the conversion efficiency from solar to electrical energy is far less than 100%; 10% is typical for photovoltaic cells. Roof systems for using solar energy to raise the temperature of water with efficiencies of around 50% have been built. Other practical problems must be considered, however, such as overcast days, geographic location, and energy storage.

QUESTION 21.8
Does the angle the roof makes with respect to the horizontal affect the amount of power absorbed by the roof? Explain.

EXERCISE 21.8
A spherical satellite orbiting Earth is lighted on one side by the Sun, with intensity 1 340 W/m². (a) If the radius of the satellite is 1.00 m, what power is incident upon it? Note: The satellite effectively intercepts radiation only over a cross section, an area equal to that of a disk, πr². (b) Calculate the peak electric field. (c) Calculate the peak magnetic field.

Answers (a) 4.21 × 10³ W (b) 1.01 × 10³ V/m (c) 3.35 × 10⁻⁶ T

EXAMPLE 21.9 Clipper Ships of Space

Goal Relate the intensity of light to its mechanical effect on matter.

Problem Aluminized Mylar film is a highly reflective, lightweight material that could be used to make sails for spacecraft driven by the light of the Sun. Suppose a sail with area 1.00 km² is orbiting the Sun at a distance of 1.50 × 10¹¹ m. The sail has a mass of 5.00 × 10³ kg and is tethered to a payload of mass 2.00 × 10⁴ kg. (a) If the intensity of sunlight is 1.34 × 10⁹ W and the sail is oriented perpendicular to the incident light, what radial force is exerted on the sail? (b) About how long would it take to change the radial speed of the sail by 1.00 km/s? Assume the sail is perfectly reflecting.

Strategy Equation 21.30 gives the momentum imparted when light strikes an object and is totally reflected. The change in this momentum with time is a force. For part (b), use Newton’s second law to obtain the acceleration. The velocity kinematics equation then yields the necessary time to achieve the desired change in speed.

Solution (a) Find the force exerted on the sail.

Write Equation 21.30 and substitute \(U = \Phi \Delta t = IA \Delta t \) for the energy delivered to the sail:

\[
\Delta p = \frac{2U}{c} = \frac{2\Phi \Delta t}{c} = \frac{2IA \Delta t}{c}
\]

Divide both sides by \(\Delta t \), obtaining the force \(\Delta p/\Delta t \) exerted by the light on the sail:

\[
F = \frac{\Delta p}{\Delta t} = \frac{2IA}{c} = \frac{2(1340 \text{ W/m}^2)(1.00 \times 10^8 \text{ m}^2)}{3.00 \times 10^8 \text{ m/s}} = 8.93 \text{ N}
\]

(b) Find the time it takes to change the radial speed by 1.00 km/s.

Substitute the force into Newton’s second law and solve for the acceleration of the sail:

\[
a = \frac{F}{m} = \frac{8.93 \text{ N}}{2.50 \times 10^4 \text{ kg}} = 3.57 \times 10^{-4} \text{ m/s}^2
\]

Apply the kinematics velocity equation:

\[
v = at + v_0
\]

Solve for \(t \):

\[
t = \frac{v - v_0}{a} = \frac{1.00 \times 10^3 \text{ m/s}}{3.57 \times 10^{-4} \text{ m/s}^2} = 2.80 \times 10^6 \text{ s}
\]
21.12 THE SPECTRUM OF ELECTROMAGNETIC WAVES

All electromagnetic waves travel in a vacuum with the speed of light, \(c \). These waves transport energy and momentum from some source to a receiver. In 1887 Hertz successfully generated and detected the radio-frequency electromagnetic waves predicted by Maxwell. Maxwell himself had recognized as electromagnetic waves both visible light and the infrared radiation discovered in 1800 by William Herschel. It is now known that other forms of electromagnetic waves exist that are distinguished by their frequencies and wavelengths.

Because all electromagnetic waves travel through free space with a speed \(c \), their frequency \(f \) and wavelength \(\lambda \) are related by the important expression

\[
\frac{c}{\lambda} = f \tag{21.31}
\]

The various types of electromagnetic waves are presented in Figure 21.22. Notice the wide and overlapping range of frequencies and wavelengths. For instance, an AM radio wave with a frequency of 1.50 MHz (a typical value) has a wavelength of

\[
\lambda = \frac{c}{f} = \frac{3.00 \times 10^8 \text{ m/s}}{1.50 \times 10^6 \text{ s}^{-1}} = 2.00 \times 10^2 \text{ m}
\]

The following abbreviations are often used to designate short wavelengths and distances:

- 1 micrometer (\(\mu \text{m} \)) = \(10^{-6} \text{ m} \)
- 1 nanometer (\(\text{nm} \)) = \(10^{-9} \text{ m} \)
- 1 angstrom (\(\text{Å} \)) = \(10^{-10} \text{ m} \)

The wavelengths of visible light, for example, range from 0.4 \(\mu \text{m} \) to 0.7 \(\mu \text{m} \), or 400 nm to 700 nm, or 4 000 \(\text{Å} \) to 7 000 \(\text{Å} \).

QUICK QUIZ 21.8 Which of the following statements are true about light waves? (a) The higher the frequency, the longer the wavelength. (b) The lower the frequency, the longer the wavelength. (c) Higher frequency light travels faster than lower frequency light. (d) The shorter the wavelength, the higher the frequency. (e) The lower the frequency, the shorter the wavelength.

Brief descriptions of the wave types follow, in order of decreasing wavelength. There is no sharp division between one kind of electromagnetic wave and the next. All forms of electromagnetic radiation are produced by accelerating charges.
Radio waves, which were discussed in Section 21.10, are the result of charges accelerating through conducting wires. They are, of course, used in radio and television communication systems.

Microwaves (short-wavelength radio waves) have wavelengths ranging between about 1 mm and 30 cm and are generated by electronic devices. Their short wavelengths make them well suited for the radar systems used in aircraft navigation and for the study of atomic and molecular properties of matter. Microwave ovens are an interesting domestic application of these waves. It has been suggested that solar energy might be harnessed by beaming microwaves to Earth from a solar collector in space.

Infrared waves (sometimes incorrectly called “heat waves”), produced by hot objects and molecules, have wavelengths ranging from about 1 mm to the longest wavelength of visible light, 7×10^{-7} m. They are readily absorbed by most materials. The infrared energy absorbed by a substance causes it to get warmer because the energy agitates the atoms of the object, increasing their vibrational or translational motion. The result is a rise in temperature. Infrared radiation has many practical and scientific applications, including physical therapy, infrared photography, and the study of the vibrations of atoms.

Visible light, the most familiar form of electromagnetic waves, may be defined as the part of the spectrum that is detected by the human eye. Light is produced by the rearrangement of electrons in atoms and molecules. The wavelengths of visible light are classified as colors ranging from violet ($\lambda = 4 \times 10^{-7}$ m) to red ($\lambda = 7 \times 10^{-7}$ m). The eye’s sensitivity is a function of wavelength and is greatest at a wavelength of about 5.6×10^{-7} m (yellow green).

Ultraviolet (UV) light covers wavelengths ranging from about 4×10^{-7} m (400 nm) down to 6×10^{-10} m (0.6 nm). The Sun is an important source of ultraviolet light (which is the main cause of sunburn). Most of the ultraviolet light from the Sun is absorbed by atoms in the upper atmosphere, or stratosphere, which is fortunate, because UV light in large quantities has harmful effects on humans. One important constituent of the stratosphere is ozone (O_3), produced from reactions...
of oxygen with ultraviolet radiation. The resulting ozone shield causes lethal high-energy ultraviolet radiation to warm the stratosphere.

X-rays are electromagnetic waves with wavelengths from about 10^{-8} m (10 nm) down to 10^{-16} m (10^{-4} nm). The most common source of x-rays is the acceleration of high-energy electrons bombarding a metal target. X-rays are used as a diagnostic tool in medicine and as a treatment for certain forms of cancer. Because x-rays easily penetrate and damage or destroy living tissues and organisms, care must be taken to avoid unnecessary exposure and overexposure.

Gamma rays—electromagnetic waves emitted by radioactive nuclei—have wavelengths ranging from about 10^{-10} m to less than 10^{-14} m. They are highly penetrating and cause serious damage when absorbed by living tissues. Accordingly, those working near such radiation must be protected by garments containing heavily absorbing materials, such as layers of lead.

When astronomers observe the same celestial object using detectors sensitive to different regions of the electromagnetic spectrum, striking variations in the object’s features can be seen. Figure 21.23 shows images of the Crab Nebula made in three different wavelength ranges. The Crab Nebula is the remnant of a supernova explosion that was seen on Earth in 1054 A.D. (Compare with Fig. 8.28.)

APPLYING PHYSICS 21.4 THE SUN AND THE EVOLUTION OF THE EYE

The center of sensitivity of our eyes coincides with the center of the wavelength distribution of the Sun. Is this an amazing coincidence?

Explanation This fact is not a coincidence; rather, it’s the result of biological evolution. Humans have evolved with vision most sensitive to wavelengths that are strongest from the Sun. If aliens from another planet ever arrived at Earth, their eyes would have the center of sensitivity at wavelengths different from ours. If their sun were a red dwarf, for example, the alien’s eyes would be most sensitive to red light.

21.13 THE DOPPLER EFFECT FOR ELECTROMAGNETIC WAVES

As we saw in Section 14.6, sound waves exhibit the Doppler effect when the observer, the source, or both are moving relative to the medium of propagation. Recall that in the Doppler effect, the observed frequency of the wave is larger or smaller than the frequency emitted by the source of the wave.

A Doppler effect also occurs for electromagnetic waves, but it differs from the Doppler effect for sound waves in two ways. First, in the Doppler effect for sound waves, motion relative to the medium is most important because sound waves
require a medium in which to propagate. In contrast, the medium of propagation plays no role in the Doppler effect for electromagnetic waves because the waves require no medium in which to propagate. Second, the speed of sound that appears in the equation for the Doppler effect for sound depends on the reference frame in which it is measured. In contrast, as we see in Chapter 26, the speed of electromagnetic waves has the same value in all coordinate systems that are either at rest or moving at constant velocity with respect to one another.

The single equation that describes the Doppler effect for electromagnetic waves is given by the approximate expression

$$f_0 = f_s \left(1 \pm \frac{u}{c}\right) \quad \text{if } u \ll c \quad \text{[21.32]}$$

where f_0 is the observed frequency, f_s is the frequency emitted by the source, u is the relative speed of the observer and source, and c is the speed of light in a vacuum. Note that Equation 21.32 is valid only if u is much smaller than c. Further, it can also be used for sound as long as the relative velocity of the source and observer is much less than the velocity of sound. The positive sign in the equation must be used when the source and observer are moving toward each other, whereas the negative sign must be used when they are moving away from each other. Thus, we anticipate an increase in the observed frequency if the source and observer are approaching each other and a decrease if they and observer recede from each other.

Astronomers have made important discoveries using Doppler observations on light reaching Earth from distant stars and galaxies. Such measurements have shown that most distant galaxies are moving away from Earth. Thus, the Universe is expanding. This Doppler shift is called a red shift because the observed wavelengths are shifted toward the red portion (longer wavelengths) of the visible spectrum. Further, measurements show that the speed of a galaxy increases with increasing distance from Earth. More recent Doppler effect measurements made with the Hubble Space Telescope have shown that a galaxy labeled M87 is rotating, with one edge moving toward us and the other moving away. Its measured speed of rotation was used to identify a supermassive black hole located at its center.

Summary

21.1 Resistors in an AC Circuit

If an AC circuit consists of a generator and a resistor, the current in the circuit is in phase with the voltage, which means that the current and voltage reach their maximum values at the same time.

In discussions of voltages and currents in AC circuits, **rms values** of voltages are usually used. One reason is that AC ammeters and voltmeters are designed to read rms values. The rms values of currents and voltage (I_{rms} and V_{rms}) are related to the maximum values of these quantities (I_{max} and V_{max}) as follows:

$$I_{\text{rms}} = \frac{I_{\text{max}}}{\sqrt{2}} \quad \text{and} \quad V_{\text{rms}} = \frac{V_{\text{max}}}{\sqrt{2}} \quad \text{[21.2, 21.3]}$$

The rms voltage across a resistor is related to the rms current in the resistor by Ohm’s law:

$$\Delta V_{\text{rms}} = I_{\text{rms}}R \quad \text{[21.4a]}$$

21.2 Capacitors in an AC Circuit

If an AC circuit consists of a generator and a capacitor, the voltage lags behind the current by 90°. This means that the voltage reaches its maximum value one-quarter of a period after the current reaches its maximum value.

The impeding effect of a capacitor on current in an AC circuit is given by the **capacitive reactance** X_c, defined as

$$X_c = \frac{1}{2\pi fC} \quad \text{[21.5]}$$

where f is the frequency of the AC voltage source.

The rms voltage across and the rms current in a capacitor are related by

$$\Delta V_{\text{rms}} = I_{\text{rms}}X_c \quad \text{[21.6]}$$

21.3 Inductors in an AC Circuit

If an AC circuit consists of a generator and an inductor, the voltage leads the current by 90°. This means the voltage reaches its maximum value one-quarter of a period before the current reaches its maximum value.

The effective impedance of a coil in an AC circuit is measured by a quantity called the **inductive reactance** X_L, defined as

$$X_L = 2\pi fL \quad \text{[21.8]}$$
The rms voltage across a coil is related to the rms current in the coil by

$$\Delta V_{r,\text{rms}} = I_{\text{rms}} Z$$ \[21.9\]

21.4 The RLC Series Circuit

In an RLC series AC circuit, the maximum applied voltage \(\Delta V \) is related to the maximum voltages across the resistor (\(\Delta V_R \)), capacitor (\(\Delta V_C \)), and inductor (\(\Delta V_L \)) by

$$\Delta V_{\text{max}} = \sqrt{\Delta V_R^2 + (\Delta V_L - \Delta V_C)^2}$$ \[21.10\]

If an AC circuit contains a resistor, an inductor, and a capacitor connected in series, the limit they place on the current is given by the **impedance** \(Z \) of the circuit, defined as

$$Z = \sqrt{R^2 + (X_L - X_C)^2}$$ \[21.13\]

The relationship between the maximum voltage supplied to an RLC series AC circuit and the maximum current in the circuit, which is the same in every element, is

$$\Delta V_{\text{max}} = I_{\text{rms}} Z$$ \[21.14\]

In an RLC series AC circuit, the applied rms voltage and current are out of phase. The **phase angle** \(\phi \) between the current and voltage is given by

$$\tan \phi = \frac{X_L - X_C}{R}$$ \[21.15\]

21.5 Power in an AC Circuit

The **average power** delivered by the voltage source in an RLC series AC circuit is

$$P = I_{\text{rms}} \Delta V_{\text{rms}} \cos \phi$$ \[21.17\]

where the constant \(\cos \phi \) is called the **power factor**.

21.6 Resonance in a Series RLC Circuit

In general, the rms current in a series RLC circuit can be written

$$I_{\text{rms}} = \frac{\Delta V_{\text{rms}}}{Z} = \frac{\Delta V_{\text{rms}}}{\sqrt{R^2 + (X_L - X_C)^2}}$$ \[21.18\]

The current has its maximum value when the impedance has its minimum value, corresponding to \(X_L = X_C \) and \(Z = R \). The frequency \(f_0 \) at which this happens is called the **resonance frequency** of the circuit, given by

$$f_0 = \frac{1}{2\pi \sqrt{LC}}$$ \[21.19\]

21.7 The Transformer

If the primary winding of a transformer has \(N_1 \) turns and the secondary winding consists of \(N_2 \) turns and then an input AC voltage \(\Delta V_1 \) is applied to the primary, the induced voltage in the secondary winding is given by

$$\Delta V_2 = \frac{N_2}{N_1} \Delta V_1$$ \[21.22\]

When \(N_2 \) is greater than \(N_1 \), \(\Delta V_2 \) exceeds \(\Delta V_1 \) and the transformer is referred to as a **step-up transformer**. When \(N_2 \) is less than \(N_1 \), making \(\Delta V_2 \) less than \(\Delta V_1 \), we have a **step-down transformer**. In an ideal transformer, the power output equals the power input.

21.8–21.13 Electromagnetic Waves and Their Properties

Electromagnetic waves were predicted by James Clerk Maxwell and experimentally confirmed by Heinrich Hertz. These waves are created by accelerating electric charges and have the following properties:

1. Electromagnetic waves are transverse waves because the electric and magnetic fields are perpendicular to the direction of propagation of the waves.
2. Electromagnetic waves travel at the speed of light.
3. The ratio of the electric field to the magnetic field at a given point in an electromagnetic wave equals the speed of light:

$$\frac{E}{B} = c$$ \[21.26\]

4. Electromagnetic waves carry energy as they travel through space. The average power per unit area is the intensity \(I \) given by

$$I = \frac{E_{\text{max}} B_{\text{max}}}{2\mu_0} = \frac{E_{\text{max}}^2}{2\mu_0} = \frac{c}{2\mu_0} B_{\text{max}}^2$$ \[21.27, 21.28\]

where \(E_{\text{max}} \) and \(B_{\text{max}} \) are the maximum values of the electric and magnetic fields.

5. Electromagnetic waves transport linear and angular momentum as well as energy. The momentum \(p \) delivered in time \(\Delta t \) at normal incidence to an object that completes absorbs light energy \(U \) is given by

$$p = \frac{U}{c} \quad \text{(complete absorption)}$$ \[21.29\]

If the surface is a perfect reflector, the momentum delivered in time \(\Delta t \) at normal incidence is twice that given by Equation 21.29:

$$p = \frac{2U}{c} \quad \text{(complete reflection)}$$ \[21.30\]

6. The speed \(c \), frequency \(f \), and wavelength \(\lambda \) of an electromagnetic wave are related by

$$c = f\lambda$$ \[21.31\]

The **electromagnetic spectrum** includes waves covering a broad range of frequencies and wavelengths. These waves have a variety of applications and characteristics, depending on their frequencies or wavelengths. The frequency of a given wave can be shifted by the relative velocity of observer and source, with the observed frequency \(f_0 \) given by

$$f_0 = f_s \left(1 \pm \frac{u}{c}\right) \quad \text{if } u \ll c$$ \[21.32\]

where \(f_s \) is the frequency of the source, \(u \) is the relative speed of the observer and source, and \(c \) is the speed of light in a vacuum. The positive sign is used when the source and observer approach each other, the negative sign when they recede from each other.
MULTIPLE-CHOICE QUESTIONS

1. A sinusoidally varying voltage has a maximum value of 170 V. What is its rms value? (a) 240 V (b) 170 V (c) 120 V (d) 0 (e) −120 V

2. When a particular inductor is connected to a source of sinusoidally varying voltage with constant amplitude and a frequency of 60.0 Hz, the rms current is 3.0 A. What is the rms current if the source frequency is doubled? (a) 12 A (b) 6.0 A (c) 4.2 A (d) 3.0 A (e) 1.5 A

3. The switch is closed, which of the following statements is true? (a) The voltage across the capacitor lags the current by 90°. (b) The voltage across the resistor is out of phase with the current. (c) The voltage across the capacitor leads the current by 90°. (d) The current decreases as the frequency of the generator is increased, but its peak voltage remains the same. (e) none of these

4. Find the voltage across a (1.0/2π)-H inductor when it carries 2.0 A of rms current at 60.0 Hz. (a) 160 V (b) 140 V (c) 120 V (d) 95 V (e) 85 V

5. A series RLC circuit contains a resistor of 20 Ω, a capacitor of 0.75 μF, and an inductor of 120 mH. If a sinusoidally varying rms voltage of 120 V is applied across this combination of elements, what is the rms current in the circuit when operating at its resonance frequency? (a) 2.4 A (b) 6.0 A (c) 10 A (d) 17 A (e) 8.2 A

6. A 6.0-V battery is connected across the primary coil of a transformer having 50 turns. If the secondary coil of the transformer has 100 turns, what voltage appears across the secondary? (a) 24 V (b) 12 V (c) 6.0 V (d) 3.0 V (e) none of these

7. An electromagnetic wave with a peak magnetic field component of magnitude 1.5 × 10^-7 T has an associated peak electric field component of what value? (a) 0.50 × 10^-15 N/C (b) 2.0 × 10^-7 N/C (c) 2.2 × 10^-14 N/C (d) 45 N/C (e) 22 N/C

8. An inductor and a resistor are connected in series across an AC generator, as shown in Figure MCQ21.8. Immediately after the switch is closed, which of the following statements is true? (a) The current is ΔV/R. (b) The voltage across the inductor is zero. (c) The current in the circuit is zero. (d) The voltage across the resistor is ΔV. (e) The voltage across the inductor is half its maximum value.

9. A capacitor and a resistor are connected in series across an AC generator, as shown in Figure MCQ21.9. After the switch is closed, which of the following statements is true? (a) The voltage across the capacitor lags the current by 90°. (b) The voltage across the resistor is out of phase with the current. (c) The voltage across the capacitor leads the current by 90°. (d) The current decreases as the frequency of the generator is increased, but its peak voltage remains the same. (e) none of these

10. A resistor, capacitor, and inductor are connected in series across an AC generator. Which of the following statements is false? (a) The instantaneous voltage across the capacitor lags the current by 90°. (b) The instantaneous voltage across the inductor leads the current by 90°. (c) The instantaneous voltage across the resistor is in phase with the current. (d) The voltages across the resistor, capacitor, and inductor are not in phase. (e) The rms voltage across the combination of the three elements equals the algebraic sum of the rms voltages across each element separately.

11. A resistor, capacitor, and inductor are connected in series across an AC generator. Which of the following statements is true? (a) All the power is lost in the inductor. (b) All the power is lost in the capacitor. (c) All the power is lost in the resistor. (d) Power is lost in all three elements. (e) The power delivered by the generator does not depend on the phase difference between the generator voltage and current.

12. If the voltage across a circuit element has its maximum value when the current in the circuit is zero, does it follow that (a) the circuit element is a resistor, (b) the circuit element is a capacitor, (c) the circuit element is an inductor, (d) the current and voltage are 90° out of phase, or (e) the current and voltage are 180° out of phase?

13. What is the phase angle in a series RLC circuit at resonance? (a) 180° (b) 90° (c) 0 (d) −90° (e) ±45°

14. A series RLC circuit contains a 20.0-Ω resistor, a 0.75-μF capacitor, and a 120-mH inductor. If a sinusoidally varying rms voltage of 120 V at f = 5.0 × 10^3 Hz is applied across this combination of elements, what is the rms current in the circuit? (a) 2.3 A (b) 6.0 A (c) 10 A (d) 17 A (e) 4.8 A
CONCEPTUAL QUESTIONS

1. Before the advent of cable television and satellite dishes, homeowners either mounted a television antenna on the roof or used “rabbit ears” atop their sets. (See Fig. CQ21.1.) Certain orientations of the receiving antenna on a television set gave better reception than others. Furthermore, the best orientation varied from station to station. Explain.

2. What is the impedance of an RLC circuit at the resonance frequency?

3. Receiving radio antennas can be in the form of conducting lines or loops. What should the orientation of each of these antennas be relative to a broadcasting antenna that is vertical?

4. If the fundamental source of a sound wave is a vibrating object, what is the fundamental source of an electromagnetic wave?

5. In radio transmission a radio wave serves as a carrier wave, and the sound signal is superimposed on the carrier wave. In amplitude modulation (AM) radio, the amplitude of the carrier wave varies according to the sound wave. The U.S. Navy sometimes uses flashing lights to send Morse code between neighboring ships, a process that has similarities to radio broadcasting. Is this process AM or FM? What is the carrier frequency? What is the signal frequency? What is the broadcasting antenna? What is the receiving antenna?

6. When light (or other electromagnetic radiation) travels across a given region, what is it that oscillates? What is it that is transported?

7. In space sailing, which is a proposed alternative for transport to the planets, a spacecraft carries a very large sail. Sunlight striking the sail exerts a force, accelerating the spacecraft. Should the sail be absorptive or reflective to be most effective?

8. How can the average value of an alternating current be zero, yet the square root of the average squared value not be zero?

9. Suppose a creature from another planet had eyes that were sensitive to infrared radiation. Describe what it would see if it looked around the room that you are now in. That is, what would be bright and what would be dim?

10. Why should an infrared photograph of a person look different from a photograph taken using visible light?

11. Does a wire connected to a battery emit an electromagnetic wave?

12. If a high-frequency current is passed through a solenoid containing a metallic core, the core becomes warm due to induction. Explain why the temperature of the material rises in this situation.

13. If the resistance in an RLC circuit remains the same, but the capacitance and inductance are each doubled, how will the resonance frequency change?

14. Why is the sum of the maximum voltages across each of the elements in a series RLC circuit usually greater than the maximum applied voltage? Doesn’t this violate Kirchhoff’s loop rule?

15. What is the advantage of transmitting power at high voltages?

PROBLEMS

The Problems for this chapter may be assigned online at WebAssign.

1. 2. 3 = straightforward, intermediate, challenging
 GP = denotes guided problem
 ESP = denotes enhanced content problem
 GP = biomedical application
 A = denotes full solution available in Student Solutions Manual/Study Guide

SECTION 21.1 RESISTORS IN AN AC CIRCUIT

1. When an AC generator is connected across a 12.0-Ω resistor, the rms current in the resistor is 8.00 A. Find (a) the rms voltage across the resistor, (b) the peak voltage of the generator, (c) the maximum current in the resistor, and (d) the average power delivered to the resistor.

2. A certain lightbulb is rated at 60.0 W when operating at an rms voltage of 1.20 × 10² V. (a) What is the peak voltage applied across the bulb? (b) What is the resistance of the bulb? (c) Does a 1.00 × 10² W bulb have greater or less resistance than a 60.0-W bulb? Explain.

3. An AC power supply that produces a maximum voltage of ΔVmax = 100 V is connected to a 24.0-Ω resistor. The current and the resistor voltage are respectively measured with an ideal AC ammeter and an ideal AC voltmeter, as shown in Figure P21.3. What does each meter read? Note
that an ideal ammeter has zero resistance and an ideal voltmeter has infinite resistance.

![Figure P21.3](image1)

4. Figure P21.4 shows three lamps connected to a 120-V AC (rms) household supply voltage. Lamps 1 and 2 have 150-W bulbs; lamp 3 has a 100-W bulb. Find the rms current and the resistance of each bulb.

![Figure P21.4](image2)

5. An audio amplifier, represented by the AC source and the resistor R in Figure P21.5, delivers alternating voltages at audio frequencies to the speaker. If the source puts out an alternating voltage of 15.0 V (rms), the resistance R is 8.20 Ω, and the speaker is equivalent to a resistance of 10.4 Ω, what is the time-averaged power delivered to the speaker?

![Figure P21.5](image3)

6. The output voltage of an AC generator is given by $\Delta v = (170 \text{ V}) \sin (60\pi t)$. The generator is connected across a 20.0-Ω resistor. By inspection, what are the (a) maximum voltage and (b) frequency? Find the (c) rms voltage across the resistor, (d) rms current in the resistor, (e) maximum current in the resistor, and (f) power delivered to the resistor. (g) Should the argument of the sine function be in degrees or radians? Compute the current when $t = 0.005$ s.

SECTION 21.2 CAPACITORS IN AN AC CIRCUIT

7. Show that the SI unit of capacitive reactance X_C is the ohm.

8. What is the maximum current delivered to a circuit containing a 2.20-μF capacitor when it is connected across (a) a North American outlet having $\Delta V_{\text{rms}} = 120$ V and $f = 60.0$ Hz and (b) a European outlet having $\Delta V_{\text{rms}} = 240$ V and $f = 50.0$ Hz?

9. When a 4.0-μF capacitor is connected to a generator whose rms output is 30 V, the current in the circuit is observed to be 0.30 A. What is the frequency of the source?

10. An AC generator with an output rms voltage of 36.0 V at a frequency of 60.0 Hz is connected across a 12.0-μF capacitor. Find the (a) capacitive reactance, (b) rms current, and (c) maximum current in the circuit. (d) Does the capacitor have its maximum charge when the current takes its maximum value? Explain.

11. What must be the capacitance of a capacitor inserted in a 60-Hz circuit in series with a generator of 170-V maximum output voltage to produce an rms current output of 0.75 A?

12. A generator delivers an AC voltage of the form $\Delta v = (98.0 \text{ V}) \sin (80\pi t)$ to a capacitor. The maximum current in the circuit is 0.500 A. Find the (a) rms voltage of the generator, (b) frequency of the generator, (c) rms current, (d) reactance, and (e) value of the capacitance.

SECTION 21.3 INDUCTORS IN AN AC CIRCUIT

13. Show that the inductive reactance X_L has SI units of ohms.

14. An AC generator has an output rms voltage of 78.0 V at a frequency of 80.0 Hz. If the generator is connected across a 25.0-mH inductor, find the (a) inductive reactance, (b) rms voltage across the inductor, (c) maximum current in the circuit.

15. An inductor is connected to an AC power supply having a maximum output voltage of 4.00 V at a frequency of 300.0 Hz. What inductance is needed to keep the rms current less than 2.00 mA?

16. The output voltage of an AC generator is given by $\Delta v = (1.20 \times 10^5 \text{ V}) \sin (30\pi t)$. The generator is connected across a 0.500-H inductor. Find the (a) frequency of the generator, (b) rms voltage across the inductor, (c) inductive reactance, (d) rms current in the inductor, (e) maximum current in the inductor, and (f) average power delivered to the inductor. (g) Find an expression for the instantaneous current. (h) At what time after $t = 0$ does the instantaneous current first reach 1.00 A? (Use the inverse sine function.)

17. Determine the maximum magnetic flux through an inductor connected to a standard outlet ($\Delta V_{\text{rms}} = 120$ V, $f = 60.0$ Hz).

SECTION 21.4 THE RLC SERIES CIRCUIT

18. A sinusoidal voltage $\Delta v = (80.0 \text{ V}) \sin (150t)$ is applied to a series RLC circuit with $L = 80.0 \text{ mH}$, $C = 125.0 \mu\text{F}$, and $R = 40.0 \Omega$. (a) What is the impedance of the circuit? (b) What is the maximum current in the circuit?

19. A 40.0-μF capacitor is connected to a 50.0-Ω resistor and a generator whose rms output is 50.0 V at 60.0 Hz. Find (a) the rms current in the circuit, (b) the rms voltage drop across the resistor, (c) the rms voltage drop across the capacitor, and (d) the phase angle for the circuit.

20. An inductor ($L = 400$ mH), a capacitor ($C = 4.43 \mu\text{F}$), and a resistor ($R = 500 \Omega$) are connected in series. A
20. A 60.0-Hz AC generator connected in series to these elements produces a maximum current of 250 mA in the circuit. (a) Calculate the required maximum voltage \(V_{\text{max}} \). (b) Determine the phase angle by which the current leads or lags the applied voltage.

21. A resistor \((R = 9.00 \times 10^5 \Omega)\), a capacitor \((C = 0.250 \mu F)\), and an inductor \((L = 2.50 \text{ H})\) are connected in series across a 2.40 \(\times 10^5\text{ Hz} \) AC source. Calculate the (a) impedance of the circuit, (b) the maximum current delivered by the source, and (c) the phase angle between the current and voltage. (d) Is the current leading or lagging the voltage?

22. A 50.0-\(\Omega \) resistor, a 0.100-\(\text{H} \) inductor, and a 10.0-\(\mu \text{F} \) capacitor are connected in series to a 60.0-Hz source. The rms current in the circuit is 2.75 A. Find the rms voltages across (a) the resistor, (b) the inductor, (c) the capacitor, and (d) the \(\text{RLC} \) combination. (e) Sketch the phasor diagram for this circuit.

23. A 60.0-\(\Omega \) resistor, a 3.00-\(\mu \text{F} \) capacitor, and a 0.400-\(\text{H} \) inductor are connected in series to a 90.0-V (rms) 60.0-Hz source. Find (a) the voltage drop across the \(\text{LC} \) combination and (b) the voltage drop across the \(\text{RC} \) combination.

24. An AC source operating at 60 Hz with a maximum voltage of 170 V is connected in series with a resistor \((R = 1.2 \text{ k}\Omega)\) and an inductor \((L = 2.8 \text{ H})\). (a) What is the maximum value of the current in the circuit? (b) What are the maximum values of the potential difference across the resistor and the inductor? (c) When the current is at a maximum, what are the magnitudes of the potential differences across the resistor, the inductor, and the AC source? (d) When the current is zero, what are the magnitudes of the potential difference across the resistor, the inductor, and the AC source?

25. A person is working near the secondary of a transformer, as shown in Figure P21.25. The primary voltage is 120 V (rms) at 60 Hz. The capacitance \(C_s \), which is the stray capacitance between the hand and the secondary winding, is 20.0 \(\mu \text{F} \). Assuming the person has a body resistance to ground of \(R_b = 50.0 \text{k}\Omega \), determine the rms voltage across the body. Hint: Redraw the circuit with the secondary of the transformer as a simple AC source.

26. A 60.0-\(\Omega \) resistor is connected in series with a 30.0-\(\mu \text{F} \) capacitor and a generator having a maximum voltage of 1.20 \(\times 10^5\text{ V} \) and operating at 60.0 Hz. Find (a) the capacitive reactance of the circuit, (b) impedance of the circuit, and (c) maximum current in the circuit. (d) Does the voltage lead or lag the current? How will putting an inductor in series with the existing capacitor and resistor affect the current? Explain.

27. A series \(\text{RLC} \) circuit contains the following components: \(R = 1.50 \times 10^5 \Omega, L = 2.50 \times 10^4 \text{ mH}, C = 2.00 \mu \text{F} \), and a generator with \(V_{\text{max}} = 2.10 \times 10^5 \text{ V} \) operating at 50.0 Hz. Calculate the (a) inductive reactance, (b) capacitive reactance, (c) impedance, (d) maximum current, and (e) phase angle between the current and generator voltage. (f) Calculate the individual maximum voltages across the resistor, inductor, and capacitor.

28. Consider the \(\text{RLC} \) circuit in Problem 21.27. When the voltage across the resistor is a maximum, what are the individual voltages across the capacitor and inductor? Explain.

29. An AC source with a maximum voltage of 150 V and \(f = 50.0 \text{ Hz} \) is connected between points \(a \) and \(d \) in Figure P21.29. Calculate the rms voltages between points (a) \(a \) and \(b \), (b) \(b \) and \(c \), (c) \(c \) and \(d \), and (d) \(b \) and \(d \).

30. An AC source operating at 60 Hz with a maximum voltage of 170 V is connected in series with a resistor \((R = 1.2 \text{ k}\Omega)\) and a capacitor \((C = 2.5 \mu \text{F})\). (a) What is the maximum value of the current in the circuit? (b) What are the maximum values of the potential difference across the resistor and the capacitor? (c) When the current is zero, what are the magnitudes of the potential difference across the resistor, the capacitor, and the AC source? How much charge is on the capacitor at this instant? (d) When the current is at a maximum, what are the magnitudes of the potential differences across the resistor, the capacitor, and the AC source? How much charge is on the capacitor at this instant?

31. A milliammeter in an \(\text{RL} \) circuit records an rms current of 0.500 A and a 60.0-Hz rms generator voltage of 104 V. A wattmeter shows that the average power delivered to the resistor is 10.0 W. Determine (a) the impedance in the circuit, (b) the resistance \(R \), and (c) the inductance \(L \).

32. An AC voltage of the form \(V(t) = (90.0 \text{ V}) \sin (350t) \) is applied to a series \(\text{RLC} \) circuit. If \(R = 50.0 \Omega, C = 25.0 \mu \text{F} \), and \(L = 0.200 \text{ H} \), find the (a) impedance of the circuit, (b) rms current in the circuit, and (c) average power delivered to the circuit.

33. Calculate the average power delivered to the circuit described in Problem 21.

34. A series \(\text{RLC} \) circuit has a resistance of 22.0 \(\Omega \) and an impedance of 80.0 \(\Omega \). If the rms voltage applied to the circuit is 160 V, what average power is delivered to the circuit?

35. An inductor and a resistor are connected in series. When connected to a 60-Hz, 90-V (rms) source, the voltage
drop across the resistor is found to be 50 V (rms) and the power delivered to the circuit is 14 W. Find (a) the value of the resistance and (b) the value of the inductance.

36. Consider a series RLC circuit with \(R = 25 \, \Omega \), \(L = 6.0 \, \text{mH} \), and \(C = 25 \, \mu\text{F} \). The circuit is connected to a 10-V (rms), 600-Hz AC source. (a) Is the sum of the voltage drops across \(R \), \(L \), and \(C \) equal to 10 V (rms)? (b) Which is greatest, the power delivered to the resistor, to the capacitor, or to the inductor? (c) Find the average power delivered to the circuit.

SECTION 21.7 THE TRANSFORMER

37. A resonant circuit in a radio receiver is tuned to a station. When the inductor has a value of 3.00 \(\mu\text{H} \) and the capacitor has a value of 2.50 \(\mu\text{F} \). The resistance of the circuit is 12 \(\Omega \). (a) Find the frequency of the radio station. (b) Is there any information given in the problem that is not needed to solve it? Explain.

38. The LC circuit of a radar transmitter oscillates at 9.00 GHz. (a) What inductance will resonate with a 2.00-pF capacitor at this frequency? (b) What is the inductive reactance of the circuit at this frequency?

39. The AM band extends from approximately 500 kHz to 1600 kHz. If a 2.0-\(\mu\text{H} \) inductor is used in a tuning circuit for a radio, what are the extremes that a capacitor must reach to cover the complete band of frequencies?

40. Consider a series RLC circuit with \(R = 15 \, \Omega \), \(L = 200 \, \text{mH} \), \(C = 75 \, \mu\text{F} \), and a maximum voltage of 150 V. (a) What is the impedance of the circuit at resonance? (b) What is the resonance frequency of the circuit? (c) When will the current be greatest: at resonance, at 10\% below the resonant frequency, or at 10\% above the resonant frequency? (d) What is the rms current in the circuit at a frequency of 60 Hz?

41. A 10.0-\(\Omega \) resistor, a 10.0-\(\text{mH} \) inductor, and a 100-\(\mu\text{F} \) capacitor are connected in series to a 50.0-V (rms) source having variable frequency. Find the energy delivered to the circuit during one period if the operating frequency is twice the resonance frequency.

42. A series circuit contains a 3.00-\(\Omega \) inductor, a 3.00-\(\mu\text{F} \) capacitor, and a 30.0-\(\Omega \) resistor connected to a 120-V (rms) source of variable frequency. Find the power delivered to the circuit when the frequency of the source is (a) the resonance frequency, (b) one-half the resonance frequency, (c) one-fourth the resonance frequency, (d) two times the resonance frequency, and (e) four times the resonance frequency. From your calculations, can you draw a conclusion about the frequency at which the maximum power is delivered to the circuit?

SECTION 21.8 THE TRANSFORMER

43. The primary coil of a transformer has \(N_p = 250 \) turns, and its secondary coil has \(N_s = 1 \) 500 turns. If the input voltage across the primary coil is \(\Delta v = (170 \, \text{V}) \sin \omega t \), what rms voltage is developed across the secondary coil?

44. A step-down transformer is used for recharging the batteries of portable devices. The turns ratio \(N_p/N_s \) for a particular transformer used in a CD player is 1:13. When used with 120-V (rms) household service, the transformer draws an rms current of 250 mA. Find the (a) rms output voltage of the transformer and (b) power delivered to the CD player.

45. An AC power generator produces 50 A (rms) at 3 600 V. The voltage is stepped up to 100 000 V by an ideal transformer, and the energy is transmitted through a long-distance power line that has a resistance of 100 \(\Omega \). What percentage of the power delivered by the generator is dissipated as heat in the power line?

46. A transformer is to be used to provide power for a computer disk drive that needs 6.0 V (rms) instead of the 120 V (rms) from the wall outlet. The number of turns in the primary is 400, and it delivers 500 mA (the secondary current) at an output voltage of 6.0 V (rms). (a) Should the transformer have more turns in the secondary compared with the primary, or fewer turns? (b) Find the current in the primary. (c) Find the number of turns in the secondary.

47. A transformer on a pole near a factory steps the voltage down from 3 600 V (rms) to 120 V (rms). The transformer is to deliver 1 000 kW to the factory at 90\% efficiency. Find (a) the power delivered to the primary, (b) the current in the primary, and (c) the current in the secondary.

48. A transmission line that has a resistance per unit length of 4.50 \(\times 10^{-4} \, \Omega/\text{m} \) is to be used to transmit 5.00 MW over 400 miles (6.44 \(\times 10^5 \) m). The output voltage of the generator is 4.50 kV (rms). (a) What is the line loss if a transformer is used to step up the voltage to 500 kV (rms)? (b) What fraction of the input power is lost to the line under these circumstances? (c) What difficulties would be encountered on attempting to transmit the 5.00 MW at the generator voltage of 4.50 kV (rms)?

SECTION 21.10 PRODUCTION OF ELECTROMAGNETIC WAVES BY AN ANTENNA

49. The U.S. Navy has long proposed the construction of extremely low frequency (ELF waves) communications systems; such waves could penetrate the oceans to reach distant submarines. Calculate the length of a quarter-wavelength antenna for a transmitter generating ELF waves of frequency 75 Hz. How practical is this antenna?

50. (a) The distance to Polaris, the North Star, is approximately 6.44 \(\times 10^{18} \) m. If Polaris were to burn out today, how many years would it take to see it disappear? (b) How long does it take sunlight to reach Earth? (c) How long does it take a microwave signal to travel from Earth to the Moon and back? (The distance from Earth to the Moon is 3.84 \(\times 10^8 \) km.)

51. An electromagnetic wave in free space has an electric field of amplitude 330 V/m. Find the amplitude of the corresponding magnetic field.
52. Experimenters at the National Institute of Standards and Technology have made precise measurements of the speed of light using the fact that, in vacuum, the speed of electromagnetic waves is \(c = \frac{1}{\sqrt{\mu_0 \varepsilon_0}} \), where the constants \(\mu_0 = 4\pi \times 10^{-7} \text{ N} \cdot \text{m}^2/\text{A}^2 \) and \(\varepsilon_0 = 8.854 \times 10^{-12} \text{ C}^2/\text{N} \cdot \text{m}^2 \). What value (to four significant figures) does this formula give for the speed of light in vacuum?

53. Oxygenated hemoglobin absorbs weakly in the red (hence its red color) and strongly in the near infrared, whereas deoxygenated hemoglobin has the opposite absorption. This fact is used in a “pulse oximeter” to measure oxygen saturation in arterial blood. The device clips onto the end of a person’s finger and has two light-emitting diodes—a red (660 nm) and an infrared (940 nm)—and a photocell that detects the amount of light transmitted through the finger at each wavelength. (a) Determine the frequency of each of these light sources. (b) If 67% of the energy of the red source is absorbed in the blood, by what factor does the amplitude of the electromagnetic wave change? Hint: The intensity of the wave is equal to the average power per unit area as given by Equation 21.28.

54. Operation of the pulse oximeter (see previous problem). The transmission of light energy as it passes through a solution of light-absorbing molecules is described by the Beer–Lambert law

\[I = I_0 10^{-\varepsilon CL} \text{ or } \log_{10} \left(\frac{I}{I_0} \right) = -\varepsilon CL \]

which gives the decrease in intensity \(I \) in terms of the distance \(L \) the light has traveled through a fluid with a concentration \(C \) of the light-absorbing molecule. The quantity \(\varepsilon \) is called the extinction coefficient, and its value depends on the frequency of the light. (It has units of \(\text{m}^2/\text{mol} \).) Assume the extinction coefficient for 660-nm light passing through a solution of oxygenated hemoglobin is identical to the coefficient for 940-nm light passing through deoxygenated hemoglobin. Also assume 940-nm light has zero absorption (\(\varepsilon = 0 \)) in oxygenated hemoglobin and 660-nm light has zero absorption in deoxygenated hemoglobin. If 33% of the energy of the red source and 76% of the infrared energy is transmitted through the blood, what is the fraction of hemoglobin that is oxygenated?

55. The Sun delivers an average power of 1 340 W/m² to the top of Earth’s atmosphere. Find the magnitudes of \(\mathbf{\vec{E}}_{\text{max}} \) and \(\mathbf{\vec{B}}_{\text{max}} \) for the electromagnetic waves at the top of the atmosphere.

56. A laser beam is used to levitate a metal disk against the force of Earth’s gravity. (a) Derive an equation giving the required intensity of light, \(I \), in terms of the mass \(m \) of the disk, the gravitational acceleration \(g \), the speed of light \(c \), and the cross-sectional area of the disk \(A \). Assume the disk is perfectly reflecting and the beam is directed perpendicular to the disk. (b) If the disk has mass 5.00 g and radius 4.00 cm, find the necessary light intensity. (c) Give two reasons why using light pressure as propulsion near Earth’s surface is impractical.

57. A microwave oven is powered by an electron tube called a magnetron that generates electromagnetic waves of frequency 2.45 GHz. The microwaves enter the oven and are reflected by the walls. The standing-wave pattern produced in the oven can cook food unevenly, with hot spots in the food at antinodes and cool spots at nodes, so a turntable is often used to rotate the food and distribute the energy. If a microwave oven is used with a cooking dish in a fixed position, the antinodes can appear as burn marks on foods such as carrot strips or cheese. The separation distance between the burns is measured to be 6.00 cm. Calculate the speed of the microwaves from these data.

58. Assume the solar radiation incident on Earth is 1 340 W/m² (at the top of Earth’s atmosphere). Calculate the total power radiated by the Sun, taking the average separation between Earth and the Sun to be 1.49 \(\times 10^{11} \) m.

SECTION 21.12 THE SPECTRUM OF ELECTROMAGNETIC WAVES

59. The eye is most sensitive to light of wavelength 5.50 \(\times 10^{-7} \) m, which is in the green–yellow region of the visible electromagnetic spectrum. What is the frequency of this light?

60. A diathermy machine, used in physiotherapy, generates electromagnetic radiation that gives the effect of “deep heat” when absorbed in tissue. One assigned frequency for diathermy is 27.33 MHz. What is the wavelength of this radiation?

61. What are the wavelength ranges in (a) the AM radio band (540–1 600 kHz) and (b) the FM radio band (88–108 MHz)?

62. An important news announcement is transmitted by radio waves to people who are 100 km away, sitting next to their radios, and by sound waves to people sitting across the newsroom, 3.0 m from the newscaster. Who receives the news first? Explain. Take the speed of sound in air to be 343 m/s.

63. Infrared spectra are used by chemists to help identify an unknown substance. Atoms in a molecule that are bound together by a particular bond vibrate at a predictable frequency, and light at that frequency is absorbed strongly by the atom. In the case of the C\(=\)O double bond, for example, the oxygen atom is bound to the carbon by a bond that has an effective spring constant of 2 800 N/m. If we assume the carbon atom remains stationary (it is attached to other atoms in the molecule), determine the resonant frequency of this bond and the wavelength of light that matches that frequency. Verify that this wavelength lies in the infrared region of the spectrum. (The mass of an oxygen atom is 2.66 \(\times 10^{-26} \) kg.)

21.13 THE DOPPLER EFFECT FOR ELECTROMAGNETIC WAVES

64. A spaceship is approaching a space station at a speed of 1.8 \(\times 10^3 \) m/s. The space station has a beacon that emits green light with a frequency of 6.0 \(\times 10^{14} \) Hz. What is the frequency of the beacon observed on the spaceship? What is the change in frequency? (Carry five digits in these calculations.)
65. While driving at a constant speed of 80 km/h, you are passed by a car traveling at 120 km/h. If the frequency of light emitted by the taillights of the car that passes you is 4.3×10^{14} Hz, what frequency will you observe? What is the change in frequency?

66. A speeder tries to explain to the police that the yellow warning lights on the side of the road looked green to her because of the Doppler shift. How fast would she have been traveling if yellow light of wavelength 580 nm had been shifted to green with a wavelength of 560 nm? Note: For speeds less than 0.03c, Equation 21.32 will lead to a value for the change of frequency accurate to approximately two significant digits.

ADDITIONAL PROBLEMS

67. A 50.0-Ω resistor is connected in series with a 15.0-μF capacitor and a 60.0-Hz, 1.20 × 10^2-V (rms) source. Find the (a) impedance of the circuit and (b) rms current in the circuit. (c) What is the value of the inductor that must be inserted in the circuit to reduce the current to one-half that found in part (b)?

68. The intensity of solar radiation at the top of Earth's atmosphere is 1340 W/m². Assuming 60% of the incoming solar energy reaches Earth's surface and assuming you absorb 50% of the incident energy, make an order-of-magnitude estimate of the amount of solar energy you absorb in a 60-minute sunbath.

69. A 290-Ω resistor is connected in series with a 5.0-μF capacitor and a 60-Hz, 120-V rms line. If electrical energy costs $0.080/kWh, how much does it cost to leave this circuit connected for 24 h?

70. A series RLC circuit has a resonance frequency of $2000/\pi$ Hz. When it is operating at a frequency of $\omega > \omega_0$, $X_L = 12 \Omega$ and $X_C = 8.0 \Omega$. Calculate the values of L and C for the circuit.

71. As a way of determining the inductance of a coil used in a research project, a student first connects the coil to a 12.0-V battery and measures a current of 0.630 A. The student then connects the coil to a 24.0-V (rms), 60.0-Hz generator and measures an rms current of 0.570 A. What is the inductance?

72. (a) What capacitance will resonate with a one-turn loop of inductance 400 μH to give a radar wave of wavelength 5.0 cm? (b) If the capacitor has square parallel plates separated by 1.0 mm of air, what should the edge length of the plates be? (c) What is the common reactance of the loop and capacitor at resonance?

73. A dish antenna with a diameter of 20.0 m receives (at normal incidence) a radio signal from a distant source, as shown in Figure P21.73. The radio signal is a continuous sinusoidal wave with amplitude $E_{\text{max}} = 0.20 \mu$V/m. Assume the antenna absorbs all the radiation that falls on the dish. (a) What is the amplitude of the magnetic field in this wave? (b) What is the intensity of the radiation received by the antenna? (c) What is the power received by the antenna?

74. A particular inductor has appreciable resistance. When the inductor is connected to a 12-V battery, the current in the inductor is 3.0 A. When it is connected to an AC source with an rms output of 12 V and a frequency of 60 Hz, the current drops to 2.0 A. What are (a) the impedance at 60 Hz and (b) the inductance of the inductor?

75. One possible means of achieving space flight is to place a perfectly reflecting aluminized sheet into Earth's orbit and to use the light from the Sun to push this solar sail. Suppose such a sail, of area 6.00×10^4 m² and mass 6000 kg, is placed in orbit facing the Sun. (a) What force is exerted on the sail? (b) What is the sail's acceleration? (c) How long does it take this sail to reach the Moon, 3.84 × 10⁸ m away? Ignore all gravitational effects and assume a solar intensity of 1340 W/m². Hint: The radiation pressure by a reflected wave is given by $\frac{2}{3}$ (average power per unit area)/c.

76. 1. **Cc** The U.S. Food and Drug Administration limits the radiation leakage of microwave ovens to no more than 5.0 mW/cm² at a distance of 2.0 in. A typical cell phone, which also transmits microwaves, has a peak output power of about 2.0 W. (a) Approximating the cell phone as a point source, calculate the radiation intensity of a cell phone at a distance of 2.0 in. How does the answer compare with the maximum allowable microwave oven leakage? (b) The distance from your ear to your brain is about 2 in. What would the radiation intensity in your brain be if you used a Bluetooth headset, keeping the phone in your pocket, 1.0 m away from your brain? Most headsets are so-called Class 2 devices with a maximum output power of 2.5 mW.
Light is bent (refracted) as it passes through water, with different wavelengths bending by different amounts, a phenomenon called dispersion. Together with reflection, these physical phenomena lead to the creation of a rainbow when light passes through small, suspended droplets of water.

22.1 The Nature of Light
22.2 Reflection and Refraction
22.3 The Law of Refraction
22.4 Dispersion and Prisms
22.5 The Rainbow
22.6 Huygens’ Principle
22.7 Total Internal Reflection

REFLECTION AND REFRACTION OF LIGHT

Light has a dual nature. In some experiments it acts like a particle, while in others it acts like a wave. In this and the next two chapters, we concentrate on the aspects of light that are best understood through the wave model. First we discuss the reflection of light at the boundary between two media and the refraction (bending) of light as it travels from one medium into another. We use these ideas to study the refraction of light as it passes through lenses and the reflection of light from mirrored surfaces. Finally, we describe how lenses and mirrors can be used to view objects with telescopes and microscopes and how lenses are used in photography. The ability to manipulate light has greatly enhanced our capacity to investigate and understand the nature of the Universe.

22.1 THE NATURE OF LIGHT

Until the beginning of the 19th century, light was modeled as a stream of particles emitted by a source that stimulated the sense of sight on entering the eye. The chief architect of the particle theory of light was Newton. With this theory, he provided simple explanations of some known experimental facts concerning the nature of light, namely, the laws of reflection and refraction.

Most scientists accepted Newton’s particle theory of light. During Newton’s lifetime, however, another theory was proposed. In 1678 Dutch physicist and astronomer Christian Huygens (1629–1695) showed that a wave theory of light could also explain the laws of reflection and refraction.

The wave theory didn’t receive immediate acceptance, for several reasons. First, all the waves known at the time (sound, water, and so on) traveled through some sort of medium, but light from the Sun could travel to Earth through empty space. Further, it was argued that if light were some form of wave, it would bend around obstacles; hence, we should be able to see around corners. It is now known that
light does indeed bend around the edges of objects. This phenomenon, known as diffraction, is difficult to observe because light waves have such short wavelengths. Even though experimental evidence for the diffraction of light was discovered by Francesco Grimaldi (1618–1663) around 1660, for more than a century most scientists rejected the wave theory and adhered to Newton’s particle theory, probably due to Newton’s great reputation as a scientist.

The first clear demonstration of the wave nature of light was provided in 1801 by Thomas Young (1773–1829), who showed that under appropriate conditions, light exhibits interference behavior. Light waves emitted by a single source and traveling along two different paths can arrive at some point and combine and cancel each other by destructive interference. Such behavior couldn’t be explained at that time by a particle model because scientists couldn’t imagine how two or more particles could come together and cancel one another.

The most important development in the theory of light was the work of Maxwell, who predicted in 1865 that light was a form of high-frequency electromagnetic wave (Chapter 21). His theory also predicted that these waves should have a speed of 3×10^8 m/s, in agreement with the measured value.

Although the classical theory of electricity and magnetism explained most known properties of light, some subsequent experiments couldn’t be explained by the assumption that light was a wave. The most striking experiment was the photoelectric effect (which we examine more closely in Chapter 27), discovered by Hertz. Hertz found that clean metal surfaces emit charges when exposed to ultraviolet light.

In 1905, Einstein published a paper that formulated the theory of light quanta (“particles”) and explained the photoelectric effect. He reached the conclusion that light was composed of corpuscles, or discontinuous quanta of energy. These corpuscles or quanta are now called photons to emphasize their particle-like nature. According to Einstein’s theory, the energy of a photon is proportional to the frequency of the electromagnetic wave associated with it, or

$$E = hf$$

where $h = 6.63 \times 10^{-34}$ J⋅s is Planck’s constant. This theory retains some features of both the wave and particle theories of light. As we discuss later, the photoelectric effect is the result of energy transfer from a single photon to an electron in the metal. This means the electron interacts with one photon of light as if the electron had been struck by a particle. Yet the photon has wave-like characteristics, as implied by the fact that a frequency is used in its definition.

In view of these developments, light must be regarded as having a dual nature: in some experiments light acts as a wave and in others it acts as a particle. Classical electromagnetic wave theory provides adequate explanations of light propagation and of the effects of interference, whereas the photoelectric effect and other experiments involving the interaction of light with matter are best explained by assuming light is a particle.

So in the final analysis, is light a wave or a particle? The answer is neither and both: light has a number of physical properties, some associated with waves and others with particles.

22.2 REFLECTION AND REFRACTION

When light traveling in one medium encounters a boundary leading into a second medium, the processes of reflection and refraction can occur. In reflection part of the light encountering the second medium bounces off that medium. In refraction the light passing into the second medium bends through an angle with respect to the normal to the boundary. Often, both processes occur at the same time, with part of the light being reflected and part refracted. To study reflection and refraction we need a way of thinking about beams of light, and this is given by the ray approximation.
The Ray Approximation in Geometric Optics

An important property of light that can be understood based on common experience is the following: light travels in a straight-line path in a homogeneous medium, until it encounters a boundary between two different materials. When light strikes a boundary, it is reflected from that boundary, passes into the material on the other side of the boundary, or partially does both.

The preceding observation leads us to use what is called the ray approximation to represent beams of light. As shown in Figure 22.1, a ray of light is an imaginary line drawn along the direction of travel of the light beam. For example, a beam of sunlight passing through a darkened room traces out the path of a light ray. We also make use of the concept of wave fronts of light. A wave front is a surface passing through the points of a wave that have the same phase and amplitude. For instance, the wave fronts in Figure 22.1 could be surfaces passing through the crests of waves. The rays, corresponding to the direction of wave motion, are straight lines perpendicular to the wave fronts. When light rays travel in parallel paths, the wave fronts are planes perpendicular to the rays.

Reflection of Light

When a light ray traveling in a transparent medium encounters a boundary leading into a second medium, part of the incident ray is reflected back into the first medium. Figure 22.2a shows several rays of a beam of light incident on a smooth, mirror-like reflecting surface. The reflected rays are parallel to one another, as indicated in the figure. The reflection of light from such a smooth surface is called specular reflection. On the other hand, if the reflecting surface is rough, as in Figure 22.2b, the surface reflects the rays in a variety of directions. Reflection from any rough surface is known as diffuse reflection. A surface behaves as a smooth surface as long as its variations are small compared with the wavelength of the incident light. Figures 22.2c and 22.2d are photographs of specular and diffuse reflection of laser light, respectively.

As an example, consider the two types of reflection from a road surface that a driver might observe while driving at night. When the road is dry, light from oncoming vehicles is scattered off the road in different directions (diffuse reflection) and the road is clearly visible. On a rainy night when the road is wet, the road’s irregularities are filled with water. Because the wet surface is smooth, the light undergoes specular reflection. This means that the light is reflected straight ahead, and the driver of a car sees only what is directly in front of him. Light from the side never reaches the driver’s eye. In this book we concern ourselves only with specular reflection, and we use the term reflection to mean specular reflection.
QUICK QUIZ 22.1 Which part of Figure 22.3, (a) or (b), better shows specular reflection of light from the roadway?

Consider a light ray traveling in air and incident at some angle on a flat, smooth surface, as in Active Figure 22.4. The incident and reflected rays make angles \(\theta_i \) and \(\theta_r \), respectively, with a line perpendicular to the surface at the point where the incident ray strikes the surface. We call this line the normal to the surface. Experiments show that the angle of reflection equals the angle of incidence:

\[
\theta'_r = \theta_i \tag{22.2}
\]

You may have noticed a common occurrence in photographs of individuals: their eyes appear to be glowing red. “Red-eye” occurs when a photographic flash device is used and the flash unit is close to the camera lens. Light from the flash unit enters the eye and is reflected back along its original path from the retina. This type of reflection back along the original direction is called retroreflection. If the flash unit and lens are close together, retroreflected light can enter the lens. Most of the light reflected from the retina is red due to the blood vessels at the back of the eye, giving the red-eye effect in the photograph.

APPLICATION

Red Eyes in Flash Photographs

ACTIVE FIGURE 22.4 According to the law of reflection, \(\theta_i = \theta'_r \).

APPLYING PHYSICS 22.1 THE COLORS OF WATER RIPPLES AT SUNSET

An observer on the west-facing beach of a large lake is watching the beginning of a sunset. The water is very smooth except for some areas with small ripples. The observer notices that some areas of the water are blue and some are pink. Why does the water appear to be different colors in different areas?

Explanation The different colors arise from specular and diffuse reflection. The smooth areas of the water will specularly reflect the light from the west, which is the pink light from the sunset. The areas with small ripples will reflect the light diffusely, so light from all parts of the sky will be reflected into the observer’s eyes. Because most of the sky is still blue at the beginning of the sunset, these areas will appear to be blue.

APPLYING PHYSICS 22.2 DOUBLE IMAGES

When standing outside in the sun close to a single pane window looking to the darker interior of a building, why can you often see two images of yourself, one superposed on the other?

Explanation Reflection occurs whenever there is an interface between two different media. For the glass in the window, there are two such surfaces, the window surface facing outdoors and the window surface facing indoors. Each of these interfaces results in an image. You will notice that one image is slightly smaller than the other, because the reflecting surface is farther away.
Remark Notice the heavy reliance on elementary geometry and trigonometry in these reflection problems.

QUESTION 22.1

In general, what is the relationship between the incident angle u_{inc} and the final reflected angle b_{ref} when the angle between the mirrors is 90.0°? (a) $u_{\text{inc}} + b_{\text{ref}} = 90.0^\circ$ (b) $u_{\text{inc}} - b_{\text{ref}} = 90.0^\circ$ (c) $u_{\text{inc}} + b_{\text{ref}} = 180^\circ$

EXERCISE 22.1

Repeat the problem if the angle of incidence is 55° and the second mirror makes an angle of 100° with the first mirror.

Answer 45°

Refraction of Light

When a ray of light traveling through a transparent medium encounters a boundary leading into another transparent medium, as in Active Figure 22.6a, part of the ray is reflected and part enters the second medium. The ray that enters the second medium is bent at the boundary and is said to be refracted. The incident ray, the reflected ray, the refracted ray, and the normal at the point of incidence all lie in the same plane. The angle of refraction, θ_2, in Active Figure 22.6a depends on the properties of the two media and on the angle of incidence, through the relationship

$$\frac{\sin \theta_2}{\sin \theta_1} = \frac{v_2}{v_1} = \text{constant} \tag{22.3}$$

where v_1 is the speed of light in medium 1 and v_2 is the speed of light in medium 2. Note that the angle of refraction is also measured with respect to the normal. In Section 22.7 we derive the laws of reflection and refraction using Huygens' principle.
Experiment shows that the path of a light ray through a refracting surface is reversible. For example, the ray in Active Figure 22.6a travels from point A to point B. If the ray originated at B, it would follow the same path to reach point A, but the reflected ray would be in the glass.

QUICK QUIZ 22.2 If beam 1 is the incoming beam in Active Figure 22.6b, which of the other four beams are due to reflection? Which are due to refraction?

When light moves from a material in which its speed is high to a material in which its speed is lower, the angle of refraction \(\theta_2 \) is less than the angle of incidence. The refracted ray therefore bends toward the normal, as shown in Active Figure 22.7a. If the ray moves from a material in which it travels slowly to a material in which it travels more rapidly, \(\theta_2 \) is greater than \(\theta_1 \), so the ray bends away from the normal, as shown in Active Figure 22.7b.

22.3 THE LAW OF REFRACTION

When light passes from one transparent medium to another, it’s refracted because the speed of light is different in the two media. The index of refraction, \(n \), of a medium is defined as the ratio \(\frac{c}{v} \);

\[
n = \frac{\text{speed of light in vacuum}}{\text{speed of light in a medium}} = \frac{c}{v} \tag{22.4}\]

From this definition, we see that the index of refraction is a dimensionless number that is greater than or equal to 1 because \(v \) is always less than \(c \). Further, \(n \) is equal to one for vacuum. Table 22.1 (page 738) lists the indices of refraction for various substances.

As light travels from one medium to another, its frequency doesn’t change. To see why, consider Figure 22.8. Wave fronts pass an observer at point A in medium

3The speed of light varies between media because the time lags caused by the absorption and reemission of light as it travels from atom to atom depend on the particular electronic structure of the atoms constituting each material.
1 with a certain frequency and are incident on the boundary between medium 1 and medium 2. The frequency at which the wave fronts pass an observer at point B in medium 2 must equal the frequency at which they arrive at point A. If not, the wave fronts would either pile up at the boundary or be destroyed or created at the boundary. Because neither of these events occurs, the frequency must remain the same as a light ray passes from one medium into another.

Therefore, because the relation \(v_1 / n_1 \) must be valid in both media and because \(f_1 / n_1 = f_2 / n_2 \), we see that \(v_1 / n_1 = v_2 / n_2 \) and \(v_1 / n_1 = f_1 / n_1 = f_2 / n_2 \).

Because \(v_1 \neq v_2 \), it follows that \(\lambda_2 < \lambda_1 \). A relationship between the index of refraction and the wavelength can be obtained by dividing these two equations and making use of the definition of the index of refraction given by Equation 22.4:

\[
\frac{\lambda_1}{\lambda_2} = \frac{v_1}{v_2} = \frac{c}{n_1} = \frac{n_2}{n_1}
\]

which gives

\[
\lambda_1 n_1 = \lambda_2 n_2 \tag{22.6}
\]

Let medium 1 be the vacuum so that \(n_1 = 1 \). It follows from Equation 22.6 that the index of refraction of any medium can be expressed as the ratio

\[
n = \frac{\lambda_0}{\lambda_n} \tag{22.7}
\]

where \(\lambda_0 \) is the wavelength of light in vacuum and \(\lambda_n \) is the wavelength in the medium having index of refraction \(n \). Figure 22.9 is a schematic representation of this reduction in wavelength when light passes from a vacuum into a transparent medium.

We are now in a position to express Equation 22.3 in an alternate form. If we substitute Equation 22.5 into Equation 22.3, we get

\[
n_1 \sin \theta_1 = n_2 \sin \theta_2 \tag{22.8}
\]

The experimental discovery of this relationship is usually credited to Willebrord Snell (1591–1626) and is therefore known as Snell’s law of refraction.

TIP 22.1 An Inverse Relationship

The index of refraction is inversely proportional to the wave speed. Therefore, as the wave speed \(v \) decreases, the index of refraction, \(n \), increases.

TIP 22.2 The Frequency Remains the Same

The frequency of a wave does not change as the wave passes from one medium to another. Both the wave speed and the wavelength do change, but the frequency remains the same.

TABLE 22.1 Indices of Refraction for Various Substances, Measured with Light of Vacuum Wavelength \(\lambda_0 = 589 \text{ nm} \)

<table>
<thead>
<tr>
<th>Substance</th>
<th>Index of Refraction</th>
<th>Substance</th>
<th>Index of Refraction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Solids at 20°C</td>
<td></td>
<td>Liquids at 20°C</td>
<td></td>
</tr>
<tr>
<td>Diamond (C)</td>
<td>2.419</td>
<td>Benzene</td>
<td>1.501</td>
</tr>
<tr>
<td>Fluorite (CaF₂)</td>
<td>1.434</td>
<td>Carbon disulfide</td>
<td>1.628</td>
</tr>
<tr>
<td>Fused quartz (SiO₂)</td>
<td>1.458</td>
<td>Carbon tetrachloride</td>
<td>1.461</td>
</tr>
<tr>
<td>Glass, crown</td>
<td>1.52</td>
<td>Ethyl alcohol</td>
<td>1.361</td>
</tr>
<tr>
<td>Glass, flint</td>
<td>1.66</td>
<td>Glycerine</td>
<td>1.473</td>
</tr>
<tr>
<td>Ice (H₂O) (at 0°C)</td>
<td>1.309</td>
<td>Water</td>
<td>1.333</td>
</tr>
<tr>
<td>Polystyrene</td>
<td>1.49</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sodium chloride (NaCl)</td>
<td>1.544</td>
<td>Gases at 0°C, 1 atm</td>
<td></td>
</tr>
<tr>
<td>Zircon</td>
<td>1.923</td>
<td>Air</td>
<td>1.000 293</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Carbon dioxide</td>
<td>1.000 45</td>
</tr>
</tbody>
</table>

Figure 22.9 A schematic diagram of the reduction in wavelength when light travels from a medium with a low index of refraction to one with a higher index of refraction.
QUICK QUIZ 22.4 As light travels from a vacuum \((n = 1)\) to a medium such as glass \((n > 1)\), which of the following properties remains the same, the (a) wavelength, (b) wave speed, or (c) frequency?

EXAMPLE 22.2 Angle of Refraction for Glass

Goal Apply Snell’s law to a slab of glass.

Problem A light ray of wavelength 589 nm (produced by a sodium lamp) traveling through air is incident on a smooth, flat slab of crown glass at an angle of 30.0° to the normal, as sketched in Figure 22.11. Find the angle of refraction, \(\theta_2\).

Strategy Substitute quantities into Snell’s law and solve for the unknown angle of refraction, \(\theta_2\).

Solution Solve Snell’s law (Eq. 22.8) for \(\sin \theta_2\):

\[
\sin \theta_2 = \frac{n_1}{n_2} \sin \theta_1
\]

From Table 22.1, find \(n_1 = 1.00\) for air and \(n_2 = 1.52\) for crown glass. Substitute these values into Equation (1) and take the inverse sine of both sides:

\[
\sin \theta_2 = \frac{1.00}{1.52} \sin 30.0° = 0.329
\]

\[
\theta_2 = \sin^{-1}(0.329) = 19.2°
\]

Remarks Notice that the light ray bends toward the normal when it enters a material of a higher index of refraction. If the ray left the material following the same path in reverse, it would bend away from the normal.

QUESTION 22.2 If the glass is replaced by a transparent material with smaller index of refraction, will the refraction angle \(\theta_2\) be (a) smaller, (b) larger, or (c) unchanged?

EXERCISE 22.2 If the light ray moves from inside the glass toward the glass–air interface at an angle of 30.0° to the normal, determine the angle of refraction.

Answer The ray bends 49.5° away from the normal, as expected.

EXAMPLE 22.3 Light in Fused Quartz

Goal Use the index of refraction to determine the effect of a medium on light’s speed and wavelength.

Problem Light of wavelength 589 nm in vacuum passes through a piece of fused quartz of index of refraction \(n = 1.458\). (a) Find the speed of light in fused quartz. (b) What is the wavelength of this light in fused quartz? (c) What is the frequency of the light in fused quartz?
Strategy Substitute values into Equations 22.4 and 22.7.

Solution

(a) Find the speed of light in fused quartz.

Obtain the speed from Equation 22.4:

\[v = \frac{c}{n} = \frac{3.00 \times 10^8 \text{ m/s}}{1.458} = 2.06 \times 10^8 \text{ m/s} \]

(b) What is the wavelength of this light in fused quartz?

Use Eq. 22.7 to calculate the wavelength:

\[\lambda = \frac{\lambda_0}{n} = \frac{589 \text{ nm}}{1.458} = 404 \text{ nm} \]

(c) What is the frequency of the light in fused quartz?

The frequency in quartz is the same as in vacuum. Solve \(c = f\lambda \) for the frequency:

\[f = \frac{c}{\lambda} = \frac{3.00 \times 10^8 \text{ m/s}}{589 \times 10^{-9} \text{ m}} = 5.09 \times 10^{14} \text{ Hz} \]

Remarks

It’s interesting to note that the speed of light in vacuum, \(3.00 \times 10^8 \text{ m/s} \), is an upper limit for the speed of material objects. In our treatment of relativity in Chapter 26, we will find that this upper limit is consistent with experimental observations. However, it’s possible for a particle moving in a medium to have a speed that exceeds the speed of light in that medium. For example, it’s theoretically possible for a particle to travel through fused quartz at a speed greater than \(2.06 \times 10^8 \text{ m/s} \), but it must still have a speed less than \(3.00 \times 10^8 \text{ m/s} \).

QUESTION 22.3

True or False: If light with wavelength \(\lambda \) in glass passes into water with index \(n_w \), the new wavelength of the light is \(\lambda / n_w \).

EXERCISE 22.3

Light with wavelength 589 nm passes through crystalline sodium chloride. In this medium, find (a) the speed of light, (b) the wavelength, and (c) the frequency of the light.

Answer

(a) \(1.94 \times 10^8 \text{ m/s} \)
(b) 381 nm
(c) \(5.09 \times 10^{14} \text{ Hz} \)

EXAMPLE 22.4 Light Passing Through a Slab

Goal Apply Snell’s law when a ray passes into and out of another medium.

Problem A light beam traveling through a transparent medium of index of refraction \(n_1 \) passes through a thick transparent slab with parallel faces and index of refraction \(n_2 \) (Fig. 22.12). Show that the emerging beam is parallel to the incident beam.

Strategy Apply Snell’s law twice, once at the upper surface and once at the lower surface. The two equations will be related because the angle of refraction at the upper surface equals the angle of incidence at the lower surface. The ray passing through the slab makes equal angles with the normal at the entry and exit points. This procedure will enable us to compare angles \(\theta_1 \) and \(\theta_2 \).

Solution

Apply Snell’s law to the upper surface:

\[\sin \theta_2 = \frac{n_1}{n_2} \sin \theta_1 \]

Apply Snell’s law to the lower surface:

\[\sin \theta_3 = \frac{n_2}{n_1} \sin \theta_2 \]

Substitute Equation (1) into Equation (2):

\[\sin \theta_3 = \frac{n_2}{n_1} \left(\frac{n_1}{n_2} \sin \theta_1 \right) = \sin \theta_1 \]

FIGURE 22.12 (Example 22.4)

When light passes through a flat slab of material, the emerging beam is parallel to the incident beam; therefore, \(\theta_3 = \theta_1 \).
Remarks The preceding result proves that the slab doesn’t alter the direction of the beam. It does, however, produce a lateral displacement of the beam, as shown in Figure 22.12.

QUESTION 22.4
Suppose an additional slab with index \(n_3 \) were placed below the slab of glass. Would the exit angle at the bottom surface of this second slab still equal the incident angle at the upper surface of the first slab? (a) yes (b) no (c) depends on the media

EXERCISE 22.4
Suppose the ray, in air with \(n = 1.00 \), enters a slab with \(n = 2.50 \) at a 45.0° angle with respect to the normal, then exits the bottom of the slab into water, with \(n = 1.33 \). At what angle to the normal does the ray leave the slab?

Answer 32.1°

EXAMPLE 22.5 Refraction of Laser Light in a Digital Videodisc (DVD)

Goal Apply Snell’s law together with geometric constraints.

Problem A DVD is a video recording consisting of a spiral track about 1.0 \(\mu \text{m} \) wide with digital information. (See Fig. 22.13a.) The digital information consists of a series of pits that are “read” by a laser beam sharply focused on a track in the information layer. If the width \(a \) of the beam at the information layer must equal 1.0 \(\mu \text{m} \) to distinguish individual tracks and the width \(w \) of the beam as it enters the plastic is 0.700 \(\mu \text{m} \), find the angle \(\theta_1 \) at which the conical beam should enter the plastic. (See Fig. 22.13b.) Assume the plastic has a thickness \(t = 1.20 \text{ mm} \) and an index of refraction \(n = 1.55 \). Note that this system is relatively immune to small dust particles degrading the video quality because particles would have to be as large as 0.700 \(\text{mm} \) to obscure the beam at the point where it enters the plastic.

Strategy Use right-triangle trigonometry to determine the angle \(\theta_2 \) and then apply Snell’s law to obtain the angle \(\theta_1 \).

Solution From the top and bottom of Figure 22.13b, obtain an equation relating \(w, b, \) and \(a \):

\[w = 2b + a \]

Solve this equation for \(b \) and substitute given values:

\[b = \frac{w - a}{2} = \frac{700.0 \times 10^{-6} \text{ m} - 1.0 \times 10^{-6} \text{ m}}{2} = 349.5 \mu\text{m} \]

Now use the tangent function to find \(\theta_2 \):

\[\tan \theta_2 = \frac{b}{t} = \frac{349.5 \mu\text{m}}{1.20 \times 10^{-3} \mu\text{m}} \rightarrow \theta_2 = 16.2° \]
Finally, use Snell’s law to find θ_1:

$$n_1 \sin \theta_1 = n_2 \sin \theta_2$$

$$\sin \theta_1 = \frac{n_2 \sin \theta_2}{n_1} = \frac{1.55 \sin 16.2^\circ}{1.00} = 0.433$$

$$\theta_1 = \sin^{-1}(0.433) = 25.7^\circ$$

Remark Despite its apparent complexity, the problem isn’t that different from Example 22.2.

QUESTION 22.5

Suppose the plastic were replaced by a material with a higher index of refraction. How would the width of the beam at the information layer be affected? (a) It would remain the same. (b) It would decrease. (c) It would increase.

EXERCISE 22.5

Suppose you wish to redesign the system to decrease the initial width of the beam from 0.700 mm to 0.600 mm but leave the incident angle θ_1 and all other parameters the same as before, except the index of refraction for the plastic material (n_2) and the angle θ_2. What index of refraction should the plastic have?

Answer 1.79

22.4 DISPERSION AND PRISMS

In Table 22.1 we presented values for the index of refraction of various materials. If we make careful measurements, however, we find that the index of refraction in anything but vacuum depends on the wavelength of light. The dependence of the index of refraction on wavelength is called **dispersion**. Figure 22.14 is a graphical representation of this variation in the index of refraction with wavelength.

Because n is a function of wavelength, Snell’s law indicates that the angle of refraction made when light enters a material depends on the wavelength of the light. As seen in the figure, the index of refraction for a material usually decreases with increasing wavelength. This means that violet light ($\lambda \approx 400$ nm) refracts more than red light ($\lambda \approx 650$ nm) when passing from air into a material.

To understand the effects of dispersion on light, consider what happens when light strikes a prism, as in Figure 22.15a. A ray of light of a single wavelength that is incident on the prism from the left emerges bent away from its original direction of travel by an angle δ, called the **angle of deviation**. Now suppose a beam of white light (a combination of all visible wavelengths) is incident on a prism. Because of dispersion, the different colors refract through different angles of deviation and...
the rays that emerge from the second face of the prism spread out in a series of colors known as a visible spectrum, as shown in Figure 22.16. These colors, in order of decreasing wavelength, are red, orange, yellow, green, blue, and violet. Violet light deviates the most, red light the least, and the remaining colors in the visible spectrum fall between these extremes.

Prisms are often used in an instrument known as a prism spectrometer, the essential elements of which are shown in Figure 22.17a. This instrument is commonly used to study the wavelengths emitted by a light source, such as a sodium vapor lamp. Light from the source is sent through a narrow, adjustable slit and lens to produce a parallel, or collimated, beam. The light then passes through the prism and is dispersed into a spectrum. The refracted light is observed through a telescope. The experimenter sees different colored images of the slit through the eyepiece of the telescope. The telescope can be moved or the prism can be rotated to view the various wavelengths, which have different angles of deviation. Figure 22.17b shows one type of prism spectrometer used in undergraduate laboratories.

All hot, low-pressure gases emit their own characteristic spectra, so one use of a prism spectrometer is to identify gases. For example, sodium emits only two wavelengths in the visible spectrum: two closely spaced yellow lines. (The bright line-like images of the slit seen in a spectroscope are called spectral lines.) A gas emitting these, and only these, colors can be identified as sodium. Likewise, mercury vapor has its own characteristic spectrum, consisting of four prominent wavelengths—orange, green, blue, and violet lines—along with some wavelengths of lower intensity. The particular wavelengths emitted by a gas serve as “fingerprints” of that gas. Spectral analysis, which is the measurement of the wavelengths emitted or

APPLICATION

Identifying Gases with a Spectrometer
absorbed by a substance, is a powerful general tool in many scientific areas. As examples, chemists and biologists use infrared spectroscopy to identify molecules, astronomers use visible-light spectroscopy to identify elements on distant stars, and geologists use spectral analysis to identify minerals.

APPLYING PHYSICS 22.3 DISPERSION

When a beam of light enters a glass prism, which has nonparallel sides, the rainbow of color exiting the prism is a testimonial to the dispersion occurring in the glass. Suppose a beam of light enters a slab of material with parallel sides. When the beam exits the other side, traveling in the same direction as the original beam, is there any evidence of dispersion?

Explanation Due to dispersion, light at the violet end of the spectrum exhibits a larger angle of refraction on entering the glass than light at the red end. All colors of light return to their original direction of propagation as they refract back out into the air. As a result, the outgoing beam is white. The net shift in the position of the violet light along the edge of the slab is larger than the shift of the red light, however, so one edge of the outgoing beam has a bluish tinge to it (it appears blue rather than violet because the eye is not very sensitive to violet light), whereas the other edge has a reddish tinge. This effect is indicated in Figure 22.18. The colored edges of the outgoing beam of white light are evidence of dispersion.

EXAMPLE 22.6 Light Through a Prism

Goal Calculate the consequences of dispersion

Problem A beam of light is incident on a prism of a certain glass at an angle of \(\theta_1 = 30.0^\circ \), as shown in Figure 22.19. If the index of refraction of the glass for violet light is 1.80, find (a) \(\theta_2 \), the angle of refraction at the air–glass interface, (b) \(\phi_2 \), the angle of incidence at the glass–air interface, and (c) \(\phi_1 \), the angle of refraction when the violet light exits the prism. (d) What is the value of \(\Delta y \), the amount by which the violet light is displaced vertically?

Strategy This problem requires Snell’s law to find the refraction angles and some elementary geometry and trigonometry based on Figure 22.19.

Solution

(a) Find \(\theta_2 \), the angle of refraction at the air–glass interface.

Use Snell’s law to find the first angle of refraction:

\[
n_1 \sin \theta_1 = \sin \theta_2 \rightarrow (1.00) \sin 30.0 = (1.80) \sin \theta_2
\]

\[
\theta_2 = \sin^{-1} \left(\frac{0.500}{1.80} \right) = 16.1^\circ
\]
(b) Find ϕ_2, the angle of incidence at the glass–air interface.

Compute the angle β:

\[\beta = 30.0^\circ - \theta_2 = 30.0^\circ - 16.1^\circ = 13.9^\circ \]

Compute the angle α using the fact that the sum of the interior angles of a triangle equals 180°:

\[180^\circ = 13.9^\circ + 90^\circ + \alpha \rightarrow \alpha = 76.1^\circ \]

The incident angle ϕ_2 at the glass–air interface is complementary to α:

\[\phi_2 = 90^\circ - \alpha = 90^\circ - 76.1^\circ = 13.9^\circ \]

(c) Find ϕ_1, the angle of refraction when the violet light exits the prism.

Apply Snell’s law:

\[\phi_1 = \left(\frac{1}{n_1} \right) \sin^{-1} (n_2 \sin \phi_2) \]

\[= \left(\frac{1}{1.00} \right) \sin^{-1} [(1.80) \sin 13.9^\circ] = 25.6^\circ \]

(d) What is the value of Δy, the amount by which the violet light is displaced vertically?

Use the tangent function to find the vertical displacement:

\[\tan \beta = \Delta y / \Delta x \rightarrow \Delta y = \Delta x \tan \beta \]

\[\Delta y = (6.00 \text{ cm}) \tan (13.9^\circ) = 1.48 \text{ cm} \]

Remarks The same calculation for red light is left as an exercise. The violet light is bent more and displaced farther down the face of the prism. Notice that a theorem in geometry about parallel lines and the angles created by a transverse line give immediately, which would have saved some calculation. In general, however, this tactic might not be available.

QUESTION 22.6

On passing through the prism, will yellow light bend through a larger angle or smaller angle than the violet light?

(a) Yellow light bends through a larger angle. (b) Yellow light bends through a smaller angle. (c) The angles are the same.

EXERCISE 22.6

Repeat parts (a) through (d) of the example for red light passing through the prism, given that the index of refraction for red light is 1.72.

Answers (a) 16.9° (b) 13.1° (c) 22.9° (d) 1.40 cm

22.5 THE RAINBOW

The dispersion of light into a spectrum is demonstrated most vividly in nature through the formation of a rainbow, often seen by an observer positioned between the Sun and a rain shower. To understand how a rainbow is formed, consider Active Figure 22.20. A ray of light passing overhead strikes a drop of water in the atmosphere and is refracted and reflected as follows: It is first refracted at the front surface of the drop, with the violet light deviating the most and the red light the least. At the back surface of the drop, the light is reflected and returns to the front surface, where it again undergoes refraction as it moves from water into air. The rays leave the drop so that the angle between the incident white light and the returning violet ray is 40° and the angle between the white light and the returning red ray is 42°. This small angular difference between the returning rays causes us to see the bow as explained in the next paragraph.

Now consider an observer viewing a rainbow, as in Figure 22.21a (page 746). If a raindrop high in the sky is being observed, the red light returning from the drop can reach the observer because it is deviated the most, but the violet light passes

ACTIVE FIGURE 22.20

Refraction of sunlight by a spherical raindrop.
over the observer because it is deviated the least. Hence, the observer sees this drop as being red. Similarly, a drop lower in the sky would direct violet light toward the observer and appear to be violet. (The red light from this drop would strike the ground and not be seen.) The remaining colors of the spectrum would reach the observer from raindrops lying between these two extreme positions. Figure 22.21b shows a beautiful rainbow and a secondary rainbow with its colors reversed.

22.6 HUYGENS’ PRINCIPLE

The laws of reflection and refraction can be deduced using a geometric method proposed by Huygens in 1678. Huygens assumed light is a form of wave motion rather than a stream of particles. He had no knowledge of the nature of light or of its electromagnetic character. Nevertheless, his simplified wave model is adequate for understanding many practical aspects of the propagation of light.

Huygens’ principle is a geometric construction for determining at some instant the position of a new wave front from knowledge of the wave front that preceded it. (A wave front is a surface passing through those points of a wave which have the same phase and amplitude. For instance, a wave front could be a surface passing through the crests of waves.) In Huygens’ construction, all points on a given wave front are taken as point sources for the production of spherical secondary waves, called wavelets, that propagate in the forward direction with speeds characteristic of waves in that medium. After some time has elapsed, the new position of the wave front is the surface tangent to the wavelets.

Figure 22.22 illustrates two simple examples of Huygens’ construction. First, consider a plane wave moving through free space, as in Figure 22.22a. At \(t = 0 \), the wave front is indicated by the plane labeled \(AA' \). In Huygens’ construction, each point on this wave front is considered a point source. For clarity, only a few points on \(AA' \) are shown. With these points as sources for the wavelets, we draw circles of radius \(c \Delta t \), where \(c \) is the speed of light in vacuum and \(\Delta t \) is the period of propagation from one wave front to the next. The surface drawn tangent to these wavelets is the plane \(BB' \), which is parallel to \(AA' \). In a similar manner, Figure 22.22b shows Huygens’ construction for an outgoing spherical wave.
Huygens’ Principle Applied to Reflection and Refraction

The laws of reflection and refraction were stated earlier in the chapter without proof. We now derive these laws using Huygens’ principle. Figure 22.23a illustrates the law of reflection. The line AA' represents a wave front of the incident light. As ray 3 travels from A' to C, ray 1 reflects from A and produces a spherical wavelet of radius AD. (Recall that the radius of a Huygens wavelet is $v\Delta t$.) Because the two wavelets having radii AC and AD are in the same medium, they have the same speed v, so $AD = AC$. Meanwhile, the spherical wavelet centered at B has spread only half as far as the one centered at A because ray 2 strikes the surface later than ray 1.

From Huygens’ principle, we find that the reflected wave front is CD, a line tangent to all the outgoing spherical wavelets. The remainder of our analysis depends on geometry, as summarized in Figure 22.23b. Note that the right triangles ADC and $AA'C$ are congruent because they have the same hypotenuse, AC, and because $AD = AC$. From the figure, we have

$$\sin \theta_1 = \frac{A'C}{AC} \quad \text{and} \quad \sin \theta_1' = \frac{AD}{AC}$$

The right-hand sides are equal, so $\sin \theta = \sin \theta_1'$, and it follows that $\theta_1 = \theta_1'$, which is the law of reflection.

Huygens’ principle and Figure 22.24a can be used to derive Snell’s law of refraction. In the time interval Δt, ray 1 moves from A to B and ray 2 moves from A' to C. The radius of the outgoing spherical wavelet centered at A is equal to $v_1 \Delta t$. The distance $A'C$ is equal to $v_1 \Delta t$. Geometric considerations show that angle $A'AC$ equals θ_1, and angle ACB equals θ_2. From triangles $AA'C$ and ACB, we find that

$$\sin \theta_1 = \frac{v_1 \Delta t}{AC} \quad \text{and} \quad \sin \theta_2 = \frac{v_2 \Delta t}{AC}$$
If we divide the first equation by the second, we get
\[
\frac{\sin \theta_1}{\sin \theta_2} = \frac{v_1}{v_2}
\]
From Equation 22.4, though, we know that \(v_1 = c/n_1\) and \(v_2 = c/n_2\). Therefore,
\[
\frac{\sin \theta_1}{\sin \theta_2} = \frac{c/n_1}{c/n_2} = \frac{n_2}{n_1}
\]
and it follows that
\[
n_1 \sin \theta_1 = n_2 \sin \theta_2
\]
which is the law of refraction.

A mechanical analog of refraction is shown in Figure 22.24b. When the left end of the rolling barrel reaches the grass, it slows down, while the right end remains on the concrete and moves at its original speed. This difference in speeds causes the barrel to pivot, changing the direction of its motion.

22.7 TOTAL INTERNAL REFLECTION

An interesting effect called total internal reflection can occur when light encounters the boundary between a medium with a higher index of refraction and one with a lower index of refraction. Consider a light beam traveling in medium 1 and meeting the boundary between medium 1 and medium 2, where \(n_1\) is greater than \(n_2\) (Active Fig. 22.25). Possible directions of the beam are indicated by rays 1 through 5. Note that the refracted rays are bent away from the normal because \(n_1\) is greater than \(n_2\). At some particular angle of incidence \(\theta_c\), called the critical angle, the refracted light ray moves parallel to the boundary so that \(\theta_2 = 90^\circ\) (Active Fig. 22.25b). For angles of incidence greater than \(\theta_c\), the beam is entirely reflected at the boundary, as is ray 5 in Active Figure 22.25a. This ray is reflected as though it had struck a perfectly reflecting surface. It and all rays like it obey the law of reflection: the angle of incidence equals the angle of reflection.

We can use Snell’s law to find the critical angle. When \(\theta_1 = \theta_c\) and \(\theta_2 = 90^\circ\), Snell’s law (Eq. 22.8) gives
\[
n_1 \sin \theta_c = n_2 \sin 90^\circ = n_2
\]
\[
\sin \theta_c = \frac{n_2}{n_1} \quad \text{for } n_1 > n_2
\]
Equation 22.9 can be used only when \(n_1\) is greater than \(n_2\) because total internal reflection occurs only when light attempts to move from a medium of higher index of refraction to a medium of lower index of refraction. If \(n_1\) were less than \(n_2\), Equation 22.9 would give \(\sin \theta_c > 1\), which is an absurd result because the sine of an angle can never be greater than 1.
When medium 2 is air, the critical angle is small for substances with large indices of refraction, such as diamond, where \(n = 2.42 \) and \(\theta_c = 24.0^\circ \). By comparison, for crown glass, \(n = 1.52 \) and \(\theta_c = 41.0^\circ \). This property, combined with proper faceting, causes a diamond to sparkle brilliantly.

A prism and the phenomenon of total internal reflection can alter the direction of travel of a light beam. Figure 22.26 illustrates two such possibilities. In one case the light beam is deflected by 90.0° (Fig. 22.26a), and in the second case the path of the beam is reversed (Fig. 22.26b). A common application of total internal reflection is a submarine periscope. In this device two prisms are arranged as in Figure 22.26c so that an incident beam of light follows the path shown and the user can “see around corners.”

APPLICATION

Submarine Periscopes

A beam of white light is incident on the curved edge of a semicircular piece of glass, as shown in Figure 22.27. The light enters the curved surface along the normal, so it shows no refraction. It encounters the straight side of the glass at the center of curvature of the curved side and refracts into the air. The incoming beam is moved clockwise (so that the angle \(\theta \) increases) such that the beam always enters along the normal to the curved side and encounters the straight side at the center of curvature of the curved side. Why does the refracted beam become redder as it approaches a direction parallel to the straight side?

Explanation When the outgoing beam approaches the direction parallel to the straight side, the incident angle is approaching the critical angle for total internal reflection. Dispersion occurs as the light passes out of the glass. The index of refraction for light at the violet end of the visible spectrum is larger than at the red end. As a result, as the outgoing beam approaches the straight side, the violet light undergoes total internal reflection, followed by the other colors. The red light is the last to undergo total internal reflection, so just before the outgoing light disappears, it’s composed of light from the red end of the visible spectrum.

EXAMPLE 22.7 A View from the Fish’s Eye

Goal Apply the concept of total internal reflection.

(a) Find the critical angle for a water-air boundary.

(b) Use the result of part (a) to predict what a fish will see (Fig. 22.28) if it looks up toward the water surface at angles of 40.0°, 48.6°, and 60.0°.
Strategy After finding the critical angle by substitution, use that the path of a light ray is reversible: at a given angle, wherever a light beam can go is also where a light beam can come from, along the same path.

Solution

(a) Find the critical angle for a water–air boundary.

Substitute into Equation 22.9 to find the critical angle:

\[
\sin \theta_c = \frac{n_2}{n_1} = \frac{1.00}{1.333} = 0.750
\]

\[
\theta_c = \sin^{-1}(0.750) = 48.6^\circ
\]

(b) Predict what a fish will see if it looks up toward the water surface at angles of 40.0°, 48.6°, and 60.0°.

At an angle of 40.0°, a beam of light from underwater will be refracted at the surface and enter the air above. Because the path of a light ray is reversible (Snell’s law works both going and coming), light from above can follow the same path and be perceived by the fish. At an angle of 48.6°, the critical angle for water, light from underwater is bent so that it travels along the surface. So light following the same path in reverse can reach the fish only by skimming along the water surface before being refracted toward the fish’s eye. At angles greater than the critical angle of 48.6°, a beam of light shot toward the surface will be completely reflected down toward the bottom of the pool. Reversing the path, the fish sees a reflection of some object on the bottom.

QUESTION 22.7

If the water is replaced by a transparent fluid with a higher index of refraction, is the critical angle of the fluid–air boundary (a) larger, (b) smaller, or (c) the same as for water?

EXERCISE 22.7

Suppose a layer of oil with \(n = 1.50 \) coats the surface of the water. What is the critical angle for total internal reflection for light traveling in the oil layer and encountering the oil–water boundary?

Answer 62.7°

Fiber Optics

Another interesting application of total internal reflection is the use of solid glass or transparent plastic rods to “pipe” light from one place to another. As indicated in Figure 22.29, light is confined to traveling within the rods, even around gentle curves, as a result of successive internal reflections. Such a light pipe can be quite flexible if thin fibers are used rather than thick rods. If a bundle of parallel fibers is used to construct an optical transmission line, images can be transferred from one point to another.

Very little light intensity is lost in these fibers as a result of reflections on the sides. Any loss of intensity is due essentially to reflections from the two ends and absorption by the fiber material. Fiber-optic devices are particularly useful for viewing images produced at inaccessible locations. Physicians often use fiber-optic cables to aid in the diagnosis and correction of certain medical problems without the intrusion of major surgery. For example, a fiber-optic cable can be threaded through the esophagus and into the stomach to look for ulcers. In this application the cable consists of two fiber-optic lines: one to transmit a beam of light into the stomach for illumination and the other to allow the light to be transmitted out of the stomach. The resulting image can, in some cases, be viewed directly by the physician, but more often is displayed on a television monitor or saved in digital form. In a similar way, fiber-optic cables can be used to examine the colon or to help physicians perform surgery without the need for large incisions.

The field of fiber optics has revolutionized the entire communications industry. Billions of kilometers of optical fiber have been installed in the United States to carry high-speed Internet traffic, radio and television signals, and telephone calls. The fibers can carry much higher volumes of telephone calls and other forms of communication than electrical wires because of the higher frequency of the infra-
red light used to carry the information on optical fibers. Optical fibers are also preferable to copper wires because they are insulators and don’t pick up stray electric and magnetic fields or electronic “noise.”

APPLYING PHYSICS 22.5 DESIGN OF AN OPTICAL FIBER

An optical fiber consists of a transparent core surrounded by cladding, which is a material with a lower index of refraction than the core (Fig. 22.30). A cone of angles, called the acceptance cone, is at the entrance to the fiber. Incoming light at angles within this cone will be transmitted through the fiber, whereas light entering the core from angles outside the cone will not be transmitted. The figure shows a light ray entering the fiber just within the acceptance cone and undergoing total internal reflection at the interface between the core and the cladding. If it is technologically difficult to produce light so that it enters the fiber from a small range of angles, how could you adjust the indices of refraction of the core and cladding to increase the size of the acceptance cone? Would you design the indices to be farther apart or closer together?

Explanation The acceptance cone would become larger if the critical angle (θ_c in the figure) could be made smaller. This adjustment can be done by making the index of refraction of the cladding material smaller so that the indices of refraction of the core and cladding material would be farther apart.

SUMMARY

22.1 The Nature of Light
Light has a dual nature. In some experiments it acts like a wave, in others like a particle, called a photon by Einstein. The energy of a photon is proportional to its frequency,

$$E = hf$$ \[22.1\]

where $h = 6.63 \times 10^{-34}$ J \cdot s is Planck’s constant.

22.2 Reflection and Refraction
In the reflection of light off a flat, smooth surface, the angle of incidence, θ_i, with respect to a line perpendicular to the surface is equal to the angle of reflection, θ'_i:

$$\theta'_i = \theta_i$$ \[22.2\]

Light that passes into a transparent medium is bent at the boundary and is said to be refracted. The angle of refraction is the angle the ray makes with respect to a line perpendicular to the surface after it has entered the new medium.

22.3 The Law of Refraction
The index of refraction of a material, n, is defined as

$$n = \frac{c}{v}$$ \[22.4\]
where \(v \) is the speed of light in a vacuum and \(v' \) is the speed of light in the material. The index of refraction of a material is also

\[
n = \frac{\lambda_0}{\lambda_n} \quad [22.7]
\]

where \(\lambda_0 \) is the wavelength of the light in vacuum and \(\lambda_n \) is its wavelength in the material.

The law of refraction, or Snell’s law, states that

\[
n_1 \sin \theta_1 = n_2 \sin \theta_2 \quad [22.8]
\]

where \(n_1 \) and \(n_2 \) are the indices of refraction in the two media. The incident ray, the reflected ray, the refracted ray, and the normal to the surface all lie in the same plane.

22.4 Dispersion and Prisms

22.5 The Rainbow

The index of refraction of a material depends on the wavelength of the incident light, an effect called dispersion. Light at the violet end of the spectrum exhibits a larger angle of refraction on entering glass than light at the red end. Rainbows are a consequence of dispersion.

22.6 Huygens’ Principle

Huygens’ principle states that all points on a wave front are point sources for the production of spherical secondary waves called wavelets. These wavelets propagate forward at a speed characteristic of waves in a particular medium. After some time has elapsed, the new position of the wave front is the surface tangent to the wavelets. This principle can be used to deduce the laws of reflection and refraction.

22.7 Total Internal Reflection

Total internal reflection can occur when light, traveling in a medium with higher index of refraction, is incident on the boundary of a material with a lower index of refraction. The maximum angle of incidence \(\theta_r \) for which light can move from a medium with index \(n_1 \) into a medium with index \(n_2 \) where \(n_1 > n_2 \) is called the critical angle and is given by

\[
\sin \theta_r = \frac{n_2}{n_1} \quad [22.9]
\]

Total internal reflection is used in the optical fibers that carry data at high speed around the world.

MULTIPLE-CHOICE QUESTIONS

1. How many 800-nm photons does it take to have the same total energy as four 200-nm photons? (a) 1 (b) 2 (c) 4 (d) 8 (e) 16

2. Carbon disulfide \((n = 1.63) \) is poured into a container made of crown glass \((n = 1.52) \). What is the critical angle for internal reflection of a ray in the liquid when it is incident on the liquid-to-glass surface? (a) 89° (b) 69° (c) 21° (d) 4.0° (e) 33°

3. A monochromatic light source emits a wavelength of 495 nm in air. When passing through a liquid, the wavelength reduces to 434 nm. What is the liquid’s index of refraction? (a) 1.26 (b) 1.49 (c) 1.33 (d) 2.03

4. What happens to a light wave when it travels from air into glass? (a) Its speed remains the same. (b) Its speed increases. (c) Its wavelength increases. (d) Its speed decreases. (e) Its frequency remains the same.

5. The index of refraction for water is about 4/3. What happens to light when it travels from air into water? (a) Its speed increases to 4c/3, and its frequency decreases. (b) Its speed decreases to 3c/4, and its wavelength decreases by a factor of 3/4. (c) Its speed decreases to 3c/4, and its wavelength increases by a factor of 4/3. (d) Its speed and frequency remain the same. (e) Its speed decreases to 3c/4, and its frequency increases.

6. Light can travel from air into water or from water into air, with some possible paths as shown in Figure MCQ22.6. Which path will the light most likely follow? (a) A (b) B (c) C (d) D (e) E

7. Light traveling in a medium of index of refraction \(n_1 \) is incident on another medium having an index of refraction \(n_2 \). Under which of the following conditions can total reflection occur at the interface of the two media? (a) \(n_2 > n_1 \) (b) \(n_1 > n_2 \) (c) Light travels slower in the second medium than in the first. (d) The angle of incidence is less than the critical angle. (e) The angle of incidence must equal the refraction angle.

8. A light ray containing both blue and red wavelengths is incident at an angle on a slab of glass. Which of the sketches in Figure MCQ22.8 represents the most likely outcome? (a) A (b) B (c) C (d) D (e) none of these

FIGURE MCQ22.6

FIGURE MCQ22.8
9. Which color light is bent the most when entering crown glass from air at some positive angle \(\theta \) with respect to the normal? (a) violet (b) blue (c) green (d) yellow (e) red

10. A light ray travels from vacuum into a slab of material with index of refraction \(n_1 \) with incident angle \(\theta \). It subsequently passes into a second slab of material with index of refraction \(n_2 \) before passing back into vacuum again. The surfaces of the different materials are all parallel to one another. As the light exits the second slab, what can be said of the final angle \(\phi \) that the light makes with the normal? (a) \(\phi > \theta \) (b) \(\phi < \theta \) (c) \(\phi = \theta \) (d) \(\phi \) depends on the magnitudes of \(n_1 \) and \(n_2 \). (e) \(\phi \) depends on the wavelengths of the light.

CONCEPTUAL QUESTIONS

1. A ray of light is moving from a material having a high index of refraction into a material with a lower index of refraction. (a) Is the ray bent toward the normal or away from it? (b) If the wavelength is 600 nm in the material with the high index of refraction, is it greater, smaller, or the same in the material with the lower index of refraction? (c) How does the frequency change as the light moves between the two materials? Does it increase, decrease, or remain the same?

2. Why does the arc of a rainbow appear with red on top and violet on the bottom?

3. A scientific supply catalog advertises a material having an index of refraction of 0.85. Is that a good product to buy? Why or why not?

4. Under what conditions is a mirage formed? On a hot day, what are we seeing when we observe a mirage of a water puddle on the road?

5. In dispersive materials, the angle of refraction for a light ray depends on the wavelength of the light. Does the angle of reflection from the surface of the material depend on the wavelength? Why or why not?

6. A type of mirage called a *pingo* is often observed in Alaska. Pings occur when the light from a small hill passes to an observer by a path that takes the light over a body of water warmer than the air. What is seen is the hill and an inverted image directly below it. Explain how these mirages are formed.

7. Explain why a diamond loses most of its sparkle when submerged in carbon disulfide.

8. Suppose you are told that only two colors of light (X and Y) are sent through a glass prism and that X is bent more than Y. Which color travels more slowly in the prism?

9. The level of water in a clear, colorless glass can easily be observed with the naked eye. The level of liquid helium in a clear glass vessel is extremely difficult to see with the naked eye. Explain. *Hint*: The index of refraction of liquid helium is close to that of air.

10. Is it possible to have total internal reflection for light incident from air on water? Explain.

11. Why does a diamond show flashes of color when observed under white light?

12. Explain why an oar partially submerged in water appears to be bent.

13. Why do astronomers looking at distant galaxies talk about looking backward in time?

PROBLEMS

The Problems for this chapter may be assigned online at WebAssign.

1. During the Apollo XI Moon landing, a retroreflecting panel was erected on the Moon’s surface. The speed of light can be found by measuring the time it takes a laser beam to travel from Earth, reflect from the panel, and return to Earth. If this interval is found to be 2.51 s, what is the measured speed of light? Take the center-to-center distance from Earth to the Moon to be \(3.84 \times 10^5 \) m. Assume the Moon is directly overhead and do not neglect the sizes of Earth and the Moon.

2. (a) What is the energy in joules of an x-ray photon with wavelength \(1.00 \times 10^{-10} \) m? (b) Convert the energy to electron volts. (c) If more penetrating x-rays are desired, should the wavelength be increased or decreased? (d) Should the frequency be increased or decreased?

3. Find the energy of (a) a photon having a frequency of \(5.00 \times 10^{14} \) Hz and (b) a photon having a wavelength of \(3.00 \times 10^{-7} \) nm. Express your answers in units of electron volts, noting that 1 eV = \(1.60 \times 10^{-19} \) J.

4. (a) Calculate the wavelength of light in vacuum that has a frequency of \(5.45 \times 10^{14} \) Hz. (b) What is its wavelength in benzene? (c) Calculate the energy of one photon of such light in vacuum. Express the answer in electron volts. (d) Does the energy of the photon change when it enters the benzene? Explain.

5. Find the speed of light in (a) water, (b) crown glass, and (c) diamond.
6. (a) Find a symbolic expression for the wavelength λ of a photon in terms of its energy E, Planck’s constant h, and the speed of light c. (b) What does the equation say about the wavelengths of higher-energy photons?

7. A ray of light travels from air into another medium, making an angle of 45° with the normal as in Figure P22.7. Find the angle of refraction θ_2 if the second medium is (a) quartz, (b) carbon disulfide, and (c) water.

SECTION 22.2 REFLECTION AND REFRACTION

SECTION 22.3 THE LAW OF REFRACTION

8. The two mirrors in Figure P22.8 meet at a right angle. The beam of light in the vertical plane P strikes mirror 1 as shown. (a) Determine the distance the reflected light beam travels before striking mirror 2. (b) In what direction does the light beam travel after being reflected from mirror 2?

9. An underwater scuba diver sees the Sun at an apparent angle of 45.0° from the vertical. What is the actual direction of the Sun?

10. A beam of light traveling in air strikes the surface of mineral oil at an angle of 23.1° with the normal to the surface. If the light travels at 2.17×10^8 m/s in the oil, what are the (a) index of refraction of mineral oil and (b) angle of refraction?

11. A laser beam is incident at an angle of 30.0° to the vertical onto a solution of corn syrup in water. If the beam is refracted to 19.24° to the vertical, (a) what is the index of refraction of the syrup solution? Suppose the light is red, with wavelength 632.8 nm in a vacuum. Find its (b) wavelength, (c) frequency, and (d) speed in the solution.

12. Light containing wavelengths of 400 nm, 500 nm, and 650 nm is incident from air on a block of crown glass at an angle of 25.0°. (a) Are all colors refracted alike, or is one color bent more than the others? (b) Calculate the angle of refraction in each case to verify your answer.

13. A ray of light is incident on the surface of a block of clear ice at an angle of 40.0° with the normal. Part of the light is reflected, and part is refracted. Find the angle between the reflected and refracted light.

14. A laser beam with vacuum wavelength 632.8 nm is incident from air onto a block of Lucite, as shown in Active Figure 22.6b. The line of sight of the photograph is perpendicular to the plane in which the light moves. Find the (a) speed, (b) frequency, and (c) wavelength of the light in the Lucite. Suggestion: Use a protractor.

15. The light emitted by a helium–neon laser has a wavelength of 632.8 nm in air. As the light travels from air into zircon, find its (a) speed, (b) wavelength, and (c) frequency, all in the zircon.

16. A flashlight on the bottom of a 4.00-m-deep swimming pool sends a ray upward and at an angle so that the ray strikes the surface of the water 2.00 m from the point directly above the flashlight. What angle (in air) does the emerging ray make with the water’s surface?

17. How many times will the incident beam shown in Figure P22.17 be reflected by each of the parallel mirrors?
Determine the angles θ and θ'. (The refractive index for linseed oil is 1.48.)

20. A laser beam is incident on a 45°–45°–90° prism perpendicular to one of its faces, as shown in Figure P22.20. The transmitted beam that exits the hypotenuse of the prism makes an angle of 15° with the direction of the incident beam. Find the index of refraction of the prism.

21. Two light pulses are emitted simultaneously from a source. The pulses take parallel paths to a detector 6.20 km away, but one moves through air and the other through a block of ice. Determine the difference in the pulses’ times of arrival at the detector.

22. A narrow beam of ultrasonic waves reflects off the liver tumor in Figure P22.22. If the speed of the wave is 10.0% less in the liver than in the surrounding medium, determine the depth of the tumor.

23. A person looking into an empty container is able to see the far edge of the container’s bottom, as shown in Figure P22.23a. The height of the container is h, and its width is d. When the container is completely filled with a fluid of index of refraction n, the person can see a coin at the middle of the container’s bottom, as shown in Figure P22.23b. (a) Show that the ratio h/d is given by

$$\frac{h}{d} = \sqrt{\frac{n^2 - 1}{4 - n^2}}$$

(b) Assuming the container has a width of 8.0 cm and is filled with water, use the expression above to find the height of the container.

24. A submarine is 3.00×10^2 m horizontally from shore and 1.00×10^2 m beneath the surface of the water. A laser beam is sent from the submarine so that the beam strikes the surface of the water 2.10×10^2 m from the shore. A building stands on the shore, and the laser beam hits a target at the top of the building. The goal is to find the height of the target above sea level. (a) Draw a diagram of the situation, identifying the two triangles that are important to finding the solution. (b) Find the angle of incidence of the beam striking the water–air interface. (c) Find the angle of refraction. (d) What angle does the refracted beam make with respect to the horizontal? (e) Find the height of the target above sea level.

25. A beam of light both reflects and refracts at the surface between air and glass, as shown in Figure P22.25. If the index of refraction of the glass is n_g, find the angle of incidence, θ_i, in the air that would result in the reflected ray and the refracted ray being perpendicular to each other. Hint: Remember the identity $\sin (90° - \theta) = \cos \theta$.

26. A cylindrical cistern, constructed below ground level, is 3.0 m in diameter and 2.0 m deep and is filled to the brim with a liquid whose index of refraction is 1.5. A small object rests on the bottom of the cistern at its center. How far from the edge of the cistern can a girl whose eyes are 1.2 m from the ground stand and still see the object?

27. An opaque cylindrical tank with an open top has a diameter of 3.00 m and is completely filled with water. When the afternoon Sun reaches an angle of 28.0° above the horizon, sunlight ceases to illuminate the bottom of the tank. How deep is the tank?

SECTION 22.4 DISPERSION AND PRISMS

28. A certain kind of glass has an index of refraction of 1.650 for blue light of wavelength 430 nm and an index of 1.615 for red light of wavelength 680 nm. If a beam containing these two colors is incident at an angle of 30.00° on a piece of this glass, what is the angle between the two beams inside the glass?

29. The index of refraction for red light in water is 1.331 and that for blue light is 1.340. If a ray of white light enters the water at an angle of incidence of 83.00°, what are the underwater angles of refraction for the blue and red components of the light?

30. The index of refraction for crown glass is 1.512 at a wavelength of 660 nm (red), whereas its index of refraction is 1.530 at a wavelength of 410 nm (violet). If both wavelengths are incident on a slab of crown glass at the same angle of incidence, 60.0°, what is the angle of refraction for each wavelength?

31. A light beam containing red and violet wavelengths is incident on a slab of quartz at an angle of incidence of 50.00°. The index of refraction of quartz is 1.455 at 660 nm (red light), and its index of refraction is 1.468 at 410 nm (violet light). Find the dispersion of the slab, which is defined as the difference in the angles of refraction for the two wavelengths.
32. The index of refraction for violet light in silica flint glass is 1.66 and that for red light is 1.62. What is the angular dispersion of visible light passing through an equilateral prism of apex angle 60.0° if the angle of incidence is 50.0°? (See Fig. P22.32.)

33. A ray of light strikes the midpoint of one face of an equiangular (60°–60°–60°) glass prism (n = 1.5) at an angle of incidence of 30°. (a) Trace the path of the light ray through the glass and find the angles of incidence and refraction at each surface. (b) If a small fraction of light is also reflected at each surface, what are the angles of reflection at the surfaces?

SECTION 22.7 TOTAL INTERNAL REFLECTION

34. For light of wavelength 589 nm, calculate the critical angles for the following substances when surrounded by air: (a) fused quartz, (b) polystyrene, and (c) sodium chloride.

35. Repeat Problem 34, but this time assume the quartz, polystyrene, and sodium chloride are surrounded by water.

36. A beam of light is incident from air on the surface of a liquid. If the angle of incidence is 30.0° and the angle of refraction is 22.0°, find the critical angle for the liquid when surrounded by air.

37. A plastic light pipe has an index of refraction of 1.53. For total internal reflection, what is the minimum angle of incidence if the pipe is in (a) air and (b) water?

38. Determine the maximum angle θ for which the light rays incident on the end of the light pipe in Figure P22.38 are subject to total internal reflection along the walls of the pipe. Assume the light pipe has an index of refraction of 1.36 and the outside medium is air.

39. A light ray is incident normally to the long face (the hypotenuse) of a 45°–45°–90° prism surrounded by air, as shown in Figure 22.26b. Calculate the minimum index of refraction of the prism for which the ray will totally internally reflect at each of the two sides making the right angle.

40. A beam of laser light with wavelength 612 nm is directed through a slab of glass having index of refraction 1.78. (a) For what minimum incident angle would a ray of light undergo total internal reflection? (b) If a layer of water is placed over the glass, what is the minimum angle of incidence on the glass–water interface that will result in total internal reflection at the water–air interface? (c) Does the thickness of the water layer or glass affect the result? (d) Does the index of refraction of the intervening layer affect the result?

41. A room contains air in which the speed of sound is 343 m/s. The walls of the room are made of concrete, in which the speed of sound is 1850 m/s. (a) Find the critical angle for total internal reflection of sound at the concrete–air boundary. (b) In which medium must the sound be traveling in order to undergo total internal reflection? (c) “A bare concrete wall is a highly efficient mirror for sound.” Give evidence for or against this statement.

42. Three adjacent faces (that all share a corner) of a plastic cube of index of refraction n are painted black. A clear spot at the painted corner serves as a source of diverging rays when light comes through it. Show that a ray from this corner to the center of a clear face is totally reflected if n ≥ 3.

43. The light beam in Figure P22.43 strikes surface 2 at the critical angle. Determine the angle of incidence, θ1.

44. A jewel thief hides a diamond by placing it on the bottom of a public swimming pool. He places a circular raft on the surface of the water directly above and centered over the diamond, as shown in Figure P22.44. If the surface of the water is calm and the pool is 2.00 m deep, find the minimum diameter of the raft that would prevent the diamond from being seen.

ADDITIONAL PROBLEMS

45. A layer of ice having parallel sides floats on water. If light is incident on the upper surface of the ice at an angle of incidence of 30.0°, what is the angle of refraction in the water?

46. A ray of light is incident at an angle 30.0° on a plane slab of flint glass surrounded by water. (a) Find the refrac-
47. A ray of light is incident on a flat surface of a block of crown glass that is surrounded by water. The angle of refraction is 19.6°. Find the angle of reflection.

48. A light ray of wavelength 589 nm is incident at an angle θ on the top surface of a block of polystyrene surrounded by air, as shown in Figure P22.48. (a) Find the maximum value of θ for which the refracted ray will undergo total internal reflection at the left vertical face of the block. (b) Repeat the calculation for the case in which the polystyrene block is immersed in water. (c) What happens if the block is immersed in carbon disulfide?

49. As shown in Figure P22.49, a light ray is incident normal to one face of a 30°–60°–90° block of dense flint glass (a prism) that is immersed in water. (a) Determine the exit angle θ_4 of the ray. (b) A substance is dissolved in the water to increase the index of refraction. At what value of n_2 does total internal reflection cease at point P?

50. A narrow beam of light is incident from air onto a glass surface with index of refraction 1.56. Find the angle of incidence for which the corresponding angle of refraction is one-half the angle of incidence. Hint: You might want to use the trigonometric identity $\sin 2\theta = 2 \sin \theta \cos \theta$.

51. One technique for measuring the angle of a prism is shown in Figure P22.51. A parallel beam of light is directed onto the apex of the prism so that the beam reflects from opposite faces of the prism. Show that the angular separation of the two reflected beams is given by $B = 2A$.

52. An optical fiber with index of refraction n and diameter d is surrounded by air. Light is sent into the fiber along its axis, as shown in Figure P22.52. (a) Find the smallest outside radius R permitted for a bend in the fiber if no light is to escape. (b) Does the result for part (a) predict reasonable behavior as d approaches zero? As n increases? As n approaches unity? (c) Evaluate R, assuming the diameter of the fiber is 100 μm and its index of refraction is 1.40.

53. A piece of wire is bent through an angle θ. The bent wire is partially submerged in benzene (index of refraction $n = 1.50$) so that, to a person looking along the dry part, the wire appears to be straight and makes an angle of 30.0° with the horizontal. Determine the value of θ.

54. A light ray traveling in air is incident on one face of a right-angle prism with index of refraction $n = 1.50$, as shown in Figure P22.54, and the ray follows the path shown in the figure. Assuming $\theta = 60.0°$ and the base of the prism is mirrored, determine the angle ϕ made by the outgoing ray with the normal to the right face of the prism.

55. A transparent cylinder of radius $R = 2.00$ m has a mirrored surface on its right half, as shown in Figure P22.55. A light ray traveling in air is incident on the left side of the cylinder. The incident light ray and the exiting light ray are parallel, and $d = 2.00$ m. Determine the index of refraction of the material.

56. A laser beam strikes one end of a slab of material, as in Figure P22.56. The index of refraction of the slab is 1.48.
Determine the number of internal reflections of the beam before it emerges from the opposite end of the slab.

57. A light ray enters a rectangular block of plastic at an angle $\theta_1 = 45.0^\circ$ and emerges at an angle $\theta_2 = 76.0^\circ$, as shown in Figure P22.57. (a) Determine the index of refraction of the plastic. (b) If the light ray enters the plastic at a point $L = 50.0$ cm from the bottom edge, how long does it take the light ray to travel through the plastic?

59. Figure P22.59 shows the path of a beam of light through several layers with different indices of refraction. (a) If $\theta_1 = 30.0^\circ$, what is the angle θ_2 of the emerging beam? (b) What must the incident angle θ_1 be to have total internal reflection at the surface between the medium with $n = 1.20$ and the medium with $n = 1.00$?

60. Three sheets of plastic have unknown indices of refraction. Sheet 1 is placed on top of sheet 2, and a laser beam is directed onto the sheets from above so that it strikes the interface at an angle of 26.5° with the normal. The refracted beam in sheet 2 makes an angle of 31.7° with the normal. The experiment is repeated with sheet 3 on top of sheet 2, and with the same angle of incidence, the refracted beam makes an angle of 36.7° with the normal. If the experiment is repeated again with sheet 1 on top of sheet 3, what is the expected angle of refraction in sheet 3? Assume the same angle of incidence.

Table

<table>
<thead>
<tr>
<th>Angle of Incidence (degrees)</th>
<th>Angle of Refraction (degrees)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.0</td>
<td>7.5</td>
</tr>
<tr>
<td>20.0</td>
<td>15.1</td>
</tr>
<tr>
<td>30.0</td>
<td>22.3</td>
</tr>
<tr>
<td>40.0</td>
<td>28.7</td>
</tr>
<tr>
<td>50.0</td>
<td>35.2</td>
</tr>
<tr>
<td>60.0</td>
<td>40.3</td>
</tr>
<tr>
<td>70.0</td>
<td>45.3</td>
</tr>
<tr>
<td>80.0</td>
<td>47.7</td>
</tr>
</tbody>
</table>
MIRRORS AND LENSES

The development of the technology of mirrors and lenses led to a revolution in the progress of science. These devices, relatively simple to construct from cheap materials, led to microscopes and telescopes, extending human sight and opening up new pathways to knowledge, from microbes to distant planets.

This chapter covers the formation of images when plane and spherical light waves fall on plane and spherical surfaces. Images can be formed by reflection from mirrors or by refraction through lenses. In our study of mirrors and lenses, we continue to assume light travels in straight lines (the ray approximation), ignoring diffraction.

23.1 FLAT MIRRORS

We begin by examining the flat mirror. Consider a point source of light placed at \(O \) in Figure 23.1, a distance \(p \) in front of a flat mirror. The distance \(p \) is called the object distance. Light rays leave the source and are reflected from the mirror. After reflection, the rays diverge (spread apart), but they appear to the viewer to come from a point \(I \) behind the mirror. Point \(I \) is called the image of the object at \(O \). Regardless of the system under study, images are formed at the point where rays of light actually intersect or where they appear to originate. Because the rays in the figure appear to originate at \(I \), which is a distance \(q \) behind the mirror, that is the location of the image. The distance \(q \) is called the image distance.

Images are classified as real or virtual. In the formation of a real image, light actually passes through the image point. For a virtual image, light doesn’t pass through the image point, but appears to come (diverge) from there. The image formed by the flat mirror in Figure 23.1 is a virtual image. In fact, the images seen in flat mirrors are always virtual (for real objects). Real images can be displayed on a screen (as at a movie), but virtual images cannot.

We examine some of the properties of the images formed by flat mirrors by using the simple geometric techniques. To find out where an image is formed, it’s
necessary to follow at least two rays of light as they reflect from the mirror as in Active Figure 23.2. One of those rays starts at \(P \), follows the horizontal path \(PQ \) to the mirror, and reflects back on itself. The second ray follows the oblique path \(PR \) and reflects as shown. An observer to the left of the mirror would trace the two reflected rays back to the point from which they appear to have originated: point \(P' \). A continuation of this process for points other than \(P \) on the object would result in a virtual image (drawn as a yellow arrow) to the right of the mirror. Because triangles \(PQR \) and \(P'QR \) are identical, \(\frac{PQ}{h} = \frac{P'Q}{h'} \). Hence, we conclude that the image formed by an object placed in front of a flat mirror is as far behind the mirror as the object is in front of the mirror. Geometry also shows that the object height \(h \) equals the image height \(h' \). The lateral magnification \(M \) is defined as

\[
M = \frac{\text{image height}}{\text{object height}} = \frac{h'}{h} \tag{23.1}
\]

Equation 23.1 is a general definition of the lateral magnification of any type of mirror. For a flat mirror, \(M = 1 \) because \(h' = h \).

In summary, the image formed by a flat mirror has the following properties:

1. The image is as far behind the mirror as the object is in front.
2. The image is unmagnified, virtual, and upright. (By upright, we mean that if the object arrow points upward, as in Active Figure 23.2, so does the image arrow. The opposite of an upright image is an inverted image.)

Finally, note that a flat mirror produces an image having an apparent left–right reversal. You can see this reversal standing in front of a mirror and raising your right hand. Your image in the mirror raises the left hand. Likewise, your hair appears to be parted on the opposite side, and a mole on your right cheek appears to be on your image’s left cheek.

QUICK QUIZ 23.1 In the overhead view of Figure 23.3, the image of the stone seen by observer 1 is at \(C \). Where does observer 2 see the image: at \(A \), at \(B \), at \(C \), at \(D \), at \(E \), or not at all?

EXAMPLE 23.1 “Mirror, Mirror, on the Wall”

Goal Apply the properties of a flat mirror.

Problem A man 1.80 m tall stands in front of a mirror and sees his full height, no more and no less. If his eyes are 0.14 m from the top of his head, what is the minimum height of the mirror?
Remarks The mirror must be exactly equal to half the height of the man for him to see only his full height and nothing more or less. Notice that the answer doesn’t depend on his distance from the mirror.

QUESTION 23.1
Would a taller man be able to see his full height in the same mirror?

EXERCISE 23.1
How large should the mirror be if he wants to see only the upper third of his body?

Answer 0.30 m

Strategy Figure 23.4 shows two rays of light, one from the man’s feet and the other from the top of his head, reflecting off the mirror and entering his eye. The ray from his feet just strikes the bottom of the mirror, so if the mirror were longer, it would be too long, and if shorter, the ray would not be reflected. The angle of incidence and the angle of reflection are equal, labeled θ. This means the two triangles, ABD and DBC, are identical because they are right triangles with a common side (DB) and two identical angles θ. Use this key fact and the small isosceles triangle FEC to solve the problem.

Solution
We need to find BE, which equals d. Relate this length to lengths on the man’s body:

We need the lengths DC and CF. Set the sum of sides opposite the identical angles θ equal to AC:

$AD = DC$, so substitute into Equation (2) and solve for DC.

CF is given as 0.14 m. Substitute this value and DC into Equation (1):

$BE = d = DC + \frac{1}{2}CF = 0.83 \text{ m} + \frac{1}{2}(0.14 \text{ m}) = 0.90 \text{ m}$

Remarks The mirror must be exactly equal to half the height of the man for him to see only his full height and nothing more or less. Notice that the answer doesn’t depend on his distance from the mirror.

APPLICATION
Day and Night Settings for Rearview Mirrors

Most rearview mirrors in cars have a day setting and a night setting. The night setting greatly diminishes the intensity of the image so that lights from trailing cars will not blind the driver. To understand how such a mirror works, consider Figure 23.5. The mirror is a wedge of glass with a reflecting metallic coating on the back side. When the mirror is in the day setting, as in Figure 23.5a, light from an object behind the car strikes the mirror at point 1. Most of the light enters the reflecting side of the mirror, which is silvered.

APPLICATION
Day and Night Settings for Rearview Mirrors

Most rearview mirrors in cars have a day setting and a night setting. The night setting greatly diminishes the intensity of the image so that lights from trailing cars will not blind the driver. To understand how such a mirror works, consider Figure 23.5. The mirror is a wedge of glass with a reflecting metallic coating on the back side. When the mirror is in the day setting, as in Figure 23.5a, light from an object behind the car strikes the mirror at point 1. Most of the light enters the reflecting side of the mirror, which is silvered.

APPLICATION
Day and Night Settings for Rearview Mirrors

Most rearview mirrors in cars have a day setting and a night setting. The night setting greatly diminishes the intensity of the image so that lights from trailing cars will not blind the driver. To understand how such a mirror works, consider Figure 23.5. The mirror is a wedge of glass with a reflecting metallic coating on the back side. When the mirror is in the day setting, as in Figure 23.5a, light from an object behind the car strikes the mirror at point 1. Most of the light enters the reflecting side of the mirror, which is silvered.

APPLICATION
Day and Night Settings for Rearview Mirrors

Most rearview mirrors in cars have a day setting and a night setting. The night setting greatly diminishes the intensity of the image so that lights from trailing cars will not blind the driver. To understand how such a mirror works, consider Figure 23.5. The mirror is a wedge of glass with a reflecting metallic coating on the back side. When the mirror is in the day setting, as in Figure 23.5a, light from an object behind the car strikes the mirror at point 1. Most of the light enters the reflecting side of the mirror, which is silvered.
wedge is refracted, and reflects from the back of the mirror to return to the front surface, where it is refracted again as it reenters the air as ray \(B \) (for bright). In addition, a small portion of the light is reflected at the front surface, as indicated by ray \(D \) (for dim). This dim reflected light is responsible for the image observed when the mirror is in the night setting, as in Figure 23.5b. Now the wedge is rotated so that the path followed by the bright light (ray \(B \)) doesn’t lead to the eye. Instead, the dim light reflected from the front surface travels to the eye, and the brightness of trailing headlights doesn’t become a hazard.

APPLYING PHYSICS 23.1 ILLUSIONIST’S TRICK

The professor in the box shown in Figure 23.6 appears to be balancing himself on a few fingers with both of his feet elevated from the floor. He can maintain this position for a long time, and appears to defy gravity. How do you suppose this illusion was created?

Explanation This trick is an example of an optical illusion, used by magicians, that makes use of a mirror. The box the professor is standing in is a cubic open frame that contains a flat, vertical mirror through a diagonal plane. The professor straddles the mirror so that one leg is in front of the mirror and the other leg is behind it, out of view. When he raises his front leg, that leg’s reflection rises also, making it appear both his feet are off the ground, creating the illusion that he’s floating in the air. In fact, he supports himself with the leg behind the mirror, which remains in contact with the ground.

23.2 IMAGES FORMED BY CONCAVE MIRRORS

A **spherical mirror**, as its name implies, has the shape of a segment of a sphere. Figure 23.7 shows a spherical mirror with a silvered inner, concave surface; this type of mirror is called a **concave mirror**. The mirror has radius of curvature \(R \), and its center of curvature is at point \(C \). Point \(V \) is the center of the spherical segment, and a line drawn from \(C \) to \(V \) is called the **principal axis** of the mirror.

Now consider a point source of light placed at point \(O \) in Figure 23.7b, on the principal axis and outside point \(C \). Several diverging rays originating at \(O \) are shown. After reflecting from the mirror, these rays converge to meet at \(I \), called the **image point**. The rays then continue and diverge from \(I \) as if there were an object there. As a result, a real image is formed. **Whenever reflected light actually passes through a point, the image formed there is real.**

We often assume all rays that diverge from the object make small angles with the principal axis. All such rays reflect through the same image point, as in Figure 23.7b.
Rays that make a large angle with the principal axis, as in Figure 23.8, converge to other points on the principal axis, producing a blurred image. This effect, called **spherical aberration**, is present to some extent with any spherical mirror and will be discussed in Section 23.7.

We can use the geometry shown in Figure 23.9 to calculate the image distance \(q \) from the object distance \(p \) and radius of curvature \(R \). By convention, these distances are measured from point \(V \). The figure shows two rays of light leaving the tip of the object. One ray passes through the center of curvature, \(C \), of the mirror, hitting the mirror head-on (perpendicular to the mirror surface) and reflecting back on itself. The second ray strikes the mirror at point \(V \) and reflects as shown, obeying the law of reflection. The image of the tip of the arrow is at the point where the two rays intersect. From the largest triangle in Figure 23.9, we see that \(\tan \theta = h/p \); the light-blue triangle gives \(\tan \theta = -h/q \). The negative sign has been introduced to satisfy our convention that \(h' \) is negative when the image is inverted with respect to the object, as it is here. From Equation 23.1 and these results, we find that the magnification of the mirror is

\[
M = \frac{h'}{h} = -\frac{q}{p} \tag{23.2}
\]

From two other triangles in the figure, we get

\[
\tan \alpha = \frac{h}{p - R} \quad \text{and} \quad \tan \alpha = -\frac{h'}{R - q}
\]

from which we find that

\[
\frac{h'}{h} = -\frac{R - q}{p - R} \tag{23.3}
\]

If we compare Equation 23.2 with Equation 23.3, we see that

\[
\frac{R - q}{p - R} = \frac{q}{p}
\]

Simple algebra reduces this equation to

\[
\frac{1}{p} + \frac{1}{q} = \frac{2}{R} \tag{23.4}
\]

This expression is called the **mirror equation**.

If the object is very far from the mirror—if the object distance \(p \) is great enough compared with \(R \) that \(p \) can be said to approach infinity—then \(1/p = 0 \), and we see from Equation 23.4 that \(q = R/2 \). In other words, when the object is very far from the mirror, the image point is halfway between the center of curvature and the center of the mirror, as in Figure 23.10a (page 764). The incoming rays are essentially parallel in that figure because the source is assumed to be very far from the

FIGURE 23.8 Rays at large angles from the horizontal axis reflect from a spherical, concave mirror to intersect the principal axis at different points, resulting in a blurred image. This phenomenon is called **spherical aberration**.

FIGURE 23.9 The image formed by a spherical concave mirror, where the object at \(O \) lies outside the center of curvature, \(C \).
mirror. In this special case we call the image point the focal point \(F \) and the image distance the focal length \(f \), where

\[
f = \frac{R}{2}
\]

[23.5]

The mirror equation can therefore be expressed in terms of the focal length:

\[
\frac{1}{p} + \frac{1}{q} = \frac{1}{f}
\]

[23.6]

Note that rays from objects at infinity are always focused at the focal point.

23.3 CONVEX MIRRORS AND SIGN CONVENTIONS

Figure 23.11 shows the formation of an image by a **convex mirror**, which is silvered so that light is reflected from the outer, convex surface. It is sometimes called a **diverging mirror** because the rays from any point on the object diverge after reflection, as though they were coming from some point behind the mirror. The image in Figure 23.11 is virtual rather than real because it lies behind the mirror at the point the reflected rays appear to originate. In general, the image formed by a convex mirror is upright, virtual, and smaller than the object.

We won’t derive any equations for convex spherical mirrors. If we did, we would find that the equations developed for concave mirrors can be used with convex mirrors if particular sign conventions are used. We call the region in which light rays move the **front side** of the mirror, and the other side, where virtual images are formed, the **back side**. For example, in Figures 23.9 and 23.11, the side to the left of the mirror is the front side and the side to the right is the back side. Figure 23.12 is helpful for understanding the rules for object and image distances, and Table 23.1 summarizes the sign conventions for all the necessary quantities. Notice that when the quantities \(p \), \(q \), and \(f \) (and \(R \)) are located where the light is—in front of the mirror—they are positive, whereas when they are located behind the mirror (where the light isn’t), they are negative.

Ray Diagrams for Mirrors

We can conveniently determine the positions and sizes of images formed by mirrors by constructing **ray diagrams** similar to the ones we have been using. This kind of graphical construction tells us the overall nature of the image and can be used to check parameters calculated from the mirror and magnification equa-
Making a ray diagram requires knowing the position of the object and the location of the center of curvature. To locate the image, three rays are constructed (rather than only the two we have been constructing so far), as shown by the examples in Active Figure 23.13. All three rays start from the same object point; for these examples, the tip of the arrow was chosen. For the concave mirrors in Active Figures 23.13a and b, the rays are drawn as follows:

1. Ray 1 is drawn parallel to the principal axis and is reflected back through the focal point F.
2. Ray 2 is drawn through the focal point and is reflected parallel to the principal axis.
3. Ray 3 is drawn through the center of curvature, C, and is reflected back on itself.

TABLE 23.1
Sign Conventions for Mirrors

<table>
<thead>
<tr>
<th>Quantity</th>
<th>Symbol</th>
<th>In Front</th>
<th>In Back</th>
<th>Upright Image</th>
<th>Inverted Image</th>
</tr>
</thead>
<tbody>
<tr>
<td>Object location</td>
<td>p</td>
<td>+</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Image location</td>
<td>q</td>
<td>+</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Focal length</td>
<td>f</td>
<td>+</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Image height</td>
<td>h'</td>
<td></td>
<td></td>
<td>+</td>
<td>$-$</td>
</tr>
<tr>
<td>Magnification</td>
<td>M</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ACTIVE FIGURE 23.13
Ray diagrams for spherical mirrors and corresponding photographs of the images of candles. (a) When an object is outside the center of curvature of a concave mirror, the image is real, inverted, and reduced in size. (b) When an object is between a concave mirror and the focal point, the image is virtual, upright, and magnified. (c) When an object is in front of a convex mirror, the image is virtual, upright, and reduced in size.
Note that rays actually go in all directions from the object; we choose to follow those moving in a direction that simplifies our drawing.

The intersection of any two of these rays at a point locates the image. The third ray serves as a check of our construction. The image point obtained in this fashion must always agree with the value of \(q \) calculated from the mirror formula.

In the case of a concave mirror, note what happens as the object is moved closer to the mirror. The real, inverted image in Active Figure 23.13a moves to the left as the object approaches the focal point. When the object is at the focal point, the image is infinitely far to the left. When the object lies between the focal point and the mirror surface, as in Active Figure 23.13b, however, the image is virtual and upright.

With the convex mirror shown in Active Figure 23.13c, the image of a real object is always virtual and upright. As the object distance increases, the virtual image shrinks and approaches the focal point as \(p \) approaches infinity. You should construct a ray diagram to verify these statements.

The image-forming characteristics of curved mirrors obviously determine their uses. For example, suppose you want to design a mirror that will help people shave or apply cosmetics. For this, you need a concave mirror that puts the user inside the focal point, such as the mirror in Active Figure 23.13b. With that mirror, the image is upright and greatly enlarged. In contrast, suppose the primary purpose of a mirror is to observe a large field of view. In that case you need a convex mirror such as the one in Active Figure 23.13c. The diminished size of the image means that a fairly large field of view is seen in the mirror. Mirrors like this one are often placed in stores to help employees watch for shoplifters. A second use of such a mirror is as a side-view mirror on a car (Fig. 23.14). This kind of mirror is usually placed on the passenger side of the car and carries the warning “Objects are closer than they appear.” Without such warning, a driver might think she is looking into a flat mirror, which doesn’t alter the size of the image. She could be fooled into believing that a truck is far away because it looks small, when it’s actually a large semi very close behind her, but diminished in size because of the image formation characteristics of the convex mirror.

FIGURE 23.14 A convex side-view mirror on a vehicle produces an upright image that is smaller than the object. The smaller image means that the object is closer than its apparent distance as observed in the mirror.

APPLYING PHYSICS 23.2 CONCAVE VERSUS CONVEX

A virtual image can be anywhere behind a concave mirror. Why is there a maximum distance at which the image can exist behind a convex mirror?

Explanation Consider the concave mirror first and imagine two different light rays leaving a tiny object and striking the mirror. If the object is at the focal point, the light rays reflecting from the mirror will be parallel to the mirror axis. They can be interpreted as forming a virtual image infinitely far away behind the mirror. As the object is brought closer to the mirror, the reflected rays will diverge through larger and larger angles, resulting in their extensions converging closer and closer to the back of the mirror. When the object is brought right up to the mirror, the image is right behind the mirror. When the object is much closer to the mirror than the focal length, the mirror acts like a flat mirror and the image is just as far behind the mirror as the object is in front of it. The image can therefore be anywhere from infinitely far away to right at the surface of the mirror. For the convex mirror, an object at infinity produces a virtual image at the focal point. As the object is brought closer, the reflected rays diverge more sharply and the image moves closer to the mirror. As a result, the virtual image is restricted to the region between the mirror and the focal point.

APPLYING PHYSICS 23.3 REVERSIBLE WAVES

Large trucks often have a sign on the back saying, “If you can’t see my mirror, I can’t see you.” Explain this sign.

Explanation The trucking companies are making use of the principle of the reversibility of light rays.

For an image of you to be formed in the driver’s mirror, there must be a pathway for rays of light to reach the mirror, allowing the driver to see your image. If you can’t see the mirror, this pathway doesn’t exist.
EXAMPLE 23.2 Images Formed by a Concave Mirror

Goal Calculate properties of a concave mirror.

Problem Assume a certain concave, spherical mirror has a focal length of 10.0 cm. (a) Locate the image and find the magnification for an object distance of 25.0 cm. Determine whether the image is real or virtual, inverted or upright, and larger or smaller. Do the same for object distances of (b) 10.0 cm and (c) 5.00 cm.

Strategy For each part, substitute into the mirror and magnification equations. Part (b) involves a limiting process because the answers are infinite.

Solution
(a) Find the image position for an object distance of 25.0 cm. Calculate the magnification and describe the image.

Use the mirror equation to find the image distance:

\[
\frac{1}{p} + \frac{1}{q} = \frac{1}{f}
\]

Substitute and solve for \(q \). According to Table 23.1, \(p \) and \(f \) are positive.

\[
\frac{1}{25.0 \text{ cm}} + \frac{1}{q} = \frac{1}{10.0 \text{ cm}}
\]

\[
q = \frac{16.7 \text{ cm}}{1}
\]

Because \(q \) is positive, the image is in front of the mirror and is real. The magnification is given by substituting into Equation 23.2:

\[
M = \frac{q}{p} = \frac{16.7 \text{ cm}}{25.0 \text{ cm}} = 0.668
\]

The image is smaller than the object because \(|M| < 1\), and it is inverted because \(M \) is negative. (See Fig. 23.13a.)

(b) Locate the image distance when the object distance is 10.0 cm. Calculate the magnification and describe the image.

The object is at the focal point. Substitute \(p = 10.0 \text{ cm} \) and \(f = 10.0 \text{ cm} \) into the mirror equation:

\[
\frac{1}{10.0 \text{ cm}} + \frac{1}{q} = \frac{1}{10.0 \text{ cm}}
\]

\[
\frac{1}{q} = 0 \rightarrow q = \infty
\]

Because \(M = -q/p \), the magnification is also infinite.

(c) Locate the image distance when the object distance is 5.00 cm. Calculate the magnification and describe the image.

Once again, substitute into the mirror equation:

\[
\frac{1}{5.00 \text{ cm}} + \frac{1}{q} = \frac{1}{10.0 \text{ cm}}
\]

\[
\frac{1}{q} = \frac{1}{10.0 \text{ cm}} - \frac{1}{5.00 \text{ cm}} = \frac{-1}{10.0 \text{ cm}}
\]

\[
q = -\frac{10.0 \text{ cm}}{1}
\]

The image is virtual (behind the mirror) because \(q \) is negative. Use Equation 23.2 to calculate the magnification:

\[
M = \frac{-q}{p} = \frac{-10.0 \text{ cm}}{5.00 \text{ cm}} = 2.00
\]

The image is larger (magnified by a factor of 2) because \(|M| > 1\), and upright because \(M \) is positive. (See Fig. 23.13b.)
Remarks Note the characteristics of an image formed by a concave, spherical mirror. When the object is outside the focal point, the image is inverted and real; at the focal point, the image is formed at infinity; inside the focal point, the image is upright and virtual.

QUESTION 23.2
What location does the image approach as the object gets arbitrarily far away from the mirror? (a) infinity (b) the focal point (c) the radius of curvature of the mirror (d) the mirror itself

EXERCISE 23.2
If the object distance is 20.0 cm, find the image distance and the magnification of the mirror.
Answer \(q = 20.0 \text{ cm}, \quad M = -1.00 \)

EXAMPLE 23.3 Images Formed by a Convex Mirror

Goal Calculate properties of a convex mirror.

Problem An object 3.00 cm high is placed 20.0 cm from a convex mirror with a focal length of magnitude 8.00 cm. Find (a) the position of the image, (b) the magnification of the mirror, and (c) the height of the image.

Strategy This problem again requires only substitution into the mirror and magnification equations. Multiplying the object height by the magnification gives the image height.

Solution
(a) Find the position of the image.
Because the mirror is convex, its focal length is negative. Substitute into the mirror equation:

\[
\frac{1}{p} + \frac{1}{q} = \frac{1}{f}
\]

\[
\frac{1}{20.0 \text{ cm}} + \frac{1}{q} = \frac{1}{-8.00 \text{ cm}}
\]

Solve for \(q \):

\[q = -5.71 \text{ cm} \]

(b) Find the magnification of the mirror.
Substitute into Equation 23.2:

\[M = \frac{-q}{p} = -\left(\frac{-5.71 \text{ cm}}{20.0 \text{ cm}}\right) = 0.286 \]

(c) Find the height of the image.
Multiply the object height by the magnification:

\[h' = hM = (3.00 \text{ cm})(0.286) = 0.858 \text{ cm} \]

Remarks The negative value of \(q \) indicates the image is virtual, or behind the mirror, as in Figure 23.13c. The image is upright because \(M \) is positive.

QUESTION 23.3
True or False: A convex mirror can produce only virtual images.

EXERCISE 23.3
Suppose the object is moved so that it is 4.00 cm from the same mirror. Repeat parts (a) through (c).
Answers (a) \(-2.67 \text{ cm}\) (b) 0.668 (c) 2.00 cm; the image is upright and virtual.

EXAMPLE 23.4 The Face in the Mirror

Goal Find a focal length from a magnification and an object distance.

Problem When a woman stands with her face 40.0 cm from a cosmetic mirror, the upright image is twice as tall as her face. What is the focal length of the mirror?

Strategy To find \(f \) in this example, we must first find \(q \), the image distance. Because the problem states that the image is upright, the magnification must be positive (in this case, \(M = +2 \)), and because \(M = -q/p \), we can determine \(q \).
Solution

Obtain q from the magnification equation:

$$M = -\frac{q}{p} = 2$$

$$q = -2p = -2(40.0 \text{ cm}) = -80.0 \text{ cm}$$

Because q is negative, the image is on the opposite side of the mirror and hence is virtual. Substitute q and p into the mirror equation and solve for f:

$$\frac{1}{40.0 \text{ cm}} - \frac{1}{80.0 \text{ cm}} = \frac{1}{f}$$

$$f = 80.0 \text{ cm}$$

Remarks The positive sign for the focal length tells us that the mirror is concave, a fact we already knew because the mirror magnified the object. (A convex mirror would have produced a smaller image.)

QUESTION 23.4

If she moves the mirror closer to her face, what happens to the image? (a) It becomes inverted and smaller. (b) It remains upright and becomes smaller. (c) It becomes inverted and larger. (d) It remains upright and becomes larger.

EXERCISE 23.4

Suppose a fun-house spherical mirror makes you appear to be one-third your normal height. If you are 1.20 m away from the mirror, find its focal length. Is the mirror concave or convex?

Answers $-0.600 \text{ m}, \text{ convex}$

23.4 Images Formed by Refraction

In this section we describe how images are formed by refraction at a spherical surface. Consider two transparent media with indices of refraction n_1 and n_2, where the boundary between the two media is a spherical surface of radius R (Fig. 23.15). We assume the medium to the right has a higher index of refraction than the one to the left: $n_2 > n_1$. That would be the case for light entering a curved piece of glass from air or for light entering the water in a fishbowl from air. The rays originating at the object location O are refracted at the spherical surface and then converge to the image point I. We can begin with Snell’s law of refraction and use simple geometric techniques to show that the object distance, image distance, and radius of curvature are related by the equation

$$\frac{n_1}{p} + \frac{n_2}{q} = \frac{n_2 - n_1}{R} \tag{23.7}$$

Further, the magnification of a refracting surface is

$$M = \frac{h’}{h} = -\frac{n_1q}{n_2p} \tag{23.8}$$

As with mirrors, certain sign conventions hold, depending on circumstances. First note that real images are formed by refraction on the side of the surface opposite the side from which the light comes, in contrast to mirrors, where real images are formed on the same side of the reflecting surface. This makes sense because light reflects off mirrors, so any real images must form on the same side the light comes from. With a transparent medium, the rays pass through and naturally form real images on the opposite side. We define the side of the surface where light rays originate as the front side. The other side is called the back side. Because of the difference in location of real images, the refraction sign conventions for q and R are the opposite of those for reflection. For example, p, q, and R are all positive in Figure 23.15. The sign conventions for spherical refracting surfaces are summarized in Table 23.2 (page 770).
APPLYING PHYSICS 23.4 UNDERWATER VISION

Why does a person with normal vision see a blurry image if the eyes are opened underwater with no goggles or diving mask in use?

Explanation The eye presents a spherical refraction surface. The eye normally functions so that light entering from the air is refracted to form an image in the retina located at the back of the eyeball. The difference in the index of refraction between water and the eye is smaller than the difference in the index of refraction between air and the eye. Consequently, light entering the eye from the water doesn’t undergo as much refraction as does light entering from the air, and the image is formed behind the retina. A diving mask or swimming goggles have no optical action of their own; they are simply flat pieces of glass or plastic in a rubber mount. They do, however, provide a region of air adjacent to the eyes so that the correct refraction relationship is established and images will be in focus.

Flat Refracting Surfaces

If the refracting surface is flat, then R approaches infinity and Equation 23.7 reduces to

$$\frac{n_1}{p} = \frac{n_2}{q}$$

From Equation 23.9, we see that the sign of q is opposite that of p. Consequently, the image formed by a flat refracting surface is on the same side of the surface as the object. This statement is illustrated in Active Figure 23.16 for the situation in which n_1 is greater than n_2, where a virtual image is formed between the object and the surface. Note that the refracted ray bends away from the normal in this case because $n_1 > n_2$.

Quick Quiz 23.2

A person spearfishing from a boat sees a fish located 3 m from the boat at an apparent depth of 1 m. To spear the fish, should the person aim (a) at, (b) above, or (c) below the image of the fish?

Quick Quiz 23.3

True or False: (a) The image of an object placed in front of a concave mirror is always upright. (b) The height of the image of an object placed in front of a concave mirror must be smaller than or equal to the height of the object. (c) The image of an object placed in front of a convex mirror is always upright and smaller than the object.

Example 23.5 Gaze Into the Crystal Ball

Goal Calculate the properties of an image created by a spherical lens.
Problem A coin 2.00 cm in diameter is embedded in a solid glass ball of radius 30.0 cm (Fig. 23.17). The index of refraction of the ball is 1.50, and the coin is 20.0 cm from the surface. Find the position of the image of the coin and the height of the coin’s image.

Strategy Because the rays are moving from a medium of high index of refraction (the glass ball) to a medium of lower index of refraction (air), the rays originating at the coin are refracted away from the normal at the surface and diverge outward. The image is formed in the glass and is virtual. Substitute into Equations 23.7 and 23.8 for the image position and magnification, respectively.

Remarks The negative sign on \(q \) indicates that the image is in the same medium as the object (the side of incident light), in agreement with our ray diagram, and therefore must be virtual. The positive value for \(M \) means that the image is upright.

QUESTION 23.5 How would the final answer be affected if the ball and observer were immersed in water? (a) It would be smaller. (b) It would be larger. (c) There would be no change.

EXERCISE 23.5 A coin is embedded 20.0 cm from the surface of a similar ball of transparent substance having radius 30.0 cm and unknown composition. If the coin’s image is virtual and located 15.0 cm from the surface, find the (a) index of refraction of the substance and (b) magnification.

Answers (a) 2.00 (b) 1.50

EXAMPLE 23.6 The One That Got Away

Goal Calculate the properties of an image created by a flat refractive surface.

Problem A small fish is swimming at a depth \(d \) below the surface of a pond (Fig. 23.18). (a) What is the apparent depth of the fish as viewed from directly overhead? (b) If the fish is 12 cm long, how long is its image?

Strategy In this example the refracting surface is flat, so \(R \) is infinite. Hence, we can use Equation 23.9 to determine the location of the image, which is the apparent location of the fish.
Chapter 23 Mirrors and Lenses

23.5 ATMOSPHERIC REFRACTION

Images formed by refraction in our atmosphere lead to some interesting phenomena. One such phenomenon that occurs daily is the visibility of the Sun at dusk even though it has passed below the horizon. Figure 23.19 shows why it occurs. Rays of light from the Sun strike Earth's atmosphere (represented by the shaded area around the planet) and are bent as they pass into a medium that has an index of refraction different from that of the almost empty space in which they have been traveling. The bending in this situation differs somewhat from the bending we have considered previously in that it is gradual and continuous as the light moves through the atmosphere toward an observer at point \(O \). This is because the light

![Figure 23.19](image)

Because light is refracted by Earth’s atmosphere, an observer at \(O \) sees the Sun even though it has fallen below the horizon.

Solution

(a) Find the apparent depth of the fish.

Substitute \(n_1 = 1.33 \) for water and \(p = d \) into Equation 23.9:

\[
q = - \frac{n_2}{n_1} p = - \frac{1}{1.33} d = -0.752d
\]

(b) What is the size of the fish's image?

Use Equation 23.9 to eliminate \(q \) from the Equation 23.8, the magnification equation:

\[
M = \frac{h'}{h} = -\frac{n_2 q}{n_2 p} = \frac{n_1 \left(-\frac{n_2}{n_1} p \right)}{n_2 p} = 1
\]

\[
h' = h = 12 \text{ cm}
\]

Remarks

Again, because \(q \) is negative, the image is virtual, as indicated in Figure 23.18. The apparent depth is three-fourths the actual depth. For instance, if \(d = 4.0 \text{ m} \), then \(q = -3.0 \text{ m} \).

QUESTION 23.6

Suppose a similar experiment is carried out with an object immersed in oil (\(n = 1.5 \)) the same distance below the surface. How does the apparent depth of the object compare with its apparent depth when immersed in water? (a) The apparent depth is unchanged. (b) The apparent depth is larger. (c) The apparent depth is smaller.

EXERCISE 23.6

A spear fisherman estimates that a trout is 1.5 m below the water's surface. What is the actual depth of the fish?

Answer 2.0 m

![Figure 23.20](image)

(a) A mirage is produced by the bending of light rays in the atmosphere when there are large temperature differences between the ground and the air. (b) Notice the reflection of the cars in this photograph of a mirage. The road looks like it’s flooded with water, but it is actually dry.
moves through layers of air that have a continuously changing index of refraction. When the rays reach the observer, the eye follows them back along the direction from which they appear to have come (indicated by the dashed path in the figure). The end result is that the Sun appears to be above the horizon even after it has fallen below it.

The **mirage** is another phenomenon of nature produced by refraction in the atmosphere. A mirage can be observed when the ground is so hot that the air directly above it is warmer than the air at higher elevations. The desert is a region in which such circumstances prevail, but mirages are also seen on heated roadways during the summer. The layers of air at different heights above Earth have different densities and different refractive indices. The effect these differences can have is pictured in Figure 23.20a. The observer sees the sky and a tree in two different ways. One group of light rays reaches the observer by the straight-line path A, and the eye traces these rays back to see the tree in the normal fashion. In addition, a second group of rays travels along the curved path B. These rays are directed toward the ground and are then bent as a result of refraction. As a consequence, the observer also sees an inverted image of the tree and the background of the sky as he traces the rays back to the point at which they appear to have originated. Because an upright image and an inverted image are seen when the image of a tree is observed in a reflecting pool of water, the observer unconsciously calls on this past experience and concludes that the sky is reflected by a pool of water in front of the tree.

23.6 Thin Lenses

A typical **thin lens** consists of a piece of glass or plastic, ground so that each of its two refracting surfaces is a segment of either a sphere or a plane. Lenses are commonly used to form images by refraction in optical instruments, such as cameras, telescopes, and microscopes. The equation that relates object and image distances for a lens is virtually identical to the mirror equation derived earlier, and the method used to derive it is also similar.

Figure 23.21 shows some representative shapes of lenses. Notice that we have placed these lenses in two groups. Those in Figure 23.21a are thicker at the center than at the rim, and those in Figure 23.21b are thinner at the center than at the rim. The lenses in the first group are examples of **converging lenses**, and those in the second group are **diverging lenses**. The reason for these names will become apparent shortly.

As we did for mirrors, it is convenient to define a point called the **focal point** for a lens. For example, in Figure 23.22a (page 774), a group of rays parallel to the axis passes through the focal point F after being converged by the lens. The distance from the focal point to the lens is called the **focal length** f. The focal length is the image distance that corresponds to an infinite object distance. Recall that we are considering the lens to be very thin. As a result, it makes no difference whether we take the focal length to be the distance from the focal point to the surface of the lens or the distance from the focal point to the center of the lens because the difference between these two lengths is negligible. A thin lens has **two focal points**, as illustrated in Figure 23.22, one on each side of the lens. One focal point corresponds to parallel rays traveling from the left and the other corresponds to parallel rays traveling from the right.

Rays parallel to the axis diverge after passing through a lens of biconcave shape, shown in Figure 23.22b. In this case the focal point is defined to be the point where the diverged rays appear to originate, labeled F in the figure. Figures 23.22a (page 774) and 23.22b indicate why the names **converging** and **diverging** are applied to these lenses.

Now consider a ray of light passing through the center of a lens. Such a ray is labeled ray 1 in Figure 23.23 (page 774). For a thin lens, a ray passing through the

![FIGURE 23.21 Various lens shapes.](image-url)
center is undeflected. Ray 2 in the same figure is parallel to the principal axis of the lens (the horizontal axis passing through O), and as a result it passes through the focal point F after refraction. Rays 1 and 2 intersect at the point that is the tip of the image arrow.

We first note that the tangent of the angle α can be found by using the blue and gold shaded triangles in Figure 23.23:

\[
\tan \alpha = \frac{h}{p} \quad \text{or} \quad \tan \alpha = -\frac{h'}{q}
\]

From this result, we find that

\[
M = \frac{h'}{h} = -\frac{q}{p} \quad \text{[23.10]}
\]

The equation for magnification by a lens is the same as the equation for magnification by a mirror. We also note from Figure 23.23 that

\[
\tan \theta = \frac{PQ}{f} \quad \text{or} \quad \tan \theta = -\frac{h'}{q-f}
\]
The height PQ used in the first of these equations, however, is the same as h, the height of the object. Therefore,

$$\frac{h}{f} = \frac{h'}{q - f} \quad \text{and} \quad \frac{h'}{h} = \frac{q - f}{f}$$

Using the latter equation in combination with Equation 23.10 gives

$$\frac{q}{p} = \frac{q - f}{f}$$

which reduces to

$$\frac{1}{p} + \frac{1}{q} = \frac{1}{f} \quad [23.11]$$

This equation, called the thin-lens equation, can be used with both converging and diverging lenses if we adhere to a set of sign conventions. Figure 23.24 is useful for obtaining the signs of p and q, and Table 23.3 gives the complete sign conventions for lenses. Note that a converging lens has a positive focal length under this convention and a diverging lens has a negative focal length. Hence, the names positive and negative are often given to these lenses.

The focal length for a lens in air is related to the curvatures of its front and back surfaces and to the index of refraction n of the lens material by

$$\frac{1}{f} = (n - 1)\left(\frac{1}{R_1} - \frac{1}{R_2}\right) \quad [23.12]$$

where R_1 is the radius of curvature of the front surface of the lens and R_2 is the radius of curvature of the back surface. (As with mirrors, we arbitrarily call the side from which the light approaches the front of the lens.) Table 23.3 gives the sign conventions for R_1 and R_2. Equation 23.12, called the lens-maker’s equation, enables us to calculate the focal length from the known properties of the lens.

Ray Diagrams for Thin Lenses

Ray diagrams are essential for understanding the overall image formation by a thin lens or a system of lenses. They should also help clarify the sign conventions already discussed. Active Figure 23.25 (page 776) illustrates this method for three single-lens situations. To locate the image formed by a converging lens (Active Figs. 23.25a and b), the following three rays are drawn from the top of the object:

1. The first ray is drawn parallel to the principal axis. After being refracted by the lens, this ray passes through (or appears to come from) one of the focal points.
2. The second ray is drawn through the center of the lens. This ray continues in a straight line.
3. The third ray is drawn through the other focal point and emerges from the lens parallel to the principal axis.

Table 23.3

<table>
<thead>
<tr>
<th>Quantity</th>
<th>Symbol</th>
<th>In Front</th>
<th>In Back</th>
<th>Convergent</th>
<th>Divergent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Object location</td>
<td>p</td>
<td>+</td>
<td>−</td>
<td>−</td>
<td>+</td>
</tr>
<tr>
<td>Image location</td>
<td>q</td>
<td>−</td>
<td>+</td>
<td>+</td>
<td>−</td>
</tr>
<tr>
<td>Lens radii</td>
<td>R_1, R_2</td>
<td>−</td>
<td>+</td>
<td>−</td>
<td>+</td>
</tr>
<tr>
<td>Focal length</td>
<td>f</td>
<td>+</td>
<td>−</td>
<td>+</td>
<td>−</td>
</tr>
</tbody>
</table>
A similar construction is used to locate the image formed by a diverging lens, as shown in Active Figure 23.25c. The point of intersection of any two of the rays in these diagrams can be used to locate the image. The third ray serves as a check on construction.

For the converging lens in Active Figure 23.25a, where the object is outside the focal point (\(p > f \)), the ray diagram shows that the image is real and inverted. When the real object is inside the front focal point (\(p < f \)), as in Active Figure 23.25b, the image is virtual and upright. For the diverging lens of Active Figure 23.25c, the image is virtual and upright.

QUICK QUIZ 23.4 A clear plastic sandwich bag filled with water can act as a crude converging lens in air. If the bag is filled with air and placed underwater, is the effective lens (a) converging or (b) diverging?

QUICK QUIZ 23.5 In Active Figure 23.25a the blue object arrow is replaced by one that is much taller than the lens. How many rays from the object will strike the lens?

QUICK QUIZ 23.6 An object is placed to the left of a converging lens. Which of the following statements are true, and which are false? (a) The image is always to the right of the lens. (b) The image can be upright or inverted. (c) The image is always smaller or the same size as the object.

Your success in working lens or mirror problems will be determined largely by whether you make sign errors when substituting into the lens or mirror equations. The only way to ensure you don’t make sign errors is to become adept at using the sign conventions.

TIP 23.3 We Choose Only a Few Rays

Although our ray diagrams in Figure 23.25 only show three rays leaving an object, an infinite number of rays can be drawn between the object and its image.

APPLYING PHYSICS 23.5 **VISION AND DIVING MASKS**

Diving masks often have a lens built into the glass faceplate for divers who don’t have perfect vision. This lens allows the individual to dive without the necessity of glasses because the faceplate performs the necessary refraction to produce clear vision. Normal glasses have lenses that are curved on both the front and rear surfaces. The lenses in a diving-mask faceplate often have curved surfaces only on the inside of the glass. Why is this design desirable?

Solution The main reason for curving only the inner surface of the lens in the diving-mask faceplate is to enable the diver to see clearly while underwater and in the air. If there were curved surfaces on both the front and the back of the diving lens, there would be two refractions. The lens could be designed so that these two refractions would give clear vision while the diver is in air. When the diver went underwater, however, the refraction between the water and the glass at the first interface would differ because the index of refraction of water is different from that of air. Consequently, the diver’s vision wouldn’t be clear underwater.
EXAMPLE 23.7 Images Formed by a Converging Lens

Goal Calculate geometric quantities associated with a converging lens.

Problem A converging lens of focal length 10.0 cm forms images of an object situated at various distances. (a) If the object is placed 30.0 cm from the lens, locate the image, state whether it’s real or virtual, and find its magnification. (b) Repeat the problem when the object is at 10.0 cm and (c) again when the object is 5.00 cm from the lens.

Strategy All three problems require only substitution into the thin-lens equation and the associated magnification equation, Equations 23.10 and 23.11, respectively. The conventions of Table 23.3 must be followed.

Solution

(a) Find the image distance and describe the image when the object is placed at 30.0 cm.

The ray diagram is shown in Figure 23.26a. Substitute values into the thin-lens equation to locate the image:

\[
\frac{1}{p} + \frac{1}{q} = \frac{1}{f}
\]

\[
\frac{1}{30.0 \text{ cm}} + \frac{1}{q} = \frac{1}{10.0 \text{ cm}}
\]

Solve for \(q \), the image distance. It’s positive, so the image is real and on the far side of the lens:

\[q = +15.0 \text{ cm} \]

The magnification of the lens is obtained from Equation 23.10. \(M \) is negative and less than 1 in absolute value, so the image is inverted and smaller than the object:

\[M = \frac{-q}{p} = \frac{-15.0 \text{ cm}}{30.0 \text{ cm}} = -0.500 \]

(b) Repeat the problem, when the object is placed at 10.0 cm.

Locate the image by substituting into the thin-lens equation:

\[
\frac{1}{10.0 \text{ cm}} + \frac{1}{q} = \frac{1}{10.0 \text{ cm}} \quad \rightarrow \quad \frac{1}{q} = 0
\]

This equation is satisfied only in the limit as \(q \) becomes infinite.

(c) Repeat the problem when the object is placed 5.00 cm from the lens.

See the ray diagram shown in Figure 23.26b. Substitute into the thin-lens equation to locate the image:

\[
\frac{1}{5.00 \text{ cm}} + \frac{1}{q} = \frac{1}{10.0 \text{ cm}}
\]

Solve for \(q \), which is negative, meaning the image is on the same side as the object and is virtual:

\[q = -10.0 \text{ cm} \]

FIGURE 23.26 (Example 23.7)
Remark
The ability of a lens to magnify objects led to the inventions of reading glasses, microscopes, and telescopes.

QUESTION 23.7
If the lens is used to form an image of the sun on a screen, how far from the lens should the screen be located?

EXERCISE 23.7
Suppose the image of an object is upright and magnified 1.75 times when the object is placed 15.0 cm from a lens. Find the location of the image and the focal length of the lens.

Answers
(a) \(-26.3 \) cm (virtual, on the same side as the object)
(b) 34.9 cm

EXAMPLE 23.8 The Case of a Diverging Lens

Goal Calculate geometric quantities associated with a diverging lens.

Problem Repeat the problem of Example 23.7 for a diverging lens of focal length 10.0 cm.

Strategy Once again, substitution into the thin-lens equation and the associated magnification equation, together with the conventions in Table 23.3, solve the various parts. The only difference is the negative focal length.

Solution
(a) Locate the image and its magnification if the object is at 30.0 cm.

The ray diagram is given in Figure 23.27a. Apply the thin-lens equation with \(p = 30.0 \) cm to locate the image:

\[
\frac{1}{p} + \frac{1}{q} = \frac{1}{f}
\]

\[
\frac{1}{30.0 \text{ cm}} + \frac{1}{q} = -\frac{1}{10.0 \text{ cm}}
\]

Solve for \(q \), which is negative and hence virtual:

\[
q = -7.50 \text{ cm}
\]

Substitute into Equation 23.10 to get the magnification. Because \(M \) is positive and has absolute value less than 1, the image is upright and smaller than the object:

(b) Locate the image and find its magnification if the object is 10.0 cm from the lens.

Apply the thin-lens equation, taking \(p = 10.0 \) cm:

\[
\frac{1}{10.0 \text{ cm}} + \frac{1}{q} = -\frac{1}{10.0 \text{ cm}}
\]

FIGURE 23.27 (Example 23.8)
Remarks

Notice that in every case the image is virtual, hence on the same side of the lens as the object. Further, the image is smaller than the object. For a diverging lens and a real object, this is always the case, as can be proven mathematically.

QUESTION 23.8
Can a diverging lens be used as a magnifying glass? Explain.

EXERCISE 23.8
Repeat the calculation, finding the position of the image and the magnification if the object is 20.0 cm from the lens.

Answers \(q = -6.67 \text{ cm}, \ M = 0.334 \)

Combinations of Thin Lenses

Many useful optical devices require two lenses. Handling problems involving two lenses is not much different from dealing with a single-lens problem twice. First, the image produced by the first lens is calculated as though the second lens were not present. The light then approaches the second lens as if it had come from the image formed by the first lens. Hence, the image formed by the first lens is treated as the object for the second lens. The image formed by the second lens is the final image of the system. If the image formed by the first lens lies on the back side of the second lens, the image is treated as a virtual object for the second lens, so \(p \) is negative. The same procedure can be extended to a system of three or more lenses. The overall magnification of a system of thin lenses is the product of the magnifications of the separate lenses.

EXAMPLE 23.9 Two Lenses in a Row

Goal Calculate geometric quantities for a sequential pair of lenses.

Problem Two converging lenses are placed 20.0 cm apart, as shown in Figure 23.28a (page 780), with an object 30.0 cm in front of lens 1 on the left. (a) If lens 1 has a focal length of 10.0 cm, locate the image formed by this lens and determine its magnification. (b) If lens 2 on the right has a focal length of 20.0 cm, locate the final image formed and find the total magnification of the system.

Strategy We apply the thin-lens equation to each lens. The image formed by lens 1 is treated as the object for lens 2. Also, we use the fact that the total magnification of the system is the product of the magnifications produced by the separate lenses.
FIGURE 23.28 (Example 23.9)

Solution
(a) Locate the image and determine the magnification of lens 1.

See the ray diagram, Figure 23.28b. Apply the thin-lens equation to lens 1:

\[
\frac{1}{30.0 \text{ cm}} + \frac{1}{q} = \frac{1}{10.0 \text{ cm}}
\]

Solve for \(q \), which is positive and hence to the right of the first lens:

\[q = +15.0 \text{ cm} \]

Compute the magnification of lens 1:

\[M_1 = \frac{q}{p} = \frac{15.0 \text{ cm}}{30.0 \text{ cm}} = -0.500 \]

(b) Locate the final image and find the total magnification.

The image formed by lens 1 becomes the object for lens 2. Compute the object distance for lens 2:

\[p = 20.0 \text{ cm} - 15.0 \text{ cm} = 5.00 \text{ cm} \]

Once again apply the thin-lens equation to lens 2 to locate the final image:

\[
\frac{1}{5.00 \text{ cm}} + \frac{1}{q} = \frac{1}{20.0 \text{ cm}}
\]

\[q = -6.67 \text{ cm} \]

Calculate the magnification of lens 2:

\[M_2 = \frac{q}{p} = \frac{-6.67 \text{ cm}}{5.00 \text{ cm}} = +1.33 \]

Multiply the two magnifications to get the overall magnification of the system:

\[M = M_1M_2 = (-0.500)(1.33) = -0.665 \]

Remarks The negative sign for \(M \) indicates that the final image is inverted and smaller than the object because the absolute value of \(M \) is less than 1. Because \(q \) is negative, the final image is virtual.
QUESTION 23.9
If lens 2 is moved so it is 40 cm away from lens 1, would the final image be upright or inverted?

EXERCISE 23.9
If the two lenses in Figure 23.28 are separated by 10.0 cm, locate the final image and find the magnification of the system. Hint: The object for the second lens is virtual!

Answers 4.00 cm behind the second lens, $M = -0.400$

23.7 LENS AND MIRROR ABERRATIONS

One of the basic problems of systems containing mirrors and lenses is the imperfect quality of the images, which is largely the result of defects in shape and form. The simple theory of mirrors and lenses assumes rays make small angles with the principal axis and all rays reaching the lens or mirror from a point source are focused at a single point, producing a sharp image. This is not always true in the real world. Where the approximations used in this theory do not hold, imperfect images are formed.

If one wishes to analyze image formation precisely, it is necessary to trace each ray, using Snell’s law, at each refracting surface. This procedure shows that there is no single point image; instead, the image is blurred. The departures of real (imperfect) images from the ideal predicted by the simple theory are called aberrations. Two common types of aberrations are spherical aberration and chromatic aberration. Photographs of three forms of lens aberrations are shown in Figure 23.29.

Spherical Aberration

Spherical aberration results from the fact that the focal points of light rays passing far from the principal axis of a spherical lens (or mirror) are different from the focal points of rays with the same wavelength passing near the axis. Figure 23.30 illustrates spherical aberration for parallel rays passing through a converging lens. Rays near the middle of the lens are imaged farther from the lens than rays at the edges. Hence, there is no single focal length for a spherical lens.

Most cameras are equipped with an adjustable aperture to control the light intensity and, when possible, reduce spherical aberration. (An aperture is an open-
ing that controls the amount of light transmitted through the lens.) As the aperture size is reduced, sharper images are produced because only the central portion of the lens is exposed to the incident light when the aperture is very small. At the same time, however, progressively less light is imaged. To compensate for this loss, a longer exposure time is used. An example of the results obtained with small apertures is the sharp image produced by a pinhole camera, with an aperture size of approximately 0.1 mm.

In the case of mirrors used for very distant objects, one can eliminate, or at least minimize, spherical aberration by employing a parabolic rather than spherical surface. Parabolic surfaces are not used in many applications, however, because they are very expensive to make with high-quality optics. Parallel light rays incident on such a surface focus at a common point. Parabolic reflecting surfaces are used in many astronomical telescopes to enhance the image quality. They are also used in flashlights, in which a nearly parallel light beam is produced from a small lamp placed at the focus of the reflecting surface.

Chromatic Aberration

Different wavelengths of light refracted by a lens focus at different points, which gives rise to chromatic aberration. In Chapter 22 we described how the index of refraction of a material varies with wavelength. When white light passes through a lens, for example, violet light rays are refracted more than red light rays (see Fig. 23.31), so the focal length for red light is greater than for violet light. Other wavelengths (not shown in the figure) would have intermediate focal points. Chromatic aberration for a diverging lens is opposite that for a converging lens. Chromatic aberration can be greatly reduced by a combination of converging and diverging lenses.
The object and image distances of a thin lens are related by the thin-lens equation:

\[\frac{1}{p} + \frac{1}{q} = \frac{1}{f} \] \[23.11\]

Equations 23.10 and 23.11 are subject to the sign conventions of Table 23.3.

23.7 Lens and Mirror Aberrations

Aberrations are responsible for the formation of imperfect images by lenses and mirrors. Spherical aberration results from the focal points of light rays far from the principal axis of a spherical lens or mirror being different from those of rays passing through the center. Chromatic aberration arises because light rays of different wavelengths focus at different points when refracted by a lens.

1. When an image of a real object is formed by a flat mirror, which of the following statements are always true? (a) The image is larger than the object. (b) The image is the same size as the object. (c) The image is virtual. (d) The image is smaller than the object. (e) The image is upright.

2. An object is placed 16.0 cm away from a concave mirror with focal length 6.00 cm. Find the location of the image. (a) 9.60 cm in front of the mirror (b) 4.36 cm in front of the mirror (c) 9.60 cm behind the mirror (d) 4.36 cm behind the mirror (e) 10.0 cm in front of the mirror

3. An object is placed 16.0 cm away from a convex mirror with a focal length of magnitude 6.00 cm. What is the location of the image? (a) 9.60 cm in front of the mirror (b) 4.36 cm in front of the mirror (c) 9.60 cm behind the mirror (d) 4.36 cm behind the mirror (e) 10.0 cm in front of the mirror

4. A converging lens has a virtual object located a finite distance away. Which of the following must be true? (a) The image is virtual. (b) The image is real. (c) \(p < 0 \) (d) \(p > 0 \) (e) \(f > q \)

5. A thin, convergent lens has a focal length of 8.00 cm. If a real, inverted image is located 12.0 cm to the right of the lens, where is the object located? (a) 12.0 cm to the left of the lens (b) 24.0 cm to the right of the lens (c) 24.0 cm to the left of the lens (d) 18.0 cm to the right of the lens (e) 18.0 cm to the left of the lens

6. A real object is 10.0 cm to the left of a thin, diverging lens having a focal length of magnitude 16.0 cm. What is the location of the image? (a) 6.15 cm to the right of the lens (b) 6.15 cm to the left of the lens (c) 26.7 cm to the right of the lens (d) 26.7 cm to the left of the lens (e) 6.00 cm to the right of the lens

7. When the image of a real object is formed by a concave mirror, which of the following statements are true? (a) The image is always real. (b) The image is always virtual. (c) If the object distance is less than the focal length, the image is real. (d) If the object distance is greater than the focal length, the image is real. (e) If \(q < 0 \), the image is virtual.

8. A convex mirror forms an image of a real object. Which of the following statements is always true? (a) The image is real and upright. (b) The image is virtual and larger than the object. (c) The image is virtual and upright. (d) The image is larger than the object. (e) The image is virtual and inverted.

9. An object is located 50 cm from a converging lens having a focal length of 15 cm. Which of the following is true regarding the image formed by the lens? (a) It is virtual, upright, and larger than the object. (b) It is virtual, inverted, and smaller than the object. (c) It is real, inverted, and larger than the object. (d) It is real, upright, and larger than the object. (e) It is real, upright, and larger than the object.

10. For a real object, is the image formed by a diverging lens always (a) virtual and inverted, (b) virtual and upright, (c) real and upright, (d) real and inverted, or (e) real and magnified?

CONCEPTUAL QUESTIONS

1. Tape a picture of yourself on a bathroom mirror. Stand several centimeters away from the mirror. Can you focus your eyes on both the picture taped to the mirror and your image in the mirror at the same time? So where is the image of yourself?

2. Explain why a mirror cannot give rise to chromatic aberration.

3. A flat mirror creates a virtual image of your face. Suppose the flat mirror is combined with another optical...
element. Can the mirror form a real image in such a combination?

4. Why does a clear stream always appear to be shallower than it actually is?

5. A virtual image is often described as an image through which light rays don’t actually travel, as they do for a real image. Can a virtual image be photographed?

6. A common mirage is formed when the air gets gradually cooler as the height above the ground increases. What might happen if the air grows gradually warmer as the height increases? This often happens over bodies of water or snow-covered ground; the effect is called **looming**.

7. Suppose you want to use a converging lens to project the image of two trees onto a screen. One tree is a distance x from the lens; the other is at $2x$, as in Figure CQ23.7. You adjust the screen so that the near tree is in focus. If you now want the far tree to be in focus, do you move the screen toward or away from the lens?

8. Lenses used in eyeglasses, whether converging or diverging, are always designed such that the middle of the lens curves away from the eye. Why?

9. Can a converging lens be made to diverge light if placed in a liquid? How about a converging mirror?

10. If a cylinder of solid glass or clear plastic is placed above the words LEAD OXIDE and viewed from the side, as shown in Figure CQ23.10, the word LEAD appears inverted, but the word OXIDE does not. Explain.

![Figure CQ23.10](image)

11. In a Jules Verne novel, a piece of ice is shaped into a magnifying lens to focus sunlight to start a fire. Is that possible?

12. Light from an object passes through a lens and forms a visible image on a screen. If the screen is removed, would you be able to see the image (a) if you remained in your present position and (b) if you could look at the lens along the its axis, beyond the original position of the screen?

13. Why does the focal length of a mirror not depend on the mirror material when the focal length of a lens does depend on the lens material?

14. An inverted image of an object is viewed on a screen from the side facing a converging lens. An opaque card is then introduced covering only the upper half of the lens. What happens to the image on the screen? (a) Half the image would disappear. (b) The entire image would appear and remain unchanged. (c) Half the image would disappear and be dimmer. (d) The entire image would appear, but would be dimmer.

PROBLEMS

The Problems for this chapter may be assigned online at WebAssign.

1, 2, 3 = straightforward, intermediate, challenging

GP = denotes guided problem

ecp = denotes enhanced content problem

= biomedical application

= denotes full solution available in Student Solutions Manual/Study Guide

SECTION 23.1 FLAT MIRRORS

1. Does your bathroom mirror show you older or younger than your actual age? Compute an order-of-magnitude estimate for the age difference, based on data you specify.

10. Two plane mirrors stand facing each other, 3.0 m apart, and a woman stands between them. The woman faces one of the mirrors from a distance of 1.0 m, with the palm of her left hand facing the closer mirror. (a) What is the apparent position of the closest image of her left hand, measured from the surface of the mirror in front of her? Does it show the palm of her hand or the back of her hand? (b) What is the position of the next image? Does it show the palm of her hand or the back of her hand? (c) Repeat for the third image. (d) Which of the images are real and which are virtual?

3. A person walks into a room that has, on opposite walls, two plane mirrors producing multiple images. Find the distances from the person to the first three images seen in the left-hand mirror when the person is 5.00 ft from the mirror on the left wall and 10.0 ft from the mirror on the right wall.

4. In a church choir loft, two parallel walls are 5.30 m apart. The singers stand against the north wall. The organist faces the south wall, sitting 0.800 m away from it. So
that she can see the choir, a flat mirror 0.600 m wide is mounted on the south wall, straight in front of the organist. What width of the north wall can she see? Hint: Draw a top-view diagram to justify your answer.

5. **ESP** Use Active Figure 23.2 to give a geometric proof that the virtual image formed by a plane mirror is the same distance behind the mirror as the object is in front of it.

SECTION 23.2 IMAGES FORMED BY SPHERICAL MIRRORS

SECTION 23.3 CONVEX MIRRORS AND SIGN CONVENTIONS

In the following problems, algebraic signs are not given. We leave it to you to determine the correct sign to use with each quantity, based on an analysis of the problem and the sign conventions in Table 23.1.

6. A dentist uses a mirror to examine a tooth that is 1.00 cm in front of the mirror. The image of the tooth is formed 10.0 cm behind the mirror. Determine (a) the mirror’s radius of curvature and (b) the magnification of the image.

7. **ESP** An object is placed 40.0 cm from a concave mirror of radius 20.0 cm. (a) Find the location of the image. (b) What is the magnification of the mirror? Is the image real or virtual? Is the image upright or inverted?

8. **ESP** To fit a contact lens to a patient’s eye, a keratometer can be used to measure the curvature of the cornea—the front surface of the eye. This instrument places an illuminated object of known size at a known distance \(p \) from the cornea, which then reflects some light from the object, forming an image of it. The magnification \(M \) of the image is measured by using a small viewing telescope that allows a comparison of the image formed by the cornea with a second calibrated image projected into the field of view by a prism arrangement. Determine the radius of curvature of the cornea when \(p = 30.0 \text{ cm} \) and \(M = 0.013 \).

9. **ESP** An object of height 2.0 cm is placed 30.0 cm from a convex mirror of focal length having magnitude 10.0 cm. (a) Find the location of the image. (b) Describe the properties of the image.

10. **ESP** While looking at her image in a cosmetic mirror, Dina notes that her face is highly magnified when she is close to the mirror, but as she backs away from the mirror, her image first becomes blurry, then disappears, when she is about 30 cm from the mirror, and then inverts when she is beyond 30 cm. Based on these observations, what can she conclude about the properties of the mirror?

11. A 2.00-cm-high object is placed 3.00 cm in front of a concave mirror. If the image is 5.00 cm high and virtual, what is the focal length of the mirror?

12. A dedicated sports car enthusiast polishes the inside and outside surfaces of a hubcap that is a section of a sphere. When he looks into one side of the hubcap, he sees an image of his face 30.0 cm in back of it. He then turns the hubcap over, keeping it the same distance from his face. He now sees an image of his face 10.0 cm in back of the hubcap. (a) How far is his face from the hubcap? (b) What is the radius of curvature of the hubcap?

13. A concave makeup mirror is designed so that a person 25 cm in front of it sees an upright image magnified by a factor of two. What is the radius of curvature of the mirror?

14. **ESP** An object is placed 10.0 cm from a convex mirror having a focal length of magnitude 15.0 cm. (a) Use graph paper to construct an accurate ray diagram for this situation. From your ray diagram, determine the location of the image, its magnification, and whether it is upright or inverted. (b) Check your answers to part (a) using the mirror equation.

15. A man standing 1.52 m in front of a shaving mirror produces an inverted image 18.0 cm in front of it. How close to the mirror should he stand if he wants to form an upright image of his chin that is twice the chin’s actual size?

16. A convex mirror has a focal length of magnitude 8.0 cm. (a) If the image is virtual, what is the object location for which the magnitude of the image distance is one third the magnitude of the object distance? (b) Find the magnification of the image and state whether it is upright or inverted.

17. A woman holds a tube of lipstick 10.0 cm from a spherical mirror and notices that the image of the tube is upright and half its normal size. (a) Determine the position of the image. Is it in front of or behind the mirror? (b) Calculate the focal length of the mirror.

18. **ESP** A concave mirror has a radius of curvature of 24 cm. (a) Determine the object position for which the resulting image is upright and three times the size of the object. (b) Draw a ray diagram to determine the position of the image. Is the image real or virtual?

19. **ESP** A spherical mirror is to be used to form an image, five times as tall as an object, on a screen positioned 5.0 m from the mirror. (a) Describe the type of mirror required. (b) Where should the mirror be positioned relative to the object?

20. **ESP** A ball is dropped from rest 3.00 m directly above the vertex of a concave mirror having a radius of 1.00 m and lying in a horizontal plane. (a) Describe the motion of the ball’s image in the mirror. (b) At what time do the ball and its image coincide?

SECTION 23.4 IMAGES FORMED BY REFRACTION

21. A cubical block of ice 50.0 cm on an edge is placed on a level floor over a speck of dust. Locate the image of the speck, when viewed from directly above, if the index of refraction of ice is 1.309.

22. One end of a long glass rod \((n = 1.50)\) has the shape of a convex surface of radius 8.00 cm. An object is positioned in air along the axis of the rod in front of the convex surface. Find the image position that corresponds to each of the following object positions: (a) 20.0 cm, (b) 8.00 cm, (c) 4.00 cm, (d) 2.00 cm.

23. A paperweight is made of a solid glass hemisphere with index of refraction 1.50. The radius of the circular cross...
section is 4.0 cm. The hemisphere is placed on its flat surface, with the center directly over a 2.5-mm-long line drawn on a sheet of paper. What length of line is seen by someone looking vertically down on the hemisphere?

24. The top of a swimming pool is at ground level. If the pool is 2 m deep, how far below ground level does the bottom of the pool appear to be located when (a) the pool is completely filled with water and (b) the pool is filled halfway with water?

25. A transparent sphere of unknown composition is observed to form an image of the Sun on its surface opposite the Sun. What is the refractive index of the sphere material?

26. A flint glass plate \((n = 1.66) \) rests on the bottom of an aquarium tank. The plate is 8.00 cm thick (vertical dimension) and covered with water \((n = 1.33) \) to a depth of 12.0 cm. Calculate the apparent thickness of the plate as viewed from above the water. (Assume nearly normal incidence of light rays.)

27. A jellyfish is floating in a water-filled aquarium 1.00 m behind a flat pane of glass 6.00 cm thick and having an index of refraction of 1.50. (a) Where is the image of the jellyfish located? (b) Repeat the problem when the glass is so thin that its thickness can be neglected. (c) How does the thickness of the glass affect the answer to part (a)?

28. A goldfish is swimming at 2.00 cm/s toward the front wall of a rectangular aquarium. What is the apparent speed of the fish as measured by an observer looking in from outside the front wall of the tank? The index of refraction of water is 1.333.

SECTION 23.6 THIN LENSES

29. A contact lens is made of plastic with an index of refraction of 1.50. The lens has an outer radius of curvature of +2.00 cm and an inner radius of curvature of +2.50 cm. What is the focal length of the lens?

30. The left face of a biconvex lens has a radius of curvature of 12.0 cm, and the right face has a radius of curvature of 18.0 cm. The index of refraction of the glass is 1.44. (a) Calculate the focal length of the lens. (b) Calculate the focal length if the radii of curvature of the two faces are interchanged.

31. A converging lens has a focal length of 10.0 cm. Locate the images for object distances of (a) 20.0 cm, (b) 10.0 cm, and (c) 5.00 cm, if they exist. For each case, state whether the image is real or virtual, upright or inverted, and find the magnification.

32. A converging lens has a focal length of 10.0 cm. Use graph paper to construct accurate ray diagrams for object distances of (a) 20.0 cm and (b) 5.00 cm. From your ray diagrams, determine the location of the image and its properties and compare your results with the values found algebraically in Problem 31. (c) Name at least three errors in constructing the graph that could lead to differences in the final answer.

33. A diverging lens has a focal length of 20.0 cm. Locate the images for object distances of (a) 40.0 cm, (b) 20.0 cm, and (c) 10.0 cm. For each case, state whether the image is real or virtual and upright or inverted, and find the magnification.

34. A diverging lens has a focal length of 20.0 cm. Use graph paper to construct accurate ray diagrams for object distances of (a) 40.0 cm and (b) 10.0 cm. In each case determine the location of the image from the diagram and the image magnification, and state whether the image is upright or inverted. (c) Estimate the magnitude of uncertainty in locating the points in the graph. Are your answers and the uncertainty consistent with the algebraic answers found in Problem 33?

35. A transparent photographic slide is placed in front of a converging lens with a focal length of 2.44 cm. The lens forms an image of the slide 12.9 cm from it. How far is the lens from the slide if the image is (a) real? (b) Virtual?

36. The nickel’s image in Figure P23.36 has twice the diameter of the nickel when the lens is 2.84 cm from the nickel. Determine the focal length of the lens.

37. A certain LCD projector contains a single thin lens. An object 24.0 mm high is to be projected so that its image fills a screen 1.80 m high. The object-to-screen distance is 3.00 m. (a) Determine the focal length of the projection lens. (b) How far from the object should the lens of the projector be placed to form the image on the screen?

38. A convex lens of focal length 18.0 cm is used as a magnifying glass. At what distance from a tiny insect should you hold this lens to get a magnification of +3.00?

39. A converging lens is placed 30.0 cm to the right of a diverging lens of focal length 10.0 cm. A beam of parallel light enters the diverging lens from the left, and the beam is again parallel when it emerges from the converging lens. Calculate the focal length of the converging lens.

40. (a) Use the thin-lens equation to derive an expression for \(q \) in terms of \(f \) and \(p \). (b) Prove that for a real object and a diverging lens, the image must always be virtual. Hint: Set \(f = -|f| \) and show that \(q \) must be less than zero under the given conditions. (c) For a real object and converging lens, what inequality involving \(p \) and \(f \) must hold if the image is to be real?

41. Two converging lenses, each of focal length 15.0 cm, are placed 40.0 cm apart, and an object is placed 30.0 cm in front of the first lens. Where is the final image formed, and what is the magnification of the system?
42. Object O1 is 15.0 cm to the left of a converging lens with a 10.0-cm focal length. A second lens is positioned 10.0 cm to the right of the first lens and is observed to form a final image at the position of the original object O1. (a) What is the focal length of the second lens? (b) What is the overall magnification of this system? (c) What is the nature (i.e., real or virtual, upright or inverted) of the final image?

43. A 1.00-cm-high object is placed 4.00 cm to the left of a converging lens of focal length 8.00 cm. A second lens is positioned 10.0 cm to the right of the first lens and is observed to form a final image at the position of the original object O1. (a) What is the focal length of the second lens? (b) What is the overall magnification of this system? (c) What is the nature (i.e., real or virtual, upright or inverted) of the final image?

44. Two converging lenses having focal lengths of 10.0 cm and 20.0 cm are placed 50.0 cm apart, as shown in Figure P23.44. The final image is to be located between the lenses, at the position indicated. (a) How far to the left of the first lens should the object be positioned? (b) What is the overall magnification of the system? (c) Is the final image upright or inverted?

45. Lens L1 in Figure P23.45 has a focal length of 15.0 cm and is located a fixed distance in front of the film plane of a camera. Lens L2 has a focal length of 13.0 cm, and its distance d from the film plane can be varied from 5.00 cm to 10.0 cm. Determine the range of distances for which objects can be focused on the film.

46. An object is placed 15.0 cm from a first converging lens of focal length 10.0 cm. A second converging lens with focal length 5.00 cm is placed 10.0 cm to the right of the first converging lens. (a) Find the position q1 of the image formed by the first converging lens. (b) How far from the second lens is the image of the first lens? (c) What is the value of p2, the object position for the second lens? (d) Find the position q2 of the image formed by the second lens. (e) Calculate the magnification of the first lens. (f) Calculate the magnification of the second lens. (g) What is the total magnification for the system? (h) Is the final image real or virtual? Is it upright or inverted?

ADDITIONAL PROBLEMS

47. An object placed 10.0 cm from a concave spherical mirror produces a real image 8.00 cm from the mirror. If the object is moved to a new position 20.0 cm from the mirror, what is the position of the image? Is the final image real or virtual?

48. A real object’s distance from a converging lens is five times the focal length. (a) Determine the location of the image q in terms of the focal length f. (b) Find the magnification of the image. (c) Is the image real or virtual? Is it upright or inverted? Is the image on the same side of the lens as the object or on the opposite side?

49. A convergent lens with a 50.0-mm focal length is used to focus an image of a very distant scene onto a flat screen 35.0 mm wide. What is the angular width α of the scene included in the image on the screen?

50. A diverging lens (n = 1.50) is shaped like that in Active Figure 23.25c. The radius of the first surface is 15.0 cm, and that of the second surface is 10.0 cm. (a) Find the focal length of the lens. Determine the positions of the images for object distances of (b) infinity, (c) 3f, (d) f, and (e) f/2.

51. The lens and the mirror in Figure P23.51 are separated by 1.00 m and have focal lengths of +80.0 cm and −50.0 cm, respectively. If an object is placed 1.00 m to the left of the lens, where will the final image be located? State whether the image is upright or inverted, and determine the overall magnification.

52. The object in Figure P23.52 is midway between the lens and the mirror. The mirror’s radius of curvature is
20.0 cm, and the lens has a focal length of -16.7 cm. Considering only the light that leaves the object and travels first toward the mirror, locate the final image formed by this system. Is the image real or virtual? Is it upright or inverted? What is the overall magnification of the image?

53. A parallel beam of light enters a glass hemisphere perpendicular to the flat face, as shown in Figure P23.53. The radius of the hemisphere is $R = 6.00\text{ cm}$, and the index of refraction is $n = 1.560$. Determine the point at which the beam is focused. (Assume paraxial rays; i.e., assume all rays are located close to the principal axis.)

54. A converging lens of focal length 20.0 cm is separated by 50.0 cm from a converging lens of focal length 5.00 cm. (a) Find the position of the final image of an object placed 40.0 cm in front of the first lens. (b) If the height of the object is 2.00 cm, what is the height of the final image? Is the image real or virtual? (c) If the two lenses are now placed in contact with each other and the object is 5.00 cm in front of this combination, where will the image be located? (See Problem 56.)

55. To work this problem, use the fact that the image formed by the first surface becomes the object for the second surface. Figure P23.55 shows a piece of glass with index of refraction 1.50. The ends are hemispheres with radii 2.00 cm and 4.00 cm, and the centers of the hemispherical ends are separated by a distance of 8.00 cm. A point object is in air, 1.00 cm from the left end of the glass. Locate the image of the object due to refraction at the two spherical surfaces.

56. Consider two thin lenses, one of focal length f_1 and the other of focal length f_2, placed in contact with each other, as shown in Figure P23.56. Apply the thin-lens equation to each of these lenses and combine the results to show that this combination of lenses behaves like a thin lens having a focal length f given by $1/f = 1/f_1 + 1/f_2$. Assume the thicknesses of the lenses can be ignored in comparison to the other distances involved.

57. An object 2.00 cm high is placed 40.0 cm to the left of a converging lens having a focal length of 30.0 cm. A diverging lens having a focal length of -20.0 cm is placed 110 cm to the right of the converging lens. (a) Determine the final position and magnification of the final image. (b) Is the image upright or inverted? (c) Repeat parts (a) and (b) for the case where the second lens is a converging lens having a focal length of $+20.0 \text{ cm}$.

58. A “floating strawberry” illusion can be produced by two parabolic mirrors, each with a focal length of 7.5 cm, facing each other so that their centers are 7.5 cm apart (Fig. P23.58). If a strawberry is placed on the bottom mirror, an image of the strawberry forms at the small opening at the center of the top mirror. Show that the final image forms at that location and describe its characteristics. Note: A flashlight beam shone on these images has a very startling effect: Even at a glancing angle, the incoming light beam is seemingly reflected off the images of the strawberry! Do you understand why?

59. Figure P23.59 shows a converging lens with radii $R_1 = 9.00 \text{ cm}$ and $R_2 = -11.00 \text{ cm}$, in front of a concave spherical mirror of radius $R = 8.00 \text{ cm}$. The focal points (F_1 and F_2) for the thin lens and the center of curvature (C) of the mirror are also shown. (a) If the focal points F_1 and F_2 are 5.00 cm from the vertex of the thin lens, what is the index of refraction of the lens? (b) If the lens and mirror are 20.0 cm apart and an object is placed 8.00 cm to the left of the lens, what is the position of the final image and its magnification as seen by the eye in the figure? (c) Is the final image inverted or upright? Explain.
60. Find the object distances (in terms of f) for a thin converging lens of focal length f if (a) the image is real and the image distance is four times the focal length and (b) the image is virtual and the image distance is three times the focal length. (c) Calculate the magnification of the lens for cases (a) and (b).

61. The lens-maker’s equation for a lens with index n_1 immersed in a medium with index n_2 takes the form

$$\frac{1}{f} = \left(\frac{n_2}{n_1} - 1\right)\left(\frac{1}{R_1} - \frac{1}{R_2}\right)$$

A thin diverging glass (index = 1.50) lens with $R_1 = -3.00$ m and $R_2 = -6.00$ m is surrounded by air. An arrow is placed 10.0 m to the left of the lens. (a) Determine the position of the image. Repeat part (a) with the arrow and lens immersed in (b) water (index = 1.33) (c) a medium with an index of refraction of 2.00. (d) How can a lens that is diverging in air be changed into a converging lens?

62. An observer to the right of the mirror-lens combination shown in Figure P23.62 sees two real images that are the same size and in the same location. One image is upright, and the other is inverted. Both images are 1.50 times larger than the object. The lens has a focal length of 10.0 cm. The lens and mirror are separated by 40.0 cm. Determine the focal length of the mirror. (Don’t assume the figure is drawn to scale.)

63. The lens-maker’s equation applies to a lens immersed in a liquid if n in the equation is replaced by n_1/n_2. Here n_1 refers to the refractive index of the lens material and n_2 is that of the medium surrounding the lens. (a) A certain lens has focal length of 79.0 cm in air and a refractive index of 1.55. Find its focal length in water. (b) A certain mirror has focal length of 79.0 cm in air. Find its focal length in water.
Colors swirl on a soap bubble as it drifts through the air on a summer day, and vivid rainbows reflect from the film of oil films in the puddles of a dirty city street. Beachgoers, covered with thin layers of oil, wear their coated sunglasses that absorb half the incoming light. In laboratories, scientists determine the precise composition of materials by analyzing the light they give off when hot, and in observatories around the world, telescopes gather light from distant galaxies, filtering out individual wavelengths in bands and thereby determining the speed of expansion of the Universe.

Understanding how these rainbows are made and how certain scientific instruments can determine wavelengths is the domain of wave optics. Light can be viewed as either a particle or a wave. Geometric optics, the subject of the previous chapter, depends on the particle nature of light. Wave optics depends on the wave nature of light. The three primary topics we examine in this chapter are interference, diffraction, and polarization. These phenomena can’t be adequately explained with ray optics, but can be understood if light is viewed as a wave.

24.1 CONDITIONS FOR INTERFERENCE

In our discussion of interference of mechanical waves in Chapter 13, we found that two waves could add together either constructively or destructively. In constructive interference, the amplitude of the resultant wave is greater than that of either of the individual waves, whereas in destructive interference, the resultant amplitude is less than that of either individual wave. Light waves also interfere with one another. Fundamentally, all interference associated with light waves arises when the electromagnetic fields that constitute the individual waves combine.

Interference effects in light waves aren’t easy to observe because of the short wavelengths involved (about 4×10^{-7} m to about 7×10^{-7} m). The following two conditions, however, facilitate the observation of interference between two sources of light:

1. The sources are coherent, which means that the waves they emit must maintain a constant phase with respect to one another.
2. The waves have identical wavelengths.
Two sources (producing two traveling waves) are needed to create interference. To produce a stable interference pattern, the individual waves must maintain a constant phase with one another. When this situation prevails, the sources are said to be coherent. The sound waves emitted by two side-by-side loudspeakers driven by a single amplifier can produce interference because the two speakers respond to the amplifier in the same way at the same time; they are in phase.

If two light sources are placed side by side, however, no interference effects are observed because the light waves from one source are emitted independently of the waves from the other source; hence, the emissions from the two sources don’t maintain a constant phase relationship with each other during the time of observation. An ordinary light source undergoes random changes about once every 10^{-8} s. Therefore, the conditions for constructive interference, destructive interference, and intermediate states have durations on the order of 10^{-8} s. The result is that no interference effects are observed because the eye can’t follow such short-term changes. Ordinary light sources are said to be incoherent.

An older method for producing two coherent light sources is to pass light from a single wavelength (monochromatic) source through a narrow slit and then allow the light to fall on a screen containing two other narrow slits. The first slit is needed to create a single wave front that illuminates both slits coherently. The light emerging from the two slits is coherent because a single source produces the original light beam and the slits serve only to separate the original beam into two parts. Any random change in the light emitted by the source will occur in the two separate beams at the same time, and interference effects can be observed.

Currently it’s much more common to use a laser as a coherent source to demonstrate interference. A laser produces an intense, coherent, monochromatic beam over a width of several millimeters. The laser may therefore be used to illuminate multiple slits directly, and interference effects can be easily observed in a fully lighted room. The principles of operation of a laser are explained in Chapter 28.

24.2 Young’s Double-Slit Experiment

Thomas Young first demonstrated interference in light waves from two sources in 1801. Active Figure 24.1a is a schematic diagram of the apparatus used in this experiment. (Young used pinholes rather than slits in his original experiments.) Light is incident on a screen containing a narrow slit S_0. The light waves emerging from this slit arrive at a second screen that contains two narrow, parallel slits S_1 and S_2. These slits serve as a pair of coherent light sources because waves emerging...
from them originate from the same wave front and therefore are always in phase. The light from the two slits produces a visible pattern on screen \(C \) consisting of a series of bright and dark parallel bands called \textit{fringes} (Active Fig. 24.1b). When the light from slits \(S_1 \) and \(S_2 \) arrives at a point on the screen so that constructive interference occurs at that location, a bright fringe appears. When the light from the two slits combines destructively at any location on the screen, a dark fringe results. Figure 24.2 is a photograph of an interference pattern produced by two coherent vibrating sources in a water tank.

Figure 24.3 is a schematic diagram of some of the ways in which the two waves can combine at screen \(C \) of Figure 24.1. In Figure 24.3a two waves, which leave the two slits in phase, strike the screen at the central point \(P \). Because these waves travel equal distances, they arrive in phase at \(P \), and as a result, constructive interference occurs there and a bright fringe is observed. In Figure 24.3b the two light waves again start in phase, but the upper wave has to travel one wavelength farther to reach point \(Q \) on the screen. Because the upper wave falls behind the lower one by exactly one wavelength, the two waves still arrive in phase at that location. Now consider point \(R \), midway between \(P \) and \(Q \), in Figure 24.3c. At \(R \), the upper wave has fallen half a wavelength behind the lower wave. This means that the trough of the bottom wave overlaps the crest of the upper wave, giving rise to destructive interference. As a result, a dark fringe can be observed at \(R \).

We can describe Young’s experiment quantitatively with the help of Figure 24.4. Consider point \(P \) on the viewing screen; the screen is positioned a perpendicular distance \(L \) from the screen containing slits \(S_1 \) and \(S_2 \), which are separated by distance \(d \), and \(r_1 \) and \(r_2 \) are the distances the secondary waves travel from slit to screen. We assume the waves emerging from \(S_1 \) and \(S_2 \) have the same constant frequency, have the same amplitude, and start out in phase. The light intensity on the screen at \(P \) is the result of light from both slits. A wave from the lower slit, however, travels farther than a wave from the upper slit by the amount \(d \sin \theta \). This distance is called the \textit{path difference} \(\delta \) (lowercase Greek delta), where

\[\delta = r_2 - r_1 = d \sin \theta \] \[24.1\]

Equation 24.1 assumes the two waves travel in parallel lines, which is approximately true because \(L \) is much greater than \(d \). As noted earlier, the value of this path difference determines whether the two waves are in phase when they arrive at \(P \). If the path difference is either zero or some integral multiple of the wavelength, the two waves are in phase at \(P \) and constructive interference results. Therefore, the condition for bright fringes, or \textit{constructive interference}, at \(P \) is

\[\delta = d \sin \theta_{\text{bright}} = m\lambda \quad m = 0, \pm 1, \pm 2, \ldots \] \[24.2\]
The number \(m \) is called the **order number**. The central bright fringe at \(\theta_{\text{bright}} = 0 \) \((m = 0)\) is called the **zeroth-order maximum**. The first maximum on either side, where \(m = \pm 1 \), is called the **first-order maximum**, and so forth.

When \(d \) is an odd multiple of \(\lambda/2 \), the two waves arriving at \(P \) are 180° out of phase and give rise to destructive interference. Therefore, the condition for dark fringes, or destructive interference, at \(P \) is

\[
d = r_2 - r_1 = d \sin \theta.
\]

If \(m = 0 \) in this equation, the path difference is \(\delta = \lambda/2 \), which is the condition for the location of the first dark fringe on either side of the central (bright) maximum. Likewise, if \(m = 1 \), the path difference is \(\delta = 3\lambda/2 \), which is the condition for the second dark fringe on each side, and so forth.

It’s useful to obtain expressions for the positions of the bright and dark fringes measured vertically from \(O \) to \(P \). In addition to our assumption that \(L \gg d \), we assume \(d \gg \lambda \). These assumptions can be valid because, in practice, \(L \) is often on the order of 1 m, \(d \) is a fraction of a millimeter, and \(\lambda \) is a fraction of a micrometer for visible light. Under these conditions \(\theta \) is small, so we can use the approximation \(\sin \theta = \tan \theta \). Then, from triangle \(OPQ \) in Figure 24.4, we see that

\[
y = L \tan \theta = L \sin \theta
\]

Solving Equation 24.2 for \(\sin \theta \) and substituting the result into Equation 24.4, we find that the positions of the bright fringes, measured from \(O \), are

\[
y_{\text{bright}} = \frac{\lambda L}{d} m \quad m = 0, \pm 1, \pm 2, \ldots
\]

Using Equations 24.3 and 24.4, we find that the dark fringes are located at

\[
y_{\text{dark}} = \frac{\lambda L}{d} \left(m + \frac{1}{2} \right) \quad m = 0, \pm 1, \pm 2, \ldots
\]

As we will show in Example 24.1, Young’s double-slit experiment provides a method for measuring the wavelength of light. In fact, Young used this technique to do just that. In addition, his experiment gave the wave model of light a great deal of credibility. It was inconceivable that particles of light coming through the slits could cancel each other in a way that would explain the dark fringes.

Figure 24.4 A geometric construction that describes Young’s double-slit experiment. The path difference between the two rays is \(\delta = r_2 - r_1 = d \sin \theta \). (This figure is not drawn to scale.)

Tip 24.1 Small-Angle Approximation: Size Matters!

The small-angle approximation \(\sin \theta = \tan \theta \) is true to three-digit precision only for angles less than about 4°.
Quick Quiz 24.1
In a two-slit interference pattern projected on a screen, are the fringes equally spaced on the screen (a) everywhere, (b) only for large angles, or (c) only for small angles?

Quick Quiz 24.2
If the distance between the slits is doubled in Young’s experiment, what happens to the width of the central maximum? (a) The width is doubled. (b) The width is unchanged. (c) The width is halved.

Quick Quiz 24.3
A Young’s double-slit experiment is performed with three different colors of light: red, green, and blue. Rank the colors by the distance between adjacent bright fringes, from smallest to largest. (a) red, green, blue (b) green, blue, red (c) blue, green, red

Example 24.1 Measuring the Wavelength of a Light Source
Goal Show how Young’s experiment can be used to measure the wavelength of coherent light.

Problem A screen is separated from a double-slit source by 1.20 m. The distance between the two slits is 0.030 0 mm. The second-order bright fringe \(m = 2\) is measured to be 4.50 cm from the centerline. Determine (a) the wavelength of the light and (b) the distance between adjacent bright fringes.

Strategy Equation 24.5 relates the positions of the bright fringes to the other variables, including the wavelength of the light. Substitute into this equation and solve for \(\lambda\). Taking the difference between \(y_{m+1}\) and \(y_m\) results in a general expression for the distance between bright fringes.

Solution
(a) Determine the wavelength of the light.

Solve Equation 24.5 for the wavelength and substitute the values \(m = 2\), \(y_2 = 4.50 \times 10^{-2} \text{ m}\), \(L = 1.20 \text{ m}\), and \(d = 3.00 \times 10^{-3} \text{ m}\):

\[
\lambda = \frac{y_m d}{mL} = \frac{(4.50 \times 10^{-2} \text{ m})(3.00 \times 10^{-5} \text{ m})}{2(1.20 \text{ m})} = 5.63 \times 10^{-7} \text{ m} = 563 \text{ nm}
\]
(b) Determine the distance between adjacent bright fringes.

Use Equation 24.5 to find the distance between any adjacent bright fringes (here, those characterized by \(m \) and \(m + 1 \)):

\[
\Delta y = y_{m+1} - y_m = \frac{\lambda L}{d} (m + 1) - \frac{\lambda L}{d} m = \frac{\lambda L}{d}
\]

\[
= \frac{(5.63 \times 10^{-7} \text{ m})(1.20 \text{ m})}{3.00 \times 10^{-5} \text{ m}} = 2.25 \text{ cm}
\]

Remarks: This calculation depends on the angle \(\theta \) being small because the small-angle approximation was implicitly used. The measurement of the position of the bright fringes yields the wavelength of light, which in turn is a signature of atomic processes, as is discussed in the chapters on modern physics. This kind of measurement therefore helped open the world of the atom.

QUESTION 24.1

True or False: A larger slit creates a larger separation between interference fringes.

EXERCISE 24.1

Suppose the same experiment is run with a different light source. If the first-order maximum is found at 1.85 cm from the centerline, what is the wavelength of the light?

Answer: 465 nm

24.3 CHANGE OF PHASE DUE TO REFLECTION

Young’s method of producing two coherent light sources involves illuminating a pair of slits with a single source. Another simple, yet ingenious, arrangement for producing an interference pattern with a single light source is known as Lloyd’s mirror. A point source of light is placed at point \(S \), close to a mirror, as illustrated in Figure 24.5. Light waves can reach the viewing point \(P \) either by the direct path \(SP \) or by the path involving reflection from the mirror. The reflected ray can be treated as a ray originating at the source \(S' \) behind the mirror. Source \(S' \), which is the image of \(S \), can be considered a virtual source.

At points far from the source, an interference pattern due to waves from \(S \) and \(S' \) is observed, just as for two real coherent sources. The positions of the dark and bright fringes, however, are reversed relative to the pattern obtained from two real coherent sources (Young’s experiment). This is because the coherent sources \(S \) and \(S' \) differ in phase by 180°, a phase change produced by reflection.

To illustrate the point further, consider \(P' \), the point where the mirror intersects the screen. This point is equidistant from \(S \) and \(S' \). If path difference alone were responsible for the phase difference, a bright fringe would be observed at \(P' \) (because the path difference is zero for this point), corresponding to the central fringe of the two-slit interference pattern. Instead, we observe a dark fringe at \(P' \), from which we conclude that a 180° phase change must be produced by reflection from the mirror. In general, an electromagnetic wave undergoes a phase change of 180° upon reflection from a medium that has an index of refraction higher than the one in which the wave was traveling.

An analogy can be drawn between reflected light waves and the reflections of a transverse wave on a stretched string when the wave meets a boundary, as in Figure 24.6 (page 796). The reflected pulse on a string undergoes a phase change of 180° when it is reflected from the boundary of a denser string or from a rigid barrier and undergoes no phase change when it is reflected from the boundary of a less dense string. Similarly, an electromagnetic wave undergoes a 180° phase change when reflected from the boundary of a medium with index of refraction higher than the one in which it has been traveling. There is no phase change when the wave is reflected from a boundary leading to a medium of lower index of refraction. The transmitted wave that crosses the boundary also undergoes no phase change.

FIGURE 24.5 Lloyd’s mirror. An interference pattern is produced on a screen at \(P \) as a result of the combination of the direct ray (blue) and the reflected ray (brown). The reflected ray undergoes a phase change of 180°.
24.4 INTERFERENCE IN THIN FILMS

Interference effects are commonly observed in thin films, such as the thin surface of a soap bubble or thin layers of oil on water. The varied colors observed when incoherent white light is incident on such films result from the interference of waves reflected from the two surfaces of the film.

Consider a film of uniform thickness t and index of refraction n, as in Figure 24.7. Assume the light rays traveling in air are nearly normal to the two surfaces of the film. To determine whether the reflected rays interfere constructively or destructively, we first note the following facts:

1. An electromagnetic wave traveling from a medium of index of refraction n_1 toward a medium of index of refraction n_2 undergoes a 180° phase change on reflection when $n_2/n_1 > 0$. There is no phase change in the reflected wave if $n_2/n_1 < 0$.

2. The wavelength of light λ_n in a medium with index of refraction n is

$$\lambda_n = \frac{\lambda}{n} \quad \text{[24.7]}$$

where λ is the wavelength of light in vacuum.

We apply these rules to the film of Figure 24.7. According to the first rule, ray 1, which is reflected from the upper surface A, undergoes a phase change of 180° with respect to the incident wave. Ray 2, which is reflected from the lower surface B, undergoes no phase change with respect to the incident wave. Therefore, ray 1 is 180° out of phase with respect to ray 2, which is equivalent to a path difference of $\lambda_n/2$. We must also consider, though, that ray 2 travels an extra distance of $2t$ before the waves recombine in the air above the surface. For example, if $2t = \lambda_n/2$, rays 1 and 2 recombine in phase and constructive interference results. In general, the condition for constructive interference in thin films is

$$2t = (m + \frac{1}{2})\lambda_n \quad m = 0, 1, 2, \ldots \quad \text{[24.8]}$$

This condition takes into account two factors: (1) the difference in path length for the two rays (the term $m\lambda_n$) and (2) the 180° phase change upon reflection (the term $\lambda_n/2$). Because $\lambda_n = \lambda/n$, we can write Equation 24.8 in the form

$$2nt = (m + \frac{1}{2})\lambda \quad m = 0, 1, 2, \ldots \quad \text{[24.9]}$$

If the extra distance $2t$ traveled by ray 2 is a multiple of λ_n, the two waves combine out of phase and the result is destructive interference. The general equation for destructive interference in thin films is

$$2nt = m\lambda \quad m = 0, 1, 2, \ldots \quad \text{[24.10]}$$
Equations 24.9 and 24.10 for constructive and destructive interference are valid when there is only one phase reversal. This will occur when the media above and below the thin film both have indices of refraction greater than the film or when both have indices of refraction less than the film. Figure 24.7 is a case in point: the air ($n = 1$) that is both above and below the film has an index of refraction less than that of the film. As a result, there is a phase reversal on reflection off the top layer of the film but not the bottom, and Equations 24.9 and 24.10 apply.

If the film is placed between two different media, one of lower refractive index than the film and one of higher refractive index, Equations 24.9 and 24.10 are reversed: Equation 24.9 is used for destructive interference and Equation 24.10 for constructive interference. In this case either there is a phase change of 180° for both ray 1 reflecting from surface A and ray 2 reflecting from surface B, as in Figure 24.9 of Example 24.3, or there is no phase change for either ray, which would be the case if the incident ray came from underneath the film. Hence, the net change in relative phase due to the reflections is zero.

QUICK QUIZ 24.4 Suppose Young’s experiment is carried out in air, and then, in a second experiment, the apparatus is immersed in water. In what way does the distance between bright fringes change? (a) They move farther apart. (b) They move closer together. (c) There is no change.

Newton’s Rings

Another method for observing interference in light waves is to place a plano-convex lens on top of a flat glass surface, as in Figure 24.8a. With this arrangement, the air film between the glass surfaces varies in thickness from zero at the point of contact to some value t at P. If the radius of curvature R of the lens is much greater than the distance r and the system is viewed from above light of wavelength λ, a pattern of light and dark rings is observed (Fig. 24.8b). These circular fringes, discovered by Newton, are called Newton’s rings. The interference is due to the combination of ray 1, reflected from the plate, with ray 2, reflected from the lower surface of the lens. Ray 1 undergoes a phase change of 180° on reflection because it is reflected from a boundary leading into a medium of higher refractive index, whereas ray 2 undergoes no phase change because it is reflected from a medium of lower refractive index. Hence, the conditions for constructive and destructive interference are given by Equations 24.9 and 24.10, respectively, with $n = 1$ because the “film” is air. The contact point at O is dark, as seen in Figure 24.8b, because there is no phase difference and the total phase change is due only to the 180° phase change upon reflection. Using the geometry shown in Figure 24.8a, we can obtain expressions for the radii of the bright and dark bands in terms of the radius of curvature R and vacuum wavelength λ. For example, the dark rings have radii of $r = m\lambda R/n$.

FIGURE 24.8 (a) The combination of rays reflected from the glass plate and the curved surface of the lens gives rise to an interference pattern known as Newton’s rings. (b) A photograph of Newton’s rings. (c) This asymmetric interference pattern indicates imperfections in the lens.
One important use of Newton’s rings is in the testing of optical lenses. A circular pattern like that in Figure 24.8b is achieved only when the lens is ground to a perfectly spherical curvature. Variations from such symmetry might produce a pattern like that in Figure 24.8c. These variations give an indication of how the lens must be reground and repolished to remove imperfections.

APPLICATION

Checking for Imperfections in Optical Lenses

PROBLEM-SOLVING STRATEGY

THIN-FILM INTERFERENCE

The following steps are recommended in addressing thin-film interference problems:

1. Identify the thin film causing the interference, and the indices of refraction in the film and in the media on either side of it.
2. Determine the number of phase reversals: zero, one, or two.
3. Consult the following table, which contains Equations 24.9 and 24.10, and select the correct column for the problem in question:

<table>
<thead>
<tr>
<th>Equation ((m = 0, 1, \ldots))</th>
<th>1 Phase Reversal</th>
<th>0 or 2 Phase Reversals</th>
</tr>
</thead>
<tbody>
<tr>
<td>(2nt = (m + \frac{1}{2})\lambda) [24.9]</td>
<td>Constructive</td>
<td>Destructive</td>
</tr>
<tr>
<td>(2nt = m\lambda) [24.10]</td>
<td>Destructive</td>
<td>Constructive</td>
</tr>
</tbody>
</table>

4. Substitute values in the appropriate equations, as selected in the previous step.

EXAMPLE 24.2 Interference in a Soap Film

Goal Study constructive interference effects in a thin film.

Problem (a) Calculate the minimum thickness of a soap-bubble film \((n = 1.33) \) that will result in constructive interference in the reflected light if the film is illuminated by light with wavelength 602 nm in free space. (b) Recalculate the minimum thickness for constructive interference when the soap-bubble film is on top of a glass slide with \(n = 1.50 \).

Strategy In part (a) there is only one inversion, so the condition for constructive interference is \(2nt = (m + \frac{1}{2})\lambda \). The minimum film thickness for constructive interference corresponds to \(m = 0 \) in this equation. Part (b) involves two inversions, so \(2nt = m\lambda \) is required.

Solution

(a) Calculate the minimum thickness of the soap-bubble film that will result in constructive interference.

Solve \(2nt = \frac{\lambda}{2} \) for the thickness \(t \) and substitute:

\[
t = \frac{\lambda}{4n} = \frac{602 \text{ nm}}{4(1.33)} = 113 \text{ nm}
\]

(b) Find the minimum soap-film thickness when the film is on top of a glass slide with \(n = 1.33 \).

Write the condition for constructive interference, when two inversions take place:

\(2nt = m\lambda \)

Solve for \(t \) and substitute:

\[
t = \frac{m\lambda}{2n} = \frac{1 \cdot (602 \text{ nm})}{2(1.33)} = 226 \text{ nm}
\]

Remark The swirling colors in a soap bubble result from the thickness of the soap layer varying from one place to another.
QUESTION 24.2
A soap film looks red in one area and violet in a nearby area. In which area is the soap film thicker?

EXERCISE 24.2
What other film thicknesses in part (a) will produce constructive interference?

Answer
339 nm, 566 nm, 792 nm, and so on

EXAMPLE 24.3 Nonreflective Coatings for Solar Cells and Optical Lenses

Goal
Study destructive interference effects in a thin film when there are two inversions.

Problem
Semiconductors such as silicon are used to fabricate solar cells, devices that generate electric energy when exposed to sunlight. Solar cells are often coated with a transparent thin film, such as silicon monoxide (SiO; $n = 1.45$), to minimize reflective losses (Fig. 24.9). A silicon solar cell ($n = 3.50$) is coated with a thin film of silicon monoxide for this purpose. Assuming normal incidence, determine the minimum thickness of the film that will produce the least reflection at a wavelength of 552 nm.

Strategy
Reflection is least when rays 1 and 2 in Figure 24.9 meet the condition for destructive interference. Note that both rays undergo 180° phase changes on reflection. The condition for a reflection minimum is therefore $2nt = \lambda/2$.

Solution
Solve $2nt = \lambda/2$ for t, the required thickness:
$$t = \frac{\lambda}{4n} = \frac{552 \text{ nm}}{4(1.45)} = 95.2 \text{ nm}$$

Remarks
Typically, such coatings reduce the reflective loss from 30% (with no coating) to 10% (with a coating), thereby increasing the cell’s efficiency because more light is available to create charge carriers in the cell. In reality, the coating is never perfectly nonreflecting because the required thickness is wavelength dependent and the incident light covers a wide range of wavelengths.

QUESTION 24.3
To minimize reflection of a smaller wavelength, should the thickness of the coating be thicker or thinner?

EXERCISE 24.3
Glass lenses used in cameras and other optical instruments are usually coated with one or more transparent thin films, such as magnesium fluoride (MgF$_2$), to reduce or eliminate unwanted reflection. Carl Zeiss developed this method; his first coating was 1.00 \times 10$^{-2}$ nm thick, on glass. Using $n = 1.38$ for MgF$_2$, what visible wavelength would be eliminated by destructive interference in the reflected light?

Answer
552 nm

EXAMPLE 24.4 Interference in a Wedge-Shaped Film

Goal
Calculate interference effects when the film has variable thickness.

Problem
A pair of glass slides 10.0 cm long and with $n = 1.52$ are separated on one end by a hair, forming a triangular wedge of air, as illustrated in Figure 24.10. When coherent light from a helium–neon laser with
Some may be concerned about interference caused by light bouncing off the top and bottom of, say, the upper glass slide. It’s unlikely, however, that the thickness of the slide will be half an integer multiple of the wavelength of the helium–neon laser (for some very large value of \(m \)). In addition, in contrast to the air wedge, the thickness of the glass doesn’t vary.

QUESTION 24.4

If the air wedge is filled with water, how is the distance between dark bands affected? Explain.

EXERCISE 24.4

The air wedge is replaced with water, with \(n = 1.33 \). Find the distance between dark bands when the helium–neon laser light hits the glass slides.

Answer \(5.02 \times 10^{-4} \) m

24.5 USING INTERFERENCE TO READ CDs AND DVDs

Compact discs (CDs) and digital videodiscs (DVDs) have revolutionized the computer and entertainment industries by providing fast access; high-density storage of text, graphics, and movies; and high-quality sound recordings. The data on these videodiscs are stored digitally as a series of zeros and ones, and these zeros and ones are read by laser light reflected from the disc. Strong reflections (constructive interference) from the disc are chosen to represent zeros, and weak reflections (destructive interference) represent ones.

To see in more detail how thin-film interference plays a crucial role in reading CDs, consider Figure 24.11. This figure shows a photomicrograph of several CD tracks which consist of a sequence of pits (when viewed from the top or label side of the disc) of varying length formed in a reflecting-metal information layer. A cross-sectional view of a CD as shown in Figure 24.12 reveals that the pits appear as bumps to the laser beam, which shines on the metallic layer through a clear plastic coating from below.
As the disk rotates, the laser beam reflects off the sequence of bumps and lower areas into a photodetector, which converts the fluctuating reflected light intensity into an electrical string of zeros and ones. To make the light fluctuations more pronounced and easier to detect, the pit depth t is made equal to one-quarter of a wavelength of the laser light in the plastic. When the beam hits a rising or falling bump edge, part of the beam reflects from the top of the bump and part from the lower adjacent area, ensuring destructive interference and very low intensity when the reflected beams combine at the detector. Bump edges are read as ones, and flat bump tops and intervening flat plains are read as zeros.

In Example 24.5 the pit depth for a standard CD, using an infrared laser of wavelength 780 nm, is calculated. DVDs use shorter wavelength lasers of 635 nm, and the track separation, pit depth, and minimum pit length are all smaller. These differences allow a DVD to store about 30 times more information than a CD.

EXAMPLE 24.5 Pit Depth in a CD

Goal Apply interference principles to a CD.

Problem Find the pit depth in a CD that has a plastic transparent layer with index of refraction of 1.60 and is designed for use in a CD player using a laser with a wavelength of $7.80 \times 10^{2} \text{ nm}$ in air.

Strategy (See Fig. 24.12.) Rays 1 and 2 both reflect from the metal layer, which acts like a mirror, so there is no phase difference due to reflection between those rays. There is, however, the usual phase difference caused by the extra distance $2t$ traveled by ray 2. The wavelength is λ/n, where n is the index of refraction in the substance.

Solution Use the appropriate condition for destructive interference in a thin film:

$$2t = \frac{\lambda}{2n}$$

Solve for the thickness t and substitute:

$$t = \frac{\lambda}{4n} = \frac{7.80 \times 10^{2} \text{ nm}}{4(1.60)} = 1.22 \times 10^{2} \text{ nm}$$

Remarks Different CD systems have different tolerances for scratches. Anything that changes the reflective properties of the disk can affect the readability of the disk.

QUESTION 24.5

True or False: Given two plastics with different indices of refraction, the material with the larger index of refraction will have a larger pit depth.

EXERCISE 24.5

Repeat the example for a laser with wavelength 635 nm.

Answer 99.2 nm
24.6 DIFFRACTION

Suppose a light beam is incident on two slits, as in Young’s double-slit experiment. If the light truly traveled in straight-line paths after passing through the slits, as in Figure 24.13a, the waves wouldn’t overlap and no interference pattern would be seen. Instead, Huygens’ principle requires that the waves spread out from the slits, as shown in Figure 24.13b. In other words, the light bends from a straight-line path and enters the region that would otherwise be shadowed. This spreading out of light from its initial line of travel is called diffraction.

In general, diffraction occurs when waves pass through small openings, around obstacles, or by sharp edges. For example, when a single narrow slit is placed between a distant light source (or a laser beam) and a screen, the light produces a diffraction pattern like that in Figure 24.14. The pattern consists of a broad, intense central band flanked by a series of narrower, less intense secondary bands (called secondary maxima) and a series of dark bands, or minima. This phenomenon can’t be explained within the framework of geometric optics, which says that light rays traveling in straight lines should cast a sharp image of the slit on the screen.

Figure 24.15 shows the diffraction pattern and shadow of a penny. The pattern consists of the shadow, a bright spot at its center, and a series of bright and dark circular bands of light near the edge of the shadow. The bright spot at the center (called the Fresnel bright spot) is explained by Augustin Fresnel’s wave theory of light, which predicts constructive interference at this point for certain locations of the penny. From the viewpoint of geometric optics, there shouldn’t be any bright spot: the center of the pattern would be completely screened by the penny.

One type of diffraction, called Fraunhofer diffraction, occurs when the rays leave the diffracting object in parallel directions. Fraunhofer diffraction can be achieved experimentally either by placing the observing screen far from the slit or by using a converging lens to focus the parallel rays on a nearby screen, as in Active Figure 24.16a. A bright fringe is observed along the axis at \(\theta = 0\), with alternating dark and bright fringes on each side of the central bright fringe. Active Figure 24.16b is a photograph of a single-slit Fraunhofer diffraction pattern.
24.7 **SINGLE-SLIT DIFFRACTION**

Until now we have assumed slits have negligible width, acting as line sources of light. In this section we determine how their nonzero widths are the basis for understanding the nature of the Fraunhofer diffraction pattern produced by a single slit.

We can deduce some important features of this problem by examining waves coming from various portions of the slit, as shown in Figure 24.17. According to Huygens’ principle, each portion of the slit acts as a source of waves. Hence, light from one portion of the slit can interfere with light from another portion, and the resultant intensity on the screen depends on the direction θ.

To analyze the diffraction pattern, it’s convenient to divide the slit into halves, as in Figure 24.17. All the waves that originate at the slit are in phase. Consider waves 1 and 3, which originate at the bottom and center of the slit, respectively. Wave 1 travels farther than wave 3 by an amount equal to the path difference $(a/2) \sin \theta$, where a is the width of the slit. Similarly, the path difference between waves 3 and 5 is $(a/2) \sin \theta$. If this path difference is exactly half of a wavelength (corresponding to a phase difference of 180°), the two waves cancel each other and destructive interference results. This is true, in fact, for any two waves that originate at points separated by half the slit width because the phase difference between two such points is 180°. Therefore, waves from the upper half of the slit interfere destructively with waves from the lower half of the slit when

$$\frac{a}{2} \sin \theta = \frac{\lambda}{2}$$

or when

$$\sin \theta = \frac{\lambda}{a}$$

If we divide the slit into four parts rather than two and use similar reasoning, we find that the screen is also dark when

$$\sin \theta = \frac{2\lambda}{a}$$

Continuing in this way, we can divide the slit into six parts and show that darkness occurs on the screen when

$$\sin \theta = \frac{3\lambda}{a}$$

Therefore, the general condition for destructive interference for a single slit of width a is

$$\sin \theta_{\text{dark}} = m \frac{\lambda}{a} \quad m = \pm 1, \pm 2, \pm 3, \ldots \quad [24.11]$$

Equation 24.11 gives the values of θ for which the diffraction pattern has zero intensity, where a dark fringe forms. The equation tells us nothing about the variation in intensity along the screen, however. The general features of the intensity distribution along the screen are shown in Figure 24.18. A broad central bright
fringe is flanked by much weaker bright fringes alternating with dark fringes. The various dark fringes (points of zero intensity) occur at the values of \(\theta \) that satisfy Equation 24.11. The points of constructive interference lie approximately halfway between the dark fringes. Note that the central bright fringe is twice as wide as the weaker maxima having \(m > 1 \).

QUICK QUIZ 24.5 In a single-slit diffraction experiment, as the width of the slit is made smaller, does the width of the central maximum of the diffraction pattern (a) becomes smaller, (b) become larger, or (c) remain the same?

APPLYING PHYSICS 24.3 DIFFRACTION OF SOUND WAVES

If a classroom door is open even a small amount, you can hear sounds coming from the hallway, yet you can't see what is going on in the hallway. How can this difference be explained?

Explanation The space between the slightly open door and the wall is acting as a single slit for waves. Sound waves have wavelengths larger than the width of the slit, so sound is effectively diffracted by the opening and the central maximum spreads throughout the room. Light wavelengths are much smaller than the slit width, so there is virtually no diffraction for the light. You must have a direct line of sight to detect the light waves.

EXAMPLE 24.6 A Single-Slit Experiment

Goal Find the positions of the dark fringes in single-slit diffraction.

Problem Light of wavelength \(5.80 \times 10^{-7} \) m is incident on a slit of width 0.300 mm. The observing screen is placed 2.00 m from the slit. Find the positions of the first dark fringes and the width of the central bright fringe.

Strategy This problem requires substitution into Equation 24.11 to find the sines of the angles of the first dark fringes. The positions can then be found with the tangent function because for small angles \(\sin \theta \approx \tan \theta \). The extent of the central maximum is defined by these two dark fringes.

Solution The first dark fringes that flank the central bright fringe correspond to \(m = \pm 1 \) in Equation 24.11:

\[
\sin \theta = \pm \frac{\lambda}{a} = \pm \frac{5.80 \times 10^{-7} \text{ m}}{0.300 \times 10^{-3} \text{ m}} = \pm 1.93 \times 10^{-3}
\]

Use the triangle in Figure 24.18 to relate the position of the fringe to the tangent function:

\[
\tan \theta = \frac{\gamma_1}{L}
\]

Because \(\theta \) is very small, we can use the approximation \(\sin \theta \approx \tan \theta \) and then solve for \(\gamma_1 \):

\[
\sin \theta = \tan \theta = \frac{\gamma_1}{L}
\]

\[
\gamma_1 = L \sin \theta = (2.00 \text{ m})(\pm 1.93 \times 10^{-3}) = \pm 3.86 \times 10^{-3} \text{ m}
\]

Compute the distance between the positive and negative first-order maxima, which is the width \(w \) of the central maximum:

\[
w = 3.86 \times 10^{-3} \text{ m} - (-3.86 \times 10^{-3} \text{ m}) = 7.72 \times 10^{-3} \text{ m}
\]

Remarks Note that this value of \(w \) is much greater than the width of the slit. As the width of the slit is increased, however, the diffraction pattern narrows, corresponding to smaller values of \(\theta \). In fact, for large values of \(a \), the maxima and minima are so closely spaced that the only observable pattern is a large central bright area resembling the geometric image of the slit. Because the width of the geometric image increases as the slit width increases, the narrowest image occurs when the geometric and diffraction widths are equal.
QUESTION 24.6
Suppose the entire apparatus is immersed in water. If the same wavelength of light (in air) is incident on the slit immersed in water, is the resulting central maximum larger or smaller? Explain.

EXERCISE 24.6
Determine the width of the first-order bright fringe in the example, when the apparatus is in air.

Answer
3.86 mm

24.8 THE DIFFRACTION GRATING
The diffraction grating, a useful device for analyzing light sources, consists of a large number of equally spaced parallel slits. A grating can be made by scratching parallel lines on a glass plate with a precision machining technique. The clear panes between scratches act like slits. A typical grating contains several thousand lines per centimeter. For example, a grating ruled with 5000 lines/cm has a slit spacing \(d \) equal to the reciprocal of that number; hence, \(d = \frac{1}{5000} \) cm = 2 × 10\(^{-4}\) cm.

Figure 24.19 is a schematic diagram of a section of a plane diffraction grating. A plane wave is incident from the left, normal to the plane of the grating. The intensity of the pattern on the screen is the result of the combined effects of interference and diffraction. Each slit causes diffraction, and the diffracted beams in turn interfere with one another to produce the pattern. Moreover, each slit acts as a source of waves, and all waves start in phase at the slits. For some arbitrary direction \(\theta \) measured from the horizontal, however, the waves must travel different path lengths before reaching a particular point \(P \) on the screen. In Figure 24.19, note that the path difference between waves from any two adjacent slits is \(d \sin \theta \). If this path difference equals one wavelength or some integral multiple of a wavelength, waves from all slits will be in phase at \(P \) and a bright line will be observed at that point. Therefore, the condition for maxima in the interference pattern at the angle \(\theta \) is

\[
d \sin \theta = m \lambda, \quad m = 0, \pm 1, \pm 2, \ldots
\]

[24.12]

\(d \sin \theta \) for maxima in the interference pattern of a diffraction grating

FIGURE 24.19 A side view of a diffraction grating. The slit separation is \(d \), and the path difference between adjacent slits is \(d \sin \theta \).
Light emerging from a slit at an angle other than that for a maximum interferes nearly completely destructively with light from some other slit on the grating. All such pairs will result in little or no transmission in that direction, as illustrated in Active Figure 24.20.

Equation 24.12 can be used to calculate the wavelength from the grating spacing and the angle of deviation, \(\theta \). The integer \(m \) is the order number of the diffraction pattern. If the incident radiation contains several wavelengths, each wavelength deviates through a specific angle, which can be found from Equation 24.12. All wavelengths are focused at \(\theta = 0 \), corresponding to \(m = 0 \). This point is called the zeroth-order maximum. The first-order maximum, corresponding to \(m = 1 \), is observed at an angle that satisfies the relationship \(\sin \theta = \lambda / d \); the second-order maximum, corresponding to \(m = 2 \), is observed at a larger angle \(\theta \), and so on. Active Figure 24.20 is a sketch of the intensity distribution for some of the orders produced by a diffraction grating. Note the sharpness of the principal maxima and the broad range of the dark areas, a pattern in direct contrast to the broad bright fringes characteristic of the two-slit interference pattern.

A simple arrangement that can be used to measure the angles in a diffraction pattern is shown in Active Figure 24.21. This setup is a form of a diffraction-grating spectrometer. The light to be analyzed passes through a slit and is formed into a parallel beam by a lens. The light then strikes the grating at a 90° angle. The diffracted light leaves the grating at angles that satisfy Equation 24.12. A telescope is used to view the image of the slit. The wavelength can be determined by measuring the angles at which the images of the slit appear for the various orders.

QUICK QUIZ 24.6 If laser light is reflected from a phonograph record or a compact disc, a diffraction pattern appears. The pattern arises because both devices contain parallel tracks of information that act as a reflection diffraction grating. Which device, record or compact disc, results in diffraction maxima that are farther apart?

APPLYING PHYSICS 24.4 PRISM VS. GRATING

When white light enters through an opening in an opaque box and exits through an opening on the other side of the box, a spectrum of colors appears on the wall. From this observation, how would you be able to determine whether the box contains a prism or a diffraction grating?

Explanation The determination could be made by noticing the order of the colors in the spectrum relative to the direction of the original beam of white light. For a prism, in which the separation of light is a result of dispersion, the violet light will be refracted more than the red light. Hence, the order of the spectrum from a prism will be from red, closest to the original direction, to violet. For a diffraction grating, the angle of diffraction increases with wavelength, so the spectrum from the diffraction grating will have
colors in the order from violet, closest to the original direction, to red. Furthermore, the diffraction grating will produce two first-order spectra on either side of the grating, whereas the prism will produce only a single spectrum.

Use of a Diffraction Grating in CD Tracking

If a CD player is to reproduce sound faithfully, the laser beam must follow the spiral track of information perfectly. Sometimes the laser beam can drift off track, however, and without a feedback procedure to let the player know that is happening, the fidelity of the music can be greatly reduced.

Figure 24.23 shows how a diffraction grating is used in a three-beam method to keep the beam on track. The central maximum of the diffraction pattern reads the information on the CD track, and the two first-order maxima steer the beam. The grating is designed so that the first-order maxima fall on the smooth surfaces on either side of the information track. Both of these reflected beams have their own detectors, and because both beams are reflected from smooth surfaces, they should have the same strong intensity when they are detected. If the central beam wanders off the track, however, one of the steering beams will begin to strike bumps on the information track and the amount of light reflected will decrease. This information is then used by electronic circuits to drive the main beam back to its desired location.

APPLICATION

Tracking Information on a CD

The laser beam in a CD player is able to follow the spiral track by using three beams produced with a diffraction grating.
EXAMPLE 24.7 A Diffraction Grating

Goal Calculate different-order principal maxima for a diffraction grating.

Problem Monochromatic light from a helium–neon laser (λ = 632.8 nm) is incident normally on a diffraction grating containing 6.00 × 10³ lines/cm. Find the angles at which one would observe the first-order maximum, the second-order maximum, and so forth.

Strategy Find the slit separation by inverting the number of lines per centimeter, then substitute values into Equation 24.12.

Solution

Invert the number of lines per centimeter to obtain the slit separation:

\[d = \frac{1}{6.00 \times 10^3 \text{ cm}^{-1}} = 1.67 \times 10^{-4} \text{ cm} = 1.67 \times 10^3 \text{ nm} \]

Substitute \(m = 1 \) into Equation 24.12 to find the sine of the angle corresponding to the first-order maximum:

\[\sin \theta_1 = \frac{\lambda}{d} = \frac{632.8 \text{ nm}}{1.67 \times 10^3 \text{ nm}} = 0.379 \]

Take the inverse sine of the preceding result to find \(\theta_1 \):

\[\theta_1 = \sin^{-1} 0.379 = 22.3^\circ \]

Repeat the calculation for \(m = 2 \):

\[\sin \theta_2 = \frac{2\lambda}{d} = \frac{2(632.8 \text{ nm})}{1.67 \times 10^3 \text{ nm}} = 0.758 \]

\[\theta_2 = 49.3^\circ \]

Repeat the calculation for \(m = 3 \):

\[\sin \theta_3 = \frac{3\lambda}{d} = \frac{3(632.8 \text{ nm})}{1.67 \times 10^3 \text{ nm}} = 1.14 \]

Because \(\sin \theta \) can’t exceed 1, there is no solution for \(\theta_3 \).

Remarks The foregoing calculation shows that there can only be a finite number of principal maxima. In this case only zeroth-, first-, and second-order maxima would be observed.

QUESTION 24.7

Does a diffraction grating with more lines have a smaller or larger separation between adjacent principal maxima?

EXERCISE 24.7

Suppose light with wavelength 7.80 × 10² nm is used instead and the diffraction grating has 3.30 × 10³ lines per centimeter. Find the angles of all the principal maxima.

Answers 0°, 14.9°, 31.0°, 50.6°

24.9 POLARIZATION OF LIGHT WAVES

In Chapter 21 we described the transverse nature of electromagnetic waves. Figure 24.24 shows that the electric and magnetic field vectors associated with an electromagnetic wave are at right angles to each other and also to the direction of wave propagation. The phenomenon of polarization, described in this section, is firm evidence of the transverse nature of electromagnetic waves.

An ordinary beam of light consists of a large number of electromagnetic waves emitted by the atoms or molecules of the light source. The vibrating charges associated with the atoms act as tiny antennas. Each atom produces a wave with its own orientation of \(\mathbf{E} \), as in Figure 24.24, corresponding to the direction of atomic vibration. Because all directions of vibration are possible, however, the resultant electromagnetic wave is a superposition of waves produced by the individual
atomic sources. The result is an **unpolarized** light wave, represented schematically in Figure 24.25a. The direction of wave propagation shown in the figure is perpendicular to the page. Note that **all** directions of the electric field vector are equally probable and lie in a plane (such as the plane of this page) perpendicular to the direction of propagation.

A wave is said to be **linearly polarized** if the resultant electric field \mathbf{E} vibrates in the same direction *at all times* at a particular point, as in Figure 24.25b. Sometimes such a wave is described as *plane polarized* or simply *polarized.* The wave in Figure 24.24 is an example of a wave that is linearly polarized in the y-direction. As the wave propagates in the x-direction, \mathbf{E} is always in the y-direction. The plane formed by \mathbf{E} and the direction of propagation is called the *plane of polarization* of the wave. In Figure 24.24 the plane of polarization is the xy-plane.

It's possible to obtain a linearly polarized beam from an unpolarized beam by removing all waves from the beam except those with electric field vectors that oscillate in a single plane. We now discuss three processes for doing this: (1) selective absorption, (2) reflection, and (3) scattering.

Polarization by Selective Absorption

The most common technique for polarizing light is to use a material that transmits waves having electric field vectors that vibrate in a plane parallel to a certain direction and absorbs those waves with electric field vectors vibrating in directions perpendicular to that direction.

In 1932 E. H. Land discovered a material, which he called *Polaroid,* that polarizes light through selective absorption by oriented molecules. This material is fabricated in thin sheets of long-chain hydrocarbons, which are stretched during manufacture so that the molecules align. After a sheet is dipped into a solution containing iodine, the molecules become good electrical conductors. Conduction takes place primarily along the hydrocarbon chains, however, because the valence electrons of the molecules can move easily only along those chains. (Recall that valence electrons are *free* electrons that can move easily through the conductor.) As a result, the molecules readily *absorb* light having an electric field vector parallel to their lengths and *transmit* light with an electric field vector perpendicular to their lengths. It's common to refer to the direction perpendicular to the molecular chains as the *transmission axis.* In an ideal polarizer all light with \mathbf{E} parallel to the transmission axis is transmitted and all light with \mathbf{E} perpendicular to the transmission axis is absorbed.

Polarizing material reduces the intensity of light passing through it. In Active Figure 24.26 an unpolarized light beam is incident on the first polarizing sheet, called the *polarizer,* the transmission axis is as indicated. The light that passes through this sheet is polarized vertically, and the transmitted electric field vector is $\mathbf{E}_0.$ A second polarizing sheet, called the *analyser,* intercepts this beam with its transmission axis at an angle of θ to the axis of the polarizer. The component of \mathbf{E}_0 that is perpendicular to the axis of the analyser is completely absorbed. The component of \mathbf{E}_0 that is parallel to the analyser axis, $E_0 \cos \theta,$ is allowed to pass through the analyser. Because the intensity of the transmitted beam varies as the
square of its amplitude E, we conclude that the intensity of the (polarized) beam transmitted through the analyzer varies as

$$I = I_0 \cos^2 \theta$$

where I_0 is the intensity of the polarized wave incident on the analyzer. This expression, known as Malus's law, applies to any two polarizing materials having transmission axes at an angle of θ to each other. Note from Equation 24.13 that the transmitted intensity is a maximum when the transmission axes are parallel ($\theta = 0$ or 180°) and is a minimum (complete absorption by the analyzer) when the transmission axes are perpendicular to each other. This variation in transmitted intensity through a pair of polarizing sheets is illustrated in Figure 24.27.

When unpolarized light of intensity I_0 is sent through a single ideal polarizer, the transmitted linearly polarized light has intensity $I_0/2$. This fact follows from Malus's law because the average value of $\cos^2 \theta$ is one-half.

APPLYING PHYSICS 24.6 POLARIZING MICROWAVES

A polarizer for microwaves can be made as a grid of parallel metal wires about 1 cm apart. Is the electric field vector for microwaves transmitted through this polarizer parallel or perpendicular to the metal wires?

Explanation Electric field vectors parallel to the metal wires cause electrons in the metal to oscillate parallel to the wires. Thus, the energy from the waves with these electric field vectors is transferred to the metal by accelerating the electrons and is eventually transformed to internal energy through the resistance of the metal. Waves with electric field vectors perpendicular to the metal wires are not able to accelerate electrons and pass through the wires. Consequently, the electric field polarization is perpendicular to the metal wires.

EXAMPLE 24.8 Polarizer

Goal Understand how polarizing materials affect light intensity.

Problem Unpolarized light is incident upon three polarizers. The first polarizer has a vertical transmission axis, the second has a transmission axis rotated 30.0° with respect to the first, and the third has a transmission axis rotated 75.0° relative to the first. If the initial light intensity of the beam is I_b, calculate the light intensity after the beam passes through (a) the second polarizer and (b) the third polarizer.

Strategy After the beam passes through the first polarizer, it is polarized and its intensity is cut in half. Malus’s law can then be applied to the second and third polarizers. The angle used in Malus’s law must be relative to the immediately preceding transmission axis.

Solution

(a) Calculate the intensity of the beam after it passes through the second polarizer.

The incident intensity is $I_b/2$. Apply Malus’s law to the second polarizer:

$$I_2 = I_0 \cos^2 \theta = \frac{I_b}{2} \cos^2 (30.0^\circ) = \frac{I_b}{2} \left(\frac{\sqrt{3}}{2}\right)^2 = \frac{3}{8} I_b$$
Polarization by Reflection

When an unpolarized light beam is reflected from a surface, the reflected light is completely polarized, partially polarized, or unpolarized, depending on the angle of incidence. If the angle of incidence is either 0° or 90° (a normal or grazing angle), the reflected beam is unpolarized. For angles of incidence between 0° and 90°, however, the reflected light is polarized to some extent. For one particular angle of incidence the reflected beam is completely polarized.

Suppose an unpolarized light beam is incident on a reflecting surface, as in Figure 24.28a. The beam can be described by two electric field components, one parallel to the surface (represented by dots) and the other perpendicular to the first component and to the direction of propagation (represented by brown arrows). It is found that the parallel component reflects more strongly than the other components, and the result is a partially polarized beam. In addition, the refracted beam is also partially polarized.

Now suppose the angle of incidence, \(\theta_1 \), is varied until the angle between the reflected and refracted beams is 90° (Fig. 24.28b). At this particular angle of incidence, called the polarizing angle \(\theta_p \), the reflected beam is completely polarized, with its electric field vector parallel to the surface, while the refracted beam is partially polarized.

An expression relating the polarizing angle to the index of refraction of the reflecting surface can be obtained by the use of Figure 24.28b. From this figure,
we see that at the polarizing angle, \(\theta_p + 90^\circ + \theta_z = 180^\circ \), so \(\theta_z = 90^\circ - \theta_p \). Using Snell’s law and taking \(n_1 = n_{air} = 1.00 \) and \(n_2 = n \) yields

\[
\frac{\sin \theta_1}{\sin \theta_2} = \frac{\sin \theta_p}{\sin \theta_2}
\]

Because \(\sin \theta_2 = \sin (90^\circ - \theta_p) = \cos \theta_p \), the expression for \(n \) can be written

\[
n = \frac{\sin \theta_1}{\cos \theta_p} = \tan \theta_p \tag{24.14}
\]

Equation 24.14 is called **Brewster’s law**, and the polarizing angle \(\theta_p \) is sometimes called **Brewster’s angle** after its discoverer, Sir David Brewster (1781–1868). For example, Brewster’s angle for crown glass (where \(n = 1.52 \)) has the value \(\theta_p = \tan^{-1}(1.52) = 56.7^\circ \). Because \(n \) varies with wavelength for a given substance, Brewster’s angle is also a function of wavelength.

Polarization by reflection is a common phenomenon. Sunlight reflected from water, glass, or snow is partially polarized. If the surface is horizontal, the electric field vector of the reflected light has a strong horizontal component. Sunglasses made of polarizing material reduce the glare, which is the reflected light. The transmission axes of the lenses are oriented vertically to absorb the strong horizontal component of the reflected light. Because the reflected light is mostly polarized, most of the glare can be eliminated without removing most of the normal light.

Polarization by Scattering

When light is incident on a system of particles, such as a gas, the electrons in the medium can absorb and reradiate part of the light. The absorption and reradiation of light by the medium, called **scattering**, is what causes sunlight reaching an observer on Earth from straight overhead to be polarized. You can observe this effect by looking directly up through a pair of sunglasses made of polarizing glass. Less light passes through at certain orientations of the lenses than at others.

Figure 24.29 illustrates how the sunlight becomes polarized. The left side of the figure shows an incident unpolarized beam of sunlight on the verge of striking an air molecule. When the beam strikes the air molecule, it sets the electrons of the molecule into vibration. These vibrating charges act like those in an antenna except that they vibrate in a complicated pattern. The horizontal part of the electric field vector in the incident wave causes the charges to vibrate horizontally, and the vertical part of the vector simultaneously causes them to vibrate vertically. A horizontally polarized wave is emitted by the electrons as a result of their horizontal motion, and a vertically polarized wave is emitted parallel to Earth as a result of their vertical motion.

Scientists have found that bees and homing pigeons use the polarization of sunlight as a navigational aid.

Optical Activity

Many important practical applications of polarized light involve the use of certain materials that display the property of **optical activity**. A substance is said to be optically active if it rotates the plane of polarization of transmitted light. Suppose unpolarized light is incident on a polarizer from the left, as in Figure 24.30a. The transmitted light is polarized vertically, as shown. If this light is then incident on an analyzer with its axis perpendicular to that of the polarizer, no light emerges from it. If an optically active material is placed between the polarizer and analyzer, as in Figure 24.30b, the material causes the direction of the polarized beam to rotate through the angle \(\theta \). As a result, some light is able to pass through the analyzer.

The angle through which the light is rotated by the material can be found by rotating the polarizer until the light is again extinguished. It is found that the angle of rotation depends on the length of the sample and, if the substance is in solution,
on the concentration. One optically active material is a solution of common sugar, dextrose. A standard method for determining the concentration of a sugar solution is to measure the rotation produced by a fixed length of the solution.

Optical activity occurs in a material because of an asymmetry in the shape of its constituent molecules. For example, some proteins are optically active because of their spiral shapes. Other materials, such as glass and plastic, become optically active when placed under stress. If polarized light is passed through an unstressed piece of plastic and then through an analyzer with an axis perpendicular to that of the polarizer, none of the polarized light is transmitted. If the plastic is placed under stress, however, the regions of greatest stress produce the largest angles of rotation of polarized light, and a series of light and dark bands are observed in the transmitted light. Engineers often use this property in the design of structures ranging from bridges to small tools. A plastic model is built and analyzed under different load conditions to determine positions of potential weakness and failure under stress. If the design is poor, patterns of light and dark bands will indicate the points of greatest weakness, and the design can be corrected at an early stage. Figure 24.31 shows examples of stress patterns in plastic.

Liquid Crystals

An effect similar to rotation of the plane of polarization is used to create the familiar displays on pocket calculators, wristwatches, notebook computers, and so forth. The properties of a unique substance called a liquid crystal make these displays (called LCDs, for liquid crystal displays) possible. As its name implies, a liquid crystal is a substance with properties intermediate between those of a crystalline solid and those of a liquid; that is, the molecules of the substance are more orderly than those in a liquid, but less orderly than those in a pure crystalline solid. The forces

FIGURE 24.30 (a) When crossed polarizers are used, none of the polarized light can pass through the analyzer. (b) An optically active material rotates the direction of polarization through the angle θ, enabling some of the polarized light to pass through the analyzer.

APPLICATION

Finding the Concentrations of Solutions by Means of Their Optical Activity

APPLICATION

Liquid Crystal Displays (LCDs)

FIGURE 24.31 (a) Strain distribution in a plastic model of a replacement hip used in a medical research laboratory. The pattern is produced when the model is placed between a polarizer and an analyzer oriented perpendicular to each other. (b) A plastic model of an arch structure under load conditions observed between perpendicular polarizers. Such patterns are useful in the optimum design of architectural components.
that hold the molecules together in such a state are just barely strong enough to enable the substance to maintain a definite shape, so it is reasonable to call it a solid. Small inputs of mechanical or electrical energy, however, can disrupt these weak bonds and make the substance flow, rotate, or twist.

To see how liquid crystals can be used to create a display, consider Figure 24.32a. The liquid crystal is placed between two glass plates in the pattern shown, and electrical contacts, indicated by the thin lines, are made. When a voltage is applied across any segment in the display, that segment turns dark. In this fashion any number between 0 and 9 can be formed by the pattern, depending on the voltages applied to the seven segments.

To see why a segment can be changed from dark to light by the application of a voltage, consider Figure 24.32b, which shows the basic construction of a portion of the display. The liquid crystal is placed between two glass substrates that are packaged between two pieces of Polaroid material with their transmission axes perpendicular. A reflecting surface is placed behind one of the pieces of Polaroid. First consider what happens when light falls on this package and no voltages are applied to the liquid crystal, as shown in Figure 24.32b. Incoming light is polarized by the polarizer on the left and then falls on the liquid crystal. As the light passes through the crystal, its plane of polarization is rotated by 90°, allowing it to pass through the polarizer on the right. It reflects from the reflecting surface and retraces its path through the crystal. Thus, an observer to the left of the crystal sees the segment as being bright. When a voltage is applied as in Figure 24.32c, the molecules of the liquid crystal don’t rotate the plane of polarization of the light. In this case the light is absorbed by the polarizer on the right and none is reflected back to the observer to the left of the crystal. As a result, the observer sees this segment as black. Changing the applied voltage to the crystal in a precise pattern at precise times can make the pattern tick off the seconds on a watch, display a letter on a computer display, and so forth.

FIGURE 24.32 (a) The light-segment pattern of a liquid crystal display. (b) Rotation of a polarized light beam by a liquid crystal when the applied voltage is zero. (c) Molecules of the liquid crystal align with the electric field when a voltage is applied.
24.1 Conditions for Interference

Interference occurs when two or more light waves overlap at a given point. A sustained interference pattern is observed if (1) the sources are coherent (that is, they maintain a constant phase relationship with one another), (2) the sources have identical wavelengths, and (3) the superposition principle is applicable.

24.2 Young’s Double-Slit Experiment

In Young’s double-slit experiment two slits separated by distance \(d \) are illuminated by a single-wavelength light source. An interference pattern consisting of bright and dark fringes is observed on a screen a distance \(L \) from the slits. The condition for bright fringes (constructive interference) is

\[
d \sin \theta_{\text{bright}} = m \lambda \quad m = 0, \pm 1, \pm 2, \ldots \quad [24.2]
\]

The number \(m \) is called the order number of the fringe. The condition for dark fringes (destructive interference) is

\[
d \sin \theta_{\text{dark}} = \left(m + \frac{1}{2} \right) \lambda \quad m = 0, \pm 1, \pm 2, \ldots \quad [24.3]
\]

The position \(y_m \) of the bright fringes on the screen can be determined by using the relation \(\sin \theta = \tan \theta = y_m/L \), which is true for small angles. This relation can be substituted into Equations 24.2 and 24.3, yielding the location of the bright fringes:

\[
y_{\text{bright}} = \frac{m L}{d} \quad m = 0, \pm 1, \pm 2, \ldots \quad [24.5]
\]

A similar expression can be derived for the dark fringes. This equation can be used either to locate the maxima or to determine the wavelength of light by measuring \(y_m \).

24.3 Change of Phase Due to Reflection

24.4 Interference in Thin Films

An electromagnetic wave undergoes a phase change of 180° on reflection from a medium with an index of refraction higher than that of the medium in which the wave is traveling. There is no change when the wave, traveling in a medium with higher index of refraction, reflects from a medium with a lower index of refraction.

The wavelength \(\lambda_n \) of light in a medium with index of refraction \(n \) is

\[
\lambda_n = \frac{\lambda}{n} \quad [24.7]
\]

where \(\lambda \) is the wavelength of the light in free space. Light encountering a thin film of thickness \(t \) will reflect off the top and bottom of the film, each ray undergoing a possible phase change as described above. The two rays recombine, and bright and dark fringes will be observed, with the conditions of interference given by the following table:

<table>
<thead>
<tr>
<th>Equation ((m = 0, 1, \ldots))</th>
<th>1 Phase Reversal</th>
<th>0 or 2 Phase Reversals</th>
</tr>
</thead>
<tbody>
<tr>
<td>(2nt = (m + \frac{1}{2}) \lambda)</td>
<td>Constructive</td>
<td>Destructive</td>
</tr>
<tr>
<td>(2nt = m \lambda)</td>
<td>Destructive</td>
<td>Constructive</td>
</tr>
</tbody>
</table>

24.5 Diffraction

24.7 Single-Slit Diffraction

Diffraction occurs when waves pass through small openings, around obstacles, or by sharp edges. The diffraction pattern produced by a single slit on a distant screen consists of a central bright maximum flanked by less bright fringes alternating with dark regions. The angles \(\theta \) at which the diffraction pattern has zero intensity (regions of destructive interference) are described by

\[
\sin \theta_{\text{dark}} = \frac{m \lambda}{a} \quad m = \pm 1, \pm 2, \pm 3, \ldots \quad [24.11]
\]

where \(\lambda \) is the wavelength of the light incident on the slit and \(a \) is the width of the slit.

24.8 The Diffraction Grating

A diffraction grating consists of many equally spaced, identical slits. The condition for maximum intensity in the interference pattern of a diffraction grating is

\[
d \sin \theta_{\text{bright}} = m \lambda \quad m = 0, \pm 1, \pm 2, \ldots \quad [24.12]
\]

where \(d \) is the spacing between adjacent slits and \(m \) is the order number of the diffraction pattern. A diffraction grating can be made by putting a large number of evenly spaced scratches on a glass slide. The number of such lines per centimeter is the inverse of the spacing \(d \).

24.9 Polarization of Light Waves

Unpolarized light can be polarized by selective absorption, reflection, or scattering. A material can polarize light if it transmits waves having electric field vectors that vibrate in a plane parallel to a certain direction and absorbs waves with electric field vectors vibrating in directions perpendicular to that direction. When unpolarized light passes through a polarizing sheet, its intensity is reduced by half and the light becomes polarized. When this light passes through a second polarizing sheet with transmission axis at an angle of \(\theta \) with respect to the transmission axis of the first sheet, the transmitted intensity is given by

\[
I = I_0 \cos^2 \theta \quad [24.13]
\]

where \(I_0 \) is the intensity of the light after passing through the first polarizing sheet.

In general, light reflected from an amorphous material, such as glass, is partially polarized. Reflected light is completely polarized, with its electric field parallel to the surface, when the angle of incidence produces a 90° angle between the reflected and refracted beams. This angle of incidence, called the polarizing angle \(\theta_p \), satisfies Brewster’s law, given by

\[
n = \tan \theta_p \quad [24.14]
\]

where \(n \) is the index of refraction of the reflecting medium.
MULTIPLE-CHOICE QUESTIONS
1. A monochromatic light beam having a wavelength of 5.0×10^{-7} m illuminates a double slit having a slit separation of 2.0×10^{-3} m. What is the angle of the second-order bright fringe? (a) 0.050 rad (b) 0.025 rad (c) 0.10 rad (d) 0.25 rad (e) 0.010 rad
2. A thin layer of oil ($n = 1.25$) is floating on water ($n = 1.33$). What is the minimum nonzero thickness of the oil in the region that strongly reflects green light ($\lambda = 530$ nm)? (a) 500 nm (b) 313 nm (c) 404 nm (d) 212 nm (e) 285 nm
3. A Fraunhofer diffraction pattern is produced on a screen located 1.0 m from a single slit. If a light source of wavelength 5.0×10^{-3} m is used and the distance from the center of the central bright fringe to the first dark fringe is 5.0×10^{-3} m, what is the slit width? (a) 0.010 mm (b) 0.10 mm (c) 0.200 mm (d) 1.0 mm (e) 0.005 mm
4. If plane-polarized light is sent through two polarizers, the first polarizer at 45° to the original plane of polarization and the second polarizer at 90° to the original plane of polarization, what fraction of the original polarized intensity gets through the last polarizer? (a) 0 (b) 0.25 (c) 0.50 (d) 0.125 (e) 0.10
5. A plane monochromatic light wave is incident on a double-slit as illustrated in Figure 24.4. As the slit separation decreases, what happens to the separation between the interference fringes on the screen? (a) It decreases. (b) It increases. (c) It remains the same. (d) It may increase or decrease, depending on the wavelength of the light. (e) More information is required.
6. A plane monochromatic light wave is incident on a double-slit as illustrated in Figure 24.4. If the viewing screen is moved away from the double slit, what happens to the separation between the interference fringes on the screen? (a) It increases. (b) It decreases. (c) It remains the same. (d) It may increase or decrease, depending on the wavelength of the light. (e) More information is required.

CONCEPTUAL QUESTIONS
1. Your automobile has two headlights. What sort of interference pattern do you expect to see from them? Why?
2. Holding your hand at arm’s length, you can readily block direct sunlight from your eyes. Why can you not block sound from your ears this way?
3. Consider a dark fringe in an interference pattern at which almost no light energy is arriving. Light from both slits is arriving at this point, but the waves cancel. Where does the energy go?
4. If Young’s double-slit experiment were performed under water, how would the observed interference pattern be affected?
5. In a laboratory accident, you spill two liquids onto water, neither of which mixes with the water. They both form thin films on the water surface. As the films spread and become very thin, you notice that one film becomes bright and the other black in reflected light. Why might that be?
6. If white light is used in Young’s double-slit experiment rather than monochromatic light, how does the interference pattern change?
7. A lens with outer radius of curvature R and index of refraction n rests on a flat glass plate, and the combination is illuminated from white light from above. Is there a dark spot or a light spot at the center of the lens? What does it mean if the observed rings are noncircular?
8. Often, fingerprints left on a piece of glass such as a windowpane show colored spectra like that from a diffraction grating. Why?
9. In everyday experience, why are radio waves polarized, whereas light is not?
10. Suppose reflected white light is used to observe a thin, transparent coating on glass as the coating material is gradually deposited by evaporation in a vacuum. Describe some color changes that might occur during the process of building up the thickness of the coating.
11. Would it be possible to place a nonreflective coating on an airplane to cancel radar waves of wavelength 3 cm?

12. Certain sunglasses use a polarizing material to reduce the intensity of light reflected from shiny surfaces, such as water or the hood of a car. What orientation of the transmission axis should the material have to be most effective?

13. Why is it so much easier to perform interference experiments with a laser than with an ordinary light source?

14. A soap film is held vertically in air and is viewed in reflected light as in Figure CQ24.14. Explain why the film appears to be dark at the top.

(c) If the slit separation is 1.00 μm, what frequency of light gives the same first maximum angle?

6. Two slits separated by 0.050 0 mm and located 1.50 m from a viewing screen are illuminated with monochromatic light. The third-order bright fringe is 5.30 cm from the zeroth-order bright fringe. Find the (a) wavelength of the light and (b) separation between adjacent bright fringes.

7. Two radio antennas separated by 300 m, as shown in Figure P24.7, simultaneously transmit identical signals of the same wavelength. A radio in a car traveling due north receives the signals. (a) If the car is at the position of the second maximum, what is the wavelength of the signals? (b) How much farther must the car travel to encounter the next minimum in reception? Hint: Determine the path difference between the two signals at the two locations of the car.

8. Light of wavelength 6.0 × 10⁻² nm falls on a double slit, and the first bright fringe of the interference pattern is observed to make an angle of 12° with the horizontal. Find the separation between the slits.

9. A Young’s double-slit interference experiment is performed with blue-green argon laser light. The separation between the slits is 0.500 mm, and the screen is located 3.30 m from the slits. The first bright fringe is located 3.40 mm from the center of the interference pattern. What is the wavelength of argon laser light?

10. A pair of slits, separated by 0.150 mm, is illuminated by light having a wavelength of λ = 643 nm. An interference pattern is observed on a screen 140 cm from the slits. Consider a point on the screen located at y = 1.80 cm from...
the central maximum of this pattern. (a) What is the path difference \(\delta \) for the two slits at the location \(\gamma \)? (b) Express this path difference in terms of the wavelength. (c) Will the interference correspond to a maximum, a minimum, or an intermediate condition?

11. A riverside warehouse has two open doors, as in Figure P24.11. Its interior is lined with a sound-absorbing material. A boat on the river sounds its horn. To person A, the sound is loud and clear. To person B, the sound is barely audible. The principal wavelength of the sound waves is 3.00 m. Assuming person B is at the position of the first minimum, determine the distance between the doors, center to center.

12. A student sets up a double-slit experiment using monochromatic light of wavelength \(\lambda \). The distance between the slits is equal to 25A. (a) Find the angles at which the \(m = 1, 2, \) and 3 maxima occur on the viewing screen. (b) At what angles do the first three dark fringes occur? (c) Why are the answers so evenly spaced? Is the spacing even for all orders? Explain.

13. Radio waves from a star, of wavelength 250 m, reach a radio telescope by two separate paths, as shown in Figure P24.13. One is a direct path to the receiver, which is situated on the edge of a cliff by the ocean. The second is by reflection off the water. The first minimum of destructive interference occurs when the star is 25.0° above the horizon. Find the height of the cliff. (Assume no phase change on reflection.)

14. Monochromatic light of wavelength \(\lambda \) is incident on a pair of slits separated by 2.40 \times 10^{-4} \text{ m}, and forms an interference pattern on a screen placed 1.80 m away from the slits. The first-order bright fringe is 4.52 mm from the center of the central maximum. (a) Draw a picture, labeling the angle \(\theta \) and the legs of the right triangle associated with the first-order bright fringe. (b) Compute the tangent of the angle \(\theta \) associated with the first-order bright fringe. (c) Find the angle corresponding to the first-order bright fringe and compute the sine of that angle. Are the sine and tangent of the angle comparable in value? Does your answer always hold true? (d) Calculate the wavelength of the light. (e) Compute the angle of the fifth-order bright fringe. (f) Find its position on the screen.

15. Waves from a radio station have a wavelength of 300 m. They travel by two paths to a home receiver 20.0 km from the transmitter. One path is a direct path, and the second is by reflection from a mountain directly behind the home receiver. What is the minimum distance from the mountain to the receiver that produces destructive interference at the receiver? (Assume that no phase change occurs on reflection from the mountain.)

SECTION 24.3 CHANGE OF PHASE DUE TO REFLECTION

SECTION 24.4 INTERFERENCE IN THIN FILMS

16. A soap bubble \((n = 1.33) \) having a wall thickness of 120 nm is floating in air. (a) What is the wavelength of the visible light that is most strongly reflected? (b) Explain how a bubble of different thickness could also strongly reflect light of this same wavelength. (c) Find the two smallest film thicknesses larger than the one given that can produce strongly reflected light of this same wavelength.

17. A thin layer of liquid methylene iodide \((n = 1.75) \) is sandwiched between two flat, parallel plates of glass \((n = 1.50) \). What is the minimum thickness of the liquid layer if normally incident light with \(\lambda = 6.00 \times 10^{-7} \text{ nm} \) in air is to be strongly reflected?

18. A thin film of oil \((n = 1.25) \) is located on smooth, wet pavement. When viewed from a direction perpendicular to the pavement, the film reflects most strongly red light at 640 nm and reflects no green light at 512 nm. (a) What is the minimum thickness of the oil film? (b) Let \(m_1 \) correspond to the order of the constructive interference and \(m_2 \) to the order of the destructive interference. Obtain a relationship between \(m_1 \) and \(m_2 \) that is consistent with the given data.

19. A coating is applied to a lens to minimize reflections. The index of refraction of the coating is 1.55 and that of the lens is 1.48. If the coating is 177.4 nm thick, what wavelength is minimally reflected for normal incidence in the lowest order?

20. A transparent oil with index of refraction 1.29 spills on the surface of water (index of refraction 1.33), producing a maximum of reflection with normally incident orange light (wavelength 600 nm in air). Assuming the maximum occurs in the first order, determine the thickness of the oil slick.

21. A possible means for making an airplane invisible to radar is to coat the plane with an antireflective polymer. If radar waves have a wavelength of 3.00 cm and the index of refraction of the polymer is \(n = 1.50 \), how thick would you make the coating?

22. An oil film \((n = 1.45) \) floating on water is illuminated by white light at normal incidence. The film is
Astronomers observe the chromosphere of the Sun with a filter that passes the red hydrogen spectral line of wavelength 656.3 nm, called the H\textalpha\ line. The filter consists of a transparent dielectric of thickness \(d\) held between two partially aluminized glass plates. The filter is kept at a constant temperature. (a) Find the minimum value of \(d\) that will produce maximum transmission of perpendicular H\textalpha\ light if the dielectric has an index of refraction of 1.378. (b) If the temperature of the filter increases above the normal value increasing its thickness, what happens to the transmitted wavelength? (c) The dielectric will also pass what near-visible wavelength? One of the glass plates is colored red to absorb this light.

Two rectangular optically flat plates (\(n = 1.52\)) are in contact along one end and are separated along the other end by a 2.00-\(\mu\)m-thick spacer (Fig. P24.24). The top plate is illuminated by monochromatic light of wavelength 546.1 nm. Calculate the number of dark parallel bands crossing the top plate (including the dark band at zero thickness along the edge of contact between the plates).

An air wedge is formed between two glass plates separated at one edge by a very fine wire, as shown in Figure P24.24. When the wedge is illuminated from above by 600-nm light, 30 dark fringes are observed. Calculate the radius of the wire.

A plano-convex lens with radius of curvature \(R = 5.0\) m is in contact with a flat plate of glass. A light source and the observer’s eye are both close to the normal, as shown in Figure 24.8a. The radius of the 50th bright Newton’s ring is found to be 9.8 mm. What is the wavelength of the light produced by the source?

A plano-convex lens rests with its curved side on a flat glass surface and is illuminated from above by light of wavelength 500 nm. (See Fig. 24.8.) A dark spot is observed at the center, surrounded by 19 concentric dark rings (with bright rings in between). How much thicker is the air wedge at the position of the 19th dark ring than at the center?

Nonreflective coatings on camera lenses reduce the loss of light at the surfaces of multilens systems and prevent internal reflections that might mar the image. Find the minimum thickness of a layer of magnesium fluoride (\(n = 1.38\)) on flint glass (\(n = 1.66\)) that will cause destructive interference of reflected light of wavelength 550 nm near the middle of the visible spectrum.

A thin film of MgF\(_2\) (\(n = 1.38\)) with thickness 1.00 \(\times\) 10\(^{-5}\) cm is used to coat a camera lens. Are any wavelengths in the visible spectrum intensified in the reflected light?

A beam of light of wavelength 580 nm passes through two closely spaced glass plates, as shown in Figure P24.30. For what minimum nonzero value of the plate separation \(d\) will the transmitted light be bright? This arrangement is often used to measure the wavelength of light and is called a Fabry–Perot interferometer.

SECTION 24.7 SINGLE-SLIT DIFFRACTION

Light of wavelength 5.40 \(\times\) 10\(^3\) nm passes through a slit of width 0.200 mm. (a) Find the width of the central maximum on a screen located 1.50 m from the slit. (b) Determine the width of the first-order bright fringe.

Light of wavelength 600 nm falls on a 0.40-mm-wide slit and forms a diffraction pattern on a screen 1.5 m away. (a) Find the position of the first dark band on each side of the central maximum. (b) Find the width of the central maximum.

Light of wavelength 587.5 nm illuminates a slit of width 0.75 mm. (a) At what distance from the slit should a screen be placed if the first minimum in the diffraction pattern is to be 0.85 mm from the central maximum? (b) Calculate the width of the central maximum.

Microwaves of wavelength 5.00 cm enter a long, narrow window in a building that is otherwise essentially opaque to the incoming waves. If the window is 36.0 cm wide, what is the distance from the central maximum to the first-order minimum along a wall 6.50 m from the window?

A beam of monochromatic light is diffracted by a slit of width 0.600 mm. The diffraction pattern forms on a wall 1.30 m beyond the slit. The width of the central maximum is 2.00 mm. Calculate the wavelength of the light.

A screen is placed 50.0 cm from a single slit that is illuminated with light of wavelength 680 nm. If the distance between the first and third minima in the diffraction pattern is 3.00 mm, what is the width of the slit?

A slit of width 0.50 mm is illuminated with light of wavelength 500 nm, and a screen is placed 120 cm in front of the slit. Find the widths of the first and second maxima on each side of the central maximum.

SECTION 24.8 THE DIFFRACTION GRATING

A helium–neon laser (\(\lambda = 632.8\) nm) is used to calibrate a diffraction grating. If the first-order maximum occurs at 20.5°, what is the spacing between adjacent grooves in the grating?
39. Three discrete spectral lines occur at angles of 10.1°, 13.7°, and 14.8°, respectively, in the first-order spectrum of a diffraction-grating spectrometer. (a) If the grating has 3,660 slits/cm, what are the wavelengths of the light? (b) At what angles are these lines found in the second-order spectrum?

40. Intense white light is incident on a diffraction grating that has 600 lines/mm. (a) What is the highest order in which the complete visible spectrum can be seen with this grating? (b) What is the angular separation between the violet edge (400 nm) and the red edge (700 nm) of the first-order spectrum produced by the grating?

41. The hydrogen spectrum has a red line at 656 nm and a violet line at 434 nm. What angular separation between these two spectral lines is obtained with a diffraction grating that has 4,500 lines/cm?

42. A grating with 1,500 slits per centimeter is illuminated with light of wavelength 500 nm. (a) What is the highest-order number that can be observed with this grating? (b) Repeat for a grating of 15,000 slits per centimeter.

43. A light source emits two major spectral lines: an orange line of wavelength 610 nm and a blue-green line of wavelength 480 nm. If the spectrum is resolved by a diffraction grating having 5,000 lines/cm and viewed on a screen 2.00 m from the grating, what is the distance (in centimeters) between the two spectral lines in the second-order spectrum?

44. White light is spread out into its spectral components by a diffraction grating. If the grating has 2,000 lines per centimeter, at what angle does red light of wavelength 640 nm appear in the first-order spectrum?

45. Light from an argon laser strikes a diffraction grating that has 5,310 grooves per centimeter. The central and first-order principal maxima are separated by 0.488 m on a wall 1.72 m from the grating. Determine the wavelength of the laser light.

46. A beam of 541-nm light is incident on a diffraction grating with 1,200 slits/cm. On a screen 15.0 cm from the grating, the third-order maximum of the shorter wavelength falls midway between the central maximum and the first side maximum for the longer wavelength. If the neighboring maxima of the longer wavelength are 8.44 mm apart on the screen, what are the wavelengths in the light? Hint: Use the small-angle approximation.

SECTION 24.9 POLARIZATION OF LIGHT WAVES

51. The angle of incidence of a light beam in air onto a reflecting surface is continuously variable. The reflected ray is found to be completely polarized when the angle of incidence is 48.0°. (a) What is the index of refraction of the reflecting material? (b) If some of the incident light at an angle of 48.0° passes into the material below the surface, what is the angle of refraction?

52. Unpolarized light passes through two Polaroid sheets. The transmission axis of the analyzer makes an angle of 35.0° with the axis of the polarizer. (a) What fraction of the original unpolarized light is transmitted through the analyzer? (b) What fraction of the original light is absorbed by the analyzer?

53. The index of refraction of a glass plate is 1.52. What is the Brewster’s angle when the plate is (a) in air and (b) in water? (See Problem 57.)

54. At what angle above the horizon is the Sun if light from it is completely polarized upon reflection from water?

55. A light beam is incident on a piece of fused quartz \(n = 1.458 \) at the Brewster’s angle. Find the (a) value of Brewster’s angle and (b) the angle of refraction for the transmitted ray.

56. The critical angle for total internal reflection for sapphire surrounded by air is 34.4°. Calculate the Brewster’s angle for sapphire if the light is incident from the air.

57. Equation 24.14 assumes the incident light is in air. If the light is incident from a medium of index \(n_1 \) onto a medium of index \(n_2 \), follow the procedure used to derive Equation 24.14 to show that \(\tan \theta_1 = n_2/n_1 \).
58. Plane-polarized light is incident on a single polarizing disk, with the direction of E_0, parallel to the direction of the transmission axis. Through what angle should the disk be rotated so that the intensity in the transmitted beam is reduced by a factor of (a) 2.00, (b) 4.00, and (c) 6.00?

59. Three polarizing plates whose planes are parallel are centered on a common axis. The transmission axes relative to the common vertical direction are shown in Figure P24.59. A linearly polarized beam of light with plane of polarization parallel to the vertical reference direction is incident from the left onto the first disk with intensity $I_0 = 10.0$ units (arbitrary). Calculate the transmitted intensity I_f when $\theta_1 = 20.0^\circ$, $\theta_2 = 40.0^\circ$, and $\theta_3 = 60.0^\circ$. Hint: Make repeated use of Malus’s law.

60. Light of intensity I_0 and polarized parallel to the transmission axis of a polarizer is incident on an analyzer. (a) If the transmission axis of the analyzer makes an angle of 45° with the axis of the polarizer, what is the intensity of the transmitted light? (b) What should the angle between the transmission axes be to make $I/I_0 = 1/3$?

61. Light with a wavelength in vacuum of 546.1 nm falls perpendicularly on a biological specimen that is 1.000 mm thick. The light splits into two beams polarized at right angles, for which the indices of refraction are 1.320 and 1.333, respectively. (a) Calculate the wavelength of each component of the light while it is traversing the specimen. (b) Calculate the phase difference between the two beams when they emerge from the specimen.

ADDITIONAL PROBLEMS

62. Light from a helium–neon laser ($\lambda = 632.8$ nm) is incident on a single slit. What is the maximum width of the slit for which no diffraction minima are observed?

63. Laser light with a wavelength of 632.8 nm is directed through one slit or two slits and allowed to fall on a screen 2.60 m beyond. Figure P24.63 shows the pattern on the screen, with a centimeter ruler below it. Did the light pass through one slit or two slits? Explain how you can tell. If the answer is one slit, find its width. If the answer is two slits, find the distance between their centers.

64. In a Young’s interference experiment, the two slits are separated by 0.150 mm and the incident light includes two wavelengths: $\lambda_1 = 540$ nm (green) and $\lambda_2 = 450$ nm (blue). The overlapping interference patterns are observed on a screen 1.40 m from the slits. (a) Find a relationship between the orders m_1 and m_2 that determines where a bright fringe of the green light coincides with a bright fringe of the blue light. (The order m_1 is associated with λ_1, and m_2 is associated with λ_2.) (b) Find the minimum values of m_1 and m_2 such that the overlapping of the bright fringes will occur and find the position of the overlap on the screen.

65. Light of wavelength 546 nm (the intense green line from a mercury source) produces a Young’s interference pattern in which the second minimum from the central maximum is along a direction that makes an angle of 18.0 min of arc with the axis through the central maximum. What is the distance between the parallel slits?

66. The two speakers are placed 35.0 cm apart. A single oscillator makes the speakers vibrate in phase at a frequency of 2.00 kHz. At what angles, measured from the perpendicular bisector of the line joining the speakers, would a distant observer hear maximum sound intensity? Minimum sound intensity? (Take the speed of sound to be 340 m/s.)

67. Interference effects are produced at point P on a screen as a result of direct rays from a 500-nm source and reflected rays off a mirror, as shown in Figure P24.67. If the source is 100 m to the left of the screen and 1.00 cm above the mirror, find the distance γ (in millimeters) to the first dark band above the mirror.

68. Many cells are transparent and colorless. Structures of great interest in biology and medicine can be practically invisible to ordinary microscopy. An interference microscope reveals a difference in refractive index as a shift in interference fringes to indicate the size and shape of cell structures. The idea is exemplified in the following problem: An air wedge is formed between two glass plates in contact along one edge and slightly separated at the opposite edge. When the plates are illuminated with monochromatic light from above, the reflected light has 85 dark fringes. Calculate the number of dark fringes that appear if water ($n = 1.33$) replaces the air between the plates.
69. Figure P24.69 shows a radio-wave transmitter and a receiver, both \(h = 50.0 \, \text{m} \) above the ground and \(d = 600 \, \text{m} \) apart. The receiver can receive signals directly from the transmitter and indirectly from signals that bounce off the ground. If the ground is level between the transmitter and receiver and a \(\lambda/2 \) phase shift occurs upon reflection, determine the longest wavelengths that interfere (a) constructively and (b) destructively.

70. Three polarizers, centered on a common axis and with their planes parallel to one another, have transmission axes oriented at angles of \(\theta_1 \), \(\theta_2 \), and \(\theta_3 \) from the vertical, as shown in Figure P24.59. Light of intensity \(I_i \), polarized with its plane of polarization oriented vertically, is incident from the left onto the first polarizer. What is the ratio \(I_f/I_i \) of the final transmitted intensity to the incident intensity if (a) \(\theta_1 = 45^\circ \), \(\theta_2 = 90^\circ \), and \(\theta_3 = 0^\circ \)? (b) \(\theta_1 = 0^\circ \), \(\theta_2 = 45^\circ \), and \(\theta_3 = 90^\circ \)?

71. The transmitting antenna on a submarine is 5.00 \(\text{m} \) above the water when the ship surfaces. The captain wishes to transmit a message to a receiver on a 90.0-\(\text{m} \)-tall cliff at the ocean shore. If the signal is to be completely polarized by reflection off the ocean surface, how far must the ship be from the shore?

72. A plano-convex lens (flat on one side, convex on the other) with index of refraction \(n \) rests with its curved side (radius of curvature \(R \)) on a flat glass surface of the same index of refraction with a film of index \(n_{\text{film}} \) between them. The lens is illuminated from above by light of wavelength \(\lambda \). Show that the dark Newton rings that appear have radii of

\[
r = \sqrt{m\lambda R/n_{\text{film}}}
\]

where \(m \) is an integer.

73. A diffraction pattern is produced on a screen 140 \(\text{cm} \) from a single slit, using monochromatic light of wavelength 500 nm. The distance from the center of the central maximum to the first-order maximum is 3.00 mm. Calculate the slit width. \textit{Hint:} Assume that the first-order maximum is halfway between the first- and second-order minima.

74. A flat piece of glass is supported horizontally above the flat end of a 10.0-\(\text{cm} \)-long metal rod that has its lower end rigidly fixed. The thin film of air between the rod and the glass is observed to be bright when illuminated by light of wavelength 500 nm. As the temperature is slowly increased by 25.0\(^\circ\text{C} \), the film changes from bright to dark and back to bright 200 times. What is the coefficient of linear expansion of the metal?
We use devices made from lenses, mirrors, and other optical components every time we put on a pair of eyeglasses or contact lenses, take a photograph, look at the sky through a telescope, and so on. In this chapter we examine how optical instruments work. For the most part, our analyses involve the laws of reflection and refraction and the procedures of geometric optics. To explain certain phenomena, however, we must use the wave nature of light.

25.1 THE CAMERA

The single-lens photographic camera is a simple optical instrument having the features shown in Figure 25.1. It consists of an opaque box, a converging lens that produces a real image, and a photographic film behind the lens to receive the image. Digital cameras differ in that the image is formed on a charge-coupled device (CCD) or a complementary metal-oxide semiconductor (CMOS) sensor instead of on film. Both the CCD and the CMOS image sensors convert the image into digital form, which can then be stored in the camera’s memory.

Focusing of a camera is accomplished by varying the distance between the lens and film, with an adjustable bellows in antique cameras and other mechanisms in contemporary models. For proper focusing, which leads to sharp images, the lens-to-film distance depends on the object distance as well as on the focal length of the lens. The shutter, located behind the lens, is a mechanical device that is opened for selected time intervals. With this arrangement, moving objects can be photographed by using short exposure times and dark scenes (with low light levels) by using long exposure times. If this adjustment were not available, it would be impossible to take stop-action photographs. A rapidly moving vehicle, for example, could move far enough while the shutter was open to produce a blurred image. Another major cause of blurred images is movement of the camera while the shutter is open. To prevent such movement, you should mount the camera on a tripod or use short exposure times. Typical shutter speeds (that is, exposure times) are 1/30 s, 1/60 s, 1/125 s, and 1/250 s. Stationary objects are often shot with a shutter speed of 1/60 s.
Most cameras also have an aperture of adjustable diameter to further control the intensity of the light reaching the film. When an aperture of small diameter is used, only light from the central portion of the lens reaches the film, so spherical aberration is reduced.

The intensity \(I \) of the light reaching the film is proportional to the area of the lens. Because this area in turn is proportional to the square of the lens diameter \(D \), the intensity is also proportional to \(D^2 \). Light intensity is a measure of the rate at which energy is received by the film per unit area of the image. Because the area of the image is proportional to \(q^2 \) in Figure 25.1 and \(q = f \) (when \(p \gg f \)), so that \(p \) can be approximated as infinite), we conclude that the intensity is also proportional to \(1/f^2 \). Therefore, \(I \propto D^2/f^2 \). The brightness of the image formed on the film depends on the light intensity, so we see that it ultimately depends on both the focal length \(f \) and diameter \(D \) of the lens. The ratio \(f/D \) is called the \textit{f}-number (or focal ratio) of a lens:

\[
f\text{-number} = \frac{f}{D} \quad [25.1]
\]

The \textit{f}-number is often given as a description of the lens “speed.” A lens with a low \textit{f}-number is a “fast” lens. Extremely fast lenses, which have an \textit{f}-number as low as approximately 1.2, are expensive because of the difficulty of keeping aberrations acceptably small with light rays passing through a large area of the lens. Camera lenses are often marked with a range of \textit{f}-numbers, such as 1.4, 2, 2.8, 4, 5.6, 8, and 11. Any one of these settings can be selected by adjusting the aperture, which changes the value of \(D \). Increasing the setting from one \textit{f}-number to the next-higher value (for example, from 2.8 to 4) decreases the area of the aperture by a factor of 2. The lowest \textit{f}-number setting on a camera corresponds to a wide open aperture and the use of the maximum possible lens area.

Simple cameras usually have a fixed focal length and fixed aperture size, with an \textit{f}-number of about 11. This high value for the \textit{f}-number allows for a large \textit{depth of field} and means that objects at a wide range of distances from the lens form reasonably sharp images on the film. In other words, the camera doesn’t have to be focused. Most cameras with variable \textit{f}-numbers adjust them automatically.

25.2 THE EYE

Like a camera, a normal eye focuses light and produces a sharp image. The mechanisms by which the eye controls the amount of light admitted and adjusts to produce correctly focused images, however, are far more complex, intricate, and effective than those in even the most sophisticated camera. In all respects the eye is a physiological wonder.

Figure 25.2a shows the essential parts of the eye. Light entering the eye passes through a transparent structure called the cornea, behind which are a clear liquid (the aqueous humor), a variable aperture (the pupil, which is an opening in the iris), and the crystalline lens. Most of the refraction occurs at the outer surface of the eye, where the cornea is covered with a film of tears. Relatively little refraction occurs in the crystalline lens because the aqueous humor in contact with the lens has an average index of refraction close to that of the lens. The iris, which is the colored portion of the eye, is a muscular diaphragm that controls pupil size. The iris regulates the amount of light entering the eye by dilating the pupil in low-light conditions and contracting the pupil under conditions of bright light. The \textit{f}-number range of the eye is from about 2.8 to 16.

The cornea-lens system focuses light onto the back surface of the eye—the retina—which consists of millions of sensitive receptors called rods and cones. When stimulated by light, these structures send impulses to the brain via the optic nerve, converting them into our conscious view of the world. The process by which the brain performs this conversion is not well understood and is the subject of much
speculation and research. Unlike film in a camera, the rods and cones chemically adjust their sensitivity according to the prevailing light conditions. This adjustment, which takes about 15 minutes, is responsible for the experience of “getting used to the dark” in such places as movie theaters. Iris aperture control, which takes less than 1 second, helps protect the retina from overload in the adjustment process.

The eye focuses on an object by varying the shape of the pliable crystalline lens through an amazing process called accommodation. An important component in accommodation is the ciliary muscle, which is situated in a circle around the rim of the lens. Thin filaments, called zonules, run from this muscle to the edge of the lens. When the eye is focused on a distant object, the ciliary muscle is relaxed, tightening the zonules that attach the ciliary muscle to the edge of the lens. The force of the zonules causes the lens to flatten, increasing its focal length. For an object distance of infinity, the focal length of the eye is equal to the fixed distance between lens and retina, about 1.7 cm. The eye focuses on nearby objects by tensing the ciliary muscle, which relaxes the zonules. This action allows the lens to bulge a bit and its focal length decreases, resulting in the image being focused on the retina. All these lens adjustments take place so swiftly that we are not even aware of the change. In this respect even the finest electronic camera is a toy compared with the eye.

There is a limit to accommodation because objects that are very close to the eye produce blurred images. The near point is the closest distance for which the lens can accommodate to focus light on the retina. This distance usually increases with age and has an average value of 25 cm. Typically, at age 10 the near point of the eye is about 18 cm. This increases to about 25 cm at age 20, 50 cm at age 40, and 500 cm or greater at age 60. The far point of the eye represents the farthest distance for which the lens of the relaxed eye can focus light on the retina. A person with normal vision is able to see very distant objects, such as the Moon, and so has a far point at infinity.

Conditions of the Eye

When the eye suffers a mismatch between the focusing power of the lens–cornea system and the length of the eye so that light rays reach the retina before they converge to form an image, as in Figure 25.3a (page 826), the condition is known as farsightedness (or hyperopia). A farsighted person can usually see faraway objects clearly but not nearby objects. Although the near point of a normal eye is approximately 25 cm, the near point of a farsighted person is much farther than that. The
eye of a farsighted person tries to focus by accommodation, by shortening its focal length. Accommodation works for distant objects, but because the focal length of the farsighted eye is longer than normal, the light from nearby objects can't be brought to a sharp focus before it reaches the retina, causing a blurred image. The condition can be corrected by placing a converging lens in front of the eye, as in Figure 25.3b. The lens refracts the incoming rays more toward the principal axis before entering the eye, allowing them to converge and focus on the retina.

Nearsightedness (or myopia) is another mismatch condition in which a person is able to focus on nearby objects, but not faraway objects. In the case of axial myopia, nearsightedness is caused by the lens being too far from the retina. It is also possible to have refractive myopia, in which the lens–cornea system is too powerful for the normal length of the eye. The far point of the nearsighted eye is not at infinity and may be less than 1 meter. The maximum focal length of the nearsighted eye is insufficient to produce a sharp image on the retina, and rays from a distant object converge to a focus in front of the retina. They then continue past that point, diverging before they finally reach the retina and produce a blurred image (Fig. 25.4a).

Nearsightedness can be corrected with a diverging lens, as shown in Figure 25.4b. The lens refracts the rays away from the principal axis before they enter the eye, allowing them to focus on the retina.

Beginning with middle age, most people lose some of their accommodation ability as the ciliary muscle weakens and the lens hardens. Unlike farsightedness, which is a mismatch of focusing power and eye length, presbyopia (literally, “old-age vision”) is due to a reduction in accommodation ability. The cornea and lens aren’t able to bring nearby objects into focus on the retina. The symptoms are the same as with farsightedness, and the condition can be corrected with converging lenses.

In the eye defect known as astigmatism, light from a point source produces a line image on the retina. This condition arises when either the cornea or the lens (or both) are not perfectly symmetric. Astigmatism can be corrected with lenses having different curvatures in two mutually perpendicular directions.

Optometrists and ophthalmologists usually prescribe lenses measured in diopters:

\[
\text{The power } P \text{ of a lens in diopters equals the inverse of the focal length in meters: } P = \frac{1}{f}.
\]

For example, a converging lens with a focal length of +20 cm has a power of +5.0 diopters, and a diverging lens with a focal length of −40 cm has a power of −2.5 diopters. (Although the symbol \(P\) is the same as for mechanical power, there is no relationship between the two concepts.)

The position of the lens relative to the eye causes differences in power, but they usually amount to less than one-quarter diopter, which isn't noticeable to most patients. As a result, practicing optometrists deal in increments of one-quarter diopter. Neglecting the eye–lens distance is equivalent to doing the calculation for a contact lens, which rests directly on the eye.
Remark Notice that the calculation in part (c), which doesn’t neglect the eye–lens distance, results in a difference of 0.26 diopter.
QUESTION 25.1
True or False: The larger the distance to a near point, the larger the power of the required corrective lens.

EXERCISE 25.1
Suppose a lens is placed in a device that determines its power as 2.75 diopters. Find (a) the focal length of the lens and (b) the minimum distance at which a patient will be able to focus on an object if the patient’s near point is 60.0 cm. Neglect the eye–lens distance.

Answers
(a) 36.4 cm
(b) 22.7 cm

EXAMPLE 25.2 A Corrective Lens for Nearsightedness

Goal
Apply geometric optics to correct nearsightedness.

Problem
A particular nearsighted patient can’t see objects clearly when they are beyond 25 cm (the far point of the eye). (a) What focal length should the prescribed contact lens have to correct this problem? (b) Find the power of the lens, in diopters. Neglect the distance between the eye and the corrective lens.

Strategy
The purpose of the lens in this instance is to take objects at infinity and create an image of them at the patient’s far point. Apply the thin-lens equation.

Solution
(a) Find the focal length of the corrective lens.

Apply the thin-lens equation for an object at infinity and image at 25.0 cm:

$$\frac{1}{p} + \frac{1}{q} = \frac{1}{f} + \frac{1}{(-25.0 \text{ cm})} = \frac{1}{f}$$

$$f = -25.0 \text{ cm}$$

(b) Find the power of the lens in diopters.

$$P = \frac{1}{f} = \frac{1}{-0.250 \text{ m}} = -4.00 \text{ diopters}$$

Remarks
The focal length is negative, consistent with a diverging lens. Notice that the power is also negative and has the same numeric value as the sum on the left side of the thin-lens equation.

QUESTION 25.2
True or False: The shorter the distance to a patient’s far point, the more negative the power of the required corrective lens.

EXERCISE 25.2
(a) What power lens would you prescribe for a patient with a far point of 35.0 cm? Neglect the eye–lens distance.
(b) Repeat, assuming an eye-corrective lens distance of 2.00 cm.

Answers
(a) −2.86 diopters
(b) −3.03 diopters

APPLYING PHYSICS 25.1 VISION OF THE INVISIBLE MAN

A classic science fiction story, *The Invisible Man* by H. G. Wells, tells of a man who becomes invisible by changing the index of refraction of his body to that of air. Students who know how the eye works have criticized this story; they claim that the invisible man would be unable to see. On the basis of your knowledge of the eye, would he be able to see?

Explanation
He wouldn’t be able to see. For the eye to see an object, incoming light must be refracted at the cornea and lens to form an image on the retina. If the cornea and lens have the same index of refraction as air, refraction can’t occur and an image wouldn’t be formed.
QUICK QUIZ 25.1 Two campers wish to start a fire during the day. One camper is nearsighted and one is farsighted. Whose glasses should be used to focus the Sun’s rays onto some paper to start the fire? (a) either camper’s (b) the nearsighted camper’s (c) the farsighted camper’s

25.3 THE SIMPLE MAGNIFIER

The simple magnifier is one of the most basic of all optical instruments because it consists only of a single converging lens. As the name implies, this device is used to increase the apparent size of an object. Suppose an object is viewed at some distance p from the eye, as in Figure 25.5. Clearly, the size of the image formed at the retina depends on the angle θ subtended by the object at the eye. As the object moves closer to the eye, θ increases and a larger image is observed. A normal eye, however, can’t focus on an object closer than about 25 cm, the near point (Fig. 25.6a). (Try it!) Therefore, θ is a maximum at the near point.

To further increase the apparent angular size of an object, a converging lens can be placed in front of the eye with the object positioned at point O, just inside the focal point of the lens, as in Figure 25.6b. At this location, the lens forms a virtual, upright, and enlarged image, as shown. The lens allows the object to be viewed closer to the eye than is possible without the lens. We define the angular magnification m as the ratio of the angle subtended by a small object when the lens is in use (angle θ in Fig. 25.6b) to the angle subtended by the object placed at the near point with no lens in use (angle θ_0 in Fig. 25.6a):

$$m = \frac{\theta}{\theta_0}$$ \hspace{1cm} [25.2]

For the case in which the lens is held close to the eye, the angular magnification is a maximum when the image formed by the lens is at the near point of the eye, which corresponds to $q = -25$ cm (see Fig. 25.6b). The object distance corresponding to this image distance can be calculated from the thin-lens equation:

$$\frac{1}{p} + \frac{1}{-25 \text{ cm}} = \frac{1}{f}$$ \hspace{1cm} [25.3]

$$p = \frac{25f}{25 + f}$$

Here, f is the focal length of the magnifier in centimeters. From Figures 25.6a and 25.6b, the small-angle approximation gives

$$\tan \theta_0 = \frac{h}{25} \quad \text{and} \quad \tan \theta = \frac{h}{p}$$ \hspace{1cm} [25.4]

Equation 25.2 therefore becomes

$$m_{\text{max}} = \frac{\theta}{\theta_0} = \frac{h/p}{h/25} = \frac{25}{p} = \frac{25}{25/(25 + f)}$$

so that

$$m_{\text{max}} = 1 + \frac{25 \text{ cm}}{f}$$ \hspace{1cm} [25.5]
The maximum angular magnification given by Equation 25.5 is the ratio of the angular size seen with the lens to the angular size seen without the lens, with the object at the near point of the eye. Although the normal eye can focus on an image formed anywhere between the near point and infinity, it’s most relaxed when the image is at infinity (Sec. 25.2). For the image formed by the magnifying lens to appear at infinity, the object must be placed at the focal point of the lens so that \(\rho = f \). In this case Equation 25.4 becomes

\[
\theta_0 = \frac{h}{25} \quad \text{and} \quad \theta = \frac{h}{f}
\]

and the angular magnification is

\[m = \frac{\theta}{\theta_0} = \frac{25 \text{ cm}}{f} \quad \text{(25.6)} \]

With a single lens, it’s possible to achieve angular magnifications up to about 4 without serious aberrations. Magnifications up to about 20 can be achieved by using one or two additional lenses to correct for aberrations.

EXAMPLE 25.3 Magnification of a Lens

Goal Compute magnifications of a lens when the image is at the near point and when it’s at infinity.

Problem (a) What is the maximum angular magnification of a lens with a focal length of 10.0 cm? (b) What is the angular magnification of this lens when the eye is relaxed? Assume an eye–lens distance of zero.

Strategy The maximum angular magnification occurs when the image formed by the lens is at the near point of the eye. Under these circumstances, Equation 25.5 gives us the maximum angular magnification. In part (b) the eye is relaxed only if the image is at infinity, so Equation 25.6 applies.

Solution

(a) Find the maximum angular magnification of the lens.

Substitute into Equation 25.5:

\[m_{\text{max}} = 1 + \frac{25 \text{ cm}}{f} = 1 + \frac{25 \text{ cm}}{10.0 \text{ cm}} = 3.5 \]

(b) Find the magnification of the lens when the eye is relaxed.

When the eye is relaxed, the image is at infinity, so substitute into Equation 25.6:

\[m = \frac{25 \text{ cm}}{f} = \frac{25 \text{ cm}}{10.0 \text{ cm}} = 2.5 \]

QUESTION 25.3

For greater magnification, should a lens with a larger or smaller focal length be selected?

EXERCISE 25.3

What focal length would be necessary if the lens were to have a maximum angular magnification of 4.00?

Answer 8.3 cm

25.4 THE COMPOUND MICROSCOPE

A simple magnifier provides only limited assistance with inspection of the minute details of an object. Greater magnification can be achieved by combining two lenses in a device called a compound microscope, a schematic diagram of which is shown in Active Figure 25.7a. The instrument consists of two lenses: an objective with a very short focal length \(f_\text{o} \) (where \(f_\text{o} < 1 \) cm) and an ocular lens, or eyepiece,
with a focal length \(f_o \) of a few centimeters. The two lenses are separated by distance \(L \) that is much greater than either \(f_o \) or \(f_e \).

The basic approach used to analyze the image formation properties of a microscope is that of two lenses in a row: the image formed by the first becomes the object for the second. The object \(O \) placed just outside the focal length of the objective forms a real, inverted image at \(I_1 \) that is at or just inside the focal point of the eyepiece. This image is much enlarged. (For clarity, the enlargement of \(I_1 \) is not shown in Active Fig. 25.7a.) The eyepiece, which serves as a simple magnifier, uses the image at \(I_1 \) as its object and produces an image at \(I_2 \). The image seen by the eye at \(I_2 \) is virtual, inverted, and very much enlarged.

The lateral magnification \(M_1 \) of the first image is
\[
M_1 = \frac{q_1}{p_1} = -\frac{L}{f_o}
\]

From Equation 25.6, the angular magnification of the eyepiece for an object (corresponding to the image at \(I_1 \)) placed at the focal point is found to be
\[
m_e = \frac{25 \text{ cm}}{f_e}
\]

The overall magnification of the compound microscope is defined as the product of the lateral and angular magnifications:
\[
m = M_1 m_e = -\frac{L}{f_o} \left(\frac{25 \text{ cm}}{f_e} \right)
\]

The negative sign indicates that the image is inverted with respect to the object.

The microscope has extended our vision into the previously unknown realm of incredibly small objects, and the capabilities of this instrument have increased steadily with improved techniques in precision grinding of lenses. A natural question is whether there is any limit to how powerful a microscope could be. For example, could a microscope be made powerful enough to allow us to see an atom? The answer to this question is no, as long as visible light is used to illuminate the object. To be seen, the object under a microscope must be at least as large as a wavelength of light. An atom is many times smaller than the wavelength of visible light, so its mysteries must be probed via other techniques.
The wavelength dependence of the “seeing” ability of a wave can be illustrated by water waves set up in a bathtub in the following way. Imagine that you vibrate your hand in the water until waves with a wavelength of about 6 in. are moving along the surface. If you fix a small object, such as a toothpick, in the path of the waves, you will find that the waves are not appreciably disturbed by the toothpick, but continue along their path. Now suppose you fix a larger object, such as a toy sailboat, in the path of the waves. In this case the waves are considerably disturbed by the object. The toothpick was much smaller than the wavelength of the waves, and as a result the waves didn’t “see” it. The toy sailboat, however, is about the same size as the wavelength of the waves and hence creates a disturbance. Light waves behave in this same general way. The ability of an optical microscope to view an object depends on the size of the object relative to the wavelength of the light used to observe it. Hence, it will never be possible to observe atoms or molecules with such a microscope because their dimensions are so small (≈0.1 nm) relative to the wavelength of the light (≈500 nm).

EXAMPLE 25.4 Microscope Magnifications

Goal Understand the critical factors involved in determining the magnifying power of a microscope.

Problem A certain microscope has two interchangeable objectives. One has a focal length of 2.0 cm, and the other has a focal length of 0.20 cm. Also available are two eyepieces of focal lengths 2.5 cm and 5.0 cm. If the length of the microscope is 18 cm, compute the magnifications for the following combinations: the 2.0-cm objective and 5.0-cm eyepiece, the 2.0-cm objective and 2.5-cm eyepiece, and the 0.20-cm objective and 5.0-cm eyepiece.

Strategy The solution consists of substituting into Equation 25.7 for three different combinations of lenses.

Solution

Apply Equation 25.7 and combine the 2.0-cm objective with the 5.0-cm eyepiece:

\[m = -\frac{L}{f_o} \left(\frac{25 \text{ cm}}{f_e}\right) = -\frac{18 \text{ cm}}{2.0 \text{ cm}} \left(\frac{25 \text{ cm}}{5.0 \text{ cm}}\right) = -45 \]

Combine the 2.0-cm objective with the 2.5-cm eyepiece:

\[m = -\frac{18 \text{ cm}}{2.0 \text{ cm}} \left(\frac{25 \text{ cm}}{2.5 \text{ cm}}\right) = -9.0 \times 10^1 \]

Combine the 0.20-cm objective with the 5.0-cm eyepiece:

\[m = -\frac{18 \text{ cm}}{0.20 \text{ cm}} \left(\frac{25 \text{ cm}}{5.0 \text{ cm}}\right) = -450 \]

Remark Much higher magnifications can be achieved, but the resolution starts to fall, resulting in fuzzy images that don’t convey any details. (See Section 25.6 for further discussion of this point.)

QUESTION 25.4

True or False: A shorter focal length for either the eyepiece or objective lens will result in greater magnification.

EXERCISE 25.4

Combine the 0.20-cm objective with the 2.5-cm eyepiece and find the magnification.

Answer \(-9.0 \times 10^2\)

25.5 THE TELESCOPE

There are two fundamentally different types of telescope, both designed to help us view distant objects such as the planets in our solar system: (1) the *refracting telescope*, which uses a combination of lenses to form an image, and (2) the *reflecting telescope*, which uses a curved mirror and a lens to form an image. Once again, we can analyze the telescope by considering it to be a system of two optical ele-
ments in a row. As before, the basic technique followed is that the image formed by the first element becomes the object for the second.

In the refracting telescope two lenses are arranged so that the objective forms a real, inverted image of the distant object very near the focal point of the eyepiece (Active Fig. 25.8a). Further, the image at I_1 is formed at the focal point of the objective because the object is essentially at infinity. Hence, the two lenses are separated by the distance $f_o + f_e$, which corresponds to the length of the telescope's tube. Finally, at I_2, the eyepiece forms an enlarged image of the image at I_1.

The angular magnification of the telescope is given by $\frac{\theta}{\theta_o}$, where θ_o is the angle subtended by the object at the objective and θ is the angle subtended by the final image. From the triangles in Active Figure 25.8a, and for small angles, we have

$$\theta = \frac{h'}{f_e} \quad \text{and} \quad \theta_o = \frac{h'}{f_o}$$

Therefore, the angular magnification of the telescope can be expressed as

$$m = \frac{\theta}{\theta_o} = \frac{h'/f_e}{h'/f_o} = \frac{f_o}{f_e}$$ \[25.8\]

This equation says that the angular magnification of a telescope equals the ratio of the objective focal length to the eyepiece focal length. Here again, the angular magnification is the ratio of the angular size seen with the telescope to the angular size seen with the unaided eye.

In some applications—for instance, the observation of relatively nearby objects such as the Sun, the Moon, or planets—angular magnification is important. Stars, however, are so far away that they always appear as small points of light regardless of how much angular magnification is used. The large research telescopes used to study very distant objects must have great diameters to gather as much light as possible. It’s difficult and expensive to manufacture such large lenses for refracting telescopes. In addition, the heaviness of large lenses leads to sagging, which is another source of aberration.

These problems can be partially overcome by replacing the objective lens with a reflecting, concave mirror, usually having a parabolic shape so as to avoid spherical aberration. Figure 25.9 shows the design of a typical reflecting telescope. Incoming light rays pass down the barrel of the telescope and are reflected by a parabolic mirror at the base. These rays converge toward point A in the figure, where an image would be formed on a photographic plate or another detector. Before this image is formed, however, a small, flat mirror at M reflects the light toward an opening in the side of the tube that passes into an eyepiece. This design is said to have a *Newtonian focus*, after its developer. Note that in the reflecting telescope the

ACTIVE FIGURE 25.8

(a) A diagram of a refracting telescope, with the object at infinity.
(b) A refracting telescope.

FIGURE 25.9 A reflecting telescope with a Newtonian focus.
light never passes through glass (except for the small eyepiece). As a result, problems associated with chromatic aberration are virtually eliminated.

The largest optical telescopes in the world are the two 10-m-diameter Keck reflectors on Mauna Kea in Hawaii. The largest single-mirrored reflecting telescope in the United States is the 5-m-diameter instrument on Mount Palomar in California. (See Fig. 25.10.) In contrast, the largest refracting telescope in the world, at the Yerkes Observatory in Williams Bay, Wisconsin, has a diameter of only 1 m.

EXAMPLE 25.5 Hubble Power

Goal Understand magnification in telescopes.

Problem The Hubble Space Telescope is 13.2 m long, but has a secondary mirror that increases its effective focal length to 57.8 m. (See Fig. 25.11.) The telescope doesn't have an eyepiece because various instruments, not a human eye, record the collected light. It can, however, produce images several thousand times larger than they would appear with the unaided human eye. What focal-length eyepiece used with the Hubble mirror system would produce a magnification of 8.00×10^2?

Strategy Equation 25.8 for telescope magnification can be solved for the eyepiece focal length. The equation for finding the angular magnification of a reflector is the same as that for a refractor.

Solution Solve for f_e in Equation 25.8 and substitute values:

$$m = \frac{f_e}{f_o} \quad \Rightarrow \quad f_e = \frac{m f_o}{f_e} = \frac{57.8 \text{ m}}{8.00 \times 10^2} = 7.23 \times 10^{-3} \text{ m}$$

Remarks The light-gathering power of a telescope and the length of the baseline over which light is gathered are in fact more important than a telescope’s magnification, because these two factors contribute to the resolution of the image. A high resolution image can always be magnified so its details can be examined. A low resolution image, however, is often fuzzy when magnified. (See Section 25.6.)

QUESTION 25.5

Can greater magnification of a telescope be achieved by increasing the focal length of the mirror? What effect will increasing the focal length of the eyepiece have on the magnification?
EXERCISE 25.5

The Hale telescope on Mount Palomar has a focal length of 16.8 m. Find the magnification of the telescope in conjunction with an eyepiece having a focal length of 5.00 mm.

Answer \(3.36 \times 10^3\)

25.6 RESOLUTION OF SINGLE-SLIT AND CIRCULAR APERTURES

The ability of an optical system such as the eye, a microscope, or a telescope to distinguish between closely spaced objects is limited because of the wave nature of light. To understand this difficulty, consider Figure 25.12, which shows two light sources far from a narrow slit of width \(a\). The sources can be taken as two point sources \(S_1\) and \(S_2\) that are not coherent. For example, they could be two distant stars. If no diffraction occurred, two distinct bright spots (or images) would be observed on the screen at the right in the figure. Because of diffraction, however, each source is imaged as a bright central region flanked by weaker bright and dark rings. What is observed on the screen is the sum of two diffraction patterns, one from \(S_1\) and the other from \(S_2\).

If the two sources are separated so that their central maxima don’t overlap, as in Figure 25.12a, their images can be distinguished and are said to be resolved. If the sources are close together, however, as in Figure 25.12b, the two central maxima may overlap and the images are not resolved. To decide whether two images are resolved, the following condition is often applied to their diffraction patterns:

When the central maximum of one image falls on the first minimum of another image, the images are said to be just resolved. This limiting condition of resolution is known as Rayleigh’s criterion.

Figure 25.13 (page 836) shows diffraction patterns in three situations. The images are just resolved when their angular separation satisfies Rayleigh’s criterion (Fig. 25.13a). As the objects are brought closer together, their images are barely resolved (Fig. 25.13b). Finally, when the sources are very close to each other, their images are not resolved (Fig. 25.13c).

From Rayleigh’s criterion, we can determine the minimum angular separation \(\theta_{\text{min}}\) subtended by the source at the slit so that the images will be just resolved. In Chapter 24 we found that the first minimum in a single-slit diffraction pattern occurs at the angle that satisfies the relationship

\[
\sin \theta = \frac{\lambda}{a}
\]
where a is the width of the slit. According to Rayleigh's criterion, this expression gives the smallest angular separation for which the two images can be resolved. Because $\lambda \ll a$ in most situations, $\sin \theta$ is small and we can use the approximation $\sin \theta \approx \theta$. Therefore, the limiting angle of resolution for a slit of width a is

$$\theta_{\text{min}} = \frac{\lambda}{a} \quad [25.9]$$

where θ_{min} is in radians. Hence, the angle subtended by the two sources at the slit must be greater than λ/a if the images are to be resolved.

Many optical systems use circular apertures rather than slits. The diffraction pattern of a circular aperture (Fig. 25.14) consists of a central circular bright region surrounded by progressively fainter rings. Analysis shows that the limiting angle of resolution of the circular aperture is

$$\theta_{\text{min}} = 1.22 \frac{\lambda}{D} \quad [25.10]$$

where D is the diameter of the aperture. Note that Equation 25.10 is similar to Equation 25.9 except for the factor 1.22, which arises from a complex mathematical analysis of diffraction from a circular aperture.

QUICK QUIZ 25.2 Suppose you are observing a binary star with a telescope and are having difficulty resolving the two stars. Which color filter will better help resolve the stars? (a) blue (b) red (c) neither because colored filters have no effect on resolution.

APPLYING PHYSICS 25.2 CAT’S EYES

Cats’ eyes have vertical pupils in dim light. Which would cats be most successful at resolving at night, headlights on a distant car or vertically separated running lights on a distant boat’s mast having the same separation as the car’s headlights? **Explanation** The effective slit width in the vertical direction of the cat’s eye is larger than that in the horizontal direction. Thus, it has more resolving power for lights separated in the vertical direction and would be more effective at resolving the mast lights on the boat.
EXAMPLE 25.6 Resolution of a Microscope

Goal Study limitations on the resolution of a microscope.

Problem Sodium light of wavelength 589 nm is used to view an object under a microscope. The aperture of the objective has a diameter of 0.90 cm. (a) Find the limiting angle of resolution for this microscope. (b) Using visible light of any wavelength you desire, find the maximum limit of resolution for this microscope. (c) Water of index of refraction 1.33 now fills the space between the object and the objective. What effect would this water have on the resolving power of the microscope, using 589-nm light?

Solution

(a) Find the limiting angle of resolution for this microscope.

Substitute into Equation 25.10 to obtain the limiting angle of resolution:

\[\theta_{\text{min}} = 1.22 \frac{\lambda}{D} = 1.22 \left(\frac{589 \times 10^{-9} \text{ m}}{0.90 \times 10^{-2} \text{ m}} \right) \]

= \(8.0 \times 10^{-5}\) rad

(b) Calculate the microscope’s maximum limit of resolution.

To obtain the maximum resolution, substitute the shortest visible wavelength available, which is violet light, of wavelength 4.0 \(\times\) \(10^2\) nm:

\[\theta_{\text{min}} = 1.22 \frac{\lambda}{D} = 1.22 \left(\frac{4.0 \times 10^{-7} \text{ m}}{0.90 \times 10^{-2} \text{ m}} \right) \]

= \(5.4 \times 10^{-5}\) rad

(c) What effect does water between the object and the objective lens have on the resolution, with 589-nm light?

Calculate the wavelength of the sodium light in the water:

\[\lambda_w = \frac{\lambda}{n} = \frac{589 \text{ nm}}{1.33} = 443 \text{ nm} \]

Substitute this wavelength into Equation 25.10 to get the resolution:

\[\theta_{\text{min}} = 1.22 \left(\frac{443 \times 10^{-9} \text{ m}}{0.90 \times 10^{-2} \text{ m}} \right) = 6.0 \times 10^{-5}\] rad

Remarks In each case any two points on the object subtending an angle of less than the limiting angle \(\theta_{\text{min}}\) at the objective cannot be distinguished in the image. Consequently, it may be possible to see a cell but then be unable to clearly see smaller structures within the cell. Obtaining an increase in resolution is the motivation behind placing a drop of oil on the slide for certain objective lenses.

QUESTION 25.6

Does having two eyes instead of one improve the human ability to resolve distant objects? In general, would more widely spaced eyes increase visual resolving power? Explain.

EXERCISE 25.6

Suppose oil with \(n = 1.50\) fills the space between the object and the objective for this microscope. Calculate the limiting angle \(\theta_{\text{min}}\) for sodium light of wavelength 589 nm in air.

Answer \(5.3 \times 10^{-5}\) rad
Remarks

The distance is so great and the angle so small that using the arc length of a circle is justified because the circular arc is very nearly a straight line. The Hubble Space Telescope has produced several gigabytes of data every day since it first began operation.

QUESTION 25.7

Is the resolution of a telescope better at the red end of the visible spectrum or the violet end?

EXERCISE 25.7

The Hale telescope on Mount Palomar has a diameter of 5.08 m (200 in.). (a) Find the limiting angle of resolution for a wavelength of 6.00 × 10^{-2} m. (b) What’s the smallest crater it could resolve on the Moon? (The Moon’s distance from Earth is 3.84 × 10^8 m.)

Strategy

After substituting into Equation 25.10 to find the limiting angle, use \(s = r \theta \) to compute the minimum size of crater that can be resolved.

\[\theta_{\text{min}} = \frac{1.22 \lambda}{D} = \frac{1.22 (6.00 \times 10^{-7} \text{ m})}{2.40 \text{ m}} \]

\[= 3.05 \times 10^{-7} \text{ rad} \]

(b) What’s the smallest lunar crater the Hubble Space Telescope can resolve?

The two opposite sides of the crater must subtend the minimum angle. Use the arc length formula:

\[s = r \theta = (3.84 \times 10^8 \text{ m})(3.05 \times 10^{-7} \text{ rad}) = 117 \text{ m} \]

EXCHANGE 25.7

The Hale telescope on Mount Palomar has a diameter of 5.08 m (200 in.). (a) Find the limiting angle of resolution for a wavelength of 6.00 × 10^{-2} nm. (b) Calculate the smallest crater diameter the telescope can resolve on the Moon. (c) The answers appear better than what the Hubble can achieve. Why are the answers misleading?

Answers

(a) 1.44 × 10^{-7} rad (b) 55.3 m (c) Although the numbers are better than Hubble’s, the Hale telescope must contend with the effects of atmospheric turbulence, so the smaller space-based telescope actually obtains far better results.

It's interesting to compare the resolution of the Hale telescope with that of a large radio telescope, such as the system at Arecibo, Puerto Rico, which has a diameter of 1 000 ft (305 m). This telescope detects radio waves at a wavelength of 0.75 m. The corresponding minimum angle of resolution can be calculated as 3.0 × 10^{-3} rad (10 min 19 s of arc), which is more than 10 000 times larger than the calculated minimum angle for the Hale telescope.

With such relatively poor resolution, why is Arecibo considered a valuable astronomical instrument? Unlike its optical counterparts, Arecibo can see through clouds of dust. The center of our Milky Way galaxy is obscured by such dust clouds, which absorb and scatter visible light. Radio waves easily penetrate the clouds, so radio telescopes allow direct observations of the galactic core.

Resolving Power of the Diffraction Grating

The diffraction grating studied in Chapter 24 is most useful for making accurate wavelength measurements. Like the prism, it can be used to disperse a spectrum into its components. Of the two devices, the grating is better suited to distinguish-
ing between two closely spaced wavelengths. We say that the grating spectrometer has a higher resolution than the prism spectrometer. If λ_1 and λ_2 are two nearly equal wavelengths between which the spectrometer can just barely distinguish, the **resolving power** of the grating is defined as

$$ R = \frac{\lambda}{\lambda_2 - \lambda_1} = \frac{\lambda}{\Delta\lambda} \quad [25.11] $$

where $\lambda = \lambda_1 = \lambda_2$ and $\Delta\lambda = \lambda_2 - \lambda_1$. From this equation, it’s clear that a grating with a high resolving power can distinguish small differences in wavelength. Further, if N lines of the grating are illuminated, it can be shown that the resolving power in the mth-order diffraction is given by

$$ R = Nm \quad [25.12] $$

So, the resolving power R increases with the order number m and is large for a grating with a great number of illuminated slits. Note that for $m = 0$, $R = 0$, which signifies that all wavelengths are indistinguishable for the zeroth-order maximum. (All wavelengths fall at the same point on the screen.) Consider, however, the second-order diffraction pattern of a grating that has 5 000 rulings illuminated by the light source. The resolving power of such a grating in second order is $R = 5 \times 2 = 10 000$. Therefore, the minimum wavelength separation between two spectral lines that can be just resolved, assuming a mean wavelength of 600 nm, is calculated from Equation 25.12 to be $\Delta\lambda = \lambda/R = 6 \times 10^{-2}$ nm. For the third-order principal maximum, $R = 15 000$ and $\Delta\lambda = 4 \times 10^{-2}$ nm, and so on.

EXAMPLE 25.8 Light from Sodium Atoms

Goal Find the necessary resolving power to distinguish spectral lines.

Problem Two bright lines in the spectrum of sodium have wavelengths of 589.00 nm and 589.59 nm, respectively.
(a) What must the resolving power of a grating be so as to distinguish these wavelengths? (b) To resolve these lines in the second-order spectrum, how many lines of the grating must be illuminated?

Strategy This problem requires little more than substituting into Equations 25.11 and 25.12.

Solution

(a) What must the resolving power of a grating be in order to distinguish the given wavelengths?

Substitute into Equation 25.11 to find R:

$$ R = \frac{\Delta\lambda}{\lambda} = \frac{589.00 \text{ nm}}{589.59 \text{ nm} - 589.00 \text{ nm}} = \frac{589 \text{ nm}}{0.59 \text{ nm}} = 1.0 \times 10^3 $$

(b) To resolve these lines in the second-order spectrum, how many lines of the grating must be illuminated?

Solve Equation 25.12 for N and substitute:

$$ N = \frac{R}{m} = \frac{1.0 \times 10^3}{2} = 5.0 \times 10^2 \text{ lines} $$

Remark The ability to resolve spectral lines is particularly important in experimental atomic physics.

QUESTION 25.8

True or False: If two diffraction gratings are identical except for the number of lines, the grating with the larger number of lines has the greater resolving power.

EXERCISE 25.8

Due to a phenomenon called electron spin, when the lines of a spectrum are examined at high resolution, each line is actually found to be two closely spaced lines called a doublet. An example is the doublet in the hydrogen spectrum.
having wavelengths of 656.272 nm and 656.285 nm. (a) What must be the resolving power of a grating so as to distinguish these wavelengths? (b) How many lines of the grating must be illuminated to resolve these lines in the third-order spectrum?

Answers (a) 5.0×10^4 (b) 1.7×10^4 lines

25.7 THE MICHELSON INTERFEROMETER

The Michelson interferometer is an optical instrument having great scientific importance. Invented by American physicist A. A. Michelson (1852–1931), it is an ingenious device that splits a light beam into two parts and then recombines them to form an interference pattern. The interferometer is used to make accurate length measurements.

Active Figure 25.15 is a schematic diagram of an interferometer. A beam of light provided by a monochromatic source is split into two rays by a partially silvered mirror M inclined at an angle of 45° relative to the incident light beam. One ray is reflected vertically upward to mirror M', and the other ray is transmitted horizontally through mirror M to mirror M₂. Hence, the two rays travel separate paths, $L₁$ and $L₂$. After reflecting from mirrors M₁ and M₂, the two rays eventually recombine to produce an interference pattern, which can be viewed through a telescope. The glass plate P, equal in thickness to mirror M, is placed in the path of the horizontal ray to ensure that the two rays travel the same distance through glass.

The interference pattern for the two rays is determined by the difference in their path lengths. When the two rays are viewed as shown, the image of M₂ is at M₂', parallel to M₁. Hence, the space between M₂' and M₁ forms the equivalent of a parallel air film. The effective thickness of the air film is varied by using a finely threaded screw to move mirror M₁ in the direction indicated by the arrows in Active Figure 25.15. If one of the mirrors is tipped slightly with respect to the other, the thin film between the two is wedge shaped and an interference pattern consisting of parallel fringes is set up, as described in Example 24.4. Now suppose we focus on one of the dark lines with the crosshairs of a telescope. As mirror M₁ is moved to lengthen the path $L₁$, the thickness of the wedge increases. When the thickness increases by $\lambda/4$, the destructive interference that initially produced the dark fringe has changed to constructive interference, and we now observe a bright fringe at the location of the crosshairs. The term *fringe shift* is used to describe the change in a fringe from dark to light or from light to dark. Successive light and dark fringes are formed each time M₁ is moved a distance of $\lambda/4$. The wavelength of light can be measured by counting the number of fringe shifts for a measured displacement of M₁. Conversely, if the wavelength is accurately known (as with a laser beam), the mirror displacement can be deter-
mined to within a fraction of the wavelength. Because the interferometer can measure displacements precisely, it is often used to make highly accurate measurements of the dimensions of mechanical components.

If the mirrors are perfectly aligned rather than tipped with respect to each other, the path difference differs slightly for different angles of view. This arrangement results in an interference pattern that resembles Newton's rings. The pattern can be used in a fashion similar to that for tipped mirrors. An observer pays attention to the center spot in the interference pattern. For example, suppose the spot is initially dark, indicating that destructive interference is occurring. If M_1 is now moved a distance of $\lambda/4$, this central spot changes to a light region, corresponding to a fringe shift.

SUMMARY

25.1 The Camera
The light-concentrating power of a lens of focal length f and diameter D is determined by the f-number, defined as

$$ f\text{-number} = \frac{f}{D} \quad [25.1] $$

The smaller the f-number of a lens, the brighter the image formed.

25.2 The Eye
Hyperopia (farsightedness) is a defect of the eye that occurs when the eyeball is too short or when the ciliary muscle cannot change the shape of the lens enough to form a properly focused image. Myopia (nearsightedness) occurs when the eye is longer than normal or when the maximum focal length of the lens is insufficient to produce a clearly focused image on the retina.

The power of a lens in diopters is the inverse of the focal length in meters.

25.3 The Simple Magnifier
The angular magnification of a lens is defined as

$$ m = \frac{\theta}{\theta_0} \quad [25.2] $$

where θ is the angle subtended by an object at the eye with a lens in use and θ_0 is the angle subtended by the object when it is placed at the near point of the eye and no lens is used. The maximum angular magnification of a lens is

$$ m_{\text{max}} = 1 + \frac{25 \text{ cm}}{f} \quad [25.5] $$

When the eye is relaxed, the angular magnification is

$$ m = \frac{25 \text{ cm}}{f} \quad [25.6] $$

25.4 The Compound Microscope
The overall magnification of a compound microscope of length L is the product of the magnification produced by the objective, of focal length f_o, and the magnification produced by the eyepiece, of focal length f_e:

$$ m = \left(\frac{L}{f_o} \right) \left(\frac{25 \text{ cm}}{f_e} \right) \quad [25.7] $$

25.5 The Telescope
The angular magnification of a telescope is

$$ m = \frac{f_o}{f_e} \quad [25.8] $$

where f_o is the focal length of the objective and f_e is the focal length of the eyepiece.

25.6 Resolution of Single-Slit and Circular Apertures
Two images are said to be just resolved when the central maximum of the diffraction pattern for one image falls on the first minimum of the other image. This limiting condition of resolution is known as Rayleigh's criterion. The limiting angle of resolution for a slit of width a is

$$ \theta_{\text{min}} = \frac{\lambda}{a} \quad [25.9] $$

The limiting angle of resolution of a circular aperture is

$$ \theta_{\text{min}} = 1.22 \frac{\lambda}{D} \quad [25.10] $$

where D is the diameter of the aperture.

If λ_1 and λ_2 are two nearly equal wavelengths between which a grating spectrometer can just barely distinguish, the resolving power R of the grating is defined as

$$ R = \frac{\lambda}{\lambda_2 - \lambda_1} = \frac{\lambda}{\Delta \lambda} \quad [25.11] $$

where $\lambda = \lambda_1 = \lambda_2$ and $\Delta \lambda = \lambda_2 - \lambda_1$. The resolving power of a diffraction grating in the nth order is

$$ R = Nm \quad [25.12] $$

where N is the number of illuminated rulings on the grating.
MULTIPLE-CHOICE QUESTIONS

1. Why is it advantageous to use a large-diameter objective lens in a telescope? (a) It diffracts the light more effectively than smaller-diameter objective lenses. (b) It increases its magnification. (c) It increases its resolution. (d) It enables you to see more objects in the field of view. (e) It reflects unwanted wavelengths.

2. A lens has a focal length of 25 cm. What is the power of the lens? (a) 2.0 diopters (b) 4.0 diopters (c) 6.0 diopters (d) 8.0 diopters (e) none of these

3. If you increase the aperture diameter of a camera by a factor of 3, how is the intensity of the light striking the film affected? (a) It increases by a factor of 3. (b) It decreases by a factor of 3. (c) It increases by a factor of 9. (d) It decreases by a factor of 9. (e) Increasing the aperture doesn't affect the intensity.

4. If a man has eyes that are shorter than normal, how is his vision affected and how can it be corrected? (a) The man is farsighted (hyperopia), and his vision can be corrected with a diverging lens. (b) The man is nearsighted (myopia), and his vision can be corrected with a converging lens. (c) The man is farsighted, and his vision can be corrected with a converging lens. (d) The man is nearsighted, and his vision can be corrected with a converging lens. (e) The man's vision is not correctible.

5. If a woman's eyes are longer than normal, how is her vision affected and how can her vision be corrected? (a) The woman is farsighted (hyperopia), and her vision can be corrected with a converging lens. (b) The woman is nearsighted (myopia), and her vision can be corrected with a diverging lens. (c) The woman is farsighted, and her vision can be corrected with a converging lens. (d) The woman is nearsighted, and her vision can be corrected with a converging lens. (e) The woman's vision is not correctible.

CONCEPTUAL QUESTIONS

1. A lens is used to examine an object across a room. Is the lens probably being used as a simple magnifier?

2. Why is it difficult or impossible to focus a microscope on an object across a room?

3. The optic nerve and the brain invert the image formed on the retina. Why don't we see everything upside down?

4. If you want to examine the fine detail of an object with a magnifying glass with a power of +20.0 diopters, where should the object be placed so as to observe a magnified image of the object?

5. Suppose you are observing the interference pattern formed by a Michelson interferometer in a laboratory and a joking colleague holds a lit match in the light path of one arm of the interferometer. Will this match have an effect on the interference pattern?

6. Compare and contrast the eye and a camera. What parts of the camera correspond to the iris, the retina, and the cornea of the eye?

7. Large telescopes are usually reflecting rather than refracting. List some reasons for this choice.

8. If you want to use a converging lens to set fire to a piece of paper, why should the light source be farther from the lens than its focal point?

9. Explain why it is theoretically impossible to see an object as small as an atom regardless of the quality of the light microscope being used.

10. Which is most important in the use of a camera photoflash unit, the intensity of the light (the energy per unit area per unit time) or the product of the intensity and the time of the flash, assuming the time is less than the shutter speed?

11. A patient has a near point of 1.25 m. Is she nearsighted or farsighted? Should the corrective lens be converging or diverging?

12. A lens with a certain power is used as a simple magnifier. If the power of the lens is doubled, does the angular magnification increase or decrease?
13. During LASIK eye surgery (laser-assisted in situ keratomileusis), the shape of the cornea is modified by vaporizing some of its material. If the surgery is performed to correct for nearsightedness, how does the cornea need to be reshaped?

PROBLEMS

The Problems for this chapter may be assigned online at WebAssign.

1.2, 3 = straightforward, intermediate, challenging
GP = denotes guided problem
ecp = denotes enhanced content problem
L = denotes biomedical application
□ = denotes full solution available in Student Solutions Manual/Study Guide

SECTION 25.1 THE CAMERA

1. A lens has a focal length of 28 cm and a diameter of 4.0 cm. What is the f-number of the lens?

2. A certain camera has f-numbers that range from 1.2 to 22. If the focal length of the lens is 55 mm, what is the range of aperture diameters for the camera?

3. A photographic image of a building is 0.092 m high. The image was made with a lens with a focal length of 52.0 mm. If the lens was 100 m from the building when the photograph was made, determine the height of the building.

4. The image area of a typical 35 mm slide is 23.5 mm by 35.0 mm. If a camera’s lens has a focal length of 55.0 mm and forms an image of the constellation Orion, which is 20° across, will the full image fit on a 35-mm slide?

5. A camera is being used with the correct exposure at an f-number of 4.0 and a shutter speed of 1/32 s. To “stop” a fast-moving subject, the shutter speed is changed to 1/256 s. Find the new f-number that should be used to maintain satisfactory exposure, assuming no change in lighting conditions.

6. (a) Use conceptual arguments to show that the intensity of light (energy per unit area per unit time) reaching the film in a camera is proportional to the square of the reciprocal of the f-number as

\[I \propto \frac{1}{(f/D)^2} \]

(b) The correct exposure time for a camera set to f/1.8 is (1/500) s. Calculate the correct exposure time if the f-number is changed to f/4 under the same lighting conditions. Note: “f/4,” on a camera, means “an f-number of 4.”

7. A certain type of film requires an exposure time of 0.010 s with an f/11 lens setting. Another type of film requires twice the light energy to produce the same level of exposure. What f-number does the second type of film need with the 0.010-s exposure time?

8. A certain camera lens has a focal length of 175 mm. Its position can be adjusted to produce images when the lens is between 180 mm and 210 mm from the plane of the film. Over what range of object distances is the lens useful?

9. L The near point of a person’s eye is 60.0 cm. To see objects clearly at a distance of 25.0 cm, what should be the focal length and power of the appropriate corrective lens? (Neglect the distance from the lens to the eye.)

10. L A patient can’t see objects closer than 40.0 cm and wishes to clearly see objects that are 20.0 cm from his eye. (a) Is the patient nearsighted or farsighted? (b) If the eye–lens distance is 2.00 cm, what is the minimum object distance f from the lens? (c) What image position with respect to the lens will allow the patient to see the object? (d) Is the image real or virtual? Is the image distance q positive or negative? (e) Calculate the required focal length. (f) Find the power of the lens in diopters. (g) If a contact lens is to be prescribed instead, find p, q, and f, and the power of the lens.

11. L The accommodation limits for Nearsighted Nick’s eyes are 18.0 cm and 80.0 cm. When he wears his glasses, he is able to see faraway objects clearly. At what minimum distance is he able to see objects clearly?

12. L A certain child’s near point is 10.0 cm; her far point (with eyes relaxed) is 125 cm. Each eye lens is 2.00 cm from the retina. (a) Between what limits, measured in diopters, does the power of this lens–cornea combination vary? (b) Calculate the power of the eyeglass lens the child should use for relaxed distance vision. Is the lens converging or diverging?

13. L An individual is nearsighted; his near point is 13.0 cm and his far point is 50.0 cm. (a) What lens power is needed to correct his nearsightedness? (b) When the lenses are in use, what is this person’s near point?

14. L GP A patient has a near point of 45.0 cm and far point of 85.0 cm. (a) Can a single lens correct the patient’s vision? Explain the patient’s options. (b) Calculate the power lens needed to correct the near point so that the patient can see objects 25.0 cm away. Neglect the eye–lens distance. (c) Calculate the power lens needed to correct the patient’s far point, again neglecting the eye–lens distance.

15. L An artificial lens is implanted in a person’s eye to replace a diseased lens. The distance between the artificial lens and the retina is 2.80 cm. In the absence of the lens, an image of a distant object (formed by refraction at the cornea) falls 2.53 cm behind the retina. The lens is designed to put the image of the distant object on the retina. What is the power of the implanted lens? Hint: Consider the image formed by the cornea to be a virtual object.

16. L A person is to be fitted with bifocals. She can see clearly when the object is between 30 cm and 1.5 m from
the eye. (a) The upper portions of the bifocals (Fig. P25.16) should be designed to enable her to see distant objects clearly. What power should they have? (b) The lower portions of the bifocals should enable her to see objects comfortably at 25 cm. What power should they have?

17. A nearsighted woman can’t see objects clearly beyond 40.0 cm (her far point). If she has no astigmatism and contact lenses are prescribed, what power and type of lens are required to correct her vision?

18. A person sees clearly wearing eyeglasses that have a power of \(-4.00\) diopters when the lenses are 2.00 cm in front of the eyes. (a) What is the focal length of the lens? (b) Is the person nearsighted or farsighted? (c) If the person wants to switch to contact lenses placed directly on the eyes, what lens power should be prescribed?

SECTION 25.3 THE SIMPLE MAGNIFIER

19. A stamp collector uses a lens with 7.5-cm focal length as a simple magnifier. The virtual image is produced at the normal near point (25 cm). (a) How far from the lens should the stamp be placed? (b) What is the expected angular magnification?

20. A magnifier has a maximum angular magnification of +6.0. Find the (a) focal length of the lens and (b) angular magnification when the eye is relaxed.

21. A biology student uses a simple magnifier to examine the structural features of an insect’s wing. The wing is held 3.50 cm in front of the lens, and the image is formed 25.0 cm from the eye. (a) What is the focal length of the lens? (b) What angular magnification is achieved?

22. A jeweler’s lens of focal length 5.0 cm is used as a magnifier. With the lens held near the eye, determine (a) the angular magnification when the object is at the focal point of the lens and (b) the angular magnification when the image formed by the lens is at the near point of the eye (25 cm). (c) What is the object distance giving the maximum magnification?

23. A leaf of length \(h\) is positioned 71.0 cm in front of a converging lens with a focal length of 39.0 cm. An observer views the image of the leaf from a position 1.26 m behind the lens, as shown in Figure P25.23. (a) What is the magnitude of the lateral magnification (the ratio of the image size to the object size) produced by the lens? (b) What angular magnification is achieved by viewing the image of the leaf rather than viewing the leaf directly?

24. A lens having a focal length of 25 cm is used as a simple magnifier. (a) What is the angular magnification obtained when the image is formed at the normal near point \((q = -25)\)? (b) What is the angular magnification produced by this lens when the eye is relaxed?

SECTION 25.4 THE COMPOUND MICROSCOPE

25. The desired overall magnification of a compound microscope is 140\(\times\). The objective alone produces a lateral magnification of 12\(\times\). Determine the required focal length of the eyepiece.

26. The distance between the eyepiece and the objective lens in a certain compound microscope is 20.0 cm. The focal length of the objective is 0.500 cm, and that of the eyepiece is 1.70 cm. Find the overall magnification of the microscope.

27. Your instructor asks you to design and construct a refracting telescope having a magnification of 45 using an available eyepiece of focal length 4.0 cm. How long should you make the telescope tube?

28. A microscope has an objective lens with a focal length of 16.22 mm and an eyepiece with a focal length of 9.50 mm. With the length of the barrel set at 29.0 cm, the diameter of a red blood cell’s image subtends an angle of 1.43 mrad with the eye. If the final image distance is 29.0 cm from the eyepiece, what is the actual diameter of the red blood cell?

29. The length of a microscope tube is 15.0 cm. The focal length of the objective is 1.00 cm, and the focal length of the eyepiece is 2.50 cm. What is the magnification of the microscope, assuming it is adjusted so that the eye is relaxed? Hint: To solve this question, go back to basics and use the thin-lens equation.

30. A new telescope with a magnification of 50\(\times\) is desired. (a) Find an equation for the length \(L\) of a refracting telescope in terms of the focal length of the objective \(f_o\) and the magnification \(m\). (b) A knob adjusts the eyepiece forward and backward. Suppose the telescope is in focus with an eyepiece giving a magnification of 50.0. By what distance must the eyepiece be adjusted when the eyepiece is replaced, with a resulting magnification of 1.00 \(\times\) \(10^2\) ? Must the eyepiece be adjusted backward or forward? Assume the objective lens has a focal length of 2.00 m.

31. The lenses of an astronomical telescope are 92 cm apart when adjusted for viewing a distant object with minimum eyestrain. The angular magnification produced by the telescope is 45. Compute the focal length of each lens.
32. A certain telescope has an objective of focal length 1.50 m. If the Moon is used as an object, a 1.0-cm-long image formed by the objective corresponds to what distance, in miles, on the Moon? Assume 3.8 × 10^6 m for the Earth–Moon distance.

33. Astronomers often take photographs with the objective lens or mirror of a telescope alone, without an eyepiece. (a) Show that the image size \(h' \) for a telescope used in this manner is given by \(h' = \frac{h}{f}\left(1 - \frac{1}{p} \right) \), where \(h \) is the object size, \(f \) is the objective focal length, and \(p \) is the object distance. (b) Simplify the expression in part (a) if the object distance is much greater than the objective focal length. (c) The "wingspan" of the International Space Station is 108.6 m, the overall width of its solar panel configuration. When it is orbiting at an altitude of 407 km, find the width of the image formed by a telescope objective of focal length 4.00 m.

34. An elderly sailor is shipwrecked on a desert island, but manages to save his eyeglasses. He knows that the near point in his left eye is 50.0 cm and the near point in his right eye is 100 cm. (a) What is the maximum angular magnification he can produce in a microscope? (b) If he places the lenses 10.0 cm apart, what is the maximum overall magnification he can produce in a telescope? (c) If a telescope is to be constructed with a tube of length 10.0 cm and a magnification of 3.00, what are the focal lengths of the objective and eyepiece?

35. A person decides to use an old pair of eyeglasses to make some optical instruments. He knows that the near point in his left eye is 50.0 cm and the near point in his right eye is 100 cm. (a) What is the maximum angular magnification he can produce in a telescope? (b) If he places the lenses 10.0 cm apart, what is the maximum overall magnification he can produce in a microscope? Hint: Go back to basics and use the thin-lens equation to solve part (b).

36. Galileo devised a simple terrestrial telescope that produces an upright image. It consists of a converging objective lens and a diverging eyepiece at opposite ends of the telescope tube. For distant objects, the tube length is the objective focal length less the absolute value of the eyepiece focal length. (a) Does the user of the telescope see a real or virtual image? (b) Where is the final image? (c) If a telescope is to be constructed with a tube of length 10.0 cm and a magnification of 3.00, what are the focal lengths of the objective and eyepiece?

SECTION 25.6 RESOLUTION OF SINGLE-SLIT AND CIRCULAR APERTURES

37. A converging lens with a diameter of 30.0 cm forms an image of a satellite passing overhead. The satellite has two green lights (wavelength 500 nm) spaced 1.00 m apart. If the lights can just be resolved according to the Rayleigh criterion, what is the altitude of the satellite?

38. The pupil of a cat’s eye narrows to a vertical slit of width 0.500 mm in daylight. What is the angular resolution for a pair of horizontally separated mice? (Use 500-nm light in your calculation.)

39. To increase the resolving power of a microscope, the object and the objective are immersed in oil (\(n = 1.5 \)). If the limiting angle of resolution without the oil is 0.60 μrad, what is the limiting angle of resolution with the oil? Hint: The oil changes the wavelength of the light.

40. (a) Calculate the limiting angle of resolution for the eye, assuming a pupil diameter of 2.00 mm, a wavelength of 500 nm in air, and an index of refraction for the eye of 1.33. (b) What is the maximum distance from the eye at which two points separated by 1.00 cm could be resolved?

41. A vehicle with headlights separated by 2.00 m approaches an observer holding an infrared detector sensitive to radiation of wavelength 885 nm. What aperture diameter is required in the detector if the two headlights are to be resolved at a distance of 10.0 km?

42. A helium–neon laser emits light that has a wavelength of 632.8 nm. The circular aperture through which the beam emerges has a diameter of 0.200 cm. Estimate the diameter of the beam 3.00 km from the laser.

43. Suppose a 5.00-m-diameter telescope were constructed on the Moon, where the absence of atmospheric distortion would permit excellent viewing. If observations were made using 500-nm light, what minimum separation between two objects could just be resolved on Mars at closest approach (when Mars is 8.0 × 10^7 km from the Moon)?

44. A spy satellite circles Earth at an altitude of 200 km and carries out surveillance with a special high-resolution telescopic camera having a lens diameter of 35 cm. If the angular resolution of this camera is limited by diffraction, estimate the separation of two small objects on Earth’s surface that are just resolved in yellow-green light (\(\lambda = 550 \) nm).

45. A 15.0-cm-long grating has 6000 slits per centimeter. Can two lines of wavelengths 600.000 nm and 600.003 nm be separated with this grating? Explain.

46. The H\(_\alpha\) line in hydrogen has a wavelength of 656.20 nm. This line differs in wavelength from the corresponding spectral line in deuterium (the heavy stable isotope of hydrogen) by 0.18 nm. (a) Determine the minimum number of lines a grating must have to resolve these two wavelengths in the first order. (b) Repeat part (a) for the second order.

SECTION 25.7 THE MICHELSON INTERFEROMETER

47. Light of wavelength 550 nm is used to calibrate a Michelson interferometer. With the use of a micrometer screw, the platform on which one mirror is mounted is moved 0.180 mm. How many fringe shifts are counted?

48. Monochromatic light is beamed into a Michelson interferometer. The movable mirror is displaced 0.382 mm, causing the central spot in the interferometer pattern to change from bright to dark and back to bright \(N = 1700 \) times. (a) Determine the wavelength of the light. What color is it? (b) If monochromatic red light is used instead and the mirror is moved the same distance, would \(N \) be larger or smaller? Explain.

49. An interferometer is used to measure the length of a bacterium. The wavelength of the light used is 650 nm. As one arm of the interferometer is moved from one end
of the cell to the other, 310 fringe shifts are counted. How long is the bacterium?

50. Mirror M_1 in Active Figure 25.15 is displaced a distance ΔL. During this displacement, 250 fringe shifts are counted. The light being used has a wavelength of 632.8 nm. Calculate the displacement ΔL.

51. A thin sheet of transparent material has an index of refraction of 1.40 and is 15.0 μm thick. When it is inserted in the light path along one arm of an interferometer, how many fringe shifts occur in the pattern? Assume the wavelength (in a vacuum) of the light used is 600 nm. Hint: The wavelength will change within the material.

52. The Michelson interferometer can be used to measure the index of refraction of a gas by placing an evacuated transparent tube in the light path along one arm of the device. Fringe shifts occur as the gas is slowly added to the tube. Assume 600-nm light is used, the tube is 5.00 cm long, and 160 fringe shifts occur as the pressure of the gas in the tube increases to atmospheric pressure. What is the index of refraction of the gas? Hint: The fringe shifts occur because the wavelength of the light changes inside the gas-filled tube.

ADDITIONAL PROBLEMS

53. The Yerkes refracting telescope has a 1.00-m-diameter objective lens of focal length 20.0 m. Assume it is used with an eyepiece of focal length 2.50 cm. (a) Determine the magnification of the planet Mars as seen through the telescope. (b) Are the observed Martian polar caps right side up or upside down?

54. Estimate the minimum angle subtended at the eye of a hawk flying at an altitude of 50 m necessary to recognize a mouse on the ground.

55. The wavelengths of the sodium spectrum are $\lambda_1 = 589.00$ nm and $\lambda_2 = 589.59$ nm. Determine the minimum number of lines in a grating that will allow resolution of the sodium spectrum in (a) the first order and (b) the third order.

56. A person with a nearsighted eye has near and far points of 16 cm and 25 cm, respectively. (a) Assuming a lens is placed 2.0 cm from the eye, what power must the lens have to correct this condition? (b) Suppose contact lenses placed directly on the cornea are used to correct the person's eyesight. What is the power of the lens required in this case, and what is the new near point? Hint: The contact lens and the eyeglass lens require slightly different powers because they are at different distances from the eye.

57. The near point of an eye is 75.0 cm. (a) What should be the power of a corrective lens prescribed to enable the eye to see an object clearly at 25.0 cm? (b) If, using the corrective lens, the person can see an object clearly at 26.0 cm but not at 25.0 cm, by how many diopters did the lens grinder miss the prescription?

58. If a typical eyeball is 2.00 cm long and has a pupil opening that can range from about 2.00 mm to 6.00 mm, what are (a) the focal length of the eye when it is focused on objects 1.00 m away, (b) the smallest f-number of the eye when it is focused on objects 1.00 m away, and (c) the largest f-number of the eye when it is focused on objects 1.00 m away?

59. A cataract-impaired lens in an eye may be surgically removed and replaced by a manufactured lens. The focal length required for the new lens is determined by the lens-to-retina distance, which is measured by a sonarlike device, and by the requirement that the implant provide for correct distance vision. (a) If the distance from lens to retina is 22.4 mm, calculate the power of the implanted lens in diopters. (b) Since there is no accommodation and the implant allows for correct distance vision, a corrective lens for close work or reading must be used. Assume a reading distance of 33.0 cm, and calculate the power of the lens in the reading glasses.

60. If the aqueous humor of the eye has an index of refraction of 1.34 and the distance from the vertex of the cornea to the retina is 2.00 cm, what is the radius of curvature of the cornea for which distant objects will be focused on the retina? (For simplicity, assume all refraction occurs in the aqueous humor.)

61. A Boy Scout starts a fire by using a lens from his eyeglasses to focus sunlight on kindling 5.0 cm from the lens. The Boy Scout has a near point of 15 cm. When the lens is used as a simple magnifier, (a) what is the maximum magnification that can be achieved and (b) what is the magnification when the eye is relaxed? (c) Caution: The equations derived in the text for a simple magnifier assume a "normal" eye.

62. A laboratory (astronomical) telescope is used to view a scale that is 300 cm from the objective, which has a focal length of 20.0 cm; the eyepiece has a focal length of 2.00 cm. Calculate the angular magnification when the telescope is adjusted for minimum eyestrain. Note: The object is not at infinity, so the simple expression $m = f_e/f_o$ is not sufficiently accurate for this problem. Also, assume small angles, so that $\tan \theta = \theta$.

57. The near point of an eye is 75.0 cm. (a) What should be the power of a corrective lens prescribed to enable the eye to see an object clearly at 25.0 cm? (b) If, using the corrective lens, the person can see an object clearly at 26.0 cm but not at 25.0 cm, by how many diopters did the lens grinder miss the prescription?
Albert Einstein revolutionized modern physics. He explained the random motion of pollen grains, which proved the existence of atoms, and the photoelectric effect, which showed that light was a particle as well as a wave. With Satyendra Nath Bose he predicted a new form of matter, the Bose-Einstein condensate, which was only recently discovered in the laboratory. His theory of special relativity made clear the foundations of space and time, and established a key relationship between mass and energy. His theory of gravitation, general relativity, led to a deeper understanding of planetary motion, the structure and evolution of stars, and the expanding universe. The equation in this photo, loosely translated, says that the average curvature of spacetime is zero in empty space.

RELATIVITY

Most of our everyday experiences and observations have to do with objects that move at speeds much less than the speed of light. Newtonian mechanics was formulated to describe the motion of such objects, and its formalism is quite successful in describing a wide range of phenomena that occur at low speeds. It fails, however, when applied to particles having speeds approaching that of light.

Experimentally, for example, it’s possible to accelerate an electron to a speed of 0.99c (where c is the speed of light) by using a potential difference of several million volts. According to Newtonian mechanics, if the potential difference is increased by a factor of 4, the electron’s kinetic energy is four times greater and its speed should double to 1.98c. Experiments, however, show that the speed of the electron—as well as the speed of any other particle that has mass—always remains less than the speed of light, regardless of the size of the accelerating voltage.

The existence of a universal speed limit has far-reaching consequences. It means that the usual concepts of force, momentum, and energy no longer apply for rapidly moving objects. A less obvious consequence is that observers moving at different speeds will measure different time intervals and displacements between the same two events. Relating the measurements made by different observers is the subject of relativity.

26.1 GALILEAN RELATIVITY

To describe a physical event, it’s necessary to choose a frame of reference. For example, when you perform an experiment in a laboratory, you select a coordinate system, or frame of reference, that is at rest with respect to the laboratory. Suppose an observer in a passing car moving at a constant velocity with respect to the lab were to observe your experiment. If you found Newton’s first law to be valid in your frame of reference, would the moving observer agree with you?

According to the principle of Galilean relativity, the laws of mechanics must be the same in all inertial frames of reference. Inertial frames of reference are
those reference frames in which Newton's laws are valid. In these frames, objects move in straight lines at constant speed unless acted on by a non-zero net force, thus the name “inertial frame” because objects observed from these frames obey Newton's first law, the law of inertia. For the situation described in the previous paragraph, the laboratory coordinate system and the coordinate system of the moving car are both inertial frames of reference. Consequently, if the laws of mechanics are found to be true in the laboratory, then the person in the car must also observe the same laws.

Consider an airplane in flight, moving with a constant velocity, as in Figure 26.1a. If a passenger in the airplane throws a ball straight up in the air, the passenger observes that the ball moves in a vertical path. The motion of the ball is precisely the same as it would be if the ball were thrown while at rest on Earth. The law of gravity and the equations of motion under constant acceleration are obeyed whether the airplane is at rest or in uniform motion.

Now consider the same experiment when viewed by another observer at rest on Earth. This stationary observer views the path of the ball in the plane to be a parabola, as in Figure 26.1b. Further, according to this observer, the ball has a velocity to the right equal to the velocity of the plane. Although the two observers disagree on the shape of the ball's path, both agree that the motion of the ball obeys the law of gravity and Newton's laws of motion, and they even agree on how long the ball is in the air. We draw the following important conclusion: There is no preferred frame of reference for describing the laws of mechanics.

26.2 THE SPEED OF LIGHT

It's natural to ask whether the concept of Galilean relativity in mechanics also applies to experiments in electricity, magnetism, optics, and other areas. Experiments indicate that the answer is no. Further, if we assume the laws of electricity and magnetism are the same in all inertial frames, a paradox concerning the speed of light immediately arises. According to electromagnetic theory, the speed of light always has the fixed value of \(2.997 \times 10^8 \text{ m/s} \) in free space. According to Galilean relativity, however, the speed of the pulse relative to the stationary observer outside the boxcar in Figure 26.2 should be \(c + v \). Hence, Galilean relativity is inconsistent with Maxwell's well-tested theory of electromagnetism.

Electromagnetic theory predicts that light waves must propagate through free space with a speed equal to the speed of light. The theory doesn't require the presence of a medium for wave propagation, however. This is in contrast to other types of waves, such as water and sound waves, that do require a medium to support the disturbances. In the 19th century physicists thought that electromagnetic waves also required a medium to propagate. They proposed that such a medium existed.
and gave it the name *luminiferous ether*. The ether was assumed to be present everywhere, even in empty space, and light waves were viewed as ether oscillations. Further, the ether would have to be a massless but rigid medium with no effect on the motion of planets or other objects. These concepts are indeed strange. In addition, it was found that the troublesome laws of electricity and magnetism would take on their simplest forms in a special frame of reference at rest with respect to the ether. This frame was called the *absolute frame*. The laws of electricity and magnetism would be valid in this absolute frame, but they would have to be modified in any reference frame moving with respect to the absolute frame.

As a result of the importance attached to the ether and the absolute frame, it became of considerable interest in physics to prove by experiment that they existed. Because it was considered likely that Earth was in motion through the ether, from the view of an experimenter on Earth, there was an “ether wind” blowing through the laboratory. A direct method for detecting the ether wind would use an apparatus fixed to Earth to measure the wind’s influence on the speed of light. If v is the speed of the ether relative to Earth, then the speed of light should have its maximum value, $c + v$, when propagating downwind, as shown in Figure 26.3a. Likewise, the speed of light should have its minimum value, $c - v$, when propagating upwind, as in Figure 26.3b, and an intermediate value, $(c^2 - v^2)^{1/2}$, in the direction perpendicular to the ether wind, as in Figure 26.3c. If the Sun were assumed to be at rest in the ether, then the velocity of the ether wind would be equal to the orbital velocity of Earth around the Sun, which has a magnitude of approximately 3×10^4 m/s. Because $c = 3 \times 10^8$ m/s, it should be possible to detect a change in speed of about 1 part in 10^4 for measurements in the upwind or downwind direction.

The Michelson–Morley Experiment

The most famous experiment designed to detect these small changes in the speed of light was first performed in 1881 by Albert A. Michelson (1852–1931) and later repeated under various conditions by Michelson and Edward W. Morley (1838–1923). The experiment was designed to determine the velocity of Earth relative to the hypothetical ether. The experimental tool used was the Michelson interferometer, shown in Active Figure 26.4 (page 850). Arm 2 is aligned along the direction of Earth’s motion through space. Earth’s moving through the ether at speed v is equivalent to the ether flowing past Earth in the opposite direction with speed v. This ether wind blowing in the direction opposite the direction of Earth’s motion should cause the speed of light measured in the Earth frame to be $c - v$ as the light approaches mirror M_2, and $c + v$ after reflection, where c is the speed of light in the ether frame.

The two beams reflected from M_1 and M_2 recombine, and an interference pattern consisting of alternating dark and bright fringes is formed. The interference pattern was observed while the interferometer was rotated through an angle of 90°. This rotation supposedly would change the speed of the ether wind along the direction of arm 1. The effect of such rotation should have been to cause the fringe pattern to shift slightly but measurably, but measurements failed to show any change in the interference pattern! Even though Michelson–Morley experiment was repeated...
at different times of the year when the ether wind was expected to change direction, the results were always the same: no fringe shift of the magnitude required was ever observed.

The negative results of the Michelson–Morley experiment not only contradicted the ether hypothesis, but also showed that it was impossible to measure the absolute velocity of Earth with respect to the ether frame. As we will see in the next section, however, Einstein suggested a postulate in the special theory of relativity that places quite a different interpretation on these negative results. In later years, when more was known about the nature of light, the idea of an ether that permeates all space was discarded. Light is now understood to be an electromagnetic wave that requires no medium for its propagation.

26.3 EINSTEIN’S PRINCIPLE OF RELATIVITY

In 1905 Albert Einstein proposed a theory that explained the result of the Michelson–Morley experiment and completely altered our notions of space and time. He based his special theory of relativity on two postulates:

1. The principle of relativity: All the laws of physics are the same in all inertial frames.
2. The constancy of the speed of light: The speed of light in a vacuum has the same value, \(c = 2.997 \times 10^8 \text{ m/s} \), in all inertial reference frames, regardless of the velocity of the observer or the velocity of the source emitting the light.

The first postulate asserts that all the laws of physics are the same in all reference frames moving with constant velocity relative to each other. This postulate is a sweeping generalization of the principle of Galilean relativity, which refers only to the laws of mechanics. From an experimental point of view, Einstein’s principle of relativity means that any kind of experiment—mechanical, thermal, optical, or electrical—performed in a laboratory at rest must give the same result when performed in a laboratory moving at a constant speed past the first one. Hence, no preferred inertial reference frame exists, and it is impossible to detect absolute motion.

Although postulate 2 was a brilliant theoretical insight on Einstein’s part in 1905, it has since been confirmed experimentally in many ways. Perhaps the most direct demonstration involves measuring the speed of photons emitted by particles traveling at 99.99% of the speed of light. The measured photon speed in this case agrees to five significant figures with the speed of light in empty space.
The null result of the Michelson–Morley experiment can be readily understood within the framework of Einstein’s theory. According to his principle of relativity, the premises of the Michelson–Morley experiment were incorrect. In the process of trying to explain the expected results, we stated that when light traveled against the ether wind its speed was \(\frac{c}{1 + \frac{v}{c}} \). If, however, the state of motion of the observer or of the source has no influence on the value found for the speed of light, the measured value must always be \(c \). Likewise, the light makes the return trip after reflection from the mirror at a speed of \(c \), not at a speed of \(\frac{c}{1 + \frac{v}{c}} \). Thus, the motion of Earth does not influence the fringe pattern observed in the Michelson–Morley experiment, and a null result should be expected.

If we accept Einstein’s theory of relativity, we must conclude that uniform relative motion is unimportant when measuring the speed of light. At the same time, we have to adjust our commonsense notions of space and time and be prepared for some rather bizarre consequences.

QUICK QUIZ 26.1 True or False: If you were traveling in a spaceship at a speed of \(\frac{c}{2} \) relative to Earth and you fired a laser beam in the direction of the spaceship’s motion, the light from the laser would travel at a speed of \(3\frac{c}{2} \) relative to Earth.

26.4 Consequences of Special Relativity

Almost everyone who has dabbled even superficially in science is aware of some of the startling predictions that arise because of Einstein’s approach to relative motion. As we examine some of the consequences of relativity in this section, we’ll find that they conflict with some of our basic notions of space and time. We restrict our discussion to the concepts of length, time, and simultaneity, which are quite different in relativistic mechanics from what they are in Newtonian mechanics. For example, in relativistic mechanics the distance between two points and the time interval between two events depend on the frame of reference in which they are measured. In relativistic mechanics there is no such thing as absolute length or absolute time. Further, events at different locations that are observed to occur simultaneously in one frame are not observed to be simultaneous in another frame moving uniformly past the first.

Simultaneity and the Relativity of Time

A basic premise of Newtonian mechanics is that a universal time scale exists that is the same for all observers. Newton and his followers simply took simultaneity for granted. In his special theory of relativity, Einstein abandoned that assumption.

Einstein devised the following thought experiment to illustrate this point. A boxcar moves with uniform velocity, and two lightning bolts strike its ends, as in Figure 26.5a (page 852), leaving marks on the boxcar and the ground. The marks on the boxcar are labeled \(A' \) and \(B' \), and those on the ground are labeled \(A \) and \(B \). An observer at \(O' \) moving with the boxcar is midway between \(A' \) and \(B' \), and an observer on the ground at \(O \) is midway between \(A \) and \(B \). The events recorded by the observers are the striking of the boxcar by the two lightning bolts.

The light signals recording the instant when the two bolts struck reach observer \(O \) at the same time, as indicated in Figure 26.5b. This observer realizes that the signals have traveled at the same speed over equal distances and so rightly concludes that the events at \(A \) and \(B \) occurred simultaneously. Now consider the same events as viewed by observer \(O' \). By the time the signals have reached observer \(O \), observer \(O' \) has moved as indicated in Figure 26.5b. Thus, the signal from \(B' \) has already swept past \(O' \), but the signal from \(A' \) has not yet reached \(O' \). In other words, \(O' \) sees the signal from \(B' \) before seeing the signal from \(A' \). According to Einstein, the two

TIP 26.1 Who’s Right?

Which person is correct concerning the simultaneity of the two events? Both are correct because the principle of relativity states that no inertial frame of reference is preferred. Although the two observers may reach different conclusions, both are correct in their own reference frame. Any uniformly moving frame of reference can be used to describe events and do physics.
observers must find that light travels at the same speed. Therefore, observer \(O' \) concludes that the lightning struck the front of the boxcar before it struck the back.

This thought experiment clearly demonstrates that the two events that appear to be simultaneous to observer \(O \) do not appear to be simultaneous to observer \(O' \). In other words,

Two events that are simultaneous in one reference frame are in general not simultaneous in a second frame moving relative to the first. Simultaneity depends on the state of motion of the observer and is therefore not an absolute concept.

At this point, you might wonder which observer is right concerning the two events. The answer is that both are correct because the principle of relativity states that there is no preferred inertial frame of reference. Although the two observers reach different conclusions, both are correct in their own reference frames because the concept of simultaneity is not absolute. In fact, this is the central point of relativity: Any inertial frame of reference can be used to describe events and do physics.

Time Dilation

We can illustrate that observers in different inertial frames may measure different time intervals between a pair of events by considering a vehicle moving to the right with a speed \(v \) as in Active Figure 26.6a. A mirror is fixed to the ceiling of the vehi-
cle, and an observer \(O' \) at rest in this system holds a laser a distance \(d \) below the mirror. At some instant, the laser emits a pulse of light directed toward the mirror (event 1), and at some later time after reflecting from the mirror, the pulse arrives back at the laser (event 2). Observer \(O' \) carries a clock and uses it to measure the time interval \(\Delta t' \) between these two events, which she views as occurring at the same place. (The subscript \(p \) stands for \textit{proper}, as we’ll see in a moment.) Because the light pulse has a speed \(c \), the time it takes it to travel from point \(A \) to the mirror and back to point \(A \) is

\[
\Delta t' = \frac{\text{distance traveled}}{\text{speed}} = \frac{2d}{c}
\]

The time interval \(\Delta t' \) measured by \(O' \) requires only a single clock located at the same place as the laser in this frame.

Now consider the same set of events as viewed by \(O \) in a second frame, as shown in Active Figure 26.6b. According to this observer, the mirror and laser are moving to the right with a speed \(v \), and, as a result, the sequence of events appears different. By the time the light from the laser reaches the mirror, the mirror has moved to the right a distance \(\frac{v \Delta t}{2} \), where \(\Delta t \) is the time it takes the light pulse to travel from point \(A \) to the mirror and back to point \(A \) as measured by \(O \). In other words, \(O \) concludes that because of the motion of the vehicle, if the light is to hit the mirror, it must leave the laser at an angle with respect to the vertical direction. Comparing Active Figures 26.6a and 26.6b, we see that the light must travel farther in (b) than in (a). (Note that neither observer "knows" that he or she is moving. Each is at rest in his or her own inertial frame.)

According to the second postulate of the special theory of relativity, both observers must measure \(c \) for the speed of light. Because the light travels farther in the frame of \(O \), it follows that the time interval \(\Delta t \) measured by \(O \) is longer than the time interval \(\Delta t'_p \) measured by \(O' \). To obtain a relationship between these two time intervals, it is convenient to examine the right triangle shown in Active Figure 26.6c. The Pythagorean theorem gives

\[
\left(\frac{\Delta t}{2} \right)^2 = \left(\frac{v \Delta t}{2} \right)^2 + d^2
\]

Solving for \(\Delta t \) yields

\[
\Delta t = \frac{2d}{\sqrt{c^2 - v^2}} = \frac{2d}{\sqrt{1 - v^2/c^2}}
\]

Because \(\Delta t'_p = 2d/c \), we can express this result as

\[
\Delta t = \frac{\Delta t'_p}{\sqrt{1 - v^2/c^2}} = \gamma \Delta t'_p
\]

where

\[
\gamma = \frac{1}{\sqrt{1 - v^2/c^2}}
\]

Because \(\gamma \) is always greater than 1, Equation 26.2 says that the time interval \(\Delta t \) between two events measured by an observer moving with respect to a clock\(^1\) is longer than the time interval \(\Delta t'_p \) between the same two events measured by an observer at rest with respect to the clock. Consequently, \(\Delta t > \Delta t'_p \), and the proper time interval is expanded or dilated by the factor \(\gamma \). Hence, this effect is known as \textit{time dilation}.

For example, suppose the observer at rest with respect to the clock measures the time required for the light flash to leave the laser and return. We assume the measured time interval in this frame of reference, \(\Delta t' \), is 1 s. (This would require a very

\(^1\)Actually, Figure 26.6 shows the clock moving and not the observer, but that is equivalent to observer \(O \) moving to the left with velocity \(v \) with respect to the clock.
A clock in motion runs more slowly than an identical stationary clock.

A clock moving past an observer at speed \(v \) runs more slowly than an identical clock at rest with respect to the observer by a factor of \(\gamma^{-1} \).

The time interval \(\Delta t \) in Equations 26.1 and 26.2 is called the proper time. In general, proper time is the time interval between two events as measured by an observer who sees the events occur at the same position.

Although you may have realized it by now, it's important to spell out that relativity is a scientific democracy: the view of \(O' \) that \(O \) is actually the one moving with speed \(v \) to the left and that the clock of \(O \) is running more slowly is just as valid as the view of \(O \). The principle of relativity requires that the views of two observers in uniform relative motion be equally valid and capable of being checked experimentally.

We have seen that moving clocks run slow by a factor of \(\gamma^{-1} \). This is true for ordinary mechanical clocks as well as for the light clock just described. In fact we can generalize these results by stating that all physical processes, including chemical and biological ones, slow down relative to a clock when those processes occur in a frame moving with respect to the clock. For example, the heartbeat of an astronaut moving through space would keep time with a clock inside the spaceship. Both the astronaut's clock and heartbeat would be slowed down relative to a clock back on Earth (although the astronaut would have no sensation of life slowing down in the spaceship).

Time dilation is a very real phenomenon that has been verified by various experiments involving the ticking of natural clocks. An interesting example of time dilation involves the observation of muons, unstable elementary particles that are very similar to electrons, having the same charge, but 207 times the mass. Muons can be produced by the collision of cosmic radiation with atoms high in the atmosphere. These particles have a lifetime of 2.2 \(\mu \)s when measured in a reference frame at rest with respect to them. If we take 2.2 \(\mu \)s as the average lifetime of a muon and assume that their speed is close to the speed of light, we find that these particles can travel only about 600 m before they decay (Fig. 26.7a). Hence, they could never reach Earth from the upper atmosphere where they are produced. Experiments, however, show that a large number of muons do reach Earth, and the phenomenon of time dilation explains how. Relative to an observer on Earth, the muons have a lifetime equal to \(\gamma \tau_p \), where \(\tau_p \) = 2.2 \(\mu \)s is the lifetime in a frame of reference traveling with the muons. For example, for \(v = 0.99c \), \(\gamma = 7.1 \) and \(\gamma \tau_p = 16 \mu \)s. Hence, the average distance muons travel as measured by an observer on Earth is \(\gamma \tau_p g = 4 \, 800 \, m \), as indicated in Figure 26.7b. Consequently, muons can reach Earth's surface.

In 1976 experiments with muons were conducted at the laboratory of the European Council for Nuclear Research (CERN) in Geneva. Muons were injected into a large storage ring, reaching speeds of about 0.9994 \(c \). Electrons produced by the decaying muons were detected by counters around the ring, enabling scientists to measure the decay rate and hence the lifetime of the muons. The lifetime of the moving muons was measured to be about 30 times as long as that of stationary muons to within two parts in a thousand, in agreement with the prediction of relativity.

TIP 26.2 Proper Time Interval

You must be able to correctly identify the observer who measures the proper time interval. The proper time interval between two events is the time interval measured by an observer for whom the two events take place at the same position.

QUICK QUIZ 26.2 Suppose you’re an astronaut being paid according to the time you spend traveling in space. You take a long voyage traveling at a speed near that of light. Upon your return to Earth, you’re asked how you’d like to be paid: according to the time elapsed on a clock on Earth or...
according to your ship’s clock. To maximize your paycheck, which should you choose? (a) the Earth clock (b) the ship’s clock (c) either clock because it doesn’t make a difference

EXAMPLE 26.1 Pendulum Periods

Goal Apply the concept of time dilation.

Problem The period of a pendulum is measured to be 3.00 s in the inertial frame of the pendulum at Earth’s surface. What is the period as measured by an observer moving at a speed of 0.950c with respect to the pendulum?

Strategy Here, we’re given the period of the clock as measured by an observer in the rest frame of the clock, so that’s a proper time interval \(\Delta t_p \). We want to know how much time passes as measured by an observer in a frame moving relative to the clock, which is \(\Delta t \). Substitution into Equation 26.2 then solves the problem.

Solution Substitute the proper time and relative speed into Equation 26.2:

\[
\Delta t = \frac{\Delta t_p}{\sqrt{1 - \frac{v^2}{c^2}}} = \frac{3.00 \text{ s}}{\sqrt{1 - \left(\frac{0.950c}{c}\right)^2}} = 9.61 \text{ s}
\]

Remarks The moving observer considers the pendulum to be moving, and moving clocks are observed to run more slowly: while the pendulum oscillates once in 3 s for an observer in the rest frame of the clock, it takes nearly 10 s to oscillate once according the moving observer.

QUESTION 26.1

Suppose a mass-spring system with the same period as the pendulum is placed in the observer’s spaceship. When the spaceship is traveling at a speed of 0.95c relative to an observer on Earth, what is the period of the pendulum as measured by the Earth observer?

EXERCISE 26.1

What is the period of the pendulum as measured by a third observer moving at 0.900c?

Answer 6.88 s

Confusion arises in problems like Example 26.1 because movement is relative: from the point of view of someone in the pendulum’s rest frame, the pendulum is standing still (except, of course, for the swinging motion), whereas to someone in a frame that is moving with respect to the pendulum, it’s the pendulum that’s doing the moving. To keep it straight, always focus on the observer making the measurement and ask yourself whether the clock being measured is moving with respect to that observer. If the answer is no, then the observer is in the rest frame of the clock and measures the clock’s proper time. If the answer is yes, then the time measured by the observer will be dilated, or larger than the clock’s proper time. This confusion of perspectives led to the famous “twin paradox.”

The Twin Paradox

An intriguing consequence of time dilation is the so-called twin paradox (Fig. 26.8). Consider an experiment involving a set of twins named Speedo and Goslo. When they are 20 years old, Speedo, the more adventurous of the two, sets out on an epic journey to Planet X, located 20 light-years from Earth. Further, his spaceship is capable of reaching a speed of 0.95c relative to the inertial frame of his twin brother back home. After reaching Planet X, Speedo becomes homesick and immediately returns to Earth at the same speed of 0.95c. Upon his return, Speedo
is shocked to discover that Goslo has aged 2D/ν = 2(20 ly)/(0.95 ly/yr) = 42 years and is now 62 years old. Speedo, on the other hand, has aged only 13 years.

Some wrongly consider this the paradox; that twins could age at different rates and end up after a period of time having very different ages. Although contrary to our common sense, that isn’t the paradox at all. The paradox is that, from Speedo’s point of view, he was at rest while Goslo (on Earth) sped away from him at 0.95c and returned later. So Goslo’s clock was moving relative to Speedo and hence running slow compared with Speedo’s clock. The conclusion: Speedo, not Goslo, should be the older of the twins!

To resolve this apparent paradox, consider a third observer moving at a constant speed of 0.5c relative to Goslo. To the third observer, Goslo never changes inertial frames: his speed relative to the third observer is always the same. The third observer notes, however, that Speedo accelerates during his journey, changing reference frames in the process. From the third observer’s perspective, it’s clear that there is something very different about the motion of Goslo when compared with that of Speedo. The roles played by Goslo and Speedo are not symmetric, so it isn’t surprising that time flows differently for each. Further, because Speedo accelerates, he is in a noninertial frame of reference and is technically outside the bounds of special relativity (although there are methods for dealing with accelerated motion in relativity). Only Goslo, who is in a single inertial frame, can apply the simple time-dilation formula to Speedo’s trip. Goslo finds that instead of aging 42 years, Speedo ages only (1 – v²/c²)¹/²(42 years) = 13 years. Of these 13 years, Speedo spends 6.5 years traveling to Planet X and 6.5 years returning, for a total travel time of 13 years, in agreement with our earlier statement.

QUICK QUIZ 26.3 True or False: People traveling near the speed of light relative to Earth would measure their lifespans and find them, on the average, longer than the average human lifespan as measured on Earth.

Length Contraction

The measured distance between two points depends on the frame of reference of the observer. The **proper length** _L_p_ of an object is the length of the object as measured by an observer at rest relative to the object. The length of an object measured in a reference frame that is moving with respect to the object is always less than the proper length. This effect is known as **length contraction**.

To understand length contraction quantitatively, consider a spaceship traveling with a speed _v_ from one star to another as seen by two observers, one on Earth and the other in the spaceship. The observer at rest on Earth (and also assumed to be at rest with respect to the two stars) measures the distance between the stars to be _L_p_. According to this observer, the time it takes the spaceship to complete the voyage is _Δt_ = _L_p_ / _v_. Because of time dilation, the space traveler, using his spaceship clock, measures a smaller time of travel: _Δt_ = _Δt_ / γ. The space traveler claims to be at rest and sees the destination star moving toward the spaceship with speed _v_. Because the
space traveler reaches the star in time \(\Delta t_p \). He concludes that the distance \(L \) between the stars is shorter than \(L_p \). The distance measured by the space traveler is

\[
L = v \Delta t_p = \frac{\Delta t}{\gamma}
\]

Because \(L_p = v \Delta t \), it follows that

\[
L = \frac{L_p}{\gamma} = L_p\sqrt{1 - \frac{v^2}{c^2}}
\] \hspace{1cm} [26.4] \hspace{1cm} \text{Length contraction}

According to this result, illustrated in Active Figure 26.9, if an observer at rest with respect to an object measures its length to be \(L_p \), an observer moving at a speed \(v \) relative to the object will find it to be shorter than its proper length by the factor \(\sqrt{1 - \frac{v^2}{c^2}} \). Note that length contraction takes place only along the direction of motion.

Time-dilation and length contraction effects have interesting applications for future space travel to distant stars. For the star to be reached in a fraction of a human lifetime, the trip must be taken at very high speeds. According to an Earth-bound observer, the time for a spacecraft to reach the destination star will be dilated compared with the time interval measured by travelers. As discussed in the treatment of the twin paradox, the travelers will be younger than their twins when they return to Earth. Therefore, by the time the travelers reach the star, they will have aged by some number of years, while their partners back on Earth will have aged a larger number of years, the exact ratio depending on the speed of the spacecraft. At a spacecraft speed of 0.94\(c \), this ratio is about 3:1.

QUICK QUIZ 26.4 You are packing for a trip to another star, and on your journey you will be traveling at a speed of 0.99\(c \). Can you sleep in a smaller cabin than usual, because you will be shorter when you lie down? Explain your answer.

QUICK QUIZ 26.5 You observe a rocket moving away from you. Compared with its length when it was at rest on the ground, will you measure its length to be (a) shorter, (b) longer, or (c) the same? Compared to the passage of time measured by the watch on your wrist, is the passage of time on the rocket’s clock (d) faster, (e) slower, or (f) the same? Answer the same questions if the rocket turns around and comes toward you.

EXAMPLE 26.2 Speedy Plunge

Goal Apply the concept of length contraction to a distance.

Problem (a) An observer on Earth sees a spaceship at an altitude of 4,350 km moving downward toward Earth with a speed of 0.970\(c \). What is the distance from the spaceship to Earth as measured by the spaceship’s captain? (b) After firing his engines, the captain measures her ship’s altitude as 267 km, whereas the observer on Earth measures it to be 625 km. What is the speed of the spaceship at this instant?

Strategy To the captain, Earth is rushing toward her ship at 0.970\(c \); hence, the distance between her ship and Earth is contracted. Substitution into Equation 26.9 yields the answer. In part (b) use the same equation, substituting the distances and solving for the speed.

Solution (a) Find the distance from the ship to Earth as measured by the captain.

Substitute into Equation 26.4, getting the altitude as measured by the captain in the ship:

\[
L = L_p\sqrt{1 - \frac{v^2}{c^2}} = (4,350 \text{ km})\sqrt{1 - (0.970\times10^8 \text{ m/s})^2/c^2} = 1.06 \times 10^3 \text{ km}
\]
Question 26.2
As a spaceship approaches an observer at nearly the speed of light, the captain directs a beam of yellow light at the observer. What would the observer report upon seeing the light? (a) Its wavelength would be shifted toward the red end of the spectrum. (b) Its wavelength would correspond to yellow light. (c) Its wavelength would be shifted toward the blue end of the spectrum.

Exercise 26.2
Suppose the observer on the ship measures the distance from Earth as 50.0 km, whereas the observer on Earth measures the distance as 125 km. At what speed is the spacecraft approaching Earth?

Answer
0.917c

(b) What is the subsequent speed of the spaceship if the Earth observer measures the distance from the ship to Earth as 625 km and the captain measures it as 267 km?

Length contraction occurs only in the direction of the observer’s motion. No contraction occurs perpendicular to that direction. For example, a spaceship at rest relative to an observer may have the shape of an equilateral triangle, but if it passes the observer at relativistic speed in a direction parallel to its base, the base will shorten while the height remains the same. Hence the observer will report that the craft has the form of an isosceles triangle. An observer traveling with the ship will still observe it to be equilateral.

26.5 Relativistic Momentum

Properly describing the motion of particles within the framework of special relativity requires generalizing Newton’s laws of motion and the definitions of momentum and energy. These generalized definitions reduce to the classical (nonrelativistic) definitions when v is much less than c.

First, recall that conservation of momentum states that when two objects collide, the total momentum of the system remains constant, assuming the objects are isolated, reacting only with each other. When analyzing such collisions from rapidly moving inertial frames, however, it is found that momentum is not conserved if the classical definition of momentum, \(p = mv \), is used. To have momentum conservation in all inertial frames—even those moving at an appreciable fraction of c—the definition of momentum must be modified to read

\[
p = \frac{mv}{\sqrt{1 - v^2/c^2}} = \gamma mv
\]

where v is the speed of the particle and m is its mass as measured by an observer at rest with respect to the particle. Note that when v is much less than c, the denominator of Equation 26.5 approaches 1, so that p approaches mv. Therefore, the relativistic equation for momentum reduces to the classical expression when v is small compared with c.
EXAMPLE 26.3 The Relativistic Momentum of an Electron

Goal Contrast the classical and relativistic definitions of momentum.

Problem An electron, which has a mass of 9.11×10^{-31} kg, moves with a speed of $0.750c$. Find the classical (nonrelativistic) momentum and compare it with its relativistic counterpart p_{rel}.

Strategy Substitute into the classical definition to get the classical momentum, then multiply by the gamma factor to obtain the relativistic version.

Solution First, compute the classical (nonrelativistic) momentum with $v = 0.750c$:

$$p = mv = (9.11 \times 10^{-31} \text{ kg})(0.750 \times 3.00 \times 10^8 \text{ m/s})$$

$$= 2.05 \times 10^{-22} \text{ kg} \cdot \text{m/s}$$

Multiply this result by γ to obtain the relativistic momentum:

$$p_{rel} = \frac{mv}{\sqrt{1 - v^2/c^2}} = \frac{2.05 \times 10^{-22} \text{ kg} \cdot \text{m/s}}{\sqrt{1 - (0.750c/c)^2}}$$

$$= 3.10 \times 10^{-22} \text{ kg} \cdot \text{m/s}$$

Remarks The (correct) relativistic result is 50% greater than the classical result. In subsequent calculations no notational distinction will be made between classical and relativistic momentum. For problems involving relative speeds of $0.2c$, the answer using the classical expression is about 2% below the correct answer.

QUESTION 26.3 A particle with initial momentum p_i doubles its speed. How does its final momentum p_f compare with its initial momentum? (a) $p_f > 2p_i$ (b) $p_f = 2p_i$ (c) $p_f < 2p_i$

EXERCISE 26.3 Repeat the calculation for a proton traveling at 0.600c.

Answers $p = 3.01 \times 10^{-19} \text{ kg} \cdot \text{m/s}$, $p_{rel} = 3.76 \times 10^{-19} \text{ kg} \cdot \text{m/s}$

26.6 RELATIVISTIC ENERGY AND THE EQUIVALENCE OF MASS AND ENERGY

We have seen that the definition of momentum required generalization to make it compatible with the principle of relativity. Likewise, the definition of kinetic energy requires modification in relativistic mechanics. Einstein found that the correct expression for the kinetic energy of an object is

$$KE = \gamma mc^2 - mc^2$$ \hspace{1cm} [26.6]

The constant term mc^2 in Equation 26.6, which is independent of the speed of the object, is called the rest energy of the object, E_R:

$$E_R = mc^2$$ \hspace{1cm} [26.7]

The term γmc^2 in Equation 26.6 depends on the object’s speed and is the sum of the kinetic and rest energies. We define γmc^2 to be the total energy E, so

Total energy = kinetic energy + rest energy

or, using Equation 26.6,

$$E = KE + mc^2 = \gamma mc^2$$ \hspace{1cm} [26.8]
Because $\gamma = (1 - v^2/c^2)^{-1/2}$, we can also express the total energy E as

$$E = \frac{mc^2}{\sqrt{1 - v^2/c^2}} \quad \text{[26.9]}$$

This is Einstein's famous mass-energy equivalence equation.²

The relation $E = \gamma mc^2 = KE + mc^2$ shows the amazing result that a stationary particle with zero kinetic energy has an energy proportional to its mass. Further, a small mass corresponds to an enormous amount of energy because the proportionality constant between mass and energy is large: $c^2 = 9 \times 10^{16}$ m2/s2. The equation $E_R = mc^2$, as Einstein first suggested, indirectly implies that the mass of a particle may be completely convertible to energy and that pure energy—for example, electromagnetic energy—may be converted to particles having mass. That is indeed the case, as has been shown in the laboratory many times in interactions involving matter and antimatter.

On a larger scale, nuclear power plants produce energy by the fission of uranium, which involves the conversion of a small amount of the mass of the uranium into energy. The Sun, too, converts mass into energy and continually loses mass in pouring out a tremendous amount of electromagnetic energy in all directions.

It's extremely interesting that although we have been talking about the interconversion of mass and energy for particles, the expression $E = mc^2$ is universal and applies to all objects, processes, and systems: a hot object has slightly more mass and is slightly more difficult to accelerate than an identical cold object because it has more thermal energy, and a stretched spring has more elastic potential energy and more mass than an identical unstretched spring. A key point, however, is that these changes in mass are often far too small to measure. Our best bet for measuring mass changes is in nuclear transformations, where a measurable fraction of the mass is converted into energy.

QUICK QUIZ 26.6 True or False: Because the speed of a particle cannot exceed the speed of light, there is an upper limit to its momentum and kinetic energy.

Energy and Relativistic Momentum

Often the momentum or energy of a particle rather than its speed is measured, so it's useful to find an expression relating the total energy E to the relativistic momentum p. We can do so by using the expressions $E = \gamma mc^2$ and $p = \gamma mv$. By squaring these equations and subtracting, we can eliminate v. The result, after some algebra, is

$$E^2 = p^2c^2 + (mc^2)^2 \quad \text{[26.10]}$$

When the particle is at rest, $p = 0$, so $E = E_R = mc^2$. In this special case the total energy equals the rest energy. For the case of particles that have zero mass, such as photons (massless, chargeless particles of light), we set $m = 0$ in Equation 26.10 and find that

$$E = pc \quad \text{[26.11]}$$

This equation is an exact expression relating energy and momentum for photons, which always travel at the speed of light.

In dealing with subatomic particles, it's convenient to express their energy in electron volts (eV) because the particles are given energy when accelerated through an electrostatic potential difference. The conversion factor is

²Although this expression doesn't look exactly like the famous equation $E = mc^2$, it used to be common to write $m = \gamma m_0$ (Einstein himself wrote it that way), where m is the effective mass of an object moving at speed v and m_0 is the mass of that object as measured by an observer at rest with respect to the object. Then our $E = \gamma mc^2$ becomes the familiar $E = mc^2$. It is currently unfashionable to use $m = \gamma m_0$.
1 eV = 1.60 × 10^{-19} \text{ J}

For example, the mass of an electron is 9.11 × 10^{-31} \text{ kg}. Hence, the rest energy of the electron is

\[m_e c^2 = (9.11 \times 10^{-31} \text{ kg})(3.00 \times 10^8 \text{ m/s})^2 = 8.20 \times 10^{-14} \text{ J} \]

Converting to eV, we have

\[m_e c^2 = (8.20 \times 10^{-14} \text{ J})(1 \text{ eV}/1.60 \times 10^{-19} \text{ J}) = 0.511 \text{ MeV} \]

where 1 MeV = 10^6 eV. Because we frequently use the expression \(E = mc^2 \) in nuclear physics and because \(m \) is usually in atomic mass units, it is useful to have the conversion factor 1 u = 931.494 MeV/\(c^2 \). Using this factor makes it easy, for example, to find the rest energy in MeV of the nucleus of a uranium atom with a mass of 235.043 924 u:

\[E_R = mc^2 = (235.043 924 \text{ u})(931.494 \text{ MeV/u} \cdot \text{c}^2)(c^2) = 2.189 \times 10^5 \text{ MeV} \]

QUICK QUIZ 26.7 A photon is reflected from a mirror. True or False:

(a) Because a photon has zero mass, it does not exert a force on the mirror.

(b) Although the photon has energy, it can't transfer any energy to the surface because it has zero mass.

(c) The photon carries momentum, and when it reflects off the mirror, it undergoes a change in momentum and exerts a force on the mirror.

(d) Although the photon carries momentum, its change in momentum is zero when it reflects from the mirror, so it can't exert a force on the mirror.

EXAMPLE 26.4 A Speedy Electron

Goal Compute a total energy and a relativistic kinetic energy.

Problem An electron moves with a speed \(v = 0.850c \). Find its total energy and kinetic energy in mega electron volts (MeV) and compare the latter to the classical kinetic energy (10^6 eV = 1 MeV).

Strategy Substitute into Equation 26.9 to get the total energy and subtract the rest mass energy to obtain the kinetic energy.

Solution Substitute values into Equation 26.9 to obtain the total energy:

\[
E = \frac{m_e c^2}{\sqrt{1 - v^2/c^2}} = \frac{(9.11 \times 10^{-31} \text{ kg})(3.00 \times 10^8 \text{ m/s})^2}{\sqrt{1 - (0.850c/c)^2}}
\]

\[= 1.56 \times 10^{-15} \text{ J} = (1.56 \times 10^{-15} \text{ J}) \left(\frac{1.00 \text{ eV}}{1.60 \times 10^{-19} \text{ J}} \right) \]

\[= 0.975 \text{ MeV} \]

The kinetic energy is obtained by subtracting the rest energy from the total energy:

\[KE = E - m_e c^2 = 0.975 \text{ MeV} - 0.511 \text{ MeV} = 0.464 \text{ MeV} \]

Calculate the classical kinetic energy:

\[KE_{\text{classical}} = \frac{1}{2} m_e v^2 \]

\[= \frac{1}{2}(9.11 \times 10^{-31} \text{ kg})(0.850 \times 3.00 \times 10^8 \text{ m/s})^2 \]

\[= 2.96 \times 10^{-14} \text{ J} = 0.185 \text{ MeV} \]

Remark Notice the large discrepancy between the relativistic kinetic energy and the classical kinetic energy.

QUESTION 26.4

According to an observer, the speed \(v \) of a particle with kinetic energy \(KE \) increases to \(2v \). How does the final kinetic energy \(KE_f \) compare with the initial kinetic energy? (a) \(KE_f > 4KE_i \) (b) \(KE_f = 4KE_i \) (c) \(KE_f < 4KE_i \)
EXERCISE 26.4
Calculate the total energy and the kinetic energy in MeV of a proton traveling at 0.600c. (The rest energy of a proton is approximately 938 MeV.)

Answers \(E = 1.17 \times 10^5 \text{ MeV}, \ KE = 2.3 \times 10^2 \text{ MeV} \)

EXAMPLE 26.5 The Conversion of Mass to Kinetic Energy in Uranium Fission

Goal Understand the production of energy from nuclear sources.

Problem The fission, or splitting, of uranium was discovered in 1938 by Lise Meitner, who successfully interpreted some curious experimental results found by Otto Hahn as due to fission. (Hahn received the Nobel Prize.) The fission of \(^{235}_{92}\text{U}\) begins with the absorption of a slow-moving neutron that produces an unstable nucleus of \(^{236}_{92}\text{U}\). The \(^{236}_{92}\text{U}\) nucleus then quickly decays into two heavy fragments moving at high speed, as well as several neutrons. Most of the kinetic energy released in such a fission is carried off by the two large fragments. (a) For the typical fission process,

\[
\frac{1}{2}\text{n} + \frac{235}{92}\text{U} \rightarrow \frac{141}{56}\text{Ba} + \frac{93}{36}\text{Kr} + 3\frac{1}{2}\text{n}
\]

calculate the kinetic energy in MeV carried off by the fission fragments, neglecting the kinetic energy of the reactants. (b) What percentage of the initial energy is converted into kinetic energy? The atomic masses involved, given in atomic mass units, are

\[
\begin{align*}
\frac{1}{2}\text{n} &= 1.008665 \text{ u} \\
\frac{235}{92}\text{U} &= 235.043923 \text{ u} \\
\frac{141}{56}\text{Ba} &= 140.903496 \text{ u} \\
\frac{93}{36}\text{Kr} &= 91.907936 \text{ u}
\end{align*}
\]

Strategy This problem is an application of the conservation of relativistic energy. Write the conservation law as a sum of kinetic energy and rest energy, and solve for the final kinetic energy.

Solution
(a) Calculate the final kinetic energy for the given process.

\[
(KE + mc^2)_{\text{initial}} = (KE + mc^2)_{\text{final}}
\]

\[
0 + m_\text{n}c^2 + m_{U}c^2 = m_{\text{Ba}}c^2 + m_{\text{Kr}}c^2 + 3m_\text{n}c^2 + KE_{\text{final}}
\]

\[
KE_{\text{final}} = [(m_\text{n} + m_\text{U}) - (m_{\text{Ba}} + m_{\text{Kr}} + 3m_\text{n})]c^2
\]

\[
= (1.008665 \text{ u} + 235.043923 \text{ u})c^2
- [140.903496 \text{ u} + 91.907936 \text{ u} + 3(1.008665 \text{ u})]c^2
= (0.215161 \text{ u})(931.494 \text{ MeV/ u} \cdot c^2)(c^2)
= 200.421 \text{ MeV}
\]

(b) What percentage of the initial energy is converted into kinetic energy?

Compute the total energy, which is the initial energy:

\[
E_{\text{initial}} = 0 + m_\text{n}c^2 + m_{U}c^2
= (1.008665 \text{ u} + 235.043923 \text{ u})c^2
= (236.05259 \text{ u})(931.494 \text{ MeV/ u} \cdot c^2)(c^2)
= 2.1988 \times 10^5 \text{ MeV}
\]

Divide the kinetic energy by the total energy and multiply by 100%:

\[
\frac{200.421 \text{ MeV}}{2.1988 \times 10^5 \text{ MeV}} \times 100\% = 9.115 \times 10^{-2}\%
\]

Remarks This calculation shows that nuclear reactions liberate only about one-tenth of 1% of the rest energy of the constituent particles. Some fusion reactions result in a percent yield several times as large.

QUESTION 26.5
Why is so little of the mass converted to other forms of energy?
EXERCISE 26.5
In a fusion reaction light elements combine to form a heavier element. Deuterium, which is also called heavy hydrogen, has an extra neutron in its nucleus. Two such particles can fuse into a heavier form of hydrogen, called tritium, plus an ordinary hydrogen atom. The reaction is

\[^2\text{H} + ^2\text{H} \rightarrow ^3\text{T} + ^1\text{H} \]

(a) Calculate the energy released in the form of kinetic energy, assuming for simplicity the initial kinetic energy is zero. (b) What percentage of the rest mass is converted to energy? The atomic masses involved are

\[^2\text{H} = 2.014\,102\,\text{u} \quad ^3\text{T} = 3.016\,049\,\text{u} \quad ^1\text{H} = 1.007\,825\,\text{u} \]

Answers
(a) 4.033 37 MeV
(b) 0.107 5%

26.7 GENERAL RELATIVITY

Special relativity relates observations of inertial observers. Einstein sought a more general theory that would address accelerating systems. His search was motivated in part by the following curious fact: mass determines the inertia of an object and also the strength of the gravitational field. The mass involved in inertia is called inertial mass, \(m_i \), whereas the mass responsible for the gravitational field is called the gravitational mass, \(m_g \). These masses appear in Newton's law of gravitation and in the second law of motion:

\[F_g = G \frac{m_g m_g}{r^2} \quad \text{Gravitational property} \]

\[F_i = m_i a \quad \text{Inertial property} \]

The value for the gravitational constant \(G \) was chosen to make the magnitudes of \(m_g \) and \(m_i \) numerically equal. Regardless of how \(G \) is chosen, however, the strict proportionality of \(m_g \) and \(m_i \) has been established experimentally to an extremely high degree: a few parts in \(10^{12} \). It appears that gravitational mass and inertial mass may indeed be exactly equal: \(m_i = m_g \).

In Einstein's view the remarkable coincidence that \(m_g \) and \(m_i \) were exactly equal was evidence for an intimate connection between the two concepts. He pointed out that no mechanical experiment (such as releasing a mass) could distinguish between the two situations illustrated in Figures 26.10a and 26.10b. In each case a

![FIGURE 26.10](image)

(a) The observer in the cubicle is at rest in a uniform gravitational field \(g \). He experiences a normal force \(n \). (b) Now the observer is in a region where gravity is negligible, but an external force \(F \) acts on the frame of reference, producing an acceleration with magnitude \(g \). Again, the man experiences a normal force \(n \) that accelerates him along with the cubicle. According to Einstein, the frames of reference in (a) and (b) are equivalent in every way. No local experiment could distinguish between them. (c) The observer turns on his pocket flashlight. Because of the acceleration of the cubicle, the beam would appear to bend toward the floor, just as a tossed ball would. (d) Given the equivalence of the frames, the same phenomenon should be observed in the presence of a gravity field.
mass released by the observer undergoes a downward acceleration of g relative to the floor.

Einstein carried this idea further and proposed that no experiment, mechanical or otherwise, could distinguish between the two cases. This extension to include all phenomena (not just mechanical ones) has interesting consequences. For example, suppose a light pulse is sent horizontally across the box, as in Figure 26.10c. The trajectory of the light pulse bends downward as the box accelerates upward to meet it. Einstein proposed that a beam of light should also be bent downward by a gravitational field (Fig. 26.10d).

The two postulates of Einstein’s general relativity are as follows:

1. All the laws of nature have the same form for observers in any frame of reference, accelerated or not.
2. In the vicinity of any given point, a gravitational field is equivalent to an accelerated frame of reference without a gravitational field. (This is the principle of equivalence.)

The second postulate implies that gravitational mass and inertial mass are completely equivalent, not just proportional. What were thought to be two different types of mass are actually identical.

One interesting effect predicted by general relativity is that time scales are altered by gravity. A clock in the presence of gravity runs more slowly than one in which gravity is negligible. As a consequence, light emitted from atoms in a strong gravity field, such as the Sun’s, is observed to have a lower frequency than the same light emitted by atoms in the laboratory. This gravitational shift has been detected in spectral lines emitted by atoms in massive stars. It has also been verified on Earth by comparing the frequencies of gamma rays emitted from nuclei separated vertically by about 20 m.

The second postulate suggests a gravitational field may be “transformed away” at any point if we choose an appropriate accelerated frame of reference: a freely falling one. Einstein developed an ingenious method of describing the acceleration necessary to make the gravitational field “disappear.” He specified a certain quantity, the curvature of spacetime, that describes the gravitational effect at every point. In fact, the curvature of spacetime completely replaces Newton’s gravitational theory. According to Einstein, there is no such thing as a gravitational force. Rather, the presence of a mass causes a curvature of spacetime in the vicinity of the mass. Planets going around the Sun follow the natural contours of the spacetime, much as marbles roll around inside a bowl. In 1979 John Wheeler summarized Einstein’s general theory of relativity in a single sentence: “Mass one tells spacetime how to curve; curved spacetime tells mass two how to move.” The fundamental equation of general relativity can be roughly stated as a proportion as follows:

$$\text{Average curvature of spacetime} \propto \text{energy density}$$

Einstein pursued a new theory of gravity in large part because of a discrepancy in the orbit of Mercury as calculated from Newton’s second law. The closest approach of Mercury to the Sun, called the perihelion, changes position slowly over time. Newton’s theory accounted for all but 43 arc seconds per century; Einstein’s general relativity explained the discrepancy.

The most dramatic test of general relativity came shortly after the end of World War I. Einstein’s theory predicts that a star would bend a light ray by a certain precise amount. Sir Arthur Eddington mounted an expedition to Africa and, during a solar eclipse, confirmed that starlight bent on passing the Sun in an amount matching the prediction of general relativity (Fig. 26.11). When this discovery was announced, Einstein became an international celebrity.

General relativity also predicts that a large star can exhaust its nuclear fuel and collapse to a very small volume, turning into a black hole. Here the curvature of spacetime is so extreme that all matter and light within a certain radius becomes trapped. This radius, called the Schwarzschild radius or event horizon, is about 3 km
for a black hole with the mass of our Sun. At the black hole’s center may lurk a singularity, a point of infinite density and curvature where spacetime comes to an end. There is strong evidence for the existence of a black hole having a mass of millions of Suns at the center of our galaxy.

APPLYING PHYSICS 26.1 FASTER CLOCKS IN A “MILE-HIGH CITY”

Atomic clocks are extremely accurate; in fact, an error of 1 s in 3 million years is typical. This error can be described as about one part in 10^{14}. On the other hand, the atomic clock in Boulder, Colorado, is often 15 ns faster than the atomic clock in Washington, D.C., after only one day. This error is about one part in 6×10^{12}, which is about 17 times larger than the typical error. If atomic clocks are so accurate, why does a clock in Boulder not remain synchronous with one in Washington, D.C.?

Explanation According to the general theory of relativity, the passage of time depends on gravity: clocks run more slowly in strong gravitational fields. Washington, D.C., is at an elevation very close to sea level, whereas Boulder is about a mile higher in altitude, so the gravitational field at Boulder is weaker than at Washington, D.C. As a result, an atomic clock runs more rapidly in Boulder than in Washington, D.C. (This effect has been verified by experiment.)

SUMMARY

26.3 Einstein’s Principle of Relativity

The two basic postulates of the special theory of relativity are as follows:

1. The laws of physics are the same in all inertial frames of reference.
2. The speed of light is the same for all inertial observers, independently of their motion or of the motion of the source of light.

26.4 Consequences of Special Relativity

Some of the consequences of the special theory of relativity are as follows:

1. Clocks in motion relative to an observer slow down, a phenomenon known as time dilation. The relationship between time intervals in the moving and at-rest systems is

 \[\Delta t = \gamma \Delta t_p \] \[26.2\]

 where Δt is the time interval measured in the system in relative motion with respect to the clock,

 \[\gamma = \frac{1}{\sqrt{1 - \frac{v^2}{c^2}}} \] \[26.3\]

 and Δt_p is the proper time interval measured in the system moving with the clock.

2. The length of an object in motion is contracted in the direction of motion. The equation for length contraction is

 \[L = L_p \sqrt{1 - \frac{v^2}{c^2}} \] \[26.4\]

 where L is the length measured by an observer in motion relative to the object and L_p is the proper length measured by an observer for whom the object is at rest.

3. Events that are simultaneous for one observer are not simultaneous for another observer in motion relative to the first.

26.5 Relativistic Momentum

The relativistic expression for the momentum of a particle moving with velocity v is

\[p = \frac{mv}{\sqrt{1 - \frac{v^2}{c^2}}} = \gamma mv \] \[26.5\]

26.6 Relativistic Energy and the Equivalence of Mass and Energy

The relativistic expression for the kinetic energy of an object is

\[KE = \gamma mc^2 - mc^2 \] \[26.6\]

where mc^2 is the rest energy of the object, E_R.
The total energy of a particle is
\[E = \frac{mc^2}{\sqrt{1 - v^2/c^2}} \]
[26.9]
This is Einstein's famous mass-energy equivalence equation results when \(v = 0 \).

The relativistic momentum is related to the total energy through the equation
\[E^2 = p^2c^2 + (mc^2)^2 \]
[26.10]

MULTIPLE-CHOICE QUESTIONS

1. Which of the following statements are fundamental postulates of the special theory of relativity? (a) Light moves through a substance called the ether. (b) The speed of light depends on the inertial reference frame in which it is measured. (c) The laws of physics depend on the inertial reference frame in which they are used. (d) The laws of physics are the same in all inertial reference frames. (e) The speed of light is independent of the inertial reference frame in which it is measured.

2. A spaceship moves at one-quarter the speed of light relative to Earth in a direction perpendicular to the line of sight of an observer at rest with respect to Earth. If the spaceship has a length \(L \) when at rest, which statement is true concerning the moving ship's length \(L' \) as measured by the observer? (a) \(L' > L \) (b) \(L' < L \) (c) \(L' = L \) (d) \(L' << L \) (e) \(L' \gg L \).

3. A car’s headlights come on, and an observer on the ground measures the speed of the light beam to be \(c = 3.00 \times 10^8 \text{ m/s} \) As the driver heads down the highway traveling at a speed \(v \) away from the ground observer, which of the following statements are true about the measured speed of the light beam? (a) The ground observer measures the light speed to be \(c + v \). (b) The driver measures the light speed to be \(c \). (c) The ground observer measures the light speed to be \(c \). (d) The driver measures the light speed to be slightly less than \(c \). (e) The ground observer measures the light’s speed to be slightly less than \(c \).

4. An astronaut is traveling in a rocket in outer space in a straight line at a constant speed of 0.5\(c \). Which of the following effects would she experience? (a) She would feel heavier. (b) She would find it harder to breathe. (c) Her heart rate would change. (d) Some of her dimensions would be shorter. (e) None of these effects would occur.

CONCEPTUAL QUESTIONS

1. A spacecraft with the shape of a sphere of diameter \(D \) moves past an observer on Earth with a speed of 0.5\(c \). What shape does the observer measure for the spacecraft as it moves past?

2. What two speed measurements will two observers in relative motion always agree upon?

3. The speed of light in water is \(2.30 \times 10^8 \text{ m/s} \). Suppose an electron is moving through water at \(2.50 \times 10^9 \text{ m/s} \). Does this particle speed violate the principle of relativity?

4. With regard to reference frames, how does general relativity differ from special relativity?

5. Some distant star-like objects, called quasars, are receding from us at half the speed of light (or greater). What is the speed of the light we receive from these quasars?

6. It is said that Einstein, in his teenage years, asked the question, “What would I see in a mirror if I carried it in my hands and ran at a speed near that of light?” How would you answer this question?
7. List some ways our day-to-day lives would change if the speed of light were only 50 m/s.

8. Two identically constructed clocks are synchronized. One is put into orbit around Earth, and the other remains on Earth. Which clock runs more slowly? When the moving clock returns to Earth, will the two clocks still be synchronized? Discuss from the standpoints of both special and general relativity.

9. Photons of light have zero mass. How is it possible that they have momentum?

10. Imagine an astronaut on a trip to Sirius, which lies 8 light-years from Earth. Upon arrival at Sirius, the astronaut finds that the trip lasted 6 years. If the trip was made at a constant speed of 0.8c, how can the 8-light-year distance be reconciled with the 6-year duration?
SECTION 26.5 RELATIVISTIC MOMENTUM

13. (a) Find the change in classical momentum of an electron that accelerates from 0.900c to 0.940c, neglecting relativistic effects. (b) Repeat the calculation, using the expression for relativistic momentum.

14. Calculate the classical momentum of a proton traveling at 0.990c, neglecting relativistic effects. (b) Repeat the calculation while including relativistic effects. (c) Does it make sense to neglect relativity at such speeds?

15. An unstable particle at rest breaks up into two fragments of unequal mass. The mass of the lighter fragment is equal to 2.50×10^{-28} kg and that of the heavier fragment is 1.67×10^{-27} kg. If the lighter fragment has a speed of 0.893c after the breakup, what is the speed of the heavier fragment?

SECTION 26.6 RELATIVISTIC ENERGY AND THE EQUIVALENCE OF MASS AND ENERGY

16. A proton moves with a speed of 0.950c. Calculate (a) its rest energy, (b) its total energy, and (c) its kinetic energy.

17. Superman throws a 0.15-kg baseball at a speed of 0.900c. Find the baseball’s (a) rest energy, (b) kinetic energy, and (c) total energy.

18. If it takes 3.750 MeV of work to accelerate a proton from rest to a speed of v, determine v.

19. What speed must a particle attain before its kinetic energy is double the value predicted by the nonrelativistic expression $KE = \frac{1}{2}mv^2$?

20. Determine the energy required to accelerate an electron from (a) 0.500c to 0.900c and (b) 0.900c to 0.990c.

21. A cube of steel has a volume of 1.00 cm3 and a mass of 8.00 g when at rest on Earth. If this cube is now given a speed v = 0.900c, what is its density as measured by a stationary observer? Note that relativistic density is $\rho = \frac{m}{V/c^3}$.

22. An unstable particle with a mass equal to 3.34×10^{-27} kg is initially at rest. The particle decays into two fragments that fly off with velocities of 0.987c and $-0.893c$, respectively. Find the masses of the fragments. Hint: Conserve both mass—energy and momentum.

23. Starting with the definitions of relativistic energy and momentum, show that $E^2 = p^2c^2 + m^2c^4$ (Eq. 26.10).

24. Consider the reaction $^{238}_{92}U + ^{1}_{0}n \rightarrow ^{239}_{93}La + ^{79}_{35}Br + ^{1}_{0}n$. (a) Write the conservation of relativistic energy equation symbolically in terms of the rest energy and the kinetic energy, setting the initial total energy to the final total energy. (b) Using values from Appendix B, find the total mass of the initial particles. (c) Using the values given below, find the total mass of the particles after the reaction takes place. (d) Subtract the final particle mass from the initial particle mass. (e) Convert the answer to part (d) to MeV, obtaining the kinetic energy of the daughter particles, neglecting the kinetic energy of the reactants. Note: Lanthanum-148 has atomic mass 147.932 236 u; bromine-87 has atomic mass 86.920 711 19 u.

25. Consider electrons accelerated to a total energy of 20.0 GeV in the 3.00-km-long Stanford Linear Accelerator. (a) What is the γ factor for the electrons? (b) How long does the accelerator appear to the electrons? Electron mass energy: 0.511 MeV.

26. An electron has a speed of 0.750c. (a) Find the speed of a proton that has the same kinetic energy as the electron. (b) Find the speed of a proton that has the same momentum as the electron.

27. The rest energy of an electron is 0.511 MeV. The rest energy of a proton is 938 MeV. Assume both particles have kinetic energies of 2.00 MeV. Find the speed of (a) the electron and (b) the proton. (c) By how much does the speed of the electron exceed that of the proton? Note: Perform the calculations in MeV; don’t convert the energies to joules. The answer is sensitive to rounding.

28. A spring of force constant k is compressed by a distance x from its equilibrium length. (a) Does the mass of the spring change when the spring is compressed? Explain. (b) Find an expression for the change in mass of the spring in terms of k, x, and c. (b) What is the change in mass if the force constant is 2.0×10^6 N/m and $x = 15$ cm?

29. What is the speed of a proton that has been accelerated from rest through a difference of potential of (a) 500 V and (b) 3.00 $\times 10^8$ V?

30. An electron has a total energy equal to five times its rest energy. (a) What is its momentum? (b) Repeat for a proton.

31. An astronaut wishes to visit the Andromeda galaxy, making a one-way trip that will take 30.0 years in the spaceship’s frame of reference. Assume the galaxy is 2.00 million light-years away and his speed is constant. (a) How fast must he travel relative to Earth? (b) What will be the kinetic energy of his spacecraft, which has mass of 1.00 $\times 10^8$ kg? (c) What is the cost of this energy if it is purchased at a typical consumer price for electric energy, 13.0 cents per kWh? The following approximation will prove useful: $\frac{1}{\sqrt{1 + x}} \approx 1 - \frac{x}{2}$ for $x << 1$.

32. An alarm clock is set to sound in 10 h. At $t = 0$, the clock is placed in a spaceship moving with a speed of 0.75c (relative to Earth). What distance, as determined by an Earth observer, does the spaceship travel before the alarm clock sounds?

33. A spaceship of proper length 300 m takes 0.75 μs to pass an Earth observer. Determine the speed of this spaceship as measured by the Earth observer.

34. The cosmic rays of highest energy are protons that have kinetic energy on the order of 10^{15} MeV. (a) How long would it take a proton of this energy to travel across the Milky Way galaxy, having a diameter $\sim 10^5$ light-years, as measured in the proton’s frame? (b) From the point of view of the proton, how many kilometers across is the galaxy?

35. The nonrelativistic expression for the momentum of a particle, $p = mv$, can be used if $v << c$. For what speed does the use of this formula give an error in the momentum of (a) 1.00% and (b) 10.0%?

36. (a) Show that a potential difference of 1.02 $\times 10^8$ V would be sufficient to give an electron a speed equal to twice the
speed of light if Newtonian mechanics remained valid at high speeds. (b) What speed would an electron actually acquire in falling through a potential difference equal to $1.02 \times 10^9 \text{ V}$?

37. The muon is an unstable particle that spontaneously decays into an electron and two neutrinos. In a reference frame in which the muons are stationary, if the number of muons at $t = 0$ is N_0, the number at time t is given by $N = N_0 e^{-t/\tau}$, where τ is the mean lifetime, equal to 2.2 μs. Suppose the muons move at a speed of 0.95c and there are 5.0×10^4 muons at $t = 0$. (a) What is the observed lifetime of the muons? (b) How many muons remain after traveling a distance of 3.0 km?

38. Imagine that the entire Sun collapses to a sphere of radius R_s such that the work required to remove a small mass m from the surface would be equal to its rest energy mc^2. This radius is called the gravitational radius for the Sun. Find R_s. (It is believed that the ultimate fate of very massive stars is to collapse beyond their gravitational radii into black holes.)

39. The identical twins Speedo and Goslo join a migration from Earth to Planet X, which is 20.0 light-years away in a reference frame in which both planets are at rest. The twins, of the same age, depart at the same time on different spacecraft. Speedo’s craft travels steadily at 0.950c, Goslo’s at 0.750c. Calculate the age difference between the twins after Goslo’s spacecraft lands on Planet X. Which twin is the older?

40. An interstellar space probe is launched from Earth. After a brief period of acceleration, it moves with a constant velocity, 70.0% of the speed of light. Its nuclear-powered batteries supply the energy to keep its data transmitter active continuously. The batteries have a lifetime of 15.0 years as measured in a rest frame. (a) How long do the batteries on the space probe last as measured by mission control on Earth? (b) How far is the probe from Earth when its batteries fail as measured by mission control? (c) How far is the probe from Earth as measured by its built-in trip odometer when its batteries fail? (d) For what total time after launch are data received from the probe by mission control? Note that radio waves travel at the speed of light and fill the space between the probe and Earth at the time the battery fails.

41. An observer moving at a speed of 0.995c relative to a rod (Fig. P26.41) measures its length to be 2.00 m and sees its length to be oriented at 30.0° with respect to its direction of motion. What is the proper length of the rod? (b) What is the orientation angle in a reference frame moving with the rod?

![FIGURE P26.41](View of rod as seen by an observer moving to the right.)
Although many problems were resolved by the theory of relativity in the early part of the 20th century, many others remained unsolved. Attempts to explain the behavior of matter on the atomic level with the laws of classical physics were consistently unsuccessful. Various phenomena, such as the electromagnetic radiation emitted by a heated object (blackbody radiation), the emission of electrons by illuminated metals (the photoelectric effect), and the emission of sharp spectral lines by gas atoms in an electric discharge tube, couldn’t be understood within the framework of classical physics. Between 1900 and 1930, however, a modern version of mechanics called quantum mechanics or wave mechanics was highly successful in explaining the behavior of atoms, molecules, and nuclei.

The earliest ideas of quantum theory were introduced by Planck, and most of the subsequent mathematical developments, interpretations, and improvements were made by a number of distinguished physicists, including Einstein, Bohr, Schrödinger, de Broglie, Heisenberg, Born, and Dirac. In this chapter we introduce the underlying ideas of quantum theory and the wave-particle nature of matter, and discuss some simple applications of quantum theory, including the photoelectric effect, the Compton effect, and x-rays.

27.1 BLACKBODY RADIATION AND PLANCK’S HYPOTHESIS

An object at any temperature emits electromagnetic radiation, called thermal radiation. Stefan’s law, discussed in Section 11.5, describes the total power radiated. The spectrum of the radiation depends on the temperature and properties of the object. At low temperatures, the wavelengths of the thermal radiation are mainly in the infrared region and hence not observable by the eye. As the temperature of an object increases, the object eventually begins to glow red. At sufficiently high temperatures, it appears to be white, as in the glow of the hot tungsten filament of a lightbulb. A careful study of thermal radiation shows that it consists of a continuous distribution of wavelengths from the infrared, visible, and ultraviolet portions of the spectrum.
From a classical viewpoint, thermal radiation originates from accelerated charged particles near the surface of an object; such charges emit radiation, much as small antennas do. The thermally agitated charges can have a distribution of frequencies, which accounts for the continuous spectrum of radiation emitted by the object. By the end of the 19th century, it had become apparent that the classical theory of thermal radiation was inadequate. The basic problem was in understanding the observed distribution energy as a function of wavelength in the radiation emitted by a blackbody. By definition, a blackbody is an ideal system that absorbs all radiation incident on it. A good approximation of a blackbody is a small hole leading to the inside of a hollow object, as shown in Figure 27.1. The nature of the radiation emitted through the small hole leading to the cavity depends only on the temperature of the cavity walls and not at all on the material composition of the object, its shape, or other factors.

Experimental data for the distribution of energy in blackbody radiation at three temperatures are shown in Active Figure 27.2. The radiated energy varies with wavelength and temperature. As the temperature of the blackbody increases, the total amount of energy (area under the curve) it emits increases. Also, with increasing temperature, the peak of the distribution shifts to shorter wavelengths. This shift obeys the following relationship, called Wien’s displacement law,

$$\lambda_{\text{max}} T = 0.2898 \times 10^{-2} \text{ m} \cdot \text{K}$$ \hspace{1cm} [27.1]

where λ_{max} is the wavelength at which the curve peaks and T is the absolute temperature of the object emitting the radiation.

ACTIVE FIGURE 27.1 An opening in the cavity of a body is a good approximation of a blackbody. As light enters the cavity through the small opening, part is reflected and part is absorbed on each reflection from the interior walls. After many reflections, essentially all the incident energy is absorbed.

ACTIVE FIGURE 27.2 Intensity of blackbody radiation versus wavelength at three different temperatures. Note that the total radiation emitted (the area under a curve) increases with increasing temperature.

APPLYING PHYSICS 27.1 STAR COLORS

If you look carefully at stars in the night sky, you can distinguish three main colors: red, white, and blue. What causes these particular colors?

Explanation These colors result from the different surface temperatures of stars. A relatively cool star, with a surface temperature of 3 000 K, has a radiation curve similar to the middle curve in Active Figure 27.2. The peak in this curve is above the visible wavelengths, 0.4 m to 0.7 m, beyond the wavelength of red light, so significantly more radiation is emitted within the visible range at the red end than the blue end of the spectrum. Consequently, the star appears reddish in color, similar to the red glow from the burner of an electric range.

A hotter star has a radiation curve more like the upper curve in Active Figure 27.2. In this case the star emits significant radiation throughout the visible range, and the combination of all colors causes the star to look white. Such is the case with our own Sun, with a surface temperature of 5 800 K. For much hotter stars, the peak can be shifted so far below the visible range that significantly more blue radiation is emitted than red, so the star appears bluish in color. Stars cooler than the Sun tend to have orange or red colors. The surface temperature of a star can be obtained by first finding the wavelength corresponding to the maximum in the intensity versus wavelength curve, then substituting that wavelength into Wien’s law. For example, if the wavelength were 2.30×10^{-7} m, the surface temperature would be given by

$$T = \frac{0.2898 \times 10^{-2} \text{ m} \cdot \text{K}}{\lambda_{\text{max}}} = \frac{0.2898 \times 10^{-2} \text{ m} \cdot \text{K}}{2.30 \times 10^{-7} \text{ m}} = 1.26 \times 10^{4} \text{ K}$$

Attempts to use classical ideas to explain the shapes of the curves shown in Active Figure 27.2 failed. Active Figure 27.3 (page 872) shows an experimental plot of the blackbody radiation spectrum (red curve), together with the theoretical picture of what this curve should look like based on classical theories (blue curve). At long wavelengths, classical theory is in good agreement with the experimental data. At short wavelengths, however, major disagreement exists between classical theory and experiment. As λ approaches zero, classical theory erroneously
predicts that the intensity should go to infinity, when the experimental data show it should approach zero.

In 1900 Planck developed a formula for blackbody radiation that was in complete agreement with experiments at all wavelengths, leading to a curve shown by the red line in Active Figure 27.3. Planck hypothesized that blackbody radiation was produced by submicroscopic charged oscillators, which he called resonators. He assumed the walls of a glowing cavity were composed of billions of these resonators, although their exact nature was unknown. The resonators were allowed to have only certain discrete energies E_n, given by

$$E_n = nhf$$

where n is a positive integer called a quantum number, f is the frequency of vibration of the resonator, and h is a constant known as Planck’s constant, which has the value

$$h = 6.626 \times 10^{-34} \text{ J} \cdot \text{s}$$

Because the energy of each resonator can have only discrete values given by Equation 27.2, we say the energy is quantized. Each discrete energy value represents a different quantum state, with each value of n representing a specific quantum state.

(When the resonator is in the $n = 1$ quantum state, its energy is hf; when it is in the $n = 2$ quantum state, its energy is $2hf$; and so on.)

The key point in Planck’s theory is the assumption of quantized energy states. This radical departure from classical physics is the “quantum leap” that led to a totally new understanding of nature. It’s shocking: it’s like saying a pitched baseball can have only a fixed number of different speeds, and no speeds in between those fixed values. The fact that energy can assume only certain, discrete values instead of any one of a continuum of values is the single most important difference between quantum theory and the classical theories of Newton and Maxwell.

27.2 THE PHOTOELECTRIC EFFECT AND THE PARTICLE THEORY OF LIGHT

In the latter part of the 19th century, experiments showed that light incident on certain metallic surfaces caused the emission of electrons from the surfaces. This phenomenon is known as the photoelectric effect, and the emitted electrons are called photoelectrons. The first discovery of this phenomenon was made by Hertz, who was also the first to produce the electromagnetic waves predicted by Maxwell.

Active Figure 27.4 is a schematic diagram of a photoelectric effect apparatus. An evacuated glass tube known as a photocell contains a metal plate E (the emitter) connected to the negative terminal of a variable power supply. Another metal plate, C (the collector), is maintained at a positive potential by the power supply. When the tube is kept in the dark, the ammeter reads zero, indicating that there is no current in the circuit. When plate E is illuminated by light having a wavelength shorter than some particular wavelength that depends on the material used to make plate E, however, a current is detected by the ammeter, indicating a flow of charges across the gap between E and C. This current arises from photoelectrons emitted from the negative plate E and collected at the positive plate C.

Figure 27.5 is a plot of the photoelectric current versus the potential difference ΔV between E and C for two light intensities. At large values of ΔV, the current reaches a maximum value. In addition, the current increases as the incident light intensity increases, as you might expect. Finally, when ΔV is negative—that is, when the power supply in the circuit is reversed to make E positive and C negative—the current drops to a low value because most of the emitted photoelectrons are repelled by the now negative plate C. In this situation only those electrons having a kinetic energy greater than the magnitude of $e \Delta V$ reach C, where e is the charge on the electron.
When ΔV is equal to or more negative than $-\Delta V_s$, the stopping potential, no electrons reach C and the current is zero. The stopping potential is independent of the radiation intensity. The maximum kinetic energy of the photoelectrons is related to the stopping potential through the relationship

$$KE_{\text{max}} = e \Delta V_s$$ \[27.4\]

Several features of the photoelectric effect can’t be explained with classical physics or with the wave theory of light:

- No electrons are emitted if the incident light frequency falls below some cutoff frequency f_0, also called the threshold frequency, which is characteristic of the material being illuminated. This fact is inconsistent with the wave theory, which predicts that the photoelectric effect should occur at any frequency, provided the light intensity is sufficiently high.
- The maximum kinetic energy of the photoelectrons is independent of light intensity. According to wave theory, light of higher intensity should carry more energy into the metal per unit time and therefore eject photoelectrons having higher kinetic energies.
- The maximum kinetic energy of the photoelectrons increases with increasing light frequency. The wave theory predicts no relationship between photoelectron energy and incident light frequency.
- Electrons are emitted from the surface almost instantaneously (less than 10^{-9} s after the surface is illuminated), even at low light intensities. Classically, we expect the photoelectrons to require some time to absorb the incident radiation before they acquire enough kinetic energy to escape from the metal.

A successful explanation of the photoelectric effect was given by Einstein in 1905, the same year he published his special theory of relativity. As part of a general paper on electromagnetic radiation, for which he received the Nobel Prize in Physics in 1921, Einstein extended Planck’s concept of quantization to electromagnetic waves. He suggested that a tiny packet of light energy or photon would be emitted when a quantized oscillator made a jump from an energy state $E_n = nhf$ to the next lower state $E_{n-1} = (n-1)hf$. Conservation of energy would require the decrease in oscillator energy, hf, to be equal to the photon’s energy E, so that

$$E = hf$$ \[27.5\]

where h is Planck’s constant and f is the frequency of the light, which is equal to the frequency of Planck’s oscillator.

The key point here is that the light energy lost by the emitter, hf, stays sharply localized in a tiny packet or particle called a photon. In Einstein’s model a photon is so localized that it can give all its energy hf to a single electron in the metal. According to Einstein, the maximum kinetic energy for these liberated photoelectrons is

$$KE_{\text{max}} = hf - \phi$$ \[27.6\]

where ϕ is called the work function of the metal. The work function, which represents the minimum energy with which an electron is bound in the metal, is on the order of a few electron volts. Table 27.1 lists work functions for various metals.

With the photon theory of light, we can explain the previously mentioned features of the photoelectric effect that cannot be understood using concepts of classical physics:

- Photoelectrons are created by absorption of a single photon, so the energy of that photon must be greater than or equal to the work function, else no photoelectrons will be produced. This explains the cutoff frequency.
- From Equation 27.6, KE_{max} depends only on the frequency of the light and the value of the work function. Light intensity is immaterial because absorption of a single photon is responsible for the electron’s change in kinetic energy.
- Equation 27.6 is linear in the frequency, so KE_{max} increases with increasing frequency.

Table 27.1

<table>
<thead>
<tr>
<th>Metal</th>
<th>ϕ (eV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ag</td>
<td>4.73</td>
</tr>
<tr>
<td>Al</td>
<td>4.08</td>
</tr>
<tr>
<td>Cu</td>
<td>4.70</td>
</tr>
<tr>
<td>Fe</td>
<td>4.50</td>
</tr>
<tr>
<td>Na</td>
<td>2.46</td>
</tr>
<tr>
<td>Pb</td>
<td>4.14</td>
</tr>
<tr>
<td>Pt</td>
<td>6.35</td>
</tr>
<tr>
<td>Zn</td>
<td>4.31</td>
</tr>
</tbody>
</table>
Electrons are emitted almost instantaneously, regardless of intensity, because the light energy is concentrated in packets rather than spread out in waves. If the frequency is high enough, no time is needed for the electron to gradually acquire sufficient energy to escape the metal.

Experimentally, a linear relationship is observed between f and KE_{max}, as sketched in Figure 27.6. The intercept on the horizontal axis, corresponding to $KE_{\text{max}}/h = 0$, gives the cutoff frequency below which no photoelectrons are emitted, regardless of light intensity. The cutoff wavelength λ_c can be derived from Equation 27.6:

$$KE_{\text{max}} = hf_c - \phi = 0 \Rightarrow \frac{h}{\lambda_c} - \phi = 0$$

$$\lambda_c = \frac{hc}{\phi}$$

where c is the speed of light. Wavelengths greater than λ_c incident on a material with work function ϕ don’t result in the emission of photoelectrons.

EXAMPLE 27.1 Photoelectrons from Sodium

Goal Understand the quantization of light and its role in the photoelectric effect.

Problem A sodium surface is illuminated with light of wavelength 0.300 μm. The work function for sodium is 2.46 eV. Calculate (a) the energy of each photon in electron volts, (b) the maximum kinetic energy of the ejected photoelectrons, and (c) the cutoff wavelength for sodium.

Strategy Parts (a), (b), and (c) require substitution of values into Equations 27.5, 27.6, and 27.7, respectively.

Solution

(a) Calculate the energy of each photon.

Obtain the frequency from the wavelength:

$$\epsilon = f\lambda \rightarrow f = \frac{3.00 \times 10^8 \text{ m/s}}{0.300 \times 10^{-6} \text{ m}} = 1.00 \times 10^{15} \text{ Hz}$$

Use Equation 27.5 to calculate the photon’s energy:

$$E = hf = (6.63 \times 10^{-34} \text{ J s})(1.00 \times 10^{15} \text{ Hz})$$

$$= 6.63 \times 10^{-19} \text{ J}$$

$$= (6.63 \times 10^{-19} \text{ J})(\frac{1.00 \text{ eV}}{1.60 \times 10^{-19} \text{ J}}) = 4.14 \text{ eV}$$

(b) Find the maximum kinetic energy of the photoelectrons.

Substitute into Equation 27.6:

$$KE_{\text{max}} = hf_c - \phi = 4.14 \text{ eV} - 2.46 \text{ eV} = 1.68 \text{ eV}$$

(c) Compute the cutoff wavelength.

Convert ϕ from electron volts to joules:

$$\phi = 2.46 \text{ eV} = (2.46 \text{ eV})(1.60 \times 10^{-19} \text{ J/eV})$$

$$= 3.94 \times 10^{-19} \text{ J}$$

Find the cutoff wavelength using Equation 27.7:

$$\lambda_c = \frac{hc}{\phi} = \frac{(6.63 \times 10^{-34} \text{ J s})(3.00 \times 10^8 \text{ m/s})}{3.94 \times 10^{-19} \text{ J}}$$

$$= 5.05 \times 10^{-7} \text{ m} = 505 \text{ nm}$$

Remark The cutoff wavelength is in the yellow-green region of the visible spectrum.

![Figure 27.6 A sketch of KE_{max} versus the frequency of incident light for photoelectrons in a typical photoelectric effect experiment. Photons with frequency less than f_c don’t have sufficient energy to eject an electron from the metal.]
QUESTION 27.1
True or False: Suppose in a given photoelectric experiment the frequency of light is larger than the cutoff frequency. The magnitude of the stopping potential, then, is larger than the energy of the incident photons.

EXERCISE 27.1
(a) What minimum-frequency light will eject photoelectrons from a copper surface? (b) If this frequency is tripled, find the maximum kinetic energy (in eV) of the resulting photoelectrons.

Answers (a) 1.13×10^{15} Hz (b) 9.40 eV

Photocells

The photoelectric effect has many interesting applications using a device called the *photocell*. The photocell shown in Active Figure 27.4 produces a current in the circuit when light of sufficiently high frequency falls on the cell, but it doesn’t allow a current in the dark. This device is used in streetlights: a photoelectric control unit in the base of the light activates a switch that turns off the streetlight when ambient light strikes it. Many garage-door systems and elevators use a light beam and a photocell as a safety feature in their design. When the light beam strikes the photocell, the electric current generated is sufficiently large to maintain a closed circuit. When an object or a person blocks the light beam, the current is interrupted, which signals the door to open.

27.3 X-RAYS

X-rays were discovered in 1895 by Wilhelm Röntgen and much later identified as electromagnetic waves, following a suggestion by Max von Laue in 1912. X-rays have higher frequencies than ultraviolet radiation and can penetrate most materials with relative ease. Typical x-ray wavelengths are about 0.1 nm, which is on the order of the atomic spacing in a solid. As a result, they can be diffracted by the regular atomic spacings in a crystal lattice, which act as a diffraction grating. The x-ray diffraction pattern of NaCl is shown in Figure 27.7.

X-rays are produced when high-speed electrons are suddenly slowed down, such as when a metal target is struck by electrons that have been accelerated through a potential difference of several thousand volts. Figure 27.8a shows a schematic diagram of an x-ray tube. A current in the filament causes electrons to be emitted, and these freed electrons are accelerated toward a dense metal target, such as tungsten, which is held at a higher potential than the filament.

Figure 27.9 (page 876) represents a plot of x-ray intensity versus wavelength for the spectrum of radiation emitted by an x-ray tube. Note that the spectrum has two distinct components. One component is a continuous broad spectrum that depends on the voltage applied to the tube. Superimposed on this component is a series of sharp, intense lines that depend on the nature of the target material.
observe these sharp lines, which represent radiation emitted by the target atoms as their electrons undergo rearrangements, the accelerating voltage must exceed a certain value, called the threshold voltage. We discuss threshold voltage further in Chapter 28. The continuous radiation is sometimes called bremsstrahlung, a German word meaning “braking radiation,” because electrons emit radiation when they undergo an acceleration inside the target.

Figure 27.10 illustrates how x-rays are produced when an electron passes near a charged target nucleus. As the electron passes close to a positively charged nucleus contained in the target material, it is deflected from its path because of its electrical attraction to the nucleus; hence, it undergoes an acceleration. An analysis from classical physics shows that any charged particle will emit electromagnetic radiation when it is accelerated. (An example of this phenomenon is the production of electromagnetic waves by accelerated charges in a radio antenna, as described in Chapter 21.) According to quantum theory, this radiation must appear in the form of photons. Because the radiated photon shown in Figure 27.10 carries energy, the electron must lose kinetic energy because of its encounter with the target nucleus. An extreme example consists of the electron losing all of its energy in a single collision. In this case the initial energy of the electron ($e\Delta V$) is transformed completely into the energy of the photon (hf_{max}). In equation form,

$$\epsilon \Delta V = hf_{\text{max}} = \frac{hc}{\lambda_{\text{min}}} \quad [27.8]$$

where $\epsilon \Delta V$ is the energy of the electron after it has been accelerated through a potential difference of ΔV volts and ϵ is the charge on the electron. This equation says that the shortest wavelength radiation that can be produced is

$$\lambda_{\text{min}} = \frac{hc}{\epsilon \Delta V} \quad [27.9]$$

Not all the radiation produced has this particular wavelength because many of the electrons aren’t stopped in a single collision. The result is the production of the continuous spectrum of wavelengths.

Interesting insights into the process of painting and revising a masterpiece are being revealed by x-rays. Long-wavelength x-rays are absorbed in varying degrees by some paints, such as those having lead, cadmium, chromium, or cobalt as a base. The x-ray interactions with the paints give contrast because the different elements in the paints have different electron densities. Also, thicker layers will absorb more than thin layers. To examine a painting by an old master, a film is placed behind it while it is x-rayed from the front. Ghost outlines of earlier paintings and earlier forms of the final masterpiece are sometimes revealed when the film is developed.

27.4 DIFFRACTION OF X-RAYS BY CRYSTALS

In Chapter 24 we described how a diffraction grating could be used to measure the wavelength of light. In principle the wavelength of any electromagnetic wave can be measured if a grating having a suitable line spacing can be found. The spacing between lines must be approximately equal to the wavelength of the radiation to be measured. X-rays are electromagnetic waves with wavelengths on the order of 0.1 nm. It would be impossible to construct a grating with such a small spacing. As noted in the previous section, however, the regular array of atoms in a crystal could act as a three-dimensional grating for observing the diffraction of x-rays.

One experimental arrangement for observing x-ray diffraction is shown in Figure 27.11. A narrow beam of x-rays with a continuous wavelength range is incident on a crystal such as sodium chloride. The diffracted radiation is very intense in certain directions, corresponding to constructive interference from waves reflected from layers of atoms in the crystal. The diffracted radiation is detected by a photographic film and forms an array of spots known as a Laue pattern. The
crystal structure is determined by analyzing the positions and intensities of the various spots in the pattern.

The arrangement of atoms in a crystal of NaCl is shown in Figure 27.12. The smaller red spheres represent Na\(^+\) ions, and the larger blue spheres represent Cl\(^-\) ions. The spacing between successive Na\(^+\) (or Cl\(^-\)) ions in this cubic structure, denoted by the symbol \(a\) in Figure 27.12, is approximately 0.563 nm.

A careful examination of the NaCl structure shows that the ions lie in various planes. The shaded areas in Figure 27.12 represent one example, in which the atoms lie in equally spaced planes. Now suppose an x-ray beam is incident at grazing angle \(\theta\) on one of the planes, as in Figure 27.13. The beam can be reflected from both the upper and lower plane of atoms. The geometric construction in Figure 27.13, however, shows that the beam reflected from the lower surface travels farther than the one reflected from the upper surface by a distance of \(2d \sin \theta\).

The two portions of the reflected beam will combine to produce constructive interference when this path difference equals some integral multiple of the wavelength \(\lambda\). The condition for constructive interference is given by

\[
2d \sin \theta = m\lambda \quad m = 1, 2, 3, \ldots
\]

This condition is known as Bragg’s law, after W. L. Bragg (1890–1971), who first derived the relationship. If the wavelength and diffraction angle are measured, Equation 27.10 can be used to calculate the spacing between atomic planes.

The technique of x-ray diffraction has been used to determine the atomic arrangement of complex organic molecules such as proteins. Proteins are large molecules containing thousands of atoms that help regulate and speed up chemical life processes in cells. Some proteins are amazing catalysts, speeding up the slow room-temperature reactions in cells by 17 orders of magnitude. To understand this incredible biochemical reactivity, it is important to determine the structure of these intricate molecules.

The main technique used to determine the molecular structure of proteins, DNA, and RNA is x-ray diffraction using x-rays of wavelength of about 1 Å (1 Å = 0.1 nm = 1 × 10\(^{-10}\) m). This technique allows the experimenter to “see” individual atoms that are separated by about this distance in molecules. Because the biochemical x-ray diffraction sample is prepared in crystal form, the geometry (position of the bright spots in space) of the diffraction pattern is determined by the regular three-dimensional crystal lattice arrangement of molecules in the sample. The intensities of the bright diffraction spots are determined by the atoms and their electronic distributions in the fundamental building block of the crystal: the unit cell. Using complicated computational techniques, investigators can essentially
deduce the molecular structure by matching the observed intensities of diffracted beams with a series of assumed atomic positions that determine the atomic structure and electron density of the molecule.

Crystalizing a large molecule such as DNA and obtaining its x-ray diffraction pattern is highly challenging. In the case of DNA, obtaining sufficiently pure crystals is especially difficult because there exist two crystalline forms, A and B, which arise in mixed form during preparation. These two forms result in diffraction patterns that can't be easily deciphered. In 1951 Rosalind Franklin, a researcher at King's College in London, developed an ingenious method of separating the two forms and managed to obtain excellent x-ray diffraction images of pure crystalline DNA in B-form. With these images she determined that the helical shape of DNA consisted of two interwoven strands, with the sugar-phosphate backbone on the outside of the molecule, refuting prior models that had the backbone on the inside. One of her images is shown in Figure 27.14.

James Watson and Francis Crick used Franklin's work to uncover further details of the molecule and its function in heredity, particularly in regards to the internal structure. Attached to each sugar-phosphate unit of each strand is one of four base molecules: adenine, cytosine, guanine, or thymine. The bases are arranged sequentially along the strand, with patterns in the sequence of bases acting as codes for proteins that carry out various functions for a given organism. The bases in one strand bind to those in the other strand, forming a double helix. A model of the double helix is shown in Figure 27.15. In 1962 Watson, Crick, and a colleague of Franklin's, Maurice Wilkins, received the Nobel Prize for Physiology and Medicine for their work on understanding the structure and function of DNA. Franklin would have shared the prize, but died in 1958 of cancer at the age of thirty-eight. (The prize is not awarded post-humously.)

EXAMPLE 27.2 X-Ray Diffraction from Calcite

Goal Understand Bragg’s law and apply it to a crystal.

Problem If the spacing between certain planes in a crystal of calcite (CaCO₃) is 0.314 nm, find the grazing angles at which first- and third-order interference will occur for x-rays of wavelength 0.070 nm.

Strategy Solve Bragg’s law for sin θ and substitute, using the inverse-sine function to obtain the angle.

Solution

Find the grazing angle corresponding to \(m = 1 \), for first-order interference:

\[
\sin \theta = \frac{m \lambda}{2d} = \frac{(0.070 \text{ nm})}{2(0.314 \text{ nm})} = 0.111
\]

\[
\theta = \sin^{-1}(0.111) = 6.37^\circ
\]

Repeat the calculation for third-order interference \((m = 3) \):

\[
\sin \theta = \frac{m \lambda}{2d} = \frac{3(0.070 \text{ nm})}{2(0.314 \text{ nm})} = 0.334
\]

\[
\theta = \sin^{-1}(0.334) = 19.5^\circ
\]

Remark Notice there is little difference between this kind of problem and a Young’s slit experiment.

QUESTION 27.2

True or False: A smaller grazing angle implies a smaller distance between planes in the crystal lattice.

EXERCISE 27.2

X-rays of wavelength 0.060 nm are scattered from a crystal with a grazing angle of 11.7°. Assume \(m = 1 \) for this process. Calculate the spacing between the crystal planes.

Answer 0.148 nm
27.5 THE COMPTON EFFECT

Further justification for the photon nature of light came from an experiment conducted by Arthur H. Compton in 1923. In his experiment Compton directed an x-ray beam of wavelength λ_0 toward a block of graphite. He found that the scattered x-rays had a slightly longer wavelength λ than the incident x-rays and hence the energies of the scattered rays were lower. The amount of energy reduction depended on the angle at which the x-rays were scattered. The change in wavelength $\Delta \lambda$ between a scattered x-ray and an incident x-ray is called the Compton shift.

To explain this effect, Compton assumed if a photon behaves like a particle, its collision with other particles is similar to a collision between two billiard balls. Hence, the x-ray photon carries both measurable energy and momentum, and these two quantities must be conserved in a collision. If the incident photon collides with an electron initially at rest, as in Figure 27.16, the photon transfers some of its energy and momentum to the electron. As a consequence, the energy and frequency of the scattered photon are lowered and its wavelength increases. Applying relativistic energy and momentum conservation to the collision described in Figure 27.16, the shift in wavelength of the scattered photon is given by

$$\Delta \lambda = \lambda - \lambda_0 = \frac{h}{m_0 c} (1 - \cos \theta)$$ \hspace{1cm} [27.11]

where m_e is the mass of the electron and θ is the angle between the directions of the scattered and incident photons. The quantity $h/m_0 c$ is called the Compton wavelength and has a value of 0.002 45 nm. The Compton wavelength is very small relative to the wavelengths of visible light, so the shift in wavelength would be difficult to detect if visible light were used. Further, note that the Compton shift depends on the scattering angle θ and not on the wavelength. Experimental results for x-rays scattered from various targets obey Equation 27.11 and strongly support the photon concept.

QUICK QUIZ 27.1 True or False: When a photon scatters off an electron, the photon loses energy.

QUICK QUIZ 27.2 An x-ray photon is scattered by an electron. Does the frequency of the scattered photon relative to that of the incident photon (a) increase, (b) decrease, or (c) remain the same?

QUICK QUIZ 27.3 A photon of energy E_0 strikes a free electron, with the scattered photon of energy E moving in the direction opposite that of the incident photon. In this Compton effect interaction, what is the resulting kinetic energy of the electron? (a) E_0 (b) E (c) $E_0 - E$ (d) $E_0 + E$

EXAMPLE 27.3 Scattering X-Rays

Goal Understand Compton scattering and its effect on the photon’s energy.

Problem X-rays of wavelength $\lambda_i = 0.200000$ nm are scattered from a block of material. The scattered x-rays are observed at an angle of 45.0° to the incident beam. (a) Calculate the wavelength of the x-rays scattered at this angle. (b) Compute the fractional change in the energy of a photon in the collision.

Strategy To find the wavelength of the scattered x-ray photons, substitute into Equation 27.11 to obtain the wavelength shift, then add the result to the initial wavelength, λ_0. In part (b), calculating the fractional change in energy involves calculating the energy of the x-ray photon before and after, using $E = hf = hc/\lambda$. Taking the difference and dividing by the initial energy yields the desired fractional change in energy. Here, however, a symbolic expression is derived that relates energy terms and wavelengths.
Remark It is also possible to find this answer by substituting into the energy expression at an earlier stage, but the algebraic derivation is more elegant and instructive because it shows how changes in energy are related to changes in wavelength.

QUESTION 27.3
The incident photon loses energy. Where does it go?

EXERCISE 27.3
Repeat the example for a photon with wavelength \(3.00 \times 10^{-7}\) nm that scatters at an angle of 60.0°.

Answers (a) \(3.12 \times 10^{-2}\) nm (b) \(\Delta E/E = -3.88 \times 10^{-2}\)

Solution
(a) Calculate the wavelength of the x-rays.
Substitute into Equation 27.11 to obtain the wavelength shift:

\[
\Delta \lambda = \frac{h}{m_c} (1 - \cos \theta)
\]

\[
= \frac{6.63 \times 10^{-34} \text{ J s}}{(9.11 \times 10^{-31} \text{ kg})(3.00 \times 10^{8} \text{ m/s})} (1 - \cos 45.0°)
\]

\[
= 7.11 \times 10^{-15} \text{ m} = 0.000711 \text{ nm}
\]

Add this shift to the original wavelength to obtain the wavelength of the scattered photon:

\[
\lambda_f = \Delta \lambda + \lambda_i = 0.200711 \text{ nm}
\]

(b) Find the fraction of energy lost by the photon in the collision.
Rewrite the energy \(E\) in terms of wavelength, using \(c = \frac{\lambda}{\nu}\):

\[
E = hf = \frac{hc}{\lambda}
\]

Compute \(\Delta E/E\) using this expression:

\[
\frac{\Delta E}{E} = \frac{E_f - E_i}{E_i} = \frac{hc/\lambda_f - hc/\lambda_i}{hc/\lambda_i}
\]

Cancel \(hc\) and rearrange terms:

\[
\frac{\Delta E}{E} = \frac{1}{\lambda_f} - \frac{1}{\lambda_i} = \frac{1}{\lambda_f} - 1 = \frac{1}{\lambda_i} - \frac{1}{\lambda_f} = -\frac{\Delta \lambda}{\lambda_f}
\]

Substitute values from part (a):

\[
\frac{\Delta E}{E} = \frac{-0.000711 \text{ nm}}{0.200711 \text{ nm}} = -3.54 \times 10^{-5}
\]

Remark It is also possible to find this answer by substituting into the energy expression at an earlier stage, but the algebraic derivation is more elegant and instructive because it shows how changes in energy are related to changes in wavelength.

QUESTION 27.3
The incident photon loses energy. Where does it go?

EXERCISE 27.3
Repeat the example for a photon with wavelength \(3.00 \times 10^{-7}\) nm that scatters at an angle of 60.0°.

Answers (a) \(3.12 \times 10^{-2}\) nm (b) \(\Delta E/E = -3.88 \times 10^{-2}\)

27.6 THE DUAL NATURE OF LIGHT AND MATTER
Phenomena such as the photoelectric effect and the Compton effect offer evidence that when light (or other forms of electromagnetic radiation) and matter interact, the light behaves as if it were composed of particles having energy \(hf\) and momentum \(h/\lambda\). In other contexts, however, light acts like a wave, exhibiting interference and diffraction effects. This apparent duality can be partly explained by considering the energies of photons in different contexts. For example, photons with frequencies in the radio wavelengths carry very little energy, and it may take \(10^{10}\) such photons to create a signal in an antenna. These photons therefore act together like a wave to create the effect. Gamma rays, on the other hand, are so energetic that a single gamma ray photon can be detected.

In his doctoral dissertation in 1924, Louis de Broglie postulated that because photons have wave and particle characteristics, perhaps all forms of matter have both properties. This highly revolutionary idea had no experimental confirmation at that time. According to de Broglie, electrons, just like light, have a dual particle–wave nature.
In Chapter 26 we found that the relationship between energy and momentum for a photon, which has a rest energy of zero, is
\[p = \frac{E}{c} \]
We also know from Equation 27.5 that the energy of a photon is
\[E = hf = \frac{hc}{\lambda} \]
Consequently, the momentum of a photon can be expressed as
\[p = \frac{E}{c} = \frac{hc}{c\lambda} = \frac{h}{\lambda} \]
From this equation, we see that the photon wavelength can be specified by its momentum, or \(\lambda = h/p \). De Broglie suggested that all material particles with momentum \(p \) should have a characteristic wavelength \(\lambda = h/p \). Because the momentum of a particle of mass \(m \) and speed \(v \) is \(mv = p \), the de Broglie wavelength of a particle is
\[\lambda = \frac{h}{mv} \]
Further, de Broglie postulated that the frequencies of matter waves (waves associated with particles having nonzero rest energy) obey the Einstein relationship for photons, \(E = hf \), so that
\[f = \frac{E}{h} \]

The dual nature of matter is quite apparent in Equations 27.14 and 27.15 because each contains both particle concepts \((mv \text{ and } E) \) and wave concepts \((\lambda \text{ and } f) \). The fact that these relationships had been established experimentally for photons made the de Broglie hypothesis that much easier to accept. The Davisson-Germer experiment in 1927 confirmed de Broglie’s hypothesis by showing that electrons scattering off crystals form a diffraction pattern. The regularly spaced planes of atoms in crystalline regions of a nickel target act as a diffraction grating for electron matter waves.

QUICK QUIZ 27.4 True or False: As the momentum of a particle of mass \(m \) increases, its wavelength increases.

QUICK QUIZ 27.5 A nonrelativistic electron and a nonrelativistic proton are moving and have the same de Broglie wavelength. Which of the following are also the same for the two particles? (a) speed (b) kinetic energy (c) momentum (d) frequency

EXAMPLE 27.4 The Electron Versus the Baseball

Goal Apply the de Broglie hypothesis to a quantum and a classical object.

Problem (a) Compare the de Broglie wavelength for an electron \((m_e = 9.11 \times 10^{-31} \text{ kg})\) moving at a speed equal to \(1.00 \times 10^7 \text{ m/s} \) with that of a baseball of mass 0.145 kg pitched at 45.0 m/s. (b) Compare these wavelengths with that of an electron traveling at 0.999c.

Strategy This problem is a matter of substitution into Equation 27.14 for the de Broglie wavelength. In part (b) the relativistic momentum must be used.
Application: The Electron Microscope

A practical device that relies on the wave characteristics of electrons is the electron microscope. A transmission electron microscope, used for viewing flat, thin samples, is shown in Figure 27.17. In many respects it is similar to an optical microscope, but the electron microscope has a much greater resolving power because it can accelerate electrons to very high kinetic energies, giving them very short wavelengths. No microscope can resolve details that are significantly smaller than the wavelength of the radiation used to illuminate the object. Typically, the wavelengths of electrons in an electron microscope are smaller than the visible wavelengths by a factor of about 10^5.

The electron beam in an electron microscope is controlled by electrostatic or magnetic deflection, which acts on the electrons to focus the beam to an image. Due to limitations in the electromagnetic lenses used, however, the improvement in resolution over light microscopes is only about a factor of 1000, two orders of magnitude smaller than that implied by the electron wavelength. Rather than examining the image through an eyepiece as in an optical microscope, the viewer looks at an image formed on a fluorescent screen. (The viewing screen must be fluorescent because otherwise the image produced wouldn't be visible.)
De Broglie's revolutionary idea that particles should have a wave nature soon moved out of the realm of skepticism to the point where it was viewed as a necessary concept in understanding the subatomic world. In 1926 Austrian–German physicist Erwin Schrödinger proposed a wave equation that described how matter waves change in space and time. The Schrödinger wave equation represents a key element in the theory of quantum mechanics. It's as important in quantum mechanics as Newton's laws in classical mechanics. Schrödinger's equation has been successfully applied to the hydrogen atom and to many other microscopic systems.

Solving Schrödinger's equation (beyond the level of this course) determines a quantity \(\Psi \) called the wave function. Each particle is represented by a wave function \(\Psi \) that depends both on position and time. Once \(\Psi \) is found, \(\Psi^2 \) gives us information on the probability (per unit volume) of finding the particle in

APPLYING PHYSICS 27.2 X-RAY MICROSCOPES?

Electron microscopes (Fig. 27.17) take advantage of the wave nature of particles. Electrons are accelerated to high speeds, giving them a short de Broglie wavelength. Imagine an electron microscope using electrons with a de Broglie wavelength of 0.2 nm. Why don’t we design a microscope using 0.2-nm photons to do the same thing?

Explanation Because electrons are charged particles, they interact electrically with the sample in the microscope and scatter according to the shape and density of various portions of the sample, providing a means of viewing the sample. Photons of wavelength 0.2 nm are uncharged and in the x-ray region of the spectrum. They tend to simply pass through the thin sample without interacting.
any given region. To understand this, we return to Young’s experiment involving coherent light passing through a double slit.

First, recall from Chapter 21 that the intensity of a light beam is proportional to the square of the electric field strength \mathbf{E} associated with the beam: $I \propto E^2$. According to the wave model of light, there are certain points on the viewing screen where the net electric field is zero as a result of destructive interference of waves from the two slits. Because E is zero at these points, the intensity is also zero and the screen is dark there. Likewise, at points on the screen at which constructive interference occurs, E is large, as is the intensity; hence, these locations are bright.

Now consider the same experiment when light is viewed as having a particle nature. The number of photons reaching a point on the screen per second increases as the intensity (brightness) increases. Consequently, the number of photons that strike a unit area on the screen each second is proportional to the square of the electric field, or $N \propto E^2$. From a probabilistic point of view, a photon has a high probability of striking the screen at a point where the intensity (and E^2) is high and a low probability of striking the screen where the intensity is low.

When describing particles rather than photons, Ψ rather than E plays the role of the amplitude. Using an analogy with the description of light, we make the following interpretation of Ψ for particles: If Ψ is a wave function used to describe a single particle, the value of Ψ^2 at some location at a given time is proportional to the probability per unit volume of finding the particle at that location at that time. Adding all the values of Ψ^2 in a given region gives the probability of finding the particle in that region.

27.8 THE UNCERTAINTY PRINCIPLE

If you were to measure the position and speed of a particle at any instant, you would always be faced with experimental uncertainties in your measurements. According to classical mechanics, no fundamental barrier to an ultimate refinement of the apparatus or experimental procedures exists. In other words, it’s possible, in principle, to make such measurements with arbitrarily small uncertainty. Quantum theory predicts, however, that such a barrier does exist. In 1927 Werner Heisenberg (1901–1976) introduced this notion, which is now known as the uncertainty principle:

\[
\Delta x \Delta p_x \geq \frac{\hbar}{4\pi}
\]

In other words, it is physically impossible to measure simultaneously the exact position and exact linear momentum of a particle. If Δx is very small, then Δp_x is large, and vice versa.

To understand the physical origin of the uncertainty principle, consider the following thought experiment introduced by Heisenberg. Suppose you wish to measure the position and linear momentum of an electron as accurately as possible. You might be able to do so by viewing the electron with a powerful light microscope. For you to see the electron and determine its location, at least one photon of light must bounce off the electron, as shown in Figure 27.18a, and pass through the microscope into your eye, as shown in Figure 27.18b. When it strikes the electron, however, the photon transfers some unknown amount of its momentum to the electron. Thus, in the process of locating the electron very accurately (that is, by making Δx very small), the light that enables you to succeed in your measurement changes the electron’s momentum to some undeterminable extent (making Δp_x very large).
The incoming photon has momentum $\frac{h}{\lambda}$. As a result of the collision, the photon transfers part or all of its momentum along the x-axis to the electron. Therefore, the uncertainty in the electron’s momentum after the collision is as great as the momentum of the incoming photon: $\Delta p_x = \frac{h}{\lambda}$. Further, because the photon also has wave properties, we expect to be able to determine the electron’s position to within one wavelength of the light being used to view it, so $\Delta x = \lambda$. Multiplying these two uncertainties gives

$$\Delta x \Delta p_x = \lambda \left(\frac{h}{\lambda} \right) = h$$

The value \hbar represents the minimum in the product of the uncertainties. Because the uncertainty can always be greater than this minimum, we have

$$\Delta x \Delta p_x \geq \hbar$$

Apart from the numerical factor $\frac{1}{4\pi}$ introduced by Heisenberg’s more precise analysis, this inequality agrees with Equation 27.16.

Another form of the uncertainty relationship sets a limit on the accuracy with which the energy E of a system can be measured in a finite time interval Δt:

$$\Delta E \Delta t \geq \frac{\hbar}{4\pi}$$

[27.17]

It can be inferred from this relationship that the energy of a particle cannot be measured with complete precision in a very short interval of time. Thus, when an electron is viewed as a particle, the uncertainty principle tells us that (a) its position and velocity cannot both be known precisely at the same time and (b) its energy can be uncertain for a period given by $\Delta t = \hbar/(4\pi \Delta E)$.

EXAMPLE 27.5 Locating an Electron

Goal Apply Heisenberg’s position–momentum uncertainty principle.

Problem The speed of an electron is measured to be 5.00×10^3 m/s to an accuracy of 0.003 00%. Find the minimum uncertainty in determining the position of this electron.

Strategy After computing the momentum and its uncertainty, substitute into Heisenberg’s uncertainty principle, Equation 27.16.

Solution

Calculate the momentum of the electron:

$$p_x = m_v = (9.11 \times 10^{-31} \text{ kg})(5.00 \times 10^3 \text{ m/s}) = 4.56 \times 10^{-27} \text{ kg} \cdot \text{m/s}$$

The uncertainty in p_x is 0.003 00% of this value:

$$\Delta p_x = 0.000 \ 030 \ 0p_x = (0.000 \ 030 \ 0)(4.56 \times 10^{-27} \text{ kg} \cdot \text{m/s}) = 1.37 \times 10^{-31} \text{ kg} \cdot \text{m/s}$$
Now calculate the uncertainty in position using this value of Δp_x and Equation 27.17:

$$\Delta x \Delta p_x \geq \frac{\hbar}{4\pi} \rightarrow \Delta x \geq \frac{\hbar}{4\pi \Delta p_x}$$

$$\Delta x \geq \frac{6.626 \times 10^{-34} \text{ J} \cdot \text{s}}{4\pi(1.37 \times 10^{-31} \text{ kg} \cdot \text{m/s})} = 0.384 \times 10^{-5} \text{ m}$$

$$= 0.384 \text{ mm}$$

Remark Notice that this isn’t an exact calculation: the uncertainty in position can take any value as long as it’s greater than or equal to the value given by the uncertainty principle.

QUESTION 27.5
True or False: The uncertainty in the position of a proton in the helium nucleus is, on average, less than the uncertainty of a proton in a uranium atom.

EXERCISE 27.5
Suppose an electron is found somewhere in an atom of diameter $1.25 \times 10^{-10} \text{ m}$. Estimate the uncertainty in the electron’s momentum (in one dimension).

Answer
$\Delta p \geq 4.22 \times 10^{-25} \text{ kg} \cdot \text{m/s}$

27.3 X-Rays

27.4 Diffraction of X-Rays by Crystals

X-rays are produced when high-speed electrons are suddenly decelerated. When electrons have been accelerated through a voltage V, the shortest-wavelength radiation that can be produced is

$$\lambda_{\text{min}} = \frac{h c}{e \Delta V}$$

[27.9]

The regular array of atoms in a crystal can act as a diffraction grating for x-rays and for electrons. The condition for constructive interference of the diffracted rays is given by Bragg’s law:

$$2d \sin \theta = m \lambda \quad m = 1, 2, 3, \ldots$$

[27.10]

Bragg’s law bears a similarity to the equation for the diffraction pattern of a double slit.

27.5 The Compton Effect

X-rays from an incident beam are scattered at various angles by electrons in a target such as carbon. In such a scattering event, a shift in wavelength is observed for the scattered x-rays. This phenomenon is known as the Compton shift. Conservation of momentum and energy applied to a photon–electron collision yields the following expression for the shift in wavelength of the scattered x-rays:

$$\Delta \lambda = \lambda - \lambda_0 = \frac{h}{m_e \epsilon} (1 - \cos \theta)$$

[27.11]

Here, m_e is the mass of the electron, ϵ is the speed of light, and θ is the scattering angle.
27.6 The Dual Nature of Light and Matter
Light exhibits both a particle and a wave nature. De Broglie proposed that all matter has both a particle and a wave nature. The de Broglie wavelength of any particle of mass \(m \) and speed \(v \) is
\[
\lambda = \frac{h}{p} = \frac{h}{mv}
\]
[27.14]
De Broglie also proposed that the frequencies of the waves associated with particles obey the Einstein relationship \(E = hf \).

27.7 The Wave Function
In the theory of quantum mechanics, each particle is described by a quantity \(\Psi \) called the wave function. The probability per unit volume of finding the particle at a particular point at some instant is proportional to \(\Psi^2 \). Quantum mechanics has been highly successful in describing the behavior of atomic and molecular systems.

27.8 The Uncertainty Principle
According to Heisenberg’s uncertainty principle, it is impossible to measure simultaneously the exact position and exact momentum of a particle. If \(\Delta x \) is the uncertainty in the measured position and \(\Delta p \), the uncertainty in the momentum, the product \(\Delta x \Delta p \) is given by
\[
\Delta x \Delta p \geq \frac{h}{4\pi}
\]
[27.16]
Also,
\[
\Delta E \Delta t \geq \frac{h}{4\pi}
\]
[27.17]
where \(\Delta E \) is the uncertainty in the energy of the particle and \(\Delta t \) is the uncertainty in the time it takes to measure the energy.

Multiple-Choice Questions

1. What is the surface temperature of a distant star having a peak wavelength of 475 nm? (a) 6.100 K (b) 5.630 K (c) 5.510 K (d) 6.350 K (e) 6.560 K

2. In a photoelectric experiment, a metal is irradiated with light of energy 3.56 eV. If a stopping potential of 1.10 V is required, what is the work function of the metal? (a) 1.83 eV (b) 2.46 eV (c) 3.20 eV (d) 4.66 eV (e) 0.644 eV

3. An electron is accelerated through a potential difference of 3.00 V before colliding with a metal target. What minimum-wavelength light can such an electron emit? (a) 204 nm (b) 352 nm (c) 414 nm (d) 536 nm (e) 612 nm

4. What is the de Broglie wavelength of an electron accelerated from rest through a potential difference of 50.0 V? (a) 0.100 nm (b) 0.174 nm (c) 0.139 nm (d) 0.834 nm (e) 0.435 nm

5. A photon scatters off an electron at an angle of 1.80 × 10^{-2} \degree with respect to its initial motion. What is the change in the photon’s wavelength? (a) 0.002 43 nm (b) 0.243 nm (c) 0.001 72 nm (d) 0.004 85 nm (e) 0.121 nm

6. Which of the following statements are true according to the uncertainty principle? (a) It is impossible to simultaneously determine both the position and the momentum of a particle with arbitrary accuracy. (b) It is impossible to simultaneously determine both the energy and the momentum of a particle with arbitrary accuracy. (c) It is impossible to determine a particle’s energy with arbitrary accuracy in a finite amount of time. (d) It is impossible to measure the position of a particle with arbitrary accuracy in a finite amount of time. (e) It is impossible to simultaneously measure both the energy and position of a particle with arbitrary accuracy.

7. The first order x-ray scattering angle of crystal A is greater than the corresponding scattering angle of crystal B for x-rays of a given energy. What can be said of the separation distance \(d_A \) of crystalline planes in crystal A as compared with the separation distance \(d_B \) in B? (a) \(d_A = d_B \) (b) \(d_A > d_B \) (c) \(d_A < d_B \) (d) The answer depends on the energy of the x-rays. (e) The answer depends on the intensity of the x-rays.

8. A proton, electron, and a helium nucleus all move at speed \(v \). Rank their de Broglie wavelengths from longest to shortest. (a) proton, helium nucleus, electron (b) helium nucleus, proton, electron (c) electron, helium nucleus (d) helium nucleus, electron, proton (e) electron, proton, helium nucleus

9. Which one of the following phenomena most clearly demonstrates the particle nature of light? (a) diffraction (b) the photoelectric effect (c) polarization (d) interference (e) refraction

10. Which one of the following phenomena most clearly demonstrates the wave nature of electrons? (a) the photoelectric effect (b) Wien’s law (c) blackbody radiation (d) the Compton effect (e) diffraction of electrons by crystals
CONCEPTUAL QUESTIONS

1. If you observe objects inside a very hot kiln, why is it difficult to discern the shapes of the objects?
2. Why is an electron microscope more suitable than an optical microscope for “seeing” objects of atomic size?
3. Are blackbodies black?
4. Why is it impossible to simultaneously measure the position and velocity of a particle with infinite accuracy?
5. All objects radiate energy. Why, then, are we not able to see all the objects in a dark room?
6. Is light a wave or a particle? Support your answer by citing specific experimental evidence.
7. In the photoelectric effect, explain why the stopping potential depends on the frequency of the light but not on the intensity.
8. Which has more energy, a photon of ultraviolet radiation or a photon of yellow light?
9. Why does the existence of a cutoff frequency in the photoelectric effect favor a particle theory of light rather than a wave theory?
10. What effect, if any, would you expect the temperature of a material to have on the ease with which electrons can be ejected from it via the photoelectric effect?
11. The cutoff frequency of a material is \(f_c \). Are electrons emitted from the material when (a) light of frequency greater than \(f_c \) is incident on the material? (b) Less than \(f_c \)?
12. The brightest star in the constellation Lyra is the bluish-white star Vega, whereas the brightest star in Bootes is the reddish star Arcturus. How do you account for the difference in color of the two stars?
13. If the photoelectric effect is observed in one metal, can you conclude that the effect will also be observed in another metal under the same conditions? Explain.
14. The atoms in a crystal lie in planes separated by a few tenths of a nanometer. Can a crystal be used to produce a diffraction pattern with visible light as it does for x-rays? Explain your answer with reference to Bragg’s law.

PROBLEMS

The Problems for this chapter may be assigned online at WebAssign.

1, 2, 3 = straightforward, intermediate, challenging

CP = denotes guided problem

EC = denotes enhanced content problem

BI = biomedical application

FS = denotes full solution available in Student Solutions Manual/Study Guide

SECTION 27.1 BLACKBODY RADIATION AND PLANCK’S HYPOTHESIS

1. (a) What is the surface temperature of Betelgeuse, a red giant star in the constellation Orion, which radiates with a peak wavelength of about 970 nm? (b) Rigel, a bluish-white star in Orion, radiates with a peak wavelength of 45 nm. Find the temperature of Rigel’s surface.

2. (a) Lightning produces a maximum air temperature on the order of 10^4 K, whereas (b) a nuclear explosion produces a temperature on the order of 10^7 K. Use Wien’s displacement law to find the order of magnitude of the wavelength of the thermally produced photons radiated with greatest intensity by each of these sources. Name the part of the electromagnetic spectrum where you would expect each to radiate most strongly.

3. The human eye is most sensitive to 560-nm (green) light. What is the temperature of a blackbody that would radiate most intensely at this wavelength?

4. A tungsten filament of a glowing lightbulb has a temperature of approximately 2000 K. (a) Assuming the operating filament is a blackbody, determine the peak wavelength of its emitted radiation at this temperature. (b) Why does your answer to part (a) suggest that more energy from a lightbulb goes into heat than into light?

5. Calculate the energy in electron volts of a photon having a wavelength (a) in the microwave range, 5.00 cm, (b) in the visible light range, 500 nm, and (c) in the x-ray range, 5.00 nm.

6. Suppose a star with radius 8.50 \times 10^8 m has a peak wavelength of 685 nm in the spectrum of its emitted radiation. (a) Find the energy of a photon with this wavelength. (b) What is surface temperature of the star? (c) At what rate is energy emitted from the star in the form of radiation? Assume the star is a blackbody (\(e = 1 \)). (d) Using the answer to part (a), estimate the rate at which photons leave the surface of the star.

7. An FM radio transmitter has a power output of 150 kW and operates at a frequency of 99.7 MHz. How many photons per second does the transmitter emit?

8. The threshold of dark-adapted (scotopic) vision is 4.0 \times 10^{-11} W/m^2 at a central wavelength of 500 nm. If light with this intensity and wavelength enters the eye when the pupil is open to its maximum diameter of 8.5 mm, how many photons per second enter the eye?

SECTION 27.2 THE PHOTOELECTRIC EFFECT AND THE PARTICLE THEORY OF LIGHT

9. When light of wavelength 350 nm falls on a potassium surface, electrons having a maximum kinetic energy of 1.31 eV are emitted. Find (a) the work function of potassium, (b) the cutoff wavelength, and (c) the frequency corresponding to the cutoff wavelength.

10. Electrons are ejected from a certain metallic surface with speeds ranging up to 4.6 \times 10^5 m/s when light with a
wavelength of $\lambda = 625 \text{ nm}$ is used. (a) What is the work function of the metal? (b) What is the cutoff frequency for this metal?

11. **GP** The work function for platinum is 6.35 eV. (a) Convert the value of the work function from electron volts to joules. (b) Find the cutoff frequency for platinum. (c) What maximum wavelength of light incident on platinum releases photoelectrons from the platinum’s surface? (d) If light of energy 8.50 eV is incident on zinc, what is the maximum kinetic energy of the ejected photoelectrons? Give the answer in electron volts. (e) Find the minimum accelerating voltage required to arrest the current of photoelectrons. (f) What stopping potential would be required to arrest the current of photoelectrons?

12. **GP** Lithium, beryllium, and mercury have work functions of 2.30 eV, 3.90 eV, and 4.50 eV, respectively. Light with a wavelength of $4.00 \times 10^2 \text{ nm}$ is incident on each of these metals. (a) Which of these metals emit photoelectrons in response to the light? Why? (b) Find the maximum kinetic energy for the photoelectrons in each case.

13. When light of wavelength 254 nm falls on cesium, the required stopping potential is 3.00 V. If light of wavelength 436 nm is used, the stopping potential is 0.900 V. Use this information to plot a graph like that shown in Figure 27.6, and from the graph determine the cutoff frequency for cesium and its work function.

14. Ultraviolet light is incident normally on the surface of a certain substance. The binding energy of the electrons in this substance is 3.44 eV. The incident light has an intensity of 0.055 W/m². The electrons are photoelectrically emitted with a maximum speed of $4.2 \times 10^4 \text{ m/s}$. How many electrons are emitted from a square centimeter of the surface each second? Assume the absorption of every photon ejects an electron.

SECTION 27.3 X-RAYS

15. The extremes of the x-ray portion of the electromagnetic spectrum range from approximately $1.0 \times 10^{-2} \text{ m}$ to $1.0 \times 10^{-11} \text{ m}$. Find the minimum accelerating voltages required to produce wavelengths at these two extremes.

16. **GP** Calculate the minimum-wavelength x-ray that can be produced when a target is struck by an electron that has been accelerated through a potential difference of (a) 15.0 kV and (b) 1.00 $\times 10^5$ kV. (c) What happens to the minimum wavelength as the potential difference increases?

17. What minimum accelerating voltage is required to produce an x-ray with a wavelength of 70.0 pm?

SECTION 27.4 DIFFRACTION OF X-RAYS BY CRYSTALS

18. When x-rays of wavelength 0.129 nm are incident on the surface of a crystal having a structure similar to that of NaCl, a first-order maximum is observed at 8.15°. Calculate the interplanar spacing of the crystal based on this information.

19. Potassium iodide has an interplanar spacing of $d = 0.296 \text{ nm}$. A monochromatic x-ray beam shows a first-order diffraction maximum when the grazing angle is 7.6°. Calculate the x-ray wavelength.

20. **GP** The first-order diffraction maximum is observed at 12.6° for a crystal having an interplanar spacing of 0.240 nm. How many other orders can be observed in the diffraction pattern, and at what angles do they appear? Why is there an upper limit to the number of observed orders?

21. X-rays of wavelength 0.140 nm are reflected from a certain crystal, and the first-order maximum occurs at an angle of 34.4°. What value does this give for the interplanar spacing of the crystal?

SECTION 27.5 THE COMPTON EFFECT

22. X-rays are scattered from a target at an angle of 55.0° with the direction of the incident beam. Find the wavelength shift of the scattered x-rays.

23. A 0.001 6-nm photon scatters from a free electron. For what (photon) scattering angle will the recoiling electron and scattered photon have the same kinetic energy?

24. A beam of 0.68-nm photons undergoes Compton scattering from free electrons. What are the energy and momentum of the photons that emerge at a 45° angle with respect to the incident beam?

25. A 0.110-nm photon collides with a stationary electron. After the collision, the electron moves forward and the photon recoils backwards. Find the momentum and kinetic energy of the electron.

26. X-rays with an energy of 300 keV undergo Compton scattering from a target. If the scattered rays are deflected at 37.0° relative to the direction of the incident rays, find (a) the Compton shift at this angle, (b) the energy of the scattered x-ray, and (c) the kinetic energy of the recoiling electron.

SECTION 27.6 THE DUAL NATURE OF LIGHT AND MATTER

27. (a) If the wavelength of an electron is $5.00 \times 10^{-7} \text{ m}$, how fast is it moving? (b) If the electron has a speed equal to $1.00 \times 10^6 \text{ m/s}$, what is its wavelength?

28. Calculate the de Broglie wavelength of a proton moving at (a) $2.00 \times 10^4 \text{ m/s}$ and (b) $2.00 \times 10^7 \text{ m/s}$.

29. De Broglie postulated that the relationship $\lambda = h/p$ is valid for relativistic particles. What is the de Broglie wavelength for a (relativistic) electron having a kinetic energy of 3.00 MeV?

30. (a) Calculate the momentum of a photon having a wavelength of $4.00 \times 10^3 \text{ nm}$. (b) Find the speed of an electron having the same momentum as the photon in part (a).

31. The resolving power of a microscope is proportional to the wavelength used. A resolution of $1.0 \times 10^{-11} \text{ m}$ (0.010 nm) would be required in order to “see” an atom. (a) If electrons were used (electron microscope), what minimum kinetic energy would be required of the electrons? (b) If photons were used, what minimum photon energy would be needed to obtain $1.0 \times 10^{-11} \text{ m}$ resolution?
32. A particle of mass \(m\) and charge \(q\) is accelerated from rest through a potential difference \(\Delta V\). (a) Use conservation of energy to find a symbolic expression for the momentum of the particle in terms of \(m\), \(q\), and \(\Delta V\). Assume the particle’s speed isn’t relativistic. (b) Write a symbolic expression for the de Broglie wavelength using the result of part (a). (c) If an electron and proton go through the same potential difference but in opposite directions, which particle will have the shorter wavelength?

SECTION 27.7 THE WAVE FUNCTION

SECTION 27.8 THE UNCERTAINTY PRINCIPLE

33. In the ground state of hydrogen, the uncertainty in the position of the electron is roughly 0.10 nm. If the uncertainty in its speed, about how fast is it moving?

34. A 0.50-kg block rests on the icy surface of a frozen pond, which you can assume to be frictionless. If the location of the block is measured to a precision of 0.50 cm, what is the minimum uncertainty in the block’s speed, assuming the mass is known exactly?

35. Suppose optical radiation (\(\lambda = 5.00 \times 10^{-7}\) m) is used to determine the position of an electron to within the wavelength of the light. What will be the resulting uncertainty in the electron’s velocity?

36. Suppose Fuzzy, a quantum mechanical duck, lives in a world in which \(h = 2\pi\) J s. Fuzzy has a mass of 2.00 kg and is initially known to be within a pond 1.00 m wide. (a) What is the minimum uncertainty in the duck’s speed? (b) Assuming this uncertainty in speed to prevail for 5.00 s, determine the uncertainty in Fuzzy’s position after this time.

37. The average lifetime of a muon is about 2 \(\mu s\). Estimate the minimum uncertainty in the energy of a muon.

38. (a) Show that the kinetic energy of a nonrelativistic particle can be written in terms of its momentum as \(KE = p^2 / 2m\). (b) Use the results of part (a) to find the minimum kinetic energy of a proton confined within a nucleus having a diameter of \(1.0 \times 10^{-15}\) m.

ADDITIONAL PROBLEMS

39. A microwave photon in the x-band region has a wavelength of 3.00 cm. Find (a) the momentum, (b) the frequency, and (c) the energy of the photon in electron volts.

40. Find the speed of an electron having a de Broglie wavelength equal to its Compton wavelength. Hint: This electron is relativistic.

41. A 2.0-kg object falls from a height of 5.0 m to the ground. If all the gravitational potential energy of this mass could be converted to visible light of wavelength 5.0 \(\times 10^{-7}\) m, how many photons would be produced?

42. An x-ray tube is operated at 50 000 V. (a) Find the minimum wavelength of the radiation emitted by this tube. (b) If the radiation is directed at a crystal, the first-order maximum in the reflected radiation occurs when the grazing angle is 2.5°. What is the spacing between reflecting planes in the crystal?

43. Figure P27.43 shows the spectrum of light emitted by a firefly. Determine the temperature of a blackbody that would emit radiation peaked at the same frequency. Based on your result, would you say that firefly radiation is blackbody radiation?

FIGURE P27.43

44. Johnny Jumper’s favorite trick is to step out of his 16th-story window and fall 50.0 m into a pool. A news reporter takes a picture of 75.0-kg Johnny just before he makes a splash, using an exposure time of 5.00 ms. Find (a) Johnny’s de Broglie wavelength at this moment, (b) the uncertainty of his kinetic energy measurement during such a period of time, and (c) the percent error caused by such an uncertainty.

45. Photons of wavelength 450 nm are incident on a metal. The most energetic electrons ejected from the metal are bent into a circular arc of radius 20.0 cm by a magnetic field with a magnitude of 2.00 \(\times 10^{-3}\) T. What is the work function of the metal?

46. A 200-MeV photon is scattered at 40.0° by a free proton that is initially at rest. Find the energy (in MeV) of the scattered photon.

47. A light source of wavelength \(\lambda\) illuminates a metal and ejects photoelectrons with a maximum kinetic energy of 1.00 eV. A second light source of wavelength \(\lambda/2\) ejects photoelectrons with a maximum kinetic energy of 4.00 eV. What is the work function of the metal?

48. Red light of wavelength 670 nm produces photoelectrons from a certain photoemissive material. Green light of wavelength 520 nm produces photoelectrons from the same material with 1.50 times the maximum kinetic energy. What is the material’s work function?

49. How fast must an electron be moving if all its kinetic energy is lost to a single x-ray photon (a) at the high end of the x-ray electromagnetic spectrum with a wavelength of 1.00 \(\times 10^{-15}\) m and (b) at the low end of the x-ray electromagnetic spectrum with a wavelength of 1.00 \(\times 10^{-15}\) m?

50. Show that if an electron were confined inside an atomic nucleus of diameter 2.0 \(\times 10^{-15}\) m, it would have to be moving relativistically, whereas a proton confined to the same nucleus can be moving at less than one-tenth the speed of light.
Burning gunpowder transfers energy to the atoms of color-producing chemicals, exciting their electrons to higher energy states. In returning to the ground state, the electrons emit light of specific colors, resulting in spectacular fireworks displays. Strontium produces red, and sodium produces yellow/orange.

28.1 Early Models of the Atom

The model of the atom in the days of Newton was a tiny, hard, indestructible sphere. Although this model was a good basis for the kinetic theory of gases, new models had to be devised when later experiments revealed the electronic nature of atoms. J. J. Thomson (1856–1940) suggested a model of the atom as a volume of positive charge with electrons embedded throughout the volume, much like the seeds in a watermelon (Fig. 28.1).

In 1911 Ernest Rutherford (1871–1937) and his students Hans Geiger and Ernest Marsden performed a critical experiment showing that Thomson’s model couldn’t be correct. In this experiment a beam of positively charged alpha particles was projected against a thin metal foil, as in Figure 28.2a (page 892). Most of the alpha particles passed through the foil as if it were empty space, but a few particles were scattered through large angles, some even traveling backwards.

Such large deflections weren’t expected. In Thomson’s model a positively charged alpha particle would never come close enough to a large positive charge to cause any large-angle deflections. Rutherford explained these results by assuming the positive charge in an atom was concentrated in a region called the nucleus that was small relative to the size of the atom. Any electrons belonging to the atom...
were visualized as orbiting the nucleus, much as planets orbit the Sun, as shown in Figure 28.2b. The alpha particles used in Rutherford’s experiments were later identified as the nuclei of helium atoms.

There were two basic difficulties with Rutherford’s planetary model. First, an atom emits certain discrete characteristic frequencies of electromagnetic radiation and no others; the Rutherford model was unable to explain this phenomenon. Second, the electrons in Rutherford’s model undergo a centripetal acceleration. According to Maxwell’s theory of electromagnetism, centripetally accelerated charges revolving with frequency f should radiate electromagnetic waves of the same frequency. As the electron radiates energy, the radius of its orbit steadily decreases and its frequency of revolution increases. This process leads to an ever-increasing frequency of emitted radiation and a rapid collapse of the atom as the electron spirals into the nucleus.

Rutherford’s model of the atom gave way to that of Niels Bohr, which explained the characteristic radiation emitted from atoms. Bohr’s theory, in turn, was supplanted by quantum mechanics. Both the latter theories are based on studies of atomic spectra: the special pattern in the wavelengths of emitted light that is unique for every different element.

28.2 ATOMIC SPECTRA

Suppose an evacuated glass tube is filled with hydrogen (or some other gas) at low pressure. If a voltage applied between metal electrodes in the tube is great enough to produce an electric current in the gas, the tube emits light having a color that depends on the gas inside. (That’s how a neon sign works.) When the emitted light is analyzed with a spectrometer, discrete bright lines are observed, each having a different wavelength, or color. Such a series of spectral lines is called an emission spectrum. The wavelengths contained in such a spectrum are characteristic of the element emitting the light (Fig. 28.3). Because no two elements emit the same line spectrum, this phenomenon represents a reliable technique for identifying elements in a gaseous substance.

The emission spectrum of hydrogen shown in Figure 28.4 includes four prominent lines that occur at wavelengths of 656.3 nm, 486.1 nm, 434.1 nm, and 410.2 nm. In 1885 Johann Balmer (1825–1898) found that the wavelengths of these and less prominent lines can be described by the simple empirical equation

$$\frac{1}{\lambda} = R_H \left(\frac{1}{n_2^2} - \frac{1}{n_1^2} \right)$$

where n may have integral values of 3, 4, 5, . . . , and R_H is a constant, called the Rydberg constant. If the wavelength is in meters, then R_H has the value

$$R_H = 1.097373 \times 10^7 \text{ m}^{-1}$$
The first line in the Balmer series, at 656.3 nm, corresponds to $n = 3$ in Equation 28.1, the line at 486.1 nm corresponds to $n = 4$, and so on. In addition to the Balmer series of spectral lines, the Lyman series was subsequently discovered in the far ultraviolet, with the radiated wavelengths described by a similar equation, with 2^2 in Equation 28.1 replaced by 1^2 and the integer n greater than 1. The Paschen series corresponded to longer wavelengths than the Balmer series, with the 2^2 in Equation 28.1 replaced by 3^2 and $n > 3$. These models, together with many other observations, can be combined to yield the Rydberg equation,

$$\frac{1}{\lambda} = R_H \left(\frac{1}{m^2} - \frac{1}{n^2} \right)$$

where m and n are positive integers and $n > m$.

In addition to emitting light at specific wavelengths, an element can absorb light at specific wavelengths. The spectral lines corresponding to this process form what is known as an absorption spectrum. An absorption spectrum can be obtained by passing a continuous radiation spectrum (one containing all wavelengths) through a vapor of the element being analyzed. The absorption spectrum consists of a series of dark lines superimposed on the otherwise bright, continuous spectrum. Each line in the absorption spectrum of a given element coincides with a line in the emission spectrum of the element. If hydrogen is the absorbing vapor, for example, dark lines will appear at the visible wavelengths 656.3 nm, 486.1 nm, 434.1 nm, and 410.2 nm, as shown in Figures 28.3b and 28.4.

The absorption spectrum of an element has many practical applications. For example, the continuous spectrum of radiation emitted by the Sun must pass through the cooler gases of the solar atmosphere before reaching Earth. The various absorption lines observed in the solar spectrum have been used to identify elements in the solar atmosphere, including helium, which was previously unknown.

APPLICATION

Discovery of Helium

On observing a yellow candle flame, your laboratory partner claims that the light from the flame originates from excited sodium atoms in the flame. You disagree, stating that because the candle flame is hot, the radiation must be thermal in origin. Before the disagreement becomes more intense, how could you determine who is correct?

Explanation A simple determination could be made by observing the light from the candle flame through...
Chapter 28 Atomic Physics

28.3 THE BOHR MODEL

At the beginning of the 20th century, it wasn’t understood why atoms of a given element emitted and absorbed only certain wavelengths. In 1913 Bohr provided an explanation of the spectra of hydrogen that includes some features of the currently accepted theory. His model of the hydrogen atom included the following basic assumptions:

1. The electron moves in circular orbits about the proton under the influence of the Coulomb force of attraction, as in Figure 28.5. The Coulomb force produces the electron’s centripetal acceleration.

2. Only certain electron orbits are stable and allowed. In these orbits no energy in the form of electromagnetic radiation is emitted, so the total energy of the atom remains constant.

3. Radiation is emitted by the hydrogen atom when the electron “jumps” from a more energetic initial state to a less energetic state. The “jump” can’t be visualized or treated classically. The frequency \(f \) of the radiation emitted in the jump is related to the change in the atom’s energy, given by

\[
E_i - E_f = hf
\]

where \(E_i \) is the energy of the initial state, \(E_f \) is the energy of the final state, \(h \) is Planck’s constant, and \(E_i > E_f \). The frequency of the radiation is independent of the frequency of the electron’s orbital motion.

4. The circumference of an electron’s orbit must contain an integral number of de Broglie wavelengths,

\[2\pi r = n\lambda \quad n = 1, 2, 3, \ldots \]

(See Fig. 28.6.) Because the de Broglie wavelength of an electron is \(\lambda = h/m_e v \), we can write the preceding equation as

\[m_e v r = n\hbar \quad n = 1, 2, 3, \ldots \]

where \(\hbar = h/2\pi \).

With these four assumptions, we can calculate the allowed energies and emission wavelengths of the hydrogen atom using the model pictured in Figure 28.5, in which the electron travels in a circular orbit of radius \(r \) with an orbital speed \(v \). The electrical potential energy of the atom is

\[PE = k_e q_1 q_2/r = k_e (-\phi)(e)/r = -k_e e^2/r \]
where \(k \) is the Coulomb constant. Assuming the nucleus is at rest, the total energy \(E \) of the atom is the sum of the kinetic and potential energy:

\[
E = KE + PE = \frac{1}{2} m_r \dot{v}^2 - k_e \frac{e^2}{r}
\]

[28.6]

By Newton’s second law, the electric force of attraction on the electron, \(k_e \frac{e^2}{r^2} \), must equal \(m_r \frac{\dot{v}^2}{r} \), where \(a_r = \frac{\dot{v}^2}{r} \) is the centripetal acceleration of the electron, so

\[
\frac{1}{2} m_r \dot{v}^2 = k_e \frac{e^2}{r}
\]

[28.7]

Multiply both sides of this equation by \(\dot{v}^2 \) to get an expression for the kinetic energy:

\[
\frac{1}{2} m_r \dot{v}^2 = \frac{k_e e^2}{2r}
\]

[28.8]

Combining this result with Equation 28.6 gives an expression for the energy of the atom,

\[
E = - \frac{k_e e^2}{2r}
\]

[28.9]

where the negative value of the energy indicates that the electron is bound to the proton.

An expression for \(r \) can be obtained by solving Equations 28.5 and 28.7 for \(v^2 \) and equating the results:

\[
v^2 = \frac{n^2 \hbar^2}{m_r e^2} = k_e \frac{e^2}{m_r}
\]

\[
r_n = \frac{n^2 \hbar^2}{m_r k_e e^2} \quad n = 1, 2, 3, \ldots
\]

[28.10]

This equation is based on the assumption that the electron can exist only in certain allowed orbits determined by the integer \(n \).

The orbit with the smallest radius, called the **Bohr radius**, \(a_0 \), corresponds to \(n = 1 \) and has the value

\[
a_0 = \frac{k_e e^2}{m_r \hbar^2} = 0.0529 \text{ nm}
\]

[28.11]

A general expression for the radius of any orbit in the hydrogen atom is obtained by substituting Equation 28.11 into Equation 28.10:

\[
r_n = n^2 a_0 = n^2 (0.0529 \text{ nm})
\]

[28.12]

The first three Bohr orbits for hydrogen are shown in Active Figure 28.7.

Equation 28.10 can then be substituted into Equation 28.9 to give the following expression for the energies of the quantum states:

\[
E_n = - \frac{m_r k_e^2 e^4}{2 \hbar^2} \left(\frac{1}{n^2} \right) \quad n = 1, 2, 3, \ldots
\]

[28.13]

If we substitute numerical values into Equation 28.13, we obtain

\[
E_n = - \frac{13.6}{n^2} \text{ eV}
\]

[28.14]

The lowest-energy state, or **ground state**, corresponds to \(n = 1 \) and has an energy \(E_1 = -\frac{m_r k_e^2 e^4}{2 \hbar^2} \). The next state, corresponding to \(n = 2 \), has an energy \(E_2 = E_1/4 \), and so on. An energy level diagram showing the
energies of these stationary states and the corresponding quantum numbers is given in Active Figure 28.8. The uppermost level shown, corresponding to \(E = 0 \) and \(n \to \infty \), represents the state for which the electron is completely removed from the atom. In this state the electron’s KE and PE are both zero, which means that the electron is at rest infinitely far away from the proton. The minimum energy required to ionize the atom—that is, to completely remove the electron—is called the ionization energy. The ionization energy for hydrogen is 13.6 eV.

Equations 28.4 and 28.13 and the third Bohr postulate show that if the electron jumps from one orbit with quantum number \(n_i \) to a second orbit with quantum number \(n_f \), it emits a photon of frequency \(f \) given by

\[
f = \frac{E_i - E_f}{\hbar} = \frac{m_e k_e^2 e^4}{4\pi \hbar^3} \left(\frac{1}{n_f^2} - \frac{1}{n_i^2} \right)
\]

where \(n_f < n_i \).

To convert this equation into one analogous to the Rydberg equation, substitute \(f = c/\lambda \) and divide both sides by \(c \), obtaining

\[
\frac{1}{\lambda} = R_H \left(\frac{1}{n_f^2} - \frac{1}{n_i^2} \right)
\]

where

\[
R_H = \frac{m_e k_e^2 e^4}{4\pi^2 c \hbar^3}
\]

Substituting the known values of \(m_e, k_e, e, c, \) and \(\hbar \) verifies that this theoretical value for the Rydberg constant is in excellent agreement with the experimentally derived value in Equations 12.1 through 12.3. When Bohr demonstrated this agreement, it was recognized as a major accomplishment of his theory.

We can use Equation 28.16 to evaluate the wavelengths for the various series in the hydrogen spectrum. For example, in the Balmer series, \(n_f = 2 \) and \(n_i = 3, 4, 5, \ldots \) (Eq. 28.1). The energy level diagram for hydrogen shown in Active Figure 28.8 indicates the origin of the spectral lines. The transitions between levels are represented by vertical arrows. Note that whenever a transition occurs between a state designated by \(n_i \) to one designated by \(n_f \) (where \(n_i > n_f \)), a photon with a frequency \((E_i - E_f)/\hbar \) is emitted. This process can be interpreted as follows: the lines in the visible part of the hydrogen spectrum arise when the electron jumps from the third, fourth, or even higher orbit to the second orbit. The Bohr theory successfully predicts the wavelengths of all the observed spectral lines of hydrogen.

TIP 28.1 Energy Depends on \(n \) Only for Hydrogen

Because all other quantities in Equation 28.13 are constant, the energy levels of a hydrogen atom depend only on the quantum number \(n \). For more complicated atoms, the energy levels depend on other quantum numbers as well.
EXAMPLE 28.1 The Balmer Series for Hydrogen

Goal Calculate the wavelength, frequency, and energy of a photon emitted during an electron transition in an atom.

Problem The Balmer series for the hydrogen atom corresponds to electronic transitions that terminate in the state with quantum number \(n = 2 \), as shown in Figure 28.9. (a) Find the longest-wavelength photon emitted in the Balmer series and determine its frequency and energy. (b) Find the shortest-wavelength photon emitted in the same series.

Strategy This problem is a matter of substituting values into Equation 28.16. The frequency can then be obtained from \(c = f\lambda \) and the energy from \(E = hf \). The longest-wavelength photon corresponds to the one that is emitted when the electron jumps from the \(n_i = 3 \) state to the \(n_f = 2 \) state. The shortest-wavelength photon corresponds to the one that is emitted when the electron jumps from \(n_i = \infty \) to the \(n_f = 2 \) state.

Solution

(a) Find the longest-wavelength photon emitted in the Balmer series and determine its frequency and energy.

Substitute into Equation 28.16, with \(n_i = 3 \) and \(n_f = 2 \):

\[
\frac{1}{\lambda} = R_H \left(\frac{1}{n_f^2} - \frac{1}{n_i^2} \right) = R_H \left(\frac{1}{2^2} - \frac{1}{3^2} \right) = \frac{5R_H}{36}
\]

Take the reciprocal and substitute, finding the wavelength:

\[
\lambda = \frac{36}{5R_H} = \frac{36}{5(1.097 \times 10^7 \text{ m}^{-1})} = 6.563 \times 10^{-7} \text{ m} = 656.3 \text{ nm}
\]

Now use \(c = f\lambda \) to obtain the frequency:

\[
f = c = \frac{2.998 \times 10^8 \text{ m/s}}{6.563 \times 10^{-7} \text{ m}} = 4.568 \times 10^{14} \text{ Hz}
\]

Calculate the photon’s energy by substituting into Equation 27.5:

\[
E = hf = (6.626 \times 10^{-34} \text{ J} \cdot \text{s})(4.568 \times 10^{14} \text{ Hz}) = 3.027 \times 10^{-19} \text{ J} = 1.892 \text{ eV}
\]

(b) Find the shortest-wavelength photon emitted in the Balmer series.

Substitute into Equation 28.16, with \(1/n_i \rightarrow 0 \) as \(n_i \rightarrow \infty \) and \(n_f = 2 \):

\[
\frac{1}{\lambda} = R_H \left(\frac{1}{n_f^2} - \frac{1}{n_i^2} \right) = R_H \left(\frac{1}{2^2} - 0 \right) = \frac{R_H}{4}
\]

Take the reciprocal and substitute, finding the wavelength:

\[
\lambda = \frac{4}{R_H} = \frac{4}{(1.097 \times 10^7 \text{ m}^{-1})} = 3.646 \times 10^{-7} \text{ m} = 364.6 \text{ nm}
\]

Remarks The first wavelength is in the red region of the visible spectrum. We could also obtain the energy of the photon by using Equation 28.4 in the form \(hf = E_f - E_i \), where \(E_f \) and \(E_i \) are the energy levels of the hydrogen atom, calculated from Equation 28.14. Note that this photon is the lowest-energy photon in the Balmer series because it involves the smallest energy change. The second photon, the most energetic, is in the ultraviolet region.

QUESTION 28.1

What is the upper-limit energy of a photon that can be emitted from hydrogen due to the transition of an electron between energy levels? Explain.
EXERCISE 28.1
(a) Calculate the energy of the shortest-wavelength photon emitted in the Balmer series for hydrogen. (b) Calculate the wavelength of the photon emitted when an electron transits from \(n = 4 \) to \(n = 2 \).

Answers (a) 3.40 eV (b) 486 nm

Bohr’s Correspondence Principle

In our study of relativity in Chapter 26, we found that Newtonian mechanics can’t be used to describe phenomena that occur at speeds approaching the speed of light. Newtonian mechanics is a special case of relativistic mechanics and applies only when \(v \) is much smaller than \(c \). Similarly, quantum mechanics is in agreement with classical physics when the energy differences between quantized levels are very small. This principle, first set forth by Bohr, is called the correspondence principle.

Hydrogen-like Atoms

The analysis used in the Bohr theory is also successful when applied to hydrogen-like atoms. An atom is said to be hydrogen-like when it contains only one electron. Examples are singly ionized helium, doubly ionized lithium, and triply ionized beryllium. The results of the Bohr theory for hydrogen can be extended to hydrogen-like atoms by substituting \(Z^2 e^2 \) for \(e^2 \) in the hydrogen equations, where \(Z \) is the atomic number of the element. For example, Equations 28.13 and 28.16 through 28.17 become

\[
E_n = -\frac{m e k^2 Z^2 e^4}{2h^2} \left(\frac{1}{n^2} \right) \quad n = 1, 2, 3, \ldots
\]

[28.18]

and

\[
\frac{1}{\lambda} = \frac{m e k^2 Z^2 e^4}{4\pi \epsilon_0 c h^3} \left(\frac{1}{n^2} - \frac{1}{n_i^2} \right)
\]

[28.19]

Although many attempts were made to extend the Bohr theory to more complex, multi-electron atoms, the results were unsuccessful. Even today, only approximate methods are available for treating multi-electron atoms.

QUICK QUIZ 28.1 Consider a hydrogen atom and a singly ionized helium atom. Which atom has the lower ground state energy? (a) Hydrogen (b) Helium (c) The ground state energy is the same for both.

EXAMPLE 28.2 Singly Ionized Helium

Goal Apply the modified Bohr theory to a hydrogen-like atom.

Problem Singly ionized helium, \(\text{He}^+ \), a hydrogen-like system, has one electron in the \(1s \) orbit when the atom is in its ground state. Find (a) the energy of the system in the ground state in electron volts and (b) the radius of the ground-state orbit.

Strategy Part (a) requires substitution into the modified Bohr model, Equation 28.18. In part (b) modify Equation 28.10 for the radius of the Bohr orbits by replacing \(e^2 \) by \(Z^2 e^2 \), where \(Z \) is the number of protons in the nucleus.

Solution

(a) Find the energy of the system in the ground state.

Write Equation 28.18 for the energies of a hydrogen-like system:

\[
E_n = -\frac{m e k^2 Z^2 e^4}{2h^2} \left(\frac{1}{n^2} \right)
\]
Remarks
Notice that for higher \(Z \), the energy of a hydrogen-like atom is lower, which means that the electron is more tightly bound than in hydrogen. The result is a smaller atom, as seen in part (b).

QUESTION 28.2
When an electron undergoes a transition from a higher to lower state in singly ionized helium, how will the energy of the emitted photon compare with the analogous transition in hydrogen? Explain.

EXERCISE 28.2
Repeat the problem for the first excited state of doubly ionized lithium (\(Z = 3, n = 2 \)).

Answers
(a) \(E_2 = -30.6 \text{ eV} \)
(b) \(r_2 = 0.0705 \text{ nm} \)

Substitute the constants and convert to electron volts:
\[E_n = -\frac{Z^2(13.6 \text{ eV})}{n^2} \]

Substitute \(Z = 2 \) (the atomic number of helium) and \(n = 1 \) to obtain the ground state energy:
\[E_1 = -4(13.6 \text{ eV}) = -54.4 \text{ eV} \]

(b) Find the radius of the ground state.
Generalize Equation 28.10 to a hydrogen-like atom by substituting \(Ze^2 \) for \(e^2 \):
\[r_n = \frac{n^2 \hbar^2}{m_e k_Z e^2} = \frac{n^2}{Z} \left(a_0 \right) = \frac{n^2}{Z} (0.0529 \text{ nm}) \]

For our case, \(n = 1 \) and \(Z = 2 \):
\[r_1 = \frac{0.0265 \text{ nm}}{} \]

Bohr’s theory was extended in an ad hoc manner so as to include further details of atomic spectra. All these modifications were replaced with the theory of quantum mechanics, developed independently by Werner Heisenberg and Erwin Schrödinger.

28.4 QUANTUM MECHANICS AND THE HYDROGEN ATOM

One of the first great achievements of quantum mechanics was the solution of the wave equation for the hydrogen atom. Although the details of the solution are beyond the level of this book, the solution and its implications for atomic structure can be described.

According to quantum mechanics, the energies of the allowed states are in exact agreement with the values obtained by the Bohr theory (Eq. 28.13) when the allowed energies depend only on the principal quantum number \(n \).

In addition to the principal quantum number, two other quantum numbers emerged from the solution of the Schrödinger wave equation: the orbital quantum number, \(\ell \), and the orbital magnetic quantum number, \(m_\ell \).

The effect of the magnetic quantum number \(m_\ell \) can be observed in spectra when magnetic fields are present, which results in a splitting of individual spectral lines into several lines. This splitting is called the Zeeman effect. Figure 28.10 shows a single spectral line being split into three closely spaced lines. This indicates that the energy of an electron is slightly modified when the atom is immersed in a magnetic field.

The allowed ranges of the values of these quantum numbers are as follows:
- The value of \(n \) can range from 1 to \(\infty \) in integer steps.
- The value of \(\ell \) can range from 0 to \(n - 1 \) in integer steps.
- The value of \(m_\ell \) can range from \(-\ell\) to \(\ell \) in integer steps.

From these rules, it can be seen that for a given value of \(n \), there are \(n \) possible values of \(\ell \), whereas for a given value of \(\ell \), there are \(2\ell + 1 \) possible values of \(m_\ell \).

FIGURE 28.10 A single line (A) can split into three separate lines (B) in a magnetic field.
TABLE 28.1

<table>
<thead>
<tr>
<th>Quantum Number</th>
<th>Name</th>
<th>Allowed Values</th>
<th>Number of Allowed States</th>
</tr>
</thead>
<tbody>
<tr>
<td>n</td>
<td>Principal quantum number</td>
<td>1, 2, 3, . . .</td>
<td>Any number</td>
</tr>
<tr>
<td>(\ell)</td>
<td>Orbital quantum number</td>
<td>0, 1, 2, . . . , n - 1</td>
<td>n</td>
</tr>
<tr>
<td>(m_\ell)</td>
<td>Orbital magnetic quantum</td>
<td>-(\ell), -(\ell + 1), . . .</td>
<td>2(\ell + 1)</td>
</tr>
<tr>
<td></td>
<td>number</td>
<td>0, . . . , (\ell - 1), (\ell)</td>
<td></td>
</tr>
</tbody>
</table>

For example, if \(n = 1 \), there is only 1 value of \(\ell \), \(\ell = 0 \). Because \(2\ell + 1 = 2 \cdot 0 + 1 = 1 \), there is only one value of \(m_\ell \), which is \(m_\ell = 0 \). If \(n = 2 \), the value of \(\ell \) may be 0 or 1; if \(\ell = 0 \), then \(m_\ell = 0 \); but if \(\ell = 1 \), then \(m_\ell \) may be 1, 0, or -1. Table 28.1 summarizes the rules for determining the allowed values of \(\ell \) and \(m_\ell \) for a given value of \(n \).

For historical reasons, all states with the same principal quantum number \(n \) are said to form a shell. Shells are identified by the letters K, L, M, . . . , which designate the states for which \(n = 1, 2, 3, \) and so forth. The states with given values of \(n \) and \(\ell \) are said to form a subshell. The letters s, p, d, f, . . . are used to designate the states for which \(\ell = 0, 1, 2, 3, \) These notations are summarized in Table 28.2.

States that violate the rules given in Table 28.1 can’t exist. One state that cannot exist, for example, is the 2d state, which would have \(n = 2 \) and \(\ell = 2 \). This state is not allowed because the highest allowed value of \(\ell \) is \(n - 1 = 1 \) or 1 in this case. So for \(n = 2 \), 2s and 2p are allowed states, but 2d, 2f, . . . are not. For \(n = 3 \), the allowed states are 3s, 3p, and 3d.

In general, for a given value of \(n \), there are \(n^2 \) states with distinct pairs of values of \(\ell \) and \(m_\ell \).

QUICK QUIZ 28.2 When the principal quantum number is \(n = 5 \), how many different values of (a) \(\ell \) and (b) \(m_\ell \) are possible? (c) How many states have distinct pairs of values of \(\ell \) and \(m_\ell \)?

Spin

In high-resolution spectrometers, close examination of one of the prominent lines of sodium vapor shows that it is, in fact, two very closely spaced lines. The wavelengths of these lines occur in the yellow region of the spectrum, at 589.0 nm and 589.6 nm. This kind of splitting is referred to as fine structure. In 1925, when this doublet was first noticed, atomic theory couldn’t explain it, so Samuel Goudsmit and George Uhlenbeck, following a suggestion by Austrian physicist Wolfgang Pauli, proposed the introduction of a fourth quantum number to describe atomic energy levels, \(m_\ell \), called the spin magnetic quantum number. Spin isn’t found in the solutions of Schrödinger’s equations; rather, it naturally arises in the Dirac equation, derived in 1927 by Paul Dirac. This equation is important in relativistic quantum theory.

In describing the spin quantum number, it’s convenient (but technically incorrect) to think of the electron as spinning on its axis as it orbits the nucleus, just as Earth spins on its axis as it orbits the Sun. Unlike the spin of a world, however, there are only two ways in which the electron can spin as it orbits the nucleus, as shown in Figure 28.11. If the direction of spin is as shown in Figure 28.11a, the electron is said to have “spin up.” If the direction of spin is reversed as in Figure 28.11b, the electron is said to have “spin down.” The energy of the electron is slightly different for the two spin directions, and this energy difference accounts for the sodium doublet. The quantum numbers associated with electron spin are

![FIGURE 28.11](image-url) As an electron moves in its orbit about the nucleus, its spin can be either (a) up or (b) down.
For each electron, there are two spin states. A subshell corresponding to a given factor of \(\ell \) can contain no more than \(2(2\ell + 1) \) electrons. This number is used because electrons in a subshell must have unique pairs of the quantum numbers \((n, \ell, m, m_s)\). There are \(2\ell + 1 \) different magnetic quantum numbers \(m_s \) and two different spin quantum numbers \(m_s \), making \(2(2\ell + 1) \) unique pairs \((m_s, m_s)\). For example, the \(p \) subshell \((\ell = 1)\) is filled when it contains \(2(2 \cdot 1 + 1) = 6 \) electrons. This fact can be extended to include all four quantum numbers, as will be important to us later when we discuss the Pauli exclusion principle.

Example 28.3 The \(n = 2 \) Level of Hydrogen

Goal Count and tabulate distinct quantum states and determine their energy based on atomic energy level.

Problem (a) Determine the number of states with a unique set of values for \(\ell, m_s, \) and \(m_s \) in the hydrogen atom for \(n = 2 \). (b) Tabulate the distinct possible quantum states, including spin. (c) Calculate the energies of these states in the absence of a magnetic field, disregarding small differences caused by spin.

Strategy This problem is a matter of counting, following the quantum rules for \(n, \ell, m_s, \) and \(m_s \). “Unique” means that no other quantum state has the same set of numbers. The energies—disregarding spin or Zeeman splitting in magnetic fields—are all the same because all states have the same principal quantum number, \(n = 2 \).

Solution

(a) Determine the number of states with a unique set of values for \(\ell \) and \(m_s \) in the hydrogen atom for \(n = 2 \).

Determine the different possible values of \(\ell \) for \(n = 2 \):

\[0 \leq \ell \leq n - 1, \text{ so for } n = 2, 0 \leq \ell \leq 1 \text{ and } \ell = 0 \text{ or } 1 \]

Find the different possible values of \(m_s \) for \(\ell = 0 \):

\[-\ell \leq m_s \leq \ell, \text{ so } -0 \leq m_s \leq 0 \text{ implies that } m_s = 0 \]

List the distinct pairs of \((\ell, m_s)\) for \(\ell = 0 \):

There is only one: \((\ell, m_s) = (0, 0)\).

Find the different possible values of \(m_s \) for \(\ell = 1 \):

\[-\ell \leq m_s \leq \ell, \text{ so } -1 \leq m_s \leq 1 \text{ implies that } m_s = -1, 0, \text{ or } 1 \]

List the distinct pairs of \((\ell, m_s)\) for \(\ell = 1 \):

There are three: \((\ell, m_s) = (1, -1), (1, 0), \text{ and } (1, 1)\).

Sum the results for \(\ell = 0 \) and \(\ell = 1 \) and multiply by 2 to account for the two possible spins of each state:

Number of states = \(2(1 + 3) \) = 8

(b) Tabulate the different possible sets of quantum numbers.

<table>
<thead>
<tr>
<th>(n)</th>
<th>(\ell)</th>
<th>(m_s)</th>
<th>(m_s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>1</td>
<td>-1</td>
<td>-\frac{1}{2}</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>-1</td>
<td>\frac{1}{2}</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>0</td>
<td>-\frac{1}{2}</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>0</td>
<td>\frac{1}{2}</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>1</td>
<td>-\frac{1}{2}</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>1</td>
<td>\frac{1}{2}</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>0</td>
<td>-\frac{1}{2}</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>0</td>
<td>\frac{1}{2}</td>
</tr>
</tbody>
</table>

TIP 28.2 The Electron Isn’t Actually Spinning

The electron is not physically spinning. Electron spin is a purely quantum effect that gives the electron an angular momentum as if it were physically spinning.
Remarks Although these states normally have the same energy, the application of a magnetic field causes them to take slightly different energies centered around the energy corresponding to $\frac{n}{\hbar^2}$. In addition, the slight difference in energy due to spin state was neglected.

QUESTION 28.3
Which of the four quantum numbers are never negative?

EXERCISE 28.3
(a) Determine the number of states with a unique pair of values for ℓ, m, and m_s in the $n = 3$ level of hydrogen.
(b) Determine the energies of those states, disregarding any splitting effects.

Answers (a) 18 (b) $E_3 = -1.51$ eV

Electron Clouds
The solution of the wave equation, as discussed in Section 27.7, yields a wave function Ψ that depends on the quantum numbers n, ℓ, and m. Recall that if p is a point and V_p a very small volume containing that point, then Ψ^2V_p is approximately the probability of finding the electron inside the volume V_p. Figure 28.12 gives the probability per unit length of finding the electron at various distances from the nucleus in the $1s$ state of hydrogen ($n = 1$, $\ell = 0$, and $m = 0$). Note that the curve peaks at a value of $r = 0.0529$ nm, the Bohr radius for the first $(n = 1)$ electron orbit in hydrogen. This peak means that there is a maximum probability of finding the electron in a small interval of a given, fixed length centered at that distance from the nucleus. As the curve indicates, however, there is also a probability of finding the electron in such a small interval centered at any other distance from the nucleus. In quantum mechanics the electron is not confined to a particular orbital distance from the nucleus, as assumed in the Bohr model. The electron may be found at various distances from the nucleus, but finding it in a small interval centered on the Bohr radius has the greatest probability. Quantum mechanics also predicts that the wave function for the hydrogen atom in the ground state is spherically symmetric; hence, the electron can be found in a spherical region surrounding the nucleus. This is in contrast to the Bohr theory, which confines the position of the electron to points in a plane. The quantum mechanical result is often interpreted by viewing the electron as a cloud surrounding the nucleus. An attempt at picturing this cloud-like behavior is shown in Figure 28.13. The densest regions of the cloud represent those locations where the electron is most likely to be found.

If a similar analysis is carried out for the $n = 2$, $\ell = 0$ state of hydrogen, a peak of the probability curve is found at $4\alpha_0$, whereas for the $n = 3$, $\ell = 0$ state, the curve peaks at $9\alpha_0$. In general, quantum mechanics predicts a most probable electron distance to the nucleus that is in agreement with the location predicted by the Bohr theory.

28.5 THE EXCLUSION PRINCIPLE AND THE PERIODIC TABLE
The state of an electron in a hydrogen atom is specified by four quantum numbers: n, ℓ, m, and m_s. As it turns out, the state of any electron in any other atom can also be specified by this same set of quantum numbers.
How many electrons in an atom can have a particular set of quantum numbers? This important question was answered by Pauli in 1925 in a powerful statement known as the **Pauli exclusion principle**:

No two electrons in an atom can ever have the same set of values for the set of quantum numbers n, ℓ, m, and m_s.

The Pauli exclusion principle explains the electronic structure of complex atoms as a succession of filled levels with different quantum numbers increasing in energy, where the outermost electrons are primarily responsible for the chemical properties of the element. If this principle weren’t valid, every electron would end up in the lowest energy state of the atom and the chemical behavior of the elements would be grossly different. Nature as we know it would not exist, and we would not exist to wonder about it!

As a general rule, the order that electrons fill an atom’s subshell is as follows. Once one subshell is filled, the next electron goes into the vacant subshell that is lowest in energy. If the atom were not in the lowest energy state available to it, it would radiate energy until it reached that state. A subshell is filled when it contains $2(2\ell + 1)$ electrons. This rule is based on the analysis of quantum numbers to be described later. Following the rule, shells and subshells can contain numbers of electrons according to the pattern given in Table 28.3.

The exclusion principle can be illustrated by examining the electronic arrangement in a few of the lighter atoms. **Hydrogen** has only one electron, which, in its ground state, can be described by either of two sets of quantum numbers: $1, 0, 0, \frac{1}{2}$ or $1, 0, 0, -\frac{1}{2}$. The electronic configuration of this atom is often designated as $1s^1$. The notation $1s$ refers to a state for which $n = 1$ and $\ell = 0$, and the superscript indicates that one electron is present in this level.

Neutral **helium** has two electrons. In the ground state, the quantum numbers for these two electrons are $1, 0, 0, \frac{1}{2}$ and $1, 0, 0, -\frac{1}{2}$. No other possible combinations of quantum numbers exist for this level, and we say that the K shell is filled. The helium electronic configuration is designated as $1s^2$.

Neutral **lithium** has three electrons. In the ground state, two of them are in the 1s subshell and the third is in the 2s subshell because the latter subshell is lower in energy than the 2p subshell. Hence, the electronic configuration for lithium is $1s^22s^1$.

A list of electronic ground-state configurations for a number of atoms is provided in Table 28.4 (page 904). In 1871 Dmitry Mendeleyev (1834–1907), a Russian chemist, arranged the elements known at that time into a table according to their atomic masses and chemical similarities. The first table Mendeleyev proposed

<table>
<thead>
<tr>
<th>Shell (n)</th>
<th>Subshell</th>
<th>Number of Electrons in Filled Subshell</th>
<th>Number of Electrons in Filled Shell</th>
</tr>
</thead>
<tbody>
<tr>
<td>K (n = 1)</td>
<td>s(\ell = 0)</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>L (n = 2)</td>
<td>s(\ell = 0)</td>
<td>2</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>p(\ell = 1)</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>s(\ell = 0)</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>M (n = 3)</td>
<td>p(\ell = 1)</td>
<td>6</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td>d(\ell = 2)</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td></td>
<td>s(\ell = 0)</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>N (n = 4)</td>
<td>p(\ell = 1)</td>
<td>6</td>
<td>32</td>
</tr>
<tr>
<td></td>
<td>d(\ell = 2)</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td></td>
<td>f(\ell = 3)</td>
<td>14</td>
<td></td>
</tr>
</tbody>
</table>

TIP 28.3 The Exclusion Principle Is More General

The exclusion principle stated here is a limited form of the more general exclusion principle, which states that no two **fermions** (particles with spin $\frac{1}{2}, \frac{3}{2}, \ldots$) can be in the same quantum state.

WOLFGANG PAULI

Austrian Theoretical Physicist (1900–1958)

The extremely talented Pauli first gained public recognition at the age of 21 with a masterful review article on relativity. In 1945 he received the Nobel Prize in Physics for his discovery of the exclusion principle. Among his other major contributions were the explanation of the connection between particle spin and statistics, the theory of relativistic quantum electrodynamics, the neutrino hypothesis, and the hypothesis of nuclear spin.
contained many blank spaces, and he boldly stated that the gaps were there only because those elements had not yet been discovered. By noting the column in which these missing elements should be located, he was able to make rough predictions about their chemical properties. Within 20 years of this announcement, those elements were indeed discovered.

The elements in our current version of the periodic table are still arranged so that all those in a vertical column have similar chemical properties. For example, consider the elements in the last column: He (helium), Ne (neon), Ar (argon), Kr (krypton), Xe (xenon), and Rn (radon). The outstanding characteristic of these elements is that they don’t normally take part in chemical reactions, joining with other atoms to form molecules, and are therefore classified as inert. They are called the noble gases.

We can partially understand their behavior by looking at the electronic configurations shown in Table 28.4. The element helium has the electronic configuration 1s\(^2\). In other words, one shell is filled. The electrons in this filled shell are considerably separated in energy from the next available level, the 2s level.

The electronic configuration for neon is 1s\(^2\)2s\(^2\)2p\(^6\). Again, the outer shell is filled and there is a large difference in energy between the 2p level and the 3s level. Argon has the configuration 1s\(^2\)2s\(^2\)2p\(^6\)3s\(^2\)3p\(^6\). Here, the 3p subshell is filled and there is a wide gap in energy between the 3p subshell and the 3d subshell. Through all the noble gases, the pattern remains the same: a noble gas is formed when either a shell or a subshell is filled, and there is a large gap in energy before the next possible level is encountered.

The elements in the first column of the periodic table are called the alkali metals and are highly active chemically. Referring to Table 28.4, we can understand why these elements interact so strongly with other elements. These alkali metals all have a single outer electron in an s subshell. This electron is shielded from the nucleus by all the electrons in the inner shells. Consequently, it’s only loosely

TABLE 28.4

Electronic Configurations of Some Elements

<table>
<thead>
<tr>
<th>Z</th>
<th>Symbol</th>
<th>Ground-State Configuration</th>
<th>Ionization Energy (eV)</th>
<th>Z</th>
<th>Symbol</th>
<th>Ground-State Configuration</th>
<th>Ionization Energy (eV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>H</td>
<td>1s(^1)</td>
<td>13.595</td>
<td>19</td>
<td>K</td>
<td>[Ar] 4s(^1)</td>
<td>4.339</td>
</tr>
<tr>
<td>2</td>
<td>He</td>
<td>1s(^2)</td>
<td>24.581</td>
<td>20</td>
<td>Ca</td>
<td>4s(^2)</td>
<td>6.111</td>
</tr>
<tr>
<td>3</td>
<td>Li</td>
<td>[He] 2s(^1)</td>
<td>5.390</td>
<td>21</td>
<td>Sc</td>
<td>3d(^4)(^2)</td>
<td>6.54</td>
</tr>
<tr>
<td>4</td>
<td>Be</td>
<td>2s(^1)</td>
<td>9.320</td>
<td>22</td>
<td>Ti</td>
<td>3d(^4)(^2)</td>
<td>6.83</td>
</tr>
<tr>
<td>5</td>
<td>B</td>
<td>2s(^2)2p(^1)</td>
<td>8.296</td>
<td>23</td>
<td>V</td>
<td>3d(^4)(^2)</td>
<td>6.74</td>
</tr>
<tr>
<td>6</td>
<td>C</td>
<td>2s(^2)2p(^2)</td>
<td>11.256</td>
<td>24</td>
<td>Cr</td>
<td>3d(^4)(^2)</td>
<td>6.76</td>
</tr>
<tr>
<td>7</td>
<td>N</td>
<td>2s(^2)2p(^3)</td>
<td>14.545</td>
<td>25</td>
<td>Mn</td>
<td>3d(^4)(^2)</td>
<td>7.432</td>
</tr>
<tr>
<td>8</td>
<td>O</td>
<td>2s(^2)2p(^4)</td>
<td>13.614</td>
<td>26</td>
<td>Fe</td>
<td>3d(^4)(^2)</td>
<td>7.87</td>
</tr>
<tr>
<td>9</td>
<td>F</td>
<td>2s(^2)2p(^5)</td>
<td>17.418</td>
<td>27</td>
<td>Co</td>
<td>3d(^4)(^2)</td>
<td>7.86</td>
</tr>
<tr>
<td>10</td>
<td>Ne</td>
<td>2s(^2)2p(^6)</td>
<td>21.559</td>
<td>28</td>
<td>Ni</td>
<td>3d(^4)(^2)</td>
<td>7.633</td>
</tr>
<tr>
<td>11</td>
<td>Na</td>
<td>[Ne] 3s(^1)</td>
<td>5.138</td>
<td>29</td>
<td>Ca</td>
<td>3d(^{10,}4)(^2)</td>
<td>7.724</td>
</tr>
<tr>
<td>12</td>
<td>Mg</td>
<td>3s(^2)</td>
<td>7.644</td>
<td>30</td>
<td>Zn</td>
<td>3d(^{10,}4)(^2)</td>
<td>9.391</td>
</tr>
<tr>
<td>13</td>
<td>Al</td>
<td>3s(^3)3p(^1)</td>
<td>5.984</td>
<td>31</td>
<td>Ga</td>
<td>3d(^{10,}4)(^2)3p(^1)</td>
<td>6.00</td>
</tr>
<tr>
<td>14</td>
<td>Si</td>
<td>3s(^3)3p(^2)</td>
<td>8.149</td>
<td>32</td>
<td>Ge</td>
<td>3d(^{10,}4)(^2)3p(^2)</td>
<td>7.88</td>
</tr>
<tr>
<td>15</td>
<td>P</td>
<td>3s(^3)3p(^3)</td>
<td>10.484</td>
<td>33</td>
<td>As</td>
<td>3d(^{10,}4)(^2)3p(^3)</td>
<td>9.81</td>
</tr>
<tr>
<td>16</td>
<td>S</td>
<td>3s(^3)3p(^4)</td>
<td>10.357</td>
<td>34</td>
<td>Se</td>
<td>3d(^{10,}4)(^2)3p(^4)</td>
<td>9.75</td>
</tr>
<tr>
<td>17</td>
<td>Cl</td>
<td>3s(^3)3p(^5)</td>
<td>13.01</td>
<td>35</td>
<td>Br</td>
<td>3d(^{10,}4)(^2)3p(^5)</td>
<td>11.84</td>
</tr>
<tr>
<td>18</td>
<td>Ar</td>
<td>3s(^3)3p(^6)</td>
<td>15.755</td>
<td>36</td>
<td>Kr</td>
<td>3d(^{10,}4)(^2)3p(^6)</td>
<td>13.996</td>
</tr>
</tbody>
</table>

Note: The bracket notation is used as a shorthand method to avoid repetition in indicating inner-shell electrons. Thus, [He] represents 1s\(^2\), [Ne] represents 1s\(^2\)2s\(^2\)2p\(^6\), [Ar] represents 1s\(^2\)2s\(^2\)2p\(^6\)3s\(^2\)3p\(^6\), and so on.
bound to the atom and can readily be accepted by other atoms that bind it more tightly to form molecules.

The elements in the seventh column of the periodic table are called the halogens and are also highly active chemically. All these elements are lacking one electron in a subshell, so they readily accept electrons from other atoms to form molecules.

QUICK QUIZ 28.3 Krypton (atomic number 36) has how many electrons in its next-to-outer shell ($n = 3$)? (a) 2 (b) 4 (c) 8 (d) 18

28.6 Characteristic X-Rays

X-rays are emitted when a metal target is bombarded with high-energy electrons. The x-ray spectrum typically consists of a broad continuous band and a series of intense sharp lines that are dependent on the type of metal used for the target, as shown in Figure 28.14. These discrete lines, called characteristic x-rays, were discovered in 1908, but their origin remained unexplained until the details of atomic structure were developed.

The first step in the production of characteristic x-rays occurs when a bombarding electron collides with an electron in an inner shell of a target atom with sufficient energy to remove the electron from the atom. The vacancy created in the shell is filled when an electron in a higher level drops down into the lower-energy level containing the vacancy. The time it takes for that to happen is very short, less than 10^{-9} s. The transition is accompanied by the emission of a photon with energy equaling the difference in energy between the two levels. Typically, the energy of such transitions is greater than 1 000 eV, and the emitted x-ray photons have wavelengths in the range of 0.01 nm to 1 nm.

We assume the incoming electron has dislodged an atomic electron from the innermost shell, the K shell. If the vacancy is filled by an electron dropping from the next-higher shell, the L shell, the photon emitted in the process is referred to as the K\textsubscript{a} line on the curve of Figure 28.14. If the vacancy is filled by an electron dropping from the M shell, the line produced is called the K\textsubscript{b} line.

Other characteristic x-ray lines are formed when electrons drop from upper levels to vacancies other than those in the K shell. For example, L lines are produced when vacancies in the L shell are filled by electrons dropping from higher shells. An L\textsubscript{a} line is produced as an electron drops from the M shell to the L shell, and an L\textsubscript{b} line is produced by a transition from the N shell to the L shell.

We can estimate the energy of the emitted x-rays as follows. Consider two electrons in the K shell of an atom whose atomic number is Z. Each electron partially shields the other from the charge of the nucleus, Ze, so each is subject to an effective nuclear charge $Z_{\text{eff}} = (Z - 1)e$. We can now use a modified form of Equation 28.18 to estimate the energy of either electron in the K shell (with $n = 1$). We have

$$E_K = -m_e Z_{\text{eff}}^2 \frac{k^2 e^4}{2k^2} = -Z_{\text{eff}}^2 E_0$$

where E_0 is the ground-state energy. Substituting $Z_{\text{eff}} = Z - 1$ gives

$$E_K = -(Z - 1)^2(13.6 \text{ eV})$$

As Example 28.4 shows, we can estimate the energy of an electron in an L or an M shell in a similar fashion. Taking the energy difference between these two levels, we can then calculate the energy and wavelength of the emitted photon.

In 1914 Henry G. J. Moseley plotted the Z values for a number of elements against $\sqrt{1/\lambda}$, where λ is the wavelength of the K\textsubscript{a} line for each element. He found that such a plot produced a straight line, as in Figure 28.15, which is consistent with our rough calculations of the energy levels based on Equation 28.20. From his plot, Moseley was able to determine the Z values of other elements, providing a periodic chart in excellent agreement with the known chemical properties of the elements.
EXAMPLE 28.4 Characteristic X-Rays

Goal Calculate the energy and wavelength of characteristic x-rays.

Problem Estimate the energy and wavelength of the characteristic x-ray emitted from a tungsten target when an electron drops from an M shell ($n = 3$ state) to a vacancy in the K shell ($n = 1$ state).

Strategy Develop two estimates, one for the electron in the K shell ($n = 1$) and one for the electron in the M shell ($n = 3$). For the K-shell estimate, we can use Equation 28.20. For the M-shell estimate, we need a new equation. There is 1 electron in the K shell (because one is missing) and there are 8 in the L shell, making 9 electrons shielding the nuclear charge. Therefore $Z_{\text{eff}} = 74 - 9$ and $E_M = -Z_{\text{eff}}^2 E_3$, where E_3 is the energy of the $n = 3$ level in hydrogen. The difference $E_M - E_K$ is the energy of the photon.

Solution Use Equation 28.20 to estimate the energy of an electron in the K shell of tungsten, atomic number $Z = 74$:

$$E_K = -(74 - 1)^2(13.6 \text{ eV}) = -72{,}500 \text{ eV}$$

Estimate the energy of an electron in the M shell in the same way:

$$E_M = -Z_{\text{eff}}^2 E_3 = -(Z - 9)^2 \frac{E_0}{3^2} = -(74 - 9)^2 \frac{(15.6 \text{ eV})}{9} = -6{,}380 \text{ eV}$$

Calculate the difference in energy between the M and K shells:

$$E_M - E_K = -6{,}380 \text{ eV} - (-72{,}500 \text{ eV}) = 66{,}100 \text{ eV}$$

Find the wavelength of the emitted x-ray:

$$\Delta E = hf = \frac{hc}{\lambda} \rightarrow \lambda = \frac{hc}{\Delta E}$$

$$\lambda = \frac{(6.63 \times 10^{-34} \text{ J s})(3.00 \times 10^8 \text{ m/s})}{(6.61 \times 10^4 \text{ eV})(1.60 \times 10^{-19} \text{ J/eV})} = 1.88 \times 10^{-11} \text{ m} = 0.0188 \text{ nm}$$

Remarks These estimates depend on the amount of shielding of the nuclear charge, which can be difficult to determine.

QUESTION 28.4 Could a transition from the L shell to the K shell ever result in a more energetic photon than a transition from the M to the K shell? Discuss.

EXERCISE 28.4 Repeat the problem for a 2p electron transiting from the L shell to the K shell. (For technical reasons, the L shell electron must have $\ell = 1$, so a single 1s electron and two 2s electrons shield the nucleus.)

Answers (a) $5.54 \times 10^4 \text{ eV}$ (b) 0.0224 nm

28.7 ATOMIC TRANSITIONS AND LASERS

We have seen that an atom will emit radiation only at certain frequencies that correspond to the energy separation between the various allowed states. Consider an atom with many allowed energy states, labeled E_1, E_2, E_3, \ldots, as in Figure 28.16. When light is incident on the atom, only those photons with energy hf matching the energy separation ΔE between two levels can be absorbed by the atom. A schematic diagram representing this stimulated absorption process is shown in Active Figure 28.17. At ordinary temperatures, most of the atoms in a sample are in the ground state. If a vessel containing many atoms of a gas is illuminated with a light beam containing all possible photon frequencies (that is, a continuous spec-
trum), only those photons of energies $E_2 - E_1$, $E_3 - E_1$, $E_4 - E_1$, and so on can be absorbed. As a result of this absorption, some atoms are raised to various allowed higher-energy levels, called **excited states**.

Once an atom is in an excited state, there is a constant probability that it will jump back to a lower level by emitting a photon, as shown in Figure 28.18. This process is known as **spontaneous emission**. Typically, an atom will remain in an excited state for only about 10^{-8} s.

A third process that is important in lasers, **stimulated emission**, was predicted by Einstein in 1917. Suppose an atom is in the excited state E_2, as in Figure 28.19, and a photon with energy $hf = E_2 - E_1$ is incident on it. The incoming photon increases the probability that the excited atom will return to the ground state and thereby emit a second photon having the same energy hf. Note that two identical photons result from stimulated emission: the incident photon and the emitted photon. The emitted photon is exactly in phase with the incident photon. These photons can stimulate other atoms to emit photons in a chain of similar processes.

The intense, coherent (in-phase) light in a laser (light amplification by stimulated emission of radiation) is a result of stimulated emission. In a laser, voltages can be used to put more electrons in excited states than in the ground state. This process is called **population inversion**. The excited state of the system must be a metastable state, which means that its lifetime must be relatively long. When that is the case, stimulated emission will occur before spontaneous emission. Finally, the photons produced must be retained in the system for a while so that they can stimulate the production of still more photons. This step can be done with mirrors, one of which is partly transparent.

Figure 28.20 is an energy level diagram for the neon atom in a helium–neon gas laser. The mixture of helium and neon is confined to a glass tube sealed at
Chapter 28 Atomic Physics

Spontaneous emission—random directions

Mirror one

Stimulating wave on axis

Energy input

Mirror two

(a)

Laser output

(b)

Courtesy of HRL Laboratories LLC, Malibu, CA

FIGURE 28.21 (a) Steps in the production of a laser beam. The tube contains atoms, which represent the active medium. An external source of energy (optical, electrical, etc.) is needed to "pump" the atoms to excited energy states. The parallel end mirrors provide the feedback of the stimulating wave. (b) Photograph of the first ruby laser, showing the flash lamp surrounding the ruby rod.

SUMMARY

28.3 The Bohr Model

The Bohr model of the atom is successful in describing the spectra of atomic hydrogen and hydrogen-like ions. One basic assumption of the model is that the electron can exist only in certain orbits such that its angular momentum \(m \ell r \) is an integral multiple of \(\frac{\hbar}{2\pi} \), where \(\hbar \) is Planck’s constant divided by \(2\pi \). Assuming circular orbits and a Coulomb force of attraction between electron and proton, the energies of the quantum states for hydrogen are

\[
E_n = -\frac{m_e k_e^2 e^4}{2\hbar^2} \left(\frac{1}{n^2} \right)
\]

where \(k_e \) is the Coulomb constant, \(e \) is the charge on the electron, and \(n \) is an integer called a quantum number.

If the electron in the hydrogen atom jumps from an orbit having quantum number \(n_i \) to an orbit having quantum number \(n_f \), it emits a photon of frequency \(f \), given by

\[
f = \frac{E_i - E_f}{\hbar} = \frac{m_e k_e^2 e^4}{4\pi \hbar^3} \left(\frac{1}{n_f^2} - \frac{1}{n_i^2} \right) \tag{28.13}
\]

Bohr’s correspondence principle states that quantum mechanics is in agreement with classical physics when the quantum numbers for a system are very large.

The Bohr theory can be generalized to hydrogen-like atoms, such as singly ionized helium or doubly ionized lithium. This modification consists of replacing \(e^4 \) by \(Z e^2 \) wherever it occurs.

28.4 Quantum Mechanics and the Hydrogen Atom

One of the many successes of quantum mechanics is that the quantum numbers \(n, \ell, \) and \(m_\ell \) associated with atomic structure arise directly from the mathematics of the theory. The quantum number \(n \) is called the principal quantum number, \(\ell \) is the orbital quantum number, and \(m_\ell \) is
the orbital magnetic quantum number. These quantum numbers can take only certain values: $1 \leq n < \infty$ in integer steps, $0 \leq \ell \leq n - 1$, and $-\ell \leq m_r \leq \ell$. In addition, a fourth quantum number, called the spin magnetic quantum number m_s, is needed to explain a fine doubling of lines in atomic spectra, with $m_s = \pm \frac{1}{2}$.

28.5 The Exclusion Principle and the Periodic Table

An understanding of the periodic table of the elements became possible when Pauli formulated the exclusion principle, which states that no two electrons in the same atom can have the same values for the set of quantum numbers $n, \ell, m_r,$ and m_s. A particular set of these quantum numbers is called a quantum state. The exclusion principle explains how different energy levels in atoms are populated. Once one subshell is filled, the next electron goes into the vacant subshell that is lowest in energy. Atoms with similar configurations in their outermost shell have similar chemical properties and are found in the same column of the periodic table.

28.6 Characteristic X-Rays

Characteristic X-rays are produced when a bombarding electron collides with an electron in an inner shell of an atom with sufficient energy to remove the electron from the atom. The vacancy is filled when an electron from a higher level drops down into the level containing the vacancy, emitting a photon in the x-ray part of the spectrum in the process.

28.7 Atomic Transitions and Lasers

When an atom is irradiated by light of all different wavelengths, it will only absorb only wavelengths equal to the difference in energy of two of its energy levels. This phenomenon, called stimulated absorption, places an atom’s electrons into excited states. Atoms in an excited state have a probability of returning to a lower level of excitation by spontaneous emission. The wavelengths that can be emitted are the same as the wavelengths that can be absorbed. If an atom is in an excited state and a photon with energy $hf = E_2 - E_1$ is incident on it, the probability of emission of a second photon of this energy is greatly enhanced. The emitted photon is exactly in phase with the incident photon. This process is called stimulated emission. The emitted and original photon can then stimulate more emission, creating an amplifying effect.

Lasers are monochromatic, coherent light sources that work on the principle of stimulated emission of radiation from a system of atoms.

FOR ADDITIONAL STUDENT RESOURCES, GO TO WWww.SERWAYPHYSICS.COM

MULTIPLE-CHOICE QUESTIONS

1. An electron in the $n = 5$ energy level of hydrogen undergoes a transition to the $n = 3$ energy level. What wavelength photon does the atom emit in this process?
 (a) 1.28×10^{-6} m (b) 2.37×10^{-7} m (c) 4.22×10^{-7} m (d) 3.04×10^{-6} m (e) 5.92×10^{-5} m

2. A beryllium atom is stripped of all but one of its electrons. What is the energy of the ground state?
 (a) -13.6 eV (b) -218 eV (c) -122 eV (d) -40.8 eV (e) 0

3. An electron in a hydrogen atom is in the $n = 3$ energy level. How many different quantum states are available to it?
 (a) 1 (b) 2 (c) 8 (d) 9 (e) 18

4. Consider an atom having four distinct energy levels. If an electron is able to make transitions between any two levels, how many different wavelengths of radiation could the atom emit?
 (a) 2 (b) 3 (c) 4 (d) 5 (e) 6

5. The periodic table is based mainly on which of the following principles?
 (a) It is based on the uncertainty principle. (b) All electrons in an atom must have the same set of quantum numbers. (c) No two electrons in an atom can have the same set of quantum numbers. (d) All electrons in an atom are in orbitals having the same energy. (e) Energy is conserved in all interactions.

6. If an electron in an atom has the quantum numbers $n = 3, \ell = 2, m_r = 1,$ and $m_s = \frac{1}{2}$, what state is it in?
 (a) 3s (b) 3p (c) 3d (d) 4d (e) 5f

7. Which of the following electronic configurations are not allowed?
 (a) $2s^22p^6$ (b) $3s^23p^2$ (c) $3d^4s^2$ (d) $3d^64s^4p^6$ (e) $1s^22s^22p^6$

8. What can be concluded about a hydrogen atom with an electron in the d state?
 (a) The atom is ionized. (b) The orbital angular momentum of the atom is zero. (c) The orbital angular momentum of the atom is not zero. (d) The atom is in its ground state. (e) The principal quantum number is $n = 2$.

9. If an electron had a spin of $\frac{1}{2}$, its spin quantum number could have the following four values: $m_s = +\frac{1}{2}, -\frac{1}{2}, -\frac{1}{2},$ and $-\frac{1}{2}$. If that were true, which one of the following elements with a filled shell would become the first of the noble gases? (a) He with 2 electrons (b) Li with 3 electrons (c) Be with 4 electrons (d) B with 5 electrons (e) C with 6 electrons

10. In relating Bohr’s theory to the de Broglie wavelength of electrons, why does the circumference of an electron’s orbit become nine times greater when the electron moves from the $n = 1$ level to the $n = 3$ level? (a) There are nine times as many wavelengths in the new orbit. (b) The wavelength of the electron becomes nine times as long. (c) There are three times as many wavelengths, and each wavelength is three times as long. (d) The electron is moving nine times faster. (e) The atom is partly ionized.
CONCEPTUAL QUESTIONS

1. In the hydrogen atom, the quantum number \(n \) can increase without limit. Because of this fact, does the frequency of possible spectral lines from hydrogen also increase without limit?

2. Does the light emitted by a neon sign constitute a continuous spectrum or only a few colors? Defend your answer.

3. In an x-ray tube, if the energy with which the electrons strike the metal target is increased, the wavelengths of the characteristic x-rays do not change. Why not?

4. Must an atom first be ionized before it can emit light? Discuss.

5. Is it possible for a spectrum from an x-ray tube to show the continuous spectrum of x-rays without the presence of the characteristic x-rays?

6. Suppose the electron in the hydrogen atom obeyed classical mechanics rather than quantum mechanics. Why should such a hypothetical atom emit a continuous spectrum rather than the observed line spectrum?

7. When a hologram is produced, the system (including light source, object, beam splitter, and so on) must be held motionless within a quarter of the light's wavelength. Why?

8. If matter has a wave nature, why is that not observable in our daily experience?

9. Discuss some consequences of the exclusion principle.

10. Can the electron in the ground state of hydrogen absorb a photon of energy less than 13.6 eV? Can it absorb a photon of energy greater than 13.6 eV? Explain.

11. Why do lithium, potassium, and sodium exhibit similar chemical properties?

12. List some ways in which quantum mechanics altered our view of the atom pictured by the Bohr theory.

13. It is easy to understand how two electrons (one with spin up, one with spin down) can fill the 1s shell for a helium atom. How is it possible that eight more electrons can fit into the 2s, 2p level to complete the 1s2s2p6 shell for a neon atom?

14. The ionization energies for Li, Na, K, Rb, and Cs are 5.390, 5.138, 4.339, 4.176, and 3.893 eV, respectively. Explain why these values are to be expected in terms of the atomic structures.

15. Why is stimulated emission so important in the operation of a laser?

PROBLEMS

The Problems for this chapter may be assigned online at WebAssign.

1. 2, 3 = straightforward, intermediate, challenging

\[GP \] = denotes guided problem

\[ECP \] = denotes enhanced content problem

\[HM \] = biomedical application

\[SS \] = denotes full solution available in Student Solutions Manual/Study Guide

SECTION 28.1 EARLY MODELS OF THE ATOM

SECTION 28.2 ATOMIC SPECTRA

1. \[ECP \] The wavelengths of the Lyman series for hydrogen are given by

\[
\frac{1}{\lambda} = R_H \left(\frac{1}{n^2} - \frac{1}{n^2} \right) \quad n = 2, 3, 4, \ldots
\]

(a) Calculate the wavelengths of the first three lines in this series. (b) Identify the region of the electromagnetic spectrum in which these lines appear.

2. The wavelengths of the Paschen series for hydrogen are given by

\[
\frac{1}{\lambda} = R_H \left(\frac{1}{3^2} - \frac{1}{n^2} \right) \quad n = 4, 5, 6, \ldots
\]

(a) Calculate the wavelengths of the first three lines in this series. (b) Identify the region of the electromagnetic spectrum in which these lines appear.

3. The “size” of the atom in Rutherford’s model is about \(1.0 \times 10^{-10} \) m. (a) Determine the attractive electrostatic force between an electron and a proton separated by this distance. (b) Determine (in eV) the electrostatic potential energy of the atom.

4. The “size” of the nucleus in Rutherford’s model of the atom is about \(1.0 \times 10^{-15} \) m. (a) Determine the repulsive electrostatic force between two protons separated by this distance. (b) Determine (in MeV) the electrostatic potential energy of the pair of protons.

5. \[ECP \] The “size” of the atom in Rutherford’s model is about \(1.0 \times 10^{-10} \) m. (a) Determine the speed of an electron moving about the proton using the attractive electrostatic force between an electron and a proton separated by this distance. (b) Does this speed suggest that Einsteinian relativity must be considered in studying the atom? (c) Compute the de Broglie wavelength of the electron as it moves about the proton. (d) Does this wavelength suggest that wave effects, such as diffraction and interference, must be considered in studying the atom?

6. In a Rutherford scattering experiment, an \(\alpha \)-particle (charge = +2e) heads directly toward a gold nucleus (charge = +79e). The \(\alpha \)-particle had a kinetic energy of 5.0 MeV when very far \((r \to \infty) \) from the nucleus. Assuming the gold nucleus to be fixed in space, determine the distance of closest approach. Hint: Use conservation of energy with \(PE = \frac{keqq}{r} \).

SECTION 28.3 THE BOHR MODEL

7. A hydrogen atom is in its first excited state \((n = 2) \). Using the Bohr theory of the atom, calculate (a) the radius
of the orbit, (b) the linear momentum of the electron, (c) the angular momentum of the electron, (d) the kinetic energy, (e) the potential energy, and (f) the total energy.

8. For a hydrogen atom in its ground state, use the Bohr model to compute (a) the orbital speed of the electron, (b) the kinetic energy of the electron, and (c) the electrical potential energy of the atom.

9. Show that the speed of the electron in the nth Bohr orbit in hydrogen is given by

\[v_n = \frac{k_e e^2}{nh} \]

10. A photon is emitted when a hydrogen atom undergoes a transition from the \(n = 5 \) state to the \(n = 3 \) state. Calculate (a) the wavelength, (b) the frequency, and (c) the energy (in electron volts) of the emitted photon.

11. A hydrogen atom emits a photon of wavelength 656 nm. From what energy orbit to what lower-energy orbit did the electron jump?

12. Following are four possible transitions for a hydrogen atom

 I. \(n_i = 2; n_f = 5 \) II. \(n_i = 5; n_f = 3 \)
 III. \(n_i = 7; n_f = 4 \) IV. \(n_i = 4; n_f = 7 \)

 (a) Which transition will emit the shortest-wavelength photon? (b) For which transition will the atom gain the most energy? (c) For which transition(s) does the atom lose energy?

13. What is the energy of a photon that, when absorbed by a hydrogen atom, could cause an electronic transition from (a) the \(n = 2 \) state to the \(n = 5 \) state and (b) the \(n = 4 \) state to the \(n = 6 \) state?

14. A hydrogen atom initially in its ground state (\(n = 1 \)) absorbs a photon and ends up in the state for which \(n = 3 \). (a) What is the energy of the absorbed photon? (b) If the atom eventually returns to the ground state, what photon energies could the atom emit?

15. How much energy is required to ionize a hydrogen atom when it is in (a) the ground state and (b) the \(n = 3 \) state?

16. A particle of charge \(q \) and mass \(m \), moving with a constant speed \(v \), perpendicular to a constant magnetic field \(B \), follows a circular path. If in this case the angular momentum about the center of this circle is quantized so that \(mvB = 2nh \), show that the allowed radii for the particle are

\[r_n = \frac{2nh}{qB} \]

where \(n = 1, 2, 3, \ldots \).

17. (a) If an electron makes a transition from the \(n = 4 \) Bohr orbit to the \(n = 2 \) orbit, determine the wavelength of the photon created in the process. (b) Assuming that the atom was initially at rest, determine the recoil speed of the hydrogen atom when this photon is emitted.

18. Consider a large number of hydrogen atoms, with electrons all initially in the \(n = 4 \) state. (a) How many different wavelengths would be observed in the emission spectrum of these atoms? (b) What is the longest wavelength that could be observed? To which series does it belong?

19. Two hydrogen atoms, both initially in the ground state, undergo a head-on collision. If both atoms are to be excited to the \(n = 2 \) level in this collision, what is the minimum speed each atom can have before the collision?

20. (a) Calculate the angular momentum of the Moon due to its orbital motion about Earth. In your calculation use \(3.84 \times 10^8 \) m as the average Earth–Moon distance and \(2.36 \times 10^6 \) s as the period of the Moon in its orbit. (b) If the angular momentum of the Moon obeys Bohr’s quantization rule \((L = nh) \), determine the value of the quantum number \(n \). (c) By what fraction would the Earth–Moon radius have to be increased to increase the quantum number by 1?

21. An electron is in the second excited orbit of hydrogen, corresponding to \(n = 3 \). Find (a) the radius of the orbit and (b) the wavelength of the electron in this orbit.

22. (a) Write an expression relating the kinetic energy \(KE \) of the electron and the potential energy \(PE \) in the Bohr model of the hydrogen atom. (b) Suppose a hydrogen atom absorbs a photon of energy \(E \), resulting in the transfer of the electron to a higher-energy level. Express the resulting change in the potential energy of the system in terms of \(E \). (c) What is the change in the electron’s kinetic energy during this process?

23. The orbital radii of a hydrogen-like atom is given by the equation

\[r = \frac{n^2 \hbar^2}{2m_e k_e e^2} \]

What is the radius of the first Bohr orbit in (a) He\(^+\), (b) Li\(^{2+}\), and (c) Be\(^{3+}\)?

24. Consider a Bohr model of doubly ionized lithium. (a) Write an expression similar to Equation 28.14 for the energy levels of the sole remaining electron. (b) Find the energy corresponding to \(n = 4 \). (c) Find the energy corresponding to \(n = 2 \). (d) Calculate the energy of the photon emitted when the electron transits from the fourth energy level to the second energy level. Express the answer both in electron volts and in joules. (e) Find the frequency and wavelength of the emitted photon. (f) In what part of the spectrum is the emitted light?

25. Determine the wavelength of an electron in the third excited orbit of the hydrogen atom, with \(n = 4 \).

26. Using the concept of standing waves, de Broglie was able to derive Bohr’s stationary orbit postulate. He assumed a confined electron could exist only in states where its de Broglie waves form standing-wave patterns, as in Figure 28.6. Consider a particle confined in a box of length \(L \) to be equivalent to a string of length \(L \) and fixed at both ends. Apply de Broglie’s concept to show that (a) the linear momentum of this particle is quantized with \(p = mv = \hbar/2L \) and (b) the allowed states correspond to particle energies of \(E_n = n^2 E_0 \), where \(E_0 = \hbar^2/(8mL^2) \).
SECTIon 28.4 QUANTUM MECHANICS AND THE HYDROGEN ATOM

27. List the possible sets of quantum numbers for electrons in the 3d subshell.

28. When the principal quantum number is \(n = 4 \), how many different values of (a) \(\ell \) and (b) \(m_\ell \) are possible?

29. The \(p \)-meson has a charge of \(-e \), a spin quantum number of 1, and a mass 1.507 times that of the electron. If the electrons in atoms were replaced by \(p \)-mesons, list the possible sets of quantum numbers for \(p \)-mesons in the 3d subshell.

SECTIon 28.5 THE EXCLUSION PRINCIPLE AND THE PERIODIC TABLE

30. (a) Write out the electronic configuration of the ground state for nitrogen (\(Z = 7 \)). (b) Write out the values for the possible set of quantum numbers \(n, \ell, m_\ell, \) and \(m_s \) for the electrons in nitrogen.

31. Two electrons in the same atom have \(n = 3 \) and \(\ell = 1 \). (a) List the quantum numbers for the possible states of the atom. (b) How many states would be possible if the exclusion principle did not apply to the atom?

32. How many different sets of quantum numbers are possible for an electron for which (a) \(n = 1 \), (b) \(n = 2 \), (c) \(n = 3 \), (d) \(n = 4 \), and (e) \(n = 5 \)? Check your results to show that they agree with the general rule that the number of different sets of quantum numbers is equal to \(2n^2 \).

33. Zirconium (\(Z = 40 \)) has two electrons in an incomplete d subshell. (a) What are the values of \(n \) and \(\ell \) for each electron? (b) What are all possible values of \(m_\ell \) and \(m_s \)? (c) What is the electron configuration in the ground state of zirconium?

SECTIon 28.6 CHARACTERISTIC X-RAYS

34. The K-shell ionization energy of copper is 8,979 eV. The L-shell ionization energy is 951 eV. Determine the wavelength of the K\(_s\) emission line of copper. What must the minimum voltage be on an x-ray tube with a copper target to see the K\(_s\) line?

35. The K\(_s\) x-ray is emitted when an electron undergoes a transition from the L shell (\(n = 2 \)) to the K shell (\(n = 1 \)). Use the method illustrated in Example 28.4 to calculate the wavelength of the K\(_s\) x-ray from a nickel target (\(Z = 28 \)).

36. When an electron drops from the M shell (\(n = 3 \)) to a vacancy in the K shell (\(n = 1 \)), the measured wavelength of the emitted x-ray is found to be 0.101 nm. Identify the element.

37. The K series of the discrete spectrum of tungsten contains wavelengths of 0.018 5 nm, 0.020 9 nm, and 0.021 5 nm. The K-shell ionization energy is 69.5 keV. Determine the ionization energies of the L, M, and N shells.

ADDITIONAL PROBLEMS

38. In a hydrogen atom, what is the principal quantum number of the electron orbit with a radius closest to 1.0 \(\mu \)m?

39. (a) How much energy is required to cause an electron in hydrogen to move from the \(n = 1 \) state to the \(n = 2 \) state? (b) If the electrons gain this energy by collision between hydrogen atoms in a high-temperature gas, find the minimum temperature of the heated hydrogen gas. The thermal energy of the heated atoms is given by \(3k_B T/2 \), where \(k_B \) is the Boltzmann constant.

40. A pulsed ruby laser emits light at 694.3 nm. For a 14.0-ps pulse containing 3.00 J of energy, find (a) the physical length of the pulse as it travels through space and (b) the number of photons in it. (c) If the beam has a circular cross section 0.600 cm in diameter, what is the number of photons per cubic millimeter?

41. An electron in chromium moves from the \(n = 2 \) state to the \(n = 1 \) state without emitting a photon. Instead, the excess energy is transferred to an outer electron (one in the \(n = 4 \) state), which is then ejected by the atom. In this Auger (pronounced “ohjay”) process, the ejected electron is referred to as an Auger electron. (a) Find the change in energy associated with the transition from \(n = 2 \) into the vacant \(n = 1 \) state using Bohr theory. Assume only one electron in the K shell is shielding part of the nuclear charge. (b) Find the energy needed to ionize an \(n = 4 \) electron, assuming 22 electrons shield the nucleus. (c) Find the kinetic energy of the ejected (Auger) electron. (All answers should be in electron volts.)

42. (a) Construct an energy level diagram for the He\(^+\) ion, for which \(Z = 2 \). (b) What is the ionization energy for He? (c) If a laser used in eye surgery emits a 3.00-mJ pulse in 1.00 ns, focused to a spot 30.0 \(\mu \)m in diameter on the retina, (a) find (in SI units) the power per unit area at the retina. (This quantity is called the irradiance.) (b) What energy is delivered per pulse to an area of molecular size (say, a circular area 0.600 nm in diameter)?

44. An electron has a de Broglie wavelength equal to the diameter of a hydrogen atom in its ground state. (a) What is the kinetic energy of the electron? (b) How does this energy compare with the ground-state energy of the hydrogen atom?

45. Use Bohr’s model of the hydrogen atom to show that when the atom makes a transition from the state \(n \) to the state \(n - 1 \), the frequency of the emitted light is given by

\[
f = \frac{2\pi^2 \hbar c}{\lambda^2} \frac{2n - 1}{(n - 1)^2 n^2}\]

46. Suppose the ionization energy of an atom is 4.100 eV. In this same atom, we observe emission lines that have wavelengths of 310.0 nm, 400.0 nm, and 1,378 nm. Use this information to construct the energy level diagram with the least number of levels. Assume that the higher energy levels are closer together.
NUCLEAR PHYSICS

In this chapter we discuss the properties and structure of the atomic nucleus. We start by describing the basic properties of nuclei and follow with a discussion of the phenomenon of radioactivity. Finally, we explore nuclear reactions and the various processes by which nuclei decay.

29.1 SOME PROPERTIES OF NUCLEI

All nuclei are composed of two types of particles: protons and neutrons. The only exception is the ordinary hydrogen nucleus, which is a single proton. In describing some of the properties of nuclei, such as their charge, mass, and radius, we make use of the following quantities:

- the atomic number \(Z\), which equals the number of protons in the nucleus
- the neutron number \(N\), which equals the number of neutrons in the nucleus
- the mass number \(A\), which equals the number of nucleons in the nucleus

\(\text{nucleon}\) is a generic term used to refer to either a proton or a neutron.

The symbol we use to represent nuclei is \(A_ZX\), where \(X\) represents the chemical symbol for the element. For example, \(^{27}_{13}\text{Al}\) has the mass number 27 and the atomic number 13; therefore, it contains 13 protons and 14 neutrons. When no confusion is likely to arise, we often omit the subscript \(Z\) because the chemical symbol can always be used to determine \(Z\).

The nuclei of all atoms of a particular element must contain the same number of protons, but they may contain different numbers of neutrons. Nuclei that are related in this way are called isotopes. The isotopes of an element have the same \(Z\) value, but different \(N\) and \(A\) values. The natural abundances of isotopes can differ substantially. For example, \(^{12}\text{C}\), \(^{13}\text{C}\), \(^{13}\text{C}\), and \(^{14}\text{C}\) are four isotopes of carbon. The natural abundance of the \(^{12}\text{C}\) isotope is about 98.9%, whereas that of the \(^{13}\text{C}\) isotope is only about 1.1%. Some isotopes don’t occur naturally, but can be produced in the laboratory through nuclear reactions. Even the simplest element, hydrogen, has isotopes: \(^1\text{H}\), hydrogen; \(^2\text{H}\), deuterium; and \(^3\text{H}\), tritium.
Charge and Mass

The proton carries a single positive charge $+e = 1.602 177 33 \times 10^{-19}$ C, the electron carries a single negative charge $-e$, and the neutron is electrically neutral. Because the neutron has no charge, it’s difficult to detect. The proton is about 1 836 times as massive as the electron, and the masses of the proton and the neutron are almost equal (Table 29.1).

For atomic masses, it is convenient to define the unified mass unit, u, in such a way that the mass of one atom of the isotope ^{12}C is exactly 12 u, where $1\ u = 1.660 559 \times 10^{-27}$ kg. The proton and neutron each have a mass of about 1 u, and the electron has a mass that is only a small fraction of an atomic mass unit.

Because the rest energy of a particle is given by $E_R = mc^2$, it is often convenient to express the particle’s mass in terms of its energy equivalent. For one atomic mass unit, we have an energy equivalent of

$$E_R = mc^2 = (1.660 559 \times 10^{-27}\text{ kg})(2.997 92 \times 10^8\text{ m/s})^2 = 1.492 431 \times 10^{-10}\text{ J} = 931.494\text{ MeV}/\text{c}^2$$

In calculations nuclear physicists often express mass in terms of the unit MeV/c^2, where

$$1\ u = 931.494\text{ MeV}/\text{c}^2$$

The Size of Nuclei

The size and structure of nuclei were first investigated in the scattering experiments of Rutherford, discussed in Section 28.1. Using the principle of conservation of energy, Rutherford found an expression for how close an alpha particle moving directly toward the nucleus can come to the nucleus before being turned around by Coulomb repulsion.

In such a head-on collision, the kinetic energy of the incoming alpha particle must be converted completely to electrical potential energy when the particle stops at the point of closest approach and turns around (Active Fig. 29.1). If we equate the initial kinetic energy of the alpha particle to the maximum electrical potential energy of the system (alpha particle plus target nucleus), we have

$$\frac{1}{2}mv^2 = k \frac{q_1 q_2}{r} = k \frac{(2e)(Ze)}{d}$$

where d is the distance of closest approach. Solving for d, we get

$$d = \frac{4keZe^2}{mv^2}$$

From this expression, Rutherford found that alpha particles approached to within 3.2×10^{-14} m of a nucleus when the foil was made of gold, implying that the radius of the gold nucleus must be less than this value. For silver atoms, the distance of closest approach was 2×10^{-14} m. From these results, Rutherford concluded that the positive charge in an atom is concentrated in a small sphere, which he called the nucleus, with radius no greater than about 10^{-14} m. Because such small lengths are common in nuclear physics, a convenient unit of length is the fermi (fm), sometimes called the fermi and defined as
Since the time of Rutherford's scattering experiments, a multitude of other experiments have shown that most nuclei are approximately spherical and have an average radius given by

$$r = r_0 A^{1/3}$$ \hspace{1cm} [29.1]$

where \(r_0 \) is a constant equal to \(1.2 \times 10^{-15} \) m and \(A \) is the total number of nucleons. Because the volume of a sphere is proportional to the cube of its radius, it follows from Equation 29.1 that the volume of a nucleus (assumed to be spherical) is directly proportional to \(A \), the total number of nucleons. This relationship then suggests all nuclei have nearly the same density. Nucleons combine to form a nucleus as though they were tightly packed spheres (Fig. 29.2).

Nuclear Stability

Given that the nucleus consists of a closely packed collection of protons and neutrons, you might be surprised that it can even exist. The very large repulsive electrostatic forces between protons should cause the nucleus to fly apart. Nuclei, however, are stable because of the presence of another, short-range (about 2-fm) force: the **nuclear force**, an attractive force that acts between all nuclear particles. The protons attract each other via the nuclear force, and at the same time they repel each other through the Coulomb force. The attractive nuclear force also acts between pairs of neutrons and between neutrons and protons.

The nuclear attractive force is stronger than the Coulomb repulsive force within the nucleus (at short ranges). If it were not, stable nuclei would not exist. Moreover, the strong nuclear force is nearly independent of charge. In other words, the nuclear forces associated with proton–proton, proton–neutron, and neutron–neutron interactions are approximately the same, apart from the additional repulsive Coulomb force for the proton–proton interaction.

There are about 260 stable nuclei; hundreds of others have been observed, but are unstable. A plot of \(N \) versus \(Z \) for a number of stable nuclei is given in Figure 29.3.
Note that light nuclei are most stable if they contain equal numbers of protons and neutrons so that \(N = Z \), but heavy nuclei are more stable if \(N > Z \). This difference can be partially understood by recognizing that as the number of protons increases, the strength of the Coulomb force increases, which tends to break the nucleus apart. As a result, more neutrons are needed to keep the nucleus stable because neutrons are affected only by the attractive nuclear forces. In effect, the additional neutrons “dilute” the nuclear charge density. Eventually, when \(Z = 83 \), the repulsive forces between protons cannot be compensated for by the addition of neutrons. Elements that contain more than 83 protons don’t have stable nuclei, but, rather, decay or disintegrate into other particles in various amounts of time. The masses and some other properties of selected isotopes are provided in Appendix B.

29.2 BINDING ENERGY

The total mass of a nucleus is always less than the sum of the masses of its nucleons. Also, because mass is another manifestation of energy, the total energy of the bound system (the nucleus) is less than the combined energy of the separated nucleons. This difference in energy is called the binding energy of the nucleus and can be thought of as the energy that must be added to a nucleus to break it apart into its separated neutrons and protons.

EXAMPLE 29.1 The Binding Energy of the Deuteron

Goal Calculate the binding energy of a nucleus.

Problem The nucleus of the deuterium atom, called the deuteron, consists of a proton and a neutron. Calculate the deuteron’s binding energy in MeV, given that its atomic mass, the mass of a deuterium nucleus plus an electron, is 2.014 102 u.

Strategy Calculate the sum of the masses of the individual particles and subtract the mass of the combined particle. The masses of the neutral atoms can be used instead of the nuclei because the electron masses cancel. Use the values from Appendix B. The mass of an atom given in Appendix B includes the mass of \(Z \) electrons, where \(Z \) is the atom’s atomic number.

Solution To find the binding energy, first sum the masses of the hydrogen atom and neutron and subtract the mass of the deuteron:

\[
\Delta m = (m_p + m_n) - m_d = (1.007825 \text{ u} + 1.008665 \text{ u}) - 2.014102 \text{ u} = 0.002388 \text{ u}
\]

Convert this mass difference to its equivalent in MeV:

\[
E_b = (0.002388 \text{ u}) \frac{931.5 \text{ MeV}}{1 \text{ u}} = 2.224 \text{ MeV}
\]

Remarks This result tells us that to separate a deuteron into a proton and a neutron, it’s necessary to add 2.224 MeV of energy to the deuteron to overcome the attractive nuclear force between the proton and the neutron. One way to supply the deuteron with this energy is bombarding it with energetic particles.

If the binding energy of a nucleus were zero, the nucleus would separate into its constituent protons and neutrons without the addition of any energy; that is, it would spontaneously break apart.

QUESTION 29.1

Tritium and helium-3 have the same number of nucleons, but tritium has one proton and two neutrons whereas helium-3 has two protons and one neutron. Without doing a calculation, which nucleus has a greater binding energy? Explain.

EXERCISE 29.1

Calculate the binding energy of \(^{2}\text{He}\).

Answer 7.718 MeV
It’s interesting to examine a plot of binding energy per nucleon, E_b/A, as a function of mass number for various stable nuclei (Fig. 29.4). Except for the lighter nuclei, the average binding energy per nucleon is about 8 MeV. Note that the curve peaks in the vicinity of $A = 60$, which means that nuclei with mass numbers greater or less than 60 are not as strongly bound as those near the middle of the periodic table. As we’ll see later, this fact allows energy to be released in fission and fusion reactions. The curve is slowly varying for $A > 40$, which suggests the nuclear force saturates. In other words, a particular nucleon can interact with only a limited number of other nucleons, which can be viewed as the “nearest neighbors” in the close-packed structure illustrated in Figure 29.2.

APPLYING PHYSICS 29.1 BINDING NUCLEONS AND ELECTRONS

Figure 29.4 shows a graph of the amount of energy required to remove a nucleon from the nucleus. The figure indicates that an approximately constant amount of energy is necessary to remove a nucleon above $A = 40$, whereas we saw in Chapter 28 that widely varying amounts of energy are required to remove an electron from the atom. What accounts for this difference?

Explanation In the case of Figure 29.4, the approximately constant value of the nuclear binding energy is a result of the short-range nature of the nuclear force. A given nucleon interacts only with its few nearest neighbors rather than with all the nucleons in the nucleus. Consequently, no matter how many nucleons are present in the nucleus, removing any nucleon involves separating it only from its nearest neighbors. The energy to do so is therefore approximately independent of how many nucleons are present. For the clearest comparison with the electron, think of averaging the energies required to remove all the electrons from an atom, from the outermost valence electron to the innermost K-shell electron. This average increases with increasing atomic number. The electrical force binding the electrons to the nucleus in an atom is a long-range force. An electron in an atom interacts with all the protons in the nucleus. When the nuclear charge increases, there is a stronger attraction between the nucleus and the electrons. Therefore, as the nuclear charge increases, more energy is necessary to remove an average electron.
29.3 RADIOACTIVITY

In 1896 Becquerel accidentally discovered that uranium salt crystals emit an invisible radiation that can darken a photographic plate even if the plate is covered to exclude light. After several such observations under controlled conditions, he concluded that the radiation emitted by the crystals was of a new type, one requiring no external stimulation. This spontaneous emission of radiation was soon called radioactivity. Subsequent experiments by other scientists showed that other substances were also radioactive.

The most significant investigations of this type were conducted by Marie and Pierre Curie. After several years of careful and laborious chemical separation processes on tons of pitchblende, a radioactive ore, the Curies reported the discovery of two previously unknown elements, both of which were radioactive. These elements were named polonium and radium. Subsequent experiments, including Rutherford’s famous work on alpha-particle scattering, suggested that radioactivity was the result of the decay, or disintegration, of unstable nuclei.

Three types of radiation can be emitted by a radioactive substance: alpha (α) particles, in which the emitted particles are 4He nuclei; beta (β) particles, in which the emitted particles are either electrons or positrons; and gamma (γ) rays, in which the emitted “rays” are high-energy photons. A positron is a particle similar to the electron in all respects except that it has a charge of +e. (The positron is said to be the antiparticle of the electron.) The symbol e– is used to designate an electron, and e+ designates a positron.

It’s possible to distinguish these three forms of radiation by using the scheme described in Figure 29.5. The radiation from a radioactive sample is directed into a region with a magnetic field, and the beam splits into three components, two bending in opposite directions and the third not changing direction. From this simple observation, it can be concluded that the radiation of the undeflected beam (the gamma ray) carries no charge, the component deflected upward contains positively charged particles (alpha particles), and the component deflected downward contains negatively charged particles (e–). If the beam includes a positron (e+), it is deflected upward.

The three types of radiation have quite different penetrating powers. Alpha particles barely penetrate a sheet of paper, beta particles can penetrate a few millimeters of aluminum, and gamma rays can penetrate several centimeters of lead.

The Decay Constant and Half-Life

Observation has shown that if a radioactive sample contains N radioactive nuclei at some instant, the number of nuclei, ΔN, that decay in a small time interval Δt is proportional to N; mathematically,

$$\frac{\Delta N}{\Delta t} \propto N$$

or

$$\Delta N = -\lambda N \Delta t \quad [29.2]$$

where λ is a constant called the decay constant. The negative sign signifies that N decreases with time; that is, ΔN is negative. The value of λ for any isotope determines the rate at which that isotope will decay. The decay rate, or activity R, of a sample is defined as the number of decays per second. From Equation 29.2, we see that the decay rate is

$$R = \frac{\Delta N}{\Delta t} = \lambda N \quad [29.3]$$

Isotopes with a large λ value decay rapidly; those with small λ decay slowly.
A general decay curve for a radioactive sample is shown in Active Figure 29.6. It can be shown from Equation 29.2 (using calculus) that the number of nuclei present varies with time according to the equation

\[N = N_0 e^{-\lambda t} \]

where \(N \) is the number of radioactive nuclei present at time \(t \), \(N_0 \) is the number present at time \(t = 0 \), and \(e \approx 2.718 \ldots \) is Euler’s constant. Processes that obey Equation 29.4a are sometimes said to undergo exponential decay.\(^1\)

Another parameter that is useful for characterizing radioactive decay is the half-life \(T_{1/2} \). The half-life of a radioactive substance is the time it takes for half of a given number of radioactive nuclei to decay. Using the concept of half-life, it can be shown that Equation 29.4a can also be written as

\[N = N_0 \left(\frac{1}{2} \right)^n \]

where \(n \) is the number of half-lives. The number \(n \) can take any nonnegative value and need not be an integer. From the definition, it follows that \(n \) is related to time \(t \) and the half-life \(T_{1/2} \) by

\[n = \frac{t}{T_{1/2}} \]

Setting \(N = N_0/2 \) and \(t = T_{1/2} \) in Equation 29.4a gives

\[\frac{N_0}{2} = N_0 e^{-\lambda T_{1/2}} \]

Writing this expression in the form \(e^{\lambda T_{1/2}} = 2 \) and taking the natural logarithm of both sides, we get

\[T_{1/2} = \frac{\ln 2}{\lambda} = \frac{0.693}{\lambda} \]

Equation 29.5 is a convenient expression relating the half-life to the decay constant. Note that after an elapsed time of one half-life, \(N_0/2 \) radioactive nuclei remain (by definition); after two half-lives, half of those will have decayed and \(N_0/4 \) radioactive nuclei will be left; after three half-lives, \(N_0/8 \) will be left; and so on.

The unit of activity \(R \) is the curie (Ci), defined as

\[1 \text{ Ci} = 3.7 \times 10^{10} \text{ decays/s} \]

This unit was selected as the original activity unit because it is the approximate activity of 1 g of radium. The SI unit of activity is the becquerel (Bq):

\[1 \text{ Bq} = 1 \text{ decay/s} \]

Therefore, 1 Ci = 3.7 × 10¹⁰ Bq. The most commonly used units of activity are the millicurie (10⁻³ Ci) and the microcurie (10⁻⁶ Ci).

QUICK QUIZ 29.1 True or False: A radioactive atom always decays after two half-lives have elapsed.

QUICK QUIZ 29.2 What fraction of a radioactive sample has decayed after three half-lives have elapsed? (a) 1/8 (b) 3/4 (c) 7/8 (d) none of these

QUICK QUIZ 29.3 Suppose the decay constant of radioactive substance A is twice the decay constant of radioactive substance B. If substance B has a half-life of 4 h, what’s the half-life of substance A? (a) 8 h (b) 4 h (c) 2 h

\(^1\)Other examples of exponential decay were discussed in Chapter 18 in connection with RC circuits and in Chapter 20 in connection with RL circuits.
Example 29.2 The Activity of Radium

Goal Calculate the activity of a radioactive substance at different times.

Problem The half-life of the radioactive nucleus $^{226}_{88}$Ra is $1.6 	imes 10^3$ yr. If a sample initially contains $3.00 	imes 10^{16}$ such nuclei, determine (a) the initial activity in curies, (b) the number of radium nuclei remaining after $4.8 	imes 10^3$ yr, and (c) the activity at this later time.

Strategy For parts (a) and (c), find the decay constant and multiply it by the number of nuclei. Part (b) requires multiplying the initial number of nuclei by one-half for every elapsed half-life. (Essentially, this is an application of Eq. 29.4b.)

Solution

(a) Determine the initial activity in curies.

Convert the half-life to seconds:

$$T_{1/2} = (1.6 	imes 10^3 \text{ yr})(3.156 	imes 10^7 \text{ s/yr}) = 5.0 	imes 10^{10} \text{ s}$$

Substitute this value into Equation 29.5 to get the decay constant:

$$\lambda = \frac{0.693}{T_{1/2}} = \frac{0.693}{5.0 	imes 10^{10} \text{ s}} = 1.4 	imes 10^{-11} \text{ s}^{-1}$$

Calculate the activity of the sample at $t = 0$, using $R_0 = \lambda N_0$, where R_0 is the decay rate at $t = 0$ and N_0 is the number of radioactive nuclei present at $t = 0$:

$$R_0 = \lambda N_0 = (1.4 	imes 10^{-11} \text{ s}^{-1})(3.0 \times 10^{16} \text{ nuclei}) = 4.2 \times 10^5 \text{ decays/s}$$

Convert to curies to obtain the activity at $t = 0$, using $1 \text{ Ci} = 3.7 \times 10^{10} \text{ decays/s}$:

$$R_0 = \left(\frac{1 \text{ Ci}}{3.7 \times 10^{10} \text{ decays/s}}\right)(4.2 \times 10^5 \text{ decays/s}) = 1.1 \times 10^{-5} \text{ Ci} = 11 \mu\text{Ci}$$

(b) How many radium nuclei remain after 4.8×10^3 yr?

Calculate the number of half-lives, n:

$$n = \frac{4.8 \times 10^3 \text{ yr}}{1.6 \times 10^7 \text{ yr/half-life}} = 3.0 \text{ half-lives}$$

Multiply the initial number of nuclei by the number of factors of one-half:

$$N = N_0 \left(\frac{1}{2}\right)^n$$

Substitute $N_0 = 3.0 \times 10^{16}$ and $n = 3.0$:

$$N = (3.0 \times 10^{16} \text{ nuclei})\left(\frac{1}{2}\right)^{3.0} = 3.8 \times 10^{15} \text{ nuclei}$$

(c) Calculate the activity after 4.8×10^3 yr.

Multiply the number of remaining nuclei by the decay constant to find the activity R:

$$R = \lambda N = (1.4 \times 10^{-11} \text{ s}^{-1})(3.8 \times 10^{15} \text{ nuclei}) = 5.3 \times 10^4 \text{ decays/s}$$

$$= 1.4 \mu\text{Ci}$$

Remarks The activity is reduced by half every half-life, which is naturally the case because activity is proportional to the number of remaining nuclei. The precise number of nuclei at any time is never truly exact because particles decay according to a probability. The larger the sample, however, the more accurate the predictions from Equation 29.4.

Question 29.2

How would doubling the initial mass of radioactive material affect the initial activity? How would it affect the half-life?

Exercise 29.2

Find (a) the number of remaining radium nuclei after 3.2×10^3 yr and (b) the activity at this time.

Answers (a) 7.5×10^{15} nuclei (b) $2.8 \mu\text{Ci}$
29.4 THE DECAY PROCESSES

As stated in the previous section, radioactive nuclei decay spontaneously via alpha, beta, and gamma decay. As we’ll see in this section, these processes are very different from one another.

Alpha Decay

If a nucleus emits an alpha particle (^4_2He), it loses two protons and two neutrons. Therefore, the neutron number N of a single nucleus decreases by 2, Z decreases by 2, and A decreases by 4. The decay can be written symbolically as

$$^4_2X \rightarrow \frac{A-4}{Z-2}^4_2Y + \frac{4}{2}\text{He} \quad [29.8]$$

where X is called the **parent nucleus** and Y is known as the **daughter nucleus**. As examples, ^{238}U and ^{226}Ra are both alpha emitters and decay according to the schemes

$$^{238}_{92}\text{U} \rightarrow ^{234}_{90}\text{Th} + \frac{4}{2}\text{He} \quad [29.9]$$

and

$$^{226}_{88}\text{Ra} \rightarrow ^{222}_{86}\text{Rn} + \frac{4}{2}\text{He} \quad [29.10]$$

The half-life for ^{238}U decay is 4.47×10^9 years, and the half-life for ^{226}Ra decay is 1.60×10^3 years. In both cases, note that the mass number A of the daughter nucleus is four less than that of the parent nucleus, and the atomic number Z is reduced by two. The differences are accounted for in the emitted alpha particle (the ^4_2He nucleus).

The decay of ^{226}Ra is shown in Active Figure 29.7. When one element changes into another, as happens in alpha decay, the process is called **spontaneous decay** or transmutation. As a general rule, (1) the sum of the mass numbers A must be the same on both sides of the equation, and (2) the sum of the atomic numbers Z must be the same on both sides of the equation.

For alpha emission to occur, the mass of the parent must be greater than the combined mass of the daughter and the alpha particle. In the decay process, this excess mass is converted into energy of other forms and appears in the form of kinetic energy in the daughter nucleus and the alpha particle. Most of the kinetic energy is carried away by the alpha particle because it is much less massive than the daughter nucleus. This can be understood by first noting that a particle’s kinetic energy and momentum p are related as follows:

$$KE = \frac{p^2}{2m}$$

Because momentum is conserved, the two particles emitted in the decay of a nucleus at rest must have equal, but oppositely directed, momenta. As a result, the lighter particle, with the smaller mass in the denominator, has more kinetic energy than the more massive particle.

ACTIVE FIGURE 29.7

The alpha decay of radium-226. The radium nucleus is initially at rest. After the decay, the radon nucleus has kinetic energy KE_{Rn} and momentum \vec{p}_{Rn}, and the alpha particle has kinetic energy KE_{α} and momentum \vec{p}_{α}.

APPLYING PHYSICS 29.2 ENERGY AND HALF-LIFE

In comparing alpha decay energies from a number of radioactive nuclides, why is it found that the half-life of the decay goes down as the energy of the decay goes up? It should seem reasonable that the higher the energy of the alpha particle, the more likely it is to escape the confines of the nucleus. The higher probability of escape translates to a faster rate of decay, which appears as a shorter half-life.
EXAMPLE 29.3 Decaying Radium

Goal Calculate the energy released during an alpha decay.

Problem We showed that the $^{226}_{88}$Ra nucleus undergoes alpha decay to $^{222}_{86}$Rn (Eq. 29.10). Calculate the amount of energy liberated in this decay. Take the mass of $^{226}_{88}$Ra to be 226.025 402 u, that of $^{222}_{86}$Rn to be 222.017 571 u, and that of 4He to be 4.002 602 u, as found in Appendix B.

Strategy The solution is a matter of subtracting the neutral masses of the daughter particles from the original mass of the radon atom.

Solution

Compute the sum of the mass of the daughter particle, m_d, and the mass of the alpha particle, m_a:

$m_d + m_a = 222.017 571 \text{ u} + 4.002 602 \text{ u} = 226.020 173 \text{ u}$

Compute the loss of mass, Δm, during the decay by subtracting the previous result from M_p, the mass of the original particle:

$\Delta m = M_p - (m_d + m_a) = 226.025 402 \text{ u} - 226.020 173 \text{ u}$

$\Delta m = 0.005 229 \text{ u}$

Convert the loss of mass Δm to its equivalent energy in MeV:

$E = (0.005 229 \text{ u})(931.494 \text{ MeV/u}) = 4.871 \text{ MeV}$

Remark The potential barrier is typically higher than this value of the energy, but quantum tunneling permits the event to occur anyway.

QUESTION 29.3

Convert the final answer to joules and estimate the energy produced by an Avogadro’s number of such decays.

EXERCISE 29.3

Calculate the energy released when 8Be splits into two alpha particles. Beryllium-8 has an atomic mass of 8.005 305 u.

Answer 0.094 1 MeV

Beta Decay

When a radioactive nucleus undergoes beta decay, the daughter nucleus has the same number of nucleons as the parent nucleus, but the atomic number is changed by 1:

$^A_2X \rightarrow z^+Y + e^-$ \hspace{1cm} [29.11]

$^A_2X \rightarrow z^-Y + e^+$ \hspace{1cm} [29.12]

Again, note that the nucleon number and total charge are both conserved in these decays. As we will see shortly, however, these processes are not described completely by these expressions. A typical beta decay event is

$^{14}_{6}C \rightarrow ^{14}_{7}N + e^-$ \hspace{1cm} [29.13]

The emission of electrons from a nucleus is surprising because, in all our previous discussions, we stated that the nucleus is composed of protons and neutrons only. This apparent discrepancy can be explained by noting that the emitted electron is created in the nucleus by a process in which a neutron is transformed into a proton. This process can be represented by

$^1_0n \rightarrow ^1_1p + e^-$ \hspace{1cm} [29.14]

Consider the energy of the system of Equation 29.13 before and after decay. As with alpha decay, energy must be conserved in beta decay. The next example illustrates how to calculate the amount of energy released in the beta decay of $^{14}_{6}C$.

EXAMPLE 29.4 The Beta Decay of Carbon-14

Goal Calculate the energy released in a beta decay.

Problem Find the energy liberated in the beta decay of $^{14}_{6}C$ to $^{14}_{7}N$, as represented by Equation 29.13. That equation refers to nuclei, whereas Appendix B gives the masses of neutral atoms. Adding six electrons to both sides of Equation 29.13 yields

$$^{14}_{6}C \text{ atom} \rightarrow ^{14}_{7}N \text{ atom}$$

Strategy As in preceding problems, finding the released energy involves computing the difference in mass between the resultant particle(s) and the initial particle(s) and converting to MeV.

Solution Obtain the masses of $^{14}_{6}C$ and $^{14}_{7}N$ from Appendix B and compute the difference between them:

$$\Delta m = m_C - m_N = 14.003\,242\,u - 14.003\,074\,u = 0.000\,168\,u$$

Convert the mass difference to MeV:

$$E = (0.000\,168\,u)(931.494\,\text{MeV/u}) = 0.156\,\text{MeV}$$

Remarks The calculated energy is generally more than the energy observed in this process. The discrepancy led to a crisis in physics because it appeared that energy wasn’t conserved. As discussed below, this crisis was resolved by the discovery that another particle was also produced in the reaction.

QUESTION 29.4

Is the binding energy per nucleon of the nitrogen-14 nucleus greater or less than the binding energy per nucleon for the carbon-14 nucleus? Justify your answer.

EXERCISE 29.4

Calculate the maximum energy liberated in the beta decay of radioactive potassium to calcium: $^{40}_{19}K \rightarrow ^{40}_{20}Ca + e^-$.

Answer 1.31 MeV

From Example 29.4, we see that the energy released in the beta decay of $^{14}_{6}C$ is approximately 0.16 MeV. As with alpha decay, we expect the electron to carry away virtually all this energy as kinetic energy because, apparently, it is the lightest particle produced in the decay. As Figure 29.8 shows, however, only a small number of electrons have this maximum kinetic energy, represented as K_{max} on the graph; most of the electrons emitted have kinetic energies lower than that predicted value. If the daughter nucleus and the electron aren’t carrying away this liberated energy, where has the energy gone? As an additional complication, further analysis of beta decay shows that the principles of conservation of both angular momentum and linear momentum appear to have been violated!

In 1930 Pauli proposed that a third particle must be present to carry away the “missing” energy and to conserve momentum. Later, Enrico Fermi developed a complete theory of beta decay and named this particle the neutrino (“little neutral one”) because it had to be electrically neutral and have little or no mass. Although it eluded detection for many years, the neutrino (ν) was finally detected experimentally in 1956. The neutrino has the following properties:

- Zero electric charge
- A mass much smaller than that of the electron, but probably not zero. (Recent experiments suggest that the neutrino definitely has mass, but the value is uncertain, perhaps less than 1 eV/c2.)
- A spin of $\frac{1}{2}$
- Very weak interaction with matter, making it difficult to detect

With the introduction of the neutrino, we can now represent the beta decay process of Equation 29.13 in its correct form:

$$^{14}_{6}C \rightarrow ^{14}_{7}N + e^- + \nu$$ \hspace{1cm} [29.15]
TIP 29.3 Mass Number of the Electron

Another notation that is sometimes used for an electron is \bar{e}. This notation does not imply that the electron has zero rest energy. The mass of the electron is much smaller than that of the lightest nucleon, so we can approximate it as zero when we study nuclear decays and reactions.

ENRICO FERMI

Italian Physicist (1901–1954)

Fermi was awarded the Nobel Prize in Physics in 1938 for producing the transuranic elements by neutron irradiation and for his discovery of nuclear reactions brought about by slow neutrons. He made many other outstanding contributions to physics, including his theory of beta decay, the free-electron theory of metals, and the development of the world’s first fission reactor in 1942. Fermi was truly a gifted theoretical and experimental physicist. He was also well known for his ability to present physics in a clear and exciting manner. “Whatever Nature has in store for mankind, unpleasant as it may be, men must accept, for ignorance is never better than knowledge.”

The bar in the symbol \bar{e} indicates an antineutrino. To explain what an antineutrino is, we first consider the following decay:

$$^{12}\text{N} \rightarrow ^{12}\text{C} + e^+ + \nu$$ \[29.16\]

Here, we see that when ^{12}N decays into ^{12}C, a particle is produced that is identical to the electron except that it has a positive charge of $+e$. This particle is called a positron. Because it is like the electron in all respects except charge, the positron is said to be the antiparticle of the electron. We discuss antiparticles further in Chapter 30; for now, it suffices to say that, in beta decay, an electron and an antineutrino are emitted or a positron and a neutrino are emitted.

Unlike beta decay, which results in a daughter particle with a variety of possible kinetic energies, alpha decays come in discrete amounts, as seen in Figure 29.8b. This is because the two daughter particles have momenta with equal magnitude and opposite direction and are each composed of a fixed number of nucleons.

Gamma Decay

Very often a nucleus that undergoes radioactive decay is left in an excited energy state. The nucleus can then undergo a second decay to a lower energy state—perhaps even to the ground state—by emitting one or more high-energy photons. The process is similar to the emission of light by an atom. An atom emits radiation to release some extra energy when an electron “jumps” from a state of high energy to a state of lower energy. Likewise, the nucleus uses essentially the same method to release any extra energy it may have following a decay or some other nuclear event. In nuclear de-excitation, the “jumps” that release energy are made by protons or neutrons in the nucleus as they move from a higher energy level to a lower level. The photons emitted in the process are called gamma rays, which have very high energy relative to the energy of visible light.

A nucleus may reach an excited state as the result of a violent collision with another particle. It’s more common, however, for a nucleus to be in an excited state as a result of alpha or beta decay. The following sequence of events typifies the gamma decay processes:

$$^{12}\text{B} \rightarrow ^{12}\text{C}^* + e^- + \bar{\nu}$$ \[29.17\]

$$^{12}\text{C}^* \rightarrow ^{12}\text{C} + \gamma$$ \[29.18\]

Equation 29.17 represents a beta decay in which ^{12}B decays to $^{12}\text{C}^*$, where the asterisk indicates that the carbon nucleus is left in an excited state following the decay. The excited carbon nucleus then decays to the ground state by emitting a gamma ray, as indicated by Equation 29.18. Note that gamma emission doesn’t result in any change in either Z or A.

Practical Uses of Radioactivity

CARBON DATING

The beta decay of ^{14}C given by Equation 29.15 is commonly used to date organic samples. Cosmic rays (high-energy particles from outer space) in the upper atmosphere cause nuclear reactions that create ^{14}C from ^{14}N. In fact, the ratio of ^{14}C to ^{12}C (by numbers of nuclei) in the carbon dioxide molecules of our atmosphere has a constant value of about 1.3×10^{-12}, as determined by measuring carbon ratios in tree rings. All living organisms have the same ratio of ^{14}C to ^{12}C because they continuously exchange carbon dioxide with their surroundings. When an organism dies, however, it no longer absorbs ^{14}C from the atmosphere, so the ratio of ^{14}C to ^{12}C decreases as the result of the beta decay of ^{14}C. It’s therefore possible to determine the age of a material by measuring its activity per unit mass as a result of the decay of ^{14}C. Through carbon dating, samples of wood, charcoal, bone, and shell have been identified as having lived from 1,000 to 25,000 years ago. This knowledge has helped researchers reconstruct the history of living organisms—including humans—during that time span.
SMOKE DETECTORS Smoke detectors are frequently used in homes and industry for fire protection. Most of the common ones are the ionization-type that use radioactive materials. (See Fig. 29.9.) A smoke detector consists of an ionization chamber, a sensitive current detector, and an alarm. A weak radioactive source ionizes the air in the chamber of the detector, which creates charged particles. A voltage is maintained between the plates inside the chamber, setting up a small but detectable current in the external circuit. As long as the current is maintained, the alarm is deactivated. If smoke drifts into the chamber, though, the ions become attached to the smoke particles. These heavier particles do not drift as readily as do the lighter ions and cause a decrease in the detector current. The external circuit senses this decrease in current and sets off the alarm.

RADON DETECTION Radioactivity can also affect our daily lives in harmful ways. Soon after the discovery of radium by the Curies, it was found that the air in contact with radium compounds becomes radioactive. It was then shown that this radioactivity came from the radium itself, and the product was therefore called “radium emanation.” Rutherford and Frederick Soddy succeeded in condensing this “emanation,” confirming that it was a real substance: the inert, gaseous element now called radon (Rn). Later, it was discovered that the air in uranium mines is radioactive because of the presence of radon gas. The mines must therefore be well ventilated to help protect the miners. Finally, the fear of radon pollution has moved from uranium mines into our own homes. Because certain types of rock, soil, brick, and concrete contain small quantities of radium, some of the resulting radon gas finds its way into our homes and other buildings. The most serious problems arise from leakage of radon from the ground into the structure. One practical remedy is to exhaust the air through a pipe just above the underlying soil or gravel directly to the outdoors by means of a small fan or blower.

To use radioactive dating techniques, we need to recast some of the equations already introduced. We start by multiplying both sides of Equation 29.4 by λ:

$$\lambda N = \lambda N_0 e^{-\lambda t}$$

From Equation 29.3, we have $\lambda N = R$ and $\lambda N_0 = R_0$. Substitute these expressions into the above equation and divide through by R_0:

$$\frac{R}{R_0} = e^{-\lambda t}$$

where R is the present activity and R_0 was the activity when the object in question was part of a living organism. We can solve for time by taking the natural logarithm of both sides of the foregoing equation:

$$\ln \left(\frac{R}{R_0} \right) = \ln (e^{-\lambda t}) = -\lambda t$$

$$t = -\frac{\ln \left(\frac{R}{R_0} \right)}{\lambda}$$

[29.19]

EXAMPLE 29.5 Should We Report This Skeleton to Homicide?

Goal Apply the technique of carbon-14 dating.

Problem A 50.0-g sample of carbon taken from the pelvic bone of a skeleton is found to have a carbon-14 decay rate of 200.0 decays/min. It is known that carbon from a living organism has a decay rate of 15.0 decays/min $\cdot g$ and that 14C has a half-life of 5730 yr $= 3.01 \times 10^3$ min. Find the age of the skeleton.

Strategy Calculate the original activity and the decay constant and then substitute those numbers and the current activity into Equation 29.19.
Solution
Calculate the original activity \(R_0 \) from the decay rate and the mass of the sample:

\[
R_0 = \left(\frac{15.0 \text{ decays}}{\text{min} \cdot \text{g}} \right) \left(50.0 \text{ g} \right) = 7.50 \times 10^2 \text{ decays/min}
\]

Find the decay constant from Equation 29.5:

\[
\lambda = \frac{0.693}{T_{1/2}} = \frac{0.693}{3.01 \times 10^9 \text{ min}} = 2.30 \times 10^{-10} \text{ min}^{-1}
\]

\(t \) is given, so now we substitute all values into Equation 29.19 to find the age of the skeleton:

\[
t = - \frac{\ln \left(\frac{R}{R_0} \right)}{\lambda} = - \frac{\ln \left(\frac{200.0 \text{ decays/min}}{7.50 \times 10^2 \text{ decays/min}} \right)}{2.30 \times 10^{-10} \text{ min}^{-1}}
\]

\[
t = 1.32 \times 2.30 \times 10^{-10} \text{ min}^{-1} = 5.74 \times 10^9 \text{ min} = 1.09 \times 10^4 \text{ yr}
\]

Remark
For much longer periods, other radioactive substances with longer half-lives must be used to develop estimates.

QUESTION 29.5
Do the results of carbon dating depend on the mass of the original sample?

EXERCISE 29.5
A sample of carbon of mass 7.60 g taken from an animal jawbone has an activity of 4.00 decays/min. How old is the jawbone?

Answer \(2.77 \times 10^4 \text{ yr} \)

29.5 NATURAL RADIOACTIVITY

Radioactive nuclei are generally classified into two groups: (1) unstable nuclei found in nature, which give rise to what is called natural radioactivity, and (2) nuclei produced in the laboratory through nuclear reactions, which exhibit artificial radioactivity.

Three series of naturally occurring radioactive nuclei exist (Table 29.2). Each starts with a specific long-lived radioactive isotope with half-life exceeding that of any of its descendants. The fourth series in Table 29.2 begins with \(^{237}\text{Np}\), a transuranic element (an element having an atomic number greater than that of uranium) not found in nature. This element has a half-life of “only” \(2.14 \times 10^6 \text{ yr}\).

The two uranium series are somewhat more complex than the \(^{232}\text{Th}\) series (Fig. 29.10). Also, there are several other naturally occurring radioactive isotopes, such as \(^{14}\text{C}\) and \(^{40}\text{K}\), that are not part of either decay series.

Natural radioactivity constantly supplies our environment with radioactive elements that would otherwise have disappeared long ago. For example, because the solar system is about \(5 \times 10^9 \text{ years old}\), the supply of \(^{226}\text{Ra}\) (with a half-life of only \(1600 \text{ yr}\)) would have been depleted by radioactive decay long ago were it not for the decay series that starts with \(^{238}\text{U}\), with a half-life of \(4.47 \times 10^9 \text{ yr}\).

TABLE 29.2
The Four Radioactive Series

<table>
<thead>
<tr>
<th>Series</th>
<th>Starting Isotope</th>
<th>Half-life (years)</th>
<th>Stable End Product</th>
</tr>
</thead>
<tbody>
<tr>
<td>Uranium</td>
<td>(^{238}\text{U})</td>
<td>(4.47 \times 10^9)</td>
<td>(^{206}\text{Pb})</td>
</tr>
<tr>
<td>Actinium</td>
<td>(^{235}\text{U})</td>
<td>(7.04 \times 10^8)</td>
<td>(^{207}\text{Pb})</td>
</tr>
<tr>
<td>Thorium</td>
<td>(^{232}\text{Th})</td>
<td>(1.41 \times 10^{10})</td>
<td>(^{208}\text{Pb})</td>
</tr>
<tr>
<td>Neptunium</td>
<td>(^{237}\text{Np})</td>
<td>(2.14 \times 10^6)</td>
<td>(^{209}\text{Pb})</td>
</tr>
</tbody>
</table>
29.6 NUCLEAR REACTIONS

It is possible to change the structure of nuclei by bombarding them with energetic particles. Such changes are called nuclear reactions. Rutherford was the first to observe nuclear reactions, using naturally occurring radioactive sources for the bombarding particles. He found that protons were released when alpha particles were allowed to collide with nitrogen atoms. The process can be represented symbolically as

$$^4_2\text{He} + ^7_4\text{N} \rightarrow X + ^1_1\text{H} \quad [29.20]$$

This equation says that an alpha particle (^4_2He) strikes a nitrogen nucleus and produces an unknown product nucleus (X) and a proton (^1_1H). Balancing atomic numbers and mass numbers, as we did for radioactive decay, enables us to conclude that the unknown is characterized as $^7_{f 17}X$. Because the element with atomic number 8 is oxygen, we see that the reaction is

$$^4_2\text{He} + ^7_4\text{N} \rightarrow ^{17}_{8}\text{O} + ^1_1\text{H} \quad [29.21]$$

This nuclear reaction starts with two stable isotopes, helium and nitrogen, and produces two different stable isotopes, hydrogen and oxygen.

Since the time of Rutherford, thousands of nuclear reactions have been observed, particularly following the development of charged-particle accelerators in the 1930s. With today’s advanced technology in particle accelerators and particle detectors, it is possible to achieve particle energies of at least 1,000 GeV or 1 TeV. These high-energy particles are used to create new particles whose properties are helping solve the mysteries of the nucleus (and indeed, of the Universe itself).

QUICK QUIZ 29.4 Which of the following are possible reactions?

(a) $^1_0\text{n} + ^{235}_{92}\text{U} \rightarrow ^{140}_{54}\text{Xe} + ^{92}_{40}\text{Sr} + 2(^1_0\text{n})$
(b) $^1_0\text{n} + ^{237}_{92}\text{U} \rightarrow ^{132}_{50}\text{Sn} + ^{92}_{42}\text{Mo} + 3(^1_0\text{n})$
(c) $^1_0\text{n} + ^{239}_{94}\text{Pu} \rightarrow ^{157}_{54}\text{Ba} + ^{95}_{41}\text{Nb} + 3(^1_0\text{n})$

EXAMPLE 29.6 The Discovery of the Neutron

Goal Balance a nuclear reaction to determine an unknown decay product.

Problem A nuclear reaction of significant note occurred in 1932 when Robert Chadwick, in England, bombarded a beryllium target with alpha particles. Analysis of the experiment indicated that the following reaction occurred:

$$^4_2\text{He} + ^9_4\text{Be} \rightarrow ^{12}_{6}\text{C} + ^1_0\text{X}$$

What is ^1_0X in this reaction?

Strategy Balancing mass numbers and atomic numbers yields the answer.

Solution

Write an equation relating the atomic masses on either side:

$$4 + 9 = 12 + A \rightarrow A = 1$$

Write an equation relating the atomic numbers:

$$2 + 4 = 6 + Z \rightarrow Z = 0$$

Identify the particle:

$^1_0\text{X} = ^1_0\text{n}$ (a neutron)

Remarks This was the first experiment to provide positive proof of the existence of neutrons.

QUESTION 29.6 Where in nature is the reaction between helium and beryllium commonly found?
EXERCISE 29.6
Identify the unknown particle in the reaction
\[^2\text{He} + ^{14}\text{N} \rightarrow ^{17}\text{O} + \text{X} \]

Answer \(\text{X} = ^1\text{H} \) (a neutral hydrogen atom)

Q Values
We have just examined some nuclear reactions for which mass numbers and atomic numbers must be balanced in the equations. We will now consider the energy involved in these reactions because energy is another important quantity that must be conserved.

We illustrate this procedure by analyzing the nuclear reaction
\[^3\text{H} + ^{14}\text{N} \rightarrow ^{12}\text{C} + ^2\text{He} \] \[\text{[29.22]} \]
The total mass on the left side of the equation is the sum of the mass of \(^3\text{H} \) (2.014 102 \(\text{u} \)) and the mass of \(^{14}\text{N} \) (14.003 074 \(\text{u} \)), which equals 16.017 176 \(\text{u} \). Similarly, the mass on the right side of the equation is the sum of the mass of \(^{12}\text{C} \) (12.000 000 \(\text{u} \)) plus the mass of \(^2\text{He} \) (4.002 602 \(\text{u} \)), for a total of 16.002 602 \(\text{u} \). Thus, the total mass before the reaction is greater than the total mass after the reaction. The mass difference in the reaction is equal to 16.017 176 \(\text{u} \) \(- 16.002 602 \text{u} = 0.014 574 \text{u} \). This “lost” mass is converted to the kinetic energy of the nuclei present after the reaction. In energy units, 0.014 574 \(\text{u} \) is equivalent to 13.576 MeV of kinetic energy carried away by the carbon and helium nuclei.

The energy required to balance the equation is called the \(Q \) value of the reaction. In Equation 29.22, the \(Q \) value is 13.576 MeV. Nuclear reactions in which there is a release of energy—that is, positive \(Q \) values—are said to be exothermic reactions.

The energy balance sheet isn’t complete, however, because we must also consider the kinetic energy of the incident particle before the collision. As an example, assume the deuteron in Equation 29.22 has a kinetic energy of 5 MeV. Adding this value to our \(Q \) value, we find that the carbon and helium nuclei have a total kinetic energy of 18.576 MeV following the reaction.

Now consider the reaction
\[^2\text{He} + ^{14}\text{N} \rightarrow ^{17}\text{O} + ^1\text{H} \] \[\text{[29.23]} \]
Before the reaction, the total mass is the sum of the masses of the alpha particle and the nitrogen nucleus: 4.002 602 \(\text{u} \) \(+ 14.003 074 \text{u} = 18.005 676 \text{u} \). After the reaction, the total mass is the sum of the masses of the oxygen nucleus and the proton: 16.999 133 \(\text{u} \) \(+ 1.007 825 \text{u} = 18.006 958 \text{u} \). In this case the total mass after the reaction is greater than the total mass before the reaction. The mass deficit is 0.001 282 \(\text{u} \), equivalent to an energy deficit of 1.194 MeV. This deficit is expressed by the negative \(Q \) value of the reaction, \(-1.194 \text{ MeV} \). Reactions with negative \(Q \) values are called endothermic reactions. Such reactions won’t take place unless the incoming particle has at least enough kinetic energy to overcome the energy deficit.

At first it might appear that the reaction in Equation 29.23 can take place if the incoming alpha particle has a kinetic energy of 1.194 MeV. In practice, however, the alpha particle must have more energy than that. If it has an energy of only 1.194 MeV, energy is conserved; careful analysis, though, shows that momentum isn’t, which can be understood by recognizing that the incoming alpha particle has some momentum before the reaction. If its kinetic energy is only 1.194 MeV, however, the products (oxygen and a proton) would be created with zero kinetic energy and thus zero momentum. It can be shown that to conserve both energy and momentum, the incoming particle must have a minimum kinetic energy given by
\[KE_{\text{min}} = \left(1 + \frac{m}{M}\right) |Q| \] \[\text{[29.24]} \]
where \(m \) is the mass of the incident particle, \(M \) is the mass of the target, and the absolute value of the \(Q \) value is used. For the reaction given by Equation 29.23, we find that

\[
KE_{\text{min}} = \left(1 + \frac{4.002 \, 662}{14.003 \, 074}\right) \cdot |1.194 \, \text{MeV}| = 1.535 \, \text{MeV}
\]

This minimum value of the kinetic energy of the incoming particle is called the threshold energy. The nuclear reaction shown in Equation 29.23 won’t occur if the incoming alpha particle has a kinetic energy of less than 1.535 MeV, but can occur if its kinetic energy is equal to or greater than 1.535 MeV.

QUICK QUIZ 29.5 If the \(Q \) value of an endothermic reaction is \(-2.17\) MeV, the minimum kinetic energy needed in the reactant nuclei for the reaction to occur must be (a) equal to \(2.17\) MeV, (b) greater than \(2.17\) MeV, (c) less than \(2.17\) MeV, or (d) exactly half of \(2.17\) MeV.

29.7 Medical Applications of Radiation

Radiation Damage in Matter

Radiation absorbed by matter can cause severe damage. The degree and kind of damage depend on several factors, including the type and energy of the radiation and the properties of the absorbing material. Radiation damage in biological organisms is due primarily to ionization effects in cells. The normal function of a cell may be disrupted when highly reactive ions or radicals are formed as the result of ionizing radiation. For example, hydrogen and hydroxyl radicals produced from water molecules can induce chemical reactions that may break bonds in proteins and other vital molecules. Large acute doses of radiation are especially dangerous because damage to a great number of molecules in a cell may cause the cell to die. Also, cells that do survive the radiation may become defective, which can lead to cancer.

In biological systems it is common to separate radiation damage into two categories: somatic damage and genetic damage. Somatic damage is radiation damage to any cells except the reproductive cells. Such damage can lead to cancer at high radiation levels or seriously alter the characteristics of specific organisms. Genetic damage affects only reproductive cells. Damage to the genes in reproductive cells can lead to defective offspring. Clearly, we must be concerned about the effect of diagnostic treatments, such as x-rays and other forms of exposure to radiation.

Several units are used to quantify radiation exposure and dose. The roentgen (R) is defined as the amount of ionizing radiation that will produce \(2.08 \times 10^9\) ion pairs in 1 cm\(^3\) of air under standard conditions. Equivalently, the roentgen is the amount of radiation that deposits \(8.76 \times 10^{-3}\) J of energy into 1 kg of air.

For most applications, the roentgen has been replaced by the rad (an acronym for radiation absorbed dose), defined as follows: One rad is the amount of radiation that deposits \(10^{-2}\) J of energy into 1 kg of absorbing material.

Although the rad is a perfectly good physical unit, it’s not the best unit for measuring the degree of biological damage produced by radiation because the degree of damage depends not only on the dose, but also on the type of radiation. For example, a given dose of alpha particles causes about ten times more biological damage than an equal dose of x-rays. The RBE (relative biological effectiveness) factor is defined as the number of rads of x-radiation or gamma radiation that produces the same biological damage as 1 rad of the radiation being used. The RBE factors for different types of radiation are given in Table 29.3 (page 930). Note that the values are only approximate because they vary with particle energy and the form of damage.
Finally, the rem (roentgen equivalent in man) is defined as the product of the dose in rads and the RBE factor:

\[
\text{Dose in rem} = \text{dose in rads} \times \text{RBE}
\]

According to this definition, 1 rem of any two kinds of radiation will produce the same amount of biological damage. From Table 29.3, we see that a dose of 1 rad of fast neutrons represents an effective dose of 10 rem and that 1 rad of X-radiation is equivalent to a dose of 1 rem.

Low-level radiation from natural sources, such as cosmic rays and radioactive rocks and soil, delivers a dose of about 0.13 rem/year per person. The upper limit of radiation dose recommended by the U.S. government (apart from background radiation and exposure related to medical procedures) is 0.5 rem/year. Many occupations involve higher levels of radiation exposure, and for individuals in these occupations, an upper limit of 5 rem/year has been set for whole-body exposure. Higher upper limits are permissible for certain parts of the body, such as the hands and forearms. An acute whole-body dose of 400 to 500 rem results in a mortality rate of about 50%. The most dangerous form of exposure is ingestion or inhalation of radioactive isotopes, especially those elements the body retains and concentrates, such as 90Sr. In some cases a dose of 1 000 rem can result from ingesting 1 mCi of radioactive material.

Sterilizing objects by exposing them to radiation has been going on for years, but in recent years the methods used have become safer to use and more economical. Most bacteria, worms, and insects are easily destroyed by exposure to gamma radiation from radioactive cobalt. There is no intake of radioactive nuclei by an organism in such sterilizing processes as there is in the use of radioactive tracers. The process is highly effective in destroying Trichinella worms in pork, salmonella bacteria in chickens, insect eggs in wheat, and surface bacteria on fruits and vegetables that can lead to rapid spoilage. Recently, the procedure has been expanded to include the sterilization of medical equipment while in its protective covering. Surgical gloves, sponges, sutures, and so forth are irradiated while packaged. Also, bone, cartilage, and skin used for grafting are often irradiated to reduce the chance of infection.

Table 29.3

<table>
<thead>
<tr>
<th>Radiation</th>
<th>RBE Factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>X-rays and gamma rays</td>
<td>1.0</td>
</tr>
<tr>
<td>Beta particles</td>
<td>1.0–1.7</td>
</tr>
<tr>
<td>Alpha particles</td>
<td>10–20</td>
</tr>
<tr>
<td>Slow neutrons</td>
<td>4–5</td>
</tr>
<tr>
<td>Fast neutrons and protons</td>
<td>10</td>
</tr>
<tr>
<td>Heavy ions</td>
<td>20</td>
</tr>
</tbody>
</table>

In medicine, radioactive isotopes are used to make radioactive tracers that can map various bodily processes in vivo. One of the most useful is tritiated water (3H$_2$O), which is a tracer of water because it tends to follow the path of water in the body. The thyroid gland produces radioactive iodine (131I), a tracer that can be used to image the gland. Radioactive tracers can also be used to image other body fluids, such as the blood. The development of radioactive tracers has made the study of the distribution of various bodily fluids much easier.

Tracing

Radioactive tracers are used to study the distribution of various substances in the body. For example, 131I is used to study the thyroid gland. The thyroid gland takes up iodine from the blood and concentrates it. The amount of radioactive iodine in the thyroid gland can be measured to study the function of the thyroid gland. Other radioactive tracers are used to study the distribution of other bodily fluids, such as the blood. The development of radioactive tracers has made the study of the distribution of various bodily fluids much easier.
A medical application of the use of radioactive tracers occurring in emergency situations is that of locating a hemorrhage inside the body. Often the location of the site cannot easily be determined, but radioactive chromium can identify the location with a high degree of precision. Chromium is taken up by red blood cells and carried uniformly throughout the body. The blood, however, will be dumped at a hemorrhage site, and the radioactivity of that region will increase markedly.

Tracing techniques are as wide ranging as human ingenuity can devise. Current applications range from checking the absorption of fluorine by teeth to checking contamination of food-processing equipment by cleansers to monitoring deterioration inside an automobile engine. In the last case a radioactive material is used in the manufacture of the pistons, and the oil is checked for radioactivity to determine the amount of wear on the pistons.

Magnetic Resonance Imaging (MRI)

The heart of magnetic resonance imaging (MRI) is that when a nucleus having a magnetic moment is placed in an external magnetic field, its moment precesses about the magnetic field with a frequency that is proportional to the field. For example, a proton, with a spin of $\frac{1}{2}$, can occupy one of two energy states when placed in an external magnetic field. The lower-energy state corresponds to the case in which the spin is aligned with the field, whereas the higher-energy state corresponds to the case in which the spin is opposite the field. Transitions between these two states can be observed with a technique known as nuclear magnetic resonance. A DC magnetic field is applied to align the magnetic moments, and a second, weak oscillating magnetic field is applied perpendicular to the DC field. When the frequency of the oscillating field is adjusted to match the precessional frequency of the magnetic moments, the nuclei will “flip” between the two spin states. These transitions result in a net absorption of energy by the spin system, which can be detected electronically.

In MRI, image reconstruction is obtained using spatially varying magnetic fields and a procedure for encoding each point in the sample being imaged. Two MRI images taken on a human head are shown in Figure 29.11. In practice, a computer-controlled pulse-sequencing technique is used to produce signals that are captured by a suitable processing device. The signals are then subjected to appropriate mathematical manipulations to provide data for the final image. The main advantage of MRI over other imaging techniques in medical diagnostics is that it causes minimal damage to cellular structures. Photons associated with the radio frequency signals used in MRI have energies of only about 10^{-7} eV. Because molecular bond strengths are much larger (on the order of 1 eV), the rf photons cause little cellular damage. In comparison, x-rays or γ-rays have energies ranging from 10^4 to 10^6 eV and can cause considerable cellular damage.

APPLICATION

Magnetic Resonance Imaging (MRI)

SUMMARY

29.1 Some Properties of Nuclei

29.2 Binding Energy

Nuclei are represented symbolically as A_ZX, where X represents the chemical symbol for the element. The quantity A is the mass number, which equals the total number of nucleons (neutrons plus protons) in the nucleus. The quantity Z is the atomic number, which equals the number of protons in the nucleus. Nuclei that contain the same number of protons but different numbers of neutrons are called isotopes. In other words, isotopes have the same Z values but different A values.

Most nuclei are approximately spherical, with an average radius given by

$$r = r_0 A^{1/3}$$

[29.1]

where r_0 is a constant equal to 1.2×10^{-15} m and A is the mass number.

The total mass of a nucleus is always less than the sum of the masses of its individual nucleons. This mass difference Δm, multiplied by c^2, gives the binding energy of the nucleus.
29.3 Radioactivity

The spontaneous emission of radiation by certain nuclei is called radioactivity. There are three processes by which a radioactive substance can decay: alpha (α) decay, in which the emitted particles are He nuclei; beta (β) decay, in which the emitted particles are electrons or positrons; and gamma (γ) decay, in which the emitted particles are high-energy photons.

The decay rate, or activity, R, of a sample is given by

$$R = \frac{\Delta N}{\Delta t} = \lambda N$$ \[29.3\]

where N is the number of radioactive nuclei at some instant and λ is a constant for a given substance called the decay constant.

Nuclei in a radioactive substance decay in such a way that the number of nuclei present varies with time according to the expression

$$N = N_0 e^{-\lambda t}$$ \[29.4a\]

where N is the number of radioactive nuclei present at time t, N_0 is the number at time $t = 0$, and $e = 2.718 \ldots$ is the base of the natural logarithms.

The half-life $T_{1/2}$ of a radioactive substance is the time required for half of a given number of radioactive nuclei to decay. The half-life is related to the decay constant by

$$T_{1/2} = \frac{0.693}{\lambda}$$ \[29.5\]

29.4 The Decay Processes

If a nucleus decays by alpha emission, it loses two protons and two neutrons. A typical alpha decay is

$$^{238}_{92}\text{U} \rightarrow ^{234}_{90}\text{Th} + ^4_2\text{He}$$ \[29.9\]

Note that in this decay, as in all radioactive decay processes, the sum of the Z values on the left equals the sum of the Z values on the right; the same is true for the A values.

A typical beta decay is

$$^{14}_{6}\text{C} \rightarrow ^{14}_{7}\text{N} + e^- + \nu$$ \[29.15\]

When a nucleus undergoes beta decay, an antineutrino is emitted along with an electron, or a neutrino along with a positron. A neutrino has zero electric charge and a small mass (which may be zero) and interacts weakly with matter.

Nuclei are often in an excited state following radioactive decay, and they release their extra energy by emitting a high-energy photon called a gamma ray (γ). A typical gamma-ray emission is

$$^{12}_{6}\text{C}^* \rightarrow ^{12}_{6}\text{C} + \gamma$$ \[29.18\]

where the asterisk indicates that the carbon nucleus was in an excited state before gamma emission.

29.6 Nuclear Reactions

Nuclear reactions can occur when a bombarding particle strikes another nucleus. A typical nuclear reaction is

$$^4_2\text{He} + ^4_{12}\text{C} \rightarrow ^6_{12}\text{O} + ^4_1\text{H}$$ \[29.21\]

In this reaction, an alpha particle strikes a nitrogen nucleus, producing an oxygen nucleus and a proton. As in radioactive decay, atomic numbers and mass numbers balance on the two sides of the arrow.

Nuclear reactions in which energy is released are said to be exothermic reactions and are characterized by positive Q values. Reactions with negative Q values, called endothermic reactions, cannot occur unless the incoming particle has at least enough kinetic energy to overcome the energy deficit. To conserve both energy and momentum, the incoming particle must have a minimum kinetic energy, called the threshold energy, given by

$$KE_{\text{min}} = \left(1 + \frac{m}{M} \right) |Q|$$ \[29.24\]

where m is the mass of the incident particle and M is the mass of the target atom.

For Additional Student Resources, go to www.serwayphysics.com
7. Does a neutral atom designated as $^{18}_8\text{X}$ contain (a) 20 neutrons and 20 protons, (b) 22 protons and 18 neutrons, (c) 18 protons and 22 neutrons, (d) 18 protons and 40 neutrons, or (e) 40 protons and 18 neutrons?

8. When the $^{86}_{36}\text{Kr}$ nucleus undergoes beta decay, does the daughter nucleus (Rb) contain (a) 58 neutrons and 37 protons, (b) 58 protons and 37 neutrons, (c) 54 neutrons and 41 protons, (d) 50 neutrons and 36 protons, or (e) 55 neutrons and 40 protons?

9. Which of the following statements is true regarding a radioactive isotope $^{23}_{11}\text{X}$ that decays by emitting a gamma ray? (a) The resulting isotope has a different Z value. (b) The resulting isotope has the same A value and the same Z value. (c) The resulting isotope has a different A value. (d) Both A and Z are different. (e) The atom jumps to a state of higher energy.

10. In the decay $^{235}_{92}\text{Th} \rightarrow ^{234}_{90}\text{Ra} + ^{4}_{2}\text{He}$, identify the mass number and the atomic number of the Ra nucleus. (a) $A = 230$, $Z = 92$ (b) $A = 238$, $Z = 88$ (c) $A = 230$, $Z = 88$ (d) $A = 234$, $Z = 88$ (e) $A = 238$, $Z = 86$

11. When $^{16}_6\text{O}$ decays to $^{16}_8\text{O}$, which of the following particles are emitted? (a) a proton (b) an alpha particle (c) an electron (d) a gamma ray (e) an antineutrino

12. What is the Q value for the reaction $^9\text{Be} + \alpha \rightarrow ^{12}\text{C} + n$? (a) 8.4 MeV (b) 7.3 MeV (c) 6.2 MeV (d) 5.7 MeV (e) 4.2 MeV

CONCEPTUAL QUESTIONS

1. Why do isotopes of a given element have different physical properties, such as mass, but the same chemical properties?

2. If a heavy nucleus that is initially at rest undergoes alpha decay, which has more kinetic energy after the decay, the alpha particle or the daughter nucleus?

3. A student claims that a heavy form of hydrogen decays by alpha emission. How do you respond?

4. Explain the main differences between alpha, beta, and gamma rays.

5. In alpha decay, the energy of the electron or positron emitted from the nucleus lies somewhere in a relatively large range of possibilities. In alpha decay however, the alpha particle energy can only have discrete values. Why is there this difference?

6. If film is kept in a box, alpha particles from a radioactive source outside the box cannot expose the film, but beta particles can. Explain.

7. In positron decay a proton in the nucleus becomes a neutron, and the positive charge is carried away by the positron. A neutron, though, has a larger rest energy than a proton. How is that possible?

8. An alpha particle has twice the charge of a beta particle. Why does the former deflect less than the latter when passing between electrically charged plates, assuming they both have the same speed?

9. Can carbon-14 dating be used to measure the age of a stone?

10. Pick any beta-decay process and show that the neutrino must have zero charge.

11. Why do heavier elements require more neutrons to maintain stability?

12. Suppose it could be shown that the intensity of cosmic rays was much greater 10,000 years ago. How would that affect the ages we assign to ancient samples of once-living matter?

13. Compare and contrast a photon and a neutrino.

PROBLEMS

The Problems for this chapter may be assigned online at WebAssign.

1. Compare the nuclear radii of the following nuclides: ^1_1H, $^{16}_{27}\text{Co}$, $^{17}_{37}\text{Cu}$, $^{18}_{41}\text{Pu}$.

2. (a) Determine the mass number of a nucleus having a radius approximately equal to two-thirds the radius of $^{226}_{88}\text{Ra}$. (b) Identify the element. Are any other answers possible? Explain.

3. Using 2.3×10^{27} kg/m3 as the density of nuclear matter, find the radius of a sphere of such matter that would have a mass equal to that of Earth. Earth has a mass equal to 5.98×10^{24} kg and average radius of 6.37×10^6 m.

4. Consider the $^{64}_{29}\text{Cu}$ nucleus. Find approximate values for its (a) radius, (b) volume, and (c) density.

5. An alpha particle ($Z = 2$, mass = 6.64×10^{-27} kg) approaches to within 1.00×10^{-14} m of a carbon nucleus ($Z = 6$). What are (a) the maximum Coulomb force on
the alpha particle, (b) the acceleration of the alpha particle at this time, and (c) the potential energy of the alpha particle at the same time?

6. (b) Singly ionized carbon atoms are accelerated through 1,000 V and passed into a mass spectrometer to determine the isotopes present. (See Chapter 19.) The magnetic field strength in the spectrometer is 0.200 T. (a) Determine the orbital radii for the 12C and the 13C isotopes as they pass through the field. (b) Show that the ratio of the radii may be written in the form

\[\frac{r_1}{r_2} = \sqrt{\frac{m_2}{m_1}} \]

and verify that your radii in part (a) satisfy this formula.

7. (a) Find the speed an alpha particle requires to come within 3.2 x 10^-13 m of a gold nucleus. (b) Find the energy of the alpha particle in MeV.

8. At the end of its life, a star with a mass of two times the Sun's mass is expected to collapse, combining its protons and electrons to form a neutron star. Such a star could be thought of as a gigantic atomic nucleus. If a star of mass 2 x 1.99 x 10^26 kg collapsed into neutrons (m_n = 1.67 x 10^-27 kg), what would its radius be? Assume r = n_e A^1/3.

SECTION 29.2 BINDING ENERGY

9. Calculate the average binding energy per nucleon of (a) ^11Na (sodium), (b) ^56Co (cobalt), and (c) ^109Ag (silver).

10. Calculate the binding energy per nucleon for (a) ^2He, (b) ^4He, (c) ^6Fe, and (d) ^238U.

11. A pair of nuclei for which Z_a = N_a and Z_b = N_b are called mirror isobars. (The atomic and neutron numbers are interchangeable.) Binding-energy measurements on such pairs can be used to obtain evidence of the charge independence of nuclear forces. Charge independence means that the proton–proton, proton–neutron, and neutron–neutron forces are approximately equal. Calculate the difference in binding energy for the two mirror nuclei ^2O and ^3N.

12. The peak of the stability curve occurs at ^24Fe, which is why iron is prominent in the spectrum of the Sun and stars. Show that ^24Fe has a higher binding energy per nucleon than its neighbors ^55Mn and ^39Co. Compare your results with Figure 29.4.

13. Two nuclei having the same mass number are known as isobars. Calculate the difference in binding energy per nucleon for the isobars ^11Na and ^12Mg. How do you account for this difference? (The mass of ^12Mg = 22.994 127 u.)

14. Calculate the binding energy of the last neutron in the ^25Ca nucleus. Hint: You should compare the mass of ^25Ca with the mass of ^24Ca plus the mass of a neutron. The mass of ^24Ca = 41.958 622 u, whereas the mass of ^24Ca = 42.958 770 u.

SECTION 29.3 RADIOACTIVITY

15. The half-life of an isotope of phosphorus is 14 days. If a sample contains 3.0 x 10^6 such nuclei, determine its activity. Express your answer in curies.

16. A drug tagged with ^99Tc (half-life = 6.05 h) is prepared for a patient. If the original activity of the sample was 1.1 x 10^4 Bq, what is its activity after it has been on the shelf for 2.0 h?

17. The half-life of ^131I is 8.04 days. (a) Convert the half-life to seconds. (b) Calculate the decay constant for this isotope. (c) Convert 0.500 μCi to the SI unit the becquerel.

18. Tritium has a half-life of 12.33 years. (a) What fraction of the nuclei in a tritium sample will remain after 5.00 yr? (b) 10.0 yr? (c) 123.3 yr? (d) According to Equation 29.4a, an infinite amount of time is required for the entire sample to decay. Is that realistic? Discuss.

19. Many smoke detectors use small quantities of the isotope ^214Am in their operation. The half-life of ^214Am is 432 yr. How long will it take the activity of this material to decrease to 1.00 x 10^-3 of the original activity?

20. After a plant or animal dies, its ^14C content decreases with a half-life of 5.730 yr. If an archaeologist finds an ancient firepit containing partially consumed firewood and the ^14C content of the wood is only 12.5% that of an equal carbon sample from a present-day tree, what is the age of the ancient site?

21. A freshly prepared sample of a certain radioactive isotope has an activity of 10.0 mCi. After 4.00 h, the activity is 8.00 mCi. (a) Find the decay constant and half-life of the isotope. (b) How many atoms of the isotope were contained in the freshly prepared sample? (c) What is the sample’s activity 30 h after it is prepared?

22. A building has become accidentally contaminated with radioactivity. The longest-lived material in the building is strontium-90. (The atomic mass of ^88Sr is 88.907 7 u.) If the building initially contained 5.0 kg of this substance and the safe level is less than 10.0 counts/min, how long will the building be unsafe?

SECTION 29.4 THE DECAY PROCESSES

23. Identify the missing nuclides (X) in the following decays:
 (a) X → ^238U + γ (b) ^234Pa → X + a (c) X → ^23He + e^- + ν

24. Identify the missing particles (X) in the following reactions:
 (a) ^106Cd + X → ^106Ag + ν (b) ^108N + ^2He → X + ^12O

25. The mass of ^56Fe is 55.934 9 u, and the mass of ^56Co is 55.939 9 u. Which isotope decays into the other and by what process?

26. Find the energy released in the alpha decay of ^52Cr. The following mass value will be useful: ^52Cr has a mass of 234.043 583 u.

27. Determine which of the following suggested decays can occur spontaneously:
 (a) ^80Ca → e^- + ^80K (b) ^14Nd → ^14He + ^100Ce
28. $^{64}_{29}$Ni (mass = 65.929 1 u) undergoes beta decay to $^{64}_{28}$Cu (mass = 65.928 9 u). (a) Write the complete decay formula for this process. (b) Find the maximum kinetic energy of the emerging electrons.

29. An 3H nucleus beta decays into 3He by creating an electron and an antineutrino according to the reaction

$$^3H \rightarrow ^3He + e^- + \bar{\nu}$$

Use Appendix B to determine the total energy released in this reaction.

30. A piece of charcoal used for cooking is found at the remains of an ancient campsite. A 1.00-kg sample of carbon from the wood has an activity of 2.00×10^3 decays per minute. Find the age of the charcoal. Hint: Living material has an activity of 15.0 decays/minute per gram of carbon present.

31. A wooden artifact is found in an ancient tomb. Its carbon-14 activity is 60.0% of that of a fresh sample of wood from the same region. Assuming the same amount of 14C was initially present in the wood from which the artifact was made, determine the age of the artifact.

SECTION 29.6 NUCLEAR REACTIONS

32. A beam of 6.61-MeV protons is incident on a target of $^{27}_{13}$Al. Those protons that collide with the target produce the reaction

$$p + ^{27}_{13}$Al \rightarrow ^{27}_{12}$Si + n$$

($^{27}_{12}$Si has a mass of 26.986721 u.) Neglecting any recoil of the product nucleus, determine the kinetic energy of the emerging neutrons.

33. Identify the unknown particles X and X' in the following nuclear reactions:

$$X + ^3He \rightarrow ^3Be + ^3n$$
$$^{36}_{19}$U + n \rightarrow ^{38}_{18}$Sr + X + 2He
$$2^3H \rightarrow ^3He + X + X'$$

34. One method of producing neutrons for experimental use is to bombard 3Li with protons. The neutrons are emitted according to the reaction

$$^3H + ^3Li \rightarrow ^3Be + n$$

(a) Calculate the mass in atomic mass units of the particles on the left side of the equation. (b) Calculate the mass (in atomic mass units) of the particles on the right side of the equation. (c) Subtract the answer for part (b) from that for part (a) and convert the result to mega electron volts, obtaining the Q value for this reaction. (d) Assuming lithium is initially at rest, the proton is moving at velocity v, and the resulting beryllium and neutron are both moving at velocity V after the collision, write an expression describing conservation of momentum for this reaction in terms of the masses m_p, m_{Be}, m_n, and the velocities. (e) Write an expression relating the kinetic energies of particles before and after together with Q. (f) What minimum kinetic energy must the incident proton have if this reaction is to occur?

35. (a) Suppose 10B is struck by an alpha particle, releasing a proton and a product nucleus in the reaction. What is the product nucleus? (b) An alpha particle and a product nucleus are produced when 12C is struck by a proton. What is the product nucleus?

36. Consider two reactions:

(1) $n + ^4$H $\rightarrow ^4$H
(2) $^1H + ^4$H $\rightarrow ^6$He

(a) Compute the Q values for these reactions. Identify whether each reaction is exothermic or endothermic. (b) Which reaction results in more released energy? Why? (c) Assuming the difference is primarily due to the work done by the electric force, calculate the distance between the two protons in helium-3.

37. Natural gold has only one isotope, $^{199}_{79}$Au. If gold is bombarded with slow neutrons, $^-$ particles are emitted. (a) Write the appropriate reaction equation. (b) Calculate the maximum energy of the emitted beta particles. The mass of $^{199}_{79}$Au is 197.96675 u.

38. The following reactions are observed:

$8Be + n $\rightarrow ^{8}$Be + 0n $Q = 6.812$ MeV
$8Be + 0n $\rightarrow ^{8}$Be + n $Q = -1.665$ MeV

Calculate the masses of 8Be and 10Be in atomic mass units to four decimal places.

39. When 16O is struck by a proton, 15F and another particle are produced. (a) What is the other particle? (b) The reaction has a Q value of -2.453 MeV, and the atomic mass of 16O is 17.999160 u. What is the atomic mass of 15F?

SECTION 29.7 MEDICAL APPLICATIONS OF RADIATION

40. In terms of biological damage, how many rad of heavy ions are equivalent to 100 rad of x-rays?

41. A person whose mass is 75.0 kg is exposed to a whole-body dose of 25.0 rad. How many joules of energy are deposited in the person's body?

42. A 200-rad dose of radiation is administered to a patient in an effort to combat a cancerous growth. Assuming all the energy deposited is absorbed by the growth, (a) calculate the amount of energy delivered per unit mass. (b) Assuming the growth has a mass of 0.25 kg and a specific heat equal to that of water, calculate its temperature rise.

43. A "clever" technician decides to heat some water for his coffee with an x-ray machine. If the machine produces 10 rad/s, how long will it take to raise the temperature of a cup of water by 50°C? Ignore heat losses during this time.

44. An x-ray technician works 5 days per week, 50 weeks per year. Assume the technician takes an average of eight x-rays per day and receives a dose of 5.0 rem/yr as a result. (a) Estimate the dose in rem per x-ray taken. (b) How does this result compare with the amount of low-level background radiation the technician is exposed to?

45. A patient swallows a radiopharmaceutical tagged with phosphorus-32 ($^{32}_{15}$P), a β^- emitter with a half-life
of 14.3 days. The average kinetic energy of the emitted electrons is 700 keV. If the initial activity of the sample is 1.31 MBq, determine (a) the number of electrons emitted in a 10-day period, (b) the total energy deposited in the body during the 10 days, and (c) the absorbed dose if the electrons are completely absorbed in 100 g of tissue.

A particular radioactive source produces 100 mrad of 2 MeV gamma rays per hour at a distance of 1.0 m. (a) How long could a person stand at this distance before accumulating an intolerable dose of 1 rem? (b) Assuming the gamma radiation is emitted uniformly in all directions, at what distance would a person receive a dose of 10 mrad/h from this source?

ADDITIONAL PROBLEMS

47. A radioactive sample contains 3.50 μg of pure 14C, which has a half-life of 20.4 min. (a) How many moles of 14C are present initially? (b) Determine the number of nuclei present initially. What is the activity of the sample (c) initially and (d) after 8.00 h?

48. How much time elapses before 90.0% of the radioactivity of a sample of 73As disappears, as measured by its activity? The half-life of 73As is 26 h.

49. A 200.0-mCi sample of a radioactive isotope is purchased by a medical supply house. If the sample has a half-life of 14.0 days, how long will it keep before its activity is reduced to 20.0 mCi?

50. Can 57Co decay by e⁻ emission? Explain. (b) Can 14C decay by e⁻ emission? Explain. (c) If either answer is yes, what is the range of kinetic energies available for the beta particle? Atomic masses: 57Co: 56.936 294 u; 57Fe: 56.935 396 u

51. In a piece of rock from the Moon, the 87Rb content is assayed to be 1.82 × 10²⁵ atoms per gram of material and the ⁸⁷Sr content is found to be 1.07 × 10⁹ atoms per gram. (The relevant decay is ⁸⁷Rb → ⁸⁷Sr + e⁻. The half-life of the decay is 4.8 × 10⁹ yr.) (a) Determine the age of the rock. (b) Could the material in the rock actually be much older? What assumption is implicit in using the radioactive-dating method?

52. Can ⁵⁵Co decay by e⁻ emission? Explain. (b) Can ⁷³Co decay by e⁻ emission? Explain. (c) If either answer is yes, what is the range of kinetic energies available for the beta particle? Atomic masses: ⁵⁵Co: 56.936 294 u; ⁵⁷Fe: 56.935 396 u

53. A medical laboratory stock solution is prepared with an initial activity due to ⁵⁸Na of 2.5 mCi/ml, and 10.0 ml of the stock solution is diluted at t₀ to a working solution whose total volume is 250 ml. After 48 h, a 5.0-ml sample of the working solution is monitored with a counter. What is the measured activity? Note: 1 ml = 1 milliliter.

54. After the sudden release of radioactivity from the Chernobyl nuclear reactor accident in 1986, the radioactivity of milk in Poland rose to 2000 Bq/L due to iodine-131, with a half-life of 8.04 days. Radioactive iodine is particularly hazardous because the thyroid gland concentrates iodine. The Chernobyl accident caused a measurable increase in thyroid cancers among children in Belarus. (a) For comparison, find the activity of milk due to potassium. Assume 1 liter of milk contains 2.00 g of potassium, of which 0.0117% is the isotope ⁴⁰K, which has a half-life of 1.28 × 10⁹ yr. (b) After what length of time would the activity due to iodine fall below that due to potassium?

55. During the manufacture of a steel engine component, radioactive iron (⁵⁹Fe) is included in the total mass of 0.20 kg. The component is placed in a test engine when the activity due to the isotope is 20.0 μCi. After a 1000-h test period, oil is removed from the engine and is found to contain enough ⁵⁹Fe to produce 800 disintegrations/min per liter of oil. The total volume of oil in the engine is 6.5 L. Calculate the total mass worn from the engine component per hour of operation. (The half-life of ⁵⁹Fe is 45.1 days.)
NUCLEAR ENERGY AND ELEMENTARY PARTICLES

In this concluding chapter we discuss the two means by which energy can be derived from nuclear reactions: fission, in which a nucleus of large mass number splits into two smaller nuclei, and fusion, in which two light nuclei fuse to form a heavier nucleus. In either case, there is a release of large amounts of energy that can be used destructively through bombs or constructively through the production of electric power. We end our study of physics by examining the known subatomic particles and the fundamental interactions that govern their behavior. We also discuss the current theory of elementary particles, which states that all matter in nature is constructed from only two families of particles: quarks and leptons. Finally, we describe how such models help us understand the evolution of the Universe.

30.1 NUCLEAR FISSION

Nuclear fission occurs when a heavy nucleus, such as 235U, splits, or fissions, into two smaller nuclei. In such a reaction the total mass of the products is less than the original mass of the heavy nucleus.

The fission of 235U by slow (low-energy) neutrons can be represented by the sequence of events

$$n + ^{235}_{92}U \rightarrow ^{236}_{92}U^* \rightarrow X + Y + \text{neutrons} \quad [30.1]$$

where $^{236}_{92}U^*$ is an intermediate state that lasts only for about 10^{-12} s before splitting into nuclei X and Y, called fission fragments. Many combinations of X and Y satisfy the requirements of conservation of energy and charge. In the fission of uranium, about 90 different daughter nuclei can be formed. The process also results in the production of several (typically two or three) neutrons per fission event. On the average, 2.47 neutrons are released per event.

A typical reaction of this type is

$$n + ^{235}_{92}U \rightarrow ^{141}_{56}\text{Ba} + ^{92}_{36}\text{Kr} + 3n \quad [30.2]$$
The fission fragments, barium and krypton, and the released neutrons have a great deal of kinetic energy following the fission event. Notice that the sum of the mass numbers, or number of nucleons, on the left (\(1_{\text{H}} + 2_{\text{H}} + 3_{\text{H}} = 236\)) is the same as the total number of nucleons on the right (\(1_{\text{H}} + 92 + 3 = 236\)). The total number of protons (92) is also the same on both sides. The energy \(Q\) released through the disintegration in Equation 30.2 can be easily calculated using the data in Appendix B. The details of this calculation can be found in Chapter 26 (Example 26.5), with an answer of \(Q = 200.422\) MeV.

The breakup of the uranium nucleus can be compared to what happens to a drop of water when excess energy is added to it. All the atoms in the drop have energy, but not enough to break up the drop. If enough energy is added to set the drop vibrating, however, it will undergo elongation and compression until the amplitude of vibration becomes large enough to cause the drop to break apart. In the uranium nucleus a similar process occurs (Fig. 30.1). The sequence of events is as follows:

1. The \(235\)U nucleus captures a thermal (slow-moving) neutron.
2. The capture results in the formation of \(236\)U*, and the excess energy of this nucleus causes it to undergo violent oscillations.
3. The \(236\)U* nucleus becomes highly elongated, and the force of repulsion between protons in the two halves of the dumbbell-shaped nucleus tends to increase the distortion.
4. The nucleus splits into two fragments, emitting several neutrons.

Typically, the amount of energy released by the fission of a single heavy radioactive atom is about one hundred million times the energy released in the combustion of one molecule of the octane used in gasoline engines.

APPLYING PHYSICS 30.1 UNSTABLE PRODUCTS

If a heavy nucleus were to fission into only two products nuclei, they would be very unstable. Why?

Explanation According to Figure 29.3, the ratio of the number of neutrons to the number of protons increases with \(Z\). As a result, when a heavy nucleus splits in a fission reaction to two lighter nuclei, the lighter nuclei tend to have too many neutrons. The result is instability because the nuclei return to the curve in Figure 29.3 by decay processes that reduce the number of neutrons.

EXAMPLE 30.1 A Fission-Powered World

Goal Relate raw material to energy output.

Problem (a) Calculate the total energy released if 1.00 kg of \(235\)U undergoes fission, taking the disintegration energy per event to be \(Q = 208\) MeV. (b) How many kilograms of \(235\)U would be needed to satisfy the world’s annual energy consumption (about \(4 \times 10^{20}\) J)?

Strategy In part (a), use the concept of a mole and Avogadro’s number to obtain the total number of nuclei. Multiplying by the energy per reaction then gives the total energy released. Part (b) requires some light algebra.
Solution

(a) Calculate the total energy released from 1.00 kg of 235U.

Find the total number of nuclei in 1.00 kg of uranium:

$$N = \left(\frac{6.02 \times 10^{23} \text{ nuclei/mol}}{235 \text{ g/mol}} \right) (1.00 \times 10^3 \text{ g})$$

$$= 2.56 \times 10^{24} \text{ nuclei}$$

Multiply N by the energy yield per nucleus, obtaining the total disintegration energy:

$$E = NQ = (2.56 \times 10^{24} \text{ nuclei}) \left(\frac{208 \text{ MeV}}{\text{nucleus}} \right)$$

$$= 5.32 \times 10^{26} \text{ MeV}$$

(b) How many kilograms would provide for the world's annual energy needs?

Set the energy per kilogram, E_{kg}, times the number of kilograms, N_{kg}, equal to the total annual energy consumption. Solve for N_{kg}:

$$E_{kg}N_{kg} = E_{tot}$$

$$N_{kg} = \frac{E_{tot}}{E_{kg}} = \frac{4 \times 10^{19} \text{ J}}{(5.32 \times 10^{32} \text{ eV/kg})(1.60 \times 10^{-19} \text{ J/eV})}$$

$$= 5 \times 10^6 \text{ kg}$$

Remarks

The calculation implicitly assumes perfect conversion to usable power, which is never the case in real systems. Enough uranium deposits are known so as to provide the world's current energy requirements for a few hundred years. Breeder reactor technology can greatly extend those reserves.

QUESTION 30.1

Estimate the average mass of 235U needed to provide power for one family for one year.

EXERCISE 30.1

How long can 1 kg of uranium-235 keep a 100-watt lightbulb burning if all its released energy is converted to electrical energy?

Answer $\sim 30\,000$ yr

Nuclear Reactors

The neutrons emitted when 235U undergoes fission can in turn trigger other nuclei to undergo fission, with the possibility of a chain reaction (Active Fig. 30.2). Calculations show that if the chain reaction isn’t controlled, it will proceed too rapidly and possibly result in the sudden release of an enormous amount of energy (an explosion), even from only 1 g of 235U. If the energy in 1 kg of 235U were released, it would equal that released by the detonation of about 20 000 tons of TNT! An uncontrolled fission reaction, of course, is the principle behind the first nuclear bomb.

A nuclear reactor is a system designed to maintain what is called a self-sustained chain reaction, first achieved in 1942 by Enrico Fermi. Most reactors in operation today also use uranium as fuel. Natural uranium contains only about 0.7% of the 235U isotope, with the remaining 99.3% being the 238U isotope. This fact is important to the operation of a reactor because 238U almost never undergoes fission. Instead, it tends to absorb neutrons, producing neptunium and plutonium. For this reason, reactor fuels must be artificially enriched so that they contain several percent of the 235U isotope.

On average, about 2.5 neutrons are emitted in each fission event of 235U. To achieve a self-sustained chain reaction, one of these neutrons must be captured by another 235U nucleus and cause it to undergo fission. A useful parameter for describing the level of reactor operation is the reproduction constant K, defined
as the average number of neutrons from each fission event that will cause another event.

A self-sustained chain reaction is achieved when $K = 1$. Under this condition, the reactor is said to be critical. When K is less than 1, the reactor is subcritical and the reaction dies out. When K is greater than 1, the reactor is said to be supercritical and a runaway reaction occurs. In a nuclear reactor used to furnish power to a utility company, it is necessary to maintain a K value close to 1.

The basic design of a nuclear reactor is shown in Figure 30.3. The fuel elements consist of enriched uranium. The size of the reactor is important in reducing neutron leakage: a large reactor has a smaller surface-to-volume ratio and smaller leakage than a smaller reactor.

It’s also important to regulate the neutron energies because slow neutrons are far more likely to cause fissions than fast neutrons in 235U. Further, 238U doesn’t absorb slow neutrons. For the chain reaction to continue, the neutrons must, therefore, be slowed down. This slowing is accomplished by surrounding the fuel with a substance called a moderator, such as graphite (carbon) or heavy water (D_2O). Most modern reactors use heavy water. Collisions in the moderator slow the neutrons and enhance the fissioning of 235U.

The power output of a fission reactor is controlled by the control rods depicted in Figure 30.3. These rods are made of materials like cadmium that readily absorb neutrons.

Fissions in a nuclear reactor heat molten sodium (or water, depending on the system), which is pumped through a heat exchanger. There, the thermal energy is transferred to water in a secondary system. The water is converted to steam, which drives a turbine-generator to create electric power.

Fission reactors are extremely safe. According to the Oak Ridge National Laboratory Review, “The health risk of living within 8 km (5 miles) of a nuclear reactor for 50 years is no greater than the risk of smoking 1.4 cigarettes, drinking 0.5 L of wine, traveling 240 km by car, flying 9,600 km by jet, or having one chest x-ray in a hospital. Each activity, by itself, is estimated to increase a person’s chance of dying in any given year by one in a million.”

The safety issues associated with nuclear power reactors are complex and often emotional. All sources of energy have associated risks. Coal, for example, exposes workers to health hazards (including radioactive radon) and produces atmospheric pollution (including greenhouse gases). In each case the risks must be weighed against the benefits and the availability of the energy source.
30.2 NUCLEAR FUSION

When two light nuclei combine to form a heavier nucleus, the process is called nuclear fusion. Because the mass of the final nucleus is less than the sum of the masses of the original nuclei, there is a loss of mass, accompanied by a release of energy. Although fusion power plants have not yet been developed, a worldwide effort is under way to harness the energy from fusion reactions in the laboratory.

Fusion in the Sun

All stars generate their energy through fusion processes. About 90% of stars, including the Sun, fuse hydrogen, whereas some older stars fuse helium or other heavier elements. The energy produced by fusion increases the pressure inside the star and prevents its collapse due to gravity.

Two conditions must be met before fusion reactions in the star can sustain its energy needs. First, the temperature must be high enough (about 10^7 K for hydrogen) to allow the kinetic energy of the positively charged hydrogen nuclei to overcome their mutual Coulomb repulsion as they collide. Second, the density of nuclei must be high enough to ensure a high rate of collision.

It's interesting to note that a quantum effect is key in making sunshine. Temperatures inside stars like the Sun are not high enough to allow colliding protons to overcome the Coulomb repulsion. In a certain percentage of collisions, however, the nuclei pass through the barrier anyway an example of quantum tunneling.

The proton–proton cycle is a series of three nuclear reactions that are believed to be the stages in the liberation of energy in the Sun and other stars rich in hydrogen. An overall view of the proton–proton cycle is that four protons combine to form an alpha particle and two positrons, with the release of 25 MeV of energy in the process.

The specific steps in the proton–proton cycle are

\[^1\text{H} + ^1\text{H} \rightarrow ^2\text{D} + e^+ + \nu \]

and

\[^1\text{H} + ^2\text{D} \rightarrow ^3\text{He} + \gamma \] \[\text{[30.3]}\]

where D stands for deuterium, the isotope of hydrogen having one proton and one neutron in the nucleus. (It can also be written as ^2H.) The second reaction is followed by either hydrogen-helium fusion or helium-helium fusion:

\[^1\text{H} + ^3\text{He} \rightarrow ^4\text{He} + e^+ + \nu \]

or

\[^2\text{He} + ^3\text{He} \rightarrow ^6\text{He} + 2(^1\text{H}) \]

The energy liberated is carried primarily by gamma rays, positrons, and neutrons, as can be seen from the reactions. The gamma rays are soon absorbed by the dense gas, raising its temperature. The positrons combine with electrons to produce gamma rays, which in turn are also absorbed by the gas within a few centimeters. The neutrinos, however, almost never interact with matter; hence, they escape from the star, carrying about 2% of the energy generated with them. These energy-liberating fusion reactions are called thermonuclear fusion reactions. The hydrogen (fusion) bomb, first exploded in 1952, is an example of an uncontrolled thermonuclear fusion reaction.

Fusion Reactors

A great deal of effort is under way to develop a sustained and controllable fusion power reactor. Controlled fusion is often called the ultimate energy source because of the availability of water, its fuel source. For example, if deuterium, the isotope of hydrogen consisting of a proton and a neutron, were used as the fuel, 0.06 g of it could be extracted from 1 gal of water at a cost of about four cents. Hence, the fuel
costs of even an inefficient reactor would be almost insignificant. An additional advantage of fusion reactors is that comparatively few radioactive by-products are formed. As noted in Equation 30.3, the end product of the fusion of hydrogen nuclei is safe, nonradioactive helium. Unfortunately, a thermonuclear reactor that can deliver a net power output over a reasonable time interval is not yet a reality, and many problems must be solved before a successful device is constructed.

The fusion reactions that appear most promising in the construction of a fusion power reactor involve deuterium (D) and tritium (T), which are isotopes of hydrogen. These reactions are

\[
\begin{align*}
^2\text{D} + ^2\text{D} &\rightarrow ^3\text{He} + ^1\text{n} \quad Q = 3.27 \text{ MeV} \\
^2\text{D} + ^3\text{T} &\rightarrow ^3\text{T} + ^2\text{H} \quad Q = 4.03 \text{ MeV}
\end{align*}
\]

and

\[
^2\text{D} + ^3\text{T} \rightarrow ^4\text{He} + ^1\text{n} \quad Q = 17.59 \text{ MeV}
\]

where the \(Q\) values refer to the amount of energy released per reaction. As noted earlier, deuterium is available in almost unlimited quantities from our lakes and oceans and is very inexpensive to extract. Tritium, however, is radioactive (\(T_{1/2} = 12.3 \text{ yr}\)) and undergoes beta decay to \(^3\text{He}\). For this reason, tritium doesn't occur naturally to any great extent and must be artificially produced.

The fundamental challenge of nuclear fusion power is to give the nuclei enough kinetic energy to overcome the repulsive Coulomb force between them at close proximity. This step can be accomplished by heating the fuel to extremely high temperatures (about \(10^8 \text{ K}\), far greater than the interior temperature of the Sun). Such high temperatures are not easy to obtain in a laboratory or a power plant. At these high temperatures, the atoms are ionized and the system then consists of a collection of electrons and nuclei, commonly referred to as a plasma.

In addition to the high temperature requirements, two other critical factors determine whether or not a thermonuclear reactor will function: the plasma ion density \(n\) and the plasma confinement time \(\tau\), the time the interacting ions are maintained at a temperature equal to or greater than that required for the reaction to proceed. The density and confinement time must both be large enough to ensure that more fusion energy will be released than is required to heat the plasma.

Lawson's criterion states that a net power output in a fusion reactor is possible under the following conditions:

\[
\begin{align*}
nt\tau &\geq 10^{14} \text{ s/cm}^3 \quad \text{Deuterium–tritium interaction} \\
nt\tau &\geq 10^{16} \text{ s/cm}^3 \quad \text{Deuterium–deuterium interaction}
\end{align*}
\]

The problem of plasma confinement time has yet to be solved. How can a plasma be confined at a temperature of \(10^8 \text{ K}\) for times on the order of 1 s? Most fusion experiments use magnetic field confinement to contain a plasma. One device, called a tokamak, has a doughnut-shaped geometry (a toroid), as shown in Figure 30.4. This device uses a combination of two magnetic fields to confine the plasma inside the doughnut. A strong magnetic field is produced by the current in the windings, and a weaker magnetic field is produced by the current in the toroid. The resulting magnetic field lines are helical, as shown in the figure. In this configuration the field lines spiral around the plasma and prevent it from touching the walls of the vacuum chamber.

There are a number of other methods of creating fusion events. In inertial laser confinement fusion, the fuel is put into the form of a small pellet and then collapsed by ultrahigh-power lasers. Fusion can also take place in a device the size of a TV set and in fact was invented by Philo Farnsworth, one of the fathers of electronic television. In this method, called inertial electrostatic confinement, positively charged particles are rapidly attracted toward a negatively charged grid. Some of the positive particles then collide and fuse.
Besides the constituents of atoms—protons, electrons, and neutrons—numerous other particles can be found in high-energy experiments or observed in nature, subsequent to collisions involving cosmic rays. Unlike the highly stable protons and electrons, these particles decay rapidly, with half-lives ranging from 10^{-23} s to 10^{-6} s. There is very strong indirect evidence that most of these particles, including neutrons and protons, are combinations of more elementary particles called quarks. Quarks, leptons (the electron is an example), and the particles that convey forces (the photon is an example) are now thought to be the truly fundamental particles. The key to understanding the properties of elementary particles is the description of the forces of nature in which they participate.

All particles in nature are subject to four fundamental forces: the strong, electromagnetic, weak, and gravitational forces. The **strong force** is responsible for the tight binding of quarks to form neutrons and protons and for the nuclear force, a sort of residual strong force, binding neutrons and protons into nuclei. This force represents the “glue” that holds the nucleons together and is the strongest of all the fundamental forces. It is a very short-range force and is negligible for separations greater than about 10^{-15} m (the approximate size of the nucleus). The **electromagnetic force**, which is about 10^{-2} times the strength of the strong force, is responsible for the binding of atoms and molecules. It’s a long-range force that decreases in strength as the inverse square of the separation between interacting particles.

EXAMPLE 30.2 Astrofuel on the Moon

Goal Calculate the energy released in a fusion reaction.

Problem Find the energy released in the reaction of helium-3 with deuterium:

\[
^3\text{He} + ^1\text{D} \rightarrow ^4\text{He} + ^1\text{H}
\]

Strategy The energy released is the difference between the mass energy of the reactants and the products.

Solution

Add the masses on the left-hand side and subtract the masses on the right, obtaining Δm in atomic mass units:

\[
\Delta m = m_{^3\text{He}} + m_{^1\text{D}} - m_{^4\text{He}} - m_{^1\text{H}}
\]

\[
= 3.016029\text{ u} + 2.014102\text{ u} - 4.002603\text{ u} - 1.007825\text{ u}
\]

\[
= 0.019703\text{ u}
\]

Convert the mass difference to an equivalent amount of energy in MeV:

\[
E = (0.019703\text{ u})\left(\frac{931.5\text{ MeV}}{1\text{ u}}\right) = 18.25\text{ MeV}
\]

Remarks The result is a large amount of energy per reaction. Helium-3 is rare on Earth but plentiful on the Moon, where it has become trapped in the fine dust of the lunar soil. Helium-3 has the advantage of producing more protons than neutrons (some neutrons are still produced by side reactions, such as D–D), but has the disadvantage of a higher ignition temperature. If fusion power plants using helium-3 became a reality, studies indicate that it would be economically advantageous to mine helium-3 robotically and return it to Earth. The energy return per dollar would be far greater than for mining coal or drilling for oil!

QUESTION 30.2 How much energy, in joules, could be obtained from an Avogadro’s number of helium-3–deuterium fusion reactions?

EXERCISE 30.2 Find the energy yield in the fusion of two helium-3 nuclei:

\[
^3\text{He} + ^3\text{He} \rightarrow ^4\text{He} + 2(^1\text{H})
\]

Answer 12.9 MeV
particles. The **weak force** is a short-range nuclear force that is exhibited in the instability of certain nuclei. It’s involved in the mechanism of beta decay, and its strength is only about 10^{-4} times that of the strong force. Finally, the **gravitational force** is a long-range force with a strength only about 10^{-43} times that of the strong force. Although this familiar interaction is the force that holds the planets, stars, and galaxies together, its effect on elementary particles is negligible. The gravitational force is by far the weakest of all the fundamental forces.

Modern physics often describes the forces between particles in terms of the actions of field particles or quanta. In the case of the familiar electromagnetic interaction, the field particles are photons. In the language of modern physics, the electromagnetic force is mediated (carried) by photons, which are the quanta of the electromagnetic field. The strong force is mediated by field particles called gluons, the weak force is mediated by particles called the W and Z bosons, and the gravitational force is thought to be mediated by quanta of the gravitational field called gravitons. Forces between two particles are conveyed by an exchange of field quanta. This process is analogous to the covalent bond between two atoms created by an exchange or sharing of electrons. The electromagnetic interaction, for example, involves an exchange of photons.

The force between two particles can be understood in general with a simple illustration called a **Feynman diagram**, developed by Richard P. Feynman (1918–1988). Figure 30.5 is a Feynman diagram for the electromagnetic interaction between two electrons. In this simple case, a photon is the field particle that mediates the electromagnetic force between the electrons. The photon transfers energy and momentum from one electron to the other in the interaction. Such a photon, called a **virtual photon**, can never be detected directly because it is absorbed by the second electron very shortly after being emitted by the first electron. The existence of a virtual photon might be expected to violate the law of conservation of energy, but doesn’t because of the time–energy uncertainty principle. Recall that the uncertainty principle says that the energy is uncertain or not conserved by an amount ΔE for a time Δt such that $\Delta E \Delta t \approx \hbar$. If the exchange of the virtual photon happens quickly enough, the brief discrepancy in energy conservation is less than the minimum uncertainty in energy and the exchange is physically an acceptable process.

All the field quanta have been detected except for the graviton, which may never be found directly because of the weakness of the gravitational field. These interactions, their ranges, and their relative strengths are summarized in Table 30.1.

30.4 POSITRONS AND OTHER ANTIPARTICLES

In the 1920s theoretical physicist Paul Dirac (1902–1984) developed a version of quantum mechanics that incorporated special relativity. Dirac’s theory accounted for the electron’s spin and its magnetic moment, but had an apparent flaw in that it predicted negative energy states. The theory was rescued by positing the existence of an anti-electron having the same mass as an electron but the opposite charge,
called a positron. The general and profound implication of Dirac’s theory is that for every particle, there is an antiparticle with the same mass as the particle, but the opposite charge. An antiparticle is usually designated by a bar over the symbol for the particle. For example, \bar{p} denotes the antiproton and $\bar{\nu}$ the antineutrino. In this book the notation e^+ is preferred for the positron. Practically every known elementary particle has a distinct antiparticle. Among the exceptions are the photon and the neutral pion (π^0), which are their own antiparticles.

In 1932 the positron was discovered by Carl Anderson in a cloud chamber experiment. To discriminate between positive and negative charges, he placed the cloud chamber in a magnetic field, causing moving charges to follow curved paths. He noticed that some of the electron-like tracks deflected in a direction corresponding to a positively charged particle: positrons.

When a particle meets its antiparticle, both particles are annihilated, resulting in high-energy photons. The process of electron–positron annihilation is used in the medical diagnostic technique of positron-emission tomography (PET). The patient is injected with a glucose solution containing a radioactive substance that decays by positron emission. Examples of such substances are oxygen-15, nitrogen-13, carbon-11, and fluorine-18. The radioactive material is carried to the brain. When a decay occurs, the emitted positron annihilates with an electron in the brain tissue, resulting in two gamma ray photons. With the assistance of a computer, an image can be created of the sites in the brain where the glucose accumulates.

The images from a PET scan can point to a wide variety of disorders in the brain, including Alzheimer’s disease. In addition, because glucose metabolizes more rapidly in active areas of the brain than in other parts of the body, a PET scan can indicate which areas of the brain are involved in various processes such as language, music, and vision.

30.5 Classification of Particles

All particles other than those that transmit forces can be classified into two broad categories, hadrons and leptons, according to their interactions. The hadrons are composites of quarks, whereas the leptons are thought to be truly elementary, although there have been suggestions that they might also have internal structure.

Hadrons

Particles that interact through the strong force are called hadrons. The two classes of hadrons, known as mesons and baryons, are distinguished by their masses and spins.

All mesons are known to decay finally into electrons, positrons, neutrinos, and photons. A good example of a meson is the pion (π), the lightest of the known mesons, with a mass of about 140 MeV/c^2 and a spin of 0. As seen in Table 30.2 (page 946), the pion comes in three varieties, corresponding to three charge states: π^+, π^-, and π^0. Pions are highly unstable particles. For example, the π^-, which has a lifetime of about 2.6×10^{-8} s, decays into a muon and an antineutrino. The μ^- muon, essentially a heavy electron with a lifetime of 2.2×10^{-6} s, then decays into an electron, a neutrino, and an antineutrino. The sequence of decays is

\[
\pi^- \rightarrow \mu^- + \bar{\nu} \quad \quad \quad \quad \quad (30.6)
\]

\[
\mu^- \rightarrow e^- + \nu + \bar{\nu}
\]

Baryons have masses equal to or greater than the proton mass (the name baryon means “heavy” in Greek), and their spin is always a noninteger value ($\frac{1}{2}$ or $\frac{3}{2}$). Protons and neutrons are baryons, as are many other particles. With the exception of the proton, all baryons decay in such a way that the end products include a proton. For example, the baryon called the Ξ hyperon first decays to a Λ^0 in about 10^{-9} s. The Λ^0 then decays to a proton and a π^- in about 3×10^{-10} s.
Today it is believed that hadrons are composed of quarks. Some of the important properties of hadrons are listed in Table 30.2.

Leptons

Leptons (from the Greek leptos, meaning “small” or “light”) are a group of particles that participate in the weak interaction. All leptons have a spin of \(\frac{1}{2} \). Included in this group are electrons, muons, and neutrinos, which are all less massive than the lightest hadron. A muon is identical to an electron except that its mass is 207 times the electron mass. Although hadrons have size and structure, leptons appear to be truly elementary, with no structure down to the limit of resolution of experiment (about \(10^{-19} \) m).

Unlike hadrons, the number of known leptons is small. Currently, scientists believe that there are only six leptons (each having an antiparticle): the electron, the muon, the tau, and a neutrino associated with each:

\[
\begin{pmatrix}
 e^- \\
 \nu_e \\
 \mu^- \\
 \nu_\mu \\
 \tau^- \\
 \nu_\tau
\end{pmatrix}
\]

The tau lepton, discovered in 1975, has a mass about twice that of the proton.

Although neutrinos have masses of about zero, there is strong indirect evidence that the electron neutrino has a nonzero mass of about \(3 \text{ eV}/c^2 \).
electron mass. A firm knowledge of the neutrino’s mass could have great significance in cosmological models and in our understanding of the future of the Universe.

30.6 CONSERVATION LAWS

A number of conservation laws are important in the study of elementary particles. Although those described here have no theoretical foundation, they are supported by abundant empirical evidence.

Baryon Number

The law of conservation of baryon number means that whenever a baryon is created in a reaction or decay, an antibaryon is also created. This information can be quantified by assigning a baryon number: $B = 1$ for all baryons, $B = -1$ for all antibaryons, and $B = 0$ for all other particles. Thus, the law of conservation of baryon number states that whenever a nuclear reaction or decay occurs, the sum of the baryon numbers before the process equals the sum of the baryon numbers after the process.

Note that if the baryon number is absolutely conserved, the proton must be absolutely stable: if it were not for the law of conservation of baryon number, the proton could decay into a positron and a neutral pion. Such a decay, however, has never been observed. At present, we can only say that the proton has a half-life of at least 10^{31} years. (The estimated age of the Universe is about 10^{10} years.) In one version of a so-called grand unified theory, GUT, physicists predicted that the proton is actually unstable. According to this theory, the baryon number (sometimes called the *baryonic charge*) is not absolutely conserved, whereas electric charge is always conserved.

EXAMPLE 30.3 Checking Baryon Numbers

Goal
Use conservation of baryon number to determine whether a given reaction can occur.

Problem
Determine whether the following reaction can occur based on the law of conservation of baryon number:

$$p + n \rightarrow p + p + n + \bar{p}$$

Strategy
Count the baryons on both sides of the reaction, recalling that $B = 1$ for baryons and $B = -1$ for antibaryons.

Solution

Count the baryons on the left: The neutron and proton are both baryons; hence, $1 + 1 = 2$.

Count the baryons on the right: There are three baryons and one antibaryon, so $1 + 1 + 1 + (-1) = 2$.

Remark
Baryon number is conserved in this reaction, so it can occur provided that the incoming proton has sufficient energy.

QUESTION 30.3

True or False: A proton can’t decay into a positron plus a neutrino.

EXERCISE 30.3

Can the following reaction occur, based on the law of conservation of baryon number?

$$p + n \rightarrow p + p + \bar{p}$$

Answer
No. (Compute the baryon numbers on both sides and show that they’re not equal.)
Lepton Number

There are three conservation laws involving lepton numbers, one for each variety of lepton. The law of conservation of electron-lepton number states that the sum of the electron-lepton numbers before a reaction or decay must equal the sum of the electron-lepton numbers after the reaction or decay. The electron and the electron neutrino are assigned a positive electron-lepton number $L_e = 1$, the antileptons e^- and $\bar{\nu}_e$ are assigned the electron-lepton number $L_e = -1$, and all other particles have $L_e = 0$. For example, consider neutron decay:

$$n \rightarrow p^+ + e^- + \bar{\nu}_e$$

Before the decay, the electron-lepton number is $L_e = 0$; after the decay, it is $0 + 1 + (-1) = 0$, so the electron-lepton number is conserved. It's important to recognize that baryon number must also be conserved. This can easily be seen by noting that before the decay $B = 1$, whereas after the decay $B = 1 + 0 + 0 = 1$.

Similarly, when a decay involves muons, the muon-lepton number L_μ is conserved. The μ^- and the ν_μ are assigned $L_\mu = 1$, the antimuons μ^+ and $\bar{\nu}_\mu$ are assigned $L_\mu = -1$, and all other particles have $L_\mu = 0$. Finally, the tau-lepton number L_τ is conserved, and similar assignments can be made for the τ lepton and its neutrino.

EXAMPLE 30.4 Checking Lepton Numbers

Goal Use conservation of lepton number to determine whether a given process is possible.

Problem Determine which of the following decay schemes can occur on the basis of conservation of lepton number:

1. $\mu^- \rightarrow e^- + \bar{\nu}_e + \nu_\mu$
2. $\pi^+ \rightarrow \mu^+ + \nu_\mu + \nu_e$

Strategy Count the leptons on each side and see if the numbers are equal.

Solution

Because decay 1 involves both a muon and an electron, L_μ and L_e must both be conserved. Before the decay, $L_\mu = +1$ and $L_e = 0$. After the decay, $L_\mu = 0 + 0 + 1 = +1$ and $L_e = +1 - 1 + 0 = 0$. Both lepton numbers are conserved, and on this basis, the decay mode is possible.

Before decay 2 occurs, $L_\mu = 0$ and $L_e = 0$. After the decay, $L_\mu = -1 + 1 + 0 = 0$, but $L_e = +1$. This decay isn’t possible because the electron-lepton number is not conserved.

QUESTION 30.4

Can a neutron decay into a positron and an electron? Explain.

EXERCISE 30.4

Determine whether the decay $\tau^- \rightarrow \mu^- + \bar{\nu}_\mu$ can occur.

Answer No. (Compute lepton numbers on both sides and show that they’re not equal in this case.)

QUICK QUIZ 30.1 Which of the following reactions cannot occur?

(a) $p + p \rightarrow p + p + \bar{\nu}_e$
(b) $n \rightarrow p + e^- + \bar{\nu}_e$
(c) $\mu^- \rightarrow e^- + \nu_e + \bar{\nu}_\mu$
(d) $\pi^- \rightarrow \mu^- + \bar{\nu}_\mu$

QUICK QUIZ 30.2 Which of the following reactions cannot occur?

(a) $p + \bar{\nu} \rightarrow 2\gamma$
(b) $\gamma + p \rightarrow n + \pi^0$
(c) $\pi^0 + n \rightarrow K^+ + \Sigma^-$
(d) $\pi^- + p \rightarrow K^- + \Sigma^-$
Conservation of Strangeness

The K, Λ, and Σ particles exhibit unusual properties in their production and decay and hence are called strange particles. One unusual property of strange particles is that they are always produced in pairs. For example, when a pion collides with a proton, two neutral strange particles are produced with high probability (Fig. 30.6) following the reaction:

$$\pi^- + p^+ \rightarrow K^0 + \Lambda^0$$

On the other hand, the reaction $\pi^- + p^+ \rightarrow K^0 + n$ has never occurred, even though it violates no known conservation laws and the energy of the pion is sufficient to initiate the reaction.

The second peculiar feature of strange particles is that although they are produced by the strong interaction at a high rate, they don’t decay into particles that interact via the strong force at a very high rate. Instead, they decay very slowly, which is characteristic of the weak interaction. Their half-lives are in the range of 10^{-10} s to 10^{-8} s; most other particles that interact via the strong force have much shorter lifetimes on the order of 10^{-23} s.

To explain these unusual properties of strange particles, a law called conservation of strangeness was introduced, together with a new quantum number S called strangeness. The strangeness numbers for some particles are given in Table 30.2.

The production of strange particles in pairs is explained by assigning $S = +1$ to one of the particles and $S = -1$ to the other. All nonstrange particles are assigned strangeness $S = 0$. The law of conservation of strangeness states that whenever a nuclear reaction or decay occurs, the sum of the strangeness numbers before the process must equal the sum of the strangeness numbers after the process.

The slow decay of strange particles can be explained by assuming the strong and electromagnetic interactions obey the law of conservation of strangeness, whereas the weak interaction does not. Because the decay reaction involves the loss of one strange particle, it violates strangeness conservation and hence proceeds slowly via the weak interaction.

In checking reactions for proper strangeness conservation, the same procedure as with baryon number conservation and lepton number conservation is followed. Using Table 30.2, count the strangeness on each side. If the two results are equal, the reaction conserves strangeness.

APPLYING PHYSICS 30.2 BREAKING CONSERVATION LAWS

A student claims to have observed a decay of an electron into two neutrinos traveling in opposite directions. What conservation laws would be violated by this decay?

Explanation Several conservation laws would be violated. Conservation of electric charge would be violated because the negative charge of the electron has disappeared. Conservation of electron lepton number would also be violated because there is one lepton before the decay and two afterward. If both neutrinos were electron neutrinos, electron lepton number conservation would be violated in the final state. If one of the product neutrinos were other than an electron neutrino, however, another lepton conservation law would be violated because there were no other leptons in the initial state. Other conservation laws would be obeyed by this decay. Energy can be conserved; the rest energy of the electron appears as the kinetic energy (and possibly some small rest energy) of the neutrinos. The opposite directions of the two neutrinos’ velocities allow for the conservation of momentum. Conservation of baryon number and conservation of other lepton numbers would also be upheld in this decay.

30.7 THE EIGHTFOLD WAY

Quantities such as spin, baryon number, lepton number, and strangeness are labels we associate with particles. Many classification schemes that group particles into
families based on such labels have been proposed. First, consider the first eight baryons listed in Table 30.2, all having a spin of $\frac{1}{2}$. The family consists of the proton, the neutron, and six other particles. If we plot their strangeness versus their charge using a sloping coordinate system, as in Figure 30.7a, a fascinating pattern emerges: six of the baryons form a hexagon, and the remaining two are at the hexagon’s center. (Particles with spin quantum number $\frac{1}{2}$ or $\frac{3}{2}$ are called fermions.)

Now consider the family of mesons listed in Table 30.2 with spins of zero. (Particles with spin quantum number 0 or 1 are called bosons.) If we count both particles and antiparticles, there are nine such mesons. Figure 30.7b is a plot of strangeness versus charge for this family. Again, a fascinating hexagonal pattern emerges. In this case the particles on the perimeter of the hexagon lie opposite their antiparticles, and the remaining three (which form their own antiparticles) are at its center. These and related symmetric patterns, called the eightfold way, were proposed independently in 1961 by Murray Gell-Mann and Yuval Ne’eman.

The groups of baryons and mesons can be displayed in many other symmetric patterns within the framework of the eightfold way. For example, the family of spin-$\frac{3}{2}$ baryons contains ten particles arranged in a pattern like the tenpins in a bowling alley. After the pattern was proposed, one of the particles was missing; it had yet to be discovered. Gell-Mann predicted that the missing particle, which he called the omega minus (Ω^-), should have a spin of $\frac{3}{2}$, a charge of -1, a strangeness of -3, and a mass of about 1 680 MeV/c^2. Shortly thereafter, in 1964, scientists at the Brookhaven National Laboratory found the missing particle through careful analyses of bubble-chamber photographs and confirmed all its predicted properties.

The patterns of the eightfold way in the field of particle physics have much in common with the periodic table. Whenever a vacancy (a missing particle or element) occurs in the organized patterns, experimentalists have a guide for their investigations.

30.8 QUARKS AND COLOR

Although leptons appear to be truly elementary particles without measurable size or structure, hadrons are more complex. There is strong evidence, including the scattering of electrons off nuclei, that hadrons are composed of more elementary particles called quarks.

The Quark Model

According to the quark model, all hadrons are composite systems of two or three of six fundamental constituents called quarks, which rhymes with “sharks” (although some rhyme it with “forks”). These six quarks are given the arbitrary names up, down, strange, charmed, bottom, and top, designated by the letters u, d, s, c, b, and t.
Quarks have fractional electric charges, along with other properties, as shown in Table 30.3. Associated with each quark is an antiquark of opposite charge, baryon number, and strangeness. Mesons consist of a quark and an antiquark, whereas baryons consist of three quarks.

Table 30.4 lists the quark compositions of several mesons and baryons. Note that just two of the quarks, u and d, are contained in all hadrons encountered in ordinary matter (protons and neutrons). The third quark, s, is needed only to construct strange particles with a strangeness of either $\frac{1}{2} + 1$ or $-\frac{1}{2} - 1$. Active Figure 30.8 is a pictorial representation of the quark compositions of several particles.

The charmed, bottom, and top quarks are more massive than the other quarks and occur in higher-energy interactions. Each has its own quantum number, called charm, bottomness, and topness, respectively. An example of a hadron formed from these quarks is the J/Ψ particle, also called charmonium, which is composed of a charmed quark and an anticharmed quark, \bar{c}.

Table 30.3

<table>
<thead>
<tr>
<th>Quarks</th>
<th>Baryon Name</th>
<th>Symbol</th>
<th>Spin</th>
<th>Charge</th>
<th>Strangeness</th>
<th>Charm</th>
<th>Bottomness</th>
<th>Topness</th>
</tr>
</thead>
<tbody>
<tr>
<td>Up</td>
<td>u</td>
<td>$\frac{1}{2}$</td>
<td>$\frac{1}{2}$</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Down</td>
<td>d</td>
<td>$\frac{1}{2}$</td>
<td>$-\frac{1}{2}$</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Strange</td>
<td>s</td>
<td>$\frac{1}{2}$</td>
<td>$\frac{1}{2}$</td>
<td>$-\frac{1}{2}$</td>
<td>-1</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Charmed</td>
<td>c</td>
<td>$\frac{1}{2}$</td>
<td>$\frac{1}{2}$</td>
<td>$\frac{1}{2}$</td>
<td>0</td>
<td>+1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Bottom</td>
<td>b</td>
<td>$\frac{1}{2}$</td>
<td>$-\frac{1}{2}$</td>
<td>0</td>
<td>0</td>
<td>+1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Top</td>
<td>t</td>
<td>$\frac{1}{2}$</td>
<td>$\frac{1}{2}$</td>
<td>$\frac{1}{2}$</td>
<td>0</td>
<td>0</td>
<td>+1</td>
<td></td>
</tr>
</tbody>
</table>

Table 30.4

<table>
<thead>
<tr>
<th>Quark Composition of Several Hadrons</th>
</tr>
</thead>
<tbody>
<tr>
<td>Particle</td>
</tr>
<tr>
<td>-----------</td>
</tr>
<tr>
<td>Mesons</td>
</tr>
<tr>
<td>π^+</td>
</tr>
<tr>
<td>π^-</td>
</tr>
<tr>
<td>K^+</td>
</tr>
<tr>
<td>K^-</td>
</tr>
<tr>
<td>K^0</td>
</tr>
<tr>
<td>Baryons</td>
</tr>
<tr>
<td>p</td>
</tr>
<tr>
<td>n</td>
</tr>
<tr>
<td>Λ^0</td>
</tr>
<tr>
<td>Σ^+</td>
</tr>
<tr>
<td>Σ^0</td>
</tr>
<tr>
<td>Σ^-</td>
</tr>
<tr>
<td>Ξ^0</td>
</tr>
<tr>
<td>Ξ^-</td>
</tr>
<tr>
<td>Ω^-</td>
</tr>
</tbody>
</table>

Applying Physics 30.3 Conservation of Meson Number

We have seen a law of conservation of lepton number and a law of conservation of baryon number. Why isn’t there a law of conservation of meson number?

Explanation We can answer this question from the point of view of creating particle–antiparticle pairs from available energy. If energy is converted to the rest energy of a lepton–antilepton pair, there is no net change in lepton number because the lepton has a lepton number of $+1$ and the antilepton -1. Energy could also be transformed into the rest energy of a baryon-antibaryon pair. The baryon has baryon number $+1$, the antibaryon -1, and there is no net change in baryon number.

Now suppose energy is transformed into the rest energy of a quark–antiquark pair. By definition in quark theory, a quark-antiquark pair is a meson. In this reaction, therefore, the number of mesons increases from zero to one, so meson number is not conserved.
Color

Quarks have another property called color or color charge. This property isn’t color in the visual sense; rather, it’s just a label for something analogous to electric charge. Quarks are said to come in three colors: red, green, and blue. Antiquarks have the properties antired, antigreen, and antiblue.

Color was defined because some quark combinations appeared to violate the Pauli exclusion principle. An example is the omega-minus particle (Ω⁻), which consists of three strange quarks, sss, that are all spin up, giving a spin of \(\frac{3}{2} \). Each strange quark is assumed to have a different color and hence is in a distinct quantum state, satisfying the exclusion principle.

In general, quark combinations must be “colorless.” A meson consists of a quark of one color and an antiquark of the corresponding anticolor. Baryons must consist of one red, one green, and one blue quark, or their anticolors.

The theory of how quarks interact with one another by means of color charge is called quantum chromodynamics, or QCD, to parallel quantum electrodynamics (the theory of interactions among electric charges). The strong force between quarks is often called the color force. The force is carried by massless particles called gluons (which are analogous to photons for the electromagnetic force). According to QCD, there are eight gluons, all with color charge, and their antigluons. When a quark emits or absorbs a gluon, its color changes. For example, a blue quark that emits a gluon may become a red quark, and a red quark that absorbs this gluon becomes a blue quark. The color force between quarks is analogous to the electric force between charges: like colors repel and opposite colors attract. Therefore, two red quarks repel each other, but a red quark will be attracted to an antired quark. The attraction between quarks of opposite color to form a meson \((q\bar{q})\) is indicated in Figure 30.9a.

Different-colored quarks also attract one another, but with less intensity than opposite colors of quark and antiquark. For example, a cluster of red, blue, and green quarks all attract one another to form baryons, as indicated in Figure 30.9b. Every baryon contains three quarks of three different colors.

Although the color force between two color-neutral hadrons (such as a proton and a neutron) is negligible at large separations, the strong color force between their constituent quarks does not exactly cancel at small separations of about 1 fm. This residual strong force is in fact the nuclear force that binds protons and neutrons to form nuclei. It is similar to the residual electromagnetic force that binds neutral atoms into molecules.

30.9 ELECTROWEAK THEORY AND THE STANDARD MODEL

Recall that the weak interaction is an extremely short range force having an interaction distance of approximately \(10^{-18} \) m. Such a short-range interaction implies that the quantized particles that carry the weak field (the spin 1 \(W^+ \), \(W^- \), and \(Z^0 \) bosons) are extremely massive, as is indeed the case. These amazing bosons can be thought of as structureless, point-like particles as massive as krypton atoms! The weak interaction is responsible for the decay of the c, s, b, and t quarks into lighter, more stable u and d quarks, as well as the decay of the massive \(\mu \) and \(\tau \) leptons into (lighter) electrons. The weak interaction is very important because it governs the stability of the basic particles of matter.

A mysterious feature of the weak interaction is its lack of symmetry, especially when compared with the high degree of symmetry shown by the strong, electromagnetic, and gravitational interactions. For example, the weak interaction, unlike the strong interaction, is not symmetric under mirror reflection or charge exchange. (Mirror reflection means that all the quantities in a given particle reaction are exchanged as in a mirror reflection: left for right, an inward motion toward the mirror for an outward motion, and so forth. Charge exchange means that all the
electric charges in a particle reaction are converted to their opposites: all positives to negatives and vice versa.) Not symmetric means that the reaction with all quantities changed occurs less frequently than the direct reaction. For example, the decay of the K^0, which is governed by the weak interaction, is not symmetric under charge exchange because the reaction $K^0 \rightarrow \pi^- + e^- + \nu_e$ occurs much more frequently than the reaction $K^0 \rightarrow \pi^- + e^- + \bar{\nu}_e$.

The **electroweak theory** unifies the electromagnetic and weak interactions. This theory postulates that the weak and electromagnetic interactions have the same strength at very high particle energies and are different manifestations of a single unifying electroweak interaction. The photon and the three massive bosons (W and Z) play key roles in the electroweak theory. The theory makes many concrete predictions, such as the prediction of the masses of the W and Z particles at about $82 \text{ GeV}/c^2$ and $93 \text{ GeV}/c^2$, respectively. These predictions have been experimentally verified.

The combination of the electroweak theory and QCD for the strong interaction forms what is referred to in high-energy physics as the **Standard Model**. Although the details of the Standard Model are complex, its essential ingredients can be summarized with the help of Figure 30.10. The strong force, mediated by gluons, holds quarks together to form composite particles such as protons, neutrons, and mesons. Leptons participate only in the electromagnetic and weak interactions. The electromagnetic force is mediated by photons, and the weak force is mediated by W and Z bosons. Note that all fundamental forces are mediated by bosons (particles with spin 1) having properties given, to a large extent, by symmetries involved in the theories.

The Standard Model, however, doesn’t answer all questions. A major question is why the photon has no mass although the W and Z bosons do. Because of this mass difference, the electromagnetic and weak forces are very different at low energies but become similar in nature at very high energies, where the rest energies of the W and Z bosons are insignificant fractions of their total energies. This behavior during the transition from high to low energies, called **symmetry breaking**, doesn’t answer the question of the origin of particle masses. To resolve that problem, a hypothetical particle called the **Higgs boson**, which provides a mechanism for breaking the electroweak symmetry and bestowing different particle masses on different particles, has been proposed. The Standard Model, including the Higgs mechanism, provides a logically consistent explanation of the massive nature of the W and Z bosons. Unfortunately, the Higgs boson has not yet been found, but physicists predict that its mass should be less than $1 \text{ TeV}/c^2$ (10^{12} eV).

Following the success of the electroweak theory, scientists attempted to combine it with QCD in a **grand unification theory** (GUT). In this model the electroweak
force was merged with the strong color force to form a grand unified force. One version of the theory considers leptons and quarks as members of the same family that are able to change into each other by exchanging an appropriate particle. Many GUT theories predict that protons are unstable and will decay with a lifetime of about 10^{31} years, a period far greater than the age of the Universe. As yet, proton decays have not been observed.

30.10 THE COSMIC CONNECTION

According to the Big Bang theory, the Universe erupted from an infinitely dense singularity about 15 billion to 20 billion years ago. The first few minutes after the Big Bang saw such extremes of energy that it is believed that all four interactions of physics were unified and all matter was contained in an undifferentiated “quark soup.”

The evolution of the four fundamental forces from the Big Bang to the present is shown in Figure 30.11. During the first 10^{-43} s (the ultrahot epoch, with $T < 10^{32}$ K), the strong, electroweak, and gravitational forces were joined to form a completely unified force. In the first 10^{-35} s following the Big Bang (the hot epoch, with $T < 10^{29}$ K), gravity broke free of this unification and the strong and electroweak forces remained as one, described by a grand unification theory. During this period particle energies were so great ($>10^{16}$ GeV) that very massive particles as well as quarks, leptons, and their antiparticles existed. Then, after 10^{-35} s, the Universe rapidly expanded and cooled (the warm epoch, with $T < 10^{29}$ to 10^{15} K), the strong and electroweak forces parted company, and the grand unification scheme was broken. As the Universe continued to cool, the electroweak force split into the weak force and the electromagnetic force about 10^{-10} s after the Big Bang.

After a few minutes, protons condensed out of the hot soup. For half an hour, the Universe underwent thermonuclear detonation, exploding like a hydrogen bomb and producing most of the helium nuclei now present. The Universe continued to expand, and its temperature dropped. Until about 700 000 years after the Big Bang, the Universe was dominated by radiation. Energetic radiation prevented matter from forming single hydrogen atoms because collisions would instantly ionize any atoms that might form. Photons underwent continuous Compton scattering from the vast number of free electrons, resulting in a Universe that was opaque to radiation. By the time the Universe was about 700 000 years old, it had expanded and cooled to about 3 000 K. Protons could now bind to electrons to form neutral hydrogen atoms, and the Universe suddenly became transparent to photons. Radiation no longer dominated the Universe, and clumps of neutral matter grew steadily: first atoms, followed by molecules, gas clouds, stars, and finally galaxies.

FIGURE 30.11 A brief history of the Universe from the Big Bang to the present. The four forces became distinguishable during the first microsecond. Then, all the quarks combined to form particles that interact via the strong force. The leptons remained separate, however, and exist as individually observable particles to this day.
Observation of Radiation from the Primordial Fireball

In 1965 Arno A. Penzias (b. 1933) and Robert W. Wilson (b. 1936) of Bell Laboratories made an amazing discovery while testing a sensitive microwave receiver. A pesky signal producing a faint background hiss was interfering with their satellite communications experiments. Despite all their efforts, the signal remained. Ultimately, it became clear that they were observing microwave background radiation (at a wavelength of 7.35 cm) representing the leftover “glow” from the Big Bang.

The microwave horn that served as their receiving antenna is shown in Figure 30.12. The intensity of the detected signal remained unchanged as the antenna was pointed in different directions. The radiation had equal strength in all directions, which suggested that the entire Universe was the source of this radiation.

Subsequent experiments by other groups added intensity data at different wavelengths, as shown in Figure 30.13. The results confirm that the radiation is that of a blackbody at 2.9 K. This figure is perhaps the most clear-cut evidence for the Big Bang theory.

The cosmic background radiation was found to be too uniform to have led to the development of galaxies. In 1992, following a study using the Cosmic Background Explorer, or COBE, slight irregularities in the cosmic background were found. These irregularities are thought to be the seeds of galaxy formation.

30.11 PROBLEMS AND PERSPECTIVES

While particle physicists have been exploring the realm of the very small, cosmologists have been exploring cosmic history back to the first microsecond of the Big Bang. Observation of the events that occur when two particles collide in an accelerator is essential in reconstructing the early moments in cosmic history. Perhaps the key to understanding the early Universe is first to understand the world of elementary particles.

Our understanding of physics at short and long distances is far from complete. Particle physicists are faced with many unanswered questions. Why is there so little antimatter in the Universe? Do neutrinos have a small mass, and if so, how much do they contribute to the “dark matter” holding the Universe together gravitationally? How can we understand the latest astronomical measurements, which show that the expansion of the Universe is accelerating and that there may be a kind of “antigravity force,” or dark energy, acting between widely separated galaxies? Is it possible to unify the strong and electroweak theories in a logical and consistent manner? Why do quarks and leptons form three similar but distinct families? Are...
muons the same as electrons (apart from their different masses), or do they have subtle differences that have not been detected? Why are some particles charged and others neutral? Why do quarks carry a fractional charge? What determines the masses of the fundamental particles? The questions go on and on. Because of the rapid advances and new discoveries in the related fields of particle physics and cosmology, by the time you read this book some of these questions may have been resolved and others may have emerged.

An important question that remains is whether leptons and quarks have a substructure. Many physicists believe that the fundamental quantities are not infinitesimal points, but extremely tiny vibrating strings. Despite more than three decades of string theory research by thousands of physicists, however, a final Theory of Everything hasn’t been found. Whether there is a limit to knowledge is an open question.

Summary

30.1 Nuclear Fission

In nuclear fission the total mass of the products is always less than the original mass of the reactants. Nuclear fission occurs when a heavy nucleus splits, or fissions, into two smaller nuclei. The lost mass is transformed into energy, electromagnetic radiation, and the kinetic energy of daughter particles.

A nuclear reactor is a system designed to maintain a self-sustaining chain reaction. Nuclear reactors using controlled fission events are currently being used to generate electric power. A useful parameter for describing the level of reactor operation is the reproduction constant K, which is the average number of neutrons from each fission event that will cause another event. A self-sustaining reaction is achieved when $K = 1$.

30.2 Nuclear Fusion

In nuclear fusion two light nuclei combine to form a heavier nucleus. This type of nuclear reaction occurs in the Sun, assisted by a quantum tunneling process that helps particles get through the Coulomb barrier.

Controlled fusion events offer the hope of plentiful supplies of energy in the future. The nuclear fusion reactor is considered by many scientists to be the ultimate energy source because its fuel is water. Lawson’s criterion states that a fusion reactor will provide a net output power if the product of the plasma ion density n and the plasma confinement time τ satisfies the following relationships:

\[
\eta \tau \geq 10^{14} \text{s/cm}^3 \quad \text{Deuterium–tritium interaction}
\]

\[
\eta \tau \geq 10^{16} \text{s/cm}^3 \quad \text{Deuterium–deuterium interaction}[30.5]
\]

30.3 Elementary Particles and the Fundamental Forces

There are four fundamental forces of nature: the strong (hadronic), electromagnetic, weak, and gravitational forces. The strong force is the force between nucleons that keeps the nucleus together. The weak force is responsible for beta decay. The electromagnetic and weak forces are now considered to be manifestations of a single force called the electroweak force.

Every fundamental interaction is said to be mediated by the exchange of field particles. The electromagnetic interaction is mediated by the photon, the weak interaction by the W^\pm and Z^0 bosons, the gravitational interaction by gravitons, and the strong interaction by gluons.

30.4 Positrons and Other Antiparticles

An antiparticle and a particle have the same mass, but opposite charge, and may also have other properties with opposite values, such as lepton number and baryon number. It is possible to produce particle–antiparticle pairs in nuclear reactions if the available energy is greater than $2mc^2$, where m is the mass of the particle (or antiparticle).

30.5 Classification of Particles

Particles other than photons are classified as hadrons or leptons. Hadrons interact primarily through the strong force. They have size and structure and hence are not elementary particles. There are two types of hadrons: baryons and mesons. Mesons have a baryon number of zero and have either zero or integer spin. Baryons, which generally are the most massive particles, have nonzero baryon numbers and spins of $\frac{1}{2}$ or $\frac{3}{2}$. The neutron and proton are examples of baryons.

Leptons have no known structure, down to the limits of current resolution (about 10^{-19} m). Leptons interact only through the weak and electromagnetic forces. There are six leptons: the electron, e^-; the muon, μ^-; the tau, τ^-; and their associated neutrinos, ν_e, ν_μ, and ν_τ.

30.6 Conservation Laws

In all reactions and decays, quantities such as energy, linear momentum, angular momentum, electric charge, baryon number, and lepton number are strictly conserved. Certain particles have properties called strangeness and charm. These unusual properties are conserved only in those reactions and decays that occur via the strong force.

30.8 Quarks and Color

Recent theories postulate that all hadrons are composed of smaller units known as quarks, which have fractional electric charges and baryon numbers of $\frac{1}{3}$ and come in six “flavors”: up, down, strange, charmed, top, and bottom. Each
baryon contains three quarks, and each meson contains one quark and one antiquark.

According to the theory of quantum chromodynamics, quarks have a property called color, and the strong force between quarks is referred to as the color force. The color force increases as the distance between particles increases, so quarks are confined and are never observed in isolation. When two bound quarks are widely separated, a new quark–antiquark pair forms between them, and the single particle breaks into two new particles, each composed of a quark–antiquark pair.

Conceptual Questions

1. If high-energy electrons with de Broglie wavelengths smaller than the size of the nucleus are scattered from nuclei, the behavior of the electrons is consistent with scattering from very massive structures much smaller in size than the nucleus, namely, quarks. How is this behavior similar to a classic experiment that detected small structures in an atom?

2. What factors make a fusion reaction difficult to achieve?

3. Doubly charged baryons are known to exist. Why are there no doubly charged mesons?

4. Why would a fusion reactor produce less radioactive waste than a fission reactor?
5. Why didn’t atoms exist until hundreds of thousands of years after the Big Bang?
6. Particles known as resonances have very short half-lives, on the order of 10^{-23} s. Would you guess that they are hadrons or leptons?
7. Describe the quark model of hadrons, including the properties of quarks.
8. In the theory of quantum chromodynamics, quarks come in three colors. How would you justify the statement, “All baryons and mesons are colorless”?

PROBLEMS

SECTION 30.1 NUCLEAR FISSION

1. Burning 1 metric ton (1,000 kg) of coal can yield an energy of 3.30×10^{10} J. Fission of one nucleus of uranium-235 yields an average energy of approximately 208 MeV. What mass of uranium produces the same energy as 1 metric ton of coal?

2. Find the energy released in the fission reaction

$$n + ^{235}_{92}U \rightarrow ^{90}_{44}Zr + ^{139}_{54}Te + 3n$$

The atomic masses of the fission products are 97.9120 u for $^{90}_{44}Zr$ and 134.9087 u for $^{139}_{54}Te$.

3. Find the energy released in the fission reaction

$$n + ^{235}_{92}U \rightarrow ^{92}_{44}Sr + ^{136}_{54}Xe + 2n$$

4. The radioactive isotope strontium-90 is a particularly dangerous fission product of $^{235}_{92}U$ because it substitutes for calcium in bones. What other direct fission products would accompany it in the neutron-induced fission of $^{235}_{92}U$? Note: This reaction may release two, three, or four free neutrons.

5. Assume ordinary soil contains natural uranium in amounts of 1 part per million by mass. (a) How much uranium is in the top 1.00 m of soil on a 1-acre (43,560-ft²) plot of ground, assuming the specific gravity of soil is 1.00? (b) How much of the isotope $^{235}_{92}U$, appropriate for nuclear reactor fuel, is in this soil? Hint: See Appendix B for the percent abundance of $^{235}_{92}U$.

6. A typical nuclear fission power plant produces about 1.00 GW of electrical power. Assume the plant has an overall efficiency of 40.0% and each fission produces 200 MeV of thermal energy. Calculate the mass of $^{235}_{92}U$ consumed each day.

7. Suppose the water exerts an average frictional drag of 1.0×10^2 N on a nuclear-powered ship. How far can the ship travel per kilogram of fuel if the fuel consists of enriched uranium containing 1.7% of the fissible isotope $^{235}_{92}U$ and the ship’s engine has an efficiency of 20%? Assume 208 MeV is released per fission event.

8. According to one estimate, there are 4.4×10^5 metric tons of world uranium reserves extractable at $\$130$/kg or less. About 0.7% of naturally occurring uranium is the fissile isotope $^{235}_{92}U$. (a) Calculate the mass of $^{235}_{92}U$ in this reserve in grams. (b) Find the number of moles of $^{235}_{92}U$ and convert to a number of atoms. (c) Assuming 208 MeV is obtained from each reaction and all this energy is captured, calculate the total energy that can be extracted from the reserve in joules. (d) Assuming world power consumption to be constant at 1.5×10^{13} J/s, how many years could the uranium reserves provide for all the world’s energy needs? (e) What conclusion can be drawn?

9. An all-electric home uses approximately 2,000 kWh of electric energy per month. How much uranium-235 would be required to provide this house with its energy needs for one year? Assume 100% conversion efficiency and 208 MeV released per fission.

10. Seawater contains 3 mg of uranium per cubic meter. (a) Given that the average ocean depth is about 4 km and water covers two-thirds of Earth’s surface, estimate the amount of uranium dissolved in the ocean. (b) Estimate how long this uranium could supply the world’s energy needs at the current usage of 1.5×10^{13} J/s. (c) Where does the dissolved uranium come from? Is it a renewable energy source? Can uranium from the ocean satisfy our energy requirements? Discuss. Note: Breeder reactors increase the efficiency of nuclear fuel use by approximately two orders of magnitude.

SECTION 30.2 NUCLEAR FUSION

11. When a star has exhausted its hydrogen fuel, it may fuse other nuclear fuels. At temperatures above 1.0×10^8 K, helium fusion can occur. Write the equations for the following processes. (a) Two alpha particles fuse to produce a nucleus A and a gamma ray. What is nucleus A? (b) Nucleus A absorbs an alpha particle to produce a nucleus B and a gamma ray. What is nucleus B? (c) Find the total energy released in the reactions given in parts (a) and (b). Note: The mass of $^7_{3}Be = 8.085$ 905 u.
12. Find the energy released in the fusion reaction

\[^{1}H + ^{1}H \rightarrow ^{3}He + \gamma \]

13. If an all-electric home uses approximately 2,000 kWh of electric energy per month, how many fusion events described by the reaction \[^{1}H + ^{1}H \rightarrow ^{3}He + ^{4}He \] would be required to keep this home running for one year?

14. Another series of nuclear reactions that can produce energy in the interior of stars is the cycle described below. This cycle is most efficient when the central temperature in a star is above \(1.6 \times 10^7\) K. Because the temperature at the center of the Sun is only \(1.5 \times 10^7\) K, the following cycle produces less than 10% of the Sun's energy. (a) A high-energy proton is absorbed by \(^{12}\)C. Another nucleus, \(A\), is produced in the reaction, along with a gamma ray. Identify nucleus \(A\). (b) Nucleus \(A\) decays through positron emission to form nucleus \(B\). Identify nucleus \(B\). (c) Nucleus \(B\) absorbs a proton to produce nucleus \(C\) and a gamma ray. Identify nucleus \(C\). (d) Nucleus \(C\) absorbs a proton to produce nucleus \(D\) and a gamma ray. Identify nucleus \(D\). (e) Nucleus \(D\) decays through positron emission to produce nucleus \(E\). Identify nucleus \(E\). (f) Nucleus \(E\) absorbs a proton to produce nucleus \(F\) plus an alpha particle. What is nucleus \(F\)? Note: If nucleus \(F\) is not \(^{12}\)C—that is, the nucleus you started with—you have made an error and should review the sequence of events.

15. Assume a deuteron and a triton are at rest when they fuse according to the reaction

\[^{2}H + ^{1}H \rightarrow ^{3}He + ^{4}He + 17.6\ MeV \]

Neglecting relativistic corrections, determine the kinetic energy acquired by the neutron.

16. A reaction that has been considered as a source of energy is the absorption of a proton by a boron-11 nucleus to produce three alpha particles:

\[^{3}H + ^{1}B \rightarrow ^{3}He + ^{3}He \]

This reaction is an attractive possibility because boron is easily obtained from Earth's crust. A disadvantage is that the protons and boron nuclei must have large kinetic energies for the reaction to take place. This requirement contrasts to the initiation of uranium fission by slow neutrons: (a) How much energy is released in each reaction? (b) Why must the reactant particles have high kinetic energies?

SECTION 30.4 POSITRONS AND OTHER ANTIPARTICLES

17. A photon produces a proton–antiproton pair according to the reaction \(\gamma \rightarrow p + \bar{p}\). What is the minimum possible frequency of the photon? What is its wavelength?

18. A photon with an energy of 2.09 GeV creates a proton–antiproton pair in which the proton has a kinetic energy of 95.0 MeV. What is the kinetic energy of the antiproton?

19. A neutral pion at rest decays into two photons according to

\[\pi^0 \rightarrow \gamma + \gamma \]

Find the energy, momentum, and frequency of each photon.

SECTION 30.6 CONSERVATION LAWS

20. For the following two reactions, the first may occur but the second cannot. Explain.

(a) \(K^0 \rightarrow \pi^+ + \pi^- \) (can occur)

(b) \(K^0 \rightarrow \pi^+ + \pi^- \) (cannot occur)

21. Each of the following reactions is forbidden. Determine a conservation law that is violated for each reaction.

(a) \(p + \bar{p} \rightarrow \mu^+ + e^- \)

(b) \(\pi^- + p \rightarrow p + \pi^+ \)

(c) \(p + p \rightarrow p + \pi^+ \)

(d) \(p + p \rightarrow p + p + n \)

(e) \(\gamma + p \rightarrow n + p^0 \)

22. Determine the type of neutrino or antineutrino involved in each of the following processes.

(a) \(\pi^- \rightarrow \pi^0 + e^- + \nu \)

(b) \(\pi^- \rightarrow \mu^- + p + \nu \)

23. Identify the unknown particle on the left side of the reaction

\[? + p \rightarrow n + \mu^+ \]

24. (a) Show that baryon number and charge are conserved in the following reactions of a pion with a proton:

(1) \(\pi^+ + p \rightarrow K^0 + \Sigma^+ \)

(2) \(\pi^- + p \rightarrow \pi^- + \Sigma^+ \)

(b) The first reaction is observed, but the second never occurs. Explain these observations. (c) Could the second reaction happen if it created a third particle? If so, which particles in Table 30.2 might make it possible? Would the reaction require less energy or more energy than the reaction of Equation (1)? Why?

25. Identify the conserved quantities in the following processes.

(a) \(\Xi^- \rightarrow \Lambda^0 + \mu^- + \nu \)

(b) \(K^0 \rightarrow 2\pi^0 \)

(c) \(K^- + p \rightarrow \Sigma^0 + n \)

(d) \(\Sigma^- \rightarrow \Lambda^0 + \gamma \)

(e) \(e^+ + e^- \rightarrow \mu^+ + \mu^- \)

(f) \(\pi^- + n \rightarrow \Sigma^- + \pi^0 \)

SECTION 30.8 QUARKS AND COLOR

26. The quark composition of the proton is ud, whereas that of the neutron is ud. Show that the charge, baryon number, and strangeness of these particles equal the sums of these numbers for their quark constituents.

27. Find the number of electrons, and of each species of quark, in 1 L of water.

28. The quark compositions of the \(K^0\) and \(\Lambda^0\) particles are \(ud\) and \(uds\), respectively. Show that the charge, baryon number, and strangeness of these particles equal the sums of these numbers for their quark constituents.

29. Identify the particles corresponding to the quark states (a) \(u\), (b) \(\bar{u}\), (c) \(d\), and (d) \(s\).
30. What is the electrical charge of the baryons with the quark compositions (a) uud and (b) udd? What are these baryons called?

ADDITIONAL PROBLEMS

31. A \(^{10} \) particle traveling through matter strikes a proton and a \(\Sigma^+ \), and a gamma ray, as well as a third particle, emerges. Use the quark model of each to determine the identity of the third particle.

32. Name at least one conservation law that prevents each of the following reactions from occurring.
 (a) \(\pi^- + p \rightarrow \Sigma^- + \pi^0 \)
 (b) \(\mu^- \rightarrow \pi^- + \nu_e \)
 (c) \(p \rightarrow \pi^+ + \pi^- + \pi^- \)

33. Find the energy released in the fusion reaction
 \[^1H + ^3H \rightarrow ^4He + e^+ + \nu \]

34. Occasionally, high-energy muons collide with electrons and produce two neutrinos according to the reaction \(\mu^- + e^- \rightarrow 2\nu \). What kind of neutrinos are they?

35. Each of the following decays is forbidden. For each process, determine a conservation law that is violated.
 (a) \(\mu^- \rightarrow e^- + \gamma \)
 (b) \(n \rightarrow p + e^- + \nu_e \)
 (c) \(A^0 \rightarrow p + \pi^0 \)
 (d) \(p \rightarrow e^+ + \pi^- + \pi^- \)
 (e) \(\Sigma^- \rightarrow n + \pi^0 \)

36. Two protons approach each other with 70.4 MeV of kinetic energy and engage in a reaction in which a proton and a positive pion emerge at rest. What third particle, obviously uncharged and therefore difficult to detect, must have been created?

37. A 2.0-MeV neutron is emitted in a fission reactor. If it loses one-half its kinetic energy in each collision with a moderator atom, how many collisions must it undergo to reach an energy associated with a gas at a room temperature of 20.0°C?

38. The fusion reaction \(^3D + ^3D \rightarrow ^3He + ^4\text{He} \) releases 3.27 MeV of energy. If a fusion reactor operates strictly on the basis of this reaction, (a) how much energy could it produce by completely reacting 1 kg of deuterium?

(b) At eight cents a kilowatt-hour, how much would the produced energy be worth? (c) Heavy water (\(^2D_2O \)) costs about $300 per kilogram. Neglecting the cost of separating the deuterium from the oxygen via electrolysis, how much does 1 kg of deuterium cost, if derived from \(^2D_2O \)?

(d) Would it be cost-effective to use deuterium as a source of energy? Discuss, assuming the cost of energy production is nine-tenths the value of energy produced.

39. (a) Show that about 1.0 \(\times 10^{10} \) J would be released by the fusion of the deuterons in 1.0 gal of water. Note that 1 of every 6,500 hydrogen atoms is a deuteron. (b) The average energy consumption rate of a person living in the United States is about 1.0 \(\times 10^4 \) J/s (an average power of 10 kW). At this rate, how long would the energy needs of one person be supplied by the fusion of the deuterons in 1.0 gal of water? Assume the energy released per deuteron is 1.64 MeV.

40. Calculate the mass of \(^{235}U \) required to provide the total energy requirements of a nuclear submarine during a 100-day patrol, assuming a constant power demand of 100 000 kW, a conversion efficiency of 30%, and an average energy released per fission of 208 MeV.

41. A \(\pi^- \) meson at rest decays according to
 \[\pi^- \rightarrow \mu^- + \nu_\mu \]
 What is the energy carried off by the neutrino? Assume the neutrino has no mass and moves off with the speed of light. Take \(m_\mu c^2 = 139.6 \text{ MeV} \) and \(m_\nu c^2 = 105.7 \text{ MeV} \). Note: Use relativity; see Equation 26.10.

42. The reaction \(\pi^- + p \rightarrow K^0 + \Lambda^0 \) occurs with high probability, whereas the reaction \(\pi^- + p \rightarrow K^- + n \) never occurs. Analyze these reactions at the quark level. Show that the first reaction conserves the total number of each type of quark and the second reaction does not.

43. The Sun radiates energy at the rate of 3.85 \(\times 10^{33} \) W. Suppose the net reaction
 \[4p + 2e^- \rightarrow \alpha + 2\nu_e + 6\gamma \]
 accounts for all the energy released. Calculate the number of protons fused per second. Note: recall that an alpha particle is a helium-4 nucleus.
A.1 MATHEMATICAL NOTATION

Many mathematical symbols are used throughout this book. These symbols are described here, with examples illustrating their use.

Equals Sign: =
The symbol = denotes the mathematical equality of two quantities. In physics, it also makes a statement about the relationship of different physical concepts. An example is the equation \(E = mc^2 \). This famous equation says that a given mass \(m \), measured in kilograms, is equivalent to a certain amount of energy, \(E \), measured in joules. The speed of light squared, \(c^2 \), can be considered a constant of proportionality, necessary because the units chosen for given quantities are rather arbitrary, based on historical circumstances.

Proportionality: \(\propto \)
The symbol \(\propto \) denotes a proportionality. This symbol might be used when focusing on relationships rather than an exact mathematical equality. For example, we could write \(E \propto m \), which says in words that “the energy \(E \) associated with an object is proportional to the mass \(m \) of the object.” Another example is found in kinetic energy, which is the energy associated with an object’s motion, defined by \(KE = \frac{1}{2}mv^2 \), where \(m \) is again the mass and \(v \) is the speed. Both \(m \) and \(v \) are variables in this expression. Hence, the kinetic energy \(KE \) is proportional to \(m \), \(KE \propto m \), and at the same time \(KE \) is proportional to the speed squared, \(KE \propto v^2 \). Another term used here is “directly proportional.” The density \(\rho \) of an object is related to its mass and volume by \(\rho = \frac{m}{V} \). Consequently, the density is said to be directly proportional to mass and inversely proportional to volume.

Inequalities
The symbol \(< \) means “is less than,” and \(> \) means “is greater than.” For example, \(\rho_{Fe} > \rho_{Al} \) means that the density of iron, \(\rho_{Fe} \), is greater than the density of aluminum, \(\rho_{Al} \). If there is a line underneath the symbol, there is the possibility of equality: \(\leq \) means “less than or equal to,” whereas \(\geq \) means “greater than or equal to.” Any particle’s speed \(v \), for example, is less than or equal to the speed of light, \(c \); \(v \leq c \).

Sometimes the size of a given quantity greatly differs from the size of another quantity. Simple inequality doesn’t convey vast differences. For such cases, the symbol \(\ll \) means “is much less than” and \(\gg \) means “is much greater than.” The mass of the Sun, \(M_{Sun} \), is much greater than the mass of the Earth, \(M_E \); \(M_{Sun} \gg M_E \). The mass of an electron, \(m_e \), is much less than the mass of a proton, \(m_p \); \(m_e \ll m_p \).

Approximately Equal: \(\approx \)
The symbol \(\approx \) indicates that two quantities are approximately equal to each other. The mass of a proton, \(m_p \), is approximately the same as the mass of a neutron, \(m_n \). This relationship can be written \(m_p \approx m_n \).

Equivalence: \(\equiv \)
The symbol \(\equiv \) means “is defined as,” which is a different statement than a simple \(= \). It means that the quantity on the left—usually a single quantity—is another way
A.2 Appendix A Mathematics Review

of expressing the quantity or quantities on the right. The classical momentum of an object, \(p \), is defined to be the mass of the object \(m \) times its velocity \(v \), hence \(p = mv \). Because this equivalence is by definition, there is no possibility of \(p \) being equal to something else. Contrast this case with that of the expression for the velocity \(v \) of an object under constant acceleration, which is \(v = at + v_0 \). This equation would never be written with an equivalence sign because \(v \) in this context is not a defined quantity; rather it is an equality that holds true only under the assumption of constant acceleration. The expression for the classical momentum, however, is always true by definition, so it would be appropriate to write \(p = mv \) the first time the concept is introduced. After the introduction of a term, an ordinary equals sign generally suffices.

Differences: \(\Delta \)

The Greek letter \(\Delta \) (capital delta) is the symbol used to indicate the difference in a measured physical quantity, usually at two different times. The best example is a displacement along the \(x \)-axis, indicated by \(\Delta x \) (read as “delta \(x \)”). Note that \(\Delta x \) doesn’t mean “the product of \(\Delta \) and \(x \)”.

Suppose a person out for a morning stroll starts measuring her distance away from home when she is 10 m from her doorway. She then continues along a straight-line path and stops strolling 50 m from the door. Her change in position during the walk is \(\Delta x = 50 \text{ m} - 10 \text{ m} = 40 \text{ m} \). In symbolic form, such displacements can be written

\[
\Delta x = x_f - x_i
\]

In this equation, \(x_f \) is the final position and \(x_i \) is the initial position. There are numerous other examples of differences in physics, such as the difference (or change) in momentum, \(\Delta p = p_f - p_i \); the change in kinetic energy, \(\Delta K = K_f - K_i \); and the change in temperature, \(\Delta T = T_f - T_i \).

Summation: \(\Sigma \)

In physics there are often contexts in which it’s necessary to add several quantities. A useful abbreviation for representing such a sum is the Greek letter \(\Sigma \) (capital sigma). Suppose we wish to add a set of five numbers represented by \(x_1 \), \(x_2 \), \(x_3 \), \(x_4 \), and \(x_5 \). In the abbreviated notation, we would write the sum as

\[
x_1 + x_2 + x_3 + x_4 + x_5 = \sum_{i=1}^{5} x_i
\]

where the subscript \(i \) on \(x \) represents any one of the numbers in the set. For example, if there are five masses in a system, \(m_1, m_2, m_3, m_4, \) and \(m_5 \), the total mass of the system \(M = m_1 + m_2 + m_3 + m_4 + m_5 \) could be expressed as

\[
M = \sum_{i=1}^{5} m_i
\]

The \(x \)-coordinate of the center of mass of the five masses, meanwhile, could be written

\[
x_{CM} = \frac{\sum_{i=1}^{5} m_i x_i}{M}
\]

with similar expressions for the \(y \) and \(z \)-coordinates of the center of mass.

Absolute Value: | |

The magnitude of a quantity \(x \), written \(|x| \), is simply the absolute value of that quantity. The sign of \(|x| \) is always positive, regardless of the sign of \(x \). For example, if \(x = -5 \), then \(|x| = 5 \); if \(x = 8 \), then \(|x| = 8 \). In physics this sign is useful whenever
the magnitude of a quantity is more important than any direction that might be implied by a sign.

A.2 SCIENTIFIC NOTATION

Many quantities in science have very large or very small values. The speed of light is about 300 000 000 m/s, and the ink required to make the dot over an \(i \) in this textbook has a mass of about 0.000 000 001 kg. It’s very cumbersome to read, write, and keep track of such numbers because the decimal places have to be counted and because a number with one significant digit may require a large number of zeros. Scientific notation is a way of representing these numbers without having to write out so many zeros, which in general are only used to establish the magnitude of the number, not its accuracy. The key is to use powers of 10. The nonnegative powers of 10 are

\[
\begin{align*}
10^0 &= 1 \\
10^1 &= 10 \\
10^2 &= 10 \times 10 = 100 \\
10^3 &= 10 \times 10 \times 10 = 1000 \\
10^4 &= 10 \times 10 \times 10 \times 10 = 10000 \\
10^5 &= 10 \times 10 \times 10 \times 10 \times 10 = 100000
\end{align*}
\]

and so on. The number of decimal places following the first digit in the number and to the left of the decimal point corresponds to the power to which 10 is raised, called the **exponent** of 10. The speed of light, 300 000 000 m/s, can then be expressed as \(3 \times 10^8 \) m/s. Notice there are eight decimal places to the right of the leading digit, 3, and to the left of where the decimal point would be placed.

In this method, some representative numbers smaller than 1 are

\[
\begin{align*}
10^{-1} &= \frac{1}{10} = 0.1 \\
10^{-2} &= \frac{1}{10 \times 10} = 0.01 \\
10^{-3} &= \frac{1}{10 \times 10 \times 10} = 0.001 \\
10^{-4} &= \frac{1}{10 \times 10 \times 10 \times 10} = 0.0001 \\
10^{-5} &= \frac{1}{10 \times 10 \times 10 \times 10 \times 10} = 0.00001
\end{align*}
\]

In these cases, the number of decimal places to the right of the decimal point up to and including only the first nonzero digit equals the value of the (negative) exponent.

Numbers expressed as some power of 10 multiplied by another number between 1 and 10 are said to be in **scientific notation**. For example, Coulomb’s constant, which is associated with electric forces, is given by 8 987 551 789 N·m²/C² and is written in scientific notation as \(8.987 \times 10^9 \) N·m²/C². Newton’s constant of gravitation is given by 0.000 000 000 066 731 N·m²/kg², written in scientific notation as \(6.673 \times 10^{-11} \) N·m²/kg².

When numbers expressed in scientific notation are being multiplied, the following general rule is very useful:

\[
10^n \times 10^m = 10^{n+m} \quad [A.1]
\]

where \(n \) and \(m \) can be any numbers (not necessarily integers). For example, \(10^2 \times 10^3 = 10^5 \). The rule also applies if one of the exponents is negative: \(10^3 \times 10^{-8} = 10^{-5} \).
When dividing numbers expressed in scientific notation, note that
\[
\frac{10^n}{10^m} = 10^{n-m} = 10^{-n} \quad \text{[A.2]}
\]

EXERCISES
With help from the above rules, verify the answers to the following:

1. \(86400 = 8.64 \times 10^4\)
2. \(9816762.5 = 9.8167625 \times 10^6\)
3. \(0.0000000398 = 3.98 \times 10^{-9}\)
4. \((4 \times 10^5)(9 \times 10^3) = 36 \times 10^{18}\)
5. \((3 \times 10^7)(6 \times 10^{-12}) = 1.8 \times 10^{-4}\)
6. \(\frac{75 \times 10^{-11}}{5 \times 10^{-7}} = 1.5 \times 10^{-4}\)
7. \(\frac{(3 \times 10^6)(8 \times 10^{-2})}{(2 \times 10^{12})(6 \times 10^9)} = 2 \times 10^{-18}\)

A.3 ALGEBRA

A. Some Basic Rules

When algebraic operations are performed, the laws of arithmetic apply. Symbols such as \(x\), \(y\), and \(z\) are usually used to represent quantities that are not specified, what are called the **unknowns**.

First, consider the equation
\[8x = 32\]

If we wish to solve for \(x\), we can divide (or multiply) each side of the equation by the same factor without destroying the equality. In this case, if we divide both sides by 8, we have
\[
\frac{8x}{8} = \frac{32}{8}
\]
\[x = 4\]

Next consider the equation
\[x + 2 = 8\]

In this type of expression, we can add or subtract the same quantity from each side. If we subtract 2 from each side, we obtain
\[x + 2 - 2 = 8 - 2\]
\[x = 6\]

In general, if \(x + a = b\), then \(x = b - a\).

Now consider the equation
\[\frac{x}{5} = 9\]

If we multiply each side by 5, we are left with \(x\) on the left by itself and 45 on the right:
\[
\left(\frac{x}{5}\right)(5) = 9 \times 5
\]
\[x = 45\]

In all cases, **whatever operation is performed on the left side of the equality must also be performed on the right side**.
The following rules for multiplying, dividing, adding, and subtracting fractions should be recalled, where \(a\), \(b\), and \(c\) are three numbers:

<table>
<thead>
<tr>
<th>Rule</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multiplying</td>
<td>(\left(\frac{a}{b}\right)\left(\frac{c}{d}\right) = \frac{ac}{bd})</td>
</tr>
<tr>
<td>Dividing</td>
<td>\left(\frac{a/b}{c/d}\right) = \frac{ad}{bc}\</td>
</tr>
<tr>
<td>Adding</td>
<td>(\frac{a}{b} + \frac{c}{d} = \frac{ad + bc}{bd})</td>
</tr>
</tbody>
</table>

Very often in physics we are called upon to manipulate symbolic expressions algebraically, a process most students find unfamiliar. It’s very important, however, because substituting numbers into an equation too early can often obscure meaning. The following two examples illustrate how these kinds of algebraic manipulations are carried out.

EXAMPLE

A ball is dropped from the top of a building 50.0 m tall. How long does it take the ball to fall to a height of 25.0 m?

Solution

First, write the general ballistics equation for this situation:

\[x = \frac{1}{2}at^2 + v_0t + x_0 \]

Here, \(a = -9.80\ \text{m/s}^2\) is the acceleration of gravity that causes the ball to fall, \(v_0 = 0\) is the initial velocity, and \(x_0 = 50.0\ \text{m}\) is the initial position. Substitute only the initial velocity, \(v_0 = 0\), obtaining the following equation:

\[x = \frac{1}{2}at^2 + x_0 \]

This equation must be solved for \(t\). Subtract \(x_0\) from both sides:

\[x - x_0 = \frac{1}{2}at^2 + x_0 - x_0 = \frac{1}{2}at^2 \]

Multiply both sides by \(2/a\):

\[\left(\frac{2}{a}\right)(x - x_0) = \left(\frac{2}{a}\right)\frac{1}{2}at^2 = t^2 \]

It’s customary to have the desired value on the left, so switch the equation around and take the square root of both sides:

\[t = \pm \sqrt{\left(\frac{2}{a}\right)(x - x_0)} \]

Only the positive root makes sense. Values could now be substituted to obtain a final answer.

EXAMPLE

A block of mass \(m\) slides over a frictionless surface in the positive \(x\)-direction. It encounters a patch of roughness having coefficient of kinetic friction \(\mu_k\). If the rough patch has length \(\Delta x\), find the speed of the block after leaving the patch.

Solution

Using the work-energy theorem, we have

\[\frac{1}{2}mv^2 - \frac{1}{2}mv_0^2 = -\mu_kmg\Delta x \]

Add \(\frac{1}{2}mv_0^2\) to both sides:

\[\frac{1}{2}mv^2 = \frac{1}{2}mv_0^2 - \mu_kmg\Delta x \]
Multiply both sides by $2/m$:

$$v^2 = v_0^2 - 2\mu g \Delta x$$

Finally, take the square root of both sides. Because the block is sliding in the positive x-direction, the positive square root is selected.

$$v = \sqrt{v_0^2 - 2\mu g \Delta x}$$

EXERCISES

In Exercises 1–4, solve for x:

ANSWERS

1. $a = \frac{1}{1 + x}$

 $x = \frac{1}{a}$

2. $3x - 5 = 13$

 $x = 6$

3. $ax - 5 = bx + 2$

 $x = \frac{7}{a - b}$

4. $\frac{5}{2x + 6} = \frac{3}{4x + 8}$

 $x = \frac{11}{7}$

5. Solve the following equation for v_1:

 $$P_1 + \frac{1}{2}\rho v_1^2 = P_2 + \frac{1}{2}\rho v_2^2$$

 Answer: $v_1 = \frac{2}{\rho} \sqrt{\frac{P_2 - P_1}{2}} + v_2^2$

B. Powers

When powers of a given quantity x are multiplied, the following rule applies:

$$x^n x^m = x^{n+m} \quad [A.3]$$

For example, $x^2 x^3 = x^{2+3} = x^5$.

When dividing the powers of a given quantity, the rule is

$$\frac{x^n}{x^m} = x^{n-m} \quad [A.4]$$

For example, $x^9 / x^2 = x^{9-2} = x^7$.

A power that is a fraction, such as $\frac{1}{n}$, corresponds to a root as follows:

$$x^{1/n} = \sqrt[n]{x} \quad [A.5]$$

For example, $4^{1/3} = \sqrt[3]{4} = 1.5874$. (A scientific calculator is useful for such calculations.)

Finally, any quantity x^n raised to the mth power is

$$(x^n)^m = x^{nm} \quad [A.6]$$

Table A.1 summarizes the rules of exponents.

EXERCISES

Verify the following:

1. $3^2 \times 3^3 = 243$
2. $x^5 / x^8 = x^{-3}$
3. $x^{10} / x^5 = x^{15}$
4. $5^{1/3} = 1.709975$ (Use your calculator.)
5. $60^{1/4} = 2.783158$ (Use your calculator.)
6. $(x^4)^3 = x^{12}$
C. Factoring
The following are some useful formulas for factoring an equation:

\[\begin{align*}
ax + ay + az &= a(x + y + z) \quad \text{common factor} \\
ax^2 + 2ab + b^2 &= (a + b)^2 \quad \text{perfect square} \\
ax^2 - bx^2 &= (a + b)(a - b) \quad \text{differences of squares}
\end{align*} \]

D. Quadratic Equations
The general form of a quadratic equation is

\[ax^2 + bx + c = 0 \quad [A.7] \]

where \(x \) is the unknown quantity and \(a, b, \) and \(c \) are numerical factors referred to as coefficients of the equation. This equation has two roots, given by

\[x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \quad [A.8] \]

If \(b^2 - 4ac > 0 \), the roots are real.

EXAMPLE
The equation \(x^2 + 5x + 4 = 0 \) has the following roots corresponding to the two signs of the square-root term:

\[x = \frac{-5 \pm \sqrt{5^2 - 4(1)(4)}}{2(1)} = \frac{-5 \pm \sqrt{9}}{2} = \frac{-5 \pm 3}{2} \]

\[x_1 = \frac{-5 + 3}{2} = -1 \quad x_2 = \frac{-5 - 3}{2} = -4 \]

where \(x_1 \) refers to the root corresponding to the positive sign and \(x_2 \) refers to the root corresponding to the negative sign.

EXAMPLE
A ball is projected upwards at 16.0 m/s. Use the quadratic formula to determine the time necessary for it to reach a height of 8.00 m above the point of release.

Solution From the discussion of ballistics in Chapter 2, we can write

\[(1) \quad x = \frac{\Delta vt}{2} + v_0t + x_0 \]

The acceleration is due to gravity, given by \(a = -9.80 \text{ m/s}^2 \); the initial velocity is \(v_0 = 16.0 \text{ m/s} \); and the initial position is the point of release, taken to be \(x_0 = 0 \). Substitute these values into Equation (1) and set \(x = 8.00 \text{ m} \), arriving at

\[x = -4.90t^2 + 16.00t = 8.00 \]

where units have been suppressed for mathematical clarity. Rearrange this expression into the standard form of Equation A.7:

\[-4.90t^2 + 16.00t - 8.00 = 0 \]

The equation is quadratic in the time, \(t \). We have \(a = -4.9, b = 16, \) and \(c = -8.00 \). Substitute these values into Equation A.8:

\[t = \frac{-16.0 \pm \sqrt{16^2 - 4(-4.9)(-8.00)}}{2(-4.9)} = \frac{-16.0 \pm \sqrt{99.2}}{9.80} \]

\[= 1.63 \pm \frac{9.92}{9.80} = 0.614 \text{ s, 2.65 s} \]

Both solutions are valid in this case, one corresponding to reaching the point of interest on the way up and the other to reaching it on the way back down.
EXERCISES

Solve the following quadratic equations:

\[\text{ANSWERS} \]

1. \(x^2 + 2x - 3 = 0 \) \(x_1 = 1 \) \(x_2 = -3 \)
2. \(2x^2 - 5x + 2 = 0 \) \(x_1 = \frac{1}{2} \) \(x_2 = \frac{1}{2} \)
3. \(2x^2 - 4x - 9 = 0 \) \(x_1 = 1 + \sqrt{22}/2 \) \(x_2 = 1 - \sqrt{22}/2 \)

4. Repeat the ballistics example for a height of 10.0 m above the point of release.
Answer: \(t_1 = 0.842 \text{ s} \) \(t_2 = 2.42 \text{ s} \)

E. Linear Equations

A linear equation has the general form
\[
y = mx + b \tag{A.9}
\]
where \(m \) and \(b \) are constants. This kind of equation is called linear because the graph of \(y \) versus \(x \) is a straight line, as shown in Figure A.1. The constant \(b \), called the \(y \)-intercept, represents the value of \(y \) at which the straight line intersects the \(y \)-axis. The constant \(m \) is equal to the slope of the straight line. If any two points on the straight line are specified by the coordinates \((x_1, y_1)\) and \((x_2, y_2)\), as in Figure A.1, the slope of the straight line can be expressed as
\[
\text{Slope} = \frac{y_2 - y_1}{x_2 - x_1} = \frac{\Delta y}{\Delta x} \tag{A.10}
\]

Note that \(m \) and \(b \) can have either positive or negative values. If \(m > 0 \), the straight line has a positive slope, as in Figure A.1. If \(m < 0 \), the straight line has a negative slope. In Figure A.1, both \(m \) and \(b \) are positive. Three other possible situations are shown in Figure A.2.

EXAMPLE

Suppose the electrical resistance of a metal wire is 5.00 \(\Omega \) at a temperature of 20.0°C and 6.14 \(\Omega \) at 80.0°C. Assuming the resistance changes linearly, what is the resistance of the wire at 60.0°C?

Solution

Find the equation of the line describing the resistance \(R \) and then substitute the new temperature into it. Two points on the graph of resistance versus temperature, \((20.0°C, 5.00 \Omega)\) and \((80.0°C, 6.14 \Omega)\), allow computation of the slope:

\[
(1) \quad m = \frac{\Delta R}{\Delta T} = \frac{6.14 \Omega - 5.00 \Omega}{80.0°C - 20.0°C} = 1.90 \times 10^{-2} \Omega/°C
\]

Now use the point-slope formulation of a line, with this slope and \((20.0°C, 5.00 \Omega)\):

\[
(2) \quad R - R_0 = m(T - T_0)
\]

\[
(3) \quad R - 5.00 \Omega = (1.90 \times 10^{-2} \Omega/°C)(T - 20.0°C)
\]

Finally, substitute \(T = 60.0°C \) into Equation (3) and solve for \(R \), getting \(R = 5.76 \Omega \).

EXERCISES

1. Draw graphs of the following straight lines:
 \(a \) \(y = 5x + 3 \) \(b \) \(y = -2x + 4 \) \(c \) \(y = -3x - 6 \)
2. Find the slopes of the straight lines described in Exercise 1.
 Answers: \(a \) 5 \(b \) -2 \(c \) -3
3. Find the slopes of the straight lines that pass through the following sets of points:
 \(a \) \((0, -4)\) and \((4, 2)\) \(b \) \((0, 0)\) and \((2, -5)\) \(c \) \((-5, 2)\) and \((4, -2)\)
 Answers: \(a \) 3/2 \(b \) -5/2 \(c \) -4/9
4. Suppose an experiment measures the following displacements (in meters) from equilibrium of a vertical spring due to attaching weights (in Newtons):

- (0.025 m, 22.0 N)
- (0.075 m, 66.0 N)

Find the spring constant, which is the slope of the line in the graph of weight versus displacement.

Answer: 880 N/m

F. Solving Simultaneous Linear Equations

Consider the equation $3x + 5y = 15$, which has two unknowns, x and y. Such an equation doesn’t have a unique solution. For example, note that $(x = 0, y = 3)$, $(x = 5, y = 0)$, and $(x = 2, y = 9/5)$ are all solutions to this equation.

If a problem has two unknowns, a unique solution is possible only if we have two equations. In general, if a problem has n unknowns, its solution requires n equations. To solve two simultaneous equations involving two unknowns, x and y, we solve one of the equations for x in terms of y and substitute this expression into the other equation.

EXAMPLE

Solve the following two simultaneous equations:

\[
\begin{align*}
(1) \quad 5x + y &= -8 \\
(2) \quad 2x - 2y &= 4
\end{align*}
\]

Solution From Equation (2), we find that $x = y + 2$. Substitution of this value into Equation (1) gives

\[
\begin{align*}
5(y + 2) + y &= -8 \\
6y &= -18 \\
y &= -3 \\
x &= y + 2 = -1
\end{align*}
\]

Alternate Solution Multiply each term in Equation (1) by the factor 2 and add the result to Equation (2):

\[
\begin{align*}
10x + 2y &= -16 \\
2x - 2y &= 4 \\
12x &= -12 \\
x &= -1 \\
y &= x - 2 = -3
\end{align*}
\]

Two linear equations containing two unknowns can also be solved by a graphical method. If the straight lines corresponding to the two equations are plotted in a conventional coordinate system, the intersection of the two lines represents the solution. For example, consider the two equations

\[
\begin{align*}
x - y &= 2 \\
x - 2y &= -1
\end{align*}
\]

These equations are plotted in Figure A.3. The intersection of the two lines has the coordinates $x = 5, y = 3$, which represents the solution to the equations. You should check this solution by the analytical technique discussed above.
EXERCISES

Solve the following pairs of simultaneous equations involving two unknowns:

ANSWERS

1. \[x + y = 8 \]
 \[x - y = 2 \]
 \[x = 5, \ y = 3 \]

2. \[98 - T = 10a \]
 \[T - 49 = 5a \]
 \[T = 65.3, \ a = 3.27 \]

3. \[6x + 2y = 6 \]
 \[8x - 4y = 28 \]
 \[x = 2, \ y = -3 \]

G. Logarithms and Exponentials

Suppose a quantity \(x \) is expressed as a power of some quantity \(a \):

\[x = a^y \] \hspace{1cm} \text{[A.11]}

The number \(a \) is called the base number. The logarithm of \(x \) with respect to the base \(a \) is equal to the exponent to which the base must be raised so as to satisfy the expression \(x = a^y \):

\[y = \log_a x \] \hspace{1cm} \text{[A.12]}

Conversely, the antilogarithm of \(y \) is the number \(x \):

\[x = \text{antilog}_a y \] \hspace{1cm} \text{[A.13]}

The antilog expression is in fact identical to the exponential expression in Equation A.11, which is preferable for practical purposes.

In practice, the two bases most often used are base 10, called the common logarithm base, and base \(e = 2.718 \ldots \), called the natural logarithm base. When common logarithms are used,

\[y = \log_{10} x \quad \text{or} \quad x = 10^y \] \hspace{1cm} \text{[A.14]}

EXAMPLE

A block of mass \(m = 2.00 \text{ kg} \) travels in the positive \(x \)-direction at \(v_i = 5.00 \text{ m/s} \), while a second block, of mass \(M = 4.00 \text{ kg} \) and leading the first block, travels in the positive \(x \)-direction at \(2.00 \text{ m/s} \). The surface is frictionless. What are the blocks’ velocities after collision, if that collision is perfectly elastic?

Solution

As can be seen in Chapter 6, a perfectly elastic collision involves equations for the momentum and energy. With algebra, the energy equation, which is quadratic in \(v_i \), can be recast as a linear equation. The two equations are given by

1. \[mv_i + MV_i = mv_f + MV_f \]
2. \[v_i - V_i = -(v_f - V_f) \]

Substitute the known quantities \(v_i = 5.00 \text{ m/s} \) and \(V_i = 2.00 \text{ m/s} \) into Equations (1) and (2):

3. \[18 = 2v_f + 4V_f \]
4. \[3 = -v_f + V_f \]

Multiply Equation (4) by 2 and add to Equation (3):

\[18 = 2v_f + 4V_f \]
\[6 = -2v_f + 2V_f \]
\[24 = 6V_f \quad \rightarrow \quad V_f = 4.00 \text{ m/s} \]

Substituting the solution for \(V_f \) back into Equation (4) yields \(v_f = 1.00 \text{ m/s} \).
When natural logarithms are used,

\[y = \ln x \quad \text{(or } x = e^y) \quad \text{[A.15]} \]

For example, \(\log_{10} 52 = 1.716 \), so \(\text{antilog}_{10} 1.716 = 10^{1.716} = 52 \). Likewise, \(\ln 52 = 3.951 \), so \(\text{antiln} 3.951 = e^{3.951} = 52 \).

In general, note that you can convert between base 10 and base \(e \) with the equality

\[\ln x = (2.302585) \log_{10} x \quad \text{[A.16]} \]

Finally, some useful properties of logarithms are

\[
\begin{align*}
\log(ab) &= \log a + \log b \\
\log(a/b) &= \log a - \log b \\
\log(a^n) &= n \log a
\end{align*}
\]

Logarithms in college physics are used most notably in the definition of decibel level. Sound intensity varies across several orders of magnitude, making it awkward to compare different intensities. Decibel level converts these intensities to a more manageable logarithmic scale.

EXAMPLE (LOGS)

Suppose a jet testing its engines produces a sound intensity of \(I = 0.750 \text{ W} \) at a given location in an airplane hangar. What decibel level corresponds to this sound intensity?

Solution
Decibel level \(\beta \) is defined by

\[\beta = 10 \log \left(\frac{I}{I_0} \right) \]

where \(I_0 = 1 \times 10^{-12} \text{ W/m}^2 \) is the standard reference intensity. Substitute the given information:

\[\beta = 10 \log \left(\frac{0.750 \text{ W/m}^2}{10^{-12} \text{ W/m}^2} \right) = 119 \text{ dB} \]

EXAMPLE (ANTILOGS)

A collection of four identical machines creates a decibel level of \(\beta = 87.0 \text{ dB} \) in a machine shop. What sound intensity would be created by only one such machine?

Solution
We use the equation of decibel level to find the total sound intensity of the four machines, and then we divide by 4. From Equation (1):

\[87.0 \text{ dB} = 10 \log \left(\frac{I}{10^{-12} \text{ W/m}^2} \right) \]

Divide both sides by 10 and take the antilog of both sides, which means, equivalently, to exponentiate:

\[10^{8.7} = 10^{\log(I/10^{-12})} = \frac{I}{10^{-12}} \]

\[I = 10^{-12} \cdot 10^{8.7} = 10^{-3.3} = 5.01 \times 10^{-4} \text{ W/m}^2 \]

There are four machines, so this result must be divided by 4 to get the intensity of one machine:

\[I = 1.25 \times 10^{-4} \text{ W/m}^2 \]
EXAMPLE (EXPONENTIALS)

The half-life of tritium is 12.33 years. (Tritium is the heaviest isotope of hydrogen, with a nucleus consisting of a proton and two neutrons.) If a sample contains 3.0 g of tritium initially, how much remains after 20.0 years?

Solution The equation giving the number of nuclei of a radioactive substance as a function of time is

\[N = N_0 \left(\frac{1}{2} \right)^n \]

where \(N \) is the number of nuclei remaining, \(N_0 \) is the initial number of nuclei, and \(n \) is the number of half-lives. Note that this equation is an exponential expression with a base of \(\frac{1}{2} \). The number of half-lives is given by \(n = \frac{t}{T_{1/2}} = \frac{20.0 \text{ yr}}{12.33 \text{ yr}} \approx 1.62 \). The fractional amount of tritium that remains after 20.0 yr is therefore

\[\frac{N}{N_0} = \left(\frac{1}{2} \right)^{1.62} = 0.325 \]

Hence, of the original 3.00 g of tritium, \(0.325 \times 3.00 \text{ g} = 0.975 \text{ g} \) remains.

A.4 GEOMETRY

Table A.2 gives the areas and volumes for several geometric shapes used throughout this text. These areas and volumes are important in numerous physics applications. A good example is the concept of pressure \(P \), which is the force per unit area. As an equation, it is written \(P = \frac{F}{A} \). Areas must also be calculated in problems involving the volume rate of fluid flow through a pipe using the equation of continuity, the tensile stress exerted on a cable by a weight, the rate of thermal energy transfer through a barrier, and the density of current through a wire. There are numerous other applications. Volumes are important in computing the buoyant force exerted by water on a submerged object, in calculating densities, and in determining the bulk stress of fluid or gas on an object, which affects its volume. Again, there are numerous other applications.

TABLE A.2

Useful Information for Geometry

<table>
<thead>
<tr>
<th>Shape</th>
<th>Area Formula</th>
<th>Surface Area Formula</th>
<th>Volume Formula</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rectangle</td>
<td>(\ell w)</td>
<td>(2(\ell w + \ell h + w h))</td>
<td>(\ell ah)</td>
</tr>
<tr>
<td>Circle</td>
<td>(\pi r^2)</td>
<td>(2\pi r)</td>
<td>(\frac{1}{2} \pi r^2)</td>
</tr>
<tr>
<td>Cylinder</td>
<td>(\pi r^2)</td>
<td>(2\pi r \ell + \pi r^2)</td>
<td>(\pi r^2 \ell)</td>
</tr>
<tr>
<td>Sphere</td>
<td>(\frac{4}{3} \pi r^3)</td>
<td>(4\pi r^2)</td>
<td>(\frac{4}{3} \pi r^3)</td>
</tr>
<tr>
<td>Triangle</td>
<td>(\frac{1}{2} bh)</td>
<td>()</td>
<td>(\frac{1}{2} bh)</td>
</tr>
</tbody>
</table>
A.5 TRIGONOMETRY

Some of the most basic facts concerning trigonometry are presented in Chapter 1, and we encourage you to study the material presented there if you are having trouble with this branch of mathematics. The most important trigonometric concepts include the Pythagorean theorem:

$$\Delta r^2 = \Delta x^2 + \Delta y^2 \quad [A.17]$$

This equation states that the square distance along the hypotenuse of a right triangle equals the sum of the squares of the legs. It can also be used to find distances between points in Cartesian coordinates and the length of a vector, where Δx is replaced by the x-component of the vector and Δy is replaced by the y-component of the vector. If the vector \vec{A} has components A_x and A_y, the magnitude A of the vector satisfies

$$A^2 = A_x^2 + A_y^2 \quad [A.18]$$

which has a form completely analogous to the form of the Pythagorean theorem. Also highly useful are the cosine and sine functions because they relate the length of a vector to its x- and y-components:

$$A_x = A \cos \theta \quad [A.19]$$
$$A_y = A \sin \theta \quad [A.20]$$

The direction θ of a vector in a plane can be determined by use of the tangent function:

$$\tan \theta = \frac{A_y}{A_x} \quad [A.21]$$

A relative of the Pythagorean theorem is also frequently useful:

$$\sin^2 \theta + \cos^2 \theta = 1 \quad [A.22]$$

Details on the above concepts can be found in the extensive discussions in Chapters 1 and 3. The following are some other trigonometric identities that can sometimes be useful:

$$\sin \theta = \cos(90^\circ - \theta)$$
$$\cos \theta = \sin(90^\circ - \theta)$$
$$\sin 2\theta = 2 \sin \theta \cos \theta$$
$$\cos 2\theta = \cos^2 \theta - \sin^2 \theta$$
$$\sin(\theta \pm \phi) = \sin \theta \cos \phi \pm \cos \theta \sin \phi$$
$$\cos(\theta \pm \phi) = \cos \theta \cos \phi \mp \sin \theta \sin \phi$$

The following relationships apply to any triangle, as shown in Figure A.4:

$$\alpha + \beta + \gamma = 180^\circ$$
$$a^2 = b^2 + c^2 - 2bc \cos \alpha$$
$$b^2 = a^2 + c^2 - 2ac \cos \beta \quad \text{law of cosines}$$
$$c^2 = a^2 + b^2 - 2ab \cos \gamma$$
$$\frac{a}{\sin \alpha} = \frac{b}{\sin \beta} = \frac{c}{\sin \gamma} \quad \text{law of sines}$$

![Figure A.4](image-url)
APPENDIX B

An Abbreviated Table of Isotopes

<table>
<thead>
<tr>
<th>Atomic Number Z</th>
<th>Element Symbol</th>
<th>Atomic Mass (u)</th>
<th>Chemical Mass (u)</th>
<th>Mass Number (* Indicates Radioactive)</th>
<th>Atomic Mass (u)</th>
<th>Percent Abundance</th>
<th>Half-Life (If Radioactive) (T_{1/2})</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>(Neutron) n</td>
<td>1.008 665</td>
<td>1</td>
<td>1.008 665</td>
<td>10.4 min</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Hydrogen H</td>
<td>1.007 94</td>
<td>1</td>
<td>1.007 825</td>
<td>99.988 5</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Deuterium D</td>
<td>2.014 102</td>
<td>2</td>
<td>2.014 102</td>
<td>0.011 5</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tritium T</td>
<td>3.016 049</td>
<td>3</td>
<td>3.016 049</td>
<td>12.33 yr</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Helium He</td>
<td>4.002 602</td>
<td>3</td>
<td>3.016 029</td>
<td>0.000 137</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>4.002 603</td>
<td>4</td>
<td>99.999 863</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Lithium Li</td>
<td>6.941</td>
<td>6</td>
<td>6.015 122</td>
<td>7.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>7.016 004</td>
<td>7</td>
<td>92.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Beryllium Be</td>
<td>9.012 182</td>
<td>7</td>
<td>7.016 929</td>
<td>53.3 days</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>9.012 182</td>
<td>9</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Boron B</td>
<td>10.811</td>
<td>9</td>
<td>10.012 937</td>
<td>19.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>11.009 965</td>
<td>11</td>
<td>80.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Carbon C</td>
<td>12.010 7</td>
<td>10</td>
<td>10.016 853</td>
<td>19.5 s</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>11.011 423</td>
<td>11</td>
<td>20.4 min</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>12.000 000</td>
<td>12</td>
<td>98.93</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>13.003 355</td>
<td>13</td>
<td>1.07</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Nitrogen N</td>
<td>14.006 7</td>
<td>14</td>
<td>15.003 242</td>
<td>5 730 yr</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>15.005 739</td>
<td>15</td>
<td>9.96 min</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>16.000 000</td>
<td>16</td>
<td>99.757</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Oxygen O</td>
<td>15.999 4</td>
<td>17</td>
<td>15.994 915</td>
<td>0.205</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Fluorine F</td>
<td>18.998 403 2</td>
<td>18</td>
<td>18.998 403</td>
<td>100</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Neon Ne</td>
<td>20.179 7</td>
<td>19</td>
<td>19.992 440</td>
<td>90.48</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>21.991 385</td>
<td>20</td>
<td>9.25</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Sodium Na</td>
<td>22.989 77</td>
<td>21</td>
<td>22.989 770</td>
<td>100</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>23.990 963</td>
<td>22</td>
<td>14.96 h</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Magnesium Mg</td>
<td>24.305 0</td>
<td>23</td>
<td>24.985 042</td>
<td>78.99</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Aluminum Al</td>
<td>26.981 538</td>
<td>24</td>
<td>25.982 595</td>
<td>11.01</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>Silicon Si</td>
<td>28.085 5</td>
<td>25</td>
<td>26.981 539</td>
<td>100</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>Phosphorus P</td>
<td>30.973 761</td>
<td>26</td>
<td>27.976 926</td>
<td>92.229 7</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sulfur S</td>
<td>32.066</td>
<td>27</td>
<td>31.972 071</td>
<td>94.93</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>Chlorine Cl</td>
<td>35.452 7</td>
<td>28</td>
<td>34.968 853</td>
<td>75.78</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Argon Ar</td>
<td>39.948</td>
<td>29</td>
<td>39.962 383</td>
<td>99.600 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>Potassium K</td>
<td>39.098 3</td>
<td>30</td>
<td>38.963 707</td>
<td>93.258 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>39.963 999</td>
<td>31</td>
<td>0.011 7</td>
<td></td>
<td></td>
<td>1.28 \times 10^9 \text{yr}</td>
</tr>
</tbody>
</table>

A.14
<table>
<thead>
<tr>
<th>Atomic Number</th>
<th>Element</th>
<th>Symbol</th>
<th>Mass (u)</th>
<th>Atomic Number (If Radioactive)</th>
<th>Atomic Mass (u)</th>
<th>Abundance</th>
<th>Half-Life (If Radioactive)</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>Calcium</td>
<td>Ca</td>
<td>40.078</td>
<td>40</td>
<td>39.962 591</td>
<td>96.941</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>Scandium</td>
<td>Sc</td>
<td>44.955 910</td>
<td>45</td>
<td>44.955 910</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>Titanium</td>
<td>Ti</td>
<td>47.867</td>
<td>48</td>
<td>47.947 947</td>
<td>73.72</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>Vanadium</td>
<td>V</td>
<td>50.941 5</td>
<td>51</td>
<td>50.943 964</td>
<td>99.750</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>Chromium</td>
<td>Cr</td>
<td>51.996 1</td>
<td>52</td>
<td>51.940 512</td>
<td>83.789</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>Manganese</td>
<td>Mn</td>
<td>54.938 049</td>
<td>55</td>
<td>54.938 050</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>Iron</td>
<td>Fe</td>
<td>55.845</td>
<td>56</td>
<td>55.934 942</td>
<td>91.754</td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>Cobalt</td>
<td>Co</td>
<td>58.933 200</td>
<td>59</td>
<td>58.933 200</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>Nickel</td>
<td>Ni</td>
<td>58.693 4</td>
<td>58</td>
<td>57.935 348</td>
<td>68.076 9</td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>Copper</td>
<td>Cu</td>
<td>63.546</td>
<td>63</td>
<td>62.929 601</td>
<td>69.17</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>Zinc</td>
<td>Zn</td>
<td>65.39</td>
<td>64</td>
<td>63.929 147</td>
<td>48.63</td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>Gallium</td>
<td>Ga</td>
<td>69.723</td>
<td>66</td>
<td>65.926 037</td>
<td>27.90</td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>Germanium</td>
<td>Ge</td>
<td>72.61</td>
<td>68</td>
<td>67.924 848</td>
<td>18.75</td>
<td></td>
</tr>
<tr>
<td>33</td>
<td>Arsenic</td>
<td>As</td>
<td>74.921 60</td>
<td>69</td>
<td>69.924 250</td>
<td>20.84</td>
<td></td>
</tr>
<tr>
<td>34</td>
<td>Selenium</td>
<td>Se</td>
<td>78.96</td>
<td>70</td>
<td>71.922 076</td>
<td>27.54</td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>Bromine</td>
<td>Br</td>
<td>79.904</td>
<td>71</td>
<td>75.921 178</td>
<td>36.28</td>
<td></td>
</tr>
<tr>
<td>36</td>
<td>Krypton</td>
<td>Kr</td>
<td>83.80</td>
<td>72</td>
<td>70.924 705</td>
<td>39.892</td>
<td></td>
</tr>
<tr>
<td>37</td>
<td>Rubidium</td>
<td>Rb</td>
<td>85.467 8</td>
<td>73</td>
<td>84.911 507</td>
<td>57.00</td>
<td></td>
</tr>
<tr>
<td>38</td>
<td>Strontium</td>
<td>Sr</td>
<td>87.62</td>
<td>74</td>
<td>85.910 610</td>
<td>17.30</td>
<td></td>
</tr>
<tr>
<td>39</td>
<td>Yttrium</td>
<td>Y</td>
<td>88.905 85</td>
<td>75</td>
<td>89.905 848</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>Zirconium</td>
<td>Zr</td>
<td>91.224</td>
<td>76</td>
<td>87.905 614</td>
<td>82.58</td>
<td></td>
</tr>
<tr>
<td>41</td>
<td>Niobium</td>
<td>Nb</td>
<td>92.906 38</td>
<td>77</td>
<td>89.905 378</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>42</td>
<td>Molybdenum</td>
<td>Mo</td>
<td>95.94</td>
<td>78</td>
<td>92.906 378</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>Atomic Number</td>
<td>Element</td>
<td>Chemical Symbol</td>
<td>Mass Atomic Number</td>
<td>Abundance</td>
<td>Mass Atomic Number</td>
<td>Atomic Percent</td>
<td>Half-Life</td>
</tr>
<tr>
<td>---------------</td>
<td>---------</td>
<td>----------------</td>
<td>-------------------</td>
<td>-----------</td>
<td>-------------------</td>
<td>----------------</td>
<td>----------</td>
</tr>
<tr>
<td>43</td>
<td>Technetium</td>
<td>Tc</td>
<td>98*</td>
<td>98.907 216</td>
<td>12.22</td>
<td>4.2 × 10^6 yr</td>
<td></td>
</tr>
<tr>
<td>44</td>
<td>Ruthenium</td>
<td>Ru</td>
<td>99*</td>
<td>98.906 255</td>
<td>12.76</td>
<td>2.1 × 10^6 yr</td>
<td></td>
</tr>
<tr>
<td>45</td>
<td>Rhodium</td>
<td>Rh</td>
<td>103</td>
<td>102.905 504</td>
<td>100</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>46</td>
<td>Palladium</td>
<td>Pd</td>
<td>104</td>
<td>103.904 035</td>
<td>12.49</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>47</td>
<td>Silver</td>
<td>Ag</td>
<td>107</td>
<td>106.905 093</td>
<td>24.13</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>48</td>
<td>Cadmium</td>
<td>Cd</td>
<td>110</td>
<td>109.903 006</td>
<td>27.21</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>49</td>
<td>Indium</td>
<td>In</td>
<td>111</td>
<td>110.904 182</td>
<td>32.58</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>Tin</td>
<td>Sn</td>
<td>113</td>
<td>112.904 401</td>
<td>34.08</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>51</td>
<td>Antimony</td>
<td>Sb</td>
<td>115</td>
<td>114.903 878</td>
<td>37.74</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>52</td>
<td>Tellurium</td>
<td>Te</td>
<td>116</td>
<td>115.901 744</td>
<td>42.79</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>53</td>
<td>Iodine</td>
<td>I</td>
<td>118</td>
<td>117.901 606</td>
<td>47.21</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>54</td>
<td>Xenon</td>
<td>Xe</td>
<td>121</td>
<td>119.902 197</td>
<td>52.81</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>55</td>
<td>Cesium</td>
<td>Cs</td>
<td>124</td>
<td>122.904 216</td>
<td>58.22</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>56</td>
<td>Barium</td>
<td>Ba</td>
<td>126</td>
<td>125.903 306</td>
<td>63.74</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>57</td>
<td>Lanthanum</td>
<td>La</td>
<td>127</td>
<td>126.904 468</td>
<td>71.44</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>58</td>
<td>Cerium</td>
<td>Ce</td>
<td>129</td>
<td>128.904 988</td>
<td>76.64</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>59</td>
<td>Praseodymium</td>
<td>Pr</td>
<td>131</td>
<td>130.905 082</td>
<td>81.84</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>60</td>
<td>Neodymium</td>
<td>Nd</td>
<td>133</td>
<td>132.905 447</td>
<td>87.04</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>61</td>
<td>Promethium</td>
<td>Pm</td>
<td>135</td>
<td>135.907 220</td>
<td>93.24</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>Atomic Number</td>
<td>Element</td>
<td>Mass Number</td>
<td>Atomic Mass (u)</td>
<td>Chemical Atomic Mass (u)</td>
<td>Atomic Number</td>
<td>Atomic Mass (u)</td>
<td>Percent Abundance</td>
</tr>
<tr>
<td>--------------</td>
<td>----------</td>
<td>-------------</td>
<td>----------------</td>
<td>-------------------------</td>
<td>--------------</td>
<td>----------------</td>
<td>------------------</td>
</tr>
<tr>
<td>62</td>
<td>Samarium</td>
<td>Sm</td>
<td>150.36</td>
<td>147*</td>
<td>146.914 893</td>
<td>14.99</td>
<td>1.06 x 10^{11} yr</td>
</tr>
<tr>
<td>63</td>
<td>Europium</td>
<td>Eu</td>
<td>151.964</td>
<td>149*</td>
<td>148.917 180</td>
<td>13.82</td>
<td>> 2 x 10^{15} yr</td>
</tr>
<tr>
<td>64</td>
<td>Gadolinium</td>
<td>Gd</td>
<td>157.25</td>
<td>152</td>
<td>151.919 728</td>
<td>26.75</td>
<td></td>
</tr>
<tr>
<td>65</td>
<td>Terbium</td>
<td>Tb</td>
<td>158.925 34</td>
<td>154</td>
<td>153.922 205</td>
<td>22.75</td>
<td></td>
</tr>
<tr>
<td>66</td>
<td>Dysprosium</td>
<td>Dy</td>
<td>162.50</td>
<td>156</td>
<td>155.922 120</td>
<td>20.47</td>
<td></td>
</tr>
<tr>
<td>67</td>
<td>Holmium</td>
<td>Ho</td>
<td>164.930 32</td>
<td>158</td>
<td>157.924 100</td>
<td>24.84</td>
<td></td>
</tr>
<tr>
<td>68</td>
<td>Erbium</td>
<td>Er</td>
<td>166.6</td>
<td>160</td>
<td>159.927 051</td>
<td>21.86</td>
<td></td>
</tr>
<tr>
<td>69</td>
<td>Thulium</td>
<td>Tm</td>
<td>168.934 21</td>
<td>162</td>
<td>161.926 796</td>
<td>25.51</td>
<td></td>
</tr>
<tr>
<td>70</td>
<td>Ytterbium</td>
<td>Yb</td>
<td>173.94</td>
<td>163</td>
<td>162.928 728</td>
<td>24.90</td>
<td></td>
</tr>
<tr>
<td>71</td>
<td>Lutecium</td>
<td>Lu</td>
<td>174.967</td>
<td>165</td>
<td>164.930 320</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>72</td>
<td>Hafnium</td>
<td>Hf</td>
<td>178.49</td>
<td>167</td>
<td>167.932 368</td>
<td>26.78</td>
<td></td>
</tr>
<tr>
<td>73</td>
<td>Tantalum</td>
<td>Ta</td>
<td>180.947 9</td>
<td>169</td>
<td>168.934 211</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>74</td>
<td>Tungsten</td>
<td>W</td>
<td>183.84</td>
<td>171</td>
<td>171.936 378</td>
<td>21.83</td>
<td></td>
</tr>
<tr>
<td>75</td>
<td>Rhenium</td>
<td>Re</td>
<td>186.207</td>
<td>173</td>
<td>172.938 207</td>
<td>16.13</td>
<td></td>
</tr>
<tr>
<td>76</td>
<td>Osmium</td>
<td>Os</td>
<td>190.23</td>
<td>175</td>
<td>174.940 768</td>
<td>97.41</td>
<td></td>
</tr>
<tr>
<td>77</td>
<td>Iridium</td>
<td>Ir</td>
<td>192.217</td>
<td>177</td>
<td>176.943 220</td>
<td>18.60</td>
<td></td>
</tr>
<tr>
<td>78</td>
<td>Platinum</td>
<td>Pt</td>
<td>195.078</td>
<td>178</td>
<td>177.943 698</td>
<td>27.28</td>
<td></td>
</tr>
<tr>
<td>79</td>
<td>Gold</td>
<td>Au</td>
<td>196.966 55</td>
<td>179</td>
<td>178.945 815</td>
<td>13.62</td>
<td></td>
</tr>
<tr>
<td>80</td>
<td>Mercury</td>
<td>Hg</td>
<td>200.59</td>
<td>180</td>
<td>179.946 549</td>
<td>35.08</td>
<td></td>
</tr>
</tbody>
</table>
An Abbreviated Table of Isotopes

<table>
<thead>
<tr>
<th>Atomic Number</th>
<th>Z</th>
<th>Element</th>
<th>Mass (u)</th>
<th>Chemical Symbol</th>
<th>Atomic Number</th>
<th>Atomic Mass (u)</th>
<th>Percent Abundance</th>
<th>Mass Number (* Indicates Radioactive)</th>
<th>Half-Life (If Radioactive)</th>
</tr>
</thead>
<tbody>
<tr>
<td>81</td>
<td>Thallium</td>
<td>Tl</td>
<td>204.383 3</td>
<td></td>
<td>203</td>
<td>202.972 329</td>
<td>29.524</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(Th C')</td>
<td>208*</td>
<td>207.982 005</td>
<td></td>
<td>204.974 412</td>
<td>70.476</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>82</td>
<td>Lead</td>
<td>Pb</td>
<td>207.2</td>
<td></td>
<td>204*</td>
<td>203.973 029</td>
<td>1.4</td>
<td>205</td>
<td>207.982 005</td>
</tr>
<tr>
<td></td>
<td>(Ra C')</td>
<td>208*</td>
<td>209.990 066</td>
<td></td>
<td>204.974 449</td>
<td>24.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>83</td>
<td>Bismuth</td>
<td>Bi</td>
<td>208.980 38</td>
<td></td>
<td>209</td>
<td>208.980 383</td>
<td>100</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(Th C)</td>
<td>211*</td>
<td>210.987 258</td>
<td></td>
<td>207</td>
<td>207.976 636</td>
<td>52.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>84</td>
<td>Polonium</td>
<td>Po</td>
<td></td>
<td></td>
<td>210*</td>
<td>209.982 857</td>
<td>138.38 days</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(Ra C')</td>
<td>214*</td>
<td>213.995 186</td>
<td></td>
<td>213.989 732</td>
<td>36.1 min</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>85</td>
<td>Astatine</td>
<td>At</td>
<td></td>
<td></td>
<td>218*</td>
<td>218.008 682</td>
<td>1.6 s</td>
<td></td>
<td></td>
</tr>
<tr>
<td>86</td>
<td>Radon</td>
<td>Rn</td>
<td></td>
<td></td>
<td>222*</td>
<td>222.017 570</td>
<td>3.823 days</td>
<td></td>
<td></td>
</tr>
<tr>
<td>87</td>
<td>Francium</td>
<td>Fr</td>
<td></td>
<td></td>
<td>223*</td>
<td>223.019 731</td>
<td>22 min</td>
<td></td>
<td></td>
</tr>
<tr>
<td>88</td>
<td>Radium</td>
<td>Ra</td>
<td></td>
<td></td>
<td>226*</td>
<td>226.025 403</td>
<td>1 600 yr</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(Ms Th)</td>
<td>228*</td>
<td>228.031 064</td>
<td></td>
<td>228.034 158</td>
<td>5.75 yr</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>89</td>
<td>Actinium</td>
<td>Ac</td>
<td></td>
<td></td>
<td>227*</td>
<td>227.027 747</td>
<td>21.77 yr</td>
<td></td>
<td></td>
</tr>
<tr>
<td>90</td>
<td>Thorium</td>
<td>Th</td>
<td>232.038 1</td>
<td></td>
<td>228*</td>
<td>228.028 731</td>
<td>1.913 yr</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(Rd Th)</td>
<td>232*</td>
<td>232.038 050</td>
<td></td>
<td>232.038 146</td>
<td>6.9 yr</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>91</td>
<td>Protactinium</td>
<td>Pa</td>
<td>231.035 88</td>
<td></td>
<td>231*</td>
<td>231.035 879</td>
<td>32.760 yr</td>
<td></td>
<td></td>
</tr>
<tr>
<td>92</td>
<td>Uranium</td>
<td>U</td>
<td>238.028 9</td>
<td></td>
<td>232*</td>
<td>232.037 146</td>
<td>69 yr</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(Ac U)</td>
<td>233*</td>
<td>233.039 628</td>
<td></td>
<td>235.043 923</td>
<td>0.720 0</td>
<td>1.59 × 10^5 yr</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(UI)</td>
<td>238*</td>
<td>238.050 783</td>
<td></td>
<td>236.045 562</td>
<td>2.34 × 10^7 yr</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>93</td>
<td>Neptunium</td>
<td>Np</td>
<td></td>
<td></td>
<td>237*</td>
<td>237.048 167</td>
<td>2.14 × 10^6 yr</td>
<td></td>
<td></td>
</tr>
<tr>
<td>94</td>
<td>Plutonium</td>
<td>Pu</td>
<td>239</td>
<td></td>
<td>239*</td>
<td>239.052 156</td>
<td>2.412 × 10^4 yr</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Appendix C Some Useful Tables

Table C.1
Mathematical Symbols Used in the Text and Their Meaning

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>=</td>
<td>is equal to</td>
</tr>
<tr>
<td>≠</td>
<td>is not equal to</td>
</tr>
<tr>
<td>≡</td>
<td>is defined as</td>
</tr>
<tr>
<td>∝</td>
<td>is proportional to</td>
</tr>
<tr>
<td>></td>
<td>is greater than</td>
</tr>
<tr>
<td><</td>
<td>is less than</td>
</tr>
<tr>
<td>≥</td>
<td>is much greater than</td>
</tr>
<tr>
<td>≤</td>
<td>is much less than</td>
</tr>
<tr>
<td>≈</td>
<td>is approximately equal to</td>
</tr>
<tr>
<td>∼</td>
<td>is on the order of magnitude of</td>
</tr>
<tr>
<td>Δx</td>
<td>change in x or uncertainty in x</td>
</tr>
<tr>
<td>Σxi</td>
<td>sum of all quantities xi</td>
</tr>
<tr>
<td></td>
<td>absolute value of x (always a positive quantity)</td>
</tr>
</tbody>
</table>

Table C.2
Standard Symbols for Units

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Unit</th>
<th>Symbol</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>ampere</td>
<td>kcal</td>
<td>kilocalorie</td>
</tr>
<tr>
<td>Å</td>
<td>angstrom</td>
<td>kg</td>
<td>kilogram</td>
</tr>
<tr>
<td>atm</td>
<td>atmosphere</td>
<td>km</td>
<td>kilometer</td>
</tr>
<tr>
<td>Bq</td>
<td>bequerel</td>
<td>kmol</td>
<td>kilomole</td>
</tr>
<tr>
<td>Btu</td>
<td>British thermal unit</td>
<td>L</td>
<td>liter</td>
</tr>
<tr>
<td>C</td>
<td>coulomb</td>
<td>lb</td>
<td>pound</td>
</tr>
<tr>
<td>°C</td>
<td>degree Celsius</td>
<td>ly</td>
<td>lightyear</td>
</tr>
<tr>
<td>cal</td>
<td>calorie</td>
<td>m</td>
<td>meter</td>
</tr>
<tr>
<td>cm</td>
<td>centimeter</td>
<td>min</td>
<td>minute</td>
</tr>
<tr>
<td>Ci</td>
<td>curie</td>
<td>mol</td>
<td>mole</td>
</tr>
<tr>
<td>d</td>
<td>day</td>
<td>N</td>
<td>newton</td>
</tr>
<tr>
<td>deg</td>
<td>degree (angle)</td>
<td>nm</td>
<td>nanometer</td>
</tr>
<tr>
<td>eV</td>
<td>electronvolt</td>
<td>Pa</td>
<td>pascal</td>
</tr>
<tr>
<td>°F</td>
<td>degree Fahrenheit</td>
<td>rad</td>
<td>radian</td>
</tr>
<tr>
<td>F</td>
<td>farad</td>
<td>rev</td>
<td>revolution</td>
</tr>
<tr>
<td>ft</td>
<td>foot</td>
<td>s</td>
<td>second</td>
</tr>
<tr>
<td>G</td>
<td>Gauss</td>
<td>T</td>
<td>tesla</td>
</tr>
<tr>
<td>g</td>
<td>gram</td>
<td>u</td>
<td>atomic mass unit</td>
</tr>
<tr>
<td>H</td>
<td>henry</td>
<td>V</td>
<td>volt</td>
</tr>
<tr>
<td>h</td>
<td>hour</td>
<td>W</td>
<td>watt</td>
</tr>
<tr>
<td>hp</td>
<td>horsepower</td>
<td>Wb</td>
<td>weber</td>
</tr>
<tr>
<td>Hz</td>
<td>hertz</td>
<td>yr</td>
<td>year</td>
</tr>
<tr>
<td>in.</td>
<td>inch</td>
<td>μm</td>
<td>micrometer</td>
</tr>
<tr>
<td>J</td>
<td>joule</td>
<td>Ω</td>
<td>ohm</td>
</tr>
</tbody>
</table>

Table C.3
The Greek Alphabet

<table>
<thead>
<tr>
<th>Alpha</th>
<th>A</th>
<th>α</th>
<th>Nu</th>
<th>N</th>
<th>ν</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beta</td>
<td>B</td>
<td>β</td>
<td>Xi</td>
<td>Ξ</td>
<td>ξ</td>
</tr>
<tr>
<td>Gamma</td>
<td>Γ</td>
<td>γ</td>
<td>Omicron</td>
<td>O</td>
<td>o</td>
</tr>
<tr>
<td>Delta</td>
<td>Δ</td>
<td>δ</td>
<td>Pi</td>
<td>Π</td>
<td>π</td>
</tr>
<tr>
<td>Epsilon</td>
<td>E</td>
<td>ε</td>
<td>Rho</td>
<td>Ρ</td>
<td>ρ</td>
</tr>
<tr>
<td>Zeta</td>
<td>Z</td>
<td>ζ</td>
<td>Sigma</td>
<td>Σ</td>
<td>σ</td>
</tr>
<tr>
<td>Eta</td>
<td>Η</td>
<td>η</td>
<td>Tau</td>
<td>Τ</td>
<td>τ</td>
</tr>
<tr>
<td>Theta</td>
<td>Θ</td>
<td>θ</td>
<td>Upsilon</td>
<td>Υ</td>
<td>υ</td>
</tr>
<tr>
<td>Iota</td>
<td>I</td>
<td>ϑ</td>
<td>Phi</td>
<td>Φ</td>
<td>ϕ</td>
</tr>
<tr>
<td>Kappa</td>
<td>K</td>
<td>κ</td>
<td>Chi</td>
<td>X</td>
<td>χ</td>
</tr>
<tr>
<td>Lambda</td>
<td>Λ</td>
<td>λ</td>
<td>Psi</td>
<td>Ψ</td>
<td>ψ</td>
</tr>
<tr>
<td>Mu</td>
<td>M</td>
<td>μ</td>
<td>Omega</td>
<td>Ω</td>
<td>ω</td>
</tr>
</tbody>
</table>

Table C.4
Physical Data Often Used

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Average Earth–Moon distance</td>
<td>3.84 × 10⁸ m</td>
</tr>
<tr>
<td>Average Earth–Sun distance</td>
<td>1.496 × 10¹¹ m</td>
</tr>
<tr>
<td>Equatorial radius of Earth</td>
<td>6.38 × 10⁶ m</td>
</tr>
<tr>
<td>Density of air (20°C and 1 atm)</td>
<td>1.20 kg/m³</td>
</tr>
<tr>
<td>Density of water (20°C and 1 atm)</td>
<td>1.00 × 10³ kg/m³</td>
</tr>
<tr>
<td>Free-fall acceleration</td>
<td>9.80 m/s²</td>
</tr>
<tr>
<td>Mass of Earth</td>
<td>5.98 × 10²⁴ kg</td>
</tr>
<tr>
<td>Mass of Moon</td>
<td>7.36 × 10²² kg</td>
</tr>
<tr>
<td>Mass of Sun</td>
<td>1.99 × 10³⁰ kg</td>
</tr>
<tr>
<td>Standard atmospheric pressure</td>
<td>1.013 × 10⁵ Pa</td>
</tr>
</tbody>
</table>

These are the values of the constants as used in the text.
TABLE C.5
Some Fundamental Constants

<table>
<thead>
<tr>
<th>Quantity</th>
<th>Symbol</th>
<th>Value*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Atomic mass unit</td>
<td>u</td>
<td>1.660 538 86 (28) × 10⁻²⁷ kg</td>
</tr>
<tr>
<td></td>
<td></td>
<td>931.494 043 (80) MeV/c²</td>
</tr>
<tr>
<td>Avogadro’s number</td>
<td>N_A</td>
<td>6.022 141 5 (10) × 10²³ particles/mol</td>
</tr>
<tr>
<td>Bohr magneton</td>
<td>$\mu_B = \frac{e\hbar}{2m_e}$</td>
<td>9.274 009 49 (80) × 10⁻²¹ J/T</td>
</tr>
<tr>
<td>Bohr radius</td>
<td>$a_0 = \frac{\hbar^2}{m_e e^2}$</td>
<td>5.291 772 108 (18) × 10⁻¹¹ m</td>
</tr>
<tr>
<td>Boltzmann’s constant</td>
<td>$k_B = \frac{R}{N_A}$</td>
<td>1.380 650 5 (24) × 10⁻²³ J/K</td>
</tr>
<tr>
<td>Compton wavelength</td>
<td>$\lambda_c = \frac{\hbar}{m_e}$</td>
<td>2.426 310 238 (16) × 10⁻¹² m</td>
</tr>
<tr>
<td>Coulomb constant</td>
<td>$k_s = \frac{1}{4\pi e_0}$</td>
<td>8.987 551 788 . . . × 10⁹ N·m²/C²</td>
</tr>
<tr>
<td>Deuteron mass</td>
<td>m_d</td>
<td>3.343 583 35 (57) × 10⁻²³ kg</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2.013 553 212 70 (35) u</td>
</tr>
<tr>
<td>Electron mass</td>
<td>m_e</td>
<td>9.109 382 6 (16) × 10⁻³¹ kg</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5.485 799 094 5 (24) × 10⁻¹⁴ u</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.510 998 918 (44) MeV/c²</td>
</tr>
<tr>
<td>Electron volt</td>
<td>eV</td>
<td>1.602 176 53 (14) × 10⁻¹⁹ J</td>
</tr>
<tr>
<td>Elementary charge</td>
<td>e</td>
<td>1.602 176 53 (14) × 10⁻¹⁹ C</td>
</tr>
<tr>
<td>Gas constant</td>
<td>R</td>
<td>8.314 472 (15) J/mol·K</td>
</tr>
<tr>
<td>Gravitational constant</td>
<td>G</td>
<td>6.674 2 (10) × 10⁻¹¹ N·m²/kg²</td>
</tr>
<tr>
<td>Josephson frequency–voltage ratio</td>
<td>$\frac{2e}{\hbar}$</td>
<td>4.835 978 79 (41) × 10⁹ Hz/V</td>
</tr>
<tr>
<td>Magnetic flux quantum</td>
<td>$\Phi_0 = \frac{h}{2e}$</td>
<td>2.067 833 72 (18) × 10⁻¹⁵ T·m²</td>
</tr>
<tr>
<td>Neutron mass</td>
<td>m_n</td>
<td>1.674 927 28 (29) × 10⁻²⁷ kg</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.007 276 466 88 (13) u</td>
</tr>
<tr>
<td></td>
<td></td>
<td>939.565 360 (81) MeV/c²</td>
</tr>
<tr>
<td>Nuclear magneton</td>
<td>$\mu_n = \frac{e\hbar}{2m_p}$</td>
<td>5.050 783 43 (45) × 10⁻⁷ J/T</td>
</tr>
<tr>
<td>Permeability of free space</td>
<td>μ_0</td>
<td>4π × 10⁻⁷ T·m/A (exact)</td>
</tr>
<tr>
<td>Permittivity of free space</td>
<td>$\varepsilon_0 = \frac{1}{\mu_0 c^2}$</td>
<td>8.854 187 817 . . . × 10⁻¹² C²/N·m²</td>
</tr>
<tr>
<td>Planck’s constant</td>
<td>h</td>
<td>6.626 069 3 (11) × 10⁻³⁴ J·s</td>
</tr>
<tr>
<td></td>
<td>$h = \frac{k}{2\pi}$</td>
<td>1.054 571 68 (18) × 10⁻³⁴ J·s</td>
</tr>
<tr>
<td>Proton mass</td>
<td>m_p</td>
<td>1.672 621 71 (29) × 10⁻²⁷ kg</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.007 276 466 88 (13) u</td>
</tr>
<tr>
<td></td>
<td></td>
<td>938.272 029 (80) MeV/c²</td>
</tr>
<tr>
<td>Rydberg constant</td>
<td>R_H</td>
<td>1.097 373 156 852 5 (73) × 10² m⁻¹</td>
</tr>
<tr>
<td>Speed of light in vacuum</td>
<td>c</td>
<td>2.997 924 58 × 10⁸ m/s (exact)</td>
</tr>
</tbody>
</table>

Note: These constants are the values recommended in 2002 by CODATA, based on a least-squares adjustment of data from different measurements. For a more complete list, see P. J. Mohr and B. N. Taylor, “CODATA Recommended Values of the Fundamental Physical Constants: 2002.” Rev. Mod. Phys. 77:1, 2005.

*The numbers in parentheses for the values represent the uncertainties of the last two digits.
TABLE D.1
SI Base Units

<table>
<thead>
<tr>
<th>Base Quantity</th>
<th>SI Base Unit</th>
<th>Name</th>
<th>Symbol</th>
</tr>
</thead>
<tbody>
<tr>
<td>Length</td>
<td>meter</td>
<td>m</td>
<td>m/m</td>
</tr>
<tr>
<td>Mass</td>
<td>kilogram</td>
<td>kg</td>
<td></td>
</tr>
<tr>
<td>Time</td>
<td>second</td>
<td>s</td>
<td>s⁻¹</td>
</tr>
<tr>
<td>Electric current</td>
<td>ampere</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>Temperature</td>
<td>kelvin</td>
<td>K</td>
<td></td>
</tr>
<tr>
<td>Amount of substance</td>
<td>mole</td>
<td>mol</td>
<td></td>
</tr>
<tr>
<td>Luminous intensity</td>
<td>candela</td>
<td>cd</td>
<td></td>
</tr>
</tbody>
</table>

TABLE D.2
Derived SI Units

<table>
<thead>
<tr>
<th>Quantity</th>
<th>Name</th>
<th>Symbol</th>
<th>Expression in Terms of Base Units</th>
<th>Expression in Terms of Other SI Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plane angle</td>
<td>radian</td>
<td>rad</td>
<td>m/m</td>
<td></td>
</tr>
<tr>
<td>Frequency</td>
<td>hertz</td>
<td>Hz</td>
<td>s⁻¹</td>
<td></td>
</tr>
<tr>
<td>Force</td>
<td>newton</td>
<td>N</td>
<td>kg·m/s²</td>
<td>J/m</td>
</tr>
<tr>
<td>Pressure</td>
<td>pascal</td>
<td>Pa</td>
<td>kg/m·s²</td>
<td>N/m²</td>
</tr>
<tr>
<td>Energy: work</td>
<td>joule</td>
<td>J</td>
<td>kg·m²/s²</td>
<td>N·m</td>
</tr>
<tr>
<td>Power</td>
<td>watt</td>
<td>W</td>
<td>kg·m²/s³</td>
<td>J/s</td>
</tr>
<tr>
<td>Electric charge</td>
<td>coulomb</td>
<td>C</td>
<td>A·s</td>
<td></td>
</tr>
<tr>
<td>Electric potential (emf)</td>
<td>volt</td>
<td>V</td>
<td>kg·m²/A·s³</td>
<td>W/A; J/C</td>
</tr>
<tr>
<td>Capacitance</td>
<td>farad</td>
<td>F</td>
<td>A⁻²·s⁴/kg·m²</td>
<td>C/V</td>
</tr>
<tr>
<td>Electric resistance</td>
<td>ohm</td>
<td>Ω</td>
<td>kg·m³/A²·s²</td>
<td>V/A</td>
</tr>
<tr>
<td>Magnetic flux</td>
<td>weber</td>
<td>Wb</td>
<td>kg·m²/A·s²</td>
<td>V·s, T·m²</td>
</tr>
<tr>
<td>Magnetic field intensity</td>
<td>tesla</td>
<td>T</td>
<td>kg/A·s²</td>
<td>Wb/m²</td>
</tr>
<tr>
<td>Inductance</td>
<td>henry</td>
<td>H</td>
<td>kg·m²/A²·s²</td>
<td>Wb/A</td>
</tr>
</tbody>
</table>
VECTORS

EXAMPLE 1
A hiker walks due north at 4.00 km/h from his campsite. A grizzly bear, starting 3.00 km due east of the campsite, walks at 7.00 km/h in a direction 30° west of north. After one hour, how far apart are they?

Solution
Write the components of the position vector of the hiker after one hour, choosing the campsite as the origin:

\[H_x = 0 \quad H_y = 4.00 \text{ m} \]

The bear travels at an angle of 30° + 90° = 120° with respect to due east, where due east corresponds to the positive \(x \)-direction. Write the components of the position vector of the bear after one hour, again relative the campsite:

\[B_x = 3.00 \text{ km} + (7.00 \text{ km}) \cos 120° = -0.500 \text{ km} \]
\[B_y = (7.00 \text{ km}) \sin 120° = 6.06 \text{ km} \]

Subtracting the bear’s position vector from the hiker’s position vector will result in a vector \(R \) pointing from the bear to the hiker:

\[\begin{align*}
R_x &= H_x - B_x = 0 - (-0.500 \text{ km}) = 0.500 \text{ km} \\
R_y &= H_y - B_y = 4.00 \text{ km} - 6.06 \text{ km} = -2.06 \text{ km}
\end{align*} \]

Calculate the magnitude of the resultant vector, obtaining the distance between the hiker and the bear:

\[R = (R_x^2 + R_y^2)^{1/2} = \left[(0.500 \text{ km})^2 + (-2.06 \text{ km})^2 \right]^{1/2} \]
\[= 2.12 \text{ km} \]

EXAMPLE 2
Two vectors \(\mathbf{A} \) and \(\mathbf{B} \) are not parallel to each other (nor “antiparallel”—pointing in opposite directions). If \(\mathbf{R} = \mathbf{A} + \mathbf{B} \), which of the following must be true of the magnitudes \(A \), \(B \), and \(R \)?
(a) \(R > A + B \) (b) \(R = A + B \) (c) \(R < A + B \)

Conceptual Solution
Because the vectors \(\mathbf{A} \) and \(\mathbf{B} \) are not parallel, they can be arranged to form two sides of a triangle. By the geometric law of vector addition, the resultant vector \(\mathbf{R} \) forms the third side of the same triangle. The shortest distance between two points is a straight line, so the distance along \(\mathbf{R} \) is shorter than the sum of the lengths of \(A \) and \(B \). Hence, the correct answer is (c).

MULTIPLE-CHOICE PROBLEMS
1. A car travels due east for a distance of 3 mi and then due north for an additional 4 mi before stopping. What is the shortest straight-line distance between the starting and ending points of this trip? (a) 3 mi (b) 4 mi (c) 5 mi (d) 7 mi
2. In the previous problem, what is the angle \(\alpha \) of the shortest path relative to due north? (a) \(\alpha = \arccos 3/5 \) (b) \(\alpha = \arcsin 5/3 \) (c) \(\alpha = \arccos 4/3 \) (d) \(\alpha = \arctan 3/4 \)
3. A vector \(\mathbf{A} \) makes an angle of 60° with the \(x \)-axis of a Cartesian coordinate system. Which of the following statements is true of the indicated magnitudes? (a) \(A_x > A_y \) (b) \(A_y > A_x \) (c) \(A_x > A \) (d) \(A_y > A \)
4. Force is a vector quantity measured in units of newtons, N. What must be the angle between two concurrently acting forces of 5 N and 3 N, respectively, if the resultant vector has a magnitude of 8 N? (a) 0° (b) 45° (c) 90° (d) 180°
5. Two forces act concurrently on an object. Both vectors have the same magnitude of 10 N and act at right angles to each other. What is the closest estimate of the magnitude of their resultant? (a) 0 N (b) 14 N (c) 20 N (d) 100 N

Answers
1. (c). The two legs of the trip are perpendicular; therefore, the shortest distance is given by the hypotenuse of the corresponding right triangle. The value is given by the Pythagorean theorem:

\[R = (3^2 + 4^2)^{1/2} = 5 \text{ mi.} \]

2. (d). The angle \(\alpha \) that gives the direction of the hypotenuse relative to the \(y \)-axis is given by

\[\tan \alpha = \frac{\text{opposite side}}{\text{adjacent side}} = \frac{3}{4} \quad \rightarrow \quad \alpha = \arctan \frac{3}{4} \]

3. (b). Choices (c) and (d) can be eliminated immediately because the projection of a vector can never be greater than the magnitude of the vector itself. As the angle between the vector and the axis increases towards 90°, the magnitude of the projection decreases toward zero. The angle between the vector and the \(y \)-axis is smaller than the angle between the vector and the \(x \)-axis, the projection onto the \(y \)-axis, \(A_y \), must be greater than the projection onto the \(x \)-axis, \(A_x \).

4. (a). The only way the vector sum of a 3-N and a 5-N force can equal 8 N is if both forces act in the same direction. The angle between them must therefore be zero degrees.

5. (b). The two vectors form the legs of a right triangle. The resultant vector is the hypotenuse. Choices (a) and (c) can be eliminated immediately because they require that the two forces be antiparallel or parallel respectively. Choice (d) can also be eliminated because it is too large to be the hypotenuse. The magnitude of the resultant can be calculated with the Pythagorean theorem:

\[R = (10^2 + 10^2)^{1/2} = (200)^{1/2} = 10(1.41) \approx 14 \text{ N} \]

MOTION

EXAMPLE 1

A motorist traveling 24.0 m/s slams on his brakes and comes to rest in 6.00 s. What is the car’s acceleration assuming it’s constant, and how far does the car travel during this time?

Solution

Apply the kinematics equation for velocity:

\[v = at + v_0 \quad \text{(1)} \]

Solve Equation (1) for the acceleration \(a \) and substitute \(v = 0 \), \(t = 6.00 \text{ s} \), and \(v_0 = 24.0 \text{ m/s} \):

\[a = \frac{v - v_0}{t} = \frac{0 - 24.0 \text{ m/s}}{6.00 \text{ s}} = -4.00 \text{ m/s}^2 \]

The displacement can then be found with the time-independent equation:

\[v^2 - v_0^2 = 2a \Delta x \quad \text{(2)} \]

Solve Equation (2) for \(\Delta x \) and substitute values:

\[\Delta x = \frac{v^2 - v_0^2}{2a} = \frac{0 - (24.0 \text{ m/s})^2}{2(-4.00 \text{ m/s}^2)} = 72.0 \text{ m} \]

EXAMPLE 2

A student on top of a building releases a rock from rest. When the rock is halfway to the ground, he releases a golf ball from rest. As both objects fall, does the distance between them increase, decrease, or stay the same?

Conceptual Solution

At the instant the golf ball is released the rock is traveling faster, hence will always travel faster before it reaches the ground because the velocities of both objects are changing at the same rate. Because the rock is always falling faster, the distance between it and the golf ball will increase.
EXAMPLE 3

A baseball player throws a ball at an angle \(\theta \) above the horizontal and at speed \(v_0 \). Neglecting air drag, what is the ball’s speed when it returns to the same height at which it was thrown? (a) The ball’s speed will be the same. (b) The ball’s speed will be larger. (c) The ball’s speed will be smaller.

Conceptual Solution

The ball’s speed will be the same, so the correct answer is (a). Because there is no acceleration in the horizontal direction, the velocity in the \(x \)-direction is constant, and only the \(y \)-direction need be considered. By symmetry, the time taken to reach maximum height is the same time taken to fall back to the original height. If the ball’s velocity in the \(y \)-direction changes from \(v_{0y} \) to 0 on the way to maximum height, then it will change from 0 to \(-v_{0y} \) on returning to its original height. Hence the ball’s velocity components will be the same as before, except for a sign change in the \(y \)-component, which doesn’t affect the speed.

Quantitative Solution

Let the point of release correspond to \(x = 0, y = 0 \).

Set the equation of displacement in the \(y \)-direction equal to zero:

\[
\Delta y = \frac{1}{2}a t^2 + v_{0y} t = 0
\]

Solve Equation (1), obtaining the times when \(\Delta y = 0 \) (i.e., at the start and end of the trajectory):

\[
t = 0; \quad t = \frac{-2v_{0y}}{a}
\]

Substitute these two solutions into the equation for the velocity in the \(y \)-direction:

Case 1: \(t = 0 \)

\[
v_y = at + v_{0y}
\]

Case 2: \(t = \frac{-2v_{0y}}{a} \)

\[
v_y = a \cdot \left(-\frac{2v_{0y}}{a} \right) + v_{0y} = -v_{0y}
\]

The speed at any time is given by the following expression:

\[
v = \sqrt{v_{0x}^2 + v_{0y}^2}
\]

Because the \(y \)-component is squared, the negative sign in Case 2 makes no difference and the speeds at the two times in question are the same, again giving answer (a).

EXAMPLE 4

A merry-go-round has a radius of 2.00 m and turns once every 5.00 s. What magnitude net force is required to hold a 35.0-kg boy in place at the rim?

Solution

First, calculate the speed of an object at the rim, which is the distance around the rim divided by the time for one rotation:

\[
v = \frac{d}{t} = \frac{2\pi r}{t} = \frac{2\pi (2.00 \text{ m})}{5.00 \text{ s}} = 2.51 \text{ m/s}
\]

A body traveling in a circle at uniform speed requires a centripetal acceleration of \(a_c = \frac{v^2}{r} \). The force producing this acceleration can be found by substituting this expression into Newton’s second law:

\[
F = ma_c = m \frac{v^2}{r} = (35.0 \text{ kg}) \frac{(2.51 \text{ m/s})^2}{2.00 \text{ m}} = 1.10 \times 10^2 \text{ N}
\]

MULTIPLE-CHOICE PROBLEMS

1. A bird flies 4.0 m due north in 2.0 s and then flies 2.0 m due west in 1.0 s. What is the bird’s average speed? (a) 2.0 m/s (b) 4.0 m/s (c) 8.0 m/s (d) \(2\sqrt{5}/3 \) m/s
2. Applying the brakes to a car traveling at 45 km/h provides an acceleration of 5.0 m/s² in the opposite direction. How long will it take the car to stop? (a) 0.40 s (b) 2.5 s (c) 5.0 s (d) 9.0 s

3. A ball rolls down a long inclined plane with a uniform acceleration of magnitude 1.0 m/s². If its speed at some instant of time is 10 m/s, what will be its speed 5.0 seconds later? (a) 5 m/s (b) 10 m/s (c) 15 m/s (d) 16 m/s

4. A ball rolls down an inclined plane with a uniform acceleration of 1.00 m/s². If its initial velocity is 1.00 m/s down the incline, how far will it travel along the incline in 10.0 s? (a) 10.0 m (b) 12.0 m (c) 60.0 m (d) 1.00 × 10² m

5. An object with an initial velocity of 25.0 m/s accelerates uniformly for 10.0 s to a final velocity of 75.0 m/s. What is the magnitude of its acceleration? (a) 3.00 m/s² (b) 5.00 m/s² (c) 25.0 m/s² (d) 50.0 m/s²

6. A rock is dropped from a height of 19.6 m above the ground. How long does it take the rock to hit the ground? (a) 2.0 s (b) 4.0 s (c) 4.9 s (d) 9.8 s

7. A spacecraft hovering above the surface of a distant planet releases a probe to explore the planet's surface. The probe falls freely a distance of 40.0 m during the first 4.00 s after its release. What is the magnitude of the acceleration due to gravity on this planet? (a) 4.00 m/s² (b) 5.00 m/s² (c) 10.0 m/s² (d) 16.0 m/s²

8. A ball is dropped from the roof of a very tall building. What is its speed after falling for 5.00 s? (a) 1.96 m/s (b) 9.80 m/s (c) 49.0 m/s (d) 98.0 m/s

9. A rock is dropped from a height of 19.6 m above the ground. How long does it take the rock to hit the ground? (a) 2.0 s (b) 4.0 s (c) 4.9 s (d) 9.8 s

10. A 70-kg woman standing at the equator rotates with the Earth around its axis at a tangential speed of about 5.00 m/s. If its speed at some instant of time is 10.0 s, what will be its speed 5.00 s? (a) 1.96 m/s (b) 9.80 m/s (c) 49.0 m/s (d) 98.0 m/s

11. A ball is thrown horizontally with a speed of 6.0 m/s. What is its speed after 3.0 seconds of flight? (a) 30 m/s (b) 15.8 m/s (c) 18 m/s (d) 4.9 m/s

12. A 70-kg woman standing at the equator rotates with the Earth around its axis at a tangential speed of about 5 × 10⁶ m/s². If the radius of the Earth is approximately 6 × 10⁶ m, which is the best estimate of the centripetal acceleration experienced by the woman? (a) 4 × 10⁻² m/s² (b) 4 m/s² (c) 10⁻¹ m/s² (d) 24 m/s²

13. A ball rolls with uniform speed around a flat, horizontal, circular track. If the speed of the ball is doubled, its centripetal acceleration is (a) quadrupled (b) doubled (c) halved (d) unchanged

Answers
1. (a). The average speed is the total distance traveled divided by the elapsed time.

\[v = \frac{d}{\Delta t} = \frac{6.0 m}{3.0 s} = 2.0 m/s \]

2. (b). \(t = (v_f - v_i)/a \). The final velocity is 0 km/h, and the acceleration is -5.0 m/s². (The negative sign appears because the acceleration is antiparallel to the velocity.) Remember to convert from kilometers to meters and from hours to seconds.

\[t = \frac{\Delta v}{a} = \frac{0 - (45 \text{ km/h})(10^3 \text{ m/1 km})(1 \text{ h/3 600 s})}{-5.0 \text{ m/s}^2} = 2.5 \text{ s} \]

3. (c). \(v_f = v_i + at = 10 \text{ m/s} + (1.0 \text{ m/s}^2)(5.0 \text{ s}) = 15 \text{ m/s} \)

4. (c). \(d = v_it + \frac{1}{2}at^2 = (1.00 \text{ m/s})(10.0 \text{ s}) + \frac{1}{2}(1.00 \text{ m/s}^2)(10.0 \text{ s})^2 = 60.0 \text{ m} \)

5. (b). \(a = \Delta v/\Delta t = (75.0 \text{ m/s} - 25.0 \text{ m/s})/10.0 \text{ s} = 5.00 \text{ m/s}^2 \)

6. (a). The rock is in free fall with zero initial velocity and initial height of \(y_0 = 19.6 \text{ m} \). The displacement equation becomes \(\Delta y = y - y_0 = \frac{-1}{2}gt^2 \). Solving for time \(t \) with \(y = 0 \) gives

\[t = \left(\frac{2y_0/g}{g^2} \right)^{1/2} = (2 \times 19.6 \text{ m}/9.8 \text{ m/s}^2)^{1/2} = (4.0 \text{ s})^{1/2} = 2.0 \text{ s} \]

7. (b). This question is a free-fall problem. The object starts from rest, \(v_0 = 0 \). Rearrange \(\Delta y = \frac{-1}{2}gt^2 \) and solve for the acceleration of gravity, \(g \):

\[g = -\frac{2(y - y_0)}{t^2} = -2(-40.0 \text{ m} - 0)/16.0 \text{ s}^2 = 5.00 \text{ m/s}^2 \]
the object's mass. The acceleration of an object three times as massive is therefore

According to the Newton’s second law, the acceleration imparted to an object by a force is inversely proportional to

Conceptual Solution

Divide Equation (2) by Equation (1):

\[\text{Divide Equation (2) by Equation (1):} \]

\[\text{(3)} \]

Quantitative Solution

Write Newton’s second law for each of the objects:

1. \[ma_m = F \]
2. \[M a_M = F \]

Divide Equation (2) by Equation (1):

\[\text{Divide Equation (2) by Equation (1):} \]

\[\text{(3)} \]

Substitute \(M = 3m \) into Equation (3) and solve for \(a_M \):

\[\frac{(3m)a_M}{ma_m} = 1 \rightarrow a_M = \frac{1}{3}a_m = \frac{1}{3} \times (6 \text{ m/s}^2) \]

\[a_M = 2 \text{ m/s}^2 \]

EXAMPLE 2

A block of mass \(m \) is attached by a horizontal string of negligible mass to the left side of a second block of mass \(M \), with \(m < M \). A second such string is attached to the right side of mass \(M \), and the system is pulled in the positive \(x \)-direction by a constant force \(F \). If the surface is frictionless, what can be said about the tension \(T \) in the string connecting the two blocks? (a) \(T = F \) (b) \(T < F \) (c) \(T > F \)

Conceptual Solution

The answer is (b). The acceleration of the block \(m \) is the same as that of the system of both, which has total mass \(m + M \). The tension \(T \) must accelerate only the mass \(m \), whereas the force \(F \) must provide the same acceleration to a system of greater mass, \(m + M \). It therefore follows that \(F > T \).
Quantitative Solution

In this problem the y-component of Newton's second law gives only the normal forces acting on the blocks in terms of the gravity force. Because there is no friction, these forces don't affect the acceleration. Write the x-component of Newton's second law for the system:

\[(1) \quad (m + M)a = F \]

Write the x-component of Newton's second law for the less massive block:

\[(2) \quad ma = T \]

Divide Equation (1) by Equation (2), canceling the acceleration, which is the same for both:

\[(3) \quad \frac{(m + M)a}{ma} = \frac{F}{T} \rightarrow \frac{(m + M)}{m} = \frac{F}{T} \]

Inspecting Equation (3), it's clear that \[F > T\] because \[m + M > m\], and again the answer is (b).

EXAMPLE 3

A block with mass \(m\) is started at the top of an incline with coefficient of kinetic friction \(k\) and allowed to slide to the bottom. A second block with mass \(M = 2m\) is also allowed to slide down the incline. If \(k\) is the same for both blocks, how does the acceleration \(a_M\) of the second block compare with the acceleration \(a_m\) of the first block? (a) \(a_M = 2a_m\) (b) \(a_M = a_m\) (c) \(a_M = \frac{1}{2}a_m\)

Conceptual Solution

The accelerations are the same because the force of gravity, the force of friction, and the \(ma\) side of Newton's second law when applied in this physical context are all proportional to the mass. Hence, a different mass should not affect the acceleration of the body, and the answer is (b).

EXAMPLE 4

Planet A has twice the mass and twice the radius of Planet B. On which planet would an astronaut have a greater weight? (a) Planet A (b) Planet B (c) The astronaut's weight would be unaffected.

Conceptual Solution

Weight as measured on a given planet is the magnitude of the gravitational force at the surface of that planet. In Newton's law of gravitation, the gravitational force is directly proportional to the mass of each of two bodies but inversely proportional to the square of the distance between them. Hence, in considering only the masses, planet A exerts twice the gravitational force of planet B. Planet A also has twice the radius of planet B, however, and the inverse square of 2 is \(\frac{1}{4}\). Overall, therefore, Planet A has a weaker gravitational acceleration at its surface than Planet B by a factor of one-half, and the weight of an astronaut will be greater on planet B [answer (b)].

Quantitative Solution

Write Newton's law of gravitation for the weight of an astronaut of mass \(m\) on planet A:

\[(1) \quad w_A = \frac{mM_A G}{r_A^2} \]

Write the same law for the weight of the astronaut on Planet B:

\[(2) \quad w_B = \frac{mM_B G}{r_B^2} \]

Divide Equation (2) by Equation (1):

\[\frac{w_B}{w_A} = \frac{\frac{mM_B G}{r_B^2}}{\frac{mM_A G}{r_A^2}} = \frac{M_B r_A^2}{M_A r_B^2} \]
MULTIPLE-CHOICE PROBLEMS

1. Which of the following will result from the application of a nonzero net force on an object? (a) The velocity of the object will remain constant. (b) The velocity of the object will remain constant, but the direction in which the object moves will change. (c) The velocity of the object will change. (d) None of the above.

2. Body A has a mass that is twice as great as that of body B. If a force acting on body A is half the value of a force acting on body B, which statement is true? (a) The acceleration of A will be twice that of B. (b) The acceleration of A will be half that of B. (c) The acceleration of A will be equal to that of B. (d) The acceleration of A will be one-fourth that of B.

3. Which of the following is a statement of Newton’s second law of motion? (a) For every action there is an equal and opposite reaction. (b) Force and the acceleration it produces are directly proportional, with mass as the constant of proportionality. (c) A body at rest tends to remain at rest unless acted upon by a force. (d) None of the these.

4. If a body has an acceleration of zero, which statement is most true? (a) The body must be at rest. (b) The body may be at rest. (c) The body must slow down. (d) The body may speed up.

5. What is the weight of a 2.00-kg body on or near the surface of the Earth? (a) 4.90 N (b) 16.0 lb (c) 19.6 N (d) 64.0 kg · m/s²

6. Two objects of equal mass are separated by a distance of 2 m. If the mass of one object is doubled, the force of gravity between the two objects will be (a) half as great (b) twice as great (c) one-fourth as great (d) four times as great

7. The distance between a spaceship and the center of the Earth increases from one Earth radius to three Earth radii. What happens to the force of gravity acting on the spaceship? (a) It becomes 1/9 as great. (b) It becomes 9 times as great. (c) It becomes 1/3 as great. (d) It becomes 3 times as great.

8. A 100-kg astronaut lands on a planet with a radius three times that of the Earth and a mass nine times that of the Earth. The acceleration due to gravity, g, experienced by the astronaut will be (a) Nine times the value of g on the Earth. (b) Three times the value of g on the Earth. (c) The same value of g as on the Earth. (d) One-third the value of g on the Earth.

9. The measured weight of a person standing on a scale and riding in an elevator will be the greatest when (a) the elevator rises at a constant velocity. (b) the elevator accelerates upward. (c) the elevator falls at a constant velocity. (d) none of the these, because weight is constant.

10. A block with mass 25.0 kg rests on a rough level surface. A horizontal force of 1.50×10^8 N is applied to it, and an acceleration of 4.00 m/s^2 is subsequently observed. What is the magnitude of the force of friction acting on the block? (a) 25.0 N (b) 1.00×10^8 N (c) 75.0 N (d) 50.0 N

Answers

1. (c). Force produces acceleration, which results in a change in velocity.

2. (d). Obtain the ratio of the accelerations from Newton’s second law, $F = ma$:

$$ \frac{m_Aa_A}{m_Ba_B} = \frac{F_A}{F_B} \quad \rightarrow \quad \frac{2m_B}{m_B} \frac{a_A}{a_B} = \frac{F_A}{F_B} \quad \rightarrow \quad \frac{a_A}{a_B} = \frac{1}{4} $$

3. (b). Choice (a) is a statement of the third law, and choice (c) is a statement of the first law.

4. (b). Choices (c) and (d) can be eliminated immediately because changing velocity (either its magnitude or direction) requires the application of a force. Choice (a) can
be eliminated because the first law applies to both bodies at rest and those moving with uniform velocity.

5. (c). \(w = F = mg = (2.00 \text{ kg})(9.80 \text{ m/s}^2) = 19.6 \text{ N} \)

6. (b). In the law of universal gravitation, the gravitational force is directly proportional to the product of the masses. Doubling one of the masses doubles their product and therefore doubles the force.

7. (a). Choices (b) and (d) can be eliminated because the force of gravitational attraction must decrease with increasing distance. Because \(F_{\text{grav}} = Gm_1m_2/r^2 \), the force decreases by a factor of 9 when \(r \) is tripled.

8. (c). See Example 4. Gravitational force is proportional to mass and inversely proportional to the radius squared, so nine times the mass and three times the radius yields a factor of \(9/3^2 = 1 \). There is no discernible difference in weight because the two effects exactly cancel each other.

9. (b). The weight measured on the scale is essentially the magnitude of the normal force. Apply Newton’s second law to the passenger and solve for the normal force:

\[
ma_n = mg
\]

Inspecting the equation for the normal force, it’s clear that a positive acceleration results in a larger normal force, hence a larger reading on the scale.

10. (d). Use Newton’s second law:

\[
ma = F_{\text{app}} - F_{\text{fric}}
\]

\[
(25.0 \text{ kg})(4.00 \text{ m/s}^2) = 1.50 \times 10^2 \text{ N} - F_{\text{fric}}
\]

\[
F_{\text{fric}} = 50.0 \text{ N}
\]

EQUILIBRIUM

EXAMPLE 1

A uniform steel beam with length \(L \) and mass \(M = 60.0 \text{ kg} \) rests on two pivots. The first pivot is located at the left end of the beam and exerts a normal force \(n_1 \) at that point. A second pivot is two-thirds of the distance from the left end to the right end. What is the normal force \(n_2 \) exerted on the beam by the second pivot set? (a) 441 N (b) 264 N (c) 372 N (d) 188 N

Strategy

In equilibrium, the sum of the torques is zero. Let \(\tau_i \) be the torque exerted by the normal force \(n_i \) associated with the first pivot, \(\tau_{n_2} \) the torque exerted by the normal force \(n_2 \) associated with the second pivot, and \(\tau_M \) the torque exerted by the force of gravity on the beam. Choose the pivot at the left end as the point around which to calculate torques. Use \(\tau = rF \sin \theta \) for each torque, where \(\theta \) is the angle between the position vector of \(r \) and the force \(F \). The sign of a given torque is positive if the force tends to rotate the beam counterclockwise and negative if the force tends to rotate the beam clockwise.

Solution

In equilibrium, the sum of the torques is zero:

\[
\sum \tau_i = \tau_{n_1} + \tau_{n_2} + \tau_M = 0
\]

The torque due to the normal force \(n_1 \) is zero because its lever arm is zero. The weight of the uniform beam may be considered to act at the middle of the beam, its center of gravity. Equation (1) becomes:

\[
n_2(2L/3) \sin 90^\circ - Mg(L/2) \sin 90^\circ = 0
\]

Notice that for \(n_2 \) the torque is positive, whereas the gravitational torque is negative (see the Strategy). Cancel the factors of \(L \) in Equation (2) and solve for \(n_2 \):

\[
n_2 = \frac{4}{3}Mg = \frac{4}{3}(60.0 \text{ kg})(9.80 \text{ m/s}^2) = 441 \text{ N}
\]

\[
= 441 \text{ N} \quad \text{[answer (a)]}
\]
EXAMPLE 2

Ice skater A has mass M and is at rest on a frozen pond, holding a backpack of mass m. She tosses the backpack to ice skater B, who also has mass M and is initially at rest. If the surface of the pond is considered frictionless, which skater has the larger subsequent speed? (Changes of momentum in the vertical direction can be ignored, here.) (a) skater A (b) skater B (c) Both skaters have the same subsequent speed.

Conceptual Solution

By conservation of momentum, the final momentum of skater A is equal and opposite the momentum of the backpack. Skater B acquires this same momentum when catching the backpack, but also increases her mass from m to $M + m$. Because momentum is proportional to both mass and velocity, skater B, with greater mass, has a smaller subsequent speed. Thus, the answer is (a).

Quantitative Solution

Apply conservation of momentum to skater A. The initial momentum equals the final momentum:

$$p_i = p_f$$

The initial total momentum is zero. Skater A’s final momentum is MV_A, whereas the backpack has momentum mv:

$$0 = MV_A + mv$$

Solve for the velocity V_A of skater A:

$$V_A = \frac{-mv}{M}$$

Apply conservation of momentum to skater B. The initial momentum of the backpack, mv, equals the final momentum of the system of skater and backpack:

$$mv = (m + M)V_B$$

Solve for the velocity V_B of the backpack–skater B system:

$$V_B = \frac{mv}{m + M}$$

Divide the magnitude of Equation (1) by Equation (2):

$$\frac{|V_A|}{|V_B|} = \frac{|-\frac{mv}{M}|}{|\frac{mv}{m + M}|} = \frac{m + M}{M} > 1$$

By Equation (3), $|V_A|/|V_B| > 1$, so $|V_A| > |V_B|$ [answer (a)].

MULTIPLE-CHOICE PROBLEMS

1. A nonuniform bar 8.00 m long is placed on a pivot 2.00 m from the right end of the bar, which is also the lighter end. The center of gravity of the bar is located 2.00 m from the heavier left end. If a weight of $W = 5.00 \times 10^2$ N on the right end balances the bar, what must be the weight w of the bar? (a) 1.25×10^2 N (b) 2.50×10^2 N (c) 5.00×10^2 N (d) 1.00×10^3 N

2. A rod of negligible mass is 10 m in length. If a 30-kg object is suspended from the left end of the rod and a 20-kg object from the right end, where must the pivot point be placed to ensure equilibrium? (a) 4 m from the 30-kg object (b) 4 m from the 20-kg object (c) 8 m from the 30-kg object (d) 5 m from the 20-kg object

3. A car with a mass of 8.00×10^2 kg is stalled on a road. A truck with a mass of 1 200 kg comes around the curve at 20.0 m/s and hits the car. The two vehicles remain locked together after the collision. What is their combined speed after impact? (a) 3.0 m/s (b) 6.0 m/s (c) 12 m/s (d) 24 m/s

4. A car of mass 1.00×10^3 kg traveling at 5.00 m/s overtakes and collides with a truck of mass 3.00×10^2 kg traveling in the same direction at 1.00 m/s. During the colli-
4. (a). Because the car is stalled, its initial velocity is zero and

5. (a).

6. 2. (a).

7. A tennis ball is hit with a tennis racket and the change in the momentum of the ball is 4.0 kg·m/s. If the collision time of the ball and racket is 0.01 s, what is the magnitude of the force exerted by the ball on the racket? (a) 2.5 N (b) 4.0 N (c) 10 N (d) 400 N

8. A 30-kg cart traveling due north at 5 m/s collides with a 50-kg cart that had been traveling due south. Both carts immediately come to rest after the collision. What must have been the speed of the southbound cart? (a) 3 m/s (b) 5 m/s (c) 6 m/s (d) 10 m/s

Answers

1. (b). At equilibrium,

\[\sum \vec{T}_i = \vec{T}_g + \vec{T}_W = 0 \]

The torque \(\vec{T}_g \) exerted by the pivot is zero because the torques are computed around that point, meaning a zero lever arm for the force exerted by the pivot. The center of gravity is 4.00 m from the pivot point, and the gravitational force exerts a counterclockwise torque \(\vec{T}_g \) on the bar as if all the mass were concentrated at that point. The torque due to the weight of the bar is therefore equal to \(+xW = +(4.00 \text{ m/kg})w_b \). The weight \(W \) on the right side gives a clockwise torque \(\vec{T}_W = 2(2.00 \text{ m})W \). Hence, from Equation (1),

\[0 + w_b(4.00 \text{ m}) - (5.00 \times 10^2 \text{ N})(2.00 \text{ m}) = 0 \quad \Rightarrow \quad w_b = 2.50 \times 10^2 \text{ N} \]

2. (a). The pivot point must be closer to the heavier weight; otherwise, the torques due to the weights could not be equal in magnitude and opposite in direction. Given this information, choices (b) and (c) can be eliminated immediately. Choice (d) can also be eliminated because it puts the pivot at the center of the rod, which would only give equilibrium if the two weights were identical. The choice must be (a), which can be confirmed using the second condition of equilibrium. If \(x \) is the distance of the pivot from the 30-kg mass, then \(10 - x \) is the distance from the pivot to the 20-kg mass. Apply the second condition of equilibrium, \(\sum \tau_i = 0 \):

\[(30 \text{ kg})g(x) - (20 \text{ kg})g(10 - x) = 0 \quad \Rightarrow \quad x = 4 \text{ m} \]

3. (c). Conservation of momentum ensures that the total momentum after the collision must equal the total momentum before the collision. If \(A \) is the car of mass 8.00 \times 10^3 kg and \(B \) is the 1 200-kg truck, then

\[m_Av_A\text{ initial} + m_Bv_B\text{ initial} = m_Av_A\text{ final} + m_Bv_B\text{ final} \]

Because the car is stalled, its initial velocity is zero and \(m_Av_A\text{ initial} \) is zero. After the collision, the vehicles are joined and \(v_A\text{ final} = v_B\text{ final} = v_{\text{final}} \). The equation becomes

\[m_Bv_B\text{ initial} = (m_A + m_B)v_{\text{final}} \]

Solve for \(v_{\text{final}} \):

\[v_{\text{final}} = m_Bv_B\text{ initial}/(m_A + m_B) = (1 200 \text{ kg})(20.0 \text{ m/s})/(1 200 \text{ kg} + 8.00 \times 10^3 \text{ kg}) \]

\[= 12 \text{ m/s} \]

4. (a). Conservation of momentum gives \(p_{\text{before}} = p_{\text{after}} \). The total momentum before the collision is the sum of momenta for the two vehicles. After the collision, \(p \) is the momentum associated with their coupled masses:

\[(1.00 \times 10^3 \text{ kg})(5.00 \text{ m/s}) + (3.00 \times 10^3 \text{ kg})(1.00 \text{ m/s}) = (4.00 \times 10^3 \text{ kg})v_{\text{final}} \]

\[v_{\text{final}} = (5.00 \times 10^3 + 3.00 \times 10^3)(\text{kg} \cdot \text{m/s})/(4.00 \times 10^3 \text{ kg}) = 2.00 \text{ m/s} \]

5. (a). The momentum is conserved because there are no external forces acting on the pistol–bullet system during the firing. The initial momentum, however, is zero. The
final momentum is the sum of the momentum of the bullet and the recoil momentum of the pistol:

\[p_{\text{before}} = p_{\text{after}} \rightarrow 0 = m_{\text{pistol}}v_{\text{pistol}} + m_{\text{bullet}}v_{\text{bullet}} \]

\[v_{\text{pistol}} = -0.50 \text{ g} \times (1.0 \times 10^{2} \text{ m/s}) / 0.20 \times 10^{3} \text{ g} = -0.25 \text{ m/s} \]

6. (e). The change in momentum is given by \(\Delta p = m v_f - m v_i \), where \(v_i \) is the initial velocity and \(v_f \) is the rebound velocity. Because the collision is elastic, the ball rebounds in the opposite direction but with the same speed with which it hit the wall. Therefore, \(v_f = 2v_i \), and the change in momentum is

\[\Delta p = m(-v_f) - mv_i = -2mv_i = -2(0.20 \text{ kg})(20.0 \text{ m/s}) = -8.0 \text{ kg} \cdot \text{m/s} \]

The magnitude of a number is its absolute value: \(| -8.0 \text{ kg} \cdot \text{m/s} | = 8.0 \text{ kg} \cdot \text{m/s} \)

7. (d). Force is related to momentum by the impulse-momentum equation, \(F \Delta t = \Delta p \). Therefore,

\[F = \Delta p / \Delta t = (4 \text{ kg} \cdot \text{m/s}) / 0.01 \text{ s} = 400 \text{ kg} \cdot \text{m/s}^2 = 400 \text{ N} \]

8. (a). Momentum is conserved. Because both carts come to rest, the total momentum after the collision must be zero, which means that the total momentum prior to the collision was also zero. If the two carts are labeled A and B, then

\[m_Av_A = m_Bv_B \rightarrow v_B = (30 \text{ kg})(5 \text{ m/s}) / 50 \text{ kg} = 3 \text{ m/s} \]

WORK

EXAMPLE 1

A car traveling at speed \(v \) can stop in distance \(d \) due to kinetic friction. At twice the speed, what stopping distance is required? (a) \(d \) (b) 2\(d \) (c) 4\(d \) (d) 8\(d \)

Conceptual Solution

The answer is (c). Answer (a) can be eliminated immediately because at double the velocity, the car’s energy must be greater than before and hence the stopping distance must be greater. Because kinetic energy is proportional to \(v^2 \), doubling the velocity quadruples the energy. Work done by friction is linear in distance \(d \), so four times the distance is required. This result can more readily be seen through a proportion.

Quantitative Solution

Apply the work–energy theorem:

\[W = \Delta KE = KE_f - KE_i \]

Assume the car is traveling in the positive x-direction. Substitute expressions for work done by a kinetic friction force with magnitude \(F_k \) performed over a displacement \(\Delta x \) and for kinetic energy, noting that \(KE_f = 0 \);

Multiply both sides by \(-1\) and drop the zero term:

\[F_k \Delta x = \frac{1}{2} mv^2 \]

Denote the two possible different displacements by \(d_1 \) and \(d_2 \), the two velocities by \(v_i \) and \(v_2 \). Substitute into Equation (3), creating one equation for the first case and a similar equation for the second case:

\[F_kd_1 = \frac{1}{2} m v_i^2 \]

\[F_kd_2 = \frac{1}{2} m v_2^2 \]

Now divide Equation (5) by Equation (4), canceling terms \(F_k \), \(m \), and \(\frac{1}{2} \):

\[\frac{F_kd_2}{F_kd_1} = \frac{\frac{1}{2} m v_2^2}{\frac{1}{2} m v_i^2} \rightarrow \frac{d_2}{d_1} = \frac{v_2^2}{v_i^2} = \frac{(2v)^2}{v^2} = 4 \]

It follows, then, that answer (c) is correct:

\[d_2 = 4d_1 \]
\section*{EXAMPLE 2}

A truck of mass M and a car of mass m are traveling at the same speed. They both slam on their brakes, locking them and skidding along the road, which has friction coefficient μ_k. The car stops after going a distance d. Assuming μ_k is the same for both vehicles, which of the following is true of the distance D that the truck travels before stopping? (a) $D = d$ (b) $D > d$ (c) $D < d$

\textbf{Conceptual Solution}

Kinetic energy is directly proportional to mass, and because the truck is more massive than the car, its kinetic energy is greater and hence it might be thought that a greater braking distance would be required. The friction force, however, is also directly proportional to mass, so the friction force is proportionately greater for the truck than the car. All other things being equal, the truck and car stop in the same distance, $D = d$, which is answer (a).

\textbf{Quantitative Solution}

Write the expression for the force of friction, where n is the normal force:

\begin{equation}
F_k = \mu_k n = \mu_k mg
\end{equation}

Now use Equation (4) from Example 1:

\begin{equation}
\frac{F_{k,\text{truck}}D}{F_{k,\text{car}}d} = \frac{\frac{1}{2}Mv_f^2}{\frac{1}{2}mv_i^2}
\end{equation}

Substitute the expressions for the kinetic friction force from Equation (1):

\begin{equation}
\frac{(\mu_k \text{Mg})D}{(\mu_k \text{mg})d} = \frac{\frac{1}{2}Mv_f^2}{\frac{1}{2}mv_i^2} \rightarrow \frac{MD}{md} = \frac{M}{m} \rightarrow \frac{D}{d} = 1
\end{equation}

The answer is (a), as expected: $D = d$.

\section*{EXAMPLE 3}

A car undergoes uniform acceleration from rest. What can be said about the instantaneous power delivered by the engine? (a) The instantaneous power increases with increasing speed. (b) The instantaneous power remains the same. (c) The instantaneous power decreases with increasing speed.

\textbf{Conceptual Solution}

The correct answer is (a). Because the acceleration is uniform, the force is constant. The instantaneous power is given by $P = Fv$, so with increasing velocity the delivered power must also increase.

\section*{EXAMPLE 4}

A circus stuntman is blasted straight up out of a cannon. If air resistance is negligible, which of the following is true about his total mechanical energy as he rises? (a) It increases. (b) It remains the same. (c) It decreases.

\textbf{Conceptual Solution}

In the absence of nonconservative forces, mechanical energy is conserved, so it will remain the same, and answer (b) is correct.

\textbf{Application}

If the stuntman has mass 65.0 kg and his initial velocity is 8.00 m/s, find the maximum height reached.

\textbf{Solution}

Apply conservation of mechanical energy:

\begin{equation}
\Delta KE + \Delta PE = 0
\end{equation}

\begin{equation}
\frac{1}{2}mv_f^2 - \frac{1}{2}mv_i^2 + mgh_f - mgh_i = 0
\end{equation}

The final velocity is zero, and initial height may be taken as zero:

\begin{equation}
0 - \frac{1}{2}mv_i^2 + mgh_f - 0 = 0
\end{equation}

Solve for h_f and substitute values:

\begin{equation}
h_f = \frac{v_i^2}{2g} = \frac{(8.00 \text{ m/s})^2}{2(9.80 \text{ m/s}^2)} = 3.27 \text{ m}
\end{equation}
MULTIPLE-CHOICE PROBLEMS

1. If the speed at which a car is traveling is tripled, by what factor does its kinetic energy increase? (a) 3^{1/2} (b) 3 (c) 6 (d) 9

2. What is the magnitude of the force exerted by air on a plane if 500 kilowatts of power are needed to maintain a constant speed of 100 meters per second? (a) 5 N (b) 50 N (c) 500 N (d) 5 000 N

3. What happens to the speed of a body if its kinetic energy is doubled? (a) It increases by a factor of 2^{1/2}. (b) It is doubled. (c) It is halved. (d) It increases by a factor of 4.

4. A ball with a mass of 1.0 kg sits at the top of a 30° incline plane that is 20.0 meters long. If the potential energy of the ball relative the bottom of the incline is 98 J at the top of the incline, what is its potential energy once it rolls halfway down the incline? (a) 0 J (b) 49 J (c) 98 J (d) 196 J

5. How much work is done by a horizontal force of 20.0 N when applied to a mass of 0.500 kg over a distance of 10.0 m? (a) 5.00 J (b) 10.0 J (c) 49.0 J (d) 2.00 \times 10^2 J

6. A body located 10.0 meters above the surface of the Earth has a gravitational potential energy of 4.90 \times 10^2 J relative to the Earth’s surface. What is the new gravitational potential energy if the body drops to a height of 7.00 m above the Earth? (a) 70.0 J (b) 147 J (c) 281 J (d) 343 J

7. Cart A has a mass of 1.0 kg and a constant velocity of 3.0 m/s. Cart B has a mass of 1.5 kg and a constant velocity of 2.0 m/s. Which of the following statements is true? (a) Cart A has the greater kinetic energy. (b) Cart B has the greater kinetic energy. (c) Cart A has the greater acceleration. (d) Cart B has the greater acceleration.

8. The work done in raising a body must (a) increase the kinetic energy of the body. (b) decrease the total mechanical energy of the body. (c) decrease the internal energy of the body. (d) increase the gravitational potential energy.

9. What is the average power output of a 50.0-kg woman who climbs a 2.00-m step ladder at constant speed in 10.0 seconds? (a) 10.0 W (b) 49.0 W (c) 98.0 W (d) 2.50 \times 10^2 W

Answers

1. (d). The kinetic energy is directly proportional to the square of the speed. If the speed is tripled, its square becomes (3v)^2 = 9v^2 and KE must increase by a factor of nine.

2. (d). The instantaneous power is the product of the force acting on the plane and the speed, \(P = Fv \). Solving for the required force gives \(F = \frac{P}{v} = \frac{500 \times 10^3 W}{100 \text{ m/s}} = 5 \times 10^3 N \)

3. (a). Let \(KE_i \) be the initial kinetic energy, and \(KE_f \) the final kinetic energy. Make a proportion:

\[
\frac{KE_f}{KE_i} = \left(\frac{2}{1}\right) \frac{m_{v_f}^2}{m_{v_i}^2} \rightarrow \frac{2KE_f}{KE_i} = \frac{4mv_f^2}{mv_i^2} \rightarrow 2 = \frac{v_f^2}{v_i^2}
\]

Solve for \(v_f \), getting \(v_f = \sqrt{2}v_i \).

4. (b). Because the height is decreasing, the gravitational potential energy is decreasing and must have a value less than its initial reading of 98 J. Choice (d) can be eliminated because its value is higher than the initial value of the potential energy, and can choice (c) because its value is the same as the initial value of the potential energy. Choice (a) can be eliminated because, by the problem statement, the gravitational potential energy is zero at the bottom of the ramp. That leaves (b) as the only option.

Quantitatively: \(PE = mgh = (1.0 \text{ kg})(9.8 \text{ m/s}^2)(10.0 \text{ m} \cdot \sin(30°)) = 49 \text{ J} \)

5. (d). W = F\Delta s = (20.0 \text{ N})(10.0 \text{ m}) = 2.00 \times 10^2 \text{ J}

6. (d). The gravitational potential energy and the height of the body above the ground are directly proportional: \(PE = mgh \). Reducing the height by a factor of 7/10 must reduce the gravitational potential energy by the same factor: \((4.90 \times 10^2 \text{ J})(0.700) = 343 \text{ J} \)

7. (a). Because the velocity is constant, the acceleration must be zero and we can eliminate choices (c) and (d). Solving \(KE = \frac{1}{2}mv^2 \) for the two carts yields

\[KE_{A} = \frac{1}{2}(1.0 \text{ kg})(3.0 \text{ m/s})^2 = 4.5 \text{ J} \quad KE_{B} = \frac{1}{2}(1.5 \text{ kg})(4.0 \text{ m/s})^2 = 3.0 \text{ J} \]
8. (d). By definition, gravitational potential energy changes with the height of a body above the ground.

9. (c). The average power is the work done on an object divided by the length of the time interval, \(P = \frac{W}{\Delta t} \). The work done here is against gravity. In the period under consideration, the woman must increase her mechanical energy by an amount equal to her change in gravitational potential energy, so \(P = \frac{mgh}{\Delta t} = \frac{(50.0 \text{ kg})(9.80 \text{ m/s}^2)(2.00 \text{ m})}{10.0 \text{ s}} = 98.0 \text{ W} \).

MATTER

EXAMPLE 1

Tank A is filled with water, and, in an identical tank B, the bottom half is filled with water and the top half with oil. For which tank is the pressure at the bottom of the tank the greatest? (a) Tank A (b) Tank B (c) The pressure in both tanks is the same.

Conceptual Solution

The oil in tank B floats on top of the water because it’s less dense than water. The total weight of the fluid in tank B must therefore be less than an equal volume of water alone. Consequently, the fluid weight per unit area is greater at the bottom of tank A, and the answer is (a).

EXAMPLE 2

A steel cable with cross-sectional area \(A \) and length \(L \) stretches by length \(\Delta L_1 \) when suspending a given weight. A second steel cable with half the cross-sectional area and three times the length is used to support the same weight, and stretches by an amount \(\Delta L_2 \). What is the ratio \(\Delta L_2/\Delta L_1 \)? (a) 2 (b) 4 (c) 6 (d) 8

Conceptual Solution

Tensile stress, a force per unit area, is proportional to tensile strain, which is the fractional change in length of an object or the change in length divided by the original length. The amount the cable stretches is thus inversely proportional to the cross-sectional area and directly proportional to the length. Hence, the second cable, being three times as long, should stretch three times as far under a given load. With only half the cross-sectional area, it should stretch farther by a factor of \((\frac{3}{2})^{-1} = 2\). Taken together, the second cable should stretch six times as far as the first shorter and thicker cable, so \(\Delta L_2/\Delta L_1 = 6 \), which is answer (c).

Quantitative Solution

Write the equation relating tensile stress and strain for the first cable:

\[
\frac{F_1}{A_1} = \frac{\Delta L_1}{L_1} \quad (1)
\]

Rewrite Equation (1) for the second cable, noting that \(Y \), Young’s modulus, is constant for a given material:

\[
\frac{F_2}{A_2} = \frac{\Delta L_2}{L_2} \quad (2)
\]

Divide Equation (2) by Equation (1), canceling \(Y \):

\[
\frac{F_2}{F_1} \frac{A_1}{A_2} \frac{L_2}{L_1} = \frac{\Delta L_2}{\Delta L_1} \rightarrow \frac{F_2 A_1}{F_1 A_2} = \frac{\Delta L_2}{\Delta L_1} \frac{L_1}{L_2} \quad (3)
\]

Cancel \(F_2 \) and \(F_1 \) in Equation (3) because they are equal in this case, rearrange the equation, and substitute \(L_2 = 3L_1 \) and \(A_2 = \frac{1}{2}A_1 \):

\[
\frac{\Delta L_2}{\Delta L_1} = \frac{A_1 L_2}{A_2 L_1} = \frac{A_1}{\frac{1}{2}A_1} \frac{3L_1}{L_1} = \frac{3}{\frac{1}{2}} = 6
\]

The answer is (c), as expected.
EXAMPLE 3

An object floats with three-quarters of its volume submerged in water. What is its density? \(\rho_{\text{water}} = 1.00 \times 10^3 \text{ kg/m}^3 \)
(a) \(1.00 \times 10^3 \text{ kg/m}^3 \) (b) \(8.70 \times 10^2 \text{ kg/m}^3 \) (c) \(7.50 \times 10^2 \text{ kg/m}^3 \) (d) \(1.25 \times 10^3 \text{ kg/m}^3 \)

Conceptual Solution

Choice (d) can be eliminated immediately because the object would sink if it were more dense than water. If choice (a) were true, the object would be floating but would be completely submerged. These considerations leave only choices (b) and (c). The buoyant force depends on the amount of fluid displaced, and this force must exactly balance the gravitational force, or weight. Because the object is only three-quarters submerged, its weight must be only three-quarters that of a similar volume of water. It follows that the density of the object must be three-quarters that of water, which is answer (c).

Quantitative Solution

Neglecting the buoyancy of air, two forces act on the object: the buoyant force \(F_B \), which is equal to the weight of displaced fluid, and the gravitational force:

\[
\sum \vec{F} = \vec{F}_B + \vec{F}_{\text{grav}} = 0
\]

Substitute the expressions for the buoyant and gravitational forces:

By definition, the mass of the object is given by
\[m = \rho_{\text{obj}} V \]
where \(\rho_{\text{obj}} \) is the object’s density and \(V \) is its volume. The buoyant force is the weight of the displaced water:
\[F_B = \rho_{\text{water}} V_{\text{sub}} g \]
where \(V_{\text{sub}} \) is the volume of water displaced. Substitute these expressions into Equation (1):

\[
\rho_{\text{water}} V_{\text{sub}} g - \rho_{\text{obj}} V g = 0
\]

Solve Equation (2) for \(\rho_{\text{obj}} \), obtaining answer (c):
\[
\rho_{\text{obj}} = \frac{V_{\text{sub}}}{V} \rho_{\text{water}} = (0.750)(1.00 \times 10^3 \text{ kg/m}^3) = 7.50 \times 10^2 \text{ kg/m}^3
\]

EXAMPLE 4

At point 1, water flows smoothly at speed \(v_1 \) through a horizontal pipe with radius \(r_1 \). The pipe then narrows to half that radius at point 2. What can be said of the speed \(v_1 \) of the water at point 1 compared with its speed \(v_2 \) at point 2?
(a) \(v_1 = v_2 \) (b) \(v_1 > v_2 \) (c) \(v_1 < v_2 \)

Conceptual Solution

The volume flow rate is proportional to the velocity and cross-sectional area of the pipe. A larger radius at point 1 means a larger cross-sectional area. Because water is essentially incompressible, the flow rate must be the same in both sections of pipe, so the larger cross-section at point 1 results in a smaller fluid velocity and the answer is (c).

Quantitative Solution

Apply the equation of continuity for an incompressible fluid:

\[
A_1 v_1 = A_2 v_2
\]

Substitute an expression for the area on each side of Equation (1):

\[
\pi r_1^2 v_1 = \pi r_2^2 v_2
\]

Solve Equation (2) for \(v_1 \), and substitute \(r_2 = \frac{1}{2} r_1 \), obtaining answer (e):
\[
v_1 = \frac{r_2^2}{r_1^2} v_2 = \frac{r_2^2}{(2r_2)^2} v_2 = \frac{1}{4} v_2
\]
MULTIPLE-CHOICE PROBLEMS

1. A diver is swimming 10.0 m below the surface of the water in a reservoir. There is no current, the air has a pressure of 1.00 atmosphere, and the density of the water is 1.00 × 10³ kilograms per cubic meter. What is the pressure as measured by the diver?
 (a) 1.10 atm (b) 1.99 × 10⁵ Pa (c) 11.0 atm (d) 1.01 × 10⁵ Pa

2. The aorta of a 70.0-kg man has a cross-sectional area of 3.00 cm² and carries blood with a speed of 30.0 cm/s. What is the average volume flow rate?
 (a) 10.0 cm/s (b) 33.0 cm³/s (c) 10.0 cm²/s (d) 90.0 cm³/s

3. At 20.0°C the density of water is 1.00 g/cm³. What is the density of a body that has a weight of 0.980 N in air but registers an apparent weight of only 0.245 N on a spring scale when fully immersed in water?
 (a) 0.245 g/cm³ (b) 0.735 g/cm³ (c) 1.33 g/cm³ (d) 4.00 g/cm³

4. Two insoluble bodies, A and B, appear to lose the same amount of weight when submerged in alcohol. Which statement is most applicable?
 (a) Both bodies have the same mass in air. (b) Both bodies have the same volume. (c) Both bodies have the same density. (d) Both bodies have the same weight in air.

5. The bottom of each foot of an 80-kg man has an area of about 400 cm². What is the effect of his wearing snowshoes with an area of about 0.400 m²?
 (a) The pressure exerted on the snow becomes 10 times as great. (b) The pressure exerted on the snow becomes 1/10 as great. (c) The pressure exerted on the snow remains the same. (d) The force exerted on the snow is 1/10 as great.

6. In a hydraulic lift, the surface of the input piston is 10 cm² and that of the output piston is 3000 cm². What is the work done if a 100 N force applied to the input piston raises the output piston by 2.0 m?
 (a) 20 kJ (b) 30 kJ (c) 40 kJ (d) 60 kJ

7. Young's modulus for steel is 2.0 × 10¹¹ N/m². What is the stress on a steel rod that is 100 cm long and 20 mm in diameter when it is stretched by a force of 6.3 × 10³ N?
 (a) 2.01 × 10⁷ N/m² (b) 12.6 × 10¹² N/m² (c) 3.15 × 10⁸ N/m² (d) 4.0 × 10¹¹ N/m²

Answers

1. (b). The fluid is at rest (no currents), so this problem is a hydrostatic pressure calculation. In SI units 1 atm = 1.01 × 10⁵ Pa. Choice (d) can be eliminated because the pressure below the water must be greater than the pressure at the surface.

2. (d). The answer follows from the definition:

 \[\text{Volume flow rate} = \bar{v}A = (30 \text{ cm}/s)(3 \text{ cm}²) = 90 \text{ cm}²/\text{s} \]

3. (c). This problem is an application of Archimedes' principle. The apparent weight lost of a submerged body equals the weight of the fluid displaced. The weight \(w \) of the displaced water is

 \[w = 0.980 \text{ N} - 0.245 \text{ N} = 0.735 \text{ N} \]

 Using the definition of density, \(\rho_{\text{water}} = \frac{w}{V} \), so the volume occupied by this weight of water is

 \[V = \frac{0.735 \text{ N}}{\rho_{\text{water}}} \]

 The volume of the body must equal the volume of the water displaced.

4. (b). According to Archimedes' principle, the apparent weight lost is equal to the weight of the displaced fluid; therefore, both must have the same volume because the volume of the fluid equals the volume of the body.

5. (b). The force exerted by the man is his weight and it is assumed to be constant, which eliminates choice (d). For a constant force, pressure and area are inversely proportional. The area of the snowshoes is ten times the area of the foot, so the pressure associated with the snowshoes is the inverse of 10, or 1/10 the pressure exerted by the foot.

6. (d). By Pascal's principle, the pressure at the input and output pistons is the same, so

 \[\frac{F_{\text{in}}}{A_{\text{in}}} = \frac{F_{\text{out}}}{A_{\text{out}}} \rightarrow F_{\text{out}} = \frac{A_{\text{out}}}{A_{\text{in}}} F_{\text{in}} = \left(\frac{3 \text{,}000 \text{ cm}²}{10 \text{ cm}²}\right) 100 \text{ N} = 3 \times 10^4 \text{ N} \]

 Work is a force times a displacement:

 \[W = F \Delta s = (3 \times 10^4 \text{ N})(2 \text{ m}) = 6 \times 10^4 \text{ J} = 60 \text{ kJ} \]
7. (a). Stress is force per unit area, so neither Young’s modulus nor the length of the rod are needed to solve the problem.

\[\text{Stress} = \frac{F}{A} = \frac{(6.30 \times 10^3 \text{N})}{(1 \times 10^{-2} \text{m})^2} = 2.01 \times 10^7 \text{N/m}^2 \]

WAVES

EXAMPLE 1

A transverse wave travels at speed \(v_1 \) and has twice the frequency and one-quarter the wavelength of a second transverse wave. (They could be waves on two different strings, for example.) How does the speed \(v_1 \) of the first wave compare with the speed \(v_2 \) of the second wave? (a) \(v_1 = v_2 \) (b) \(v_1 = 2v_2 \) (c) \(v_1 = \frac{1}{2}v_2 \)

Solution

The speed of a wave is proportional to both the frequency and wavelength:

\[(1) \quad v = f \lambda \]

Make a ratio of \(v_2 \) to \(v_1 \) using Equation (1) and substitute \(f_1 = 2f_2 \) and \(\lambda_1 = \frac{\lambda_2}{4} \):

\[\frac{v_1}{v_2} = \frac{f_1\lambda_1}{f_2\lambda_2} = \frac{(2f_2)(\frac{\lambda_2}{4})}{f_2\lambda_2} = \frac{2}{4} = \frac{1}{2} \]

Solve for \(v_1 \), obtaining answer (c):

\[v_1 = \frac{1}{2}v_2 \]

EXAMPLE 2

A block of mass \(m \) oscillates at the end of a horizontal spring on a frictionless surface. At maximum extension, an identical block drops onto the top of the first block and sticks to it. How does the new period \(T_{\text{new}} \) compare to the original period, \(T_0 \)? (a) \(T_{\text{new}} = \sqrt{2}T_0 \) (b) \(T_{\text{new}} = T_0 \) (c) \(T_{\text{new}} = 2T_0 \) (d) \(T_{\text{new}} = \frac{1}{2}T_0 \)

Conceptual Solution

An increased mass would increase the inertia of the system without augmenting the mechanical energy, so a mass of \(2m \) should move more slowly than a mass of \(m \). That in turn would lengthen the period, eliminating choices (b) and (d). The period is proportional to the square root of the mass, so doubling the mass increases the period by a factor of the square root of 2, which is answer (a).

Quantitative Solution

Apply the equation for the period of a mass–spring system:

\[(1) \quad T = 2\pi\sqrt{\frac{m}{k}} \]

Using Equation (1), make a ratio of the new period \(T_{\text{new}} \) to the old period, \(T_0 \), canceling common terms and substituting \(m_{\text{new}} = 2m_0 \):

\[(2) \quad \frac{T_{\text{new}}}{T_0} = \frac{2\pi\sqrt{\frac{m_{\text{new}}}{k}}}{2\pi\sqrt{\frac{m_0}{k}}} = \frac{\sqrt{m_{\text{new}}}}{\sqrt{m_0}} = \sqrt{\frac{2m_0}{m_0}} = \sqrt{2} \]

Solving Equation (2) for the new period \(T_{\text{new}} \) yields answer (a):

\[T_{\text{new}} = \sqrt{2}T_0 \quad [\text{answer (a)}] \]

EXAMPLE 3

A simple pendulum swings back and forth 36 times in 68 s. What is its length if the local acceleration of gravity is 9.80 m/s\(^2\)? (a) 0.067 7 m (b) 0.356 m (c) 1.25 m (d) 0.887 m

Solution

First, find the period \(T \) of the motion:

\[T = \frac{68 \text{ s}}{36} = 1.89 \text{ s} \]
MULTIPLE-CHOICE PROBLEMS

1. A simple pendulum has a period of 4.63 s at a place on the Earth where the acceleration of gravity is 9.82 m/s². At a different location, the period increases to 4.64 s. What is the value of g at this second point? (a) 9.78 m/s² (b) 9.82 m/s² (c) 9.86 m/s² (d) Cannot be determined without knowing the length of the pendulum.

2. What is the wavelength of a transverse wave having a speed of 15 m/s and a frequency of 5.0 Hz? (a) 3.0 m (b) 10 m (c) 20 m (d) 45 m

3. What is the optimum difference in phase for maximum destructive interference between two waves of the same frequency? (a) 360° (b) 270° (c) 180° (d) 90°

4. Standing waves can be formed if coincident waves have (a) the same direction of propagation. (b) the same frequency. (c) different amplitudes. (d) different wavelengths.

5. A simple pendulum with a length L has a period of 2 s. For the pendulum to have a period of 4 s, we must (a) halve the length. (b) quarter the length. (c) double the length. (d) quadruple the length.

6. If a simple pendulum 12 m long has a frequency of 0.25 Hz, what will be the period of a second pendulum at the same location if its length is 3.0 m? (a) 2.0 s (b) 3.0 s (c) 4.0 s (d) 6.0 s

7. A pendulum clock runs too slowly (i.e., is losing time). Which of the following adjustments could rectify the problem? (a) The weight of the bob should be decreased so it can move faster. (b) The length of the wire holding the bob should be shortened. (c) The amplitude of the swing should be reduced so the path covered is shorter. (d) None of the above.

8. A 20.0-kg object placed on a frictionless floor is attached to a wall by a spring. A 5.00-N force horizontally displaces the object 1.00 m from its equilibrium position. What is the period of oscillation of the object? (a) 2.00 s (b) 6.08 s (c) 12.6 s (d) 16.4 s

Answers

1. (a). The answer can be determined without doing a numerical solution. Rearrange $T = 2\pi \sqrt{\frac{L}{g}}$ to $T^2 = \frac{4\pi^2}{g}$. The period is inversely related to the square root of the acceleration due to gravity. Because T has increased, $g^{1/2}$ and hence g must decrease. Choice (a) is the only value of g that is less than the original 9.82 m/s². Quantitatively, $g_2 = \left(\frac{T_2}{T_1}\right)^2 g_1 = \left(\frac{4.64 \text{ s}}{4.63 \text{ s}}\right)^2 (9.82 \text{ m/s}^2) = 9.78 \text{ m/s}^2$

2. (a). Wavelength is velocity divided by frequency. The formula does not depend upon the type of wave involved.

$$\lambda = \frac{v}{f} = \frac{15 \text{ m/s}}{5.0 \text{ s}^{-1}} = 3.0 \text{ m}$$

3. (c). Two waves are completely out of phase when their antinodes coincide so that each crest on one wave coincides with a trough on the other. This situation occurs when the waves differ in phase by 180°.

4. (b). In standing waves, the nodes are stationary, which can be accomplished when two waves with the same frequency travel in opposite directions.

5. (d). In a pendulum the period and the square root of the length are directly proportional:

$$T = 2\pi \sqrt{\frac{L}{g}} \text{ so that } T/L^{1/2} = \text{ constant}$$

To double the period, you must double the square root of the length. To double the square root of the length, you must quadruple the length:

$$(4L)^{1/2} = 4^{1/2} L^{1/2} = 2L^{1/2}$$
6. (a). The frequency is the reciprocal of the period, \(f = 1/T \), so the first pendulum has period \(T_1 = 4.0 \) s. For pendulums, the period and the square root of the length are directly proportional, so the ratio of the two periods is
\[
\frac{T_2}{T_1} = \left(\frac{L_2}{L_1} \right)^{1/2} = \left(\frac{12}{3} \right)^{1/2} = 4.0^{1/2} = 2.0
\]
It follows that \(T_2 = 2.0 \) s.

7. (b). The period of a pendulum is directly related to the square root of the length of the cord holding the bob. It is independent of the mass and amplitude.

8. (c). The force constant is \(k = F/\Delta x = 5.0 \) N/1.0 m = \(5.0 \) N m\(^{-1}\). The period is
\[
T = 2\pi(m/k)^{1/2} = 2\pi(20.0 \text{ kg}/5.00 \text{ N m}^{-1})^{1/2} = 12.6 \text{ s}
\]

SOUND

EXAMPLE 1

When a given sound intensity doubles, by how much does the sound intensity level (or decibel level) increase?

Solution

Write the expression for a difference in decibel level, \(\Delta \beta \):

\[
\Delta \beta = \beta_2 - \beta_1 = 10 \log \left(\frac{I_2}{I_0} \right) - 10 \log \left(\frac{I_1}{I_0} \right)
\]

Factor and apply the logarithm rule \(\log a - \log b = \log(a/b) = \log(a \cdot b^{-1}) \):

\[
\Delta \beta = 10 \left[\log \left(\frac{I_2}{I_0} \right) - \log \left(\frac{I_1}{I_0} \right) \right] = 10 \log \left(\frac{I_2}{I_1} \right)
\]

Substitute \(I_2 = 2I_1 \) and evaluate the expression:

\[
\Delta \beta = 10 \log \left(\frac{2I_1}{I_1} \right) = 10 \log (2) = 3.01 \text{ dB}
\]

EXAMPLE 2

A sound wave passes from air into water. What can be said of its wavelength in water compared with air? (a) The wavelengths are the same. (b) The wavelength in air is greater than in water. (c) The wavelength in air is less than in water.

Conceptual Solution

The frequency of the sound doesn’t change in going from one type of media to the next because it’s caused by periodic variations of pressure in time. The wavelength must change, however, because the speed of sound changes and during a single period the sound wave will travel a different distance, which corresponds to a single wavelength. The speed of sound in water is greater than in air, so in a single period the sound wave will travel a greater distance. Hence, the wavelength of a given sound wave is greater in water than in air, which is (c). This result can be made quantitative by using \(v = f\lambda \), where \(v \) is the wave speed, \(f \) the frequency, and \(\lambda \) the wavelength.

EXAMPLE 3

A sound wave emitted from a sonar device reflects off a submarine that is traveling away from the sonar source. How does the frequency of the reflected wave, \(f_R \), compare with the frequency of the source, \(f_S \)? (a) \(f_R = f_S \) (b) \(f_R < f_S \) (c) \(f_R > f_S \)

Solution

The reflected wave will have a lower frequency [answer (b)]. To see why, consider pressure maxima impinging sequentially on the submarine. The first pressure maximum hits the submarine and reflects, but the second reaches the submarine when it has moved farther away. The distance between consecutive maxima in the reflected waves is thereby increased; hence the wavelength also increases. Because \(v = f\lambda \) and the speed isn’t affected, the frequency must decrease.
MULTIPLE-CHOICE PROBLEMS

1. The foghorn of a ship echoes off an iceberg in the distance. If the echo is heard 5.00 seconds after the horn is sounded and the air temperature is \(-15.0^\circ\text{C}\), how far away is the iceberg? (a) 224 m (b) 805 m (c) 827 m (d) 930 m

2. What is the sound level of a wave with an intensity of \(10^{-3}\text{ W/m}^2\)? (a) 30 dB (b) 60 dB (c) 90 dB (d) 120 dB

3. At 0°C, approximately how long does it take sound to travel 5.00 km through air? (a) 15 s (b) 30 s (c) 45 s (d) 60 s

4. If the speed of a transverse wave of a violin string is 12.0 m/s and the frequency played is 4.00 Hz, what is the wavelength of the sound in air? (Use 343 m/s for the speed of sound.) (a) 48.0 m (b) 12.0 m (c) 3.00 m (d) 85.8 m

5. If two identical sound waves interact in phase, the resulting wave will have a (a) shorter period. (b) larger amplitude. (c) higher frequency. (d) greater velocity.

6. What is the speed of a longitudinal sound wave in a steel rod if Young’s modulus for steel is \(2.0 \times 10^{11}\text{ N/m}^2\) and the density of steel is \(8.0 \times 10^3\text{ kg/m}^3\)? (a) \(4.0 \times 10^{11}\text{ m/s}\) (b) \(5.0 \times 10^3\text{ m/s}\) (c) \(25 \times 10^6\text{ m/s}\) (d) \(2.5 \times 10^9\text{ m/s}\)

7. If two frequencies emitted from two sources are 48 Hz and 54 Hz, how many beats per second are heard? (a) 3 (b) 6 (c) 9 (d) 12

8. The frequency registered by a detector is higher than the frequency emitted by the source. Which of the statements below must be true? (a) The source must be moving away from the detector. (b) The source must be moving toward the detector. (c) The distance between the source and the detector must be decreasing. (d) The detector must be moving away from the source.

Answers

1. (b). The normal speed of sound at 0°C in air is 331 m/s. The speed of sound in air at various temperatures is given by

\[
\nu = (331 \text{ m/s}) \sqrt{\frac{273}{273 + T}} = (331 \text{ m/s}) \sqrt{\frac{273 \text{ K} - 15.0 \text{ K}}{273 \text{ K}}} = 322 \text{ m/s}
\]

Calculate the distance traveled in half of 5 seconds:

\[
d = \frac{vt}{2} = (322 \text{ m/s})(2.50 \text{ s}) = 805 \text{ m}
\]

2. (c). Substitute: \(\beta = 10 \log \frac{I/I_0} = 10 \log \left(1 \times 10^{-3}\text{ W/m}^2/10^{-12}\text{ W/m}^2\right) = 90 \text{ dB}\).

3. (a). At 0°C, the speed of sound in air is 331 m/s, so \(t = (5.00 \times 10^3\text{ m})/(331 \text{ m/s}) \sim 15 \text{ s}\).

4. (d). The frequency is the same for the string as for the sound wave the string produces in the surrounding air, but the wavelength differs. The speed of sound is equal to the product of the frequency and wavelength, so \(\lambda = \frac{v}{f} = (343 \text{ m/s})/4.00 \text{ s}^{-1} = 85.8 \text{ m}\).

5. (b). Two waves are in phase if their crests and troughs coincide. The amplitude of the resulting wave is the algebraic sum of the amplitudes of the two waves being superposed at that point, so the amplitude is doubled.

6. (b). The solution requires substituting into an expression for the velocity of sound through a rod of solid material having Young’s modulus \(Y\):

\[
\nu = (Y/\rho)^{1/2} = (2.0 \times 10^{11}\text{ kg} \cdot \text{m}^2/\text{s}^2)/(8.0 \times 10^5\text{ kg/m}^3)^{1/2} = 25 \times 10^6\text{ m}^2/\text{s}^2)^{1/2} = 5.0 \times 10^3\text{ m/s}
\]

7. (b). \(f_{\text{beats}} = f_1 - f_2 = 54 - 48 = 6 \text{ beats}\)

8. (c). Movement of a sound source relative to an observer gives rise to the Doppler effect. Because the frequency is shifted to a higher value, the source and the detector must be getting closer together, effectively shortening the wavelength from the observer’s point of view. This observation eliminates choices (a) and (d). Choice (b) can be eliminated because it isn’t necessarily true: the same kind of effect occurs when the source is held steady and the detector moves towards it.
LIGHT

EXAMPLE 1
Which substance will have smaller critical angle for total internal reflection, glass with an index of refraction of 1.50 or diamond with an index of refraction of 2.42? (a) glass (b) diamond (c) The critical angles are the same for both.

Conceptual Solution
A larger index of refraction indicates a slower speed of light inside the material, which in turn means a larger refraction angle, or a larger bending towards the normal on entering the material from air and a larger bending away from the normal on passing from the material into air. (Recall that a normal line is perpendicular to the surface of the material.) For total internal reflection to occur, a refraction angle of 90° must be possible, which occurs whenever the refracting medium has a lower index of refraction than the incident medium. Diamond bends light more than glass, so the incident ray can be closer to the normal and still be bent enough so the angle of refraction results in total internal reflection. Closer to the normal means a smaller critical angle, so the answer is (b).

Quantitative Solution
Write Snell’s law for the diamond–air interface:

\[n_D \sin \theta_D = n_A \sin \theta_A \]

Compute the critical angle for diamond, using \(n_A = 1.00 \) for air and \(\theta_A = 90° \), together with \(n_D = 2.42 \):

\[2.42 \sin \theta_D = 1.00 \quad \Rightarrow \quad \theta_D = \sin^{-1} \left(\frac{1.00}{2.42} \right) = 24.4° \]

Repeat the calculation for glass:

\[1.50 \sin \theta_G = 1.00 \quad \Rightarrow \quad \theta_G = \sin^{-1} \left(\frac{1.00}{1.50} \right) = 41.8° \]

The calculation explicitly shows that diamond has a smaller critical angle than glass [answer (b)].

EXAMPLE 2
A patient’s near point is 85.0 cm. What focal length prescription lens will allow the patient to see objects clearly that are at a distance of 25.0 cm from the eye? Neglect the eye–lens distance.

Solution
Use the thin lens equation:

\[\frac{1}{f} = \frac{1}{p} + \frac{1}{q} \]

An object at distance \(p = 25.0 \) cm must form an image at the patient’s near point of 85.0 cm. The image must be virtual, so \(q = -85.0 \) cm:

\[\frac{1}{f} = \frac{1}{25.0 \text{ cm}} + \frac{1}{-85.0 \text{ cm}} = 2.82 \times 10^{-2} \text{ cm}^{-1} \]

\[f = 35.4 \text{ cm} \]

EXAMPLE 3
Two photons traveling in vacuum have different wavelengths. Which of the following statements is true? (a) The photon with a smaller wavelength has greater energy. (b) The photon with greater wavelength has greater energy. (c) The energy of all photons is the same. (d) The photon with the greater wavelength travels at a lesser speed.

Solution
Answer (d) can be eliminated immediately because the speed of light in vacuum is the same for all wavelengths of light. The energy of a photon, or particle of light, is given by \(E = hf \) and consequently is proportional to the frequency \(f \), which in turn is inversely proportional to the wavelength because \(f = c/\lambda \), where \(c \) is the speed of light. A smaller wavelength photon has a greater frequency and therefore a greater energy, so answer (a) is true.
MULTIPLE-CHOICE PROBLEMS

1. Glass has an index of refraction of 1.50. What is the frequency of light that has a wavelength of 5.00 × 10⁻⁷ m in glass? (a) 1.00 Hz (b) 2.25 Hz (c) 4.00 × 10¹⁴ Hz (d) 9.00 × 10¹⁴ Hz

2. Water has an index of refraction of 1.33. If a plane mirror is submerged in water, what can be said of the angle of reflection θ if light strikes the mirror with an angle of incidence of 30°? (a) θ < 30° (b) θ = 30° (c) 30° < θ (d) No light is reflected because 30° is the critical angle for water.

3. The index of refraction for water is 1.33 and that for glass is 1.50. A light ray strikes the water–glass boundary with an incident angle of 30.0° on the water side. Which of the following is the refraction angle in the glass? (a) 26.3° (b) 34.7° (c) 30.0° (d) 60.0°

4. Light is incident on a prism at an angle of 90° relative to its surface. The index of refraction of the prism material is 1.50. Which of the following statements is most accurate about the angle of refraction θ? (a) 0° < θ < 45° (b) 45° < θ < 90° (c) θ = 0° (d) 90° < θ

5. White light incident on an air–glass interface is split into a spectrum within the glass. Which color light has the greatest angle of refraction? (a) red light (b) violet light (c) yellow light (d) The angle is the same for all wavelengths.

6. A real object is placed 10.0 cm from a converging lens that has a focal length of 6.00 cm. Which statement is most accurate? (a) The image is real, upright, and reduced. (b) The image is real, inverted, and enlarged. (c) The image is real, upright, and reduced. (d) The image is real, inverted, and reduced.

7. What is the focal length of a lens that forms a virtual image 30.0 cm from the lens when a real object is placed 15.0 cm from the lens? (a) 10.0 cm (b) 15.0 cm (c) 30.0 cm (d) 45.0 cm

8. What is the magnification of a lens that forms an image 20.0 cm to its right when a real object is placed 10.0 cm to its left? (a) 0.500 (b) 1.00 (c) 1.50 (d) -2.00

9. The human eye can respond to light with a total energy of as little as 10⁻¹⁶ J. If red light has a wavelength of 600 nm, what is the minimum number of red light photons the eye can perceive? (a) 1 (b) 2 (c) 3 (d) 5

10. Which phenomenon occurs for transverse waves but not for longitudinal waves? (a) reflection (b) refraction (c) diffraction (d) polarization

Answers

1. (c). The velocity of light in glass can be found from the definition of refractive index, \(n = c/v \); wavelength and frequency are related to velocity by the general wave relation, \(v = \lambda f \). Therefore:
\[
\frac{1}{f} = \frac{c}{\lambda} = \frac{c}{n\lambda} = \frac{(3.00 \times 10^8 \text{ m/s})/(1.50)(5.00 \times 10^{-7} \text{ m})}{4.00 \times 10^{14} \text{ Hz}}
\]
2. (b). The law of reflection is independent of the medium involved. The angle of reflection is always equal to the angle of incidence.

3. (a). Snell’s law is given by \(n_1 \sin \theta_1 = n_2 \sin \theta_2 \); hence, 1.33 sin 30.0° = 1.50 sin θ. From this expression, we see that sin θ₂ < sin 30.0°, so θ₂ must be less than 30.0°. Therefore, (a) is the only reasonable choice.

4. (c). Snell’s law is \(n_1 \sin \theta_1 = n_2 \sin \theta_2 \). Because the incident rays are normal to the prism surface, \(\theta_1 = 0° \) and sin 0° = 0. Consequently, 0 = \(n_2 \sin \theta_2 \Rightarrow \theta_2 = 0° \).

5. (b). The greater the frequency of light, the greater its energy and the faster its speed through any material medium. From Snell’s law, the velocity and sin θ with respect to the normal are inversely proportional. Of the choices, violet light has the highest frequency and therefore the highest velocity and the greatest angle of refraction.

6. (b). By the thin lens equation, \(\frac{1}{f} = \frac{1}{p} + \frac{1}{q} \); hence, with \(p = 10.0 \text{ cm} \) and \(f = 6.00 \text{ cm} \), substitution results in \(q = 15.0 \text{ cm} \). The image distance is positive; hence, the image is real. The magnification is given by \(M = -q/p = -15.0 \text{ cm}/10.0 \text{ cm} = -1.50 \). Because \(M \) is negative, the image is inverted, whereas \(|M| > 1\) means that the image is enlarged.
7. (e) The focal length is given by the thin lens equation, \(1/f = 1/p + 1/q\). Because the image formed is virtual, the sign of \(q\) is negative. Therefore,
\[
\frac{1}{f} = \frac{1}{p} + \frac{1}{q} = \frac{1}{15.0 \text{ cm}} + \frac{1}{-30.0 \text{ cm}} = \frac{1}{30.0 \text{ cm}} \quad \rightarrow \quad f = 30.0 \text{ cm}
\]
8. (d) Magnification is given by \(M = -q/p = -20.0 \text{ cm}/10.0 \text{ cm} = -2.00\). The sign of \(q\) is positive because the image is real. The negative value of \(M\) means that the image is inverted.
9. (e), \(E = h/c = (6.63 \times 10^{-34} \text{ J s})/(3.00 \times 10^8 \text{ m/s})/(6.00 \times 10^{-7} \text{ m}) = 3.31 \times 10^{-19} \text{ J}\). This result is the energy of each red photon. The number of such photons needed to produce a total of \(10^{-18} \text{ J}\) of energy is
\[
(10^{-18} \text{ J})/(3.31 \times 10^{-19} \text{ J/photon}) \sim 3 \text{ photons}
\]
10. (d), Polarization can only occur with transverse waves because the motion must be perpendicular to the direction of propagation.

ELECTROSTATICS

EXAMPLE 1

Two protons, each of charge \(q_p = e\), exert an electric force of magnitude \(F_{p-p}\) on each other when they are a distance \(r_p\) apart. A pair of alpha particles, each of charge \(q_a = 2e\), exert an electric force \(F_{a-a}\) on each other. What is the distance between the alpha particles, \(r_a\), in terms of the distance between the protons, \(r_p\)?

(a) \(r_a = 4r_p\)
(b) \(r_a = 2r_p\)
(c) \(r_a = r_p\)
(d) More information is needed.

Solution

Use Coulomb's law to find an expression for the force between the protons:

\[
F_{p-p} = \frac{k q_p q_p}{r_p^2} = \frac{k e^2}{r_p^2} \quad (1)
\]

Use Coulomb's law to find an expression for the force between the alpha particles:

\[
F_{a-a} = \frac{k q_a q_a}{r_a^2} = \frac{k (2e)^2}{r_a^2} = \frac{4k e^2}{r_a^2} \quad (2)
\]

Divide Equation (2) by Equation (1) and cancel common terms:

\[
\frac{F_{p-p}}{F_{a-a}} = \frac{r_p^2}{4r_a^2} \Rightarrow \frac{r_a^2}{r_p^2} = \frac{4}{1} \quad \Rightarrow \quad r_a = 2r_p \quad (3)
\]

Now substitute \(F_{a-a} = \frac{1}{4} F_{p-p}\) and solve for \(r_a^2\):

\[
\frac{r_a^2}{4r_p^2} = \frac{F_{p-p}}{4F_{p-p}} = \frac{1}{4} \quad \Rightarrow \quad r_a^2 = 16r_p^2
\]

Take square roots, obtaining \(r_a\) in terms of \(r_p\):

\[
r_a = 4r_p
\]

The distance between the alpha particles is four times the distance between the protons, which is answer (a).

EXAMPLE 2

Sphere \(A\) has twice the radius of a second, very distant sphere \(B\). Let the electric potential at infinity be taken as zero. If the electric potential at the surface of sphere \(A\) is the same as at the surface of sphere \(B\), what can be said of the charge \(Q_A\) on sphere \(A\) compared with charge \(Q_B\) on \(B\)?

(a) \(Q_A = 2Q_B\)
(b) \(Q_A = Q_B\)
(c) \(Q_A = Q_B/2\)

Conceptual Solution

By Gauss's law, a spherical distribution of charge creates an electric field outside the sphere as if all the charge were concentrated as a point charge at the center of the sphere. The electric potential due to a point charge is proportional to the charge \(Q\) and inversely proportional to the distance from that charge. Twice the radius reduces the electric potential at the surface of \(A\) by a factor of one-half. The charge of sphere \(A\) must be twice that of \(B\) so that the electric potentials will be the same for both spheres. Hence, the answer is (a).
MULTIPLE-CHOICE PROBLEMS

1. What is the potential difference between point A and point B if 10.0 J of work is required to move a charge of 4.00 C from one point to the other? (a) 0.400 V (b) 2.50 V (c) 14.0 V (d) 40.0 V

2. How much work would have to be done by a nonconservative force in moving an electron through a positive potential difference of 2.0×10^{-10} V? Assume the electron is at rest both initially and at its final position. (a) 3.2×10^{-13} J (b) 8.0×10^{-12} J (c) 1.25×10^{-11} J (d) 3.2×10^{-12} J

3. Two electrically neutral materials are rubbed together. One acquires a net positive charge. The other must have (a) lost electrons. (b) gained electrons. (c) lost protons. (d) gained protons.

4. What is the magnitude of the charge on a body that has an excess of 20 electrons? (a) 3.2×10^{-18} C (b) 1.6×10^{-18} C (c) 3.2×10^{-19} C (d) 2.4×10^{-19} C

Quantitative Solution

Write the equation for the electric potential of a point charge q:

$$V = \frac{kQ}{r} \quad (1)$$

Make a ratio of Equation (1) for charge A and charge B, respectively:

$$\frac{V_A}{V_B} = \frac{\frac{kQ_A}{r_A}}{\frac{kQ_B}{r_B}} = \frac{Q_A r_B}{Q_B r_A} \quad (2)$$

Substitute $V_A = V_B$ and $r_A = 2r_B$ into Equation (2) and solve for Q_A, again obtaining [answer (a)]:

$$1 = \frac{Q_A r_B}{Q_B (2r_B)} \quad \Rightarrow \quad Q_A = \frac{2Q_B}{2} \quad [\text{answer (a)}]$$

EXAMPLE 3

How much work is required to bring a proton with charge 1.6×10^{-19} C and an alpha particle with charge 3.2×10^{-19} C from rest at a great distance (effectively infinity) to rest positions a distance of 1.00×10^{-15} m away from each other?

Solution

Use the work–energy theorem:

$$W = \Delta KE + \Delta PE = KE_f - KE_i + PE_f - PE_i$$

The velocities are zero both initially and finally, so the kinetic energies are zero. Substitute values into the potential energy and find the necessary work to assemble the configuration:

$$W = 0 - 0 + \frac{kq_A q_B}{r} - 0$$

$$= \frac{(9.00 \times 10^9 \text{ kg} \cdot \text{m}^2/\text{C}^2 \cdot \text{s}^2)(1.60 \times 10^{-19} \text{ C})(3.20 \times 10^{-19} \text{ C})}{1.00 \times 10^{-15} \text{ m}}$$

$$= 4.61 \times 10^{-13} \text{ J}$$

EXAMPLE 4

A fixed, constant electric field E accelerates a proton from rest through a displacement Δs. A fully ionized lithium atom with three times the charge of the proton accelerates through the same constant electric field and displacement. Which of the following is true of the kinetic energies of the particles? (a) The kinetic energies of the two particles are the same. (b) The kinetic energy of the proton is larger. (c) The kinetic energy of the lithium ion is larger.

Solution

The work done by the electric field on a particle of charge q is given by $W = F \Delta s = qE \Delta s$. The electric field E and displacement Δs are the same for both particles, so the field does three times as much work on the lithium ion. The work–energy theorem for this physical context is $W = \Delta KE$, so the lithium ion’s kinetic energy is three times that of the proton and the answer is (c).

MULTIPLE-CHOICE PROBLEMS

1. What is the potential difference between point A and point B if 10.0 J of work is required to move a charge of 4.00 C from one point to the other? (a) 0.400 V (b) 2.50 V (c) 14.0 V (d) 40.0 V

2. How much work would have to be done by a nonconservative force in moving an electron through a positive potential difference of 2.0×10^8 V? Assume the electron is at rest both initially and at its final position. (a) 3.2×10^{-13} J (b) -8.0×10^{-12} J (c) 1.25×10^{-11} J (d) -3.2×10^{-12} J

3. Two electrically neutral materials are rubbed together. One acquires a net positive charge. The other must have (a) lost electrons. (b) gained electrons. (c) lost protons. (d) gained protons.

4. What is the magnitude of the charge on a body that has an excess of 20 electrons? (a) 3.2×10^{-18} C (b) 1.6×10^{-18} C (c) 3.2×10^{-19} C (d) 2.4×10^{-19} C
5. Two point charges, A and B, with charges of \(2.00 \times 10^{-4} \text{C}\) and \(-4.00 \times 10^{-4} \text{C}\), respectively, are separated by a distance of 6.00 m. What is the magnitude of the electrostatic force exerted on charge A? (a) 2.20 \times 10^{-2} \text{N}\) (b) 1.20 \text{N}\) (c) 20.0 \text{N}\) (d) 36.0 \text{N}\)

6. Two point charges, A and B, are separated by 10.0 m. If the distance between them is reduced to 5.00 m, the force exerted on each (a) decreases to one-half its original value, (b) increases to twice its original value, (c) decreases to one-quarter of its original value, (d) increases to four times its original value.

7. Sphere A with a net charge of \(+3.0 \times 10^{-3} \text{C}\) is touched to a second sphere B, which has a net charge of \(-9.0 \times 10^{-3} \text{C}\). The two spheres, which are exactly the same size and composition, are then separated. The net charge on sphere A is now (a) \(+3.0 \times 10^{-3} \text{C}\) (b) \(-3.0 \times 10^{-3} \text{C}\) (c) \(-6.0 \times 10^{-3} \text{C}\) (d) \(-9.0 \times 10^{-3} \text{C}\)

8. If the charge on a particle in an electric field is reduced to half its original value, the force exerted on the particle by the field is (a) doubled. (b) halved. (c) quadrupled. (d) unchanged.

9. In the figure below, points A, B, and C are at various distances from a given point charge.

Which statement is most accurate? The electric field strength is (a) greatest at point A. (b) greatest at point B. (c) greatest at point C. (d) the same at all three points.

10. The electrostatic force between two point charges is \(F\). If the charge of one point charge is doubled and that of the other charge is quadrupled, the force becomes which of the following? (a) \(F/2\) (b) \(2F\) (c) \(4F\) (d) \(8F\)

Answers

1. (b). Potential difference between two points in an electric field is the work per unit charge required to move a charge between the two points: \(\Delta V = \frac{W}{q} = \frac{10.0 \text{J}}{4.00 \text{C}} = 2.50 \text{V}\)

2. (d). If the only effect on the particle is a change of position, negative work must be done; otherwise, negative charges gain kinetic energy on moving through a positive potential difference.

\[
W = \Delta KE + q \Delta V = 0 + (-1.6 \times 10^{-19} \text{C})(2.0 \times 10^5 \text{V})
\]

\[
= -3.2 \times 10^{-13} \text{J}
\]

3. (b). Protons are fixed in the nucleus and cannot be transferred by friction. Electrons can be transferred by friction. Therefore, net charges are due to the transfer of electrons between two bodies. Conservation of charge means that if there is a net positive charge, one body must have lost electrons and the other body must have gained the electrons.

4. (a). The elementary charge \(e = 1.6 \times 10^{-19} \text{C}\), so the total charge of 20 electrons has a magnitude of \(20(1.6 \times 10^{-19} \text{C}) = 3.2 \times 10^{-18} \text{C}\).

5. (c). Apply Coulomb’s law, \(F = \frac{kq_1q_2}{r^2}\);

\[
F = \frac{(9.00 \times 10^9 \text{N m}^2/\text{C}^2)(2.00 \times 10^{-4} \text{C})(-4.00 \times 10^{-4} \text{C})}{(6.00 \text{m})^2} = -20.0 \text{N}
\]

so the magnitude of the force is 20.0 N.

6. (d). From Coulomb’s law, \(F = \frac{kq_1q_2}{r^2}\) and force is inversely proportional to the square of the distance separating the points. Decreasing the distance to half its original value means that the force quadruples.

7. (b). This problem is an application of the law of conservation of charge. The initial net charge is \((+3.0 \times 10^{-3} \text{C}) + (-9.0 \times 10^{-3} \text{C}) = -6.0 \times 10^{-3} \text{C}\). The same net charge must exist after contact. The \(-6.0 \times 10^{-3} \text{C}\) must be evenly distributed between the two spheres because physically they are identical.
8. (b). The electric field strength is the ratio of the force exerted on a unit charge in the field: \(E = \frac{F}{q} \). Therefore, \(F \) and \(q \) are directly proportional and linearly related.

9. (c). From Coulomb’s law, force varies inversely with the square of the distance from the charge. The strength of the electric field at a point is the ratio of this force to the charge:

\[E = \frac{kq}{r^2} \]

Therefore, \(E \) and \(r^2 \) are inversely proportional. The smaller the value of \(r \), the smaller the value of \(r^2 \) and the greater the value of \(E \).

10. (d). From Coulomb’s law,

\[F = k\left(\frac{q_1q_2}{r^2}\right) \]

force is directly proportional to the product of the charges. If \(q_1 \) is doubled and \(q_2 \) is quadrupled, the product of the charges increases eightfold and so does the force.

CIRCUITS

EXAMPLE 1

Three resistors are connected together. How should they be combined so as to minimize the resistance of the combination? (a) They should be connected in series. (b) The two larger resistors should be put in parallel, and the remaining resistor put in series with the first two. (c) All three resistors should be placed in parallel.

Conceptual Solution

Resistance is proportional to length and inversely proportional to the cross-sectional area of a resistor. Putting all three resistors in parallel effectively minimizes the overall length of the combined resistor and maximizes the effective cross-sectional area, so (c) is the correct answer.

Quantitative Solution

Let \(R_1 \) and \(R_2 \) be the two larger resistors. Calculate the resistance \(R_3 \) of the three resistors in series:

\[R_3 = R_1 + R_2 + R_3 \]

Calculate the resistance \(R_{combo} \) of a parallel pair in series with a third resistor:

\[R_{combo} = \left(\frac{1}{R_1} + \frac{1}{R_2} \right)^{-1} + R_3 = \frac{R_1R_2}{R_1 + R_2} + R_3 \]

Divide the numerator and denominator of the parallel resistor term by \(R_1 \):

\[R_{combo} = \frac{R_2}{1 + \frac{R_2}{R_1}} + R_3 \]

Calculate the resistance \(R_p \) of three resistors in parallel:

\[R_p = \left(\frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3} \right)^{-1} = \frac{R_1R_2R_3}{R_1R_2 + R_2R_3 + R_1R_3} \]

Divide the numerator and denominator by \(R_1R_2 \):

\[R_p = \frac{R_3}{1 + \frac{R_3}{R_1} + \frac{R_3}{R_2}} \]

Notice in Equation (2) that \(R_{combo} \) is less than \(R_2 + R_3 \) because the denominator of the first term is greater than 1, which in turn means that \(R_{combo} \) is less than \(R_1 + R_2 + R_3 \). Finally, notice in Equation (3) that \(R_p \) is less than \(R_3 \), again because of a denominator larger than 1, and so \(R_p \) is less than \(R_{combo} \). The purely parallel combination therefore yields the least resistance, and the answer is (c).

EXAMPLE 2

Two resistors are to dissipate as much energy as possible when a fixed voltage difference is placed across them. Should they be installed in parallel or in series?

Conceptual Solution

The power dissipated by a resistor is proportional to the voltage difference squared and inversely proportional to the resistance. The smallest possible resistance will therefore result in the largest power output. Consequently, the two resistors should be placed in parallel, which results in the lowest combined resistance.
EXAMPLE 3

A certain off-the-shelf resistor of resistivity ρ has resistance R. Suppose it is commercially desirable to design a new resistor that has one-third the length and one-fourth the cross-sectional area of the existing resistor, but the same overall resistance. What should the resistivity ρ_n of the new resistor be, in terms of the resistivity ρ of the original device?

Solution

Write an expression for the resistance R_n of the new resistor in terms of its resistivity, cross-sectional area A, and its length L:

$$R_n = \frac{\rho_n L_n}{A_n}$$

Divide Equation (1) by the same expression for the original resistor:

$$\frac{R_n}{R} = \frac{\frac{\rho_n L_n}{A_n}}{\frac{\rho L}{A}} = \frac{\rho_n L_n A}{\rho L A}$$

Substitute $A_n = A/4$, $R_n = R$, and $L_n = L/3$ into Equation (2):

$$1 = \frac{\rho_n (L/3) A}{\rho L (A/4)} = \frac{4 \rho_n}{3 \rho}$$

Solve Equation (3) for the new resistivity, ρ_n:

$$\rho_n = \frac{3}{4} \rho$$

MULTIPLE-CHOICE PROBLEMS

1. Three resistors of resistance 1.0 Ω, 2.0 Ω, and 3.0 Ω, respectively, are in series. If a potential difference of 12 V is applied across the combination, what is the resulting current in the circuit? (a) 0.50 A (b) 2.0 A (c) 6.0 A (d) 12 A

2. If the length of a conducting wire with resistance R is doubled, what will the resistance of the longer wire be? (a) $R/4$ (b) $R/2$ (c) $2R$ (d) $4R$

3. If a 2.0-Ω resistor and a 6.0 Ω resistor are connected in parallel, what is their combined resistance? (a) 1.5 Ω (b) 4.0 Ω (c) 8.0 Ω (d) 12 Ω

4. If all the components of an electric circuit are connected in series, which of the following physical quantities must be the same at all points in the circuit? (a) voltage (b) current (c) resistance (d) power

5. The current in a conductor is 3.0 A when it is connected across a 6.0-V battery. How much power is delivered to the conductor? (a) 0.50 W (b) 2.0 W (c) 9.0 W (d) 18 W

6. A 12-Ω resistor is connected across a 6.0-V dc source. How much energy is delivered to the resistor in half an hour? (a) 1.5×10^{-3} kWh (b) 2.0×10^{-3} kWh (c) 3.0×10^{-3} kWh (d) 12×10^{-3} kWh

7. A battery with an emf of 6.20 V carries a current of 20.0 A. If the internal resistance of the battery is 0.01 Ω, what is the terminal voltage? (a) 1.24 V (b) 6.00 V (c) 6.40 V (d) 31.0 V

8. Devices A and B are connected in parallel to a battery. If the resistance R_A of device A is four times as great as the resistance R_B of device B, what is true of I_A and I_B, the currents in devices A and B? (a) $I_A = 2I_B$ (b) $I_A = I_B/2$ (c) $I_A = 4I_B$ (d) $I_A = I_B/4$

9. A wire has resistance R. What is the resistence of a wire of the same substance that has the same length but twice the cross-sectional area? (a) $2R$ (b) $R/2$ (c) $4R$ (d) $R/4$

10. What must be the reading in the ammeter A for the circuit section shown?

(a) 0 A (b) 6.0 A (c) 8.0 A (d) 12 A
11. What is the current in a wire if 5.00 C of charge passes through the wire in 0.500 s?
(a) 1.00 A (b) 2.50 A (c) 5.00 A (d) 10.0 A

Answers
1. (b). The three resistors are connected in series, so \(R_{\text{tot}} = 6.0 \) \(\Omega \). From Ohm’s law, \(V_{\text{tot}}/R_{\text{tot}} = I_{\text{tot}} = 12 \text{ V}/6.0 \text{ } \Omega = 2.0 \text{ A} \).
2. (c). Resistance is directly proportional to length and inversely proportional to the cross-sectional area of the conductor. If the area remains constant, doubling the length will double the resistance.
3. (a). The resistors are in parallel: \(R_{\text{eq}} = R_1 R_2/(R_1 + R_2) = 12 \text{ } \Omega/8.0 \text{ } \Omega = 1.5 \text{ } \Omega \).
In fact, the equivalent resistance of parallel resistors is always less than the smallest resistance in the combination, which means that answers (b), (c), and (d) could have been eliminated immediately.
4. (b). A series circuit has only one path for current, so it must be the same at all points in the circuit.
5. (d). \(\Phi = I \Delta V = 18 \text{ W} \).
6. (a). The energy used by a load is the product of the power it uses per unit time and the length of time it is operated:
\[
E = W = \Phi \Delta t = (\Delta V)^2 \Delta t/R = (6.0 \text{ V})^2 (0.50 \text{ h})/12 \text{ } \Omega
= 1.5 \text{ Wh} = 1.5 \times 10^{-3} \text{ kWh}
\]
Note the conversion from watt-hours to kilowatt-hours.
7. (b). The product \(Ir \) is the potential drop occurring within the battery: \(Ir = (20.0 \text{ A})(0.01 \text{ } \Omega) = 0.20 \text{ V} \). Because the battery is producing current and not being recharged, the terminal voltage will be less than the emf by the internal potential drop, which eliminates choices (c) and (d) immediately. So, \(\Delta V = \mathcal{E} - \Phi = 6.20 \text{ V} - 0.20 \text{ V} = 6.00 \text{ V} \).
8. (d). More current will follow the circuit branch with less resistance. Use Kirchoff’s loop law around the loop consisting of the two parallel resistances and \(R_A = 4R_B \):
\[
\sum \Delta V = 0 \quad \rightarrow \quad I_AR_A - I_BR_B = 0 \quad \rightarrow \quad \frac{I_A}{I_B} = \frac{R_B}{R_A} = \frac{R_B}{4R_B} = \frac{1}{4}.
\]
Hence, one-fourth as much current goes through resistor A.
9. (b). Resistance is inversely proportional to the area; doubling the area reduces the resistance by half.
10. (d). Kirchoff’s current rule says that the current entering a junction must equal the current leaving the junction. The current entering junction 1 is 6.0 A, which subsequently enters junction 2 from above, so the total current entering junction 2 is 12 A and the current then leaving junction 2 and entering the ammeter is 12 A.
11. (d). By definition, the current is the amount of charge that passes a point in the circuit in a given time: \(I = Q/\Delta t = 5.00 \text{ C}/0.500 \text{ s} = 10.0 \text{ A} \).

ATOMS

EXAMPLE 1

Tritium is an isotope of hydrogen with a half-life of \(t_{1/2} = 12.33 \text{ yr} \). How long would it take \(1.60 \times 10^2 \text{ g} \) of tritium to decay to 20.0 g? (a) 6.17 yr (b) 26.7 yr (c) 37.0 yr (d) 74.0 yr

Solution

Calculate the number \(n \) of half-lives required. The equation can be solved by inspection (logarithms are ordinarily required):
\[
\left(\frac{1}{2} \right)^n = \frac{20.0 \text{ g}}{1.60 \times 10^2 \text{ g}} = \frac{1}{8.00} \quad \rightarrow \quad n = 3
\]
MULTIPLE-CHOICE PROBLEMS

1. In the nuclear reaction below, what particle does X represent?

\[\frac{13}{6} \text{Na} \rightarrow \frac{14}{7} \text{Ne} + X + \nu_e \]

(a) an \(\alpha \)-particle (b) a \(\beta \)-particle (c) a positron (d) a \(\gamma \)-photon

2. What is the atomic number of the daughter nuclide in the following reaction?

\[\frac{3}{1} \text{H} \rightarrow \frac{2}{1} \text{He} + \frac{1}{0} \text{H} \]

(a) 14 (b) 16 (c) 30 (d) 31

3. If \(^{14} \text{N} \) has a half-life of about 10.0 min, how long will it take for 20 g of the isotope to decay to 2.5 g?

(a) 5 min (b) 10 min (c) 20 min (d) 30 min

4. A certain radionuclide decays by emitting an \(\alpha \)-particle. What is the difference between the atomic numbers of the parent and the daughter nuclides?

(a) 1 (b) 2 (c) 4 (d) 6

5. What is the difference in mass number between the parent and daughter nuclides after a \(\beta \)-decay process?

(a) \(^{1} \) (b) \(^{0} \) (c) \(^{1} \) (d) \(^{2} \)

6. A nitrogen atom has 7 protons and 6 neutrons. What is its mass number?

(a) 1 (b) 6 (c) 7 (d) 13

7. Which one of the following is an isotope of \(^{182} \text{Xe} \)?

(a) \(^{182} \text{Xe} \) (b) \(^{182} \text{Xe} \) (c) \(^{180} \text{Xe} \) (d) \(^{182} \text{Xe} \)

8. In the following nuclear equation, what is \(X \)?

\[^{14} \text{N} + ^{4} \text{He} \rightarrow ^{17} \text{O} + X \]

(a) a proton (b) a positron (c) a \(\beta \)-particle (d) an \(\alpha \)-particle

9. What is the number of neutrons in \(^{14} \text{N} \) ?

(a) 54 (b) 86 (c) 140 (d) 194

Multiply the number of half-lives by the length of the half-life to find the necessary time interval in question, verifying that the answer is (c):

\[\Delta t = nt_{1/2} = 3 \times 12.33 \text{ yr} = 37.0 \text{ yr} \]

EXAMPLE 2

What is the mass number of a carbon atom having 6 protons and 8 neutrons? (a) 6 (b) 8 (c) 14

Solution

Don’t confuse mass number with the atomic number, \(Z \), which is the number of protons in the nucleus. The mass number \(A \) is the number of nucleons in the nucleus. To calculate the mass number, just add the number of protons and neutrons together: \(6 + 8 = 14 \), which is answer (c).

EXAMPLE 3

Which of the following particles is given by \(A \) \(ZX \) in the following reaction? (a) \(^{3} \text{Li} \) (b) \(^{7} \text{Be} \) (c) \(^{14} \text{N} \) (d) \(^{10} \text{C} \)

\[\frac{1}{1} \text{H} \rightarrow \frac{2}{2} \text{He} + \frac{1}{0} \text{H} \]

Solution

Equate the sum of the mass numbers on both sides of the reaction:

\[1 + A = 4 + 4 = 8 \rightarrow A = 7 \]

By charge conservation, the number of protons must also be the same on both sides:

\[1 + Z = 2 + 2 = 4 \rightarrow Z = 3 \]

Based on these two results, the correct answer is (a), \(^{3} \text{Li} \).
10. Radon-222 has a half-life of about 4 days. If a sample of 222Rn gas in a container is initially doubled, the half-life will be (a) halved. (b) doubled. (c) quartered. (d) unchanged.

11. A radionuclide decays completely. In the reaction flask, the only gas that is found is helium, which was not present when the flask was sealed. The decay process was probably (a) β-decay. (b) α-decay. (c) γ-decay. (d) positron emission.

12. What is the half-life of a radionuclide if 1/16 of its initial mass is present after 2 h? (a) 15 min (b) 30 min (c) 45 min (d) 60 min

13. The half-life of 23Na is 2.6 yr. If X grams of this sodium isotope are initially present, how much is left after 13 yr? (a) $X/32$ (b) $X/13$ (c) $X/8$ (d) $X/5$

Answers

1. (c). Notice that the mass number is unchanged, whereas the atomic number has been reduced by 1, which implies that a proton has changed into a neutron. The emitting particle must have a charge equal to a proton but an atomic mass number of zero. The positron is the only choice that has both these attributes.

3. (d). First, find the number of half-lives and then multiply by the value of the half-life to get the elapsed time:

$$\frac{2.5 \text{ g}}{20 \text{ g}} = \frac{1}{8} \left(\frac{1}{2}\right)^n \rightarrow n = 3$$

$$\Delta t = n \frac{t}{2} = 3(10 \text{ min}) = 30 \text{ min}$$

4. (b). An α-particle is a 4_2He helium nucleus. In α-decay, two protons are effectively removed.

5. (b). β-decay emits a high-energy electron, ^0_0e. In the process, a neutron decays into a proton plus the emitted electron and an antineutrino. The number of nucleons remains unchanged, with the proton replacing the neutron in the sum of nucleons.

6. (d). The mass number is the sum of neutrons and protons: $6 + 7 = 13$ nucleons.

7. (c). Isotopes of an element have the same atomic number but different numbers of neutrons, so their mass numbers are different. The atomic number of X is 63.

8. (a). The mass numbers must be the same on both sides of the reaction. If A is the mass number of X, then $14 + 4 = 17 + A$, so $A = 1$. As for atomic number, $7 + 2 = 8 + Z$. Therefore, $Z = 1$, which describes a proton, ^1_1H.

9. (b). The number of neutrons is the mass number minus the atomic number: $A - Z = 140 - 54 = 86$.

10. (d). The half-life is a constant that depends on the identity of the nuclide, not on the amount of nuclide present.

11. (b). The α-particle is a helium nucleus. Each α-particle then acquires two electrons to form a neutral helium atom.

12. (b). In every half-life, the mass decreases to half its previous value: $1/16 = 1/2^4$. It takes four half-lives to decay down to $1/16$ the original mass. Each must be 30 min long because the entire process takes two hours.

13. (a). In 13 yr, there will be 5 half-lives of 2.6 yr each ($5 \times 2.6 = 13$). The isotope decreases to $1/2^5 = 1/32$ of its original amount.
ANSWERS TO QUICK QUIZZES, EXAMPLE QUESTIONS, ODD-NUMBERED MULTIPLE CHOICE QUESTIONS, CONCEPTUAL QUESTIONS, AND PROBLEMS

CHAPTER 1
EXAMPLE QUESTIONS
1. False 2. True 3. 45.98 m²
4. \(28.0 \text{ m/s} = \sqrt{\frac{28.0 \text{ m}}{1.00 \text{ m/s}}} = 62.7 \text{ mi/h}\)
The answer is slightly different because the different conversion factors were rounded, leading to small, unpredictable differences in the final answers.
5. \(\frac{60.0 \text{ min}}{1.00 \text{ h}}\)
6. An answer of \(10^{12}\) cells is within an order of magnitude of the given answer, corresponding to slightly different choices in the volume estimations. Consequently, \(10^{12}\) cells is also a reasonable estimate. An estimate of \(10^6\) cells would be suspect because (working backwards) it would imply cells that could be seen with the naked eye!
7. \(\sim 4 \times 10^{11}\)
8. \(\sim 10^{12}\)
9. Working backwards, \(r = 4.998\), which further rounds to 5.00, whereas \(\theta = 37.0°\), which further rounds to 37.0°. The slight differences are caused by rounding.
10. Yes. The secant function, together with the distance to the building, gives the length of the hypotenuse of the triangle.
11. 549 km

MULTIPLE-CHOICE QUESTIONS
1. (a) 2. (d) 3. (c) 4. (d) 5. (a) 6. (d)

CONCEPTUAL QUESTIONS
1. (a) \(\sim 0.1 \text{ m}\) (b) \(\sim 1 \text{ m}\) (c) Between 10 m and 100 m
 (d) \(\sim 10 \text{ m}\) (e) \(\sim 100 \text{ m}\)
2. \(\sim 10^8 \text{ s}\)
3. \(\sim 10^6 \text{ beats}\) (b) \(\sim 10^9 \text{ beats}\)
4. The length of a hand varies from person to person, so it isn’t a useful standard of length.
5. A dimensionally correct equation isn’t necessarily true. For example, the equation \(2 \text{ dogs} = 5 \text{ dogs}\) is dimensionally correct, but isn’t true. However, if an equation is not dimensionally correct, it cannot be correct.

An estimate, even if imprecise by an order of magnitude, greatly reduces the range of plausible answers to a given question. The estimate gives guidance as to what corrective measures might be feasible. For example, if you estimate that 40 000 people in a country will die unless they have food assistance and if this number is reliable within an order of magnitude, you know that at most 400 000 people will need provisions.

PROBLEMS
3. \(A_{	ext{cylinder}} = \pi R^2, A_{	ext{rectangular plate}} = \text{length} \times \text{width}\)
5. \(\text{m}^2/\text{kg} \cdot \text{s}^2\)
7. 228.8 cm

CHAPTER 2
QUICK QUIZZES
1. (a) 200 yd (b) 0 (c) 0 (d) 8.00 yd/s
2. (a) False (b) True (c) True
3. The velocity vs. time graph (a) has a constant slope, indicating a constant acceleration, which is represented by the acceleration vs. time graph (e).

Graph (b) represents an object with increasing speed, but as time progresses, the lines drawn tangent to the curve have increasing slopes. Since the acceleration is equal to the slope of the tangent line, the acceleration must be increasing, and the acceleration vs. time graph that best indicates this behavior is (d).
Graph (c) depicts an object which first has a velocity that increases at a constant rate, which means that the object’s acceleration is constant. The velocity then stops changing, which means that the acceleration of the object is zero. This behavior is best matched by graph (f).

EXAMPLE QUESTIONS

1. No. The object may not be traveling in a straight line. If the initial and final positions are in the same place, for example, the displacement is zero regardless of the total distance traveled during the given time.

2. No. A vertical line in a position vs. time graph would mean that an object had somehow traversed all points along the given path instantaneously, which is physically impossible.

3. No. A vertical tangent line would correspond to an infinite acceleration, which is physically impossible.

4. 35.0 m/s

5. The graphical solution is the intersection of a straight line and a parabola.

6. The coasting displacement would double to 143 m, with a parabola.

7. The acceleration is zero wherever the tangent to the velocity versus time graph is horizontal. Visually, that occurs from t = 50 s to 0 s and then again at approximately 180 s, 320 s, and 330 s.

8. The upward jump would slightly increase the ball’s initial velocity, slightly increasing the maximum height.

9. 6

10. The engine should be fired again at 235 m.

MULTIPLE-CHOICE QUESTIONS

1. (d)

2. (b)

3. (b), (c)

4. (b)

5. (d)

6. (b)

7. (b)

8. (c)

9. (a) and (f)

CONCEPTUAL QUESTIONS

1. Yes. If the velocity of the particle is nonzero, the particle is in motion. If the acceleration is zero, the velocity of the particle is unchanging or is constant.

3. Yes. If this occurs, the acceleration of the car is opposite to the direction of motion, and the car will be slowing down.

5. The average velocity of an object is defined as the displacement of the object divided by the time interval during which the displacement occurred. If the average velocity is zero, the displacement must also be zero.

7. Yes. Yes.

9. (a) The car is moving to the east and speeding up.
 (b) The car is moving to the east but slowing down.
 (c) The car is moving to the west at constant speed.
 (d) The car is moving to the west but slowing down.
 (e) The car is moving to the west and speeding up.
 (f) The car is moving to the west at constant speed.
 (g) The car starts from rest and begins to speed up toward the east.
 (h) The car starts from rest and begins to speed up toward the west.

PROBLEMS

1. \(t = 0.02 \) s
2. (a) 32.9 km/h (b) 90.0 km
3. (a) Boat A wins by 60 km (b) 0
4. (a) 180 km (b) 63.4 km/h
5. (a) 4.0 m/s (b) -4.0 m/s (c) 0 (d) 2.0 m/s
6. 1.32 h
7. 2.80 h, 218 km
8. 274 km/h
9. (a) 5.00 m/s (b) -2.50 m/s (c) 0 (d) 5.00 m/s
10. 0.18 mi west of the flagpole
11. (a) 52.4 ft/s, 55.0 ft/s, 55.5 ft/s, 56.9 ft/s, 57.4 ft/s (b) 0.481 ft/s²
12. 3.7 s
13. (a) 70.0 mi/h \cdot s = 31.3 m/s² = 3.19g
 (b) 321 ft = 97.8 m
14. (a) 4.29 m/s² west (b) 114 m
15. (a) 6.61 m/s (b) -0.448 m/s²
16. (a) 2.32 m/s² (b) 14.4 s
17. (a) 8.14 m/s² (b) 1.23 s (c) Yes. For uniform acceleration, the velocity is a linear function of time.
18. There will be a collision only if the car and the van meet at the same place at some time. Writing expressions for the position versus time for each vehicle and equating the two gives a quadratic equation in \(t \) whose solution is either 11.4 s or 15.6 s. The first solution, 11.4 s, is the time of the collision. The collision occurs when the van is 212 m from the original position of Sue’s car.
19. 200 m
20. (a) 1.5 m/s (b) 32 m
21. 958 m
22. (a) 8.2 s (b) 1.3 × 10⁶ m
23. (a) 31.9 m (b) 2.55 s (c) 2.55 s (d) -25.0 m/s
24. 58.2 m
25. 49. Hardwood floor: \(a = 2.0 \times 10^3 \text{ m/s}², \Delta t = 1.4 \text{ ms} \); carpeted floor: \(a = 3.9 \times 10^3 \text{ m/s}², \Delta t = 7.1 \text{ ms} \)
26. (a) It is a freely falling object, so its acceleration is -9.80 m/s² (downward) while in flight. (b) 0
 (c) 9.80 m/s (d) 4.90 m/s
27. (a) It continues upward, slowing under the influence of gravity until it reaches a maximum height, and then it falls to Earth. (b) 308 m (c) 8.51 s (d) 16.4 s
28. 70.0 m/h
29. (a) 31.9 m (b) 2.55 s (c) 2.55 s (d) -25.0 m/s
30. 58.2 m
31. (a) 8.14 m/s² (b) 114 m
32. (a) 8.14 m/s² (b) 1.23 s (c) Yes. For uniform acceleration, the velocity is a linear function of time.
33. There will be a collision only if the car and the van meet at the same place at some time. Writing expressions for the position versus time for each vehicle and equating the two gives a quadratic equation in \(t \) whose solution is either 11.4 s or 15.6 s. The first solution, 11.4 s, is the time of the collision. The collision occurs when the van is 212 m from the original position of Sue’s car.
34. 200 m
35. (a) 1.5 m/s (b) 32 m
36. 958 m
37. (a) 8.2 s (b) 1.3 × 10⁶ m
38. (a) 31.9 m (b) 2.55 s (c) 2.55 s (d) -25.0 m/s
39. 58.2 m
40. (a) 8.14 m/s² (b) 1.23 s (c) Yes. For uniform acceleration, the velocity is a linear function of time.
41. There will be a collision only if the car and the van meet at the same place at some time. Writing expressions for the position versus time for each vehicle and equating the two gives a quadratic equation in \(t \) whose solution is either 11.4 s or 15.6 s. The first solution, 11.4 s, is the time of the collision. The collision occurs when the van is 212 m from the original position of Sue’s car.
42. 200 m
43. (a) 1.5 m/s (b) 32 m
44. 958 m
45. (a) 31.9 m (b) 2.55 s (c) 2.55 s (d) -25.0 m/s
46. 58.2 m
47. 49. Hardwood floor: \(a = 2.0 \times 10^3 \text{ m/s}², \Delta t = 1.4 \text{ ms} \); carpeted floor: \(a = 3.9 \times 10^3 \text{ m/s}², \Delta t = 7.1 \text{ ms} \)
48. (a) It is a freely falling object, so its acceleration is -9.80 m/s² (downward) while in flight. (b) 0
 (c) 9.80 m/s (d) 4.90 m/s
49. (a) It continues upward, slowing under the influence of gravity until it reaches a maximum height, and then it falls to Earth. (b) 308 m (c) 8.51 s (d) 16.4 s
50. 70.0 m/h
51. (a) -3.50 × 10³ m/s² (b) 2.86 × 10⁻⁴ s
52. (a) 10.0 m/s upward (b) 4.68 m/s downward
53. 15.0 s
54. (a) 8.14 m/s² (b) 1.23 s (c) Yes. For uniform acceleration, the velocity is a linear function of time.
55. 15.0 s
56. (a) -3.50 × 10³ m/s² (b) 2.86 × 10⁻⁴ s
57. (a) 10.0 m/s upward (b) 4.68 m/s downward
58. 15.0 s
59. (a) 3.00 m/s (b) -24.5 m/s, -24.5 m/s (c) 23.5 m
60. 1.21 s after the first ball is dropped (b) 7.2 m below the window
61. No. In the time interval equal to David’s reaction time, the $1 bill (a freely falling object) falls a distance of \(\sqrt{\frac{2}{g}} \approx 20 \text{ cm} \), which is about twice the distance between the top of the bill and its center.
62. (a) \(h_1 = 5.0 \text{ s}, h_2 = 85 \text{ s} \) (b) 200 ft/s (c) 18 500 ft from starting point (d) 10 s after starting to slow down (total trip time = 100 s)
63. (a) 5.5 × 10³ ft (b) 3.7 × 10² ft/s (c) The plane would travel only 0.002 ft in the time it takes the light from the bolt to reach the eye.
64. (a) 7.82 m (b) 0.782 s
CHAPTER 3

QUICK QUIZZES

1. (c)

2. Vector \(x \)-component \(y \)-component

\[\vec{A} \quad - \quad + \]

\[\vec{B} \quad + \quad - \]

\[\vec{A} + \vec{B} \quad - \quad - \]

3. (b)
4. (a)
5. (c)
6. (b)

EXAMPLE QUESTIONS

1. If the vectors point in the same direction, the sum of the magnitudes of the two vectors equals the magnitude of the resultant vector.
2. Because \(B_x, B_y \), and \(B \) are all known, any of the trigonometric functions can be used to find the angle.
3. The hikers’ displacement vectors are the same.
4. The initial and final velocity vectors are equal in magnitude because the \(x \)-component doesn’t change and the \(y \)-component changes only by a sign.
5. To the pilot, the package appears to drop straight down because the \(x \)-components of velocity for the plane and package are the same.
6. False
7. 45°
8. False
9. False
10. To an observer on the ground, the ball drops straight down. The angle decreases with increasing speed.
11. The angle increases with increasing speed.
12. The angle is different because relative velocity depends on both the magnitude and the direction of the velocity vectors. In Example 3.12, the boat’s velocity vector forms the hypotenuse of a right triangle, whereas in Example 3.11, that vector forms a leg of a right triangle.

MULTIPLE CHOICE QUESTIONS

1. (c)
2. (a)
3. (a)
4. (b), (d)
5. (b)
6. (b)
7. (a), (d)

CONCEPTUAL QUESTIONS

1. The magnitudes add when \(\vec{A} \) and \(\vec{B} \) are in the same direction. The resultant will be zero when the two vectors are equal in magnitude and opposite in direction.
2. (a) At the top of the projectile’s flight, its velocity is horizontal and its acceleration is downward. This is the only point at which the velocity and acceleration vectors are perpendicular. (b) If the projectile is thrown straight up or down, then the velocity and acceleration will be parallel throughout the motion. For any other kind of projectile motion, the velocity and acceleration vectors are never parallel.
3. (a) The acceleration is zero, since both the magnitude and direction of the velocity remain constant. (b) The particle has an acceleration because the direction of \(\vec{V} \) changes.
4. The spacecraft will follow a parabolic path equivalent to that of a projectile thrown off a cliff with a horizontal velocity. As regards the projectile, gravity provides an acceleration that is always perpendicular to the initial velocity, resulting in a parabolic path. As regards the spacecraft, the initial velocity plays the role of the horizontal velocity of the projectile, and the leaking gas plays the role that gravity plays in the case of the projectile. If the orientation of the spacecraft were to change in response to the gas leak (which is by far the more likely result), then the acceleration would change direction and the motion could become very complicated.
5. For angles \(\theta < 45° \), the projectile thrown at angle \(\theta \) will be in the air for a shorter interval. For the smaller angle, the vertical component of the initial velocity is smaller than that for the larger angle. Thus, the projectile thrown at the smaller angle will not go as high into the air and will spend less time in the air before landing.

PROBLEMS

1. 43 units in the negative \(y \)-direction
2. (a) Approximately 5.0 units at \(-53°\) (b) Approximately 5.0 units at \(+53°\)
3. Approximately 421 ft at \(3°\) below the horizontal
4. Approximately 310 km at \(57°\) S of W
5. Approximately 15 m at \(58°\) S of E
6. 8.07 m at \(42.0°\) S of E
7. \(6.80 \text{ km} \)
8. \(3.00 \text{ km} \) vertically above the impact point
9. \(1.67 \text{ s} \)
10. \(2.02 \text{ s} \)
11. \(1.45 \text{ s} \)
12. \(1.67 \text{ s} \)
13. \(1.16 \text{ s} \)
14. \(3.00 \text{ km} \) vertically above the impact point
15. \(6.80 \text{ km} \)
16. \(3.00 \text{ km} \) below the horizontal
17. \(25 \text{ ft} \)
18. \(3.8 \text{ s} \)
19. \(4.90 \text{ m/s}^2 \)
20. \(0.81 \text{ m/s} \)
21. \(1.01 \text{ m/s} \)
22. \(40.5 \text{ m/s} \)
23. \(86.6 \text{ mi/h} \)
24. \(103 \text{ km} \)
25. \(57° \)
26. \(122° \)
27. \(48.6 \text{ km} \)
28. \(25 \text{ m} \)
29. \(7.5 \text{ min} \)
30. \(32.5 \text{ m} \) from the base of the cliff
31. \(1.78 \text{ s} \)
32. \(212 \text{ m} \)
33. \(52.0 \text{ m/s} \)
34. \(5.00 \text{ blocks} \)
35. \(8.07 \text{ m} \) at \(42.0° \) S of E
36. \(43 \text{ units} \) in the negative \(x \)-direction
37. \(1.88 \text{ m} \)
38. \(249 \text{ ft} \)
39. \(2.02 \times 10^3 \text{ s} \)
40. \(2.02 \times 10^3 \text{ s} \)
41. \(3.00 \text{ km} \) vertically above the impact point
42. \(66.2° \)
43. \(40.5 \text{ m/s} \)
44. \(86.6 \text{ km/h} \)
45. \(86.6 \text{ km/h} \)
46. \(36.1 \text{ m/s} \) vertically above the impact point
47. \(13.0 \text{ blocks} \)
48. \(13.0 \text{ blocks} \)
49. \(13.0 \text{ blocks} \)
50. \(13.0 \text{ blocks} \)
51. \(1.52 \times 10^3 \text{ m} \)
52. \(1.52 \times 10^3 \text{ m} \)
53. \(18 \text{ m} \) and \(7.9 \text{ m} \)
54. \(14.5 \text{ m/s} \)
55. \(14.5 \text{ m/s} \)
56. \(14.5 \text{ m/s} \)
57. \(14.5 \text{ m/s} \)
58. \(14.5 \text{ m/s} \)
59. \(14.5 \text{ m/s} \)
60. \(14.5 \text{ m/s} \)
61. \(14.5 \text{ m/s} \)
62. \(14.5 \text{ m/s} \)
63. \(14.5 \text{ m/s} \)
64. \(14.5 \text{ m/s} \)
65. \(14.5 \text{ m/s} \)
66. \(14.5 \text{ m/s} \)
67. \(14.5 \text{ m/s} \)
68. \(14.5 \text{ m/s} \)
69. \(14.5 \text{ m/s} \)
70. \(14.5 \text{ m/s} \)
71. \(14.5 \text{ m/s} \)
72. \(14.5 \text{ m/s} \)
CHAPTER 4

QUICK QUIZZES
1. (a), (c), and (d) are true.
2. (b)
3. (c); (d)
4. (c)
5. (c)
6. (b)
7. (b)
8. (b) By exerting an upward force component on the sled, you reduce the normal force on the ground and so reduce the force of kinetic friction.

EXAMPLE QUESTIONS
1. Other than the forces mentioned in the problem, the force of gravity pulls downwards on the boat. Because the boat doesn’t sink, a force exerted by the water on the boat must oppose the gravity force. (In Chapter 9 this force will be identified as the buoyancy force.)
2. False. The angle at which the forces are applied is also important in determining the direction of the acceleration vector.
3. 0.2 N
4. 2g
5. The tensions would double.
6. The magnitude of the tension force would be greater, and the magnitude of the normal force would be smaller.
7. Doubling the weight doubles the mass, which halves both the acceleration and displacement.
8. A gentler slope means a smaller angle and hence a smaller acceleration down the slope. Consequently, the car would take longer to reach the bottom of the hill.
9. The scale reading is greater than the weight of the fish during the first acceleration phase. When the velocity becomes constant, the scale reading is equal to the weight. When the elevator slows down, the scale reading is less than the weight.
10. Attach one end of the cable to the object to be lifted and the other end to a platform. Place lighter weights on the platform until the total mass of the weights and platform exceeds the mass of the heavy object.
11. A larger static friction coefficient would increase the maximum angle.
12. The coefficient of kinetic friction would be larger than in the example.
13. Both the acceleration and the tension increase when \(m_2 \) is increased.
14. The top block would slide off the back end of the lower block.

MULTIPLE-CHOICE QUESTIONS
1. (a)
3. (d)
5. (b)
7. (b)
9. (a)
11. (d)
13. (c)
15. (a)

CONCEPTUAL QUESTIONS
1. (a) Two external forces act on the ball. (i) One is a downward gravitational force exerted by Earth. The reaction to this force is the upward normal force exerted by the hand on the ball. The reactions to these forces are (i) an upward gravitational force exerted by the hand on Earth and (ii) a downward force exerted by the ball on the hand. (b) After the ball leaves the hand, the only external force acting on the ball is the gravitational force exerted by Earth. The reaction is an upward gravitational force exerted by the ball on Earth.
2. The coefficient of static friction is larger than that of kinetic friction. To start the box moving, you must counterbalance the maximum static friction force. This force exceeds the kinetic friction force that you must counterbalance to maintain the constant velocity of the box once it starts moving.
3. The inertia of the suitcase would keep it moving forward as the bus stops. There would be no tendency for the suitcase to be thrown backward toward the passenger. The case should be dismissed.
4. The force causing an automobile to move is the friction between the tires and the roadway as the automobile attempts to push the roadway backward. The force driving a propeller airplane forward is the reaction force exerted by the air on the propeller, as the rotating propeller pushes the air backward (the action). In a rowboat, the rower pushes the water backward with the oars (the action). The water pushes forward on the oars and hence the boat (the reaction).
5. When the bus starts moving, Claudia’s mass is accelerated by the force exerted by the back of the seat on her body. Clark is standing, however, and the only force acting on him is the friction between his shoes and the floor of the bus. Thus, when the bus starts moving, his feet accelerate forward, but the rest of his body experiences almost no accelerating force (only that due to his being attached to his accelerating feet!). As a consequence, his body tends to stay almost at rest, according to Newton’s first law, relative to the ground. Relative to Claudia, however, he is moving toward her and falls into her lap. Both performers won Academy Awards.
6. The tension in the rope is the maximum force that occurs in both directions. In this case, then, since both are pulling with a force of magnitude 200 N, the tension is 200 N. If the rope does not move, then the force on each athlete must equal zero. Therefore, each athlete exerts 200 N against the ground.
7. (a) As the man takes the step, the action is the force his foot exerts on Earth; the reaction is the force exerted by Earth on his foot. (b) Here, the action is the force exerted by the snowball on the girl’s back; the reaction is the force exerted by the girl’s back on the snowball. (c) This action is the force exerted by the glove on the ball; the reaction is the force exerted by the ball on the glove. (d) This action is the force exerted by the air molecules on the window; the reaction is the force exerted by the window on the air molecules. In each case, we could equally well interchange the terms “action” and “reaction.”

PROBLEMS
1. \(2 \times 10^4 \) N
3. (a) 12 N (b) 3.0 m/s²
5. 3.7 N, 58.7 N, 2.27 kg
7. 9.6 N
9. 1.4 \times 10^3 \) N
11. (a) 0.200 m/s² (b) 10.0 m (c) 2.00 m/s
13. (a) 0.211 kg/m (b) 7.35 m/s²
15. 1.1 \times 10^4 \) N
17. (a) 690 N in vertical cable, 997 N in inclined cable, 796 N in horizontal cable (b) If the point of attachment were moved higher up on the wall, the left cable would have a y-component that would help support the cat burglar, thus reducing the tension in the cable on the right.
19. 150 N in vertical cable, 75 N in right-side cable, 150 N in left-side cable
21. (a) \(T_x = 79.8 \) N, \(T_y = 39.9 \) N (b) 2.34 m/s²
23. 613 N
Answers to Quick Quizzes, Example Questions, Odd-Numbered Multiple-Choice Questions, Conceptual Questions, and Problems

25. 64 N
27. (a) 7.50 × 10^3 N backward (b) 50.0 m
29. (a) 7.0 m/s² horizontal and to the right (b) 21 N (c) 14 N horizontal and to the right
31. (a) 78.4 N (b) 105 N
35. 23 m/s
37. (a) T > w (b) T = w (c) T < w (d) 1.85 × 10⁴ N; yes (e) 1.47 × 10⁴ N; yes (f) 1.25 × 10⁴ N; yes
39. μ₁ = 0.38, μ₂ = 0.31
41. (a) 0.256 (b) 0.509 m/s²
43. (a) 14.7 m (b) Neither mass is necessary
45. μₙ = 0.287
47. 52.1 N
49. (a) 33 m/s (b) No. The object will speed up to 33 m/s from any lower speed and will slow down to 33 m/s from any higher speed.
51. (a) 1.78 m/s² (b) 0.368 (c) 9.37 N (d) 2.67 m/s
53. 3.50 m/s²
55. (a) 0.494 (b) 45.8 lb
57. (a) \(\begin{array}{c}
4 \text{ kg} \\
\hline
1 \text{ kg} \\
\hline
2 \text{ kg} \\
\end{array} \)
(b) 2.31 m/s², down for the 4.00-kg object, left for the 1.00-kg object, up for the 2.00-kg object (c) 30.0 N in the left cord, 24.2 N in the right cord (d) Without friction, the 4-kg block falls more freely, so the tension \(T₁ \) in the string attached to it is reduced. The 2-kg block is accelerated upwards at a higher rate, hence the tension force \(T₂ \) acting on it must be greater.
59. (a) 84.9 N upward (b) 84.9 N downward
61. 50 m
63. (a) friction between box and truck (b) 2.94 m/s²
65. (a) 2.22 m/s (b) 8.74 m/s down the incline
67. (a) 0.232 m/s² (b) 9.68 N
69. (a) 1.7 m/s², 17 N (b) 0.69 m/s², 17 N
71. (a) 3.43 kN (b) 0.907 m/s horizontally forward (c) Both would increase.
73. (a) 30.7° (b) 0.843 N
75. 5.5 × 10⁶ N
77. 72.0 N
79. (a) 7.1 × 10⁶ N (b) 8.1 × 10⁶ N (c) 7.1 × 10⁶ N (d) 6.5 × 10⁶ N
81. (a) 0.408 m/s² upward (b) 83.3 N

CHAPTER 5

QUICK QUIZZES
1. (c)
2. (d)
3. (c)
4. (c)

EXAMPLE QUESTIONS
1. As long as the same displacement is produced by the same force, doubling the load will not change the amount of work done by the applied force.
2. Doubling the displacement doubles the amount of work done in each case.
3. The wet road would reduce the coefficient of kinetic friction, so the final velocity would be greater.
4. (c)
5. In each case the velocity would have an additional horizontal component, meaning that the overall speed would be greater.
6. A smaller angle means that a larger initial speed would be required to allow the grasshopper to reach the indicated height.
7. In the presence of friction a different shape slide would result in different amounts of mechanical energy lost through friction, so the final answer would depend on the slide's shape.
8. In the crouching position there is less wind resistance. Crouching also lowers the skier's center of mass, making it easier to balance.
9. 73.5%
10. If the acrobat bends her legs and crouches immediately after contacting the springboard and then jumps as the platform pushes her back up, she can rebound to a height greater than her initial height.
11. The continuing vibration of the spring means that some energy wasn't transferred to the block. As a result, the block will go a slightly smaller distance up the ramp.
12. (a)
13. The work required would quadruple but time would double, so overall the average power would double.
14. The instantaneous power is 9.00 × 10⁴ W, which is twice the average power.
15. False. The correct answer is one-quarter.
16. No. Using the same-size boxes is simply a matter of convenience.

MULTIPLE-CHOICE QUESTIONS
1. (c)
3. (d)
5. (c)
7. (b)
9. (b)
11. (d)
13. (b)

CONCEPTUAL QUESTIONS
1. Because no motion is taking place, the rope undergoes no displacement and no work is done on it. For the same reason, no work is being done on the pullers or the ground. Work is being done only within the bodies of the pullers. For example, the heart of each puller is applying forces on the blood to move blood through the body.
3. When the slide is frictionless, changing the length or shape of the slide will not make any difference in the final speed of the child, as long as the difference in the heights of the upper and lower ends of the slide is kept constant. If friction must be considered, the path length along which the friction force does negative work will be greater when the slide is made longer or given bumps. Thus, the child will arrive at the lower end with less kinetic energy (and hence less speed).
5. If we ignore any effects due to rolling friction on the tires of the car, we find that the same amount of work would be done in driving up the switchback and in driving straight up the mountain because the weight of the car is moved upwards against gravity by the same vertical distance in each case. If we include friction, there is more work done in driving the switchback because the distance over which the friction force acts is much longer. So why do we use switch-
PROBLEMS

1. 700 J

3. $2 \times 10^4 J$

5. (a) 61.3 J (b) −46.3 J (c) 0 (d) The work done by gravity would not change, the work done by the friction force would decrease, and the work done by the normal force would not change.

7. (a) 79.6 N (b) 1.49 kJ (c) −1.49 kJ

9. (a) 2.90 m/s (b) 209 N

11. (a) 115 J (b) 165 J

13. (a) $-5.6 \times 10^3 J$ (b) 1.2 m

15. (a) $2.34 \times 10^3 N$ (b) $1.91 \times 10^{-4} s$

17. 1.0 m/s

19. 4.1 m

21. 5.11 N/m

23. $9.62 \times 10^2 N$ upward

25. $b = 6.94 m$

27. $W_{	ext{kinetic}} = 120 J$, $W_{	ext{initial}} = 290 J$, additional muscles must be involved

29. (a) $4.30 \times 10^3 J$ (b) $-3.97 \times 10^4 J$ (c) 115 m/s

31. (a) The mass, spring, and Earth (including the wall) constitute the system. The mass and Earth interact through the spring force, gravity, and the normal force. (b) The point of maximum extension is $x = 0$. (c) 1.53 J at $x = 6.00 cm$, 0 J at $x = 0$

$d = \frac{1}{2}kx^2 - \frac{1}{4}kx^2 = \frac{1}{4}kx^2 \rightarrow$
$v_z = \sqrt{v_1^2 + \frac{2}{m} (x_f^2 - x_0^2)}$, 1.75 m/s (e) 1.51 m/s. This answer is not one-half the first answer because the equation is not linear.

35. 0.459 m

37. (a) 10.9 m/s (b) 11.6 m/s

39. (a) Initially, all the energy is stored in the compressed spring. After the gun is fired and the projectile leaves the gun, the energy is transferred to the kinetic energy of the projectile, resulting in a small increase in gravitational potential energy. Once the projectile reaches its maximum height, the energy is all associated with its gravitational potential energy.

(b) $544 N/m$ (c) 19.7 m/s

41. (a) Yes. There are no nonconservative forces acting on the child, so the total mechanical energy is conserved. (b) No. In the expression for conservation of mechanical energy, the mass of the child is included in every term and therefore cancels out. (c) The answer is the same in each case. (d) The expression would have to be modified to include the work done by the force of friction. (e) 15.3 m/s.

43. 2.1 kN

45. 3.8 m/s

47. 289 m

49. (a) 24.5 m/s (b) Yes (c) 206 m (d) Unrealistic; the actual retardation force will vary with speed.

51. 236 s or 3.93 min

53. 8.01 W

55. The power of the sports car is four times that of the older model car.

(a) $2.38 \times 10^4 W = 32.0 \text{ hp}$ (b) $4.77 \times 10^4 W = 63.9 \text{ hp}$

(a) 21.0 J (c) $21.0 J$

61. (a) The graph is a straight line passing through the points (0 m, −16 N), (2 m, 0 N), and (3 m, 8 N). (b) −12.0 J

63. 0.265 m/s

65. (a) $PE = 3.94 \times 10^5 J$, $PE_{\text{kinetic}} = 0$, $\Delta PE = -3.94 \times 10^3 J$ (b) $PE = 5.63 \times 10^5 J$, $PE_{\text{kinetic}} = 1.69 \times 10^3 J$, $\Delta PE = -3.94 \times 10^3 J$

67. (a) 575 N/m (b) 46.0 J

69. (a) 1.4 m/s (b) 1.5 $\times 10^3 N$

71. (a) 5.13 m/s (b) 4.45 m/s (c) 1.00 m

73. (a) 0.588 J (b) 0.588 J (c) 2.42 m/s (d) $PE_{\text{kinetic}} = 0.392 J$ (e) $KE_{\text{kinetic}} = 0.196 J$

75. (a) 0.0204 m (b) 7.20 $\times 10^3 N/m$

77. (a) 423 mi/gal (b) 776 mi/gal

79. (a) 28.0 \times (b) 30.0 m (c) 89.0 m beyond the end of the track

81. (a) 101 J (b) 0.410 m (c) 2.84 m/s (d) −9.80 mm (e) 2.85 m/s

83. $914 N/m$

85. $W_{\text{grav}} = 0$, $W_{\text{friction}} = -1.0 \times 10^4 J$, $W_{\text{net}} = 0$, $W_{\text{kinetic}} = 2.0 \times 10^4 J$

87. (a) 10.2 kW (b) 10.6 kW (c) 5.82 $\times 10^6 J$

89. 4.3 m/s

91. between 25.2 km/h and 27.9 km/h
CHAPTER 6

QUICK QUIZZES
1. (b)
2. (c)
3. (c)
4. (a)
5. (a) Perfectly inelastic (b) Inelastic (c) Inelastic
6. (a)

EXAMPLE QUESTIONS
1. 44 m/s
2. When one car is overtaking another, the relative velocity is small, so on impact the change in momentum is also small. In a head-on collision, however, the relative velocity is large because the cars are traveling in opposite directions. Consequently, the change in momentum of a passenger in a head-on collision is greater than when hit from behind, which implies a larger average force.
3. The bow does the same work on each arrow, so they have the same kinetic energy. By Quick Quiz 6.1, however, the heavier arrow will then have the greater momentum, so the recoil it causes will be greater, as well.
4. The final velocity would be unaffected, but the change in kinetic energy would be doubled.
5. Energy can be lost due to friction in the mechanisms and associated thermal energy loss due to air drag and through emission of sound waves.
6. No. If that were the case, energy could not be conserved.
7. The blocks cannot both come to rest at the same time because then by Equation (1) momentum would not be conserved.
8. 45°
9. m(a + g)

MULTIPLE-CHOICE QUESTIONS
1. (b)
2. (c)
3. (c)
4. (d)
5. (a)
6. (d)

CONCEPTUAL QUESTIONS
1. (a) No. It cannot carry more kinetic energy than it possesses. That would violate the law of energy conservation. (b) Yes. By bouncing from the object it strikes, it can deliver more momentum in a collision than it possesses in its flight.
2. If all the kinetic energy disappears, there must be no motion of either of the objects after the collision. If neither is moving, the final momentum of the system is zero, and the initial momentum of the system must also have been zero. A situation in which this could be true would be the head-on collision of two objects having momenta of equal magnitude but opposite direction.
3. Initially, the clay has momentum directed toward the wall. When it collides and sticks to the wall, neither the clay nor the wall appears to have any momentum. Thus, it is tempting to (wrongfully) conclude that momentum is not conserved. However, the “lost” momentum is actually imparted to the wall and Earth, causing both to move. Because of Earth’s enormous mass, its recoil speed is too small to detect.
4. As the water is forced out of the holes in the arm, the arm imparts a horizontal impulse to the water. The water then exerts an equal and opposite impulse on the spray arm, causing the spray arm to rotate in the direction opposite that of the spray.
5. It will be easiest to catch the medicine ball when its speed (and kinetic energy) is lowest. The first option—throwing the medicine ball at the same velocity—will be the most difficult, because the speed will not be reduced at all. The second option, throwing the medicine ball with the same momentum, will reduce the velocity by the ratio of the masses. Since \(m_1v_1 = m_nv_n \), it follows that
\[
\frac{1}{2} m_1 v_1^2 = \frac{1}{2} m_nv_n^2
\]
The third option, throwing the medicine ball with the same kinetic energy, will also reduce the velocity, but only by the square root of the ratio of the masses. Since
\[
\frac{1}{2} m_1 v_1^2 = \frac{1}{2} m_nv_n^2
\]
it follows that
\[
v_n = v_1 \sqrt{\frac{m_1}{m_n}}
\]
The slowest and easiest throw will be made when the momentum is held constant. If you wish to check this answer, try substituting in values of \(v_1 = 1 \text{ m/s}, m_1 = 1 \text{ kg}, \) and \(m_n = 100 \text{ kg}. \) Then the same-momentum throw will be caught at 1 cm/s, while the same-energy throw will be caught at 10 cm/s.
6. It is the product of the bullet and the gun. The bullet has a large velocity and a small mass, while the gun has a small velocity and a large mass. Furthermore, the bullet carries much more kinetic energy than the gun.
7. The follow-through keeps the club in contact with the ball as long as possible, maximizing the impulse. Thus, the ball accrues a larger change in momentum than without the follow-through, and it leaves the club with a higher velocity and travels farther. With a short shot to the green, the primary factor is control, not distance. Hence, there is little or no follow-through, allowing the golfer to have a better feel for how hard he or she is striking the ball.

PROBLEMS
1. (a) 8.35 \(\times 10^{-21} \text{ kg} \cdot \text{m/s} \) (b) 4.50 \(\text{kg} \cdot \text{m/s} \) (c) 750 \(\text{kg} \cdot \text{m/s} \) (d) 1.78 \(\times 10^{22} \text{ kg} \cdot \text{m/s} \)
3. (a) 31.0 m/s (b) the bullet, 3.38 \(\times 10^3 \text{ J} \) versus 69.7 J
5. (a) 565 \(\text{kg} \cdot \text{m/s} \) (b) 751 N
7. 22.0 m/s; 1.14 kg
9. (a) 10.4 \(\text{kg} \cdot \text{m/s} \) in the direction of the final velocity of the ball (b) 173 N
11. 1.39 \(\text{N} \cdot \text{s} \) up
13. 364 \(\text{kg} \cdot \text{m/s} \) forward, 438 N forward
15. (a) 8.0 N \(\cdot \text{s} \) (b) 8.0 N \(\cdot \text{s} \) (c) 3.3 m/s
17. (a) 12 N \(\cdot \text{s} \) (b) 8.0 N \(\cdot \text{s} \) (c) 8.0 m/s, 5.3 m/s
19. (a) 9.60 \(\times 10^{-2} \text{ s} \) (b) 3.65 \(\times 10^5 \text{ N} \) (c) 26.6 g
21. 65 m/s
23. (a) 1.15 m/s (b) 0.346 m/s directed opposite to girl’s motion
25. (a) 154 m (b) By Newton’s third law, when the astronaut exerts a force on the tank, the tank exerts a force back on the astronaut. This reaction force accelerates the astronaut towards the spacecraft.
27. \(\text{v}_{\text{fin}} = 2.48 \text{ m/s}, \text{v}_{\text{initial}} = 2.25 \times 10^{-2} \text{ m/s} \)
29. (a) \(m_1 \rightarrow m_2 \rightarrow m_3 \)

(b) The collision is best described as perfectly inelastic because the skaters remain in contact after the collision.
(c) \(m_1v_1 + m_2v_2 = (m_1 + m_2)v\)
(d) \(v = \frac{(m_1v_1 + m_2v_2)}{(m_1 + m_2)}\) (e) 6.33 m/s
31. 15.6 m/s
33. (a) 1.80 m/s (b) 2.16 \(\times\) \(10^4\) J
35. (a) 1
37. 1.32 m
39. 57 m
41. 273 m/s
43. (a) \(6.67\) cm/s, 13.3 cm/s (b) 0.889
45. 17.1 cm/s (25.0-g object), 22.1 cm/s (10.0-g object)
47. (a) Over a very short time interval, external forces have no time to impart significant impulse to the players during the collision. The two players move together after the tackle, so the collision is completely inelastic. (b) 2.88 m/s at 32.5°
(c) 785 J. The lost kinetic energy is transformed into other forms of energy such as thermal energy and sound.
49. 5.50 m/s north
51. (a) 2.50 m/s at 60° (b) elastic collision
53. \(3.78 \times 10^4\) N on truck driver, \(8.89 \times 10^3\) N on car driver
55. (a) \(8/3\) m/s (incident particle), \(32/3\) m/s (target particle)
(b) \(-16/3\) m/s (incident particle), \(8/3\) m/s (target particle)
(c) \(7.1 \times 10^{-5}\) J in case (a), and \(2.8 \times 10^{-5}\) J in case (b). The incident particle loses more kinetic energy in case (a), in which the target mass is 1.0 g.
57. \(1.1 \times 10^3\) N (upward)
59. 71.9 N
61. (a) 3 (b) 2
63. (a) \(-2.33\) m/s, 4.67 m/s (b) 0.277 m (c) 2.98 m
(d) 1.49 m
65. (a) \(-0.667\) m/s (b) 0.952 m
67. (a) 5.34 m/s (b) 1.77 m (c) 3.54 \(\times\) \(10^4\) N (d) No, the normal force exerted by the rail contributes upward momentum to the system.
69. (a) 0.28 or 28% (b) 1.1 \(\times\) \(10^{-11}\) J for the neutron, 4.5 \(\times\) \(10^{-14}\) J for carbon
71. (a) No. After colliding, the cars, moving as a unit, would travel northeast, so they couldn’t damage property on the south–east corner. (b) x-component: 16.3 km/h, y-component: 9.17 km/h, angle: the final velocity of the car is 18.7 km/h at
29.4° north of east, consistent with part (a).
73. (a) 4.85 m/s (b) 8.41 m
75. \(v_f = \sqrt{\frac{M + m}{m}} 2\mu gd\)
77. (a) 1.1 m/s at 30° below the positive x-axis (b) 0.32 or 32%

CHAPTER 7

QUICK QUIZZES
1. (c)
2. (b)
3. (b)
4. (b)
5. (a)
6. 1. (c) 2. (a) 5. (b)
7. (c)
8. (b), (c)
9. (c)
10. (d)

EXAMPLE QUESTIONS
1. Yes. The conversion factor is \(180°/\pi\) rad.
2. All given quantities and answers are in angular units, so altering the radius of the wheel has no effect on the answers.
3. The answer would have been reduced by a factor of one-half.
4. In this case, doubling the angular acceleration doubles the angular displacement. That is true here because the initial angular speed is zero.
5. The angular acceleration of a record player during play is zero. A CD player must have non-zero acceleration because the angular speed must change.
6. (b)
7. It would be increased.
8. The angle of the bank and the radius of the circle determine the minimum safe speed.
9. The normal force is still zero.
10. Yes. The force of gravity acting on each billiard ball holds the balls against the table and assists in creating friction forces that allow the balls to roll. The gravity forces between the balls are insignificant, however.
11. First, most asteroids are irregular in shape, so Equation (1) will not apply because the acceleration may not be uniform. Second, the asteroid may be so small that there will be no significant or useful region where the acceleration is uniform. In that case, Newton’s more general law of gravitation would be required.
12. (b)
13. Mechanical energy is conserved in this system. Because the potential energy at perigee is lower, the kinetic energy must be higher.
14. 5 days

MULTIPLE-CHOICE QUESTIONS
1. (c)
2. (c)
3. (c)
4. (c)
5. (c)
6. (b)
7. (b)
8. (b)
9. (c)
10. (c)

CONCEPTUAL QUESTIONS
1. (a) The head will tend to lean toward the right shoulder (that is, toward the outside of the curve). (b) When there is no strap, tension in the neck muscles must produce the centripetal acceleration. (c) With a strap, the tension in the strap performs this function, allowing the neck muscles to remain relaxed.
2. The speedometer will be inaccurate. The speedometer measures the number of tire revolutions per second, so its readings will be too low.
3. The car cannot round a turn at constant velocity, because “constant velocity” means the direction of the velocity is not changing. The statement is correct if the word “velocity” is replaced by the word “speed.”
4. Consider an individual standing against the inside wall of the cylinder with her head pointed toward the axis of the cylinder. As the cylinder rotates, the person tends to move in a straight-line path tangent to the circular path followed by the cylinder wall. As a result, the person presses against the wall, and the normal force exerted on her provides the radial force required to keep her moving in a circular path. If the rotational speed is adjusted such that this normal force is equal in magnitude to her weight on Earth, she will not be able to distinguish between the artificial gravity of the colony and ordinary gravity.
5. The tendency of the water is to move in a straight-line path below the positive x-axis (b) 0.32 or 32%
by the pail on the water provides the radial force required to keep the water moving in its circular path.

11. Any object that moves such that the direction of its velocity changes has an acceleration. A car moving in a circular path will always have a centripetal acceleration.

PROBLEMS
1. (a) 7.27×10^{-5} rad/s (b) Because of its rotation about its axis, Earth bulges at the equator.
2. (a) 3.2×10^6 rad (b) 5.0×10^7 rev
3. (a) 821 rad/s^2 (b) 4.21×10^3 rad
4. (a) 3.5 rad (b) The angular displacement increases by a factor of 4 because Equation 7.9 is quadratic in the angular velocities.
5. Main rotor: $179 \text{ m/s} = 0.522v_{\text{round}}$
 Tail rotor: $221 \text{ m/s} = 0.644v_{\text{round}}$
6. (a) 116 rev (b) 62.1 rad/s
7. (a) 3.37×10^{-2} m/s2 (b) 0 (c) The gravitational force and the normal force
8. (a) 0.35 m/s^2 (b) 1.0 m/s (c) 0.35 m/s2, 0.94 m/s2, 1.0 m/s2 at 20° forward with respect to the direction of a.
9. 12.0 m
10. (a) 1.10kN (b) 2.04 times her weight
11. 22.6 m/s
12. (a) 18.0 m/s2 (b) 900 N (c) 1.84; this large coefficient is unrealistic, and she will not be able to stay on the merry-go-round.
13. (a) 9.8 N (b) 9.8 N (c) 6.3 m/s
14. (a) The frictional force acting toward the road’s center of curvature causes the ease of the centripetal acceleration.
 (b) 0.370
15. (a) 1.58 m/s^2 (b) 455 N upward (c) 329 N upward
 (d) 397 N directed inward and 80.8° above horizontal
16. (b) 776 N
17. (a) 2.51 m/s (b) 7.90 m/s^2 (c) 4.00 m/s
18. (b) 1.2×10^{-3} at 72° above the +x-axis
19. (a) $2.50 \times 10^{-3} \text{ N}$ toward the 500-kg object
 (b) Between the two objects and 0.245 m from the 500-kg object
20. (a) $3.08 \times 10^4 \text{ km}$ (b) If the rocket were fired from the equator, it would have a significant eastward component of velocity because of Earth’s rotation about its axis. Hence, compared with being fired at the South Pole, the rocket’s initial speed would be greater, and the rocket would travel farther from Earth.
21. (a) $9.58 \times 10^6 \text{ m}$ (b) 5.57 h
22. $1.90 \times 10^7 \text{ kg}$
23. (a) 1.48 h (b) $7.79 \times 10^6 \text{ m/s}$ (c) $6.43 \times 10^4 \text{ J}$
24. 1.50 h or 90.0 min
25. (a) 9.40 rev/s (b) 4.11 rev/s2, $a = 2.590 \text{ m/s}^2$;
 $a = 296 \text{ m/s}^2$ (c) $F = 514 \text{ N}$; $F = 46.7 \text{ N}$
26. (a) 2.51 m/s (b) 7.90 m/s^2 (c) 4.00 m/s
27. (a) $7.76 \times 10^3 \text{ m/s}$ (b) 89.3 min
28. (a) $u = m \left(g - \frac{\omega^2}{r} \right)$ (b) 17.1 m/s
29. (a) $F_{g, \text{true}} = F_{g, \text{apparent}} + mR_{\text{rev}}a^2$
 (b) 732 N (equator), 735 N (either pole)
30. 11.8 km/s
31. (a) 15.3 km (b) $1.66 \times 10^{14} \text{ kg}$ (c) $1.13 \times 10^4 \text{ s}$
32. (a) 10.6 kN (b) 14.1 m/s
33. (a) 0.71 yr (b) The departure must be timed so that the spacecraft arrives at aphelion when the target planet is there.
34. (a) $t = \frac{2R_{\text{apo}}}{g}$ (b) $\omega = \sqrt{\frac{\pi g}{R}}$
35. (a) 109 N (b) 56.4 N
36. (a) 106 N (b) 0.290
37. 0.131

CHAPTER 8

QUICK QUIZZES
1. (a)
2. (b)
3. (b)
4. (a)
5. (c)
6. (a)

EXAMPLE QUESTIONS
1. The revolving door begins to move clockwise instead of counterclockwise.
2. Placing the wedge closer to the doorknob increases its effectiveness.
3. If the woman leans backwards, the torque she exerts on the seesaw increases and she begins to descend.
4. (b)
5. The system would remain balanced in equilibrium.
6. The angle made by the biceps force would still not vary much from 90° but the length of the moment arm would be doubled, so the required biceps force would be reduced by nearly half.
7. The tension in the cable would increase.
8. (c)
9. Lengthening the rod between balls 2 and 4 would create the larger change in the moment of inertia.
10. Stepping forward transfers the momentum of the pitcher’s body to the ball. Without proper timing, the transfer will not take place or will transfer less effectively.
11. The magnitude of the acceleration would decrease; that of the tension would increase.
12. Block, ball, cylinder
13. The final answer wouldn’t change.
14. His angular speed remains the same.
15. Energy conservation is not violated. The positive net change occurs because the student is doing work on the system.

MULTIPLE-CHOICE QUESTIONS
1. (a)
2. (b)
3. (d)
4. (b)
5. (d)
6. (b), (e)
7. (d)
8. (b)
9. (d)
10. (c)
11. (d)
12. (d)

CONCEPTUAL QUESTIONS
1. In order for you to remain in equilibrium, your center of gravity must always be over your point of support, the feet. If your heels are against a wall, your center of gravity cannot remain above your feet when you bend forward, so you lose your balance.
2. There are two major differences between torque and work. The primary difference is that the displacement in the expression for work is directed along the force, while the important distance in the torque expression is perpendicular to the force. The second difference involves whether there is motion. In the case of work, work is done only if the force succeeds in causing a displacement of the point of application of the force. By contrast, a force applied at a perpendicular distance from a rotation axis results in a torque regardless of whether there is motion. As far as units are concerned, the mathematical expressions for both work and torque are in units that are the product of newtons and meters, but this product is called a joule in the case of work and remains a newton-meter in the case of torque.
4. No. For an object to be in equilibrium, the net external force acting on it must be zero. This is not possible when only one force acts on the object, unless that force should have zero magnitude. In that case, there is really no force acting on the object.

7. As the motorcycle leaves the ground, the friction between the tire and the ground suddenly disappears. If the motorcycle driver keeps the throttle open while leaving the ground, the rear tire will increase its angular speed and, hence, its angular momentum. The airborne motorcycle is now an isolated system, and its angular momentum must be conserved. The increase in angular momentum of the tire directed, say, clockwise must be compensated for by an increase in angular momentum of the entire motorcycle counterclockwise. This rotation results in the nose of the motorcycle rising and the tail dropping.

9. The angular momentum of the gas cloud is conserved. Thus, the product $\Delta \omega \text{rem}$ remains constant. As the cloud shrinks in size, its moment of inertia decreases, so its angular speed ω must increase.

11. We can assume fairly accurately that the driving motor will run at a constant angular speed and at a constant torque. Therefore, as the radius of the take-up reel increases, the tension in the tape will decrease, in accordance with the equation.

$$T = \tau_{source} / R_{take-up}$$

As the radius of the source reel decreases, given a decreasing tension, the torque in the source reel will decrease even faster, as the following equation shows:

$$\tau_{source} = TR_{source} = \tau_{source}R_{source} / R_{take-up}$$

This torque will be partly absorbed by friction in the feed heads (which we assume to be small); some will be absorbed by friction in the source reel. Another small amount of the torque will be absorbed by the increasing angular speed of the source reel. However, in the case of a sudden jerk on the tape, the changing angular speed of the source reel becomes important. If the source reel is full, then the moment of inertia will be large and the tension in the tape will be large. If the source reel is nearly empty, then the angular acceleration will be large instead. Thus, the tape will be more likely to break when the source reel is nearly full. One sees the same effect in the case of paper towels: It is easier to snap a towel break when the source reel is nearly full than when it is nearly empty.

13. When a ladder leans against a wall, both the wall and the floor exert forces of friction on the ladder. If the floor is perfectly smooth, it can exert no frictional force in the horizontal direction to counterbalance the wall’s normal force. Therefore, a ladder on a smooth floor cannot stand in place on the floor. If the floor is slightly rough, it can exert frictional forces of the wall and the floor. Therefore, a ladder on a smooth floor cannot stand in place on the floor.

14. As the child walks to the right end of the boat, the boat moves left (towards the pier). The boat moves 1.45 m closer to the pier, so the child will be 5.55 m from the pier.

16. As the child walks to the right end of the pier, the child moves left (towards the pier). (b) The boat moves 1.45 m closer to the pier, so the child will be 5.55 m from the pier.

17. As the child walks to the right end of the pier, the child moves left (towards the pier).

18. As the child walks to the right end of the pier, the child moves left (towards the pier).
3. Steel, copper, mercury, water
4. The pressure inside a rubber balloon is greater than atmospheric pressure because it must also exert a force against the elastic force of the rubber.
5. At higher altitude, the column of air above a given area is progressively shorter and less dense, so the weight of the air column is reduced. Pressure is caused by the weight of the air column, so the pressure is also reduced.
6. As fluid pours out through a single opening, the air inside the can above the fluid expands into a larger volume, reducing the pressure to below atmospheric pressure. Air must then enter the same opening going the opposite direction, resulting in disrupted fluid flow. A separate opening for air intake maintains air pressure inside the can without disrupting the flow of the fluid.
7. True
8. False
9. (a)
10. The aluminum cube would float free of the bottom.
11. The speed of the blood in the narrowed region increases.
12. A factor of 2
13. The speed slows with time.
14. Substituting $A_1 = A_2$ into Equation (3) results in $h_1 = h_2$, which contradicts the assumptions in the problem.
15. The pressure difference across the wings depends linearly on the density of air. At higher altitude, the air’s density decreases, so the lift force decreases as well.
16. False
17. No. There are many plants taller than 0.3 m, so there must be some additional explanation.
18. A factor of 16
19. False

MULTIPLE-CHOICE QUESTIONS
1. (a)
2. (c)
3. (c)
4. (d)
5. (c)
6. (e)
7. (c)
8. (c)
9. (c)
10. (e)

CONCEPTUAL QUESTIONS
1. The density of air is lower in the mile-high city of Denver than it is at lower altitudes, so the effect of air drag is less in Denver than it would be in a city such as New York. The reduced air drag means a well-hit ball will go farther, benefiting home-run hitters. On the other hand, curve ball pitchers prefer to throw at lower altitudes where the higher density air produces greater deflecting forces on a spinning ball.
2. She exerts enough pressure on the floor to dent or puncture the floor covering. The large pressure is caused by the fact that her weight is distributed over the very small cross-sectional area of her high heels. If you are the homeowner, you might want to suggest that she remove her high heels and put on some slippers.
3. If you think of the grain stored in the silo as a fluid, the pressure the grain exerts on the walls of the silo increases with increasing depth, just as water pressure in a lake increases with increasing depth. Thus, the spacing between bands is made smaller at the lower portions to counterbalance the larger outward forces on the walls in these regions.
4. In the ocean, the ship floats due to the buoyant force from salt water, which is denser than fresh water. As the ship is pulled up the river, the buoyant force from the fresh water in the river is not sufficient to support the weight of the ship, and it sinks.
5. The balance will not be in equilibrium: The side with the lead will be lower. Despite the fact that the weights on both sides of the balance are the same, the Styrofoam, due to its larger volume, will experience a larger buoyant force from the surrounding air. Thus, the net force of the weight and the buoyant force is larger in the downward direction for the lead than for the Styrofoam.
6. The two cans displace the same volume of water and hence are acted upon by buoyant forces of equal magnitude. The total weight of the can of diet cola must be less than this buoyant force, whereas the total weight of the can of regular cola is greater than the buoyant force. This is possible even though the two containers are identical and contain the same volume of liquid. Because of the difference in the quantities and densities of the sweeteners used, the volume V of the diet mixture will have less mass than an equal volume of the regular mixture.
7. Opening the windows results in a smaller pressure difference between the exterior and interior of the house and, therefore, less tendency for severe damage to the structure due to the Bernoulli effect.

PROBLEMS
1. 1.3 mm
2. 1.05 $\times 10^5$ Pa
3. 3.5 $\times 10^8$ Pa
4. 4.4 mm
5. 0.024 mm
6. 1.9 cm
7. 4.74 $\times 10^3$ kg
8. 2.550 N
9. 3.00 $\times 10^4$ Pa
10. No. The pressure will be the same only if the acrobats all wear the same-size shoe.
11. $\sim 4 \times 10^{17}$ kg/m3
12. The density of an atom is about 10^{14} times greater than the density of iron and other common solids and liquids, which suggests that an atom is mostly empty space. Liquids and solids as well as gases are mostly empty space.
13. 3.4 $\times 10^2$ m
14. (a) 3.71 $\times 10^5$ Pa (b) 3.57 $\times 10^4$ N
15. 2.135 m
16. 2.10 $\times 10^5$ Pa
17. 0.024 mm
18. 7.49 N
19. 27 N/m
20. 9.41 kN
21. (a) 408 kg/m3 (b) If the steel object’s mass is just slightly greater than 0.310 kg, then the block do not sink to the bottom, the reason being that the steel object now starts to displace water and the buoyant force is now increasing. If the steel object is solid, it will displace a little more than 0.039 kg of water when fully submerged. The steel object and the block will sink to the bottom when the steel object’s mass exceeds about 0.350 kg, and for values less than this, but greater than 0.310 kg, the block will be submerged and the steel object partially submerged.
22. (a) 1.43 kN upward (b) 1.28 kN upward (c) The balloon expands because the external pressure declines with increasing altitude.
23. (a) 4.0 kN (b) 2.2 kN (c) The air pressure at this high altitude is much lower than atmospheric pressure at the surface of Earth, so the balloons expanded and eventually burst.
24. 2.67 $\times 10^4$ kg
25. (a) 1.46×10^2 m3 (b) 2.10 $\times 10^3$ kg/m3
26. 17.3 N (upper scale), 31.7 N (lower scale)
27. 80 g/s (b) 0.27 mm/s
28. 12.6 m/s
49. (a) 9.43×10^5 Pa (b) 255 m/s (c) The density of air decreases with increasing height, resulting in a smaller pressure difference. Beyond the maximum operational altitude, the pressure difference can no longer support the aircraft.
51. (a) 0.553 s (b) 14.5 m/s (c) 0.145 m/s (d) 1.013 $\times 10^5$ Pa (e) 2.96 $\times 10^5$ Pa; gravity terms can be neglected. (f) 35.0 N

CHAPTER 10
QUICK QUIZZES
1. (c)
2. (b)
3. (c)
4. (c)
5. (b)

EXAMPLE QUESTIONS
1. A Celsius degree
2. True
3. When the temperature decreases, the tension in the wire increases.
4. The magnitude of the required temperature change would be larger because the linear expansion coefficient of steel is less than that of copper.
5. Glass, aluminum, ethyl alcohol, mercury
6. The balloon expands.
7. The pressure is slightly reduced.
8. The volume of air decreases.
9. True

MULTIPLE-CHOICE QUESTIONS
1. (c)
2. (c)
3. (c)
4. (d)
5. (b)
6. (b)

CONCEPTUAL QUESTIONS
1. An ordinary glass dish will usually break because of stresses that build up as the glass expands when heated. The expansion coefficient for Pyrex glass is much lower than that of ordinary glass. Thus, the Pyrex dish will expand much less than the dish of ordinary glass and does not normally develop sufficient stress to cause breakage.
3. Mercury must have the larger coefficient of expansion. As the temperature of a thermometer rises, both the mercury and the glass expand. If they both had the same coefficient of linear expansion, the mercury and the cavity in the glass would expand by the same amount, and there would be no apparent movement of the end of the mercury column relative to the calibration scale on the glass. If the glass expanded more than the mercury, the reading would go down as the temperature went up! Now that we have argued this conceptually, we can look in a table and find that the coefficient for mercury is about 20 times as large as that for glass, so that the expansion of the glass can sometimes be ignored.
5. We can think of each bacterium as being a small bag of liquid containing bubbles of gas at a very high pressure. The ideal gas law indicates that if the bacterium is raised rapidly to the surface, then its volume must increase dramatically. In fact, the increase in volume is sufficient to rupture the bacterium.
7. The bags of chips contain a sealed sample of air. When the bags are taken up the mountain, the external atmospheric pressure on them is reduced. As a result, the difference between the pressure of the air inside the bags and the reduced pressure outside results in a net force pushing the plastic of the bag outward.
9. Additional water vaporizes into the bubble, so that the number of moles n increases.
11. The coefficient of expansion for metal is generally greater than that of glass; hence, the metal lid loosens because it expands more than the glass.

PROBLEMS
1. (a) -400°C (b) 37.0$^\circ$C (c) -280°C
3. (a) -321°F, 77 K (b) 98.6$^\circ$F, 3.10 $\times 10^8$ K
9. 109$^\circ$F: Yes. The normal human body temperature is 98.6$^\circ$F, so the patient has a high fever that needs immediate attention.
11. 51 cm
13. 55.0$^\circ$C
15. (a) -179°C (attainable) (b) -376°C (below 0 K, unattainable)
17. (a) 11.2×10^3 kg/m3 (b) No. Although the density of gold would be less on a warm day, the mass of the bar would be the same regardless of its temperature, and that is what you are paying for. (Note that the volume of the bar increases with increasing temperature, whereas its density decreases. Its mass, however, remains constant.)
expansion than acetone. Hence, the change in volume of the flask has a negligible effect on the answer.

57. The expansion of the mercury is almost 20 times that of the flask (assuming Pyrex glass).

59. 2.74 m

61. (a) $\theta = \frac{(a_1 - a_2)L_0(\Delta T)}{\Delta t}$
 (c) The bar bends in the opposite direction.

63. (a) 0.12 mm (b) 96 N

CHAPTER 11

QUICK QUIZZES

1. (a) Water, glass, iron. (b) Iron, glass, water.

2. (b) The slopes are proportional to the reciprocal of the specific heat, so a larger specific heat results in a smaller slope, meaning more energy is required to achieve a given temperature change.

3. (c)

4. (b)

5. (a) 4 (b) 16 (c) 64

EXAMPLE QUESTIONS

1. From the point of view of physics, faster repetitions don’t affect the final answer; physiologically, however, the weight lifter’s metabolic rate would increase.

2. (c)

3. No

4. (c)

5. The energy for evaporation comes from the internal energy of the fluid. However, this internal energy is affected by thermal energy transferred to and from its environment, which in turn affects the rate of evaporation.

6. No

7. The mass of ice melted would double.

8. Nickel-iron asteroids have a higher density and therefore a greater mass, which means they can deliver more energy on impact for a given speed.

9. False

10. (a)

11. The extra layer of fat is advantageous for surviving cold weather and food deprivation.

12. (a)

MULTIPLE-CHOICE QUESTIONS

1. (b)

5. (c)

7. (d)

9. (c)

11. (d)

CONCEPTUAL QUESTIONS

1. When you rub the surface, you increase the temperature of the rubbed region. With the metal surface, some of this energy is transferred away from the rubbed site by conduction. Consequently, the temperature in the rubbed area is not as high for the metal as it is for the wood, and it feels relatively cooler than the wood.

3. The fruit loses energy into the air by radiation and convection from its surface. Before ice crystals can form inside the fruit to rupture cell walls, all of the liquid water on the skin will have to freeze. The resulting time delay may prevent damage within the fruit throughout a frosty night. Further, a surface film of ice provides some insulation to slow subsequent energy loss by conduction from within the fruit.

5. The operation of an immersion coil depends on the convection of water to maintain a safe temperature. As the water near a coil warms up, the warmed water floats to the top due to Archimedes’ principle. The temperature of the coil cannot go higher than the boiling temperature of water, 100°C. If the coil is operated in air, convection is reduced, and the upper limit of 100°C is removed. As a result, the coil can become hot enough to be damaged. If the coil is used in an attempt to warm a thick liquid like stew, convection cannot occur fast enough to carry energy away from the coil, so that it again may become hot enough to be damaged.

7. One of the ways that objects transfer energy is by radiation. The top of the mailbox is oriented toward the clear sky. Radiation emitted by the top of the mailbox goes upward and into space. There is little radiation coming down from space to the top of the mailbox. Radiation leaving the sides of the mailbox is absorbed by the environment. Radiation from the environment (tree, houses, cars, etc.), however, can enter the sides of the mailbox, keeping them warmer than the top. As a result, the top is the coldest portion and frost forms there first.

9. Tile is a better conductor of energy than carpet, so the tile conducts energy away from your feet more rapidly than does the carpeted floor.

11. The large amount of energy stored in the concrete during the day as the sun falls on it is released at night, resulting in an overall higher average temperature in the city than in the countryside. The heated air in a city rises as it’s displaced by cooler air moving in from the countryside, so evening breezes tend to blow from country to city.

PROBLEMS

1. 16.9°C

3. (a) 1.67×10^{18} J (b) 52.9 yr

5. 85°C

7. (a) 4.5×10^3 J (b) 910 W (c) 0.87 Cal/s (d) The excess thermal energy is transported by conduction and convection to the surface of the skin and disposed of through the evaporation of sweat.

9. 176°C

11. 88 W

13. 4.2×10^3 J

15. 0.845 kg

17. 80 g

19. 1.8×10^3 J/kg °C

21. 0.26 kg

23. (a) 21.3°C (b) 178 J/kg °K (c) $N_{Sn} = 2.05 \times 10^{21}$ atoms; $N_{Pb} = 1.16 \times 10^{24}$ atoms (d) $N_{Sn}/N_{Pb} = 1.75$: $\epsilon_{Sn}/\epsilon_{Pb} = 1.77$. The specific heat of an element is proportional to the number of atoms per unit mass of that element.

25. 16°C

27. 65°C

29. 2.3 km

31. 16°C

33. $t_{boil} = 2.8$ min, $t_{separate} = 18$ min

35. (a) all ice melts, $T_f = 40^\circ$C (b) 8.0 g melts, $T_f = 0^\circ$C

37. (a) The bullet loses all its kinetic energy as it is stopped by the ice. Also, thermal energy must be removed from the bullet to cool it from 30.0°C to 0°C. The sum of these two energies equals the energy it takes to melt part of the ice. The final temperature of the bullet is 0°C because not all the ice melts. (b) 0.294 g
Answers to Quick Quizzes, Example Questions, Odd-Numbered Multiple-Choice Questions, Conceptual Questions, and Problems A.65

54. 9.0 cm
57. 6.97
53. 6.71
56. 3.1
55. 29°C
58. 8.00 × 10^3 J/kg · °C. This value differs from the tabulated value by 11%, so they agree within 15%.
59. 109°C
60. 51.2°C
61. (a) 7 stops (b) Assumes that no energy is lost to the surroundings and that all internal energy generated stays with the brakes.
62. (b) 2.7 × 10^3 J/kg · °C
63. 12 h
64. 10.9 g
65. 1.4 kg
66. 9.0 cm
67. (a) 75.0°C (b) 36.6 kJ

CHAPTER 12
QUICK QUIZZES
1. (b)
2. (c)
3. (c)
4. (b)
5. The number 7 is the most probable outcome. The numbers 2 and 12 are the least probable outcomes.

EXAMPLE QUESTIONS
1. No
2. No
3. True
4. True
5. The change in temperature must always be negative because the system does work on the environment at the expense of its internal energy and no thermal energy can be supplied to the system to compensate for the loss.
6. A diatomic gas does more work under these assumptions.
7. False
8. False
9. (a)
10. No. The efficiency improves only if the ratio |Q_h/Q_c| becomes smaller. Further, too large an increase in Q_c will damage the engine, so there is a limit even if Q_c remains fixed.
11. If the path from B to C were a straight line, more work would be done per cycle.
12. No. The compressor does work and warms the kitchen. With the refrigerator door open, the compressor would run continuously.
13. False
14. Silver, lead, ice
15. False
16. The thermal energy created by your body during the exertion would be dissipated into the environment, increasing the entropy of the Universe.
17. Skipping meals can lower the basal metabolism, reducing the rate at which energy is used. When a large meal is eaten later, the lower metabolism means more food energy will be stored, and weight will be gained even if the same number of total calories is consumed in a day.

MULTIPLE-CHOICE QUESTIONS
1. (c)
3. (c)
5. (e)
7. (b)
9. (c)
11. (d)
13. (b)
15. (b)
17. (d)

CONCEPTUAL QUESTIONS
1. First, the efficiency of the automobile engine cannot exceed the Carnot efficiency: it is limited by the temperature of the burning fuel and the temperature of the environment into which the exhaust is dumped. Second, the engine block cannot be allowed to exceed a certain temperature. Third, any practical engine has friction, incomplete burning of fuel, and limits set by timing and energy transfer by heat.
3. If there is no change in internal energy, then, according to the first law of thermodynamics, the heat is equal to the negative of the work done on the gas (and thus equal to the work done by the gas). Thus, \(Q = -W = W_{\text{gas}} \).
5. The energy that is leaving the body by work and heat is replaced by means of biological processes that transform chemical energy in the food that the individual eats into internal energy. Thus, the temperature of the body can be maintained.
7. Although no energy is transferred into or out of the system by heat, work is done on the system as the result of the agitation. Consequently, both the temperature and the internal energy of the coffee increase.
9. Practically speaking, it isn’t possible to create a heat engine that creates no thermal pollution, because there must be both a hot heat source (energy reservoir) and a cold heat sink (low-temperature energy reservoir). The heat engine will warm the cold heat sink and will cool down the heat source. If either of those two events is undesirable, then there will be thermal pollution.

Under some circumstances, the thermal pollution would be negligible. For example, suppose a satellite in space were to run a heat pump between its sunny side and its dark side. The satellite would intercept some of the energy that gathered on one side and would ‘dump’ it to the dark side. Since neither of those two events is undesirable, there will be thermal pollution.

10. The first law is a statement of conservation of energy that says that we cannot devise a cyclic process that produces more energy than we put into it. If the cyclic process takes in energy by heat and puts out work, we call the device a heat engine. In addition to the first law’s limitation, the second law says that, during the operation of a heat engine, some energy must be ejected to the environment by heat. As a result, it is theoretically impossible to construct a heat engine that will work with 100% efficiency.

PROBLEMS
1. (a) 7.50 × 10^4 J (b) −7.50 × 10^4 J
2. (c) Newton’s third law of motion
3. (a) −6.1 × 10^3 J (b) 4.6 × 10^4 J
4. (a) −810 J (b) −507 J (c) −203 J
5. 96.3 mg
6. (a) 1.09 × 10^5 K (b) −6.81 kJ
7. 784.5 J (b) 722 J
8. 567 J (b) 167 J
9. 150 J (b) 188 J
10. (a) Zero (b) −75 J
11. (a) −4.58 × 10^3 J (b) 4.58 × 10^4 J (c) 0
12. (a) −9.12 × 10^3 J (b) −333 J
13. (a) 0.95 J (b) 3.2 × 10^5 J (c) 3.2 × 10^5 J
A.66 Answers to Quick Quizzes, Example Questions, Odd-Numbered Multiple-Choice Questions, Conceptual Questions, and Problems

27. (b) \(1.3 \times 10^{36} \text{ K}\)
29. 405 kJ
31. 0.540 (or 54.0%)
33. (a) 0.25 (or 25%) (b) 3/4
35. (a) 0.672 (or 67.2%) (b) 58.8 kW
37. (a) 0.294 (or 29.4%) (b) 500 J (c) 1.67 kW
39. (a) \(4.51 \times 10^6\) J (b) \(2.84 \times 10^7\) J (c) 68.1 kg
41. \(1/3\)
43. 0.49°C
45. 140 J/K
47. (a) \(-1.2 \text{ kJ} / \text{K}\) (b) \(1.2 \text{ kJ} / \text{K}\)
49. 57 J/K
51. 3.27 J/K
53. (a)

Chapter 13

Quick Quizzes

1. (d)
2. (c)
3. (b)
4. (a)
5. (c)
6. (d)
7. (c), (b)
8. (a)
9. (b)

Example Questions

1. 5.40 N
2. No. If a spring is stretched too far, it no longer satisfies Hooke’s law and can become permanently deformed.
3. True
4. False
5. False
6. (b)
7. True
8. No
9. (a), (c)
10. The speed is doubled.

Multiple-Choice Questions

1. (c)
2. (a)

Conceptual Questions

1. No. Because the total energy is \(E = \frac{1}{2}kx^2\), changing the mass of the object while keeping \(A\) constant has no effect on the total energy. When the object is at a displacement \(x\) from equilibrium, the potential energy is \(\frac{1}{2}kx^2\), independent of the mass, and the kinetic energy is
\[KE = E - \frac{1}{2}kx^2\], also independent of the mass.

2. When the spring with two objects on opposite ends is set into oscillation in space, the coil at the exact center of the spring does not move. Thus, we can imagine clamping the center coil in place without affecting the motion. If we do this, we have two separate oscillating systems, one on each side of the clamp. The half-spring on each side of the clamp has twice the spring constant of the full spring, as shown by the following argument: The force exerted by a spring is proportional to the separation of the coils as the spring is extended. Imagine that we extend a spring by a given distance and measure the distance between coils. We then cut the spring in half. If one of the half-springs is now extended by the same distance, the coils will be twice as far apart as they were in the complete spring. Thus, it takes twice as much force to stretch the half-spring, from which we conclude that the half-spring has a spring constant which is twice that of the complete spring. Hence, our clamped system of objects on two half-springs will vibrate with a frequency that is higher than \(f\) by a factor of the square root of two.

5. The bouncing ball is not an example of simple harmonic motion. The ball does not follow a sinusoidal function for its position as a function of time. The daily movement of a student is also not simple harmonic motion, because the student stays at a fixed location, school, for a long time. If this motion were sinusoidal, the student would move more and more slowly as she approached her desk, and as soon as she sat down at the desk, she would start to move back toward home again.

7. We assume that the buoyant force acting on the sphere is negligible in comparison to its weight, even when the sphere is empty. We also assume that the bob is small compared with the pendulum length. Then, the frequency of the pendulum is
\[f = 1 / T = (1 / 2 \pi) \sqrt{g / L}\], which is independent of mass. Thus, the frequency will not change as the water leaks out.

9. As the temperature increases, the length of the pendulum will increase due to thermal expansion, and with a greater length, the period of the pendulum increases. Thus, it takes longer to execute each swing, so that each second according to the clock will take longer than an actual second. Consequently, the clock will run slow.

11. The kinetic energy is proportional to the square of the speed, and the potential energy is proportional to the square of the displacement. Therefore, both must be positive quantities.

Problems

1. (a) 17 N to the left (b) 28 m/s² to the left
2. 1.81 s (c) No, the force is not of the form of Hooke’s law.
3. 0.242 kg
4. (a) 0.206 m (b) \(-0.042\) 1 m (c) The block oscillates around the unstretched position of the spring with an amplitude of 0.248 m.
5. (a) 60 J (b) 49 m/s
6. 2.94 \times 10^4 N/m
7. 0.478 m
8. (a) 1.630 N/m (b) 47.0 J (c) 7.90 kg (d) 2.57 m/s (e) 26.1 J (f) 20.9 J (g) 0.201 m
9. (a) 0.28 m/s (b) 0.26 m/s (c) 0.26 m/s (d) 3.5 cm
19. 39.2 N
21. (a) You observe uniform circular motion projected on a plane perpendicular to the motion. (b) 0.628 s
23. The horizontal displacement is described by $x(t) = A \cos \omega t$, where A is the distance from the center of the wheel to the crankpin.
25. 0.63 s
27. (a) 1.0 s (b) 0.28 m/s (c) 0.25 m/s
29. (a) 5.98 m/s (b) 206 N/m (c) 0.238 m
31. (a) 11.0 N toward the left (b) 0.881 oscillations
33. $v = \pm A \sin \omega t, a = -\omega^2 A \cos \omega t$
35. (a) 1.50 s (b) 0.559 m
37. (a) slow (b) 9:47
39. (a) $L_{bosch} = 25 \text{ cm}$, $L_{starch} = 9.4 \text{ cm}$, (b) $m_{bosch} = m_{starch} = 0.25 \text{ kg}$
41. (a) 4.13 cm (b) 10.4 cm (c) $5.56 \times 10^{-2} \text{ s}$ (d) 187 cm/s
43. (a) 9.81 m/s (b) 2.94 m
45. 31.9 cm
47. 58.8 s
49. 80.0 N
51. (a) 22.4 m/s (b) 0.281 s
53. (a) 39.0 N (b) 25.8 m/s
55. 28.5 m/s
57. (a) 0.051 kg/m (b) 20 m/s
59. (a) 13.4 m/s (b) The worker could throw an object such as a snowball at one end of the line to set up a pulse and then use a stopwatch to measure the time it takes the pulse to travel the length of the line. From this measurement, the worker would have an estimate of the wave speed, which in turn can be used to estimate the tension.
61. (a) Constructive interference gives $A = 0.50 \text{ m}$ (b) Destructive interference gives $A = 0.10 \text{ m}
65. (a) 219 N/m (b) 6.12 kg
67. (a) 1.68 s (b) 16.8 N/m
69. 1.1 m/s
71. $f_{t_{incomplete}} = \frac{(\rho_u - \rho_l)g/L}{s}$, $T = 1.40 \text{ s}$
73. (a) 15.8 rad/s (b) 5.25 cm
77. 6.62 cm

CHAPTER 14

QUICK QUIZZES
1. (c)
2. (c)
3. (b)
4. (b), (e)
5. (d)
6. (a)
7. (b)

EXAMPLE QUESTIONS
1. The speed of sound is much less in rubber because the bulk modulus of rubber is much less than that of aluminum.
2. 11.67 km
3. You should increase your distance from the sound source by a factor of 5.
4. Yes. It changes because the speed of sound changes with temperature. Answer (b) is correct.
5. No
6. True
7. True
8. (b)
9. True
10. True
11. The notes are so different from each other in frequency that the beat frequency is very high and cannot be distinguished.

MULTIPLE-CHOICE QUESTIONS
1. (b)
5. (a)
7. (a)
9. (e)
11. (b)
13. (c)
15. (c)

CONCEPTUAL QUESTIONS
1. (a) higher (b) lower
2. The camera is designed to operate at an assumed speed of sound of 345 m/s, the speed of sound at a room temperature of 25°C. If the temperature should decrease to, say, 0°C, the speed of sound will also decrease, and the camera will respond to the fact that it takes longer for the sound to make its round trip. Thus, it will operate as if the object is farther away than it really is.
3. It is of interest to note that bats use echo sounding like this to locate insects or to avoid obstacles in front of them, something that they must do because of poor eyesight and the high speeds at which they fly. Likewise, blue whales use this technique to help them avoid objects in their path. The need here is obvious, because a typical whale has a mass of 10^5 kg and travels at a relatively fast speed of 20 mi/h, so it takes a long time for it to stop its motion or to change direction.
4. Sophisticated electronic devices break the frequency range of about 60 to 4,000 Hz used in telephone conversations into several frequency bands and then mix them in a predetermined pattern so they become unintelligible. The descrambler, of course, moves the bands back into their proper order.
5. The echo is Doppler shifted, and the shift is like both a moving source and a moving observer. The sound that leaves your horn in the forward direction is Doppler shifted to a higher frequency, because it is coming from a moving source. As the sound reflects back and comes toward you, you are a moving observer, so there is a second Doppler shift to an even higher frequency. If the sound reflects from the spacecraft coming toward you, there is a different moving-source shift to an even higher frequency. The reflecting surface of the spacecraft acts as a moving source.
6. The bowstring is pulled away from equilibrium and released, in a manner similar to the way a guitar string is pulled and released when it is plucked. Thus, standing waves will be excited in the bowstring. If the arrow leaves from the exact center of the string, then a series of odd harmonics will be excited. Even harmonics will not be excited, because they have a node at the point where the string exhibits its maximum displacement.
7. The two engines are running at slightly different frequencies, thus producing a beat frequency between them.

PROBLEMS
1. 5.56 km. As long as the speed of light is much greater than the speed of sound, its actual value doesn’t matter.
2. 272 m/s
5. 516 m
7. 1.99 km
9. (a) 368 m/s (b) 0.436 m
11. 150 dB
15. $3.0 \times 10^{-8} \text{ W/m}^2$
17. 187 dB
19. (a) $1.3 \times 10^3 \text{ W/m}^2$ (b) 96 dB
23. (a) 75.2-Hz drop (b) 0.953 m
25. 595 Hz
27. 0.391 m/s
29. 19.3 m
31. 48°
33. $x = 0.500 \text{ m}, 1.00 \text{ m}, 1.50 \text{ m}, 2.00 \text{ m}, 2.50 \text{ m}, 3.00 \text{ m}, 3.50 \text{ m}
35. 800 m
37. (a) 0.240 m (b) 0.855 m
39. (a) Nodes at 0, 2.67 m, 5.33 m, and 8.00 m; aninodes at 1.33 m, 4.00 m, and 6.67 m (b) 18.6 Hz
41. At 0.0891 m, 0.303 m, 0.518 m, 0.732 m, 0.947 m, and 1.16 m from one speaker.
43. (a) $1.85 \times 10^{-2} \text{ kg/m}$ (b) 90.6 m/s (c) 152 N (d) 2.20 m (e) 8.35 m
45. (a) 79 N (b) 2.1×10^2 Hz
47. 19.976 kHz
49. 58 Hz
51. 3.0 kHz
53. (a) 0.552 m (b) 317 Hz
55. 5.64 beats/s
57. 3.88 m/s away from the station or 3.79 m/s toward the station
59. (a) 1.98 beats/s (b) 3.40 m/s
61. 1.76 cm
63. (a) 0.642 W (b) 0.00435 = 0.43%
65. 67.0 dB
67. 32.9 m/s
69. 262 kHz
71. 64 dB
73. 450 Hz and 441 Hz
75. 1.34×10^3 N

CHAPTER 15

QUICK QUIZZES
1. (b)
2. (b)
3. (c)
4. (a)
5. (c) and (d)
6. (a)
7. (c)
8. (b)
9. (d)
10. (b) and (d)

EXAMPLE QUESTIONS
1.
2. (a)
3. Fourth quadrant
4. The suspended droplet would accelerate downward at twice the acceleration of gravity.
5. The angle ϕ would increase.
6. (c)
7. The charge on the inner surface would be negative.
8. Zero

MULTIPLE-CHOICE QUESTIONS
1. (a)
3. (b)
5. (b)
7. (d)
9. (b)
11. (e)
13. (d)

CONCEPTUAL QUESTIONS
1. Electrons have been removed from the object.
3. No. The charge on the metallic sphere resides on its outer surface, so the person is able to touch the surface without causing any charge transfer.
5. Move an object A with a net positive charge so it is near, but not touching, a neutral metallic object B that is insulated from the ground. The presence of A will polarize B, causing an excess negative charge to exist on the side nearest A and an excess positive charge of equal magnitude to exist on the side farthest from A. While A is still near B, touch B with your hand. Additional electrons will then flow from ground, through your body and onto B. With A continuing to be near but not in contact with B, remove your hand from B, thus trapping the excess electrons on B. When A is now removed, B is left with excess electrons, or a net negative charge. By means of mutual repulsion, this negative charge will now spread uniformly over the entire surface of B.
7. An object’s mass decreases very slightly (immeasurably) when it is given a positive charge, because it loses electrons.
9. Electric field lines start on positive charges and end on negative charges. Thus, if the fair-weather field is directed into the ground, the ground must have a negative charge.
11. The electric shielding effect of conductors depends on the fact that there are two kinds of charge: positive and negative. As a result, charges can move within the conductor so that the combination of positive and negative charges establishes an electric field that exactly cancels the external field within the conductor and any cavities inside the conductor. There is only one type of gravitation charge, however, because there is no negative mass. As a result, gravitational shielding is not possible. A room cannot be gravitationally shielded because mass is always positive or zero, never negative.
13. When the comb is nearby, charges separate on the paper, and the paper is attracted to the comb. After contact, charges from the comb are transferred to the paper, so that it has the same type of charge as the comb. The paper is thus repelled.
15. You can only conclude that the net charge inside the Gaussian surface is positive.

PROBLEMS
1. 8.7×10^{-6} N; the force is repulsive.
3. (a) $2.36 \times 10^{-3} \text{ C}$ (b) The charges induce opposite charges in the bulkheads, but the induced charge in the bulkhead near ball B is greater because of ball B’s greater charge. The system therefore moves slowly toward the bulkhead closer to ball B.
5. (a) 36.8 N (b) $5.54 \times 10^{17} \text{ m/s}^2$
7. $5.12 \times 10^3 \text{ N}$
9. (a) $2.2 \times 10^{-9} \text{ N}$ (attraction)
(b) $9.0 \times 10^{-3} \text{ N}$ (repulsion)
11. $1.38 \times 10^{-2} \text{ N}$ at 77.5° below the negative x-axis
13. 0.437 N at -85.3° from the $+x$-axis.
15. 7.2 m/s
17. $2.07 \times 10^3 \text{ N/C}$ down
19. $7.20 \times 10^3 \text{ N/C}$ (downward)
21. 27.0 N/C; negative x-direction
23. (a) $6.12 \times 10^{10} \text{ m/s}^2$ (b) 19.6 µs (c) 11.8 m
(d) 1.20×10^{-15} J
25. 0.849 m
27. 1.8 m to the left of the $-2.5\mu\text{C}$ charge.
29. zero
35. (a) 0 (b) $5 \mu\text{C}$ inside, $-5 \mu\text{C}$ outside (c) 0 inside, $-5 \mu\text{C}$ outside
37. $1.3 \times 10^{-3} \text{ C}$
39. (a) $2.54 \times 10^{-15} \text{ N}$ (b) $1.59 \times 10^4 \text{ N/C}$ radially outward
41. (a) $858 \text{ N} \cdot \text{m}^2/\text{C}$ (b) 0 (c) 657 N $\cdot \text{m}^2/\text{C}$
43. $-Q/e_0$ for S_1; 0 for S_2; $-2Q/e_0$ for S_3; 0 for S_4
45. (a) 0 (b) kQ/r^2 outward
47. (a) \(-7.99 \, \text{N/C}\) (b) 0 (c) 1.44 \, \text{N/C} (d) 2.00 \, \text{nC} on the inner surface, 1.00 \, \text{nC} on the outer surface.
49. 115 \, \text{N}
51. 24 \, \text{N/C} in the positive x-direction
53. (a) \(E = 2k_\varepsilon \rho (a^2 + b^2)^{-3/2}\) in the positive x-direction
(b) \(E = k_\varepsilon \rho (b^2 + c^2)^{-3/2}\) in the positive x-direction
55. (a) 4.64 \times 10^{-2} \, \text{m} (b) 2.54 \times 10^{-2} \, \text{m}
57. 4.4 \times 10^3 \, \text{N/C}
59. \(-10^{-2} \, \text{C}
61. (a) 0 (b) 7.99 \times 10^3 \, \text{N/C} (outward)
(c) 0 (d) 7.34 \times 10^3 \, \text{N/C} (outward)
57. (a) 1.00 \times 10^4 \, \text{N/C} (b) 3.37 \times 10^{-8} \, \text{s} (c) accelerate at 1.76 \times 10^3 \, \text{m/s}^2 in the direction opposite that of the electric field

CHAPTER 16

QUICK QUIZZES
1. (b) True
2. (a) False
3. (b) True
4. (d) False
5. (d) True
6. (c)
7. (a)
8. (c)
9. (a) C decreases. (b) Q stays the same. (c) E stays the same. (d) \(\Delta V\) increases. (e) The energy stored increases.
10. (a) C increases. (b) Q increases. (c) E stays the same. (d) \(\Delta V\) remains the same. (e) The energy stored increases.
11. (a)

EXAMPLE QUESTIONS
1. True
2. True
3. False
4. (a)
5. Three
6. Each answer would be reduced by a factor of one-half.
7. One-quarter
8. The voltage drop is the smallest across the 24-\mu F capacitor and largest across the 3.0-\mu F capacitor.
9. The 3.0-\mu F capacitor
10. (c)
11. (b)

MULTIPLE-CHOICE QUESTIONS
1. (b)
2. (b)
3. (a)
4. (b)
5. (b)
6. (a)
7. (a)
8. (b)
9. (a)
10. (a)

CONCEPTUAL QUESTIONS
1. (a) The proton moves in a straight line with constant acceleration in the direction of the electric field. (b) As its velocity increases, its kinetic energy increases and the electric potential energy associated with the proton decreases.
2. The work done in pulling the capacitor plates farther apart is transferred into additional electric energy stored in the capacitor. The charge is constant and the capacitance decreases, but the potential difference between the plates increases, which results in an increase in the stored electric energy.
3. If the power line makes electrical contact with the metal of the car, it will raise the potential of the car to 20 kV. It will also raise the potential of your body to 20 kV, because you are in contact with the car. In itself, this is not a problem. If you step out of the car, however, your body at 20 kV will make contact with the ground, which is at zero volts. As a result, a current will pass through your body and you will likely be injured. Thus, it is best to stay in the car until help arrives.
7. If two points on a conducting object were at different potentials, then free charges in the object would move and we would not have static conditions, in contradiction to the initial assumption. (Free positive charges would migrate from locations of higher to locations of lower potential. Free electrons would rapidly move from locations of lower to locations of higher potential.) All of the charges would continue to move until the potential became equal everywhere in the conductor.
9. The capacitor often remains charged long after the voltage source is disconnected. This residual charge can be lethal. The capacitor can be safely handled after discharging the plates by short-circuiting the device with a conductor, such as a screwdriver with an insulating handle.
11. Field lines represent the direction of the electric force on a positive test charge. If electric field lines were to cross, then, at the point of crossing, there would be an ambiguity regarding the direction of the force on the test charge, because there would be two possible forces there. Thus, electric field lines cannot cross. It is possible for equipotential surfaces to cross. (However, equipotential surfaces at different potentials cannot intersect.) For example, suppose two identical positive charges are at diagonally opposite corners of a square and two negative charges of equal magnitude are at the other two corners. Then the planes perpendicular to the sides of the square at their midpoints are equipotential surfaces. These two planes cross each other at the line perpendicular to the square at its center.
13. You should use a dielectric-filled capacitor whose dielectric constant is very large. Further, you should make the dielectric as thin as possible, keeping in mind that dielectric breakdown must also be considered.

PROBLEMS
1. (a) \(1.92 \times 10^{-18} \, \text{J}\) (b) \(-1.92 \times 10^{-18} \, \text{J}\) (c) \(2.05 \times 10^6 \, \text{m/s}\) in the negative x-direction
3. \(1.4 \times 10^{-20} \, \text{J}\)
5. \(1.7 \times 10^6 \, \text{N/C}\)
7. (a) \(1.13 \times 10^3 \, \text{N/C}\) (b) \(1.80 \times 10^{-14} \, \text{C}\) (c) \(8.00 \times 10^{-7} \, \text{V}\) (d) \(-1.77 \times 10^6 \, \text{m/s}\) (e) All the answers are reduced.
9. (a) The spring stretches by 4.36 cm.
(b) Equilibrium: \(x = 2.18 \, \text{cm} ; A = 2.18 \, \text{cm} \) \(\Delta V = -\frac{2kA^2}{Q}\)
11. (a) \(5.75 \times 10^{-7} \, \text{V}\) (b) \(-1.92 \times 10^{-7} \, \text{V}\) \(\Delta V' = 3.84 \times 10^{-7} \, \text{V}\) (c) No. Unless fixed in place, the electron would move in the opposite direction, increasing its distance from points \(A\) and \(B\) and lowering the potential difference between them.
15. (a) \(2.67 \times 10^6 \, \text{V}\) (b) \(2.13 \times 10^6 \, \text{V}\)
17. \(-11.0 \, \text{kV}\)
19. (a) \(3.84 \times 10^{-14} \, \text{J}\) (b) \(2.55 \times 10^{-13} \, \text{J}\) (c) \(-2.17 \times 10^{-13} \, \text{J}\)
(d) \(8.00 \times 10^4 \, \text{m/s}\) (e) \(1.24 \times 10^3 \, \text{m/s}\)
21. 0.719 m, 1.44 m, 2.88 m. No. The equipotentials are not uniformly spaced. Instead, the radius of an equipotential is inversely proportional to the potential.
23. 2.74 \times 10^{-15} \, \text{m}
25. (a) \(1.1 \times 10^{-9} \, \text{F}\) (b) 27 C
27. (a) 1.36 pF (b) 16.3 pC (c) \(8.00 \times 10^5 \, \text{V/m}\)
29. (a) 11.1 kV/m toward the negative plate (b) 3.74 pF (c) 74.7 pC and \(-74.7 \, \text{pC}\)
31. (a) \(5.90 \times 10^{-18} \, \text{F}\) (b) \(5.34 \times 10^{-9} \, \text{C}\) (c) \(2.00 \times 10^3 \, \text{N/C}\) (d) \(1.77 \times 10^4 \, \text{C/m}^2\) (e) All the answers are reduced.
35. (a) 10.7 μC on each capacitor (b) 15.9 μC on the 2.50-μF capacitor and 37.5 μC on the 6.25-μF capacitor
37. (a) 3.33 μF (b) 180 μC on the 3-μF and the 6-μF capacitors, 120 μC on the 2.00-μF and 4.00-μF capacitors (c) 60.0 V across the 3-μF and the 2-μF capacitors, 30.0 V across the 6-μF and the 4-μF capacitors
39. $Q_1 = 16.0 \mu C$, $Q_2 = 80.0 \mu C$, $Q_3 = 64.0 \mu C$, $Q_4 = 32.0 \mu C$
41. (a) $Q_{25} = 1.25 \mu C$, $Q_{10} = 2.00 \mu C$ (b) $Q'_{25} = 288 \mu C$, $Q'_{10} = 462 \mu C$, $\Delta V = 11.5 V$
43. $Q' = 3.33 \mu C$, $Q_4' = 6.67 \mu C$
47. (a) 5.40 μJ (b) 108 μJ (c) 27.0 μJ
49. (a) $\kappa = 3.4$. The material is probably nylon (see Table 16.1). (b) The voltage would lie somewhere between 25.0 V and 85.0 V.
51. (a) 8.13 nF (b) 2.40 kV
55. (a) volume $9.09 \times 10^{-10} m^3$, area $4.54 \times 10^{-10} m^2$
57. Sphere A: 0.980 μC; Sphere B: 1.20 μC

CHAPTER 17

QUICK QUIZZES
1. (d)
2. (b)
3. (c), (d)
4. (b)
5. (b)
6. (b)
7. (a)
8. (b)
9. (a)
10. (c)

EXAMPLE QUESTIONS
1. No. Such a current corresponds to the passage of one electron every 2 seconds. The average current, however, can have any value.
2. True
3. Higher
4. (b)
5. (a)
6. (c)

MULTIPLE-CHOICE QUESTIONS
1. (c)
3. (d)
5. (b)
7. (b)
9. (c)
11. (a)
13. (d)

CONCEPTUAL QUESTIONS
1. Charge. Because an ampere is a unit of current (1 A = 1 C/s) and an hour is a unit of time (1 h = 3 600 s), then $1 A \cdot h = 3 600 C$.
3. The gravitational force pulling the electron to the bottom of a piece of metal is much smaller than the electrical repulsion pushing the electrons apart. Thus, free electrons stay distributed throughout the metal. The concept of charges residing on the surface of a metal is true for a metal with an excess charge. The number of free electrons in an electrically neutral piece of metal is the same as the number of positive ions—the metal has zero net charge.
5. A voltage is not something that “surges through” a completed circuit. A voltage is a potential difference that is applied across a device or a circuit. It would be more correct to say “I amphere of electricity surged through the victim’s body.” Although this amount of current would have disastrous results on the human body, a value of 1 (ampere) doesn’t sound as exciting for a newspaper article as 10 000 (volts).

PROBLEMS
1. 3.00×10^8 electrons move past in the direction opposite to the current.
3. 1.05 mA
5. (a) n is unaffected (b) v_z is doubled
7. 27 yr
9. (a) 5.585×10^{-3} kg/mol (b) 1.41×10^5 mol/m3
(c) 8.49×10^{26} iron atoms/m3
(d) 1.70×10^{29} conduction electrons/m3
(e) 2.21×10^{-4} m/s
11. 1.32 V, 200 times larger than 0.16 V
13. (a) 13.0 Ω (b) 17.0 m
15. (a) 30 Ω (b) 4.7 × 10$^{-4}$ Ω·m
17. silver ($\rho = 1.59 \times 10^{-8}$ Ω·m)
19. 256 Ω
23. 1.98 A
25. 2.200 °C
27. 26 mA
29. (a) 3.0 A (b) 2.9 A
31. (a) 1.2 Ω (b) 8.0 × 10$^{-4}$ (a 0.080% increase)
33. (a) 8.33 A (b) 14.4 Ω
35. 2.1 W
37. 11.2 min
39. 34.4 Ω
41. 1.6 cm
43. 15 μW
45. 23 cents
47. $\$1.2$
49. 2.16×10^5 C
51. 6.7 W
53. 1.1 km
55. 1.47×10^{-6} Ω·m; differs by 2.0% from value in Table 17.1
57. (a) 3.06 (b) No. The circuit must be able to handle at least 26 A.
59. (a) 0.667 A (b) 50.0 km
61. 3.77×10^{10} m3
CHAPTER 18

QUICK QUIZZES
1. True
2. Because of internal resistance, power is delivered to the battery material, raising its temperature.
3. (b)
4. (a)
5. (a)
6. (b)
7. Parallel: (a) unchanged (b) unchanged (c) increase (d) decrease
8. Series: (a) decrease (b) decrease (c) decrease (d) increase
9. (c)

EXAMPLE QUESTIONS
1. It would reduce the final current.
2. (b)
3. The 8.0-Ω resistor
4. The answers would be negative, but they would have the same magnitude as before.
5. Yes
6. (a)
7. (a)

MULTIPLE-CHOICE QUESTIONS
1. (c)
2. (c)
3. (c)
4. (a)
5. (d)
6. (d)
7. (b)
8. (b)
9. (b)
10. (b)
11. (b), (e)
12. (d)
13. (d)

CONCEPTUAL QUESTIONS
1. No. When a battery serves as a source and supplies current to a circuit, the conventional current flows through the battery from the negative terminal to the positive one. However, when a source has a larger emf than the battery is used to charge the battery, the conventional current is forced to flow through the battery from the positive terminal to the negative one.
2. The total amount of energy delivered by the battery will be less than W. Recall that a battery can be considered an ideal, resistanceless battery in series with the internal resistance.

3. When the battery is being charged, the energy delivered to it includes the energy necessary to charge the ideal battery, plus the energy that goes into raising the temperature of the battery due to P = IR heating in the internal resistance. This latter energy is not available during discharge of the battery, when part of the reduced available energy again transforms into internal energy in the internal resistance, further reducing the available energy below W.
4. The starter in the automobile draws a relatively large current from the battery. This large current causes a significant voltage drop across the internal resistance of the battery. As a result, the terminal voltage of the battery is reduced, and the headlights dim accordingly.
5. Connecting batteries in parallel does not increase the emf. A high-current device connected to two batteries in parallel can draw currents from both batteries. Thus, connecting the batteries in parallel increases the possible current output and, therefore, the possible power output.

6. 3.7 MD
7. 0.48 kg/s
8. (a) 470 W (b) 1.60 mm or more (c) 2.95 mm or more

9. She will not be electrocuted if she holds onto only one high-voltage wire, because she is not completing a circuit. There is no potential difference across her body as long as she clings to only one wire. However, she should release the wire immediately once it breaks, because she will become part of a closed circuit when she reaches the ground or comes into contact with another object.
11. The bird is resting on a wire of fixed potential. In order to be electrocuted, a large potential difference is required between the bird’s feet. The potential difference between the bird’s feet is too small to harm the bird.
12. The junction rule is a statement of conservation of charge. It says that the amount of charge that enters a junction in some time interval must equal the charge that leaves the junction in that time interval. The loop rule is a statement of conservation of energy. It says that the increases and decreases in potential around a closed loop in a circuit must add to zero.

PROBLEMS
1. 4.92 Ω
2. 73.8 W. Your circuit diagram will consist of two 0.800-Ω resistors in series with the 192-Ω resistance of the bulb.
3. (a) 17.1 Ω (b) 1.99 A for 4.00 Ω and 9.00 Ω, 1.17 A for 7.00 Ω, 0.818 A for 10.0 Ω
4. 7R/3
5. (a) 0.227 A (b) 5.68 V

9. 55 Ω
10. 0.45 A
11. (a) Connect two 50-Ω resistors in parallel, and then connect this combination in series with a 20-Ω resistor.
(b) Connect two 50-Ω resistors in parallel, connect two 20-Ω resistors in parallel, and then connect these two combinations in series with each other.
12. 0.714 A, 1.29 A, 12.6 V
13. (a) 3.00 mA (b) −19.0 V (c) 4.50 V
14. (a) 0.492 A, 0.148 A, 0.639 A (b) 6.78 W to the 28.0-Ω resistor, 1.78 W to the 12.0-Ω resistor, 6.53 W to the 16.0-Ω resistor.
15. (a) 0.385 mA, 3.08 mA, 2.69 mA
(b) 69.2 V, with cat the higher potential
16. (a) No. The only simplification is to note that the 2.0-Ω and 4.0-Ω resistors are in series and add to a resistance of 6.0 Ω. Likewise, the 5.0-Ω and 1.0-Ω resistors are in series and add to a resistance of 6.0 Ω. The circuit cannot be simplified any further. Kirchhoff’s rules must be used to analyze the circuit.
(b) I1 = 3.5 A, I2 = 2.5 A, I3 = 1.0 A
17. (a) No. The multiloop circuit cannot be simplified any further. Kirchhoff’s rules must be used to analyze the circuit.
(b) I_{LD} = 0.353 A directed to the right, I_{LD} = 0.118 A directed to the right, I_{LD} = 0.471 A directed to the left
18. ΔV_{L2} = 3.05 V, ΔV_{L3} = 4.57 V, ΔV_{L4} = 7.38 V, ΔV_{L5} = 1.62 V
19. (a) 1.88 s (b) 1.90 × 10^{-4} C
20. 1.3 × 10^{-4} C
21. (a) 0.43 s (b) 6.0 μF
22. 48 lightbulbs
23. (a) 6.25 A (b) 750 W
24. (a) 1.2 × 10^{-9} C, 7.3 × 10^9 K^+ ions. Not large, only 1e/290 Å^2
(b) 1.7 × 10^{-9} C, 1.0 × 10^{29} Na^+ ions (c) 0.83 μA
(d) 7.5 × 10^{-12} J
25. 41 nW
26. 7.5 Ω
27. (a) 15 Ω
(b) I1 = 1.0 A, I2 = I3 = 0.50 A, I4 = 0.30 A, and I5 = 0.20 A
(c) (ΔV)_{ac} = 6.0 V, (ΔV)_{bc} = 1.2 V, (ΔV)_{cd} = (ΔV)_{de} = 1.8 V, (ΔV)_{de} = 3.0 V, (ΔV)_{ac} = 6.0 V
(d) P_L = 6.0 W, P_R = 0.60 W, P_{JL} = 0.54 W, P_{JL} = 0.36 W, P_{JL} = 1.5 W, P_{JL} = 6.0 W
28. (a) 12.4 V (b) 9.65 V
Earth’s magnetic field is extremely weak, so the current carried by the car would have the same magnitude and point to the right.

20 m

(c) Lamps A and B increase in brightness, lamp C goes out.

55. 112 V, 0.200 Ω
56. (a) $R_{\text{open}} = 3R$, $R_{\text{closed}} = 2R$ (b) $F_{\text{open}} = \frac{E^2}{3R}$, $F_{\text{closed}} = \frac{E^2}{2R}$
57. $\mathbf{P}_{\text{load}} = \frac{30}{(144 \sqrt{3}) R} [R + 10.0 \Omega]^2$

1. (a) 5.68 V (b) 0.227 A
2. 0.955 A; 1.50 V
3. (a) 2.41×10^{-3} C (b) 1.61×10^{-3} C (c) 1.61×10^{-2} A
4. (a)
5. (a), (c)
6. (b)

CHAPTER 19

QUICK QUIZZES
1. (b)
2. (c)
3. (c)
4. (a)
5. (a), (c)
6. (b)

EXAMPLE QUESTIONS
1. The force on the electron is opposite the direction of the force on the proton, and the acceleration of the electron is far greater than the acceleration on the proton due to the electron’s lower mass.
2. A magnetic field always exerts a force perpendicular to the velocity of a charged particle, so it can change the particle’s direction but not its speed.
3. Zero
4. As the angle approaches 90°, the magnitude of the force increases. After going beyond 90°, it decreases.
5. The magnitude of the momentum remains constant. The direction of momentum changes, unless the particle’s velocity is parallel or antiparallel to the magnetic field.
6. 20 m
7. It would have the same magnitude and point to the right.
8. Earth’s magnetic field is extremely weak, so the current carried by the car would have to be correspondingly very large. Such a current would be impractical to generate, and if generated, it would heat and melt the wires carrying it.
9. The proton would accelerate downward due to gravity while circling.

MULTIPLE-CHOICE QUESTIONS
1. (d)
2. (c)
3. (d)
4. (e)
5. (d)
6. (e)
7. (d), (e)
8. The current carried by the car would have the same magnitude and point to the right.
9. The result is a distorted image.
10. If you were moving along with the electrons, you would measure a zero current for the electrons, so they would not produce a magnetic field according to your observations. However, the fixed positive charges in the metal would now be moving backwards relative to you, creating a current equivalent to the forward motion of the electrons when you were stationary. Thus, you would measure the same magnetic field as when you were stationary, but it would be due to the positive charges presumed to be moving from your point of view.
11. A compass does not detect currents in wires near light switches, for two reasons. The first is that, because the cable to the light switch contains two wires, one carrying current to the switch and the other carrying it away from the switch, the net magnetic field would be very small and would fall off rapidly with increasing distance. The second reason is that the current is alternating at 60 Hz. As a result, the magnetic field is oscillating at 60 Hz also. This frequency would be too fast for the compass to follow, so the effect on the compass reading would average to zero.
12. There is no net force on the wires, but there is a torque. To understand this distinction, imagine a fixed vertical wire and a free horizontal wire (see the figure below). The vertical wire carries an upward current and creates a magnetic field that circles the vertical wire, itself. To the right, the magnetic field of the vertical wire points into the page, while on the left side it points out of the page, as indicated. Each segment of the horizontal wire (of length t) carries current that interacts with the magnetic field according to the equation $F = BIL \sin \theta$. Apply the right-hand rule on the right side: point the fingers of your right hand in the direction of the horizontal current and curl them into the page in the direction of the magnetic field. Your thumb points downward, the direction of the force on the right side of the wire. Repeating the process on the left side gives a force upward on the left side of the wire. The two forces are equal in magnitude and opposite in direction, so the net force is zero, but they create a net torque around the point where the wires cross.
15. Each coil of the Slinky® will become a magnet, because a coil acts as a current loop. The sense of rotation of the current is the same in all coils, so each coil becomes a magnet with the same orientation of poles. Thus, all of the coils attract, and the Slinky® will compress.

17. (a) The field is into the page. (b) The beam would deflect upwards.

PROBLEMS
1. (a) The negative z-direction (b) The positive z-direction (c) The magnetic force is zero in this case.
2. (a) into the page (b) toward the right (c) toward the bottom of the page
3. (a) 1.44 × 10⁻¹² N (b) 8.62 × 10¹⁴ m/s² (c) A force would be exerted on the electron that had the same magnitude as the force on a proton, but in the opposite direction because of its negative charge. The acceleration of the electron would be much greater than that of the proton because the mass of the electron is much smaller.
4. 2.83 × 10⁻³ m/s west
5. 1.5 × 10⁻⁵ T into the page (the negative z-direction)
6. \(F_x = 8.83 \times 10^{-30} \) N (downward), \(F_y = 1.60 \times 10^{-17} \) N (upward), \(F_z = 4.80 \times 10^{-17} \) N (downward)
7. 8.0 × 10⁻² T in the z-direction
8. (a) into the page (b) toward the right (c) toward the bottom of the page
9. 7.50 N
10. 0.131 T (downward)
11. (a) The magnetic force and the force of gravity both act on the wire. When the magnetic force is upward and balances the downward force of gravity, the net force on the wire is zero, and the wire can move upward at constant velocity. (b) 0.20 T out of the page. (c) If the field exceeds 0.20 T, the upward magnetic force exceeds the downward force of gravity, so the wire accelerates upward.
12. \(ab \), \(bc \) 0.040 N in z-direction, \(cd \) 0.040 N in the -z-direction, \(da \) 0.056 6 N parallel to the xz-plane and at 45° to both the +z and the +x-directions
13. 4.9 × 10⁻⁵ N · m
14. 9.05 × 10⁻¹⁵ N · m, tending to make the left-hand side of the loop move toward you and the right-hand side move away.
15. (a) 0.56 A (b) 0.063 N · m
16. (a) 3.97° (b) 3.39 × 10⁻⁵ N · m
17. (a) 4.3 cm (b) 1.8 × 10⁻⁵ s
18. 1.77 cm
19. \(r = 3 \mu \text{m} \)
20. (a) 2.08 × 10⁻⁷ kg/C (b) 6.66 × 10⁻²⁶ kg (c) Calcium
21. 20.0 \(\mu \text{T} \)
22. 2.0 × 10⁻⁸ A
23. 24 mm
24. 20.0 \(\mu \text{T} \) toward the bottom of page
25. 0.167 \(\mu \text{T} \) out of the page

CHAPTER 20

QUICK QUIZZES
1. \(\mu \), \(c \), \(\sigma \)
2. (a)
3. (b)
4. (c)
5. (b)
6. (b)

EXAMPLE QUESTIONS
1. False
2. 5.06 × 10⁻³ V; the current would be in the opposite direction.
3. (a), (e)
4. A magnetic force directed to the right will be exerted on the bar.
5. Doubling the frequency doubles the maximum induced emf.
6. (b)
7. (a)
8. 72.6 A
9. (b)
10. False

MULTIPLE-CHOICE QUESTIONS
1. (c)
2. (c)
3. (d)
4. (d)
5. (b)
6. (b), (e)
7. (a)

CONCEPTUAL QUESTIONS
1. According to Faraday’s law, an emf is induced in a wire loop if the magnetic flux through the loop changes with time. In this situation, an emf can be induced either by rotating the loop around an arbitrary axis or by changing the shape of the loop.
2. As the spacecraft moves through space, it is apparently moving from a region of one magnetic field strength to a region of a different magnetic field strength. The changing magnetic field through the coil induces an emf and a corresponding current in the coil.
3. If the bar were moving to the left, the magnetic force on the negative charges in the bar would be upward, causing an accumulation of negative charge on the top and positive charges at the bottom. Hence, the electric field in the bar would be upward, as well.
4. If, for any reason, the magnetic field should change rapidly, a large emf could be induced in the bracelet. If the bracelet...
3. were not a continuous band, this emf would cause high-
voltage arcs to occur at any gap in the band. If the bracelet
were a continuous band, the induced emf would produce a
large induced current and result in resistance heating of the
bracelet.
11. As the aluminum plate moves into the field, eddy currents
are induced in the metal by the changing magnetic field at
the plate. The magnetic field of the electromagnet interacts
with this current, producing a retarding force on the plate
that slows it down. In a similar fashion, as the plate leaves the
magnetic field, a current is induced, and once again there is
an upward force to slow the plate.
13. If an external battery is acting to increase the current
in the inductor, an emf is induced in a direction to oppose
the increase of current. Likewise, if we attempt to reduce
the current in the inductor, the emf that is set up tends to
support the current. Thus, the induced emf always acts to
oppose the change occurring in the circuit, or it acts in the
“back” direction to the change.

PROBLEMS
1. $4.8 \times 10^{-3} \text{ T}\cdot \text{m}^2$
2. (a) 0.177 T (b) 0
3. (a) $\Phi_{\text{net}} = 0$ (b) 0
4. (a) $3.1 \times 10^{-4} \text{ T}\cdot \text{m}^2$ (b) $\Phi_{\text{net}} = 0$
5. 1.5 mV
6. 94 mV
7. 13.3 V
8. (a) 0.177 T (b) 0
9. $13.3 \times 10^{-10} \text{ T}\cdot \text{m}^2$
10. 2.7 T/s
11. (a) $3.77 \times 10^{-5} \text{ T}$ (b) $9.42 \times 10^{-1} \text{ T}$ (c) $7.07 \times 10^{-4} \text{ m}^2$
12. (d) $3.99 \times 10^{-6} \text{ Wb}$ (e) $1.77 \times 10^{-5} \text{ V}$; the average induced
emf is equal to the instantaneous in this case because the
current increases steadily. (f) The induced emf is small, so
the current in the 4-turn coil and its magnetic field will also
be small.
13. $10.2 \mu\text{V}$
14. $2.6 \mu\text{V}$
15. (a) $4.58 \times 10^{-4} \text{ V}$
16. 0.763 V
17. (a) from left to right (b) from right to left
18. into the page
19. (a) from right to left (b) from right to left (c) from left to right
20. from left to right (d) from left to right
21. (a) $F = -N^2B^2\omega^2\mu^2/R$ to the left (b) 0 (c) $F = N^2B^2\omega^2\mu^2/R$ to
the left
22. 13.3 V
23. $1.9 \times 10^{-11} \text{ V}$
24. 60 V (b) 57 V (c) 0.13 s
25. $18.1 \text{ \mu\text{V}}$ (b) 0
26. 4.0 mH
27. 4.0 mH (b) 38 A/s
28. 4.0 mH (b) 0.45 V
29. 2.4 V (b) 75 mH (c) 5.1 A
30. $1.92 \text{ \mu\text{H}}$
31. (a) 0.208 mH (b) 0.936 mJ
32. (a) $18.1 \text{ \mu\text{H}}$ (b) $7.2 \text{ \mu\text{H}}$
33. negative $(V_1 < V_2)$
34. 20.0 ms (b) 37.9 V (c) 1.52 mV (d) 51.8 mA
35. 0.500 A (b) 2.00 W (c) 2.00 W
36. 115 kV
37. (a) 0.157 mV (end B is positive) (b) 5.89 nV (end A is positive)
38. (a) 9.00 A (b) 10.8 N (c) δ is at the higher potential (d) 0

EXAMPLE QUESTIONS
1. False
2. True
3. False
4. False
5. True
6. False
7. False
8. True
9. (c)

MULTIPLE-CHOICE QUESTIONS
1. (c)
2. (a)
3. (b)
4. (a)
5. (b)
6. (b)
7. (b), (c)
8. (b), (d)
9. (a)
10. (c)
11. (c)
12. (c)
13. (c)

CONCEPTUAL QUESTIONS
1. For best reception, the length of the antenna should be
parallel to the orientation of the oscillating electric field.
Because of atmospheric variations and reflections of the
wave before it arrives at your location, the orientation of this
field may be in different directions for different stations.
2. An antenna that is a conducting line responds to the electric
field of the electromagnetic wave—the oscillating electric
field causes an electric force on electrons in the wire along
its length. The movement of electrons along the wire is
detected as a current by the radio and is amplified. Thus, a
line antenna must have the same orientation as the broadcast
antenna. A loop antenna responds to the magnetic field in the
radio wave. The varying magnetic field induces a vary-
ing current in the loop (by Faraday’s law), and this signal is
amplified. The loop should be in the vertical plane contain-
ing the line of sight to the broadcast antenna, so the mag-
netic field lines go through the area of the loop.
3. The flashing of light according to Morse code is a drastic
amplitude modulation—the amplitude is changing from a
maximum to zero. In this sense, it is similar to the on-and-
off binary code used in computers and compact disks. The
carrier frequency is that of the light, on the order of 10^{14}
Hz. The frequency of the signal depends on the skill of the signal
operator, but it is on the order of a single hertz, as the light is
flashed on and off. The broadcasting antenna for this modu-
lated signal is the filament of the lightbulb in the signal
source. The receiving antenna is the eye.
4. The sail should be as reflective as possible, so that the maxi-
mum momentum is transferred to the sail from the reflec-
tion of sunlight.
5. Suppose the extraterrestrial looks around your kitchen.
Lighbulbs and the toaster glow brightly in the infrared.
Somewhat fainter are the back of the refrigerator and the
back of the television set, while the television screen is dark.
The pipes under the sink show the same weak glow as the
walls, until you turn on the faucets. Then the pipe on the
right gets darker and that on the left develops a gleam that
quickly runs up along its length. The food on the plates

CHAPTER 21

QUICK QUIZZES
1. (c)
2. (b)
shines, as does human skin, the same color for all races.
Clothing is dark as a rule, but your seat and the chair seat
glow alike after you stand up. Your face appears lit from
within, like a jack-o’-lantern; your nostrils and the openings
of your ear canals are bright; brighter still are the pupils of
your eyes.

11. No. The wire will emit electromagnetic waves only if the cur-
rent varies in time. The radiation is the result of accelerating
charges, which can occur only when the current is not con-
stant.

13. The resonance frequency is determined by the inductance
and the capacitance in the circuit. If both L and C are dou-
bled, the resonance frequency is reduced by a factor of two.

15. It is far more economical to transmit power at a high voltage
than at a low voltage because the $P R$ loss on the transmis-
sion line is significantly lower at high voltage. Transmitting
power at high voltage permits the use of step-down trans-
formers to make “low” voltages and high currents available to
the end user.

MULTIPLE-CHOICE QUESTIONS

1. (a) 9.60 V (b) 136 V (c) 11.5 A (d) 768 W
2. 6.70 W
3. 4.0×10^8 Hz
4. 17 µF
5. 0.750 H
6. 0.450 T·m2
7. (a) 0.361 A (b) 18.1 V (c) 23.9 V (d) -53.0°
8. (a) 1.45 kΩ (b) 0.0957 9 A (c) 51.1° (d) voltage leads current
9. (a) 80.6 V (b) 108 V
10. 1.88 V
11. (a) 78.5 Ω (b) 1.59 kΩ (c) 1.52 kΩ (d) 138 mA (e) -84.3°
12. (f) $\Delta V_L = 20.7 V$, $\Delta V_F = 10.8 V$, $\Delta V_I = 2.20 \times 10^3 V$
13. (a) 103 V (b) 150 V (c) 127 V (d) 23.6 V
14. (a) 290 Ω (b) 40.0 Ω (c) 0.541 H
15. 4.30 W
16. (a) 1.8 $\times 10^8$ Ω (b) 0.71 H
17. (a) 5.81 $\times 10^7$ H (b) Yes; the resistance of the circuit is not
needed. The circuit’s resonance frequency is found by equat-
ing the inductive reactance to the capacitive reactance, which
leads to Equation 21.19.
18. $C_{max} = 4.9$ nF, $C_{max} = 51$ nF
19. 0.242 J
20. 721 V
21. 0.18% is lost
22. (a) 1.1 $\times 10^5$ kW (b) 3.1 $\times 10^2$ A (c) 8.3 $\times 10^3$ A
23. 1 000 km; there will always be better use for tax money.
24. 1.10×10^{-6} T
25. $E_{tot} = 4.55 \times 10^8$ Hz, $f_{tot} = 3.19 \times 10^8$ Hz, $E_{max}/E_{max} = 0.57$
26. $E_{tot} = 1.01 \times 10^8$ V/m, $B_{max} = 3.35 \times 10^{-11}$ T
27. 2.94 $\times 10^8$ m/s
28. 5.45 $\times 10^8$ Hz
29. (a) 188 m to 356 m (b) 2.78 m to 3.4 m
30. 5.2×10^3 Hz, 5.8 µm
31. $4.299 \times 9.84 \times 10^3$ Hz -1.6×10^7 Hz (the frequency
decreases)
32. (a) 184 Ω (b) 655 mA (c) 1.44 H
33. 1.7 cents
34. 99.6 mH
35. (a) 6.7 $\times 10^{-16}$ T (b) 5.3 $\times 10^{-17}$ W/m2 (c) 1.7×10^{-14} W
36. (a) 0.536 N (b) 8.93 $\times 10^{-6}$ m/s2 (c) 33.9 days

CHAPTER 22

QUICK QUIZZES

1. (a)
2. (a)
3. (b)
4. (c)

EXAMPLE QUESTIONS

1. (a)
2. (b)
3. False
4. (a)
5. (c)
6. (b)
7. (b)

MULTIPLE-CHOICE QUESTIONS

1. (c)
2. (c)
3. (c)
4. (b)
5. (b)
6. (b)
7. (b)
8. (a)

CONCEPTUAL QUESTIONS

1. (a) Away from the normal (b) increases (c) remains the same
2. No, the information in the catalog is incorrect. The index of refraction is given by $n = c/v$, where c is the speed of light in a vacuum and v is the speed of light in the material. Because light travels faster in a vacuum than in any other material, it is impossible for the index of refraction of any material to have a value less than 1.
3. There is no dependence of the angle of reflection on wave-
length, because the light does not enter deeply into the mate-
rial during reflection—it reflects from the surface.
4. On the one hand, a ball covered with mirrors sparkles by
reflecting light from its surface. On the other hand, a faceted
diamond lets in light at the top, reflects it by total inter-
nal reflection in the bottom half, and sends the light out
through the top again. Because of its high index of refract-
ion, the critical angle for diamond in air for total internal
reflection, namely $\theta = \sin^{-1}(n_{air}/n_{diamond})$, is small. Thus,
light rays enter through a large area and exit through a very
small area with a much higher intensity. When a diamond is
immersed in carbon disulfide, the critical angle is increased
to $\theta = \sin^{-1}(n_{carbon
disulfide}/n_{diamond})$. As a result, the light is
emitted from the diamond over a larger area and appears
less intense.
5. The index of refraction of water is 1.333, quite different
from that of air, which has an index of refraction of about 1.
The boundary between the air and water is therefore easy
to detect, because of the differing diffraction effects above
and below the boundary. (Try looking at a glass half full of
water.) The index of refraction of liquid helium, however,
happens to be much closer to that of air. Consequently,
the refractive differences above and below the helium-air
boundary are harder to see.
6. The diamond acts like a prism, dispersing the light into its
spectral components. Different colors are observed as a con-
sequence of the manner in which the index of refraction var-
ies with the wavelength.
7. Light travels through a vacuum at a speed of 3×10^8 m/s.
Thus, an image we see from a distant star or galaxy must
have been generated some time ago. For example, the star
Altair is 16 light years away; if we look at an image of Altair
today, we know only what Altair looked like 16 years ago.
This may not initially seem significant; however, astronomers
who look at other galaxies can get an idea of what galaxies looked
like when they were much younger. Thus, it does make sense
to speak of “looking backward in time.”

PROBLEMS

1. 5.00×10^8 m/s
2. 2.07×10^5 eV (b) 4.14 eV
MULTIPLE-CHOICE QUESTIONS

1. No
2. (b)
3. True
4. (b)
5. (a)
6. (c)

Seven times from the right-hand mirror and six times from the left

19. \(\theta = 30.4^\circ, \theta' = 22.3^\circ \)
20. 6.39 ns
21. 10.0 ft, 30.0 ft, 40.0 ft
22. No magnification would be 1, so a diverging lens would not make a good magnifying glass.
23. The largest magnification would be 1, so a diverging lens would not make a good magnifying glass.

CHAPTER 23

QUICK QUIZZES

1. At C.
2. (c)
3. (a) False (b) False (c) True
4. (b)
5. An infinite number
6. (a) False (b) True (c) False

EXAMPLE QUESTIONS

1. No
2. (b)
3. True
4. (b)
5. (a)
6. (c)
7. The screen should be placed one focal length away from the lens.
8. No. The largest magnification would be 1, so a diverging lens would not make a good magnifying glass.

MULTIPLE-CHOICE QUESTIONS

1. (b), (c), (e)
2. (d)
3. (c)
4. (d), (e)
5. (c)

CONCEPTUAL QUESTIONS

1. You will not be able to focus your eyes on both the picture and your image at the same time. To focus on the picture, you must adjust your eyes so that an object several centimeters away (the picture) is in focus. Thus, you are focusing on the mirror surface. But your image in the mirror is as far behind the mirror as you are in front of it. Thus, you must focus your eyes beyond the mirror, twice as far away as the picture to bring the image into focus.

3. A single flat mirror forms a virtual image of an object due to two factors. First, the light rays from the object are necessarily diverging from the object, and second, the lack of curvature of the flat mirror cannot convert diverging rays to converging rays. If another optical element is first used to cause light rays to converge, then the flat mirror can be placed in the region in which the converging rays are present, and it will change the direction of the rays so that the real image is formed at a different location. For example, if a real image is formed by a convex lens, and the flat mirror is placed between the lens and the image position, the image formed by the mirror will be real.

9. Light rays diverge from the position of a virtual image just as they do from an actual object. Thus, a virtual image can be as easily photographed as any object can. Of course, the camera would have to be placed near the axis of the lens or mirror in order to intercept the light rays.

11. This is a possible scenario. When light crosses a boundary between air and ice, it will refract in the same manner as it does when crossing a boundary of the same shape between air and glass. Thus, a converging lens may be made from ice as well as glass. However, ice is such a strong absorber of infrared radiation that it is unlikely you will be able to start a fire with a small ice lens.

13. The focal length for a mirror is determined by the law of reflection from the mirror surface. The law of reflection is independent of the material of which the mirror is made and of the surrounding medium. Thus, the focal length depends only on the radius of curvature and not on the material. The focal length of a lens depends on the indices of refraction of the lens material and surrounding medium. Thus, the focal length of a lens depends on the lens material.

PROBLEMS

1. on the order of 10^{-5} s younger
2. 10.0 ft, 30.0 ft, 40.0 ft
3. 13.3 cm in front of the mirror (b) \(-0.335 \); the image is real and inverted as in Figure 23.13a.
4. (a) \(q = -7.50 \) cm, so the image is behind the mirror. (b) The magnification is 0.25, so the image has a height of 0.50 cm and is upright.
5. 5.00 cm
6. 1.0 m
7. 8.05 cm
8. 5.0 cm behind the mirror (b) -10.0 cm
9. (a) Concave with focal length \(f = 0.83 \) m
 (b) Object must be 1.0 m in front of the mirror.
10. 38.2 cm below the upper surface of the ice
11. 5.00 cm
12. 1.0 m
13. 8.05 cm
14. 5.0 cm behind the mirror (b) -10.0 cm
15. (a) Concave with focal length \(f = 0.83 \) m
 (b) Object must be 1.0 m in front of the mirror.
16. 38.2 cm below the upper surface of the ice
17. 5.00 cm
18. 1.0 m
19. 8.05 cm
20. 5.0 cm behind the mirror (b) -10.0 cm
21. (a) Concave with focal length \(f = 0.83 \) m
 (b) Object must be 1.0 m in front of the mirror.
22. 38.2 cm below the upper surface of the ice
23. 5.00 cm
24. 1.0 m
25. 8.05 cm
26. 5.0 cm behind the mirror (b) -10.0 cm
27. (a) The image is 0.790 m from the outer surface of the glass pane, inside the water tank. (b) With a glass pane of negligible thickness, the image is 0.750 m inside the tank. (c) The
thicker the glass, the greater the distance between the final image and the outer surface of the glass.

29. 20.0 cm
31. (a) 20.0 cm beyond the lens; real, inverted, \(M = -1.00 \)
 (b) No image is formed. Parallel rays leave the lens.
33. (a) 13.5 cm in front of the lens, virtual, upright, \(M = +1/3 \)
 (b) 10.0 cm in front of the lens, virtual, upright, \(M = +1/2 \)
 (c) 6.67 cm in front of the lens, virtual, upright, \(M = +2/3 \)
35. (a) either 9.65 cm or 3.27 cm
 (b) 2.10 cm
37. (a) 39.0 mm
 (b) 39.5 mm
39. 40.0 cm
41. 30.0 cm to the left of the second lens, \(M = -3.00 \)
43. 7.47 cm in front of the second lens; 1.07 cm; virtual, upright
45. from 0.224 m to 18.2 m
47. real image, 5.71 cm in front of the mirror
49. 38.6°
51. 160 cm to the left of the lens, inverted, \(M = -0.800 \)
53. \(q = 10.7 \) cm
55. 32.0 cm to the right of the second surface (real image)
57. (a) 20.0 cm to the right of the second lens; \(M = -6.00 \)
 (b) inverted
 (c) 6.67 cm to the right of the second lens; \(M = -2.00 \); inverted
59. (a) 1.99
 (b) 10.0 cm to the left of the lens
 (c) inverted
61. (a) 5.45 m to the left of the lens
 (b) 8.24 m to the left of the lens
 (c) 17.1 m to the left of the lens
 (d) by surrounding the lens with a medium having a refractive index greater than that of the lens material.
63. (a) 263 cm
 (b) 79.0 cm

CHAPTER 24

QUICK QUIZZES
1. (c)
2. (c)
3. (c)
4. (b)
5. (b)
6. The compact disc

EXAMPLE QUESTIONS
1. False
2. The soap film is thicker in the region that reflects red light.
3. The coating should be thinner.
4. The wavelength is smaller in water than in air, so the distance between dark bands is also smaller.
5. False
6. Because the wavelength becomes smaller in water, the angles to the first maxima become smaller, resulting in a smaller central maximum.
7. The separation between principal maxima will be larger.
8. The additional polarizer must make an angle of 90° with respect to the previous polarizer.

MULTIPLE-CHOICE QUESTIONS
1. (a)
3. (b)
5. (b)
7. (c)
9. (d)

CONCEPTUAL QUESTIONS
1. You will not see an interference pattern from the automobile headlights, for two reasons. The first is that the headlights are not coherent sources and are therefore incapable of producing sustained interference. Also, the headlights are so far apart in comparison to the wavelengths emitted that, even if they were made into coherent sources, the interference maxima and minima would be too closely spaced to be observable.

5. The result of the double slit is to redistribute the energy arriving at the screen. Although there is no energy at the location of a dark fringe, there is four times as much energy at the location of a bright fringe as there would be with only a single narrow slit. The total amount of energy arriving at the screen is twice as much as with a single slit, as it must be according to the law of conservation of energy.

9. For regional communication at the Earth's surface, radio waves are typically broadcast from currents oscillating in tall vertical towers. These waves have vertical planes of polarization. Light originates from the vibrations of atoms or electronic transitions within atoms, which represent oscillations in all possible directions. Thus, light generally is not polarized.

13. If you wish to perform an interference experiment, you need monochromatic coherent light. To obtain it, you must first pass light from an ordinary source through a prism or diffraction grating to disperse different colors into different directions. Using a single narrow slit, select a single color and make that light diffract to cover both slits for a Young's experiment. The procedure is much simpler with a laser because its output is already monochromatic and coherent.

PROBLEMS
1. 632 nm
3. (a) 2.6 mm
 (b) 2.62 mm
5. (a) 36.2°
 (b) 5.08 cm
 (c) \(5.08 \times 10^{14} \) Hz
7. (a) 55.7 m
 (b) 124 m
9. 515 nm
11. 11.3 m
13. 148 m
15. 75.0 m
17. 85.4 m
A.78 Answers to Quick Quizzes, Example Questions, Odd-Numbered Multiple-Choice Questions, Conceptual Questions, and Problems

CHAPTER 25

QUICK QUIZZES
1. (c)
2. (a)

EXAMPLE QUESTIONS
1. True
2. True
3. A smaller focal length gives a greater magnification and should be selected.
4. True
5. Yes. Increasing the focal length of the mirror increases the magnification. Increasing the focal length of the eyepiece decreases the magnification.
6. More widely-spaced eyes increase visual resolving power by effectively increasing the aperture size, \(D \), in Equation 25.10. The limiting angle of resolution is thereby decreased, meaning finer details of distant objects can be resolved.
7. Resolution is better at the violet end of the visible spectrum.
8. True

MULTIPLE-CHOICE QUESTIONS
1. (c)
2. (c)
3. (b)
4. (c)

CONCEPTUAL QUESTIONS
1. The observer is not using the lens as a simple magnifier. For a lens to be used as a simple magnifier, the object distance must be less than the focal length of the lens. Also, a simple magnifier produces a virtual image at the normal near point of the eye, or at an image distance of about \(q = -25 \) cm. With a large object distance and a relatively short image distance, the magnitude of the magnification by the lens would be considerably less than one. Most likely, the lens in this example is part of a lens combination being used as a telescope.
2. The image formed on the retina by the lens and cornea is already inverted.
3. There will be an effect on the interference pattern—it will be distorted. The high temperature of the flame will change the index of refraction of air for the arm of the interferometer in which the match is held. As the index of refraction varies randomly, the wavelength of the light in that region will also vary randomly. As a result, the effective difference in length between the two arms will fluctuate, resulting in a wildly varying interference pattern.
4. Large lenses are difficult to manufacture and machine with accuracy. Also, their large weight leads to sagging, which produces a distorted image. In reflecting telescopes, light does not pass through glass; hence, problems associated with chromatic aberrations are eliminated. Large-diameter reflecting telescopes are also technically easier to construct. Some designs use a rotating pool of mercury as the reflecting surface.
5. In order for someone to see an object through a microscope, the wavelength of the light in the microscope must be smaller than the size of the object. An atom is much smaller than the wavelength of light in the visible spectrum, so an atom can never be seen with the use of visible light.
6. Farsighted; converging
7. A nearsighted person the image of a distant object focuses in front of the retina. The cornea needs to be flattened so that its focal length is increased.

PROBLEMS
1. 7.0
3. 177 m
5. 1.4
7. 8.0
9. 42.9 cm, +2.33 diopters
11. 23.2 cm
13. (a) -2.00 diopters (b) 17.6 cm
15. +17.0 diopters
17. -2.50 diopters, a diverging lens
19. (a) 5.8 cm (b) \(m = 4.3 \)
21. (a) 4.07 cm (b) \(m = +7.14 \)
23. (a) \(\Theta = 1.22 \) (b) \(\Theta / \Theta_0 = 6.08 \)
25. 2.1 cm
27. 1.84 m
29. \(m = -115 \)
31. \(f_L = 90 \) cm, \(f_p = 2.0 \) cm
33. (b) \(-f / p \) (c) -1.07 mm
37. 0.04 \(\mu \)rad
41. 3.40 mm
43. 9.8 km
45. No. A resolving power of \(2.0 \times 10^5 \) is needed, and that available is only \(1.8 \times 10^5 \).
47. 1.31 \(\times 10^7 \)
49. 50.4 \(\mu \)m
51. 40
53. (a) 8.00 \(\times 10^2 \) (b) The image is inverted.
55. (a) 1.0 \(\times 10^3 \) lines (b) 3.3 \(\times 10^2 \) lines
57. (a) +2.67 diopters (b) 0.16 diopter too low
59. (a) +4.46 diopters (b) 3.05 diopters
61. (a) \(m = -4.0 \) (b) \(m = 3.0 \)

CHAPTER 26

QUICK QUIZZES
1. False: the speed of light is \(c \) for all observers.
2. (a)
Answers to Quick Quizzes, Example Questions, Odd-Numbered Multiple-Choice Questions, Conceptual Questions, and Problems

3. False
4. No. From your perspective you’re at rest with respect to the cabin, so you will measure yourself as having your normal
 length, and will require a normal-sized cabin.
5. (a), (e); (a), (e)
6. False
7. (a) False (b) False (c) True (d) False

EXAMPLE QUESTIONS
1. 0.61 s
2. (c)
3. (a)
4. (a)
5. Very little of the mass is converted to other forms of energy
 in these reactions because the total number of neutrons and
 protons doesn’t change. The energy liberated is only the
 energy associated with their interactions.

MULTIPLE-CHOICE QUESTIONS
1. (d), (e)
2. (b), (c)
3. (c)
4. (c)
5. (a)
6. False
7. False
8. False
9. False

CONCEPTUAL QUESTIONS
1. An ellipsoid. The dimension in the direction of motion
 would be measured to be less than D.
3. No. The principle of relativity implies that nothing can travel
 faster than the speed of light in a vacuum, which is equal to
 3.00 \times 10^8 \text{ m/s}.
5. The light from the quasar moves at 3.00 \times 10^8 \text{ m/s}. The
 speed of light is independent of the motion of the source or
 the observer.
7. For a wonderful fictional exploration of this question, get a
 “Mr. Tompkins” book by George Gamow. All of the relativ-
 ity effects would be obvious in our lives. Time dilation and
 length contraction would both occur. Driving home in a
 hurry, you would push on the gas pedal not to increase your
 speed very much, but to make the blocks shorter. Big Dop-
 pler shifts in wave frequencies would make red lights look
 green as you approached and make car horns and radios
 useless. High-speed transportation would be very expensive,
 requiring huge fuel purchases, as well as dangerous, since
 a speeding car could knock down a building. When you got
 home, hungry for lunch, you would find that you had missed
 dinner; there would be a five-day delay in transit when you
 watch a live TV program originating in Australia. Finally, we
 would not be able to see the Milky Way, since the fireball of
 the Big Bang would surround us at the distance of Rigel or
 Deneb.
9. A photon transports energy. The relativistic equivalence of
 mass and energy means that is enough to give it momentum.

PROBLEMS
1. (a) 1.38 yr (b) 1.31 lightyears
2. \sqrt{\frac{3}{c}}
3. (a) 1.3 \times 10^{-7} \text{ s} (b) 38 m (c) 7.6 m
4. (a) 1.55 \times 10^{-8} \text{ s} (b) 7.09 (c) 2.19 \times 10^{-6} \text{ s} (d) 649 m
5. (e) From the third observer’s point of view, the muon is trav-
 eeling faster, so according to the third observer, the muon’s
 lifetime is longer than that measured by the observer at rest
 with respect to Earth.
6. 0.950c
7. Yes, with 19 m to spare
8. (a) 1.69 \times 10^{-20} \text{ kg m/s} (b) 1.89 \times 10^{-20} \text{ kg m/s}
9. 0.285c
10. (a) 1.35 \times 10^{20} \text{ J} (b) 1.75 \times 10^{16} \text{ J} (c) 3.10 \times 10^{19} \text{ J}
11. 0.786c
12. 18.4 \text{ g/cm}^3
13. (a) 3.91 \times 10^4 \text{ m} (b) 7.67 \text{ cm}
14. (a) 0.979c (b) 0.0652 \text{ c} (c) 0.914c
15. (a) 3.10 \times 10^5 \text{ m/s} (b) 0.758c
16. (a) \frac{v}{c} = 1 - 1.12 \times 10^{-10} (b) 6.00 \times 10^{27} \text{ J} (c) 2.17×10^{30}
17. 0.86c
18. (a) \frac{v}{c} = 0.141 \text{ c} (b) \frac{v}{c} = 0.436c
19. \frac{v}{c} = 7.0 \mu \text{ s} (b) 1.1 \times 10^4 \text{ muons}
20. 5.45 yr; Goslo is older
21. 1.74 m (b) 3.30° with respect to the direction of motion

CHAPTER 27

QUICK QUIZZES
1. True
2. (b)
3. (c)
4. False
5. (c)

EXAMPLE QUESTIONS
1. False
2. False
3. Some of the photon’s energy is transferred to the electron.
4. Doubling the speed of a particle doubles its momentum,
 reducing the particle’s wavelength by a factor of one-half.
 This answer is no longer true when the doubled speed is rela-
 tivistic.
5. True

MULTIPLE-CHOICE QUESTIONS
1. (a)
2. (c)
3. (d)
4. (c)
5. (c)

CONCEPTUAL QUESTIONS
1. The shape of an object is normally determined by observing
 the light reflecting from its surface. In a kiln, the object will
 be very hot and will be glowing red. The emitted radiation
 is far stronger than the reflected radiation, and the thermal
 radiation emitted is only slightly dependent on the material
 from which the object is made. Unlike reflected light, the
 emitted light comes from all surfaces with equal intensity, so
 contrast is lost and the shape of the object is harder to dis-
 cern.
3. The “blackness” of a blackbody refers to its ideal property of
 absorbing all radiation incident on it. If an observed room
 temperature object in everyday life absorbs all radiation, we
 describe it as (visibly) black. The black appearance, however,
 is due to the fact that our eyes are sensitive only to visible
 light. If we could detect infrared light with our eyes, we
 would see the object emitting radiation. If the temperature
 of the blackbody is raised, Wien’s law tells us that the emitted
 radiation will move into the visible range of the spectrum.
 Thus, the blackbody could appear as red, white, or blue,
 depending on its temperature.
5. All objects do radiate energy, but at room temperature this
 energy is primarily in the infrared region of the electromag-
 netic spectrum, which our eyes cannot detect. (Pit vipers
 have sensory organs that are sensitive to infrared radiation;
 thus, they can seek out their warm-blooded prey in what we
 would consider absolute darkness.)
7. We can picture higher frequency light as a stream of photons
 of higher energy. In a collision, one photon can give all of
 its energy to a single electron. The kinetic energy of such an
electron is measured by the stopping potential. The reverse voltage (stopping voltage) required to stop the current is proportional to the frequency of the incoming light. More intense light consists of more photons striking a unit area each second, but atoms are so small that one emitted electron never gets a "kick" from more than one photon. Increasing the intensity of the light will generally increase the size of the current, but will not change the energy of the individual electrons that are ejected. Thus, the stopping potential remains constant.

9. Wave theory predicts that the photoelectric effect should occur at any frequency, provided that the light intensity is high enough. However, as seen in photoelectric experiments, the light must have sufficiently high frequency for the effect to occur.

11. (a) Electrons are emitted only if the photon frequency is greater than the cutoff frequency.

13. No. Suppose that the incident light frequency at which you first observed the photoelectric effect is above the cutoff frequency of the first metal, but less than the cutoff frequency of the second metal. In that case, the photoelectric effect would not be observed at all in the second metal.

PROBLEMS

1. (a) -3.00×10^3 K (b) -20.000 K
2. 5.2×10^5 K
3. 2.49×10^{-5} eV (b) 2.49 eV (c) 249 eV
4. 2.27×10^{10} photons/s
5. 2.24×10^{-1} m/s (b) 7.28×10^{10} Hz
6. 1.92×10^{-18} J (b) 1.53×10^{-11} Hz (c) 196 nm (d) 2.15 eV (e) 2.15 V
7. 4.8×10^3 Hz (b) 2.0 eV
8. 1.2×10^6 V and 1.2×10^3 V, respectively
9. 17.8 kV
10. 0.078 nm
11. 0.281 nm
12. 70°
13. 1.18×10^{-2} kg/m/s (b) 4.78 eV
14. 2.95×10^{-15} m
15. 1.16 m/s
16. 3×10^{-5} m
17. 1.6×10^{-32} kg/m/s (b) 9.00×10^{-8} Hz (c) 4.14×10^{-5} eV
18. 2.5×10^{15} photons
19. -5.200 K, clearly, a firefly is not at that temperature, so this cannot be blackbody radiation.
20. 1.36 eV
21. 0.011 eV
22. 0.022 eV (b) 0.099 eV

CHAPTER 28

QUICK QUIZZES

1. (b)
2. (a) 5 (b) 9 (c) 25
3. (d)

EXAMPLE QUESTIONS

1. The energy associated with the quantum number n increases with increasing quantum number n, going to zero in the limit of arbitrarily large n. A transition from a very high energy level to the ground state therefore results in the emission of photons approaching an energy of 13.6 eV, the same as the ionization energy.

2. The energy difference in the helium atom will be four times that of the same transition in hydrogen. Energy levels in hydrogen-like atoms are proportional to Z^2, where Z is the atomic number.

3. The quantum numbers n and ℓ are never negative.

4. No. The M shell is at a higher energy; hence, transitions from the M shell to the K shell will always result in more energetic photons than any transition from the L shell to the K shell.

MULTIPLE-CHOICE QUESTIONS

1. (a)
2. (c)
3. (c)
4. (b), (e)
5. (c)

CONCEPTUAL QUESTIONS

1. If the energy of the hydrogen atom were proportional to n (or any power of n), then the energy would become infinite as n grew to infinity. But the energy of the atom is inversely proportional to n^2. Thus, as n grows to infinity, the energy of the atom approaches a value that is above the ground state by a finite amount, namely, the ionization energy 13.6 eV. As the electron falls from one bound state to another, its energy loss is always less than the ionization energy. The energy and frequency of any emitted photon are finite.

2. The characteristic x-rays originate from transitions within the atoms of the target, such as an electron from the L shell making a transition to a vacancy in the K shell. The vacancy is caused when an accelerated electron in the x-ray tube supplies energy to the K shell electron to eject it from the atom. If the energy of the bombarding electrons were to be increased, the K shell electron will be ejected from the atom with more remaining kinetic energy. But the energy difference between the K and L shell has not changed, so the emitted x-ray has exactly the same wavelength.

3. A continuous spectrum without characteristic x-rays is possible. At a low accelerating potential difference for the electron, the electron may not have enough energy to eject an electron from a target atom. As a result, there will be no characteristic x-rays. The change in speed of the electron as it enters the target will result in the continuous spectrum.

4. The hologram is an interference pattern between light scattered from the object and the reference beam. If anything moves by a distance comparable to the wavelength of the light (or more), the pattern will wash out. The effect is just like making the slits vibrate in Young’s experiment, to make the interference fringes vibrate wildly so that a photograph of the screen displays only the average intensity everywhere.

5. If the Pauli exclusion principle were not valid, the elements and their chemical behavior would be grossly different, because every electron would end up in the lowest energy level of the atom. All matter would therefore be nearly alike in its chemistry and composition, since the shell structures of each element would be identical. Most materials would have a much higher density, and the spectra of atoms and molecules would be very simple, resulting in the existence of less color in the world.

6. The three elements have similar electronic configurations, with filled inner shells plus a single electron in an s orbital. Because atoms typically interact through their unfilled outer shells, and since the outer shells of these atoms are similar, the chemical interactions of the three atoms are also similar.

7. Each of the eight electrons must have at least one quantum number different from each of the others. They can differ (in m_s) by being spin-up or spin-down. They can differ (in ℓ) in angular momentum and in the general shape of the wave function. Those electrons with $\ell = 1$ can differ (in m_ℓ) in orientation of angular momentum.

8. Stimulated emission is the reason laser light is coherent and tends to travel in a well-defined parallel beam. When a pho-
tron passing by an excited atom stimulates that atom to emit a photon, the emitted photon is in phase with the original photon and travels in the same direction. As this process is repeated many times, an intense, parallel beam of coherent light is produced. Without stimulated emission, the excited atoms would return to the ground state by emitting photons at random times and in random directions. The resulting light would not have the useful properties of laser light.

PROBLEMS

1. (a) 121.5 nm, 102.5 nm, 97.20 nm (b) Far ultraviolet

3. False

5. (a) $121.5 \text{ nm, } 102.5 \text{ nm, } 97.20 \text{ nm}$ (b) Far ultraviolet

7. $E = 1.95 \times 10^{-12} \text{ J}$

11. $E = \frac{\mathcal{E}_1^2}{2m_1} + \frac{\mathcal{E}_2^2}{2m_2} + \frac{\mathcal{E}_3^2}{2m_3} + \frac{\mathcal{E}_4^2}{2m_4} + \frac{\mathcal{E}_5^2}{2m_5}$

15. (a) 1.86 eV (b) 0.472 eV

19. (a) 688 nm (b) 0.814 m/s

21. (a) 0.476 nm (b) 0.997 nm

23. (a) 0.020 5 nm (b) 0.017 6 nm (c) 0.013 2 nm

25. (a) 0.133 nm

27.

<table>
<thead>
<tr>
<th>n</th>
<th>ℓ</th>
<th>m_{ℓ}</th>
<th>m</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>2</td>
<td>2</td>
<td>+</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>-1</td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>-2</td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>1</td>
<td>+</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>0</td>
<td>+</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>-1</td>
<td>+</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>-1</td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>-2</td>
<td>+</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>-2</td>
<td>-</td>
</tr>
</tbody>
</table>

29. Fifteen possible states, as summarized in the following table:

<table>
<thead>
<tr>
<th>n</th>
<th>ℓ</th>
<th>m_{ℓ}</th>
<th>m</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>2</td>
<td>2</td>
<td>+</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>2</td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>1</td>
<td>+</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>0</td>
<td>+</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>-1</td>
<td>+</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>-1</td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>-2</td>
<td>+</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>-2</td>
<td>-</td>
</tr>
</tbody>
</table>

31. (a) 30 possible states (b) 36

33. $n = 4 \text{ and } \ell = 2$ (b) $m_{\ell} = \{0, \pm 1, \pm 2\}$, $m = \pm 1/2$

35. 0.160 nm

37. (a) 10.2 eV (b) $7.88 \times 10^4 \text{ K}$

39. $1.0 \text{ keV} (b) 4.69 \times 10^4 \text{ J}$

41. (a) 5.40 keV (b) $5.40 \text{ eV} (c) 3.39 \text{ keV}$

43. (a) $4.24 \times 10^{-4} \text{ W/m}^2$ (b) $1.20 \times 10^{-2} \text{ J}$

CHAPTER 29

QUICK QUIZZES

1. False

3. (c)

5. (a) and (b)

EXAMPLE QUESTIONS

1. Tritium has the greater binding energy. Unlike tritium, helium has two protons that exert a repulsive electrostatic force on each other. The helium-3 nucleus is therefore not as tightly bound as the tritium nucleus.

2. Doubling the initial mass of radioactive material doubles the initial activity. Doubling the mass has no effect on the half-life.

3. $7.94 \times 10^{-13} \text{ J, } 4.69 \times 10^4 \text{ J}$

4. The binding energy of carbon-14 should be greater than nitrogen-14 because nitrogen has more protons in its nucleus. The mutual repulsion of the protons means that the nitrogen nucleus would require less energy to break up than the carbon nucleus.

5. No

6. Reactions between helium and beryllium can be found in the Sun.

MULTIPLE-CHOICE QUESTIONS

1. (e)

3. (a)

5. (a)

7. (c)

9. (b)

11. (c), (e)

CONCEPTUAL QUESTIONS

1. Isotopes of a given element correspond to nuclei with different numbers of neutrons. This will result in a variety of different physical properties for the nuclei, including the obvious one of mass. The chemical behavior, however, is governed by the element's electrons. All isotopes of a given element have the same number of electrons and, therefore, the same chemical behavior.

3. An alpha particle contains two protons and two neutrons. Because a hydrogen nucleus contains only one proton, it cannot emit an alpha particle.

5. In alpha decay, there are only two final particles: the alpha particle and the daughter nucleus. There are also two conservation principles: energy and of momentum. As a result, the alpha particle must be ejected with a discrete energy to satisfy both conservation principles. However, beta decay is a three-particle decay: the beta particle, the neutrino (or antineutrino), and the daughter nucleus. As a result, the energy and momentum can be shared in a variety of ways among the three particles while still satisfying the two conservation principles. This allows a continuous range of energies for the beta particle.

7. The larger rest energy of the neutron means that a free neutron in space will not spontaneously decay into a neutron and a positron. When the neutron is in the nucleus, however, the important question is that of the total rest energy of the nucleus. If it is energetically favorable for the nucleus to have one less proton and one more neutron then the decay process will occur to achieve this lower energy.

9. Carbon dating cannot generally be used to estimate the age of a stone, because the stone was not alive to take up carbon from the environment. Only the ages of objects that were once alive can be estimated with carbon dating.

11. The protons, although held together by the nuclear force, are repelled by the electrostatic force. If enough protons were placed together in a nucleus, the electrostatic force would overcome the nuclear force, which is based on the number of particles, and cause the nucleus to fission.

The addition of neutrons prevents such fission. The neutron does not increase the electrical force, being electrically neutral, but does contribute to the nuclear force.

13. The photon and the neutrino are similar in that both particles have zero charge and very little mass. (The photon has zero mass, but recent evidence suggests that certain kinds of neutrinos have a very small mass.) Both must travel at the speed of light and are capable of transferring both energy and momentum. They differ in that the photon has spin (intrinsic angular momentum) and is involved in...
electromagnetic interactions, while the neutrino has spin $\frac{1}{2}$, and is closely related to beta decays.

PROBLEMS
1. $A = 2, r = 1.5$ fm; $A = 60, r = 4.7$ fm; $A = 197, r = 7.0$ fm; $A = 239, r = 7.4$ fm
2. 1.8×10^{16} m
3. 27.6×10^{-2} m/s (b) 1.75 MeV
4. 1.9×10^{10} m/s (b) 7.1 MeV
5. $a) 8.1$ MeV (b) 8.7 MeV (c) 8.6 MeV
6. 3.54 MeV
7. 0.210 MeV/nucleon greater for 26Na, attributable to less proton repulsion
15. 0.46 G
17. (a) 6.95×10^{-3} s (b) 9.98×10^{-7} s$^{-1}$ (c) 1.9×10^{-4} decays/s (d) 1.9×10^{10} nuclei (e) 3.0209 mCi
19. 4.31×10^{15} yr
21. (a) 5.58×10^{-2} h$^{-1}$, 12.4 h (b) 2.39×10^{15} nuclei (c) 1.9 mCi
23. (a) 19Ne (b) 39Xe (c) $X = e^+, X' = \nu$ (d) 19Ne (e) 39Xe (f) $X = e^+, X' = \nu$
25. (a) 15N (b) 15B (c) 15B
27. (a) cannot occur spontaneously (b) can occur spontaneously
29. 18.6 keV
31. 4.22×10^{15} yr
33. (a) 15Ne (b) 39Xe (c) $X = e^+, X' = \nu$
35. (a) 15N (b) 15B
37. (a) 15N (b) Fluoride mass $= 18.000953$ u
39. 18.8 s
43. 24 d
45. (a) 8.97×10^{11} electrons (b) 0.100 J (c) 100 rad
47. (a) 3.18×10^{-5} mol (b) 1.92×10^{15} nuclei (c) 1.08×10^{14} Bq (d) 8.96×10^9 Bq
49. 46.5 d
51. (a) 4.0×10^8 yr (b) It could be no older. The rock could be younger if some $\frac{1}{2}$Sr were initially present.
53. 54 μCi
55. 4.4×10^{-8} kg/h

CHAPTER 30
QUICK QUIZZES
1. (a)
3. (b)

EXAMPLE QUESTIONS
1. 1 mg/yr
2. 1.77×10^2 J
3. True
4. No. That reaction violates conservation of baryon number.

MULTIPLE-CHOICE QUESTIONS
1. (d)
3. (b)
5. (b)
7. (d)
9. (a), (c)

CONCEPTUAL QUESTIONS
1. The experiment described is a nice analogy to the Rutherford scattering experiment. In the Rutherford experiment, alpha particles were scattered from atoms and the scattering was consistent with a small structure in the atom containing the positive charge.
3. The largest charge quark is $2e/3$, so a combination of only two particles, a quark and an antiquark forming a meson, could not have an electric charge of $+2e$. Only particles containing three quarks, each with a charge of $2e/3$, can combine to produce a total charge of $2e$.
5. Until about 700,000 years after the Big Bang, the temperature of the Universe was high enough for any atoms that formed to be ionized by ambient radiation. Once the average radiation energy dropped below the hydrogen ionization energy of 13.6 eV, hydrogen atoms could form and remain as neutral atoms for relatively long period of time.
7. In the quark model, all hadrons are composed of smaller units called quarks. Quarks have a fractional electric charge and a baryon number of $\frac{1}{2}$. There are six flavors of quarks: up (u), down (d), strange (s), charmed (c), top (t), and bottom (b). All baryons contain three quarks, and all mesons contain one quark and one antiquark. Section 30.12 has a more detailed discussion of the quark model.
9. Baryons and mesons are hadrons, interacting primarily through the strong force. They are not elementary particles, being composed of either three quarks (baryons) or a quark and an antiquark (mesons). Baryons have a nonzero baryon number with a spin of either $\frac{1}{2}$ or $\frac{3}{2}$. Mesons have a baryon number of zero and a spin of either 0 or 1.
11. All stable particles other than protons and neutrons have baryon number zero. Since the baryon number must be conserved, and the final states of the kaon decay contain no protons or neutrons, the baryon number of all kaons must be zero.

PROBLEMS
1. 0.387 g
3. 129 MeV
5. (a) 16.2 kg (b) 117 g
7. 2.9×10^{12} km (≈ 1800 miles)
9. 1.01 g
11. (a) 12Be (b) 14C (c) 7.27 MeV
13. 3.07×10^{22} events/yr
15. 14.1 MeV
17. (a) 4.55×10^{15} Hz (b) 0.622 fm
19. 67.5 MeV, 67.5 MeV/e, 1.63×10^{15} Hz
21. (a) conservation of electron-lepton number and conservation of muon-lepton number (b) conservation of charge (c) conservation of baryon number (d) conservation of baryon number (e) conservation of charge
23. p_μ
25. (a) charge, baryon number, L_μ, L_e (b) charge, baryon number, L_μ, L_e (c) charge, L_μ, L_e, strangeness number (d) charge, baryon number, L_μ, L_e, strangeness number (e) charge, baryon number, L_μ, L_e, strangeness number (f) charge, baryon number, L_μ, L_e, strangeness number
27. 3.34×10^{18} electrons, 9.36×10^{28} up quarks, 8.70×10^{28} down quarks
29. (a) Σ^- (b) π^- (c) K^0 (d) Ξ^-
31. a neutron, udd
33. 18.8 MeV
35. (a) electron-lepton and muon-lepton numbers not conserved (b) electron-lepton number not conserved (c) charge not conserved (d) baryon and electron-lepton numbers not conserved (e) strangeness violated by 2 units
37. 26
39. (b) 12 days
41. 29.8 MeV
43. 3.60×10^{18} protons/s
Angular momentum (L), 249–254, 250f
definition of, 249
of electromagnetic wave, 717, 724 torque and, 249–254
Angular position, 191
Angular quantities
relation to linear quantities, 194, 196–199, 218, 228–229
as vectors, 202
Angular speed average (ωav), 191, 218 instantaneous (ω), 192
tangential speed and, 196, 218
Angular velocity (ω), direction of, 202, 202f
Antenna, electromagnetic wave production by, 714–715, 714f, 714f
Antifreeze testing devices, 286, 286f
Antimatter, storage of, 640
Antineutrinos, 924, 929
Antinodes, of standing wave, 475–476, 475f, 480, 481f
Antiparticles, 918, 924–945, 946, 956
Antiquarks, 951–952, 951f
Anvil (ear bone), 487f, 488f
Aperture of cameras, 781–782, 823f, 824 circular, resolution of, 836, 836f single-slit, resolution of, 835–836, 835f, 836f
Apnea monitors, 669–670, 670f
Apollo 11, 90f
Appliances, energy use by, 143
Aqueous humor, 829f
Arch, 275–276, 277f
Archimedes, 284, 285f
Archimedes’ principle, 284–290, 285f, 311
Architecture, stress models in, 813, 813f
Area thermal expansion and, 331–332 units, 5f
Area expansion coefficient (γ), 331–332, 345f
Argon (Ar)
ground-state configuration, 904f
molar specific heat, 391f
as noble gas, 904
Aristarchus, 24f
Aristotle, 42
Arsenic (As), ground-state configuration, 904f
Arteriosclerosis, vascular filler in, 297, 297f
Artificial gravity, 203
Artificial kidneys, 309, 309f
Artificial radioactivity, 926
Asbestos, thermal conductivity, 367f
Asteroids, impact of, on Earth, 142, 364–365
Astigmatism, 781f, 826
Astronomy. See also Moon; Planets; Sun; Telescopes; specific planets atmospheric refraction, 772–773, 772f
Big Bang theory, 954–955, 954f, 957 black holes, 864–865
Astronomy (Continued) comets, impact on Earth, 142, 364–365 Crab Nebula, 250, 251f
curvature of spacetime, 864
dark energy, 869
dark matter, 269
escape speeds, planetary, 213–215, 214f
history of, 24–25, 207, 215
Kepler’s laws, 213–218, 219
neutron stars, 251
observations, electromagnetic spectrum and, 722, 722f
pulsars, 251
radio waves, 721–722, 721f
radioactivity, 725–727, 726f
relativistic effects, 717–718, 717f
sound rays, 143–144, 144f
spectrophotometry, 772–773, 772f
tidal forces, 213–215, 214f
time dilation, 717–718, 717f
ultraviolet, 724–725, 725f
Aurora australis, 894
Aurora borealis, 626f
Average angular acceleration (aav), 191, 218
Average electric current (Iav), 570, 571, 588
Average force (Fav), impulse-momentum theorem and, 163, 163f
Average power (Pav), definition of, 143
Average speed, 26–27, 47
Average velocity (vav), 193, 218
in one dimension, 31–32, 47 in two dimensions, 61, 74
Average angular acceleration (aav), 193, 218
Average angular speed (ωav), 191, 218
Average electric current (Iav), 570, 571, 588
Average force (Fav), impulse-momentum theorem and, 163, 163f
Average power (Pav), definition of, 143
Average speed, 26–27, 47
Back side of convex mirror, 764, 764f
of spherical refracting surface, 769 of thin lens, 775
Back pressure, 409
Backward wave, 720f
Bacteria doubling time of, 608
magnetic navigation in, 629
Backlight dielectric constant, 558f
dielectric strength, 558
Ballistic pendulum, 171, 172f
Ballpoint pens, pressure within, 284
Balmer, Johann, 892
Balmer series, 892–893, 893f, 897, 897f
Barely resolved image, 835, 836f
Barometers, 283, 283f
Baryon(s), 945, 946f, 950, 950f, 951, 951f, 952, 952f
Baryon number, conservation of, 947
Basal metabolic rate, 414
Battery
in automobile, 537
circuit symbol for, 548, 549f
history of, 570
internal resistance, 595
open-circuit voltage, 595
terminal voltage, 595, 615–616
Battery charge indicators, 286, 287f
Beaches, airflow near, 355, 355f, 371
Beats(s), 484–486, 484f, 490
Beat frequency, 485, 490
Becquerel (Bq), 919
Becquerel, Antoine Henri, 918, 918f
Bednorz, J. Georg, 584
Bed of nails, 278
Bees, navigation in, 812
Bell, Alexander Graham, 464
Benzene, index of refraction, 738f
Bernoulli, Daniel, 293, 293f
Bernoulli’s equation, 293–294, 293f, 294f, 312
applications, 294–299
Beryllium (Be)
ground-state configuration, 904f
specific heat, 355f
Beta (β) decay, 918, 922–924, 923f, 932f
Beta (β) particles, 918
Biconvex lens, 773, 773f
Bilayer film, 776
Bicycle, gear system of, 241, 241f
Big Bang theory, 954–955, 954f, 957
Bimetallic strips, 330, 331f
Binding energy, 916–917, 917f, 951
Birds, magnetic navigation in, 629
Black bodies, 373
Blackbody radiation, and quantum theory, 871–872, 871f,
872f, 886
Black holes, 864–865
Blood
cleansing, by kidneys, 308–309, 309f
in oxygen diffusion, 308
pressure, measuring of, 283–284, 284f
speed of, measuring, 460
viscosity of, 305, 305f
Body temperature, maintenance of, 372
Bohr, Niels, 4, 892, 894, 895f
Bohr correspondence principle, 898, 908
Bohr radius (a0), 895f
Boiling point, 324, 325–326, 326f
Boltzmann’s constant (k_B), 340, 342, 346, 411
Booster rockets, 179
Boron (B), ground-state configuration, 904f
Bosons, 944, 944f, 950, 952–953
Bottom quark (b), 4, 950–951, 951f
Boxing, brain injury in, 163
Bragg, W. L., 877
Bragg’s Law, 877, 886
Brake, Tycho, 215
Brain
boxing injury to, 163
fluid supporting, 163, 286
Breaking point, 271, 271f
Bremsstrahlung, 876
Breast, David, 812
Breast’s angle, 812
Breast’s law, 812, 815
Bright fringes
conditions for, 792–793, 792f, 815
in thin films, 796–797, 815
location of, 793, 815
British thermal unit (Btu), 353
Bromine (Br), ground-state configuration, 904f
Brown dwarf stars, 213
Bulk modulus (B), 271, 271f, 311
Bulk stress, See Volume stress
Bungee jumping, 435
Bunsen, Robert, 604f
Buoyant forces (B), 284–290, 286f, 311
on floating objects, 286, 286f, 289–290
in motion through viscous medium, 309–310
in sedimentation, 310
on submerged objects, 285–286, 286f, 287–289
C
Cadmium (Cd), specific heat, 355f
Calcium (Ca)
ground-state configuration, 904f
as paramagnetic substance, 651
Calculators, significant figures on, 8
Calorie (C), 353
calorie (cal), 353, 377
Calorimeters, 357
Calorimetry, 357–359, 377
problem-solving strategy for, 362
Cameras, 823–824, 823f, 841
aperture of, 781–782, 823f, 824
digital, 823, 825f
flash attachment, 547
f-number, 824, 841
ultrasonic ranging units in, 461
Cancer treatment, electric field therapy, 699
Capacitance (C)
definition of, 546
equivalent for parallel capacitors, 550–551, 563
for series capacitors, 552–553, 563
of parallel-plate capacitor with dielectric, 557–558, 557f, 560–561, 563
without dielectric (air), 547–548
problem-solving strategy for, 553
Capacitive reactance (X_C), 700, 723
Capacitor(s) (Continued)
commercial, structural of, 558–559, 559f
in DC circuits
in parallel, 549–551, 549f, 563
problem-solving strategy for, 553
RLC circuits, 607–611, 607f, 616
applications, 608
in series, 551–553, 551f, 563
definition of, 546, 546f
with dielectrics, 557–562, 557f, 559f, 563
electrolytic, 558–559, 559f
energy stored in, 555–557, 555f, 563
maximum operating voltage, 555
parallel-plate, 323, 547–549, 547f, 562–563
variable, 558–559, 559f
Capillary action, 303–304, 303f
Capillary tubes, 303–304, 303f
Carbon (C)
carbon-12, 335–336
carbon-14, radioactive decay of, 923, 924, 925–926
ground-state configuration, 904f
resistivity, 577f
temperature coefficient of resistivity, 577f
Carbon dating, 924, 925–926
Carbon dioxide (CO2)
atmospheric concentrations of, 376–377, 376f
index of refraction, 738f
molar specific heat, 391f
Carbon disulfide, index of refraction, 738f
Carbon monoxide, molar specific heat, 391f
Carbon tetrachloride, index of refraction, 738f
Carburators, 297
Cardiac pacemaker, 586
Car lifts, 281–282
Carlson, Chester, 545
Carnot, Sadi, 405, 406f
Carnot cycle, 405, 406f, 417
Carnot engine, 405–408, 406f, 417
Carnot’s theorem, 405
Cartesian coordinate system
conversion to/from polar coordinates, 14–15
defined, 13, 13f, 18
Case ground, 612–613, 613f
Cat, eye, resolution of, 836
Cavendish, Henry, 208, 208f
Cavitron ultrasonic surgical aspirator (CUSA), 461
CCD. See Charge-coupled device
CDs. See Compact discs
Cell(s)
osmosis and, 308
surface-area-to-volume ratio, 308
Cell membranes, diffusion through, 308
Celsius scale, 324, 345
conversion to/from Fahrenheit scale, 703f, 724
conversion to/from Kelvin scale, 325, 326
Conversions (Continued)
Celsius scale to/from Kelvin scale, 325, 326
electron volt to/from joules, 860–861
gauss to/from tesla, 650
radians to/from degrees, 191
radiants to/from rpm's, 192
SI units to/from U.S. customary units, 9–10, 87, 143

Convex-concave lens, 773f
Convex mirrors, 764, 766, 768, 782
Coordinate systems, 13–14, 18
reference frames ax, 70
selection of
in gravitational potential energy problems, 129–130, 129f
in Newton’s second law problems, 94–95, 94f
in spring problems, 137
vector components and, 57–58, 58f
Copernicus, Nicolaus, 24, 215
Copper (Cu)
ground-state configuration, 904f
latent heat of fusion, 360f
latent heat of vaporization, 360f
resistivity, 577f
specific heat, 355f
speed of sound in, 462f
temperature coefficient of resistivity, 577f
thermal conductivity, 367f
work function, 873f
Cornea, 824, 825f
Correspondence principle (Bohr), 898, 908
Cosine (cos), 14
Cosmic Background Explorer (COBE), 955
Coulomb (C), 499, 645
Coulomb, Charles, 500, 501f
Coulomb force, 502. See also Coulomb’s Law
conservation of, 532
Coulomb’s constant (k), 501, 523
Coulomb’s Law, 500–505, 502f, 523
Crab Nebula, 250, 251f
Crest, of wave, 444
Crick, F. H. C., 878
Critical angle, 748, 748f, 752
Critical condition, of nuclear reactor, 940
Critical damping, 442, 442f
Critical temperature, of superconductor, 584f, 584f
Crystalline lens, 824, 825, 825f
Crystalline solids, 269, 269f
diffraction of x-rays by, 875, 875f, 876–878, 876f, 877f, 886
Crystallization of molecules, 878
Curie (G), 919
Curie, Pierre, 918, 918f
Curie temperature, 651
Current. See Electric current
Curvature of spacetime, 864
CUSA. See Caviton ultrasonic surgical aspirator
Cutoff frequency (fc), in photoelectric effect, 873–874, 874f
Cutoff wavelength (λc), in photoelectric effect, 874
Cyclic processes, in heat engines, 399, 417
Cyclotron(s) (accelerators), 537–538, 927f, 953f
Cyclotron equation, 639–642
Cytosine, 878
D
Damping, 442, 442f
Dark energy, 269
Dark matter, 269
Daughter nucleus, 921
Davisson-Germer experiment, 881
DC. See Direct current
de Broglie, Louis, 880–881, 881f, 887
de Broglie wavelength, 881–882, 887, 894
Decay constant (λ), 918
Decay rate (activity; R), 918–919, 919f, 932
Deceleration, 32
Decibels, 464–465, 465f, 489
Defibrillators external, 556
Implanted Cardioverter Defibrillators (ICDs), 586–587, 587f, 587f
Degrees, conversion to/from radians, 191
Degrees of freedom, of gas molecule, 390
Delta (Δ), 25
Democritus, 4
Dendrites, 614, 614f
Density, 276–277, 276f, 311
Density waves, 445
Depolarization wave, 585, 585f
Depth of field, of camera, 824
Destructive interference, 449, 449f, 451, 473–474, 490
of light waves
conditions for, 792, 792f, 793, 796–797, 815
location of, 793
in single-slit diffraction, 803, 815
Detergent contact angle and, 303
as surfactant, 300, 300f, 301
Deuterium binding energy, 916
as fusion fuel, 937f, 941–942, 956
as isotope, 4, 913
Desaw flakes, 375, 375f
Dialysis, 309, 309f
Dialysis machines, 635
Diamagnetic material, 651, 651f
Diamond index of refraction, 738f
sparking of, 749
Diastolic pressure, 284
Diatomic gases, internal energy of, 353, 390
Dielectric(s), 557–562, 563
atomic description of, 561–562, 561f
and capacitance, 557–558, 557f,
560–561, 563
definition of, 557
Dielectric breakdown, 551f, 558, 558f
Dielectric constant (ε), 557–558, 558f
Dielectric strength, 558, 558f
Dieting, metabolism and, 414–415
Diffraction of light waves, 802, 815
diffraction gratings, 805–808, 805f, 806f, 815, 838–840, 841
Fraunhofer diffraction, 802, 802f, 803–804, 805f
history of research on, 733
and resolution, 835–840
single-slit diffraction, 803–805, 805f, 815
of sound waves, 804
of x-rays by crystals, 875, 875f, 876–878, 876f, 877f, 886
Diffraction gratings, 805–808, 805f, 806f, 815
resolution of, 838–840, 841
Diffraction grating spectrometer, 806, 806f
Diffuse reflection, 734–735, 734f
Diffusion, 307–308, 307f
Diffusion coefficients, 308, 308f
Diffusion rate, 307
Digital cameras, 823, 823f
Digital multimeter, 757, 757f
Digital videodiscs. See DVD
Dimensional analysis, 5–7, 18
Diode, as nonohmic device, 576
Dioptrics, 826, 841
Dip angle, 629
Dirac, Paul A. M., 900, 944, 945f
Dirac equation, 900
Direct-current (DC) circuits, 594–615
capacitors in parallel, 549–551, 549f, 563
in series, 551–553, 551f, 563
emf sources, 594–595, 615–616
Kirchhoff’s rules, 603–606, 603f,
604f, 616
problem-solving strategies
kapacitors, 553
Kirchhoff’s rules, 604
resistors, 601–602
RC circuits, 607–611, 607f, 616
applications, 608
resistors in parallel, 598–603, 598f, 616
resistors in series, 595–597, 596f, 616
RL circuits, 683–687, 683f, 684f, 688
Direct-current (DC) motors, 638–639, 638f
Dispersion, of light, 742–746, 742f, 743f, 745f, 746f, 752
Displacement. See also Position
angular, 191, 191f
linear
in one dimension, 25–26, 25f, 47
as function of time (constant acceleration), 35, 36f
in two dimensions, 61, 61f, 74
resultant, 56
Dissipative forces. See also Friction
nonconservative forces as, 126
rotational motion with, 247,
248–249, 254
Diverging mirrors. See Convex mirrors
Diverging (negative) thin lenses, 773, 773f, 774f, 771–776, 776f, 778–779
Electromagnet. See Solenoid
Electromagnetic force, as fundamental force, 84, 943, 944f, 953, 953f, 956
Electromagnetic pumps, 634f, 635
Electromagnetic radiation, and energy transfer, 141
Electromagnetic spectrum, 720–722, 721f, 724
Electromagnetic waves
Doppler effect in, 722–723
frequency vs. wavelength, 720
Hertz's research on, 713–714, 713f, 714f, 724
Maxwell's predictions regarding, 712–713, 724
production by antenna, 714–715, 714f, 714f
properties of, 715–720, 724
quantization of, 873 (See also Quantum physics)
spectrum of, 720–722, 721f, 724
speed of, 713
Electron(s)
antiparticle of, 918, 924
in atomic structure, 4, 498
charge, 498, 499, 501, 501, 914, 914f
in electric circuits, drift speed of, 572–574, 572f, 588
electron clouds, 902, 902f
as lepton, 946, 946f
mass, 501f, 914, 914f
number of, in gram of matter, 498
rest energy, 861
spin, 900–902, 900f
Electron microscopes, 882, 883f
Electron neutrino (v_e), 946, 946f
Electron volt (eV), 543
conversion to/from Joules, 860–861
Electrostatic air cleaners, 545
Electrostatic confinement, 547
Electrostatic equilibrium conductors in
electric potential on, 542–543, 542f
properties of, 515–515, 515f, 514f, 523
definition of, 513
Electrostatic forces, 501
Electrostatic precipitators, 544–545, 544f
Electroweak force, 953, 954, 954f
Electroweak theory, 953
Elements
atomic structure and, 4
chemical properties, 903–905
periodic table, 335, 903–905, 909f
emf
induced
applications, 675–680
back emf, 679–680, 679f
definition of, 663–664, 664f
direction of, 667–668, 667f, 674–675, 674f, 675f
Faraday's law of magnetic induction, 666–670, 687
in generators, 676–680
Lenz's law, 667–668, 674–675, 674f, 675f
motional emf, 670–674, 670f, 671f, 687
emf (Continued)
self-induced emf, 680–683, 680f, 681f, 687
motional, 670–674, 670f, 671f, 687
sources of, 594–595, 615–616
Emission spectra, 892–894, 893f
fine structure, 900
hydrogen, 892, 893f, 894, 896
mercury, 895f
neon, 895f
Emissivity, 372
Endothermic nuclear reactions, 928, 932
Energy. See also Elastic potential energy;
Gravitational potential energy;
Heat; Internal energy; Kinetic energy;
Mechanical energy; Potential energy;
Rotational kinetic energy
in capacitor, 555–557, 555f, 563
carried by electromagnetic wave, 716, 724
of characteristic x-rays, 905–906
in circuit, transfer of, 580–581, 581f
conservation of. See Conservation dark, 269
equilibrium state and, 300
from fission, 938–939
from fusion, 942, 943
higher grade, defined, 413
in inductor, 688–687, 688
mass equivalent of, 860, 862, 914
of photon, 735, 751
quantization of. See Quantum physics
rest, 859, 865
conversion of atomic mass units to/from, 861
of electron, 861
in rotational motion, types of, 247, 254
same grade, defined, 413
total, 859–860, 861, 866
and relativistic momentum, 860–861, 866
transfer from system, methods of, 141, 385, 388
zero-point, 326
Energy level diagrams, hydrogen, 895–896, 896f
Energy transfer equation, 355–356
Engine(s). See also Heat engines of automobile
conversion of harmonic to circular motion in, 433, 433f
temperature regulation, 371
Carnot engine, 405–408, 406f, 417
internal combustion as heat engine, 399
work done by, 393–394
steam, 399, 407–408
Entropy (S)
calculating change in, 408–411, 417
definition of, 408
as increased disorder, 411–413
molecular view of, 412
of Universe, 408–409, 411–413
Equality, of vectors, defined, 55, 55f
Equation(s)
dimensional analysis of, 5–7, 18
units, canceling of, 9–10
Equation of continuity, 290–293, 291f,
295–296, 311
Equations of state, 355
Equilibrium
electrostatic conductors in
electric potential on, 542–543, 542f
properties of, 515–515, 515f, 514f, 523
definition of, 513
and energy level, 300
mechanical conditions for, 232–233, 254
definition of, 95
examples of, 236–239
Newton's second law and, 95–97, 95f, 109
problem-solving strategy, 236
rotational, conditions for, 232–233
thermal, 323, 345, 358–359, 362–364
translational, conditions for, 232
Equilibrium temperature, calculation of, 358–359, 362–364
Equiopotential(s), 543, 544f
Equiopotential surfaces, 543, 562
Escape speed, 213–215, 214f
Estimation, 11–13, 18
Eta (η), 946f
Ether, luminesferous, 849–850, 849f, 850f
Ether wind, 849–850, 849f, 850f
Ethyl alcohol
index of refraction, 738f
latent heat of fusion, 360f
latent heat of vaporization, 360f
specific heat, 355f
surface tension, 300f
Euler's constant, 607
European Council for Nuclear Research (CERN), 854
European Space Agency, launch location, 197
Event horizon, 864–865
Excited states, 907, 907f, 909
Exclusion principle (Pauli), 902–903, 903f, 909
Exercise
energy expenditure in, 147
physical fitness and oxygen consumption, 415–416, 416f
physiology of, 354–355
and weight control, 414–415
Exhaust speed, of rocket, 299
Exothermic nuclear reactions, 928, 932
Expansion. See Thermal expansion
Expansion joints, 328, 329
Exponential decay, 919, 919f
Eye
cat, resolution of, 836
fish, view from under water, 749–750
human, 824–829, 825f
accommodation, 825–826
anatomy, 824–825, 825f
conditions of, 825–829, 826f, 827f, 841
diving masks with vision-correcting lenses, 779
fluid pressure in, 169
image formation in, 824–825
Index
Index

Eye, human (Continued)
red-eye in photographs, 735
and sunglasses UV protection, 720f
underwater vision, 770
vision correction, 826–828, 826f, 827f
wavelength sensitivity of, 722
Eye-piece, of microscope, 830, 831f

F
Fahrenheit scale, 326, 326f, 345
conversion to/from Celsius scale, 326–327
conversion to/from Kelvin scale, 327
Farad (F), 546
Faraday, Michael, 84, 505, 510, 514, 663, 664f
Faraday’s ice-pail experiment, 514, 514f
Faraday’s law of magnetic induction, 666–670, 687
Farnsworth, Philo, 942
Far point, of eye accommodation, 825
Farsightedness (hyperopia), 825–827, 826f, 841
Femtometer (fm), 914–915
Fermi (fm), 914–915
Fermi, Enrico, 923, 924f, 939–940
Fermions, 950
Ferromagnetic substances, 651
Feynman, Richard, 860, 862, 937–940, 939f, 956
Fission, 806
Fission fragments, 937
Flashers, 608
Flat mirrors, 759–762, 759f, 760f, 782
Flat surface, images formed by refraction at, 770, 770f, 771–772
Flow. See Fluid dynamics
Flow meter, ultrasonic, 460
Flow rate, 291–293
Fluid(s). See Liquid(s)
Fluid dynamics, 290–296, 290f, 311–312
applications, 296–299, 296f, 297f
Bernoulli’s equation, 293–294, 293f,
294f, 295
applications, 294–299
capillary action, 303–304, 303f
diffusion, 307–308, 307f
equation of continuity, 290–293, 291f,
295–296, 311
flow rate, 291–293
fluid speed (See also Bernoulli’s
equation; Equation of
continuity; Poiseuille’s law)
measurement of, 294, 294f
in viscous flow, 304, 304f
ideal fluid, characteristics of, 290
laminar flow, 290
motion through viscous medium,
309–310, 309f
Poiseuille’s law, 305–306, 305f
Reynolds number, 306–307
sedimentation, 310–311
streamline flow, 290, 290f
turbulent flow, 290, 290f
aircraft wings and, 297
Reynolds number, 306–307
viscosity, 290, 304–305, 304f, 305f, 305f
viscous flow, 304–305, 304f
Fluorine (F), ground-state
configuration, 904f
Fluorite, index of refraction, 738f
Flux. See Electric flux; Magnetic flux
number of camera, 824, 841
range, of eye, 824
Focal length (f)
of spherical mirror, 764, 765f, 782
of thin lens, 773, 774f, 775
Focal point (F)
of concave mirror, 764
of thin lens, 773, 774f
Food, and weight gain, 414–415
Food calories, 147, 355
Foot (ft), 3
Force(s), 83–84, 108. See also Air
resistance; Buoyant forces;
Dissipative forces; Electric force;
Electromagnetic force; Friction;
Gravitational force; Magnetic
force; Newton’s laws
action, 92–93
adhesive, 302–303
average (f̅), impulse-momentum
theorem and, 165, 166f
centrifugal, as fictitious force, 207
centripetal, 202 (See also Centripetal acceleration)
Force(s) (Continued)
cohesive, 302–303
color, 952, 957
conservative, 126–127, 150
contact, 84, 84f
Coulomb force, 592 (See also Coulomb’s Law)
conservation of, 532
electrostatic, 501
electroweak, 953, 954, 954f
fictitious, centrifugal force as, 207
field, defined, 84, 84f
history of concept, 84
fundamental, 84, 108, 943–944, 944f,
954, 954f, 956
magnetic, 84
net, defined, 85
and Newton’s second law, 86–88, 108
nonconservative, 126–127, 150
rotational motion with, 247,
249–249, 254
work done by, 128, 133–135
normal (n), 93, 93f, 102
nuclear, 915, 952
reaction, Newton’s third law and, 92–93, 94
and rocket propulsion, 178–181,
178f, 179f
restoring
of pendulum, 439
of spring, 135, 426
SI units of, 87, 87f
strong
Big Bang and, 954, 954f
characteristics of, 943, 944f, 945, 956
as color force, 952
as fundamental force, 84
in Standard Model, 953, 953f
weak
Big Bang and, 954, 954f
characteristics of, 944, 944f,
946, 956
electroweak theory, 952–953
as fundamental force, 84
in Standard Model, 953, 953f
Forced convection, 371
Forced vibrations, 479–480, 479f, 480f
Forensic science, fingerprints, 628
Fossil fuels, and greenhouse effect, 376
Foucault, 825f
Frames of reference. See Reference frames
Franklin, Benjamin, 498, 498f, 514
Franklin, Rosalind, 878, 878f
Fraunhofer diffraction, 802, 802f,
803–804, 803f
Free-body diagrams, 94, 94f
Free fall, 42–46, 47
acceleration, 42, 208f
air resistance, 42, 108
definition of, 42
Freezing point, 324, 325–326, 326f
Frequency (f)
angular (ω), in simple harmonic
motion, 434, 435–436, 450
of circular motion, 434
Frequency (f) (Continued)
cutoff, in photoelectric effect, 875–876, 877f
of matter waves, 881, 887
of pendulum, 439
of radiation emitted by hydrogen orbit change, 894–895
resonant, 479
of simple harmonic motion, 426, 434, 435–436, 437–438, 450
vs. pitch, 487
of waves, 445, 451
Fresnel, Augustin, 802
Fresnel bright spot, 802
Friction, 101–108, 102f, 109. See also Air resistance
coefficient of kinetic friction (µk), 102, 103f, 109
coefficient of static friction (µs), 102, 103f, 109
definition of, 101
frictional work, 122–123
kinetic (f), 101–102, 102f, 104–106, 109, 126
normal force and, 102
static (f), 101–104, 102f, 106–107, 109
viscosity, 290, 304–305, 304f, 305f, 305f
Frictional work, 122–123
Fringes
bright
conditions for, 792–793
in thin films, 796–797
location of, 793
dark
conditions for, 792, 792f, 793
in thin films, 796–797
location of, 793
defined, 791f, 792
Fringe shift, 840
Front side
do convex mirror, 764, 764f
of spherical refracting surface, 769
of thin lens, 775
Fundamental forces, 84, 108, 943–944, 944f, 954, 954f, 956f
Fundamental frequency (first harmonic), 475f, 476–479, 476f, 480–481, 481f, 482–483
Fundamental particles, 943
Fundamental unit of electric charge (e), 499, 515–516
Fuses, 600–601
Fusion, latent heat of, 360, 360f
Fusion, nuclear, 941–943, 956
Fusion reactors, 957f, 941–943, 946

G
Galaxy, center of, 865
Galilean relativity, 847–848, 848f
Galilei, Galileo, 25, 42, 42f, 43
Gallium (Ga), ground-state configuration, 904f
Gamma (γ) decay, 918, 924, 932
Gamma (γ) rays, 721f, 722, 918, 924, 941
Gamow, George, 954f
Gas(es). See also Ideal gas characteristics of, 268–269
density of, 276, 276t
internal energy of, 343, 353, 390
kinetic theory of, 340–345, 346
molecules, degrees of freedom, 390
real vs. ideal, properties of, 335
root-mean-square (rms) speed of, 343, 344f, 346
spectral analysis of, 743–744
speed of sound in, 461–462, 462f
temperature, 346, 347
work done on, at constant pressure, 385–388
Gas constant (R), 391
Gas thermometers, 324–326, 324f, 325f
Gauge pressure, 283
Gauss (G), 630, 652
Gauss's law, 208
Gaussian (cgs) system, 3, 5
Gaussian surface, 519–520
Gauss’s law for electric flux, 517, 519–523
for gravitational force, 208
Gear(s), of bicycle, 241, 241
Geiger, Hans, 891–892, 892f
Gell-Mann, Murray, 950, 950
Geiger-Müller (G.M.) counters, 891
Genetic damage, from radiation, 929
Gerarde, Pietro, 207
Germs, 917
Giant, sun, 954
Giant planet, 217
Giant stars, 954
Giant telescopes, 954
Giantype theory (GUT), 947, 953–954
Gravitational force (F), 89–90. See also Free fall
acceleration due to, 42
artificial, 203
as conservative force, 127
determining, with pendulum, 440, 441
as field force, 84
as fundamental force, 84, 944, 944f, 954, 954f, 956
Gauss’s law, 208
in general relativity, 863–865
and light, bending of, 863f, 864–865, 865f
in motion through viscous medium, 309–310
net, 209–210
as point force, 208
in Standard Model, 953, 953f
and time, 864, 865
universal gravitation constant (G), 90, 207, 208–209, 208f, 219
variation with distance, 207–208, 208f
vs. electric force, 502–503
work done by, 127–128, 128f, 150, 211–212
Gravitational lenses, 865f
Gravitational potential energy (PEg), 127–135, 150
and conservation of mechanical energy, 130–133
and gravitational work, 127–128, 128f, 150, 211–212
for high objects, 211–213
reference levels for, 129–130, 129f
in rotational motion, 247, 254
SI units of, 128
vs. electric potential energy, 533, 533f
work-energy theorem and, 127–128, 133–135, 150
Gravitational work (Wg), gravitational potential energy and, 127–128, 128f, 150, 211–212
Gravitons, 944, 944f
Greenhouse effect, 375–377
Greenhouse gases, 376–377, 376f
Greenwald, Francesco, 733
Ground, electrical
symbol for, 581, 581f
Ground-fault interrupters (GFIs), 613, 668–669, 668f, 669f
Ground state, 895
Heat.

Hammer (ear bone), 487f, 488

Harmonic(s)
in air column waves, 480–481, 481f, 482–483, 490
and quality (timbre) of sound, 486–487, 486f
in string waves, 475f, 476–479, 476f

Harmonic series, 476–477

Heart
artificial, 635
electrical activity of, 583–587, 585f, 586f

Heat. See also Molar specific heat
convection, 371–372, 371f, 378
definition of, 323, 355, 377
and energy transfer, 141
ideal absorbers, 373
ideal reflectors, 373
latent (L), 359, 377
of fusion, 360, 560f
units of, 359
of vaporization, 360–361, 360f, 362
mechanical equivalent of, 353, 377
for phase change, 359–360, 377
radiation, 372–375, 372f, 373f, 378
to raise mass m by ΔT, 355–356
specific heat (c), 355–357
definition of, 355, 377
measurement of, 357–359, 377
of selected substances, 355f
thermal conduction, 366–368, 366f, 371–377
conductivity of selected substances, 367f
and home insulation, 368–370
units of, 353–355

Heat engines, 399–408, 399f, 417
Carnot engine, 405–408, 406f, 417
cyclical process in, 399, 400–402
PV diagram for, 399, 399f
refrigerators and heat pumps as, 402–404, 403f, 417
thermal efficiency of, 399–400, 404, 406–407, 417
work done by, 399–400, 417

Heat pumps, 402–404, 403f, 417
Heisenberg, Werner, 884, 884f, 899
Helicopters, Newton's third law and, 93
Heliocentric model, 24–25, 215
Helium (He) (Continued)
latent heat of vaporization, 360f
liquid, storage of, 375
molar specific heat, 391f
as noble gas, 904
speed of sound in, 462f
thermal conductivity, 367f
Henry (H), 681, 687
Henry, Joseph, 663, 681
Herman, Robert, 954f
Herschel, William, 720
Hertz (Hz), 454
Hertz, Heinrich Rudolf, 713–714, 715f,
720, 724, 733, 872
Higgs boson, 953
Hilbert, David, 850f
Hooke, Robert, 135, 425
Hooke's law, 135, 425–428, 426f, 450
Horsepower (hp), 143
Household circuits, 600–601,
611–612, 612f
Hubble Space Telescope, 723, 834
Human body
arteriosclerosis, vascular flutter in, 297, 297f
blood
clotting, by kidneys, 308–309, 309f
in oxygen diffusion, 308
pressure, measuring of, 283–284, 284f
speed of, measuring, 460
viscosity of, 305, 305f
brain
boxing injury to, 163
fluid supporting, 163, 286

Helmholtz, 10
and Poiseuille's law, 305–306
and Reynolds number, 306–307
DNA, structure of, 877–878, 878f
ear anatomy and function, 464–466,
465f, 487–488, 487f, 488f
efficiency of, 416, 416f
and exercise
energy expenditure in, 417
physical fitness and oxygen consumption, 415–416, 416f
physiology of, 354–355
and weight control, 414–415
eye, 824–829, 825f
accommodation, 825–826
anatomy, 824–825, 825f
conditions of, 825–829, 826f,
827f, 841
diving masks with vision-correcting lens, 776
fluid pressure in, 169
image formation in, 824–825
red-eye in photographs, 735
and sunglasses UV protection, 720f
underwater vision, 770
vision correction, 820–828,
826f, 827f
wavelength sensitivity of, 722
heart
artificial, 635
electrical activity of, 585–587,
585f, 586f

Human body (Continued)
intravenous solvents, and osmotic balance, 308
kidneys
artificial, 309, 309f
blood cleansing by, 308–309, 309f
dialysis, 309, 309f, 635
lung fluid surface tension, 301
nervous system, electrical signal conduction in, 613–614, 614f
neurons
electrical signal conduction in,
613–614, 614f
structure of, 614, 614f
types of, 614–615
physical fitness, 415–416, 416f
potassium ion channels, 614–615
power output of, 146–147, 147f
sodium ion channels, 614–615
thermal efficiency of, 416, 416f
Human metabolism, 413–416
first law of thermodynamics and,
413–414
metabolic rate, 414–415, 415f
oxygen consumption and metabolic rate, 414–415, 415f
and physical fitness, 415–416, 416f
and weight gain, 414–415
Hummingbirds, feather color in, 790f
Huynens, Christian, 752, 733f
Huynens' principle, 746–748, 746f,
747f, 752
Hydraulic brakes, 281
Hydraulic press, 281, 281f
Hydrogen (H)
atom, size of, 5f, 4
Balmer series, 897, 897f
Bohr model of, 894–898, 894f, 908
emission spectrum, 892, 895f, 894, 896
energy level diagram, 893–896, 896f
fusion of, in Sun, 941
ground-state configuration, 903, 904f
ionization energy, 896
isotopes, 913
quantum mechanical model of, 899–902, 908–909
quantum state energies, 895, 908
rms speed of, 343, 344f
speed of sound in, 462f
thermal conductivity of, 367f
Hydrogen bomb, 941
Hydrogen-like atoms, Bohr model and, 898–899, 908
Hyperopia (farsightedness), 825–827,
826f, 841

ICDs. See Implantable Cardioverter Defibrillators
Ice
density, 276f, 334
index of refraction, 738f
specific heat, 355f
thermal conductivity, 367f
Ice-pail experiment (Faraday), 514, 514f
Ice (freezing) point, 324, 325–326, 326f
Ideal absorbers, 373
Ideal fluid, characteristics of, 290
Ideal gas
definition of, 335
internal energy change in, 390
properties
macroscopic, 335–340, 345–346
molecular models for, 340–345, 346
vs. real gas, 335
Ideal gas law, 336, 340, 346
applications, 336–339
Ideal reflectors, 373
Ideal transformers, 711, 724
Image
barely resolved, 835, 836f/
definition of, 759
just resolved, 835, 836f, 841
not resolved, 835, 835f, 836f/
eal, 795, 762, 765f, 782
resolved, 835, 835f/
virtual, 759–760, 765f, 782
Image distance, 759, 759f, 763, 769, 782
Image point of spherical mirror,
762–763, 762f, 763f/
Impedance \(Z\), 705f, 704, 705f, 724
Impending motion, 102
Implanted Cardioverter Defibrillators
(ICDs), 586–587, 587f, 587f/
Impulse \(I\), 162, 181
Impulse-momentum theorem, 162–163, 181
Index of refraction, 737, 738f, 742,
745f, 751
Indium, as superconductor, 840
Induced current, 666
Induced emf
applications, 675–680
back emf, 679–680, 679f/
definition of, 663–664, 664f/
direction of, 667–668, 667f, 674–675,
674f, 675f
Faraday’s law of magnetic induction,
666–670, 687
in generators, 676–680
Lenz’s law, 667–668, 674–675, 674f, 675f/
motional, 670–674, 670f, 671f, 687
self-induced, 680–683, 680f, 681f, 687
Induced polarization of molecules, in
dielectric, 561, 561f/
Inductance \(L\), 681, 687
of solenoid, 682–683, 687
Induction, 663–664, 664f/
applications, 675–680
back emf, 679–680, 679f/
charging by, 499–500, 500f/
eliminating charge from houses, 514
direction of induced emf, 667–668,
667f, 674–675, 674f, 675f
Faraday’s law of, 666–670, 687
in generators, 676–680
Lenz’s law, 667–668, 674–675, 674f, 675f/
motional emf, 670–674, 670f, 671f, 687
self-induced emf, 680–683, 680f, 681f,
687f, 687
Inductive reactance \(X_L\), 701–702, 701f,
723–724
Inductor(s)
in AC circuits, 701–702, 701f, 723–724
RL circuits, 705f
RLC series circuits, 702–706, 702f,
705f, 724
Inductor(s) (Continued)
circuit symbol for, 683, 683f/
in DC RL circuits, 683–687, 683f, 684f, 688
definition of, 683
energy stored in magnetic field of,
686–687, 688
impedance, 705f
phase angle, 705f
Inelastic collisions, 169, 176, 177–178, 181
perfectly inelastic, 169, 179–173, 181
Inertia, 85–86, 108
Inertial electrostatic confinement fusion, 937f, 942
Inertial laser confinement fusion, 942
Infrasonic waves, 460, 489
In phase, defined, 449, 449f
Insects, ears of, 489
Instantaneous acceleration \(a\)
in one dimension, 32–33, 47
from velocity vs. time graph, 32, 32f/
in two dimensions, 61, 74
Instantaneous angular acceleration \(a\), 193
tangential acceleration and, 196, 218
Instantaneous angular speed \(\omega\), 192
tangential speed and, 196, 218
Instantaneous electric current \(I\),
571, 588
Instantaneous power \(P\), defined, 143
Instantaneous speed, defined, 30, 47
Instantaneous thrust, 179–180
Instantaneous velocity \(u\)
in one dimension, 28–31, 47
in two dimensions, 61, 74
Insulation. See Thermal insulation
Insulators defined, 499, 523
induced charge on, 500, 501f
Intensity \(I\)
of electromagnetic wave, 716, 724
of sound wave, 464, 465, 466, 489
variation with distance, 466, 467–468
Intensity level, of sound wave (decibels),
464–466, 465f, 489
Interference
of light waves, 733 (See also Diffraction)
conditions for, 790–793, 792f,
796–797, 815
constructive
conditions for, 792–793, 792f,
796–797, 815
locational of, 793, 815
destructive
conditions for, 792, 792f, 793,
796–797, 815
locational of, 793
in single-slit diffraction, 805, 815
in Michelson interferometer,
840–841, 840f
Newton’s rings, 797–798, 797f
in phase change due to reflection,
795–797, 795f, 796f, 815
in thin films, 796–800, 796f,
797f, 815
problem-solving strategies, 798
Young’s double-slit experiment,
791–795, 815
Interference (Continued)
of sound waves, 473–475, 473f,
489–490
of waves, generally, 448–449,
449f, 451
beats, 484–486, 484f, 490
constructive, 449, 449f, 451,
473, 489
destructive, 449, 449f, 451,
473–474, 490
Interferometer, Michelson, 840–841,
840f, 849, 850f
Internal combustion engine
as heat engine, 399
work done by, 392–394
Internal energy \(U\)
change in
in adiabatic processes,
393–395, 417
first law of thermodynamics,
388–390, 416–417
in generic processes, 397–398
for ideal gas, 390
in isobaric processes, 390–393, 417
in isothermal processes,
396–397, 396f
in isovolumetric processes,
395–396
conservation of energy and, 141
definition of, 353, 377
degradation of, 413
of isolated system, 388
of monatomic gas, 343, 390
of polyatomic gas, 353
International Committee on Weights and
Measures, 326
Interneurons, 613–614, 614f
Intravenous solutions, and osmotic
balance, 308
Inverse sine function, 14
Inverse-square laws, 208
Inverse tangent function, 14
Iodine \(I\), as radioactive tracer, 930
Ionization energy, 896
Iris, 824, 825, 825f
Iron \(Fe\)
ground-state configuration, 904f
and magnetism, 626, 627, 628, 651
resistivity, 577f
specific heat, 355f
speed of sound in, 462f
temperature coefficient of
resistivity, 577f
thermal conductivity, 367f
work function, 873f
Irreversible process, defined, 404
Isobaric processes, 390–393, 417
definition of, 386
PV diagram of, 387, 387f, 391
work done on gas in, 385–388,
390–393, 417
Isochoric processes. See Isovolumetric processes
Isothermal processes, 390, 417
work done in, 396–397, 396f, 417
Isotopes, 913, 931
Isovolumetric processes, 390, 417
work done in, 395–396, 417
P/R loss, 581
Mercy (Continued)
cancer treatment, electric field therapy, 699
cavitron ultrasonic surgical aspirator, 461
circulatory system and Poiseuille’s law, 305–306
and Reynolds number, 306–307
defibrillators external, 556
Implanted Cardioverter
Defibrillators (ICDs), 586–587, 587f, 587t
fiber optic viewing scopes, 750
heart artificial, 309, 309f
electrical activity of, 595, 595f, 598f
intravenous solutions, and osmotic balance, 308
kidneys artificial, 309, 309f
dialysis, 309, 309f, 635
functions of, 308–309, 309f
lasers in, 907
lung fluid surface tension, 301
magnetic resonance imaging (MRI), 931, 931f
posion-elimination tomography (PET), 945
radiation damage, 929–930, 930t
radioactivity, uses of, 930–931, 931f, 945
sedimentation of biological molecules, 310–311, 310f
thermograms in, 373, 375f
ultrasound devices, 459f, 460–461, 460f, 461f
Meitner, Lise, 862
Membranes
cellular, 308
selectively permeable, 308
Mendeleev, Dmitry, 903–904
Mercury (Hg)
emission spectrum, 893f
specific heat, 355f
as superconductor, 584, 584f
surface of, 302, 302f
surface tension, 300f
Mercury (planet)
escape speed, 214t
orbit of, 864
planetary data, 217t
Mercury thermometers, 324, 324f
Mecos, 945, 946f, 950, 950f, 951, 951f, 952f
Metabolism. See Human metabolism
Metals(s)
alkali, 904–905
bimetallic strips, 330, 331f
characteristic x-rays, 876f, 903–906, 905f, 909f
photoelectric effect, 872–875, 872f, 873f, 886f
thermal conductivity, 367f
Metal detectors, 799
Meter (m), 1–2
Methane
as greenhouse gas, 376
molar specific heat, 391f
Methyl alcohol, speed of sound in, 462f
Metric system, 3–4
Michelson, Albert A., 840, 849
Michelson interferometer, 840–841, 840f, 849, 850f
Michelson-Morley experiment, 849–850, 850f, 851
Microscopes
compound, 830–832, 831f, 841
electron, 882, 885f
optical, limitations of, 831–832
resolution of, 837 (See also Resolution)
Microwave(s), 721, 721f
polarization of, 810
Microwave background radiation, 955, 955f, 957
Millikan, Robert A., 309, 499, 515
Millikan oil-drop experiment, 515–516, 516f, 516f
Minima, 802
Mirage(s), 772f, 773
Mirror(s)
aberrations in, 781–782, 781f, 782f, 783
concave, 762, 766–769, 768f
corner, 764, 766, 768, 782
flat, 759–762, 759f, 760f, 762
lateral magnification, 760, 765f, 782
mirror equation, 763–764, 782
parabolic, 782, 833
ray diagram for, 764–766, 765f
reflecting telescopes, 832–834, 833f
sign conventions for, 765f
spherical (See also Concave mirrors; Convex mirrors)
definition of, 762
spherical aberration in, 762, 762f
Mirror equation, 763–764, 782
Moderator, of nuclear reactor, 940, 940f
Molar mass, 335
Molar specific heat at constant pressure, 391–393, 391f
at constant volume, 390, 391, 391f
Molecules
in atmosphere, escape speed of, 214
solidification of, 878
in gas, degrees of freedom, 390
polarization of, in dielectric, 561, 561f
sedimentation of, 310–311, 310f
Moles, 335, 336–337, 340
Molybdenum, characteristic x-rays, 878f
Moment of inertia (mr²), 240–245, 254 and angular momentum, 249–254
of composite object, 241–243, 241f
definition of, 240, 254
for extended objects, 245–245, 245f, 245f
for ring-shaped object, 243, 243f
units of, 241
vs. mass, 241, 242
of whole body, 240–241
Momentum. See Angular momentum; Linear momentum
Monatomic gas
internal energy, 343, 390
molar specific heat, 391f
Moon
escape speed, 214t
gravitational force on, 90, 90f
planetary data, 217t
Morley, Edward W., 849
Motion. See also Acceleration; Displacement; Free fall; Newton’s laws; Pendulums; Projectile motion; Rotational motion; Simple harmonic motion; Speed; Uniform circular motion; Velocity
impending, 102
in one dimension, 25–46
through viscous medium, 309–310, 309f
in two dimensions, 60–73, 74
Motional emf, 670–674, 670f, 671f, 687
Motion diagrams, 34–35, 34f
Motor neurons, 613–614, 614f
Motors, electric
back emf in, 679–681, 689f
structure and function, 638–639, 638f, 679
Moving reference frames, 70
MRI (magnetic resonance imaging), 931, 931f
Müller, K. Alex, 584
Multimeter, digital, 575, 575f
Multiplication
significant figures in, 8, 18
of vector, by scalar, 55–56
Muon (μ⁻), 854, 946, 946f
Muon neutrino (νμ), 946, 946f
Musical instruments. See also
Standing waves
quality (timbre) of sound, 486–487, 486f
strings
sound production in, 447, 459, 477–478, 482
tuning of, 485–486
warming up of, 482
wind instruments, sound production in, 480–483
Myopia (nearsightedness), 826, 827f, 828, 841

N
Nadal, Rafael, 83f
National Institute of Standards and Technology, 2f
Natural convection, 371
Natural radioactivity, 926, 926f, 926f
Near point, of eye accommodation, 825
Nearsightedness (myopia), 826, 827f, 828, 841
Ne’eman, Yuval, 950
Negative, of vector, 55
Negative acceleration, 32, 34
Negative electric charge, 498, 498f
Negative lenses. See Diverging (negative) thin lenses
Index

Newton's rings, 797–798, 797

Newton-meter (N · m), 120, 229

Newtonian mechanics, 847

Newton, Isaac, 84, 86

Neutron stars, 251

Night vision technology, 374

Nervous system, electrical signal conduction in, 613–614, 614f

Net force
- defined, 85
- and Newton’s second law, 86–88, 108

Neutrons
- electrical signal conduction in, 613–614, 614f
- structure of, 614, 614f
- types of, 614–615

Neutrinos, 923–924, 932, 941, 946–947, 946f

Neutron(s)
- in atomic structure, 4, 4f as baryons, 945, 946f
- charge, 498, 499, 501f, 914, 914f
discovery of, 927
- mass, 501f, 914, 914f
- quark composition, 951f
- Neutron number (N), 913, 931
- Neutron stars, 251

Newton (N), 87, 90

Newton, Isaac, 84, 86f, 207, 732–733, 797–798, 797f

Newtonian focus, 833

Newtonian mechanics, 847

Newton-meter (N-m), 120, 229

Newton’s laws
- applications of, 94–101, 109
- first law of motion, 83, 85–86, 108
- rotational analog of, 229
- second law of motion, 83, 86–88, 108
- accelerating objects and, 97–101, 109
- applications, 94–101
- and centripetal acceleration, 203, 204–206
- equilibrium objects and, 95–97, 95f, 109
- frictional forces and, 103–107
- momentum and, 162
- problem-solving strategies, 95
- rotational analog, 241, 245–246, 249–250
- third law of motion, 83, 92–94, 92f, 109

Newton’s rings, 797–798, 797f

New York Times, 178, 299

Nichrome
- resistivity, 577f, 578–579
- temperature coefficient of resistivity, 577f

Nickel (Ni)
- as ferromagnetic substance, 651
- ground-state configuration, 904f
- Nigh vision technology, 374

Niobium (Nb), as superconductor, 584f

Nitrogen (N)
- ground-state configuration, 904f
- latent heat of fusion, 360f
- latent heat of vaporization, 360f
- molar specific heat, 391f
- rms speed of, 343, 544f
thermal conductivity, 567f

Nitrogen oxide, as greenhouse gas, 376

Nobel Prize, 309, 516, 584, 862, 873, 878, 879f, 881f, 884f, 913f, 915f, 918f, 924f, 944f, 956f

Noble gases, 904

Node, of standing wave, 475–476, 475f, 480, 481f

Nonconservative forces, 126–127, 150
- rotational motion with, 247, 248–249, 254
- work done by, 128, 133–135

Nonohmic materials, 576, 577f

Nonreflective coatings, 799

Normal force (F), 93, 95f, 102

Normal vector, 517

North pole
- of Earth, 628, 628f
- of magnet, 626

Notation
- circuit elements. See Electric circuits, symbols
- many-digit numbers, 2
- nucleus, atomic, 913, 931
- power of ten, 3, 3f
- vector quantities, 26
- vectors, 54
- Nuclear fission, 860, 862, 937–940, 938f, 956
- Nuclear force, 913, 952
- Nuclear fusion, 941–943, 956
- Nuclear magnetic resonance, 931
- Nuclear power plants, 860, 913f, 939–940, 940f, 956
- Nuclear reactions, 927–929, 932
- endothermic, 928, 932
- exothermic, 928, 932
- fission, 860, 862, 937–940, 938f, 956
- fusion, 941–943, 956
- Q-values, 928–929, 932
- threshold energy of, 929, 932
- Nuclear reactors, 860, 913f, 939–940, 940f, 956
- Nuclear weapons
- atomic bomb, 879f, 939, 944f
- hydrogen bomb, 941
- Nuclear, atomic
- binding energy, 916–917, 917f, 931
- daughter, 921
- decay of, See Radioactivity
density of, 915
- history of concept, 891
- parent, 921
- properties, 913–916, 931
- size of, 914–915, 931
- stability of, 915–916, 915f
- structure of, 4, 4f, 498, 913
- symbols for, 913, 931
- Nylon
- dielectric constant, 558f
- dielectric strength, 558f

Object distance, 759, 759f, 763, 769, 782

Objective, of microscope, 830, 831f

Ocean water, speed of sound in, 462f, 463f

Ocean waves, 425f, 444

Ocular lens, of microscope, 830, 831f

Oersted, Hans Christian, 642, 642f

Ohm, George Simon, 576, 588

Ohm’s law, 576, 577f

Ohm’s law, 576, 588

Oil-drop experiment (Millikan), 515–516, 515f, 516f

Omega (Ω), 946f, 950, 951f, 952

O’Neill, Gerard, 203

Omm, H. Kamerlingh, 584

Open-circuit voltage, of battery, 595

Open-tube manometer, 283, 283f

Optical activity, 812–815, 813f

Optic disk, 825f

Optics
- geometric, 790
- wave, 790 (See also Diffraction; Interference; Polarization)

Orbital magnetic quantum number (mₗ), 899–900, 900f, 902, 909

Orbital quantum number (ℓ), 899–900, 900f, 902, 908

Order number, of fringe, 793, 815

Order-of-magnitude calculations, 11–15, 15

Origin, of coordinate system, 13

Oscillation. See also Pendulums; Simple harmonic motion; Wave(s)
- damping of, 442, 442f
- standing waves in air columns, 480–484, 481f, 490
- on strings, 475–479, 475f, 476f, 490

OSHA noise regulations, 466

Osmosis, 308–309, 309f

**Out of phase, defined, 449, 449f

Oval window, 487f, 488

Overdamping, 442, 442f

Oxygen (O)
- diffusion through cell membranes, 308
- ground-state configuration, 904f
- latent heat of fusion, 360f
- latent heat of vaporization, 360f
- molar specific heat, 391f
- rms speed of, 343, 344f
- speed of sound in, 462f
- thermal conductivity, 567f

Oxygen consumption, in human metabolism
- and metabolic rate, 414–415, 415f
- and physical fitness, 415–416, 416f

P

Paintings, x-raying of, 876

Paper
- dielectric constant, 558f
- dielectric strength, 558f

Parallel-plate capacitors, 523, 547–549, 547f, 562–563
Problem-solving strategies (Continued)
electric force, 508–509
energy and rotational motion, 247
equilibrium, 236
estimation and, 11, 18
friction problems, 109
general strategy, 16–17
Kirchhoff’s rules, 604
Newton’s second law, 95
projectile motion, 65
relative velocity, 71
resistors, 601–692
RLC circuits, 705
rotational motion and energy, 247
sign errors, avoiding, 96
system approach to, 105–106
thin-film interference, 798
Projectile motion, 62–70, 62f, 63f. See also
Free fall
with horizontal acceleration, 69–70
important features, summarized, 64
independence of horizontal and
vertical motions, 62
maximum displacement, 67
maximum height, 44–45
powered ascent, free fall, 45–46
problem-solving strategy for, 65
Projection angle, 62, 63
Proper length, 856, 865
Proper time, 854, 865
Protons, structure of, determining, 877
Proton(s)
in atomic structure, 4, 4f, 498
as baryons, 945, 946f
charge, 498, 499, 501, 501f, 914, 914f
mass, 501f, 914, 914f
number of, in gram of matter, 498
quark composition, 951f
size of, 3f, 4
Proton-proton cycle, 941
Ptolemy, Claudius, 24, 215
Pulsars, 251f
Pupil, 824, 825f
Purkinje fibers, 585, 585f
PI diagrams, 387–388, 387f
for adiabatic processes, 393–395, 394f
calculating work from, 387–388
in generic processes, 397–398, 397f
for heat engine, 399, 399f
of isotropic process, 387, 387f, 391
for isothermal processes, 396–397, 396f
Pyrex® glass
coefficient of linear expansion, 329,
329f
dielectric constant, 558f
dielectric strength, 558f
Pythagorean theorem, 14

Q
Q values, 928–929, 932
QCD (quantum chromodynamics), 952,
953, 957
Quality (timbre) of sound, 486–487, 486f
Quantum chromodynamics (QCD), 952,
953, 957
Quantum numbers
orbital (f), 899–900, 900, 902, 908
orbital magnetic (m_f), 899–900, 900f,
902, 909
and Pauli exclusion principle, 902–
903, 903f, 909
principle (n), 872, 886, 894–895, 899–
900, 900f, 902, 908
spin magnetic (m_s), 900–902, 909
strangeness (S), 946, 949
Quantum physics
atom model in, 899–905, 908–909
Compton shift, 879–880, 879f, 886
Einstein and, 850f
history of, 872
matter, dual nature of, 880–883, 887
and photoelectric effect, 872–875,
872f, 873f, 886
spectrum emitted by x-ray tube, 875–
876, 875f, 876f, 887
uncertainty principle, 884–886,
885f, 887
wave function (Ψ), 883–884,
887, 902
Quantum state, 872
energies of, 895, 908
Quantum tunneling, 941
Quarks, 4–5, 4f, 943, 950–952, 951f,
956–957
Quartz
crystals, 269f
dielectric constant, 558f
dielectric strength, 558f
index of refraction, 738, 742f
resistivity, 577f

R
Rad (radiation absorbed dose), 929–930
Radiation(s), 190–191
collision
(to/from degrees, 191
to/from rpm(s), 192
Radiation. See Electromagnetic radiation;
Radioactivity; Thermal radiation
Radiation thermometers, 573, 574f
Radio
broadcast antennas, 714
tuning circuit of, 708
Radioactive tracers, 930–931
Radioactivity, 918–927, 932
alpha (α) decay, 918, 921–922, 932
artificial, 926
beta (β) decay, 918, 922–924, 925f, 932
decay constant, 918
decay rate (activity), 918–919, 919f, 932
discovery of, 918, 918f
dose limits, 936
gamma (γ) decay, 918, 924, 932
half-life (T_1/2), 919, 921, 932
medical uses of, 930–931, 931f, 945
natural, 926, 926f, 926f
natural background, 930
radiation damage, 929–930, 930f
spontaneous decay
(transmutation), 921
units of, 919
uses of, 924–926
Radio telescopes, 838
Radio waves, 721, 721f, 722f
Radium (Ra)
discovery of, 918, 918f
radioactive decay of, 920, 921, 921f, 922
Radius of curvature (R), of spherical mirror, 762
Radon (Rn)
detectors, 925
discovery of, 925
as noble gas, 904
Rail guns, 671
Rainbows, 732f, 745–746, 745f, 746f
Rarefaction, in sound waves, 459, 459f, 460f
Ray(s), of spherical wave, 466, 466f
Ray diagrams
for mirrors, 764–766, 765f
for thin lenses, 775–776, 776f
Rayleigh’s criterion, 835–836
RBE (relative biological effectiveness) factor, 929, 950f
RC circuits
alternating-current impedance, 705f
phase angle, 705f
applications, 608
direct-current, 607–611, 607f, 616
Reaction forces
Newton’s third law and, 92–93, 94
and rocket propulsion, 178–181, 178f, 179f
Real images, 739, 762, 765f, 782
Recoil, 167–168
Rectangular coordinate system. See Cartesian coordinate system
Red-eye, in photographs, 735
Red shift, 723
Reference circle, 436, 436f
Reference frames. See also Relativity
absolute, 849
for displacement, 25
inertial, 847–848, 848f
moving, 70
for relative velocity, 70
stationary, 70
Reflecting telescopes, 832–834, 833f
Reflection
of light, 733, 734–736, 734f, 747, 747f, 751
angle of reflection, 735, 735f, 742, 751
phase change due to, 795–797, 795f, 796f, 815
polarization by, 811–812, 811f
total internal reflection, 748–751, 748f, 749f, 752
of waves, 449–450, 450f, 451
Reflectors, ideal, 373
Refracting telescopes, 832–833, 833f
Refraction, of light, 733, 736–742, 737f, 738f, 751
angle of refraction, 736, 737f, 751
atmospheric, 772–773, 772f
dispersion, 742–746, 742f, 743f, 745f, 746f, 752
Refraction, of light (Continued)
images formed by
flat surface, 770, 770f, 771–772
spherical surface, 768–771, 769f, 770u, 782
index of refraction, 737, 738f, 742, 742f, 751
Snell’s law, 737–742, 747–748, 747f, 751–752
Refractive myopia, 826
Refrigerators, 402–404, 403f, 417
Relative velocity, 70–73, 74
problem-solving strategies, 71
Relativity
Galilean, 847–848, 848f
general, 850f, 863–865
special
kinetic energy, relativistic expression for, 839, 861, 865
length contraction in, 856–858, 857f, 865
momentum, relativistic expressions for, 858–859, 865
and total energy, 860–861, 866
postulates of, 850–851, 850f, 865
relativity of time in, 851–852, 857f, 865
rest energy, 859, 865
conversion of atomic mass units to/from, 861
of electron, 861
Restoring force
for torque, 231, 231f
Right-hand rule
for angular velocity, 202, 202f
for electromagnetic wave propagation, 715
for magnetic field (right-hand rule #2), 642, 642f, 667
for magnetic force (right-hand rule #1), 631–632, 631f, 634, 652
for magnetic moment, 637
for torque, 231, 231f
RL circuits
alternating-current, 705t
direct-current, 683–687, 683f, 684f, 688
phase angle, 705f
RLC series circuits, 702–706, 702f, 703f, 705t, 724
applications, 708–709
average power delivered in, 707–708, 724
problem-solving strategies, 705t
resonance in, 708–710, 708f, 724
Rms current, 697–699, 723
Rms speed, of gases, 343, 344, 346
RNA, structure of, determining, 877
Resistivity (ρ), of conductors and semiconductors, 576, 577f
Resistivity (ρ), of ohmic and nonohmic materials, 576, 577f
Ohm’s law, 576, 588
problem-solving strategies, 601–602
temperature variation of, 579–580, 588
Resistance thermometers, 580
Resistor(s) (Continued)
power delivered to, 581–584, 588
problem-solving strategies, 601–602
RC circuits, 697–611, 607f, 616
RL circuits, 683–687, 683f, 684f, 688
in series, 595–597, 596f, 616
definition of, 576
Resolution, 835–840, 841
of circular aperture, 836, 836f
diffraction grating, 838–840, 841
of single-slit aperture, 835–836, 835f, 836f
Resolved image, 835
Resolving power, of diffraction grating, 839, 841
Resonance, 479–480, 479f, 480f, 483–484, 490
in RLC series circuits, 708–710, 708f, 724
Resonance frequency, in RLC series circuits, 708–709, 708f, 724
Resonant frequency, of oscillator, 479
Resonators, in blackbody radiation, 872, 873
Rest energy, 859, 865
conversion of atomic mass units to/from, 861
Restoring force of pendulum, 439
of spring, 135, 426
Resultant displacement, 56
Resultant vector, defined, 55, 74
Retina, 824, 825, 825f
Retroreflection, 735
Reversible process, defined, 404
Reynolds number, 306–307
Right-hand rule
for angular velocity, 202, 202f
for electromagnetic wave propagation, 715
for magnetic field (right-hand rule #2), 642, 642f, 667
for magnetic force (right-hand rule #1), 631–632, 631f, 634, 652
for magnetic moment, 637
for torque, 231, 231f
Sailboats, sailing into wind, 298
SA (sinoatrial) node, 585, 585
Satellites, insulation of, 375
Saturn
escape speed, 214
planetary data, 217
Scalors
definition of, 25–26, 47, 54, 55
division of vector by, 55–56
multiplication of vector by, 55–56
Scandium (Sc), ground-state configuration, 904
Scattering, polarization of light waves by, 812, 812/
Schrödinger, Erwin, 883, 884, 889
Schrödinger wave equation, 883
Schwarzchild radius, 864–865
Sclerent, Julian S., 944
Scientific notation, 8–9
Sclera, 825
Scott, David, 42
Seat belts
mechanism of, 85–86, 86/
and momentum reduction, 166
Second (unit), 2–3, 2/
Secondary maxima, 802
Second harmonic (first overtone), 475
Second law of motion (Newton), 83, 86–88, 108
accelerating objects and, 97–101, 109
applications, 94–101
and centripetal acceleration, 203, 204–206
equilibrium objects and, 95–97, 95f, 199
frictional forces and, 103–107
momentum and, 162
problem-solving strategies, 95
rotational analog, 241, 245–246, 249–250
Second law of thermodynamics, 385, 404–405, 417
and entropy, 408–409, 412, 417
and heat engine efficiency, 404
Second-order maximum, 806
Second overtone (third harmonic), 475
Second overtone (third harmonic). 475f, 476–479, 476f, 480–481, 481f, 482–483
Sedimentation, 310–311
Sedimentation rate, 310–311
Seiches, 482
Selenium (Se), ground-state configuration, 904
Self-inductance, 680–683, 680f, 681f, 687
Self-sustained chain reaction, 939–940
Semiconductors
properties, 499
temperature coefficient of resistivity, 579
Sensory neurons, 613–614, 614f
Shape elasticity in solids, 271, 271f
Shear modulus (K)
Shear modulus, 521–523
thin, nonconducting, 521–523
Shock absorbers, 442, 442f
Shock waves, 472–473, 472f, 475f
SIDS. Sw Sudden infant death syndrome
Sigma (Σ), 940, 951f
Sign errors, avoiding, 96
Significant figures, 7–9, 18
Silicon (Si)
ground-state configuration, 904
resistivity, 577
as semiconductor, 499
specific heat, 355
temperature coefficient of resistivity, 577
Silicone oil
in capacitors, 558
dielectric constant, 558f
dielectric strength, 558f
Silver (Ag)
latent heat of fusion, 360
latent heat of vaporization, 360
resistivity, 577
specific heat, 355f
Silver (Ag) (Continued)
temperature coefficient of resistivity, 577f
thermal conductivity, 367f
work function, 873f
Simple harmonic motion
acceleration as function of position, 427–428, 450
as function of time, 437, 437f, 451
compared to pendular motion, 440, 449f
compared to uniform circular motion, 432–436, 435f
definition of, 426
position as function of time, 436–437, 457f, 451
as sinusoidal, 437, 437f
velocity as function of position, 431–432, 450
as function of time, 437, 437f, 450
Simple magnifiers, 829–830, 829f, 841
Simultaneity, special relativity and, 851–852, 852f, 865
Sine (sin), 14
Single-slit aperture, resolution of, 835–836, 835f, 836f
Single-slit diffraction, 803–805, 803f, 815
Singularities, 865
Sinoatrial (SA) node, 585, 585f, 586
Sinusoidal motion
simple harmonic motion as, 437, 437f
waves as, 444–445, 444f, 445f
SI (Système International) units, 1, 3
acceleration, 31–32, 61, 87f
activity (decay rate), 919
angular acceleration, 193
angular displacement, 191
angular speed, 191–192
area, 5f
average acceleration, 31, 61
average speed, 26
average velocity, 27, 61
capacitance, 546
centrifugal acceleration, 200
temperature, 597
change in electric potential energy, 532
conversion to/from U.S. customary units, 9–10, 87, 143
density, 276
displacement, 25, 61
electric charge, 499, 645
electric current, 645
average, 570
instantaneous, 571
electric field, 506, 536
electric flux, 517
electric potential, 536
electric potential difference, 536, 562
emf, 594
force, 87, 87f
frequency, 434
gravitational potential energy, 128, 211
heat, 353
impulse, 162
inductance, 681, 687
instantaneous acceleration, 32, 61
Index

SL (Système International) units (Continued)
instantaneous velocity, 29–30, 61
intensity, 464
kinetic energy, 124
latent heat, 359
length, 1, 3, 914–915
linear momentum, 161
magnetic field, 630, 652
magnetic flux, 664–665
mass, 1, 3, 85
moment of inertia, 241
power, 143, 581
pressure, 277
resistance, 576, 588
resistivity, 577, 588
specific heat, 555
speed, 26
stress, 270
surface tension, 300
temperature, 326
time, 1, 3
torque, 229
velocity, 5t, 27, 61
viscosity, 305
volume, 5t
weight, 90
work, 120
Slopes, in position vs. time graphs, 28, 29/
Smoke detectors, 925, 925/
Snell, Willem, 738
Snell's law of refraction, 737–742, 747–748, 747f, 751–752
Snowshoes, 277, 277f
Soap, 301. See also Detergent
Soddy, Frederick, 925
Sodium (Na)
ground-state configuration, 904f
work function, 873f
Sodium chloride (NaCl)
index of refraction, 738f
Snell, Willebrörd, 738
Sodium oxide (SO3), molar specific heat, 391f
Sodium ion channels, 614–615
Soft magnetic materials, 627, 651
Solar cells, nonreflective coatings, 799
Solar system. See also Planets; specific planets
dust in, size of, 717
geocentric model of, 24, 215
heliocentric model of, 24–25, 215
Solensoid (electromagnetic)
inductance of, 682–683, 687
magnetic field of, 648–650, 648f, 650f, 652
Solids
amorphous, 269, 269f
characteristics of, 268–269, 269f
crystalline, 269, 269f
diffraction of x-rays by, 875, 875f,
876–878, 876f, 877f, 886
definition of, 270–276, 311
density of, 276, 276f
Solids (Continued)
elasticity of length, 270–271
shape, 271, 271f
volume, 271–272
speed of sound in, 462, 462f
thermal expansion of, 328–332, 345
Solitons, 444
Sonic boom, 473, 473f
Sound system, speakers in, 634–635, 634f
Sound waves audible, 460, 489
beats, 484–486, 484f, 490
categories of, 460
characteristics of, 460–461, 489
Doppler effect, 468–473, 468f
infrasonic, 460, 489
intensity (I; watts per meter), 464, 465, 466, 489
intensity level (decibels), 464, 465, 466f
intensity level (dB), 464, 465, 466f
interference, 473–475, 473f, 484–486, 484f, 489–490
as longitudinal wave, 444, 445, 460
OQA noise regulations, 466
pitch vs. frequency, 487
production of, 459–460, 460f
qualities (timbre) of sound, 486–487, 486f
shock waves, 472–473, 472f, 473f
speed of, 461–463, 462f, 489
threshold of hearing, 464, 488, 488f
threshold of pain, 464, 465
ultrasonic, 460, 489
ultrasound devices, 459f, 460–461, 460f, 461f
South pole
of Earth, 628, 628f
of magnet, 626
Space catapult, 671
Spacetime, curvature of, 864
Space travel
air resistance and, 108
artificial gravity, 203
European Space Agency, location
of, 197
and Newton's first law, 85
special relativity and, 857
Spacetime coordinates, 217–218
Spacetime diagrams, 217–218
weightlessness, health effects of, 203
Speakers, in sound system, 634–635, 634f
Special relativity
kinetic energy, relativistic expression for, 859, 861
length contraction in, 856–858, 857f, 865
momentum, relativistic expression for, 858–859, 865
and total energy, 860–861, 866
postulates of, 850–851, 850f, 865
relativity of time in, 851–852, 857f, 865
rest energy, 859, 865
conversion of atomic mass units to, 861
of electron, 861
Special relativity (Continued)
time dilation in, 852–853, 852f, 854f, 865
total energy, 859–860, 861, 866
and relativistic momentum, 860–861, 866
twin paradox, 853–856, 856f
Specific gravity, 276–277
Specific heat (c), 355–357
definition of, 355, 377
measurement of, 357–359, 377
of selected substances, 355f
Spectral lines, 743–744
Specular reflection, 734–735, 734f
Speed. See also Angular speed
average, 26–27, 47
escape speed, 213–215, 214
instantaneous, definition of, 30, 47
of light, 2
as constant, 850–851
and ether wind theory, 849–850, 849f, 850f
and inertial reference frames, 848
Michelson-Morley experiment, 849–850, 850f, 851
of projectile, 63
of sound waves, 461–463, 462f, 489
tangential, 201
terminal, 108, 310
vs. velocity, 26–28
wave speed, 445–446, 447–448, 451
Spherical aberrations, in lenses and mirrors, 702, 762f, 781–782,
781f, 783
Spherical mirrors. See also Concave mirrors
Convex mirrors definition of, 762
spherical aberration in, 762, 762f
Spherical surface, images formed by refraction at, 768–771, 769f,
770, 782
Spherical waves, 466–468, 466f, 489
Sphygmomanometer, 283–284, 284f
Spin, of electron, 900–902, 900f
Spin magnetic quantum number (m), 900–902, 909
Split-ring commutators, 638, 638f,
678, 678f
Spontaneous decay (transmutation), 921
Spontaneous emission, 907, 907f, 909
Spring(s)
elastic potential energy, 135–140, 135f,
150, 428–432, 450
and conservation of mechanical energy, 137–140
equation for, 429
work-energy theorem and, 136–138, 150
force, as conservative force, 135
Hooke's law, 135, 425–428, 426f, 450
work done by, 136–138, 148–150
work-energy theorem and, 136–138, 150
Spring constant (k), 135–136, 425,
426–427
Standard model, 953, 953f
Standing waves
in air columns, 480–484, 481f, 490
on strings, 475–479, 475f, 476f, 490

Units. See also SI (Système International) units
as algebraic quantities, 9–10
conversion of, 9–11, 18
dimensional analysis, 3–7, 18
of radiation exposure, 929–930, 930r
Universal gas constant, 336
Universal gravitation
constant of, 90, 207, 208–209, 208f, 219
Universal gravitation constant (G), 90,
207, 208–209, 208f, 219
Universe
distances, sample, 3t
entropy of, 408–409, 411–413
heat death of, 413
microwave background radiation, 955, 955f, 957
origin of, 954, 954f
Unpolarized light, 808–809, 809f
Up sparp (s), 4, 950–951, 951f
Upwelling, 334
Van de Graaff generator, 514, 516–517,
Vanadium (V), ground-state
multiplication of, by scalar, 55–56
division, by scalar, 55–56

W
Water
air temperature moderation by, 355
boiling, convection currents in, 371
boiling point, 324, 325–326, 326f
bulk modulus of, 271r
density of, 276r
temperature, 334, 334f
dielectric constant, 558r
dielectric strength, 558r
droplets, shape of, 299–300
freezing point, 324, 325–326, 326f
index of refraction, 738f
latent heat of fusion, 360, 360f
latent heat of vaporization, 360, 360f
as leveling device, 292–293
molar specific heat, 391r
ocean waves, 425f, 444
osmosis, 308–309, 309f
pressure variation with depth, 279–
283, 279f, 311
specific heat, 355r
speed of sound in, 462f
surface of, 302, 302f
surface tension, 300f
temperature vs. density curve,
334, 334f
thermal conductivity, 367f
thermal expansion of, 333–335, 334f
triple point of, 326
viscosity of, 303r
Waterproofing, 303
Water strippers, 301f
Water traps, in plumbing system, 299
Watson, J. D., 878
Watt (W), 143
Watt, James, 143
Wave(s), 443–450. See also Light and light
waves; Sound waves
amplitude of, 445–446, 445f, 451
crest of, 444
damped, 442, 442f
definition of, 443
frequency of, 445, 451
interference in, 448–449, 449f, 451
longitudinal characteristics of, 444, 444f, 445,
445f, 451
speed in solid rod, 462
period of, 445–446
plane, 467f, 489
reflection of, 449–450, 450f, 451
resonance, 479–480, 479f, 480f, 483–
484, 490
shock waves, 472–473, 472f, 473f
as sinusoidal motion, 444–445,
444f, 445f
spherical, 466–468, 466f, 489
standing
in air columns, 480–484, 481f, 490
on strings, 473–475, 475f, 476f, 490
transverse, 444, 444f, 451
traveling, 443–444, 444f
trough of, 444
types of, 443–444, 444f
wavelength of, 445–446, 445f, 451
wave speed, 445–446, 447–448, 451
Wave front of light wave, 734, 734f
Huygens' principle, 746–748, 746f, 747f, 752
of spherical wave, 466, 466f
Wave function (ψ), 883–884, 887, 902
Wavelength (λ)
of light absorption spectra, 893
cutoff, in photoelectric effect, 874
determining from diffraction grating, 806
emission spectrums, 892–894, 893f
measurement of, 793–794, 838–839, 840–841
in medium, 796, 815
of linear wave, 445–446, 445f, 451
of matter (de Broglie wavelength), 881–882, 887
of spherical wave, 466, 466f
of x-rays
characteristic x-rays, 905–906
Compton shift, 879–880, 879f, 886
emitted by x-ray tube, 875–876, 875f, 876f, 887
tissue damage from, 929, 930
X-ray tubes, spectrum emitted by, 875–876, 875f, 876f, 887
Wavelets, 746
Wave optics, 790. See also Diffraction; Interference; Polarization
Wave speed, 445–446, 447–448, 451
W bosons, 944, 944f, 952–953
Weak force
Big Bang and, 954, 954f
characteristics of, 944, 944f, 946, 956
and electroweak theory, 952–953
as fundamental force, 84
in Standard Model, 953, 953f
Weber (Wb), 664–665
Weber per square meter (Wb/m²), 630, 652
Weight
apparent, acceleration and, 99–100
gravitational force and, 90–92, 109
human, metabolism and, 414–415
SI units of, 90
Weightlessness, health effects of, 203
Wetting, of surface, 302
Wetting agents, 303
Wheeler, John, 864
Wien's displacement law, 871, 886
Wilkins, Maurice, 878
Wilson, Charles, 879f

Wilson, Robert W., 955, 955f
Wind instruments, sound production in, 480–483
Wood, thermal conductivity, 367f
Work (W), 119–123, 120f, 121f, 150
in adiabatic processes, 393–395
to charge capacitor, 555, 555f
by constant force, 120
definition of, 120
electric and potential energy, 531–535, 532f
and energy transfer, 141
frictional, 122–123
on gas at constant pressure, 385–388
in generic processes, 397–398
gravitational, 127–128, 128f, 150, 211–212
by heat engine, 399–400, 417
in isobaric processes, 385–388, 390–393, 417
in isothermal processes, 396–397, 396f, 417
in isovolumetric processes, 395–396, 417
mechanical energy change and, 141, 151
and potential energy, 127–128
from PV diagram, 387–388
SI units of, 120
by spring, 136–138, 148–150, 149f
in thermodynamic processes, 385–388, 416
by varying force, 147–150, 148f
Work-energy theorem, 124–127, 150
with gravitational and elastic potential energy components, 136–138, 150
with gravitational potential energy component, 127–128, 133–135, 150
for rotational motion with nonconservative forces, 247, 248–249, 254
Work function, 873, 873f, 886

X
x-component
of glancing collision, 176
of vector, 57

Xenon (Xe), as noble gas, 904
Xerography, 545–546, 545f
X-rays
applications, 722
characteristic, 876f, 905–906, 905f, 909
Compton shift in, 879–880, 879f, 886
diffraction by crystals, 875, 875f, 876–878, 876f, 877f, 877
discovery of, 875
in electromagnetic spectrum, 721f, 722, 722f
spectrum emitted by x-ray tube, 873–876, 875f, 876f, 887
tissue damage from, 929, 930f
X-ray tubes, spectrum emitted by, 875–876, 875f, 876f, 887

Y
y-component
of glancing collision, 176
of vector, 57
Young, Thomas, 733
Young’s double-slit experiment, 791–795, 815
Young’s modulus (Y), 270, 311, 371f

Z
Z bosons, 944, 944f, 952–953
Zeeman effect, 899, 899f
Zero-point energy, 326
Zeroth law of thermodynamics, 323, 323f, 345
Zeroth-order maximum, 793, 806
Zinc (Zn)
ground-state configuration, 904f
as superconductor, 584, 584f
work function, 873f
Zircon, index of refraction, 738f
Z machine, 937f
Zonules, 825