WSN Medium Access Control Protocols

Mohammad Hossein Yaghmaee Associate Professor Department of Computer Engineering Ferdowsi University of Mashhad (FUM)

Part 1 MAC Layer Overview

Protocol Stack

	OSI
Network	Layer 3
Data Link MAC Protocol	Layer 2
Physical	Layer 1

Data link layer:

- mapping network packets radio
 - frames
- transmission and reception of frames over the air
- error control
- security (encryption)

Challenges and Constraints

Frequency allocation

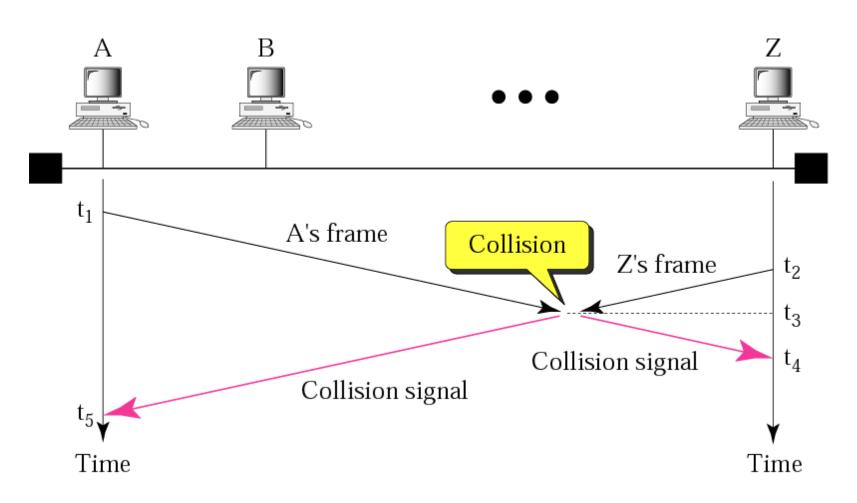
- □ All users operates on a common frequency band
- Must be approved and licensed by the government
- Inference and reliability
 - Collision: begin transmission at the same time; hidden terminal; multipath fading
- Security
- Power consumption
- Human safety
- Mobility

Principal options and difficulties

- Medium access in wireless networks is difficult mainly because of
 - Impossible (or very difficult) to send and receive at the same time
 - Interference situation at receiver is what counts for transmission success, but can be very different from what sender can observe
 - □ High error rates (for signaling packets) compound the issues

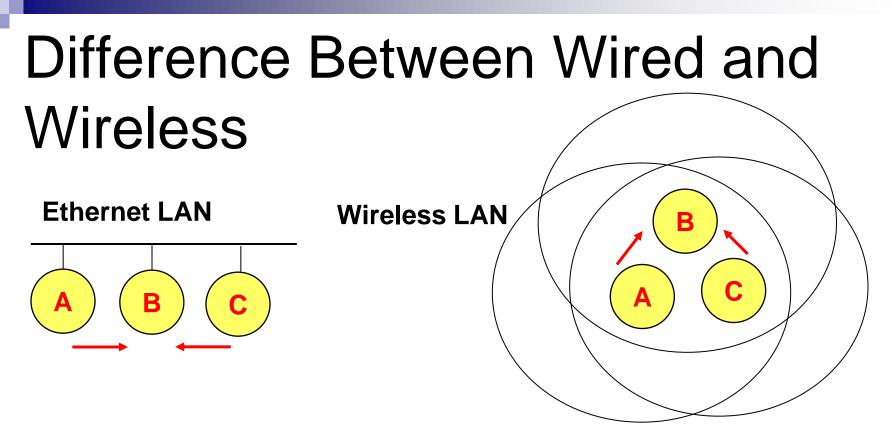
Requirement

- □ As usual: high throughput, low overhead, low error rates, ...
- □ Additionally: energy-efficient, handle switched off devices!


Requirements for energyefficient MAC protocols

- Recall
 - □ Transmissions are costly
 - Receiving about as expensive as transmitting
 - Idling can be cheaper but is still expensive
- Energy problems
 - Collisions wasted effort when two packets collide
 - Overhearing waste effort in receiving a packet destined for another node
 - Idle listening sitting idly and trying to receive when nobody is sending
 - Protocol overhead
 - Always nice: Low complexity solution

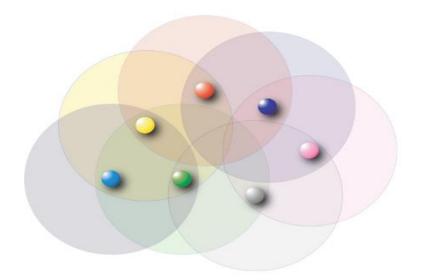
Wireless LAN: Motivation

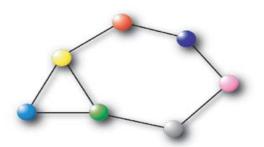

- Can we apply media access methods from fixed networks?
- Example CSMA/CD
 - Carrier Sense Multiple Access with Collision Detection
 - Send as soon as the medium is free, listen into the medium if a collision occurs (original method in IEEE 802.3)

CSMA/CD

Medium Access Problems in Wireless Networks

- Signal strength decreases proportional to the square of the distance
- Sender would apply CS and CD, but the collisions happen at the receiver
- Sender may not "hear" the collision, i.e., CD does not work
- □ CS might not work, e.g. if a terminal is "hidden"




- If both A and C sense the channel to be idle at the same time, they send at the same time.
- Collision can be detected at sender in Ethernet.
- Half-duplex radios in wireless cannot detect collision at sender.

Wireless Sensor Networks Features

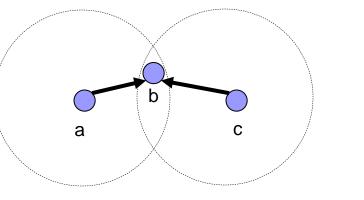
- A large number of limited power sensor nodes
- Distributed, multi-hop, ad-hoc operation; no infrasctructure, no central control point
- Collect and process data from a target domain and transmit information back to specific sites
- Usage scenarios...
 - □ Disaster recovery
 - □ Military surveillance
 - Health administration
 - Environmental monitoring.

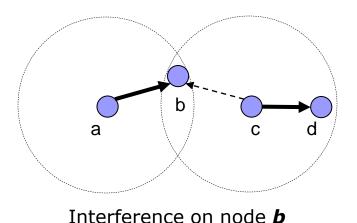
Wireless Sensor Networks

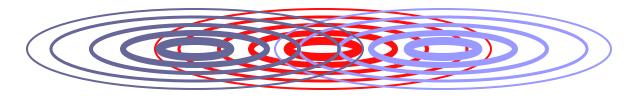
Representation of the network as a graph

Each node has a **transmission range**, which determines its **neighbors**

same transmission ranges \Rightarrow symmetric links \Rightarrow undirected graph

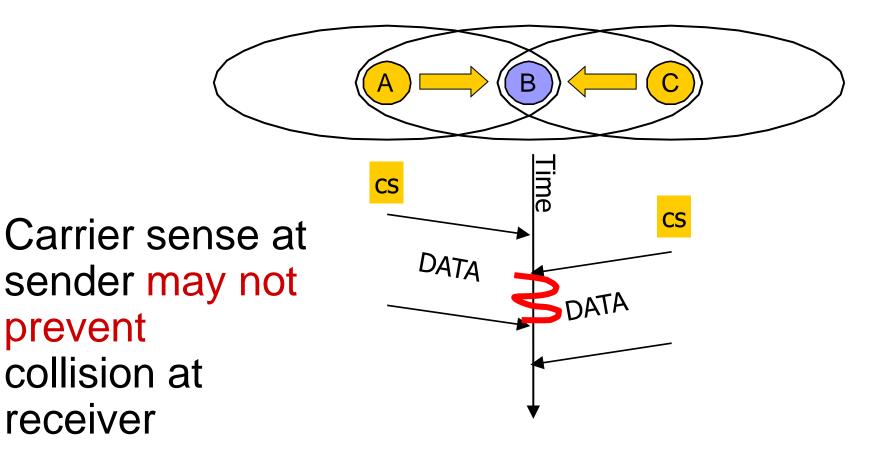

Interference / Collisions


a and **b** interfere and hear noise only


Ideally, we would want all packets to be sent collisionfree, only once...

Interference on node **b** ("Hidden terminal problem")

Hidden Terminal Problem

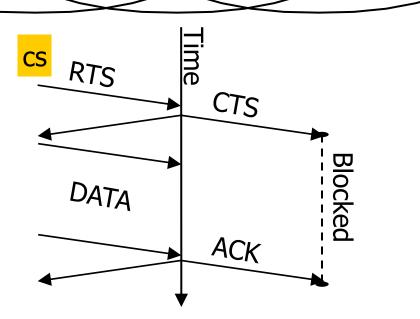


- Hidden terminals
 - □ A and C cannot hear each other.
 - □ A sends to B, C cannot receive A.
 - □ C wants to send to B, C senses a "free" medium (CS fails)
 - □ Collision occurs at B.
 - □ A cannot receive the collision (CD fails).
 - □ A is "hidden" for C.
- Solution?
 - □ Hidden terminal is peculiar to wireless (not found in wired)
 - □ Need to sense carrier at receiver, not sender!
 - "virtual carrier sensing": Sender "asks" receiver whether it can hear something. If so, behave as if channel busy.

Wireless Problems

Two main problems:
 Hidden Terminal Problem
 Exposed Terminal Problem

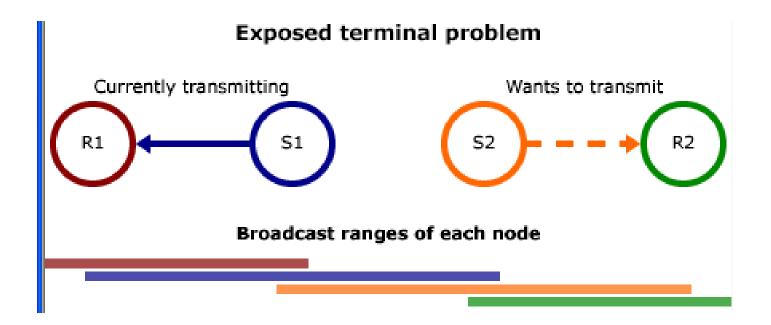
Hidden Terminal Problem

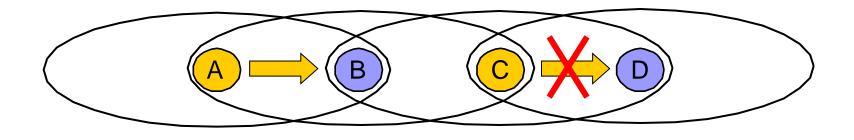

Solution: CSMA/CA: Collision Avoidance

MACA:

- Request To Send
- Clear To Send
- DATA

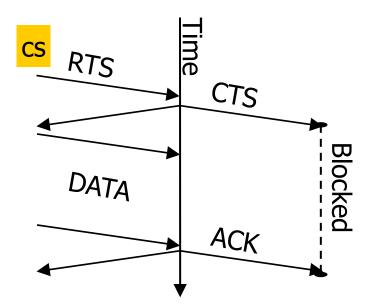
MACAW (Wireless)


additional ACK


В

Exposed Terminal Problem

- A transmission between S1 and R1 is taking place.
- Node S2 is prevented from transmitting to R2.



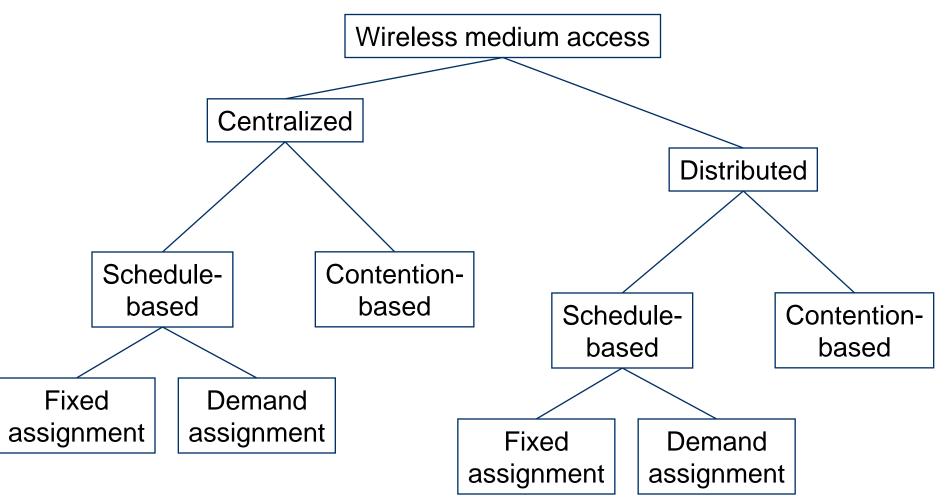
Exposed Terminal Problem

Parallel CSMA transfers are synchronized by CSMA/CA

Collision avoidance can be too restrictive!

MAC (Medium Access Control) Protocols

Specify how nodes in a network access the shared communication channel.


Two basic types

- contention-based
- contention-free

Desired Properties of a Sensor Net. MAC Protocol

- distributed
- contention-free (collision free)
- □ self-stabilizing
- □ not require common global time reference

Main options

Previous Works

Contention-based (random access)

- ALOHA
- □ CSMA (Carrier Sense Multiple Access)
- □ IEEE 802.11

Contention-free

- □ FDMA

Multi-layered approach

- □ ASCENT (nodes decide themselves to be on or off)
- S-MAC (virtual clusters based on common sleep schedules)

Collision-based MAC Protocols

ALOHA :

- Packet radio networks
- Send when ready
- 18-35% channel utilization
- CSMA (Carrier Sense Multiple Access):
- "listen before talk"
- 50-80% channel utilization

Centralized medium access

- Idea: Have a central station control when a node may access the medium
 - Example: Polling, centralized computation of TDMA schedules
 - Advantage: Simple, quite efficient (e.g., no collisions), burdens the central station
- Not directly feasible for non-trivial wireless network sizes
- But: Can be quite useful when network is somehow divided into smaller groups
 - Clusters, in each cluster medium access can be controlled centrally – compare Bluetooth piconets, for example

! Usually, distributed medium access is considered

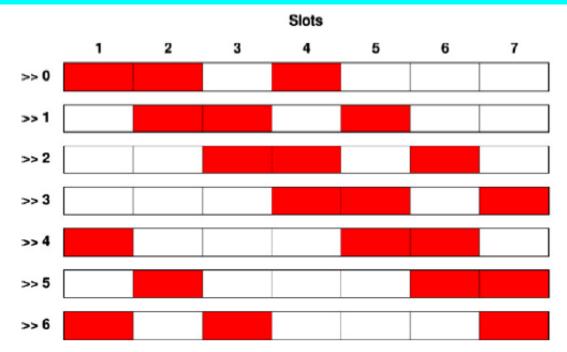
Schedule- vs. contention-based MACs

Schedule-based MAC

- A schedule exists, regulating which participant may use which resource at which time (TDMA component)
- Typical resource: frequency band in a given physical space (with a given code, CDMA)
- Schedule can be *fixed* or computed on demand
 - Usually: mixed difference fixed/on demand is one of time scales
- □ Usually, collisions, overhearing, idle listening no issues
- □ Needed: time synchronization!

Contention-based protocols

- □ Risk of colliding packets is deliberately taken
- Hope: coordination overhead can be saved, resulting in overall improved efficiency
- Mechanisms to handle/reduce probability/impact of collisions required
- Usually, randomization used somehow


Slot-based Protocols

- Time is divided into periods each containing a certain number of fixed size lots.
- Nodes stay active in a certain predefined subset of the slots.
- In active period they send beacons announcing their schedule
- Activation schedules can be found such that any two neighbouring nodes eventually can hear each other's beacons.

Example

activation schedule: 1101000 (where 1s represent active slots and 0s represent inactive slots)

any two neighbours can hear each other (they have at least one overlapping active slot)

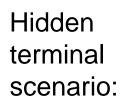
TDMA Protocols

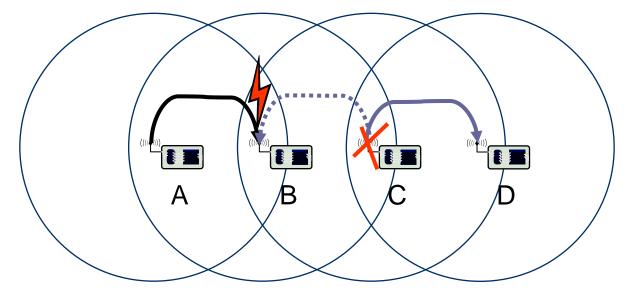
- Schedule transmissions a priori so that any node exactly knows when it must turn on its radio and no collisions can ever result.
- All nodes can see each other and a master, starts a super frame providing synchronization timing for network operation.
- The super frame contains a sequence of slots that may be statically or dynamically allocated.

Overview

Principal options and difficulties

Contention-based protocols

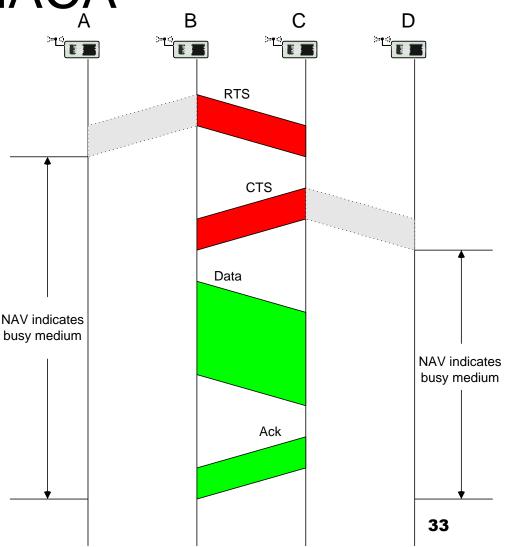

- □ S-MAC, T-MAC
- □ Preamble sampling, B-MAC
- Schedule-based protocols
- IEEE 802.15.4


Distributed, contention-based

MAC

Basic ideas for a distributed MAC

- ALOHA no good in most cases
- Listen before talk (Carrier Sense Multiple Access, CSMA) better, but suffers from sender not knowing what is going on at receiver, might destroy packets despite first listening for a
- ! Receiver additionally needs some possibility to inform possible senders in its vicinity about impending transmission (to "shut them up" for this duration)


Also: recall exposed terminal scenario

Main options to shut up senders

- Receiver informs potential interferers while a reception is ongoing
 - By sending out a signal indicating just that
 - Problem: Cannot use same channel on which actual reception takes place
 - ! Use separate channel for signaling
 - Busy tone protocol
- Receiver informs potential interferers before a reception is on-going
 - Can use same channel
 - Receiver itself needs to be informed, by sender, about impending transmission
 - Potential interferers need to be aware of such information, need to store it

Receiver informs interferers before transmission – MACA

- Sender B asks receiver C whether C is able to receive a transmission
 Request to Send (RTS)
- Receiver C agrees, sends out a Clear to Send (CTS)
- Potential interferers overhear either RTS or CTS and know about impending transmission and for how long it will last
 - Store this information in a
 Network Allocation Vector
- B sends, C acks
- ! MACA protocol (used e.g. in IEEE 802.11)

Part 2 Link layer protocols

Link layer tasks in general

- Framing group bit sequence into packets/frames
 Important: format, size
- Error control make sure that the sent bits arrive and no other
 - Forward and backward error control
- Flow control ensure that a fast sender does not overrun its slow(er) receiver
- Link management discovery and manage links to neighbors
 Do not use a neighbor at any cost, only if link is good enough
- ! Understand the issues involved in turning the radio communication between two neighboring nodes into a somewhat reliable *link*

Overview

Error control

Framing

Link management

Error control

- Error control has to ensure that data transport is
 - □ Error-free deliver exactly the sent bits/packets
 - □ In-sequence deliver them in the original order
 - □ Duplicate-free and at most once
 - Loss-free and at least once
- Causes: fading, interference, loss of bit synchronization, …
 - Results in bit errors, bursty, sometimes heavy-tailed runs (see physical layer chapter)
 - In wireless, sometimes quite high average bit error rates 10⁻² … 10⁻⁴ possible!
- Approaches
 - Backward error control ARQ
 - □ Forward error control FEC

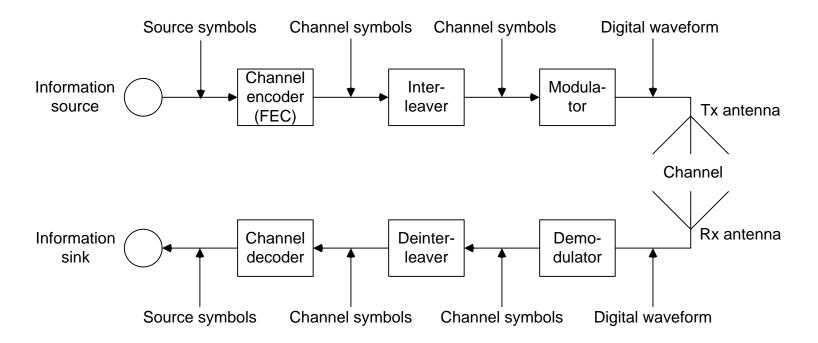
Backward error control – ARQ

- Basic procedure (a quick recap)
 - Put header information around the payload
 - Compute a checksum and add it to the packet
 - Typically: Cyclic redundancy check (CRC), quick, low overhead, low residual error rate
 - Provide feedback from receiver to sender
 - Send positive or negative acknowledgement
 - Sender uses timer to detect that acknowledgements have not arrived
 - Assumes packet has not arrived
 - Optimal timer setting?
 - If sender infers that a packet has not been received correctly, sender can retransmit it
 - What is maximum number of retransmission attempts? If bounded, at best a semi-reliable protocols results

Standard ARQ protocols

- Alternating bit at most one packet outstanding, single bit sequence number
- Go-back N send up to N packets, if a packet has not been acknowledged when timer goes off, retransmit all unacknowledged packets
- Selective Repeat when timer goes off, only send that particular packet

How to use acknowledgements


- Be careful about ACKs from different layers
 A MAC ACK (e.g., S-MAC) does not necessarily imply buffer space in the link layer
 - On the other hand, having both MAC and link layer ACKs is a waste
- Do not (necessarily) acknowledge every packet – use cumulative ACKs
 - Tradeoff against buffer space
 - Tradeoff against number of negative ACKs to send

When to retransmit

- Assuming sender has decided to retransmit a packet when to do so?
 - □ In a BSC channel, any time is as good as any
 - In fading channels, try to avoid bad channel states postpone transmissions
 - Instead (e.g.): send a packet to another node if in queue (exploit multi-user diversity)
- How long to wait?
 - Example solution: Probing protocol
 - Idea: reflect channel state by two protocol modes, "normal" and "probing"
 - □ When error occurs, go from normal to probing mode
 - In probing mode, periodically send short packets (acknowledged by receiver) – when successful, go to normal mode

Forward error control

- Idea: Endow symbols in a packet with additional redundancy to withstand a limited amount of random permutations
 - Additionally: interleaving change order of symbols to withstand burst errors

Block-coded FEC

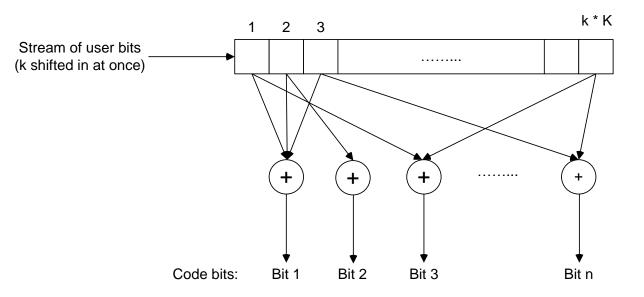
Level of redundancy: blocks of symbols

- □ Block: k p-ary source symbols (not necessarily just bits)
- □ Encoded into n q-ary channel symbols
- Injective mapping (*code*) of p^k source symbols ! qⁿ channel symbols
- Code rate: (k ld p) / (n ld q)
 - \Box When p=q=2: k/n is code rate
- For p=q=2: Hamming bound code can correct up to t bit errors only if

$$2^{n-k} \ge \sum_{i=0}^{t} \binom{n}{i}$$

Codes for (n,k,t) do not always exist

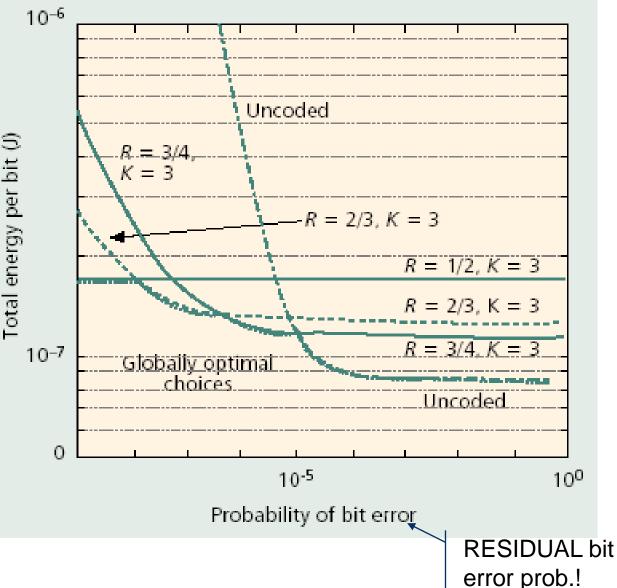
Popular block codes


Popular examples

- □ Reed-Solomon codes (RS)
- □ Bose-Chaudhuri-Hocquenghem codes (BCH)
- Energy consumption
 - □ E.g., BCH encoding: negligible overhead (linear-feedback shift register)
 - BCH decoding: depends on block length and Hamming distance (n, t as on last slide)

$$E_{dec} = (2nt + 2t^2) \cdot (E_{add} + E_{mult})$$

□ Similar for RS codes


Convolutional codes

- Code rate: ratio of k user bits mapped onto n coded bits
- Constraint length K determines coding gain
- Energy
 - Encoding: cheap
 - Decoding: Viterbi algorithm, energy & memory depends exponentially (!) on constraint length

Energy consumption of convolutional codes

- Tradeoff
 between
 coding energy
 and reduced
 transmission
 power (coding gain)
- Overall: block codes tend to be more energyefficient


Comparison: FEC vs. ARQ

FEC

- Constant overhead for each packet
- Not (easily) possible to adapt to changing channel characteristics

ARQ

- Overhead only when errors occurred (expect for ACK, always needed)
- Both schemes have their uses ! hybrid schemes

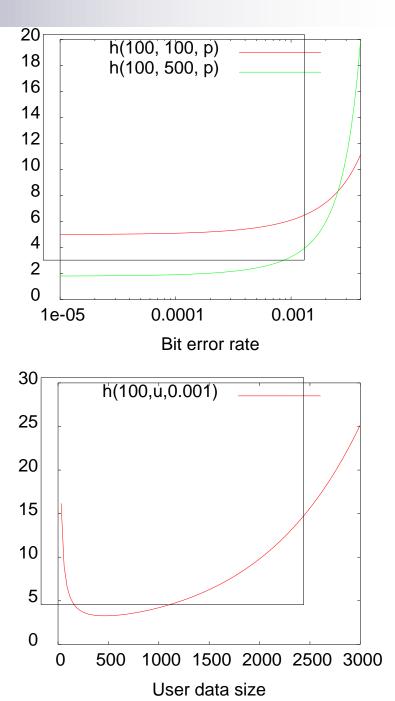
BCH + unlimited number of retransmissions

Power control on a link level

- Further controllable parameter: transmission power
 - Higher power, lower error rates less FEC/ARQ necessary
 - Lower power, higher error rates higher FEC necessary

Tradeoff!

Overview

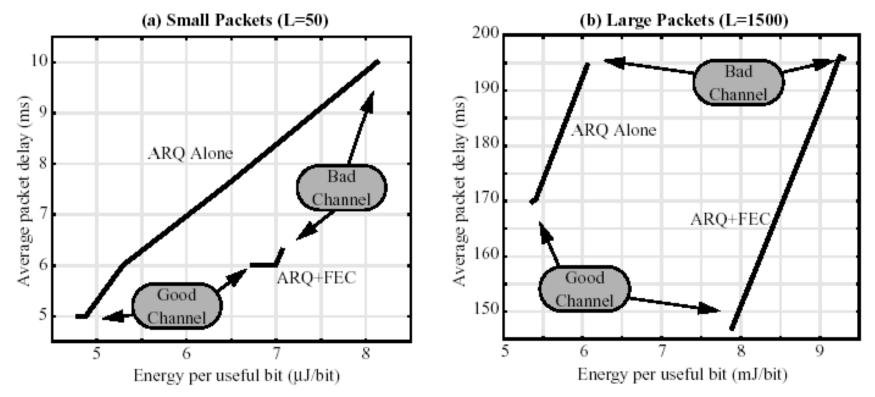

Error control

Framing

Link management

Frame, packet size

- Small packets: low packet error rate, high packetization overhead
- Large packets: high packet error rate, low overhead
- Depends on bit error rate, energy consumption per transmitted bit
- Notation: h(overhead, payload size, BER)


Dynamically adapt frame length

- For known bit error rate (BER), optimal frame length is easy to determine
- Problem: how to estimate BER?
 - Collect channel state information at the receiver (RSSI, FEC decoder information, ...)
 - Example: Use number of attempts T required to transmit the last M packets as an estimator of the packet error rate (assuming a BSC)
 - Details: homework assignment
- Second problem: how long are observations valid/how should they be aged?

□ Only recent past is – if anything at all – somewhat credible

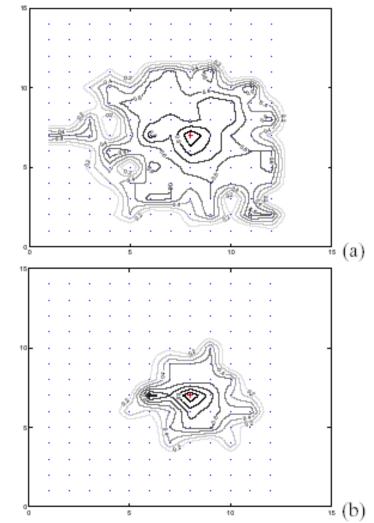
Putting it together: ARQ, FEC, frame length optimization

- Applying ARQ, FEC (both block and convolutional codes), frame length optimization to a Rayleigh fading channel
 - Channel modeled as Gilbert-Elliot

Overview

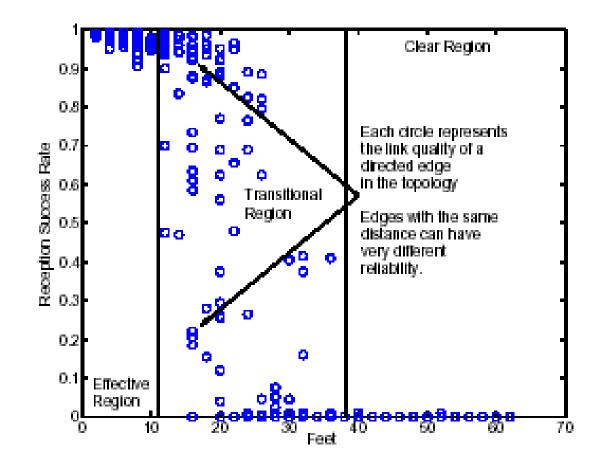
Error control

Framing

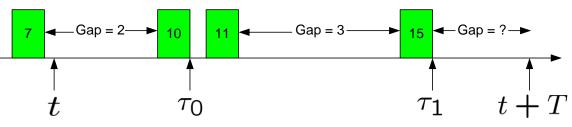

Link management

Link management

- Goal: decide to which neighbors that are more or less reachable a link should be established
 - Problem: communication quality fluctuates, far away neighbors can be costly to talk to, errorprone, quality can only be estimated
- Establish a *neighborhood table* for each node
 - Partially automatically constructed by MAC protocols


Link quality characteristics

- Expected: simple, circular shape of "region of communication" – not realistic
- Instead:
 - Correlation between distance and loss rate is weak; iso-loss-lines are not circular but irregular
 - Asymmetric links are relatively frequent (up to 15%)
 - Significant short-term PER variations even for stationary nodes


Three regions of communication

- Effective region: PER consistently < 10%
- Transitional region: anything in between, with large variation for nodes at same distance
- Poor region: PER well beyond 90%

Link quality estimation

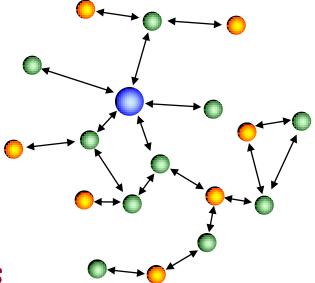
- How to estimate, on-line, in the field, the actual link quality?
- Requirements
 - Precision estimator should give the statistically correct result
 - Agility estimator should react quickly to changes
 - □ Stability estimator should not be influenced by short aberrations
 - Efficiency Active or passive estimator

 Example: WMEWMA only estimates at fixed intervals

 $P_n = \alpha P_{n-1} + (1 - \alpha) \frac{r_n}{r_n + f_n}$ r_n : received packets in interval f_n : packets identified as lost

Conclusion

- Link layer combines traditional mechanisms
 - □ Framing, packet synchronization, flow control
 - with relatively specific issues
 - Careful choice of error control mechanisms tradeoffs between FEC & ARQ & transmission power & packet size …
 - Link estimation and characterization

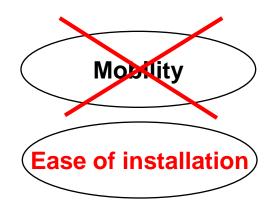


IEEE 802.15.4 Low-Rate Wireless Personal Area Networks (LR-WPAN)

- The main objectives:
 - ease of installation,
 - reliable data transfer,
 - □ short-range operation,
 - □ extremely low cost,
 - □ reasonable battery life,
 - maintaining a simple and flexible protocol.

802.15.4 Applications Space

- - Home Networking
 - Automotive Networks
 - Industrial Networks
 - Interactive Toys
 - Remote Metering



802.15.4 Applications Topology

Cable replacement - Last meter connectivity

Virtual Wire

Wireless Hub

Stick-On Sensor

Some Needs in The Sensor Networks

Thousands of sensors in a small space \rightarrow Wireless but wireless implies Low Power! and low power implies Limited Range.

Of course all of these is viable if a Low Cost transceiver is required

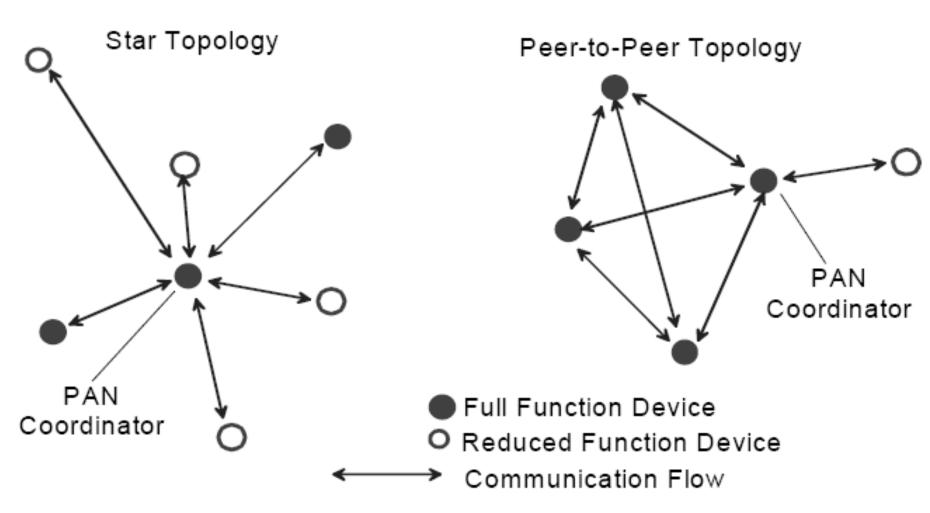
Characteristics of an LR-WPAN

- Over-the-air data rates of 250 kb/s, 100kb/s, 40 kb/s, and 20 kb/s
- Star or peer-to-peer operation
- Allocated 16-bit short or 64-bit extended addresses
- Optional allocation of guaranteed time slots (GTSs)
- Carrier sense multiple access with collision avoidance (CSMA-CA) channel access
- Fully acknowledged protocol for transfer reliability
- Low power consumption
- Energy Detection (ED)
- Link Quality Indication (LQI)
- 16 channels in the 2450 MHz band, 30 channels in the 915 MHz band, and 3 channels in the 868 MHz band

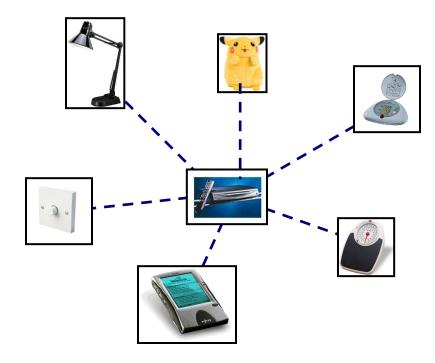
Different Device Types of IEEE 802.15.4

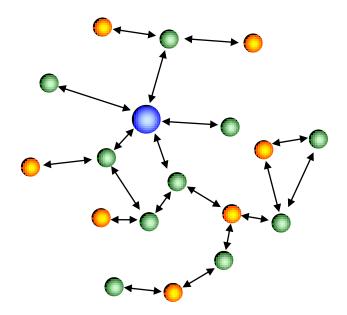
- Two different device types:
 - □ a Full-Function Device (FFD)
 - □ Reduced-Function Device (RFD).
- The FFD can operate in three modes:
 - Personal Area Network (PAN) coordinator,
 - □ A coordinator,
 - \Box A device.
- An FFD can talk to RFDs or other FFDs, while an RFD can talk only to an FFD.
- An RFD is intended for applications that are extremely simple, such as a light switch or a passive infrared sensor;
 - No need to send large amounts of data and may only associate with a single FFD at a time.
 - The RFD can be implemented using minimal resources and memory capacity.

IEEE 802.15.4 Device Classes


Full function device (FFD)
 Any topology
 Network coordinator capable
 Talks to any other device

- Reduced function device (RFD)
 - Limited to star topology
 - Cannot become a network coordinator
 - Talks only to a network coordinator
 - □ Very simple implementation


Network Topologies

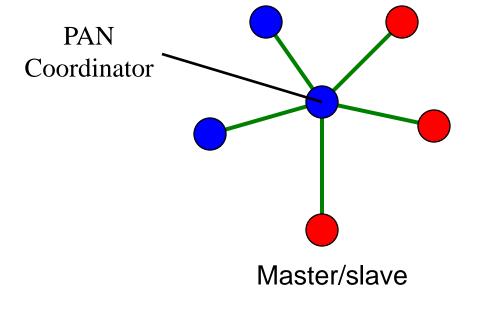

- Depending on the application requirements, an IEEE 802.15.4 LR-WPAN may operate in either of two topologies:
 - □ Star topology
 - Peer-to-peer topology.
- All devices operating on a network of either topology shall have unique 64- bit addresses.

Network Topologies

Typical Network Topologies

Star Topology

- Communication is established between devices and the PAN coordinator.
- A PAN coordinator can be used to initiate, terminate, or route communication around the network.
- The PAN coordinator might often be mains powered.

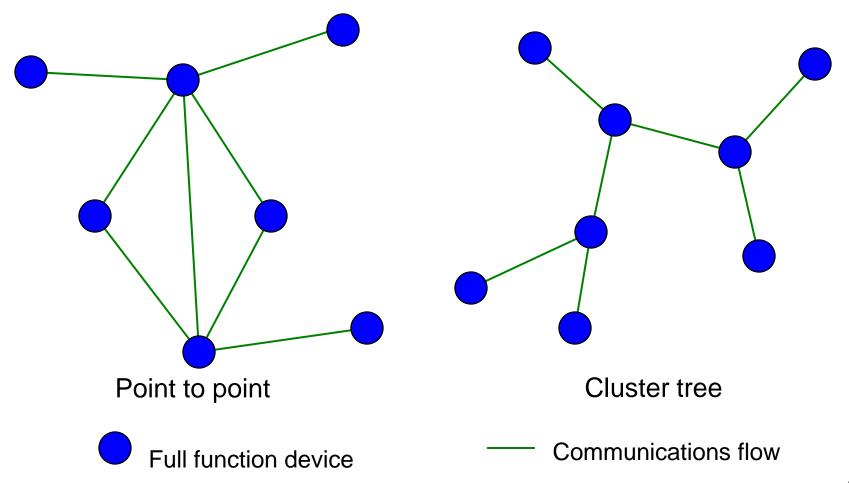

Applications :

- home automation,
- personal computer (PC) peripherals,
- toys and games,
- personal health care.

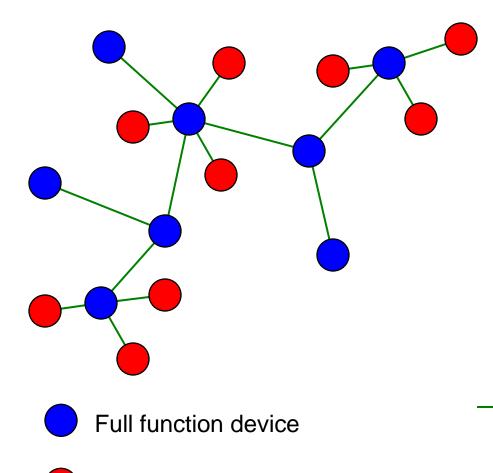
Star Network Formation

- After an FFD is activated, it can establish its own network and become the PAN coordinator.
- All star networks operate independently from all other star networks currently in operation.
- The PAN coordinator allows other devices, potentially both FFDs and RFDs, to join its network

IEEE 802.15.4 MAC Overview Star Topology


Peer-to-peer Topology

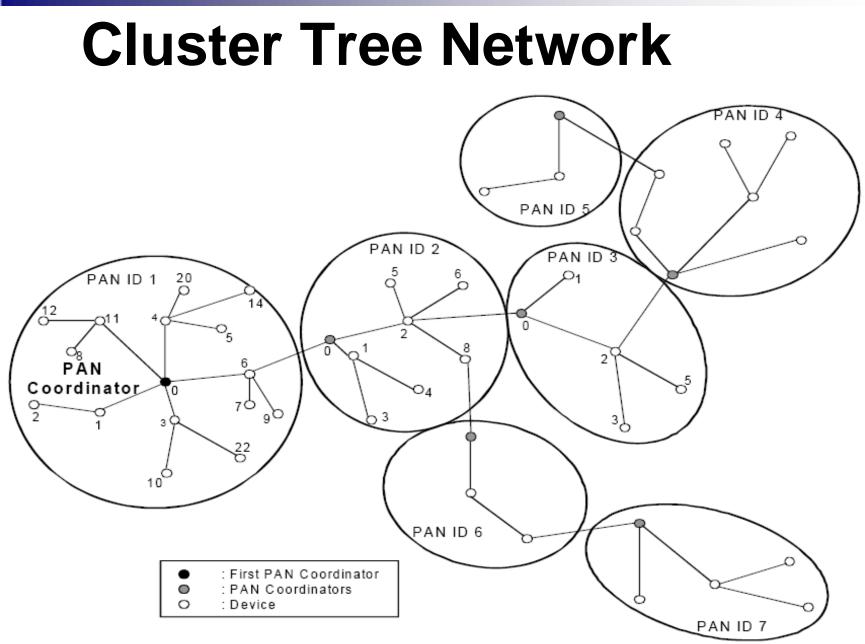
- Any device may communicate with any other device as long as they are in range of one another.
- One device is nominated as the PAN coordinator
- It allows more complex network formations
 Mesh network
- It can be ad hoc, self-organizing, and self-healing.
- It may also allow multiple hops to route messages from any device to any other device on the network.


• Applications:

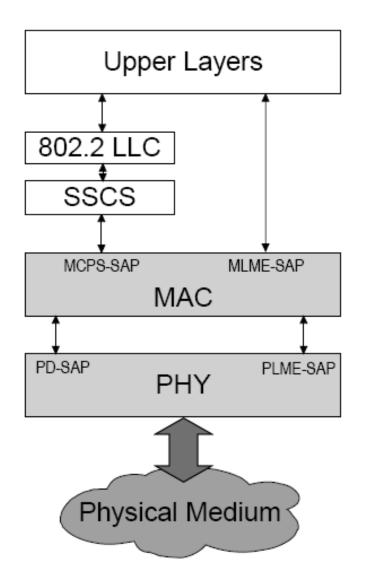
- □ industrial control and monitoring,
- wireless sensor networks,
- asset and inventory tracking,
- intelligent agriculture,

IEEE 802.15.4 MAC Overview Peer-Peer Topology

IEEE 802.15.4 MAC Overview Combined Topology


Clustered stars - for example, cluster nodes exist between rooms of a hotel and each room has a star network for control.

Communications flow


Reduced function device

Cluster Tree Topology

- An example of peer-to-peer communications topology
- Most devices are FFDs.
- An RFD connects to a cluster tree network as a leaf device at the end of a branch.
- The PAN coordinator forms the first cluster by choosing an unused PAN identifier and broadcasting beacon frames to neighboring devices.
- A candidate device receiving a beacon frame may request to join the network at the PAN coordinator.
- If the PAN coordinator permits the device to join, it adds the new device as a child device in its neighbor list.

Layer Architecture

The upper layers:

Network layer

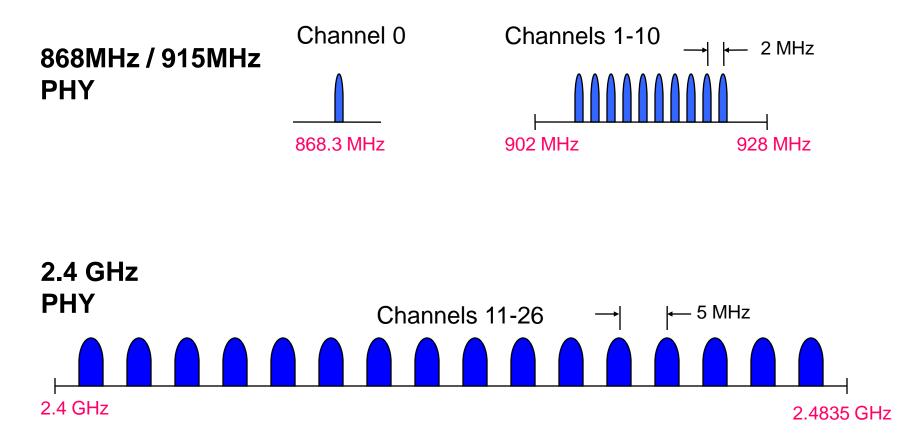
- Network configuration
- Manipulation
- Message routing
- Application layer
 - Provides the intended function of the device.
- Logical Link Control (LLC) can access the MAC sub layer through the Service-Specific Convergence Sub layer (SSCS)

Physical Layer (PHY)

Provides two services:

□ PHY data service

PHY management service

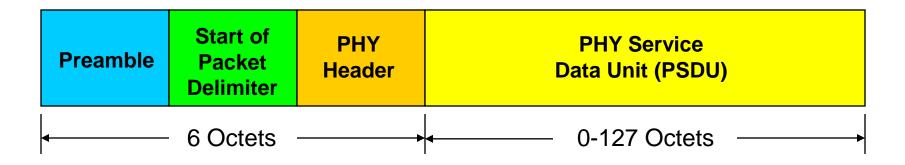

The features of the PHY:

- Activation and deactivation of the radio transceiver
- □ Energy Detection (ED)
- □ Link Quality Indication (LQI)
- Channel selection
- Clear Channel Assessment (CCA)
- Transmitting and receiving packets across the physical medium

Unlicensed Frequency Bands

- 868–868.6 MHz (e.g., Europe)
- 902–928 MHz (e.g., North America)
- 2400–2483.5 MHz (Worldwide)

IEEE 802.15.4 PHY Overview Operating Frequency Bands


Frequency Bands and Data Rates

PHY (MHz)	Frequency band (MHz)	Spreading parameters		Data parameters		
		Chip rate (kchip/s)	Modulation	Bit rate (kb/s)	Symbol rate (ksymbol/s)	Symbols
868/915	868-868.6	300	BPSK	20	20	Binary
	902–928	600	BPSK	40	40	Binary
868/915 (optional)	868-868.6	400	ASK	250	12.5	20-bit PSSS
	902–928	1600	ASK	250	50	5-bit PSSS
868/915 (optional)	868-868.6	400	O-QPSK	100	25	16-ary Orthogonal
	902–928	1000	O-QPSK	250	62.5	16-ary Orthogonal
2450	2400-2483.5	2000	O-QPSK	250	62.5	16-ary Orthogonal

IEEE 802.15.4 PHY Overview Packet Structure

PHY Packet Fields

- Preamble (32 bits) synchronization
- Start of Packet Delimiter (8 bits)
- PHY Header (8 bits) PSDU length
- PSDU (0 to 1016 bits) Data field

IEEE 802.15.4 PHY Overview Modulation/Spreading

2.4 GHz PHY

- 250 kb/s (4 bits/symbol, 62.5 kBaud)
- Data modulation is 16-ary orthogonal modulation
- 16 symbols are ~orthogonal set of 32-chip PN codes
- Chip modulation is MSK at 2.0 Mchips/s

868MHz/915MHz PHY

- Symbol Rate
 - 868 MHz Band: 20 kb/s (1 bit/symbol, 20 kBaud)
 - 915 MHz Band: 40 kb/s (1 bit/symbol, 40 kBaud)
- Data modulation is BPSK with differential encoding
- Spreading code is a 15-chip m-sequence
- Chip modulation is BPSK at
 - 868 MHz Band: 300 kchips/s
 - 915 MHz Band: 600 kchips/s

IEEE 802.15.4 PHY Overview Common Parameters

Transmit Power

Capable of at least 1 mW

Transmit Center Frequency Tolerance

• ± 40 ppm

Receiver Sensitivity (Packet Error Rate <1%)

- -85 dBm @ 2.4 GHz band
- -92 dBm @ 868/915 MHz band

RSSI Measurements

- Packet strength indication
- Clear channel assessment
- Dynamic channel selection

IEEE 802.15.4 PHY Overview PHY Primitives

PHY Data Service

 PD-DATA – exchange data packets between MAC and PHY

PHY Management Service

- PLME-CCA clear channel assessment
- PLME-ED energy detection
- PLME-GET / -SET— retrieve/set PHY PIB parameters
- PLME-TRX-ENABLE enable/disable transceiver

IEEE 802.15.4 MAC Overview Design Drivers

- Extremely low cost
- Ease of implementation
- Reliable data transfer
- Short range operation
- Very low power consumption

Simple but flexible protocol

IEEE 802.15.4 MAC Overview Addressing

- All devices have IEEE addresses
- Short addresses can be allocated
- Addressing modes:
 - □ Network + device identifier (star)
 - □ Source/destination identifier (peer-peer)

MAC Sublayer

- Provides two services:
 - □ MAC data service
 - MAC management service
- The features of the MAC sublayer:
 - Beacon management,
 - □ Channel access,
 - □ Guaranteed Time Slot (GTS) management,
 - □ Frame validation,
 - Acknowledged frame delivery,
 - Association, and disassociation.

CSMA-CA Mechanism

- Two types of channel access mechanism, depending on the network configuration.
 - Nonbeacon-enabled PANs
 - Use an unslotted CSMA-CA channel access mechanism,
 - Beacon-enabled PANs
 - Use a slotted CSMA-CA channel access mechanism,

Unslotted CSMA-CA Mechanism

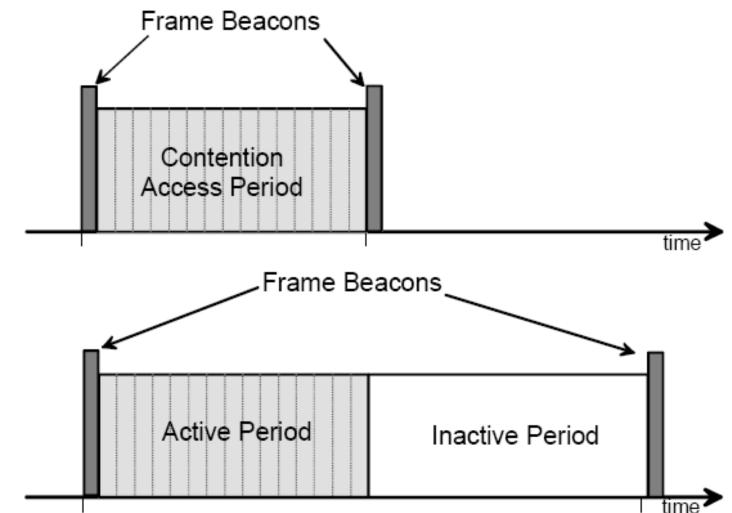
- Each time a device wishes to transmit data frames or MAC commands, it waits for a random period.
- If the channel is found to be idle the device transmits its data.
- If the channel is found to be busy, the device waits for another random period.
- Acknowledgment frames are sent without using a CSMA-CA mechanism.

Slotted CSMA-CA Mechanism

- Backoff slots are aligned with the start of the beacon transmission.
- Each time a device wishes to transmit data, it locates the boundary of the next backoff slot and then waits for a random number of backoff slots.
- If the channel is busy, the device waits for another random number of backoff slots
- If the channel is idle, the device begins transmitting on the next available backoff slot boundary.
- Acknowledgment and beacon frames are sent without using a CSMA-CA mechanism.

Frame Acknowledgment

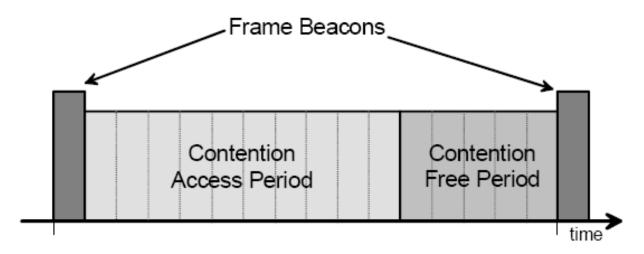
- A successful reception and validation of a data or MAC command frame can be optionally confirmed with an acknowledgment.
- If the originator does not receive an acknowledgment after some period
 - It assumes that the transmission was unsuccessful and retries the frame transmission.
- If an acknowledgment is still not received after several retries:
 - The originator can choose either to terminate the transaction or to try again.
- When the acknowledgment is not required, the originator assumes the transmission was successful.


Super Frame Structure Without GTSs

- The format of the super frame is defined by the coordinator.
- The super frame is bounded by network beacons sent by the coordinator
- It is divided into 16 equally sized slots.
 - □ The beacon frame is transmitted in the first slot of each super frame
- Optionally, the super frame can have an active and an inactive portion
 - During the inactive portion, the coordinator may enter a low-power mode.
- If a coordinator does not wish to use a super frame structure, it will turn off the beacon transmissions.

Beacons

- The beacons are used:
 - To synchronize the attached devices
 - □ To identify the PAN
 - □ To describe the structure of the super frames
- Any device wishing to communicate during the Contention Access Period (CAP) between two beacons competes with other devices
- All transactions are completed by the time of the next network beacon.

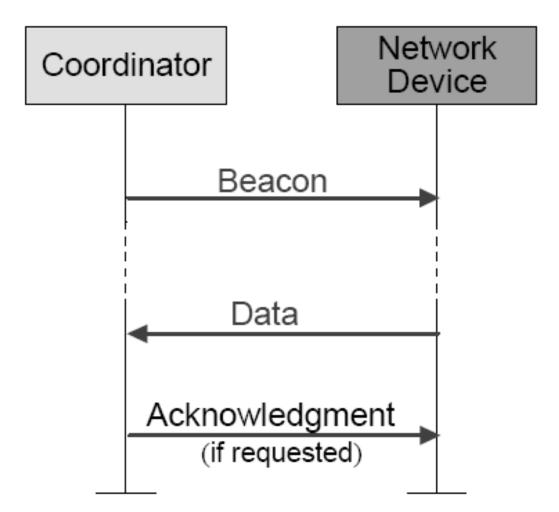

Super Frame Structure Without GTSs

96

Super Frame Structure With GTSs

- Guaranteed Time Slots (GTSs).
 - For low-latency applications or applications requiring specific data bandwidth.
 - □ The GTSs form the Contention-Free Period (CFP).
 - Each device transmitting in a GTS ensures that its transaction is complete before the time of the next GTS or the end of the CFP

802.15.4 MAC Super Frame Structure

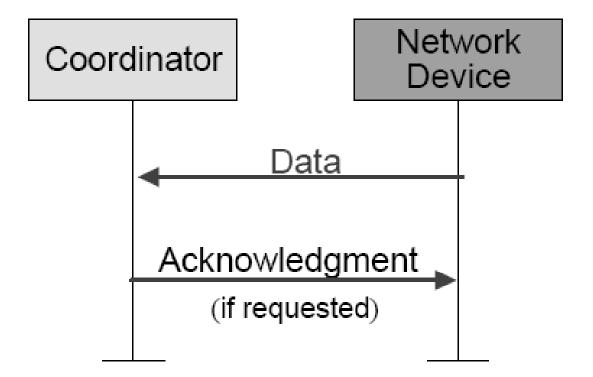

Data Transfer Model

- Three types of data transfer:
 - Data transfer to a coordinator
 - Data transfer from a coordinator
 - Data transfer between two peer devices.
- In star topology, only first two types are used
- In a peer-to-peer topology, data may be exchanged between any two devices on the network;

Data Transfer to a Coordinator

- Device first listens for the network beacon.
- When the beacon is found, the device synchronizes to the super frame structure.
- At the appropriate time, the device transmits its data frame, using slotted CSMA-CA, to the coordinator.
- The coordinator may acknowledge the successful reception of the data by transmitting an optional acknowledgment frame.

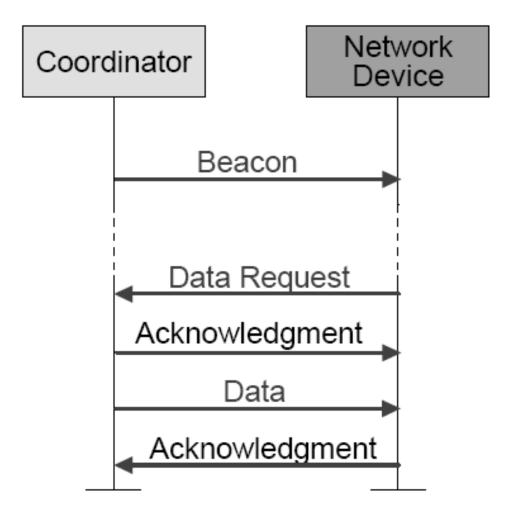
Data Transfer to a Coordinator in a Beacon-enabled PAN



Data Transfer to a Coordinator in a Nonbeacon-enabled PAN

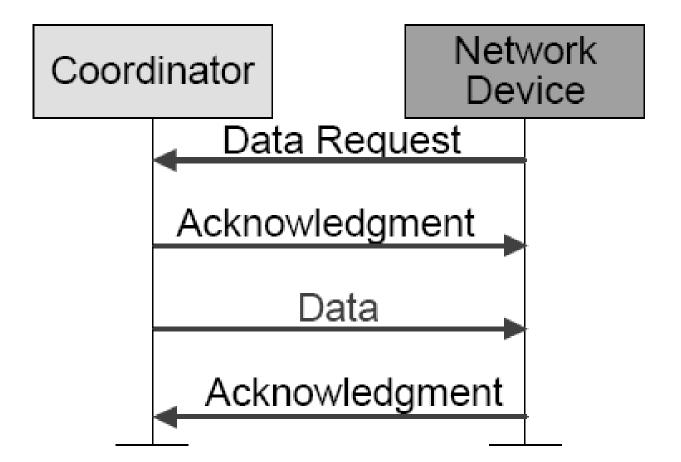
- The PAN coordinator never sends beacons.
- Communication happens on the basis of unslotted CSMACA.
- The coordinator is always on and ready to receive data
- Coordinator to coordinator communication poses no problems since both nodes are active all the time.

Data Transfer to a Coordinator in a Nonbeacon-enabled PAN


Device simply transmits its data frame, using unslotted CSMA-CA, to the coordinator.

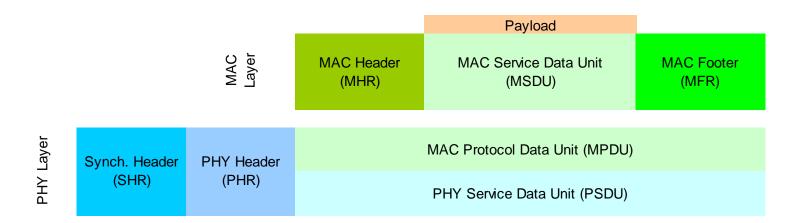
Data Transfer From a Coordinator in a Beacon-enabled PAN

- Coordinator indicates in the network beacon that the data message is pending.
- The device periodically listens to the network beacon
- If a message is pending, device transmits a MAC command requesting the data.
- The coordinator acknowledges the successful reception of the data request
- The pending data frame is then sent
- The device may acknowledge the successful reception of the data
- Upon successful completion of the data transaction, the message is removed from the list of pending messages in the beacon.


Data Transfer From a Coordinator in a Beacon-enabled PAN

Data Transfer From a Coordinator in a Nonbeacon-enabled PAN

- Coordinator stores the data for the appropriate device to make contact and request the data.
- A device may make contact by transmitting a MAC command requesting the data.
- The coordinator acknowledges the successful reception of the data request.
- If requested, the device acknowledges the successful reception of the data frame.


Data Transfer From a Coordinator in a Nonbeacon-enabled PAN

Peer-to-peer Data Transfers

- Every device may communicate with every other device in its radio sphere of influence.
- The devices wishing to communicate will need to either receive constantly or synchronize with each other.
- In the former case, the device can simply transmit its data using unslotted CSMA-CA.
- In the latter case, other measures need to be taken in order to achieve synchronization.

IEEE 802.15.4 MAC Overview General Frame Structure

4 Types of MAC Frames:

- Data Frame
- Beacon Frame
- Acknowledgment Frame
- MAC Command Frame

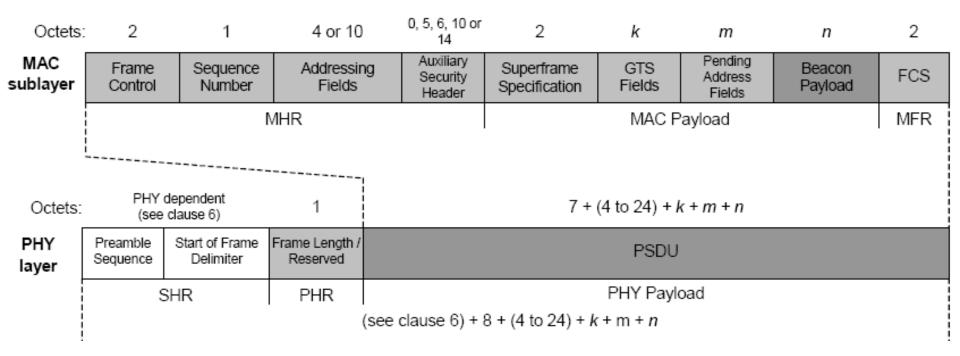
Frame Structure

Four types of frame:
 Beacon frame:

Used by a coordinator to transmit beacons

Data frame:

Used for all transfers of data


□ Acknowledgment frame:

Used for confirming successful frame reception

□ MAC command frame:

 Used for handling all MAC peer entity control transfers

Beacon Frame

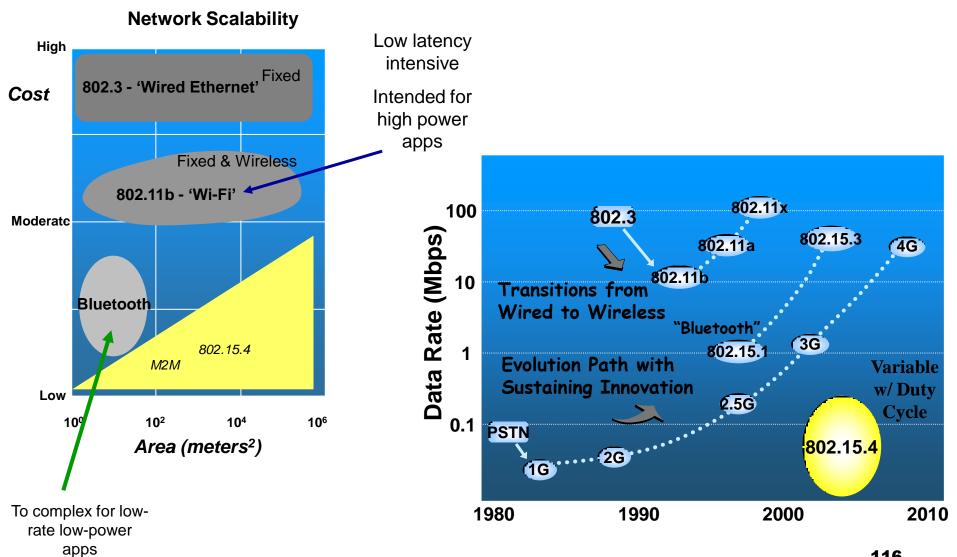
Data Frame

			Octets:	2	1	4 to 20	0, 5, 6, 10 or 14	п	2	
MAC sublayer				Frame Control	Sequence Number	Addressing Fields	Auxiliary Security Header	Data Payload	FCS	
				MHR				MAC Payload	MFR	
Octets:	PHY dependent (see clause 6)		1	5 + (4 to 34) + n						
PHY layer	Preamble Sequence	Start of Frame Delimiter	Frame Length / Reserved	PSDU						
	SHR		PHR	PHY Payload						
	(see clause 6) + 6 + (4 to 34) + n									

Acknowledgment Frame

			Octets:	2	1	2		
MAC sublayer				Frame Control	Sequence Number	FCS		
				MI	HR	MFR		
Octets: PHY dependen (see clause 6)			1	5				
PHY layer	Preamble Sequence	Start of Frame Delimiter	Frame Length / Reserved	PSDU				
	S⊦	IR	PHR	PHY Payload				
	(see clause 6) + 6							

MAC Command Frame


			Octets:	2	1	4 to 20	0, 5, 6, 10, or 14	1	п	2	
MAC sublayer				Frame Control	Sequence Number	Addressing Fields	Auxiliary Security Header	Command Type	Command Payload	FCS	
-				MHR				MAC Payload		MFR	
Octets:	Octets: PHY dependent (see clause 6) 1			6 + (4 to 34) + n							
PHY layer	Preamble Sequence	Start of Frame Delimiter	Frame Length / Reserved	PSDU							
	SHR PHR			PHY Payload							
	(see clause 6) + 7 + (4 to 34) + n										

Security

Devices are

- Low-cost
- Limited capabilities in terms of
 - Computing power,
 - Available storage,
 - Power drain;
- Most of security architectural elements can be implemented at higher layers.
- The cryptographic mechanism is based on symmetric-key cryptography and uses keys that are provided by higher layer processes.

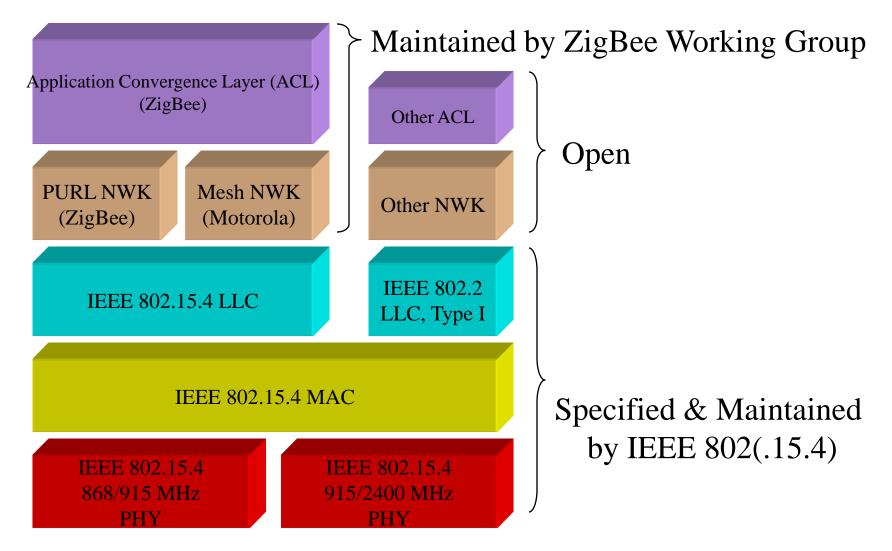
Related Technologies

Part 4 ZigBee Standard

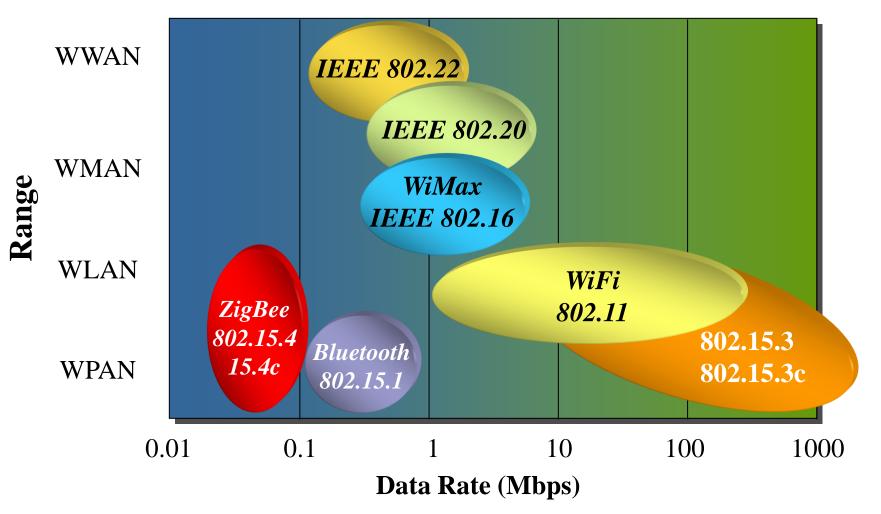
What is ZigBee?

- A low data rate, low power specification
- ZigBee Alliance is

"an association of companies working together to enable reliable, cost-effective, lowpower, wirelessly networked, monitoring and control products based on an open global standard."


ZigBee/802.15.4

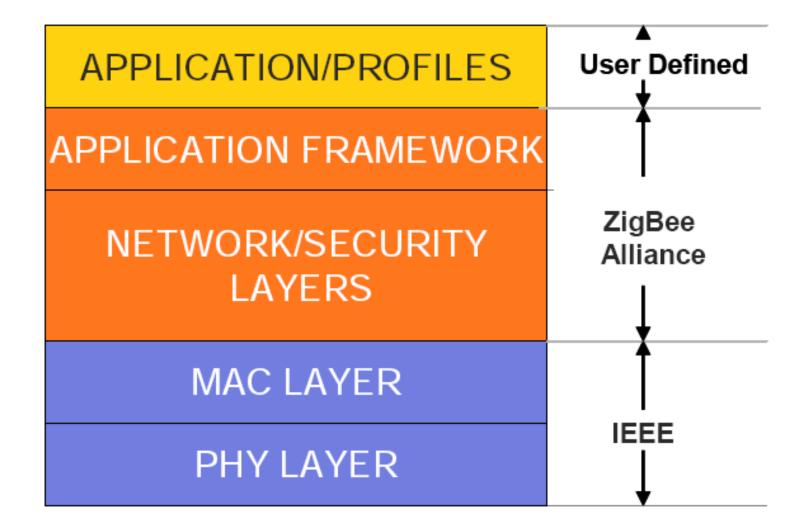
- 802.15.4 standardizes lower layers (Phy-MAC).
- ZigBee refers to additional set of higher-layer standards.
 - developed by industry group "the ZigBee Alliance"
- Alliance provides
 - upper layer stack and application profiles
 compliance and certification testing
 Branding
- Over 150 member companies
 - including Ember, Freescale, Honeywell, Invensys, Mitsubishi, Motorola, Philips, and Samsung.


ZigBee

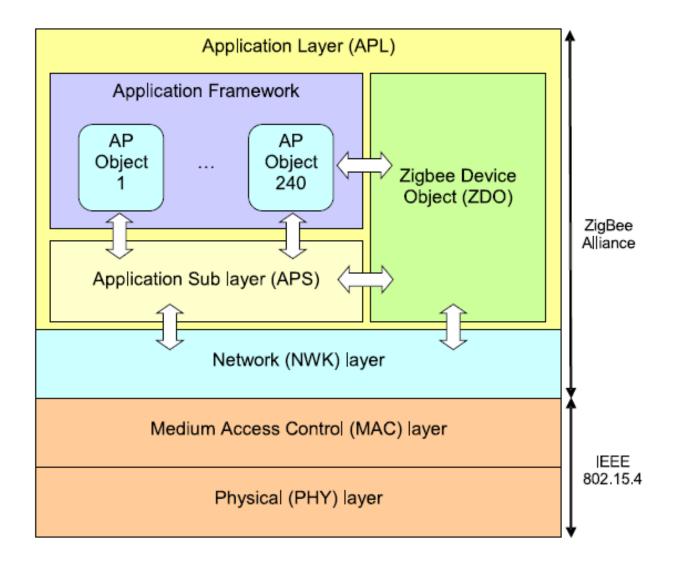
- The name "ZigBee" is derived from the erratic zigging patterns many bees make between flowers when collecting pollen.
- This is evocative of the invisible webs of connections existing in a fully wireless environment.

Low Rate Stack Architecture

ZigBee's Place


History of ZigBee

- No adequate solution for:
 - Smart badges
 - Home Automation
 - Interactive toys
- IEEE 802.15.4 task group set out to design a standard with:
 - Low data rate
 - Long battery life
 - Very low complexity
- In 2003, a standard was completed


History of ZigBee

October 2002 ZigBee Alliance is formed December 2004 □ ZigBee 1.0 is released Current releases □ 802.15.4 is 2006 □ ZigBee specification is 2007

Protocol Stack and Responsibility

Protocol Stack

Zigbee Layers

- The network layer (NWK)
 - Organizing and providing routing over a multihop network
- Application Layer (APL)
 - Providing a framework for distributed application development and communication.
- The APL comprises:
 - □ Application Framework.
 - □ ZigBee Device Objects (ZDO).
 - □ Application Sub Layer (APS).
- The Application Framework can have up to 240 Application Objects, that is, user defined application modules which are part of a ZigBee application.
- The ZDO provides services that allow the APOs to discover each other and to organize into a distributed application.
- The APS offers an interface to data and security services to the APOs and ZDO.

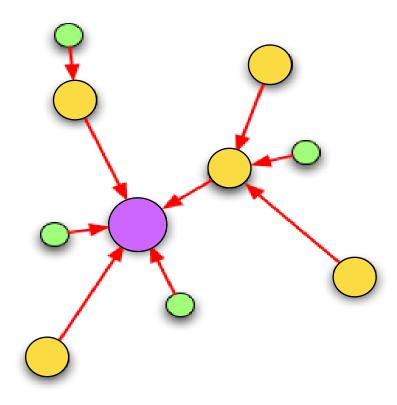
IEEE 802.15.4 PHY

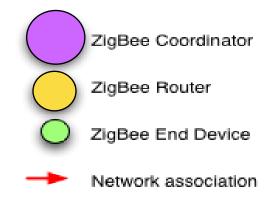
- Direct Sequence Spread Spectrum
- Link quality measurements
 - Used by higher layers

IEEE 802.15.4 MAC

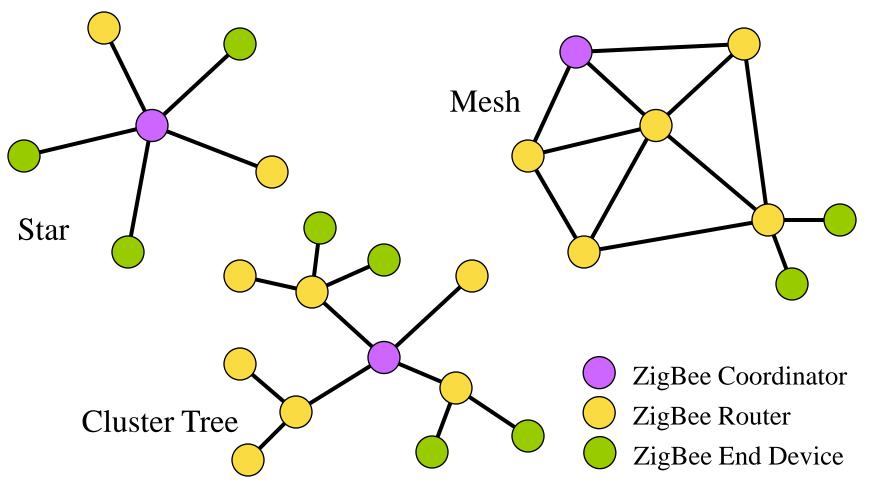
- Two addressing modes
 16 bit (~65,000 devices)
 64 bit (lots of devices)
- CSMA/CA
- Allows for network beaconing
 Wake up periodically, checking for a beacon
- Power savings
 - □ Nodes can sleep between beacons
 - Nodes that don't have to route or randomly receive can sleep until needed

The Network Layer


- ZigBee identifies three device types:
 - ZigBee end-device corresponds to an IEEE RFD or FFD
 - □ ZigBee router is an FFD with routing capabilities
 - ZigBee coordinator (one in the network) is an FFD managing the whole network.
- ZigBee network layer also supports more complex topologies like the tree and the mesh
- Multihop routing
- Route discovery and maintenance
- Security and joining/leaving a network


ZigBee Device Types

ZigBee Coordinator (ZC)


- -One and only one required for each ZB network.
- -Initiates network formation.
- -Acts as 802.15.4 2003 PAN coordinator (FFD).
- -May act as router once network is formed.
- **ZigBee Router (ZR)**
 - -Optional network component.
 - -May associate with ZC or with previously associated ZR.
 - -Acts as 802.15.4 2003 coordinator (FFD).
 - -Participates in multihop routing of messages.
- ZigBee End Device (ZED) (some times called RFD)
 - -Optional network component.
 - -Shall not allow association.
 - -Shall not participate in routing.

Device Associations

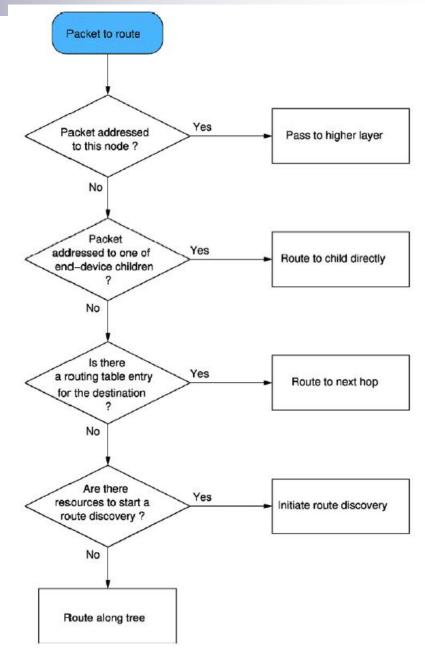
Network Topologies

Network Formation and Address Assignment

- A Multihop network is established by means of the join procedure.
- When a device c wishes to join an existing network, the network layer is requested to start a network discovery procedure.
- With support from the MAC layer scan procedure, it learns about neighbouring routers that announce their networks.
- After the upper layer has decided which network to join, the network layer selects a "parent" node p (in the desired network) from his neighbourhood, and asks the MAC layer to start an association procedure.
- Upon receiving an indication of the association request from the MAC layer, p's network layer assigns c a 16-bit short address and lets the MAC layer successfully reply to the association request.
- Node c will use the short address for any further network communication.

ZigBee Tree

- Parent-child relationships established as a result of joins shape the whole network in the form of a tree
- The ZigBee coordinator is the root of tree
- The ZigBee routers are internal nodes
- The ZigBee end-devices are leaves
- The ZigBee coordinator fixes:
 - The maximum number of routers (Rm)
 - The maximum number of end-devices (Dm) that each router may have as children
 - □ The maximum depth of the tree (Lm)

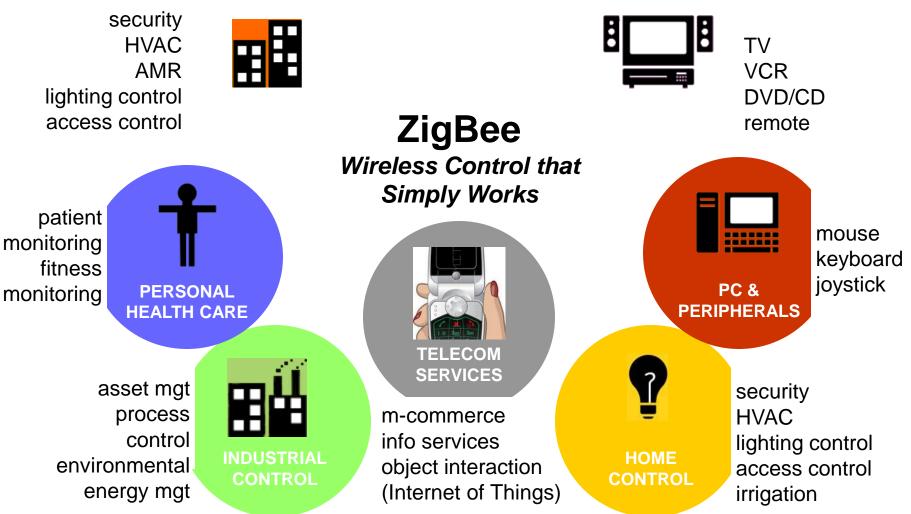

Routing

- The routing algorithm depends on the topology used in the sensor network.
- Ad hoc On Demand Distance Vector (AODV)
 - Used for mesh topologies
- Cluster-Tree Algorithm
 - □ Form clusters of nodes that make a tree

Tree-based Routing

- Routing can only happen along the parent-child links
- Routers maintain only their address and the address information associated with their children and parent.
- Given the way addresses are assigned, a router that needs to forward a message can easily determine whether the destination belongs to a tree rooted at one of its router children or is one of its end-device children.
- If so, it routes the packet to the appropriate child;
 Otherwise it routes the packet to its parent.

Routing Algorithm


Route Discovery

- The process required to establish routing table entries in the nodes along the path between two nodes wishing to communicate.
- Route discovery in ZigBee is based on the well-known Adhoc On Demand Distance Vector routing algorithm (AODV)
- When a node needs a route to a certain destination, it broadcasts a route request (RREQ) message.
- RREQ message is propagated through the network until it reaches the destination.
- The RREP message is addressed to the route discovery originator and carries with it a residual cost value field that each node increments as it forwards the message.

The Application Layer

- A ZigBee application consists of a set of Application Objects (APOs) spread over several nodes in the network.
- An APO is a piece of software that controls a hardware unit (transducer, switch, lamp)
- Each APOis assigned a locally unique endpoint number that other APOs can use as an extension to the network device address to interact with it.
- The ZigBee Device Object (ZDO) is a special object which offers services to the APOs.
- It allows them to discover devices in the network and the service they implement.
- It also provides communication, network and security management services.
- The Application Sublayer (APS) provides data transfer services for the APOs and the ZDO.

ZigBee Applications

Application Profiles

- An application profile defines message formats and protocols for interactions between APOs
- Profiles regulate types of messages to and from end points
- Public Profiles

□ Interoperability

- Vendor Profiles
 - Undergoes certificate testing
 - Shouldn't interfere with other ZigBee networks

Example Profiles

Home Automation Devices used:

- Light switch
- Lamp
- Thermostat
- Industrial Plant Monitoring
 - Devices used:
 - Pressure sensors
 - Cameras
 - Thermostat

ZigBee Security

Encryption using 128-bit key
 Symmetric key (shared key)

Multi-layer Security

Network layer uses Advanced Encryption Standard (AES)

Network layer has different levels of security

ZigBee Security

- ZigBee is touted as "highly secure"
 Relies on centralized infrastructure
 - Coordinator acts as trust center
- Types of keys:
 - Master key
 - Installed out-of-band
 - Network key
 - Shared by all devices
 - No protection against "insider" attacks
 - □ Link key
 - Derived from master key

ZigBee Vendors

- Freescale
- Cirronet
- GridConnect
- MaxStream
- AirBee
- Jennic
- Silicon Labs
- Meshnetics
- MicroChip

Typical ZigBee Device

- Operating Frequency 2.4 GHz 250 Kbps O-QPSK in 5 MHz channels Sensitivity ~-91 dBm
- Output programmable from -27 to 4 dBm
- Sleep Power = .5 uW
- Transmit Power = 81 mW
- Receive Power = 99 mW

ZigBee/802.15.4

ZigBee targets extremely low power/long-lifetime devices.

	802.11	Bluetooth	RFID	Zigbee
Power	Hours	Days	Passive:no power Active:months	Years
Configuration	Ad-hoc (DCF) and Access point (PCF) modes	Master- few slaves	Reader-tags	Master-many slaves
Nodes	30	7	100s	64000
Data rates	Few Mbps to 50 Mbps	1 Mbps	10 Kbps to 100 Kbps	250 Kbps
Range	100 meters	10 meters	Cm to a meter	70 – 100 meter

How does ZigBee compare to other wireless standards?

Market Name	ZigBee®		Wi-Ej™	Bluetooth™
Standard	802.15.4	GSM/GPRS CDMA/1xRTT	802.11b	802.15.1
Application Focus	Monitoring & Control	Wide Area Voiœ & Data	Web, Email, Video	Cable Replacement
System Resources	4KB - 32KB	16MB+	1MB+	250KB+
Battery Life (days)	100 - 1,000+	1-7	.5 - 5	1-7
Network Size	Unlimited (2 ⁶ *)	1	32	7
Maximum Data Rate (KB/s)	20 - 250	64 - 128+	11,000+	720
Transmission Range (meters)	1 - 100+	1,000+	1 - 100	1 - 10+
Success Metrics	Reliability, Power, Cost	Reach, Quality	Speed, Flexibility	Cost, Convenience

149

ZigBee vs. Bluetooth

- Larger Range
 - □100m vs. 10m
- Lower Data Rate
 - □ 20 to 250 Kbps vs. 1 Mbps
- Lower Energy
 - □ Multi-year vs. multi-day battery life
- Device numbers
 - □7 slaves per network vs. 65,000 nodes

Conclusions

 ZigBee is beneficial for low data rate, low power applications

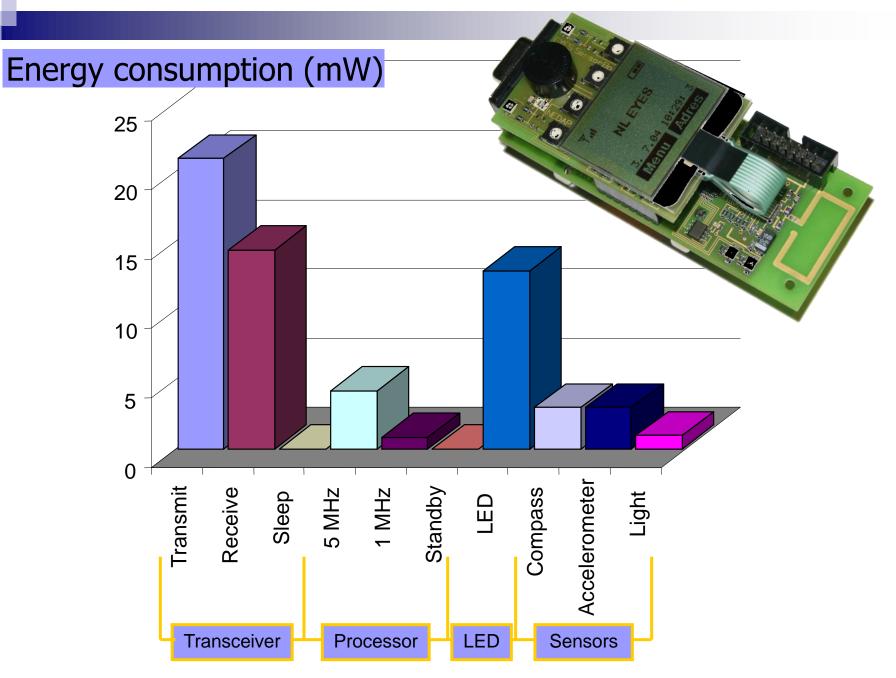
- Automation
- □ Monitoring

Centralized trust center helps to manage security

Part 5 Energy-Efficient MAC Layer

Energy Efficiency

- Energy efficiency is probably the most important issue in Wireless Sensor Networks (WSNs).
- It is extremely important to develop techniques that prolong battery lifetime as much as possible.
- Unnecessary energy consumption must be avoided by :
 - □ Attentive hardware/component design
 - Low level and high level software programming.


Requirements for Sensor Networks

Handle scarce resources

- CPU: 1 10 MHz
- memory: 2 4 KB RAM
- radio: ~100 Kbps
- energy: small batteries

Unattended operation

- plug & play, robustness
- Iong lifetime

Reasons of Energy Waste

- The major reason for energy waste:
 Idle listening
 - Node is listening to the radio channel waiting for something.
 - Packet collisions
 - Overhearing a packet destined to another node
 - Control packet overhead

Energy Saving Methods

- Connected dominating set approaches
- MAC layer approaches
- Cross layer approaches
- Topology control

Energy Saving Methodes

Connected dominating set approaches
MAC layer approaches
Cross layer approaches
Topology control

Connected Dominating Set (CDS)

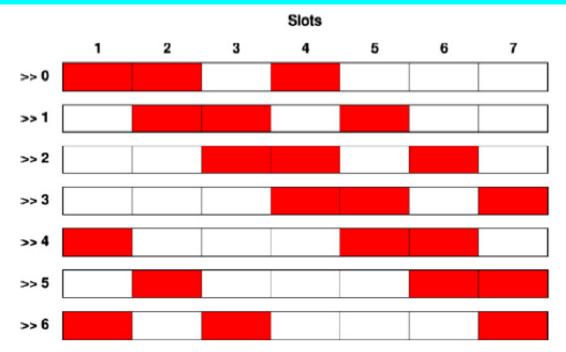
- The idea of CDS approaches is to select some of the nodes to constitute a network backbone and be active all the time providing network connectivity and temporarily storing messages for neighbouring non-backbone nodes.
- Nonbackbone nodes sleep most of the time (saving energy) and periodically wake up to exchange messages with their backbone node neighbour.
- Since backbone nodes consume more energy than the other nodes, CDS protocols require nodes to alternate between backbone and non-backbone status.
- Examples: GAF and Span

Energy Saving Methodes

- Connected dominating set approaches
- MAC layer approaches
- Cross layer approaches
- Topology control

MAC Layer Approaches

- Attempt to achieve energy savings by exclusive use of medium access control facilities.
- Higher layers are unaffected and unaware of this.
- Methods:
 - □ Slot-based protocols
 - □ TDMA protocols
 - □ S-MAC, T-MAC and DS-MAC
 - Data and signaling channel
 - □ IEEE 802.15.4 energy efficiency

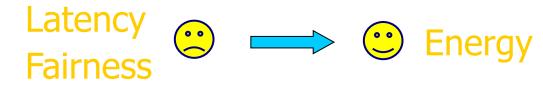

Slot-based Protocols

- Time is divided into periods each containing a certain number of fixed size lots.
- Nodes stay active in a certain predefined subset of the slots.
- In active period they send beacons announcing their schedule
- Activation schedules can be found such that any two neighbouring nodes eventually can hear each other's beacons.

Example

activation schedule: 1101000 (where 1s represent active slots and 0s represent inactive slots)

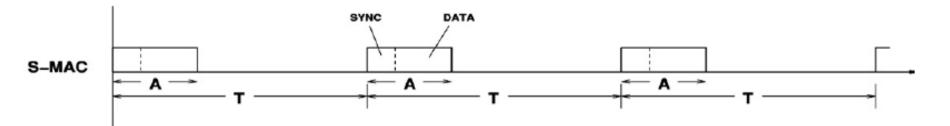
any two neighbours can hear each other (they have at least one overlapping active slot)


TDMA Protocols

- Schedule transmissions a priori so that any node exactly knows when it must turn on its radio and no collisions can ever result.
- All nodes can see each other and a master, starts a super frame providing synchronization timing for network operation.
- The super frame contains a sequence of slots that may be statically or dynamically allocated.

S-MAC, T-MAC and DS-MAC

- To divide time into periods of fixed duration T consisting of a radio-on active window and a radio-off sleep window.
- Neighboring nodes must organize someway to exchange information about their relative active windows.


Case Study: S-MAC S-MAC — by Ye, Heidemann and Estrin Tradeoffs

Major components in S-MAC
 Periodic listen and sleep
 Collision avoidance
 Overhearing avoidance
 Massage passing

S-MAC


- Active and sleep windows have a fixed networkunique duration A and are divided into two parts.
- The first part is reserved for reception of SYNC messages from neighbours.
- A node informs neighbours of its schedule (the time to the next activation window) by means of periodic SYNC messages.

Coordinated Sleeping

Problem: Idle listening consumes significant energy

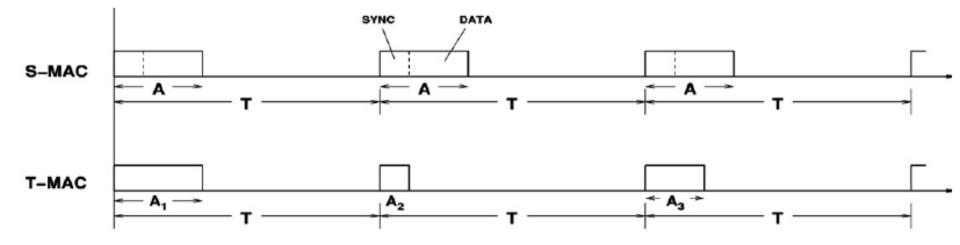
Solution: Periodic listen and sleep

- Turn off radio when sleeping
- Reduce duty cycle to ~ 10% (120ms on/1.2s off)

Scheduling

- At startup a node listens for some time to receive schedules from neighbouring nodes.
- It adopts the schedule from a neighbour if it receives one.
- Otherwise it chooses one on its own and starts to advertise it in SYNC messages.
- The above procedure attempts to coordinate nodes so that they use the same schedule.
- It is distributed in nature and some nodes may have to adopt multiple schedules.

Timeout MAC (T-MAC)

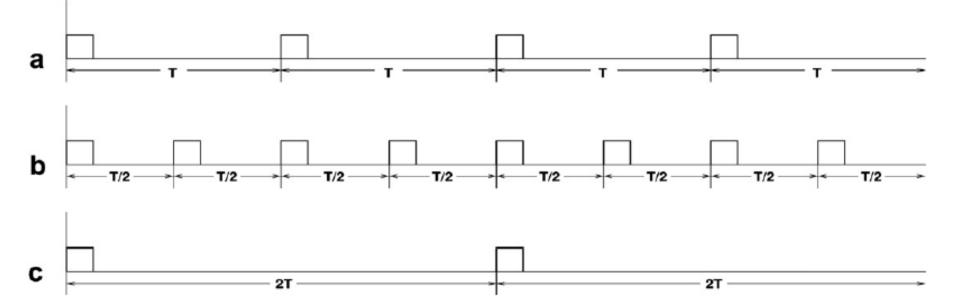

- The two main deficiencies of S-MAC are :
 - □ High latency
 - □ Insensitivity to varying traffic loads, given its fixed duty cycle.
- T-MAC builds on S-MAC and attempts to mitigate these problems.
- Nodes select their schedule as in S-MAC but active windows are not fixed in duration:

□ They may extend, adapting to different traffic rates.

- Every node turns its radio on at the beginning of its active window and turns if off if no activation event occurs for a certain period.
- Reception of messages is an activation event that prolongs the active window.

S-MAC and T-MAC

S-MAC has fixed active windows while T-MAC has variable active windows that extend as long as messages are received or other activation events occur.


DS-MAC

- DS-MAC also based on S-MAC.
- Starts with a system defined period length but allows a node to double or halve it dynamically depending on traffic load conditions.
- If the average packet reception delay is too high a node will halve its current period duration.
- If packet reception delay is low the node will double the period duration.
- In either case the active window is kept constant.

DS-MAC

b) Average delay is high (node may halve its current period duration from T to T/2)

c) Average delay is low (it may double it from T to 2T)

Data and Signaling Channel

- Energy savings can be achieved augmenting the data channel with a separate signaling channel
- The data channel is used for data and some control messages
- It is only turned on when required
- The signaling channel providing wakeup notifications.
- The signaling radio is characterized by a fixed, low duty cycle but sleeps by different nodes are unsynchronized.

IEEE 802.15.4 Energy Efficiency

Two modes of IEEE 802.15.4

- Unslotted CSMA-CA mode (used in beacon-less mode)
- □ Slotted CSMA-CA mode (used in beacon enabled mode)

Unslotted CSMA-CA:

- no power saving mechanisms
- □ Does not provide any time delivery guarantee.

Slotted CSMA-CA:

- □ Adopts coordinated periodic sleeping
- Achieves higher energy efficiency
- Better copes with time delivery constrains.

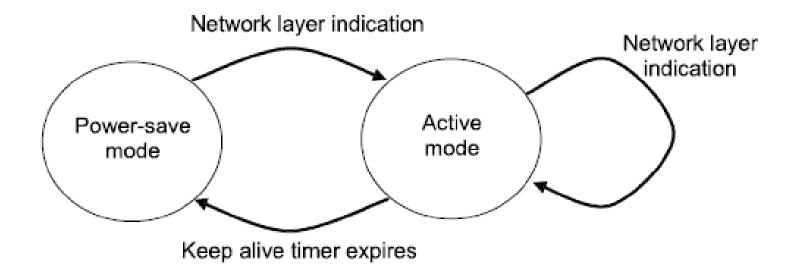
Energy Saving Methods

- Connected dominating set approaches
 MAC layer approaches
- Cross layer approaches
- Topology control

Cross Layer Approaches

- Higher layers Information can be combined with MAC layer approaches to achieve higher energy savings.
- The Network and the Application layer in particular have much better information on:
 - □ Actual communication patterns,
 - Multihop data paths
 - □ Associated data rates
- This information can be used to obtain better radio activation schedules.

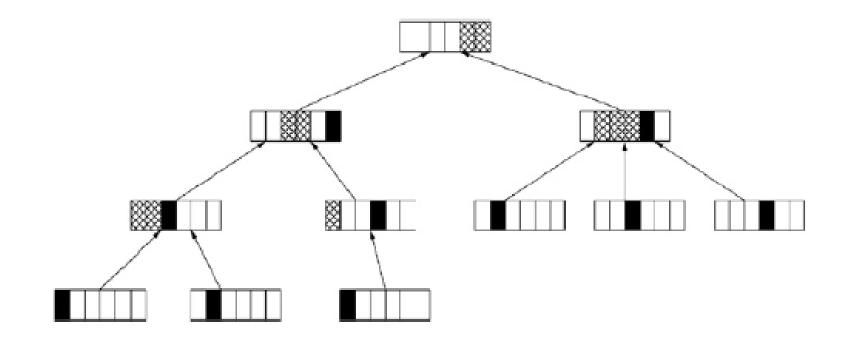
Cross Layer Approaches


Methods:

- Network support
- Tree-based stream scheduling
- □ Flexible stream scheduling

Cross Layer Approaches: Network Support

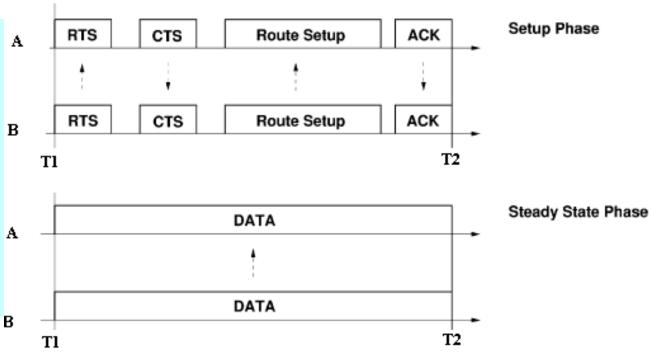
- Use network layer information to drive a MAC layer supporting active and power-save modes.
- Communication is possible only after the node is woken up and it transitions in the active mode.
- Arrival of Network layer messages fires a transition to active mode and starts a keep alive timer.
- As long as actual data messages arrive the timer is refreshed and the node remains in active mode.
- Timer expiration indicates that no more traffic is expected and the node may transition back to powersave mode.


Cross Layer Approaches: Network Support

Cross Layer Approaches: Tree-based Stream Scheduling

- □ In trivial data gathering applications, nodes sample data from the environment and send them to the sink.
- In this leaf-to-root tree communication pattern, child to parent communication can be optimized by a sort of slot scheduling.
- Time is divided into periods each one consisting of fixed-size slots
- A node wishing to send or forward data to the sink must reserve a slot in the parent's schedule
- Once reserved, a slot data transmission suffers no collisions.

Cross Layer Approaches: Tree-based Stream Scheduling


Cross Layer Approaches: Flexible Stream Scheduling

- Using a more flexible dynamic scheduling approach that easily extends to peer-to-peer communication.
- □ It is not limited to fixed size slots
- Protocol operation contemplates two phases for each data stream:
 - Setup/Reconfiguration phase:
 - Data path is established with the help of the Network layer and a RTS/CTS/RouteSetup/ACK
 - Steady State phase

Cross Layer Approaches: Flexible Stream Scheduling

In the Setup Phase node
A, reserves time interval
[T1, T2] with a
RTS/CTS/RouteSetup
/ACK protocol

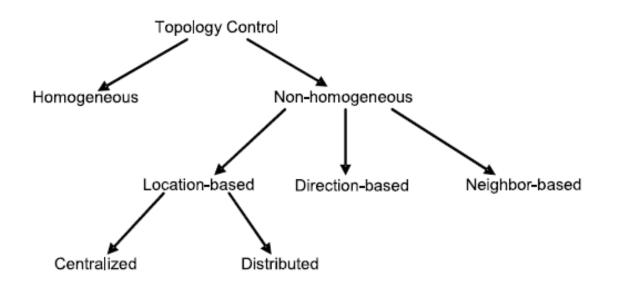
In the Steady State
Phase A, uses intervals
[T1, T2] to send data
packets to B.

Energy Saving Methodes

- Connected dominating set approaches
 MAC layer approaches
- Cross layer approaches
- Topology control

Topology Control

- In wireless sensor networks, the use of topology control mainly focuses on two aspects:
 - Extending network lifetime by reducing node energy consumption
 - The shortest path may not always be the most energy efficient
 - In this case topology control can be used to remove energyinefficient links between nodes.


□ Increasing network capacity

 Topology control can be used in this case to optimize signal strength in order to reduce the interferences and thus improve network capacity

Topology Control

Two main approaches for topology control are:

- Homogeneous power assignment.
- Non-homogenous power assignment

Homogeneous Transmission Range Assignment

- Transmission range is the same for all nodes despite the fact that the radio transmission is also dependent on the propagation environment.
- The implementation of the topology control mechanism can be simplified to calculating the Critical Transmission Range (CTR) of the network.

Non Homogeneous Transmission Range Assignment

- Different nodes are assigned different transmission powers and consequently different transmission ranges.
- Nodes adjust their transmission power based on locally available information.
- Non-homogeneous transmission range assignment can be further subdivided into:
 - Location-based,
 - Direction-based,
 - Neighbour-based.

Location-based Topology Control

- Nodes are aware of their physical location.
 Two approaches:
 - Centralized approaches:
 - This information is collected by a single node which uses an optimization algorithm to select the transmission power of each node.
 - □ Distributed approaches:
 - This information is exchanged between nodes to compute an almost optimal power assignment.

Direction-based topology control

- It is assumed that the nodes do not know their position.
- Instead, their directions are made available using angle-of-arrival techniques.

Neighbour-based Topology Control

- Nodes will be connected to its k closest neighbours.
- A typical protocol in this type of topology control is the K-NEIGH protocol.
- The basic idea is to keep the number of neighbours per node around an optimal value k.
- The K-NEIGH protocol is distributed and generates a connected graph with high probability.
- Nodes announce their ID at high transmission power to discover potential neighbours.
- Neighbours will then be sorted by their separation distance.
- The k nearest neighbour that can mutually reach each other use the smallest transmission power that is sufficient to reach all of them.